text
stringlengths
87
777k
meta.hexsha
stringlengths
40
40
meta.size
int64
682
1.05M
meta.ext
stringclasses
1 value
meta.lang
stringclasses
1 value
meta.max_stars_repo_path
stringlengths
8
226
meta.max_stars_repo_name
stringlengths
8
109
meta.max_stars_repo_head_hexsha
stringlengths
40
40
meta.max_stars_repo_licenses
listlengths
1
5
meta.max_stars_count
int64
1
23.9k
meta.max_stars_repo_stars_event_min_datetime
stringlengths
24
24
meta.max_stars_repo_stars_event_max_datetime
stringlengths
24
24
meta.max_issues_repo_path
stringlengths
8
226
meta.max_issues_repo_name
stringlengths
8
109
meta.max_issues_repo_head_hexsha
stringlengths
40
40
meta.max_issues_repo_licenses
listlengths
1
5
meta.max_issues_count
int64
1
15.1k
meta.max_issues_repo_issues_event_min_datetime
stringlengths
24
24
meta.max_issues_repo_issues_event_max_datetime
stringlengths
24
24
meta.max_forks_repo_path
stringlengths
8
226
meta.max_forks_repo_name
stringlengths
8
109
meta.max_forks_repo_head_hexsha
stringlengths
40
40
meta.max_forks_repo_licenses
listlengths
1
5
meta.max_forks_count
int64
1
6.05k
meta.max_forks_repo_forks_event_min_datetime
stringlengths
24
24
meta.max_forks_repo_forks_event_max_datetime
stringlengths
24
24
meta.avg_line_length
float64
15.5
967k
meta.max_line_length
int64
42
993k
meta.alphanum_fraction
float64
0.08
0.97
meta.converted
bool
1 class
meta.num_tokens
int64
33
431k
meta.lm_name
stringclasses
1 value
meta.lm_label
stringclasses
3 values
meta.lm_q1_score
float64
0.56
0.98
meta.lm_q2_score
float64
0.55
0.97
meta.lm_q1q2_score
float64
0.5
0.93
text_lang
stringclasses
53 values
text_lang_conf
float64
0.03
1
label
float64
0
1
### Considered model: four-bar linkage (= two link manipulator + one link manipulator + rigid coupling) ```python %load_ext ipydex.displaytools %matplotlib inline import os import sympy as sp import numpy as npy # we need `np` later from sympy import sin, cos, pi from sympy.interactive import printing import symbtools as st import symbtools.modeltools as mt import symbtools.visualisation as vt from symbtools.modeltools import Rz # Rotationsmatrix in the xy plane (c, -s; s, c) import scipy.integrate as sc_integrate import matplotlib.pyplot as pl from assimulo.solvers import IDA # Imports the solver IDA from Assimulo from assimulo.problem import Implicit_Problem # Imports the problem formulation from Assimulo import ipydex plt = pl printing.init_printing(1) ``` Could not find GLIMDA. ```python t = sp.Symbol('t') # time variable # coordinates np = 2 nq = 1 n = np + nq pp = st.symb_vector("p1:{}".format(np+1)) ##:T qq = st.symb_vector("q1:{}".format(nq+1)) ##:T aa = st.symb_vector("a1:{}".format(nq+1)) ##:T ttheta = st.row_stack(pp, qq) ##:T tthetad = st.time_deriv(ttheta, ttheta) ##:T tthetadd = st.time_deriv(ttheta, ttheta, order=2) ##:T st.make_global(ttheta, tthetad, tthetadd) ``` ```python params = sp.symbols('s1, s2, s3, m1, m2, m3, J1, J2, J3, l1, l2, l3, l4, kappa1, kappa2, g') parameter_values = list(dict(s1=1/2, s2=1/2, s3=1/2, m1=1, m2=1, m3=3, J1=1/12 , J2=1/12, J3=1/12, l1=0.8, l2=1.5, l3=1.5, l4=2, kappa1=3/2 , kappa2=14.715, g=9.81).items()) st.make_global(params) # ttau = sp.symbols('tau') tau1, tau2 = ttau = st.symb_vector("tau1, tau2") ``` ```python Rz(q1) # Rotationsmatirx ``` Specify the geometry (joints G and centers of masses S) ```python # uni vectors ex = sp.Matrix([1, 0]) ey = sp.Matrix([0, 1]) # Basis 1 und 2 B1 = sp.Matrix([0, 0]) B2 = sp.Matrix([l4, 0]) # Coordinates two link manipulator S1 = Rz(q1)*ex*s1 ##: G1 = Rz(q1)*ex*l1 ##: S2 = G1 + Rz(q1 + p1)*ex*s2 ##: G2 = G1 + Rz(q1 + p1)*ex*l2 ##: # one link manipulator G2b = B2 + Rz(p2)*ex*l3 ##: S3 = B2 + Rz(p2)*ex*s3 ##: constraints = sp.Matrix([G2 - G2b]) ##: # Time derivative Sd1, Sd2, Sd3 = st.col_split(st.time_deriv(st.col_stack(S1, S2, S3), ttheta)) ``` ```python # kinetic energy T_rot = (J1*qdot1**2 + J2*(qdot1 + pdot1)**2 + J3*(pdot2)**2)/2 T_trans = ( m1*Sd1.T*Sd1 + m2*Sd2.T*Sd2 + m3*Sd3.T*Sd3 )/2 T = T_rot + T_trans[0] ##: # potential energy V = m1*g*S1[1] + m2*g*S2[1] + m3*g*S3[1] ##: ``` --- The next cell draws the fourbar and allows to interactively test the kinematics of the mechanism. Use the sliders to adjust the coordinates. Activate the checkbox to respect the linkage constraints. Note that you can choose the keyword argument `free_vars` to be one of `q1`, `p1`, `p2`. --- ```python # useful to test recent development of the lib import importlib as il il.reload(vt) ``` <module 'symbtools.visualisation' from '/media/workcard/workstickdir/projekte/rst_python/symbtools-TUD-RST-Account/symbtools/visualisation.py'> ```python vis = vt.Visualiser(ttheta, xlim=(-2, 4), ylim=(-3, 3)) vis.add_linkage(st.col_stack(B1, G1, G2,).subs(parameter_values)) vis.add_linkage(st.col_stack(G2b, B2).subs(parameter_values)) cnstrs = constraints.subs(parameter_values) # Note: There are two possibilities for the kinematic chain to close (two solutions to the algebraic constraints) # prefer "upward solution" vis.interact(p1=(-4, 4, .1, pi/2), free_vars=q1, constraints=cnstrs) # prefer "downward solution" # vis.interact(p1=(-4, 4, .1, -pi/2), p2=(-4, 4, .1, -2.1), free_vars=q1, constraints=cnstrs) ``` interactive(children=(Checkbox(value=False, description='solve constraints (fmin)'), FloatSlider(value=1.57079… ```python print(list(npy.arange(3))) ``` [0, 1, 2] ```python external_forces = [0 , 0, tau1] %time mod = mt.generate_symbolic_model(T, V, ttheta, external_forces, constraints=constraints) ``` CPU times: user 5.32 s, sys: 0 ns, total: 5.32 s Wall time: 5.33 s ```python # condition that endeffectors of the two manipulators are at the same place (x and y) mod.constraints ``` ```python # ODE-part oft the equation mod.eqns ``` ### Creation of DAE System ```python mod.constraints ``` ```python # generate a dae object dae = mod.calc_dae_eq(parameter_values) dae.generate_eqns_funcs() ``` ```python # show dae variables dae.yy ##:T dae.yyd ##:T ``` ### Calculate consistent initial values by optimization (with given hints) ```python yy0, yyd0 = dae.calc_consistent_init_vals(p1=0.3) ##: t0 = 0 # check if all values are almost zero (-> initial values fulfill the model) assert npy.allclose(dae.model_func(t0, yy0, yyd0), 0) ``` Optimization terminated successfully. Current function value: 0.000000 Iterations: 91 Function evaluations: 176 Optimization terminated successfully. Current function value: 0.000000 Iterations: 33 Function evaluations: 67 (yy0, yyd0) := (array([ 0.3 , 1.74961317, 0.50948621, 0. , 0. , 0. , -0.27535424, 0.5455313 ]), array([ 0. , 0. , 0. , 23.53968609, 2.82766884, -14.48960943, -0. , 0. ])) --- ```python model = Implicit_Problem(dae.model_func, yy0, yyd0, t0) model.name = 'fourbar linkage' # indicate which components of y are differential (1) and which are purely algebraic (0) # model.algvar = dae.diff_alg_vars ##: sim = IDA(model) # sim.suppress_alg = True #Necessary to set to True for >1 index problem # values <= 30 produce lots of output sim.verbosity = 0 ``` ```python tfinal = 10.0 # Specify the final time ncp = 500 # Number of communication points (number of return points) # takes about 48 seconds tt_sol, yy_sol, yyd_sol = sim.simulate(tfinal, ncp) ``` No initialization defined for the problem. No finalization defined for the problem. Final Run Statistics: fourbar linkage Number of steps : 3504 Number of function evaluations : 5621 Number of Jacobian evaluations : 199 Number of function eval. due to Jacobian eval. : 1592 Number of error test failures : 100 Number of nonlinear iterations : 5621 Number of nonlinear convergence failures : 0 Solver options: Solver : IDA (BDF) Maximal order : 5 Suppressed algebr. variables : False Tolerances (absolute) : 1e-06 Tolerances (relative) : 1e-06 Simulation interval : 0.0 - 10.0 seconds. Elapsed simulation time: 9.14327409299949 seconds. ```python ttheta_sol = yy_sol[:, :mod.dae.ntt] ttheta_d_sol = yy_sol[:, mod.dae.ntt:mod.dae.ntt*2] ``` ```python fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 7)); plt.sca(ax1) ax1.plot(tt_sol, ttheta_sol) ax1.set_title("angles") ax2.plot(tt_sol, ttheta_d_sol) ax2.set_title("angular velocities") ``` #### Visualization and Animation ```python joint_pos_expr = st.col_stack(B1, G1, G2, B2).subs(parameter_values) ##: joint_pos_func = st.expr_to_func(mod.tt, joint_pos_expr, keep_shape=True) ``` ```python # Create object for Animation simanim = vt.SimAnimation(mod.xx[:3], tt_sol, yy_sol[:, :3], figsize=(14, 7)) simanim.add_visualiser(vis) # plot first frame simanim.plot_frame(0) ``` ```python # this might need to be adapted on other systems plt.rcParams["animation.codec"] = "libvpx-vp9" # codec for webm plt.rcParams['animation.ffmpeg_path'] = os.path.join(os.getenv("CONDA_PREFIX"), "bin", "ffmpeg") # plt.rcParams['animation.ffmpeg_path'] = '/usr/bin/ffmpeg' # writer = animation.FFMpegWriter(fps=30) fname="fourbar_linkage_free_movement2.webm" # this might take some 1e1 seconds # simanim.save(fname, dpi=30) ``` ```python vt.display_video_file(fname) ```
b7e9f6862f0e9332f18f2396f08d9e1202477e02
285,334
ipynb
Jupyter Notebook
docs/demo_notebooks/modeltools/four-bar_linkage_model_and_simulation.ipynb
Xabo-RB/symbtools
d7c771319bc5929ce4bfda09c74c6845749f0c3e
[ "BSD-3-Clause" ]
5
2017-10-15T16:25:01.000Z
2022-02-27T19:05:04.000Z
docs/demo_notebooks/modeltools/four-bar_linkage_model_and_simulation.ipynb
Xabo-RB/symbtools
d7c771319bc5929ce4bfda09c74c6845749f0c3e
[ "BSD-3-Clause" ]
5
2019-07-16T13:09:17.000Z
2021-12-21T20:10:16.000Z
docs/demo_notebooks/modeltools/four-bar_linkage_model_and_simulation.ipynb
Xabo-RB/symbtools
d7c771319bc5929ce4bfda09c74c6845749f0c3e
[ "BSD-3-Clause" ]
9
2017-02-08T12:24:10.000Z
2022-02-27T19:22:29.000Z
257.521661
117,732
0.902605
true
2,538
Qwen/Qwen-72B
1. YES 2. YES
0.887205
0.815232
0.723278
__label__eng_Latn
0.600213
0.518749
# Case 1: No Water Layer * Author: **Team G15** * Attempt: 3 ## Analysis ### To find 1. Temperature of Roof Surface $(T_s)$ 2. Total heat flux entering the house through the roof, $(q_t)$ when no water layer is present ### Nomenclature * $T_s$ = roof surface temperature (outside) * $T_a$ = ambient air temperature (outside) * $T_r$ = room temperature (inside) * $Nu_a$ = Nusselt number of air * $Ra_a$ = Rayleigh number of air * $Re_a$ = Reynolds number of air * $Pr_a$ = Prandtl number of air * $\alpha_a$ = thermal diffusivity of air * $k_a$ = thermal conductivity of air * $h_r$ = free convection coefficient of room air * $\nu_a$ = dynamic Viscosity of air * Roof layers: * 1: Concrete * 2: Brick * 3: Lime * $k_i$ = thermal conductivity of $i^{th}$ roof layer * $L_i$ = length of $i^{th}$ roof layer * $q_{r}$ = radiative heat transfer (per unit area) * $q_{c}$ = convective heat transfer (per unit area) * $q_{t}$ = net heat transfer into the room (per unit area) * $\beta$ = coefficient of thermal expansion * $S$ = Intensity of Solar Radiation (i.e. solar constant) ### Assumptions * Steady state with room maintained at fixed ambient temperature ### Equations #### Energy balance, $$ q_t = q_c + q_r $$ #### Radiation heat transfer, \begin{align*} q_r &= \tau_s\cdot S - h_r \cdot (T_a - T_s) \\ \\ h_r &= \epsilon_s\cdot \sigma\cdot \frac{(\overline T_s)^4 - (\overline T_a - 12)^4}{\overline T_a - \overline T_s} \end{align*} #### Convection heat transfer, \begin{align*} q_c &= h_c\cdot (T_a - T_w) \\ \\ h_c &= \frac{k_a}{L_s}\cdot Nu_a \\ \\ Nu_a &= 0.15\cdot Ra_a^{1/3} + 0.664\cdot Re_a^{1/2}\cdot Pr_a^{1/3} \\ \\ Re_a &= \frac{v_a\cdot L_s}{\nu_a} \\ \\ Ra_L &= \frac{g\cdot \beta\cdot (T_s - T_a)\cdot L_s^3}{\nu_a\cdot \alpha_a} \end{align*} #### Total heat transfer, \begin{align*} q_t &= \frac{T_w - T_r}{R_{net}} \\ \\ R_{net} &= \frac{1}{h_r} + \sum_{i=1}^{3} \frac{L_i}{k_i} \end{align*} ### Properties #### Outside Air * Mild breeze $v_a = 2.78\ m/s$ * $T_a \in [305, 320] K$ * $T_f = 320K$ * $\beta = \frac{1}{T_f} = 0.0031\ K^{-1}$ * Table A.4, air ($T_f$): * $\nu = 18 \cdot 10^{-6}\ m^2/s$ * $\alpha = 25 \cdot 10^{-6}\ m^2/s$ * $Pr = 0.702$ * $k = 27.7 \cdot 10^{-3}\ W/m\cdot K$ * $S = 1366\ W/m^2$ #### Roof * $L_s = 5\ m$ (approx thickness of water layer) * $\epsilon_s = 0.9$ (concrete surface) * $\tau_s=0.9$ * $t = 0.2\ m$ thick with, * Cement = $5\ cm$ * Brick = $10\ cm$ * Lime = $5\ cm$ * $K_i$, Conductivity of each layer, * Cement = $0.72\ W/m\cdot K$ * Brick = $0.71\ W/m\cdot K$ * Lime = $0.73\ W/m\cdot K$ #### Inside air * $T_r = 300K$ (Room Temperature) * $h_r = 8.4\ W/m^2\cdot K$ ### Tools used * **Python** * **SymPy** for creating symbolic equations and solving them * **NumPy** * **Matplotlib** for plotting results ## Solving (Python Code) ### Initialize Values ```python %matplotlib inline import sympy as sp import numpy as np import matplotlib.pyplot as plt # Initialize matplotlib plt.rc('text', usetex=True) # Unnecessary plt.style.use('ggplot') plt.rcParams['grid.color'] = '#C0C0C0' ``` #### Outside Air * Table A.4 used (from reference #2) ```python v_a = 2.78 # Velocity (m / s) # Temperatures T_f = 320.0 # (K) beta = 1/T_f # (K) T_a = np.array([305.0, 310.0, 315.0, 320.0]) # (K) T_a_avg = 273 + 37 # (K) # Universal Constants sigma = 5.67e-8 # Stefan Boltzmann constant (W / m^2 * K^4) g = 9.8 # (m / s^2) S = 1366 # Solar constant # Table A.6, air @ T = T_f nu_a = 18e-6 # dynamic visosity (m^2 / s) alpha_a = 25e-6 # (m^2 / s) k_a = 27.7e-3 # thermal conductivity (W / m * K) Pr_a = 0.702 ``` #### Roof Layers ```python # Temperatures T_s = sp.symbols('T_s') # Roof surface temp (K) T_s_avg = 273.0 + 35.0 # (K) # Surface L_s = 5 # Dimensions (m) tau_s = 0.9 # Roof's solar absorbtivity epsilon_s = 0.9 # Emissivity of roof surface (concrete) # Layer 1: Concrete k_1 = 0.72 # (W / m * K) L_1 = 0.05 # (m) # Layer 2: Brick k_2 = 0.71 # (W / m * K) L_2 = 0.10 # (m) # Layer 3: Lime k_3 = 0.73 # (W / m * K) L_3 = 0.05 # (m) ``` #### Inside Air ```python h_r = 8.4 # (W / m^2 * K) T_r = 300 # (K) ``` ### Equations #### Radiation Heat ```python h_r = epsilon_s * sigma * (T_s_avg**4 - (T_a_avg - 12)**4)/(T_a_avg - T_s_avg) # (W / m^2 * K) q_r = tau_s * S - h_r * (T_a - T_s) # (W / m^2) # Example at T_a = 310K and T_s = 314K q_r_test = q_r[1].replace(T_s, 314) print('Approximate value of q_r = %.2f W/m^2' % (q_r_test)) ``` Approximate value of q_r = 1343.00 W/m^2 #### Convection Heat * From below analysis, we can neglect free convection in comparison to forced convection ##### Free Convection ```python Ra_a = (g * beta * (T_s - T_a) * L_s**3) / (nu_a * alpha_a) Nu_a_fr = 0.15 * Ra_a**(1/3) h_c_fr = k_a / L_s * Nu_a_fr # Example at T_a = 310K and T_s = 314K h_c_fr_test = h_c_fr[1].replace(T_s, 314) print('Approximate value of free convection coefficient = %.2f W/K*m^2' % (h_c_fr_test)) ``` Approximate value of free convection coefficient = 2.69 W/K*m^2 ##### Forced Convection ```python Re_a = v_a * L_s / nu_a Nu_a_fo = 0.664 * Re_a**1/2 * Pr_a**1/3 h_c_fo = k_a / L_s * Nu_a_fo # Example at T_a = 310K and T_s = 314K print('Approximate value of forced convection coefficient = %.2f W/K*m^2' % (h_c_fo)) ``` Approximate value of forced convection coefficient = 332.36 W/K*m^2 ##### Total Convection ```python h_c = h_c_fo # Neglicting free convection q_c = h_c * (T_a - T_s) # (W / m^2) # Example at T_a = 310K and T_s = 314K q_c_test = q_c[1].replace(T_s, 314) print('Approximate value of q_c = %.2f W/m^2' % (q_c_test)) ``` Approximate value of q_c = -1329.43 W/m^2 #### Total Heat: ```python R = 1/h_r + L_1/k_1 + L_2/k_2 + L_3/k_3 # (m^2 * K / W) q_t = (T_s - T_r) / R # (W / m^2) # Example at T_a = 310K and T_s = 314K q_t_test = q_t.replace(T_s, 314) print('Approximate value of q_t = %.2f W/m^2' % (q_t_test)) ``` Approximate value of q_t = 44.59 W/m^2 ### Solving \begin{align*} q_c + q_r &= q_t \\ \therefore\hspace{3pt} q_c + q_r - q_t &= 0 \end{align*} #### Calculate $T_s$ ```python eq = q_c + q_r - q_t n = len(eq) T_s_calc = np.empty(n, dtype=object) for i in range(n): T_s_calc[i] = round(sp.solve(eq[i], T_s)[0], 2) for i in range(n): print('T_s = %.1f K for T_a = %.1f K' % (T_s_calc[i], T_a[i])) ``` T_s = 309.0 K for T_a = 305.0 K T_s = 313.9 K for T_a = 310.0 K T_s = 318.9 K for T_a = 315.0 K T_s = 323.8 K for T_a = 320.0 K #### Calculate $q_t$ ```python q_t_calc_1 = np.empty(n, dtype=object) for i in range(n): q_t_calc_1[i] = q_t.replace(T_s, T_s_calc[i]) for i in range(n): print('Heat entering = %.1f W/m^2 for T_a = %.1f K' % (q_t_calc_1[i], T_a[i])) ``` Heat entering = 28.5 W/m^2 for T_a = 305.0 K Heat entering = 44.3 W/m^2 for T_a = 310.0 K Heat entering = 60.0 W/m^2 for T_a = 315.0 K Heat entering = 75.8 W/m^2 for T_a = 320.0 K ### Plot * Total Heat Flux Entering ($q_t$) vs Outside Air Temp ($T_a$) ```python def make_plot(x, y, xlabel, ylabel, title): plt.plot(x, y, color='#1F77B4cc', marker='o') plt.xticks(fontsize=20) plt.yticks(fontsize=20) plt.xlabel(xlabel, fontsize=20) plt.ylabel(ylabel, fontsize=20) plt.title(title, fontsize=18, pad=15) ``` ```python fig = plt.figure(figsize=(10, 6)) make_plot(x=T_a, y=q_t_calc_1, xlabel='$T_a$', ylabel='$q_t$', title='Total Heat Flux Entering ($q_t$) vs Outside Air Temp ($T_a$)') ``` # Case 2: Water Layer * Author: **Team G15** * Attempt: 3 ## Analysis ### To find 1. Temperature of Water Surface $(T_w)$ 2. Total heat flux entering the house through the roof, $(q_t)$ when a water layer is present ### Nomenclature * $S$ = Intensity of Solar Radiation (i.e. solar constant) * $v_w$ = water velocity * $v_a$ = wind velocity * $\epsilon_w$ = emissivity of water surface * $\sigma$ = Stefan-Boltzmann constant $(5.67*10^{-8}\ W/m^2K^4)$ * $T_r$ = room temperature (inside) * $T_w$ = water surface temperature (outside) * $T_a$ = ambient air temperature (outside) * $\overline T_w$ = average water surface temperature (outside) * $\overline T_a$ = average air temperature (outside) * $\tau_w$ = fraction of solar radiation absorbed by water * $k_w$ = thermal conductivity of water * $L_w$ = length of water layer * $h_w$ = convection coefficient of water layer * $h_r$ = radiative heat transfer coefficient * $h_c$ = convective heat transfer coefficient * $h_e$ = evaporative heat transfer coefficient ### Assumptions 1. Steady state with room maintained at fixed ambient temperature 2. Water is still ($v_w = 0$) but gentle breeze is present ($v_a = 10\ km/h$) 3. Dry Surroundings ### Equations #### Energy balance, $$ q_t = q_c + q_r - q_e $$ #### Radiation heat transfer, \begin{align*} q_r &= \tau_w\cdot S - h_r \cdot (T_a - T_w) \\ \\ h_r &= \epsilon_w\cdot \sigma\cdot \frac{(\overline T_w)^4 - (\overline T_a - 12)^4}{\overline T_a - \overline T_w} \end{align*} #### Convection heat transfer, \begin{align*} q_c &= h_c\cdot (T_a - T_w) \\ \\ h_c &= 5.678 \cdot (1 + 0.85\cdot(v_a - v_w)) \end{align*} #### Evaporative heat transfer, \begin{align*} q_e &= 0.013\cdot h_c\cdot (p(\overline T_w) - \gamma\cdot p(\overline T_a)) \\ \\ p(T) &= R_1\cdot T + R_2 \end{align*} #### Total heat transfer, \begin{align*} q_t &= \frac{T_w - T_r}{R_{net}} \\ \\ R_{net} &= \frac{1}{h_r} + \sum_{i=1}^{3} \frac{L_i}{k_i} + \frac{1}{h_{w}} \\ \\ h_w &= \frac{k_w}{L_w}\cdot (0.14\cdot(Gr\cdot Pr)^{1/3} + 0.644\cdot (Pr\cdot Re)^{1/3}) \\ \\ Gr &= \frac{g\cdot\beta\cdot(T_w-T_a)\cdot(L_w)^{3}}{\nu^2} \end{align*} ### Properties #### Outside Air * Mild breeze $v_a = 2.78\ m/s$ * $T_a \in [305, 320] K$ * $T_f = 320K$ * $\beta = \frac{1}{T_f} = 0.0031\ K^{-1}$ * Table A.4, air ($T_f$): * $\nu = 18 \cdot 10^{-6}\ m^2/s$ * $\alpha = 25 \cdot 10^{-6}\ m^2/s$ * $Pr = 0.702$ * $k = 27.7 \cdot 10^{-3}\ W/m\cdot K$ * $S = 1366\ W/m^2$ * $R_1=325\ Pa/^\circ C$ and $R_2 = -5155\ Pa$ (*from reference* **#1**) * $\gamma=0.27$ (approx average over a day) #### Water layer * $L_w = 0.1\ m$ (approx thickness of water layer) * Table A.6, water ($T_w$): * $\nu = 18 \cdot 10^{-6}\ m^2/s$ * Still water $v_w = 0$ * $\epsilon_w = 0.95$ * $\tau_w=0.6$ #### Roof * $t = 0.2\ m$ thick with, * Cement = $5\ cm$ * Brick = $10\ cm$ * Lime = $5\ cm$ * $K_i$, Conductivity of each layer, * Cement = $0.72\ W/m\cdot K$ * Brick = $0.71\ W/m\cdot K$ * Lime = $0.73\ W/m\cdot K$ #### Inside air * $T_r = 300K$ (Room Temperature) * $h_r = 8.4\ W/m^2\cdot K$ ### Tools used * **Python** * **SymPy** for creating symbolic equations and solving them * **NumPy** * **Matplotlib** for plotting results ## Solving (Python Code) ### Initialize Values #### Outside Air * Saturation pressure of water p = R_1\*T + R_2 ```python v_a = 2.78 # Velocity (m / s) # Temperatures T_f = 320 # (K) beta = 1/T_f # (K) T_a = np.array([305.0, 310.0, 315.0, 320.0]) # (K) T_a_avg = 273 + 37 # (K) # Constants sigma = 5.67e-8 # Stefan Boltzmann constant (W / m^2 * K^4) g = 9.8 # (m / s^2) R_1 = 325 # (N / m^2 °C) R_2 = -5155 # (N / m^2) gamma = 0.27 S = 1366 # Solar constant def p(T): # Saturation pressure of water as a function of temperature (N / m^2) return R_1 * (T-273) + R_2 ``` #### Water Layer ```python v_w = 0 # Velocity (m / s) L_w = 5 # Dimensions (m) # Temperatures T_w = sp.symbols('T_w') # (K) T_w_avg = 273 + 32 # (K) # Constants epsilon_w = 0.95 # Emissivity of water surface tau_w = 0.6 # Water's solar absorbtivity ``` * Table A.6 used (*from reference* **#2**) * Upon analysing the below data, we can approximate $h_w$ to $950\ W/m^2$ ```python rho_w = 990 # density (kg / m^3) k_w = 0.63 # thermal conductivity (W / m * K) mu_w = 1e-6 * np.array([769, 695, 631, 577]) # viscosity (N * s / m^2) nu_w = mu_w / rho_w # dynamic visosity (m^2 / s) Pr_w = np.array([5.20, 4.62, 4.16, 3.77]) # Prandtl number Re_w = 0 # Reynolds number, still water Gr_w = g * beta * (T_a - T_w) * L_w**3 / nu_w**2 # Grashof number # Water free convection coeffecient h_w = (k_w/L_w) * (0.14 * (Gr_w*Pr_w)**(1/3) + 0.644 * (Pr_w*Re_w)**(1/3)) # Example at T_a = 310K and T_w = 306K h_w_test = h_w[1].replace(T_w, 306) print('Approximate min value of h_w = %.2f W/K*m^2' % (h_w_test)) ``` Approximate min value of h_w = 923.62 W/K*m^2 #### Roof Layers ```python # Layer 1: Concrete k_1 = 0.72 # (W / m * K) L_1 = 0.05 # (m) # Layer 2: Brick k_2 = 0.71 # (W / m * K) L_2 = 0.10 # (m) # Layer 3: Lime k_3 = 0.73 # (W / m * K) L_3 = 0.05 # (m) ``` #### Inside Air ```python h_r = 8.4 # (W / m^2 * K) T_r = 300 # (K) ``` ### Equations #### Radiation Heat ```python h_r = epsilon_w * sigma * (T_w_avg**4 - (T_a_avg - 12)**4)/(T_a_avg - T_w_avg) # (W / m^2 * K) q_r = tau_w * S - h_r * (T_a - T_w) # (W / m^2) # Example at T_a = 310K and T_w = 306K q_r_test = q_r[1].replace(T_w, 306) print('Approximate value of q_r = %.2f W/m^2' % (q_r_test)) ``` Approximate value of q_r = 786.53 W/m^2 #### Convection Heat * Forced convection and free convection both have been used ```python h_c = 5.678 * (1 + 0.85 * (v_a - v_w)) print('h_c = %.2f W/K*m^2' % (h_c)) q_c = h_c * (T_a - T_w) # (W / m^2) # Example at T_a = 310K and T_w = 306K q_c_test = q_c[1].replace(T_w, 306) print('Approximate value of q_c = %.2f W/m^2' % (q_c_test)) ``` h_c = 19.10 W/K*m^2 Approximate value of q_c = 76.38 W/m^2 #### Evaporation Heat: ```python q_e = 0.013 * h_c * (p(T_w_avg) - gamma * p(T_a_avg)) # function p defined above, (W / m^2) # Example at T_a = 310K and T_w = 306K print('Approximate value of q_e = %.2f' % (q_e)) ``` Approximate value of q_e = 841.55 #### Total Heat: ```python h_w = 1200 # from above approximation (W / m^2 * K) R = 1/h_r + L_1/k_1 + L_2/k_2 + L_3/k_3 + 1/h_w # (m^2 * K / W) q_t = (T_w - T_r) / R # (W / m^2) # Example at T_a = 310K and T_w = 306K q_t_test = q_t.replace(T_w, 306) print('Approximate value of q_t = %.2f W/m^2' % (q_t_test)) ``` Approximate value of q_t = 14.98 W/m^2 ### Solving \begin{align*} q_c + q_r - q_e &= q_t \\ \therefore\hspace{3pt} q_c + q_r - q_e - q_t &= 0 \end{align*} #### Calculate $T_w$ ```python eq = q_c + q_r - q_e - q_t n = len(eq) T_w_calc = np.empty(n, dtype=object) for i in range(n): T_w_calc[i] = round(sp.solve(eq[i], T_w)[0], 2) for i in range(n): print('T_w = %.1f K for T_a = %.1f K' % (T_w_calc[i], T_a[i])) ``` T_w = 302.4 K for T_a = 305.0 K T_w = 306.5 K for T_a = 310.0 K T_w = 310.5 K for T_a = 315.0 K T_w = 314.6 K for T_a = 320.0 K #### Calculate $q_t$ ```python q_t_calc_2 = np.empty(n, dtype=object) for i in range(n): q_t_calc_2[i] = q_t.replace(T_w, T_w_calc[i]) for i in range(n): print('Heat entering = %.1f W/m^2 for T_a = %.1f K' % (q_t_calc_2[i], T_a[i])) ``` Heat entering = 6.0 W/m^2 for T_a = 305.0 K Heat entering = 16.2 W/m^2 for T_a = 310.0 K Heat entering = 26.3 W/m^2 for T_a = 315.0 K Heat entering = 36.5 W/m^2 for T_a = 320.0 K ### Plot * Temp Drop Due to Water ($T_a - T_w$) vs Outside Air Temp ($T_a$) * Total Heat Flux Entering ($q_t$) vs Outside Air Temp ($T_a$) ```python fig = plt.figure(figsize=(16, 6)) ax1 = fig.add_subplot(121) make_plot(x=T_a, y=T_a-T_w_calc, xlabel='$T_a$', ylabel='$T_w$', title='Temp Drop Due to Water ($T_a - T_w$) vs Outside Air Temp ($T_a$)') ax2 = fig.add_subplot(122) make_plot(x=T_a, y=q_t_calc_2, xlabel='$T_a$', ylabel='$q_t$', title='Total Heat Flux Entering ($q_t$) vs Outside Air Temp ($T_a$)') fig.tight_layout(w_pad=10) ``` ## References 1. A. Shrivastava *et al*. ["Evaporative cooling model..."](https://github.com/relaxxpls/CL246-G15/blob/main/docs/papers/Experimental_validation_of_a_thermal_mod.pdf) (1984) 2. F. Incropera *et al*. ["Fundamentals of Heat and Mass Transfer"](https://books.google.co.in/books?id=5cgbAAAAQBAJ&newbks=0&hl=en&source=newbks_fb&redir_esc=y)
13f2b5f27443f6eb17f9d9c605228d9b1ae6ecbe
101,425
ipynb
Jupyter Notebook
src/final.ipynb
relaxxpls/Optimize-Heating-Indoors
76bea58707337f1daf67de946812a383af12e6e6
[ "MIT" ]
null
null
null
src/final.ipynb
relaxxpls/Optimize-Heating-Indoors
76bea58707337f1daf67de946812a383af12e6e6
[ "MIT" ]
null
null
null
src/final.ipynb
relaxxpls/Optimize-Heating-Indoors
76bea58707337f1daf67de946812a383af12e6e6
[ "MIT" ]
null
null
null
80.559968
43,488
0.813251
true
6,247
Qwen/Qwen-72B
1. YES 2. YES
0.83762
0.746139
0.624981
__label__eng_Latn
0.377409
0.290371
# Step-by-step NMO correction Devito is equally useful as a framework for other stencil computations in general; for example, computations where all array indices are affine functions of loop variables. The Devito compiler is also capable of generating arbitrarily nested, possibly irregular, loops. This key feature is needed to support many complex algorithms that are used in engineering and scientific practice, including applications from image processing, cellular automata, and machine-learning. This tutorial, a step-by-step NMO correction, is an example of it. In reflection seismology, normal moveout (NMO) describes the effect that the distance between a seismic source and a receiver (the offset) has on the arrival time of a reflection in the form of an increase of time with offset. The relationship between arrival time and offset is hyperbolic. Based on the field geometry information, each individual trace is assigned to the midpoint between the shot and receiver locations associated with that trace. Those traces with the same midpoint location are grouped together, making up a common midpoint gather (CMP). Consider a reflection event on a CMP gather. The difference between the two-way time at a given offset and the two-way zero-offset time is called normal moveout (NMO). Reflection traveltimes must be corrected for NMO prior to summing the traces in the CMP gather along the offset axis. The normal moveout depends on velocity above the reflector, offset, two-way zero-offset time associated with the reflection event, dip of the reflector, the source-receiver azimuth with respect to the true-dip direction, and the degree of complexity of the near-surface and the medium above the reflector. # Seismic modelling with devito Before the NMO corretion we will describe a setup of seismic modelling with Devito in a simple 2D case. We will create a physical model of our domain and define a multiple source and an according set of receivers to model for the forward model. But first, we initialize some basic utilities. ```python import numpy as np import sympy as sp from devito import * ``` We will create a simple velocity model here by hand for demonstration purposes. This model essentially consists of three layers, each with a different velocity: 1.5km/s in the top layer, 2.5km/s in the middle layer and 4.5 km/s in the bottom layer. ```python #NBVAL_IGNORE_OUTPUT from examples.seismic import Model, plot_velocity shape = (301, 501) # Number of grid point (nx, ny, nz) spacing = (10., 10) # Grid spacing in m. The domain size is now 3km by 5km origin = (0., 0) # What is the location of the top left corner. # Define a velocity profile. The velocity is in km/s v = np.empty(shape, dtype=np.float32) v[:,:100] = 1.5 v[:,100:350] = 2.5 v[:,350:] = 4.5 # With the velocity and model size defined, we can create the seismic model that # encapsulates these properties. We also define the size of the absorbing layer as 10 grid points model = Model(vp=v, origin=origin, shape=shape, spacing=spacing, space_order=4, nbl=40, bcs="damp") plot_velocity(model) ``` Next we define the positioning and the wave signal of our source, as well as the location of our receivers. To generate the wavelet for our sources we require the discretized values of time that we are going to use to model a multiple "shot", which depends on the grid spacing used in our model. We will use one source and eleven receivers. The source is located in the position (550, 20). The receivers start at (550, 20) with an even horizontal spacing of 100m at consistent depth. ```python from examples.seismic import TimeAxis t0 = 0. # Simulation starts a t=0 tn = 2400. # Simulation last 2.4 second (2400 ms) dt = model.critical_dt # Time step from model grid spacing time_range = TimeAxis(start=t0, stop=tn, step=dt) nrcv = 250 # Number of Receivers ``` ```python #NBVAL_IGNORE_OUTPUT from examples.seismic import RickerSource f0 = 0.010 # Source peak frequency is 10Hz (0.010 kHz) src = RickerSource(name='src', grid=model.grid, f0=f0, npoint=1, time_range=time_range) # Define the wavefield with the size of the model and the time dimension u = TimeFunction(name="u", grid=model.grid, time_order=2, space_order=4) # We can now write the PDE pde = model.m * u.dt2 - u.laplace + model.damp * u.dt stencil = Eq(u.forward, solve(pde, u.forward)) src.coordinates.data[:, 0] = 400 # Source coordinates src.coordinates.data[:, -1] = 20. # Depth is 20m ``` ```python #NBVAL_IGNORE_OUTPUT from examples.seismic import Receiver rec = Receiver(name='rec', grid=model.grid, npoint=nrcv, time_range=time_range) rec.coordinates.data[:,0] = np.linspace(src.coordinates.data[0, 0], model.domain_size[0], num=nrcv) rec.coordinates.data[:,-1] = 20. # Depth is 20m # Finally we define the source injection and receiver read function to generate the corresponding code src_term = src.inject(field=u.forward, expr=src * dt**2 / model.m) # Create interpolation expression for receivers rec_term = rec.interpolate(expr=u.forward) op = Operator([stencil] + src_term + rec_term, subs=model.spacing_map) op(time=time_range.num-1, dt=model.critical_dt) ``` Operator `Kernel` run in 0.85 s PerformanceSummary([(PerfKey(name='section0', rank=None), PerfEntry(time=0.7779790000000012, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[])), (PerfKey(name='section1', rank=None), PerfEntry(time=0.028586000000000156, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[])), (PerfKey(name='section2', rank=None), PerfEntry(time=0.03306400000000026, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[]))]) How we are modelling a horizontal layers, we will group this traces and made a NMO correction using this set traces. ```python offset = [] data = [] for i, coord in enumerate(rec.coordinates.data): off = (src.coordinates.data[0, 0] - coord[0]) offset.append(off) data.append(rec.data[:,i]) ``` Auxiliary function for plotting traces: ```python #NBVAL_IGNORE_OUTPUT import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.axes_grid1 import make_axes_locatable mpl.rc('font', size=16) mpl.rc('figure', figsize=(8, 6)) def plot_traces(rec, xb, xe, t0, tn, colorbar=True): scale = np.max(rec)/100 extent = [xb, xe, 1e-3*tn, t0] plot = plt.imshow(rec, cmap=cm.gray, vmin=-scale, vmax=scale, extent=extent) plt.xlabel('X position (km)') plt.ylabel('Time (s)') # Create aligned colorbar on the right if colorbar: ax = plt.gca() divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(plot, cax=cax) plt.show() ``` # Common Midpoint Gather At this point, we have a dataset composed of the receivers. "If our model wasn't purely horizontal, we would have to sort these traces by common midpoints prior to NMO correction." ```python plot_traces(np.transpose(data), rec.coordinates.data[0][0]/1000, rec.coordinates.data[nrcv-1][0]/1000, t0, tn) ``` # NMO Correction We can correct the measured traveltime of a reflected wave $t$ at a given offset $x$ to obtain the traveltime at normal incidence $t_0$ by applying the following equation: \begin{equation*} t = \sqrt{t_0^2 + \frac{x^2}{V_{nmo}^2}} \end{equation*} in which $V_{nmo}$ is the NMO velocity. This equation results from the Pythagorean theorem, and is only valid for horizontal reflectors. There are variants of this equation with different degrees of accuracy, but we'll use this one for simplicity. For the NMO Correction we use a grid of size samples x traces. ```python ns = time_range.num # Number of samples in each trace grid = Grid(shape=(ns, nrcv)) # Construction of grid with samples X traces dimension ``` In this example we will use a constant velocity guide. The guide will be arranged in a SparseFunction with the number of points equal to number of samples in the traces. ```python vnmo = 1500 vguide = SparseFunction(name='v', grid=grid, npoint=ns) vguide.data[:] = vnmo ``` The computed offset for each trace will be arraged in another SparseFunction with number of points equal to number of traces. ```python off = SparseFunction(name='off', grid=grid, npoint=nrcv) off.data[:] = offset ``` The previous modelled traces will be arranged in a SparseFunction with the same dimensions as the grid. ```python amps = SparseFunction(name='amps', grid=grid, npoint=ns*nrcv, dimensions=grid.dimensions, shape=grid.shape) amps.data[:] = np.transpose(data) ``` Now, we define SparseFunctions with the same dimensions as the grid, describing the NMO traveltime equation. The $t_0$ SparseFunction isn't offset dependent, so the number of points is equal to the number of samples. ```python sample, trace = grid.dimensions t_0 = SparseFunction(name='t0', grid=grid, npoint=ns, dimensions=[sample], shape=[grid.shape[0]]) tt = SparseFunction(name='tt', grid=grid, npoint=ns*nrcv, dimensions=grid.dimensions, shape=grid.shape) snmo = SparseFunction(name='snmo', grid=grid, npoint=ns*nrcv, dimensions=grid.dimensions, shape=grid.shape) s = SparseFunction(name='s', grid=grid, dtype=np.intc, npoint=ns*nrcv, dimensions=grid.dimensions, shape=grid.shape) ``` The Equation relates traveltimes: the one we can measure ($t_0$) and the one we want to know (t). But the data in our CMP gather are actually a matrix of amplitudes measured as a function of time ($t_0$) and offset. Our NMO-corrected gather will also be a matrix of amplitudes as a function of time (t) and offset. So what we really have to do is transform one matrix of amplitudes into the other. With Equations we describe the NMO traveltime equation, and use the Operator to compute the traveltime and the samples for each trace. ```python #NBVAL_IGNORE_OUTPUT dtms = model.critical_dt/1000 # Time discretization in ms E1 = Eq(t_0, sample*dtms) E2 = Eq(tt, sp.sqrt(t_0**2 + (off[trace]**2)/(vguide[sample]**2) )) E3 = Eq(s, sp.floor(tt/dtms)) op1 = Operator([E1, E2, E3]) op1() ``` Operator `Kernel` run in 0.01 s PerformanceSummary([(PerfKey(name='section0', rank=None), PerfEntry(time=0.001971, gflopss=0.0, gpointss=0.0, oi=0.0, ops=0, itershapes=[]))]) With the computed samples, we remove all that are out of the samples range, and shift the amplitude for the correct sample. ```python #NBVAL_IGNORE_OUTPUT s.data[s.data >= time_range.num] = 0 E4 = Eq(snmo, amps[s[sample, trace], trace]) op2 = Operator([E4]) op2() stack = snmo.data.sum(axis=1) # We can stack traces and create a ZO section!!! plot_traces(snmo.data, rec.coordinates.data[0][0]/1000, rec.coordinates.data[nrcv-1][0]/1000, t0, tn) ``` # References: https://library.seg.org/doi/full/10.1190/tle36020179.1 https://wiki.seg.org/wiki/Normal_moveout https://en.wikipedia.org/wiki/Normal_moveout
6c1d11ed417a867698c06e2e7f7b62ad6b2bfba3
162,290
ipynb
Jupyter Notebook
examples/seismic/tutorials/10_nmo_correction.ipynb
kristiantorres/devito
9357d69448698fd2b7a57be6fbb400058716b532
[ "MIT" ]
204
2020-01-09T11:27:58.000Z
2022-03-20T22:53:37.000Z
examples/seismic/tutorials/10_nmo_correction.ipynb
kristiantorres/devito
9357d69448698fd2b7a57be6fbb400058716b532
[ "MIT" ]
949
2016-04-25T11:41:34.000Z
2019-12-27T10:43:40.000Z
examples/seismic/tutorials/10_nmo_correction.ipynb
kristiantorres/devito
9357d69448698fd2b7a57be6fbb400058716b532
[ "MIT" ]
131
2020-01-08T17:43:13.000Z
2022-03-27T11:36:47.000Z
304.484053
70,604
0.928387
true
2,919
Qwen/Qwen-72B
1. YES 2. YES
0.872347
0.812867
0.709103
__label__eng_Latn
0.980743
0.485815
# Minimizing memory usage: a matrix-free iterative solver ## How to deal with dense BEM matrices? [In the previous section, I explained how to directly discretize a free surface using TDEs](sa_tdes). A downside of this approach is that the surface matrix can get very large very quickly. If I make the width of an element half as large, then there will be 2x many elements per dimension and 4x as many elements overall. And because the interaction matrix is dense, 4x as many elements leads to 16x as many matrix entries. In other words, $n$, the number of elements, scales like $O(h^2)$ in terms of the element width $h$. And the number of matrix rows or columns is exactly $3n$ (the 3 comes from the vector nature of the problem). That requires storing $9n^2$ entries. And, even worse, using a direct solver (LU decomposition, Gaussian elimination, etc) with such a matrix requires time like $O(n^3)$. Even for quite small problems with 10,000 elements, the cost of storage and solution get very large. And without an absolutely enormous machine or a distributed parallel implementation, solving a problem with 200,000 elements will just not be possible. On the other hand, in an ideal world, it would be nice to be able to solve problems with millions or even tens or hundreds of millions of elements. Fundamentally, the problem is that the interaction matrix is dense. There are two approaches for resolving this problem: 1. Don't store the matrix! 2. Compress the matrix by taking advantage of low rank sub-blocks. Eventually approach #2 will be critical since it is scalable up to very large problems. And that's exactly what I'll do in the next sections where I'll investigate low-rank methods and hierarchical matrices (H-matrices). However, here, I'll demonstrate approach #1 by using a matrix-free iterative solver. Ultimately, this is just a small patch on a big problem and it won't be a sustainable solution. But, it's immediately useful when you don't have a working implementation, are running into RAM constraints and are okay with a fairly slow solution. It's also useful to introduce iterative linear solvers since they are central to solving BEM linear systems. When we solve a linear system without storing the matrix, [the method is called "matrix-free"](https://en.wikipedia.org/wiki/Matrix-free_methods). Generally, we'll just recompute any matrix entry whenever we need. How does this do algorithmically? The storage requirements drop to just the $O(n)$ source and observation info instead of the $O(n^2)$ dense matrix. And, as I'll demonstrate, for some problems, the runtime will drop to $O(n^2)$ instead of $O(n^3)$ because solving linear systems will be possible with a fixed and fairly small number of matrix-vector products. ## A demonstration on a large mesh. To get started, I'll just copy the code to set up the linear system for the South America problem from the previous section. But, as a twist, I'll going to use a mesh with several times more elements. This surface mesh has 28,388 elements. As a result, the matrix would have 3x that many rows and columns and would require 58 GB of memory to store. That's still small enough that it could be stored on a medium sized workstation. But, it's too big for my personal computer! ```python import cutde import numpy as np import matplotlib.pyplot as plt from pyproj import Transformer plt.rcParams["text.usetex"] = True %config InlineBackend.figure_format='retina' (surf_pts_lonlat, surf_tris), (fault_pts_lonlat, fault_tris) = np.load( "sa_mesh16_7216.npy", allow_pickle=True ) ``` ```python print("Memory required to store this matrix: ", (surf_tris.shape[0] * 3) ** 2 * 8 / 1e9) ``` Memory required to store this matrix: 58.023255168 ```python transformer = Transformer.from_crs( "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs", "+proj=geocent +datum=WGS84 +units=m +no_defs", ) surf_pts_xyz = np.array( transformer.transform( surf_pts_lonlat[:, 0], surf_pts_lonlat[:, 1], surf_pts_lonlat[:, 2] ) ).T.copy() fault_pts_xyz = np.array( transformer.transform( fault_pts_lonlat[:, 0], fault_pts_lonlat[:, 1], fault_pts_lonlat[:, 2] ) ).T.copy() surf_tri_pts_xyz = surf_pts_xyz[surf_tris] surf_xyz_to_tdcs_R = cutde.compute_efcs_to_tdcs_rotations(surf_tri_pts_xyz) fault_centers_lonlat = np.mean(fault_pts_lonlat[fault_tris], axis=1) fault_lonlat_to_xyz_T = cutde.compute_projection_transforms( fault_centers_lonlat, transformer ) fault_tri_pts_xyz = fault_pts_xyz[fault_tris] fault_xyz_to_tdcs_R = cutde.compute_efcs_to_tdcs_rotations(fault_tri_pts_xyz) fault_tri_pts_lonlat = fault_pts_lonlat[fault_tris] fault_tdcs2_to_lonlat_R = cutde.compute_efcs_to_tdcs_rotations(fault_tri_pts_lonlat) strike_lonlat = fault_tdcs2_to_lonlat_R[:, 0, :] dip_lonlat = fault_tdcs2_to_lonlat_R[:, 1, :] strike_xyz = np.sum(fault_lonlat_to_xyz_T * strike_lonlat[:, None, :], axis=2) strike_xyz /= np.linalg.norm(strike_xyz, axis=1)[:, None] dip_xyz = np.sum(fault_lonlat_to_xyz_T * dip_lonlat[:, None, :], axis=2) dip_xyz /= np.linalg.norm(dip_xyz, axis=1)[:, None] ft = np.float32 # The normal vectors for each triangle are the third rows of the XYZ->TDCS rotation matrices. Vnormal = surf_xyz_to_tdcs_R[:, 2, :] surf_centers_xyz = np.mean(surf_tri_pts_xyz, axis=1) surf_tri_pts_xyz_conv = surf_tri_pts_xyz.astype(ft) # The rotation matrix from TDCS to XYZ is the transpose of XYZ to TDCS. # The inverse of a rotation matrix is its transpose. surf_tdcs_to_xyz_R = np.transpose(surf_xyz_to_tdcs_R, (0, 2, 1)).astype(ft) ``` Proceeding like the previous section, the next step would be to construct our surface to surface left hand side matrix. But, instead, I'm just going to compute the action of that matrix without ever storing the entire matrix. Essentially, each matrix entry will be recomputed whenever it is needed. The `cutde.disp_free` and `cutde.strain_free` were written for this purpose. First, let's check that the `cutde.disp_free` matrix free TDE computation is doing what I said it does. That is, it should be computing a matrix vector product. Since our problem is too big to generate the full matrix in memory, I'll just use the first 100 elements for this test. First, I'll compute the matrix form. This should look familiar! I multiply the matrix by a random slip vector. ```python test_centers = (surf_centers_xyz - 1.0 * Vnormal)[:100].astype(ft) mat = cutde.disp_matrix(test_centers, surf_tri_pts_xyz_conv[:100], 0.25).reshape( (300, 300) ) slip = np.random.rand(mat.shape[1]).astype(ft) correct_disp = mat.dot(slip) ``` And now the matrix free version. Note that the slip is passed to the `disp_free` function. This makes sense since it is required for a matrix-vector product even though it is not required to construct the matrix with `cutde.disp_matrix`. ```python test_disp = cutde.disp_free( test_centers, surf_tri_pts_xyz_conv[:100], slip.reshape((-1, 3)), 0.25 ) ``` And let's calculate the error... It looks good for the first element. For 32-bit floats, this is machine precision. ```python err = correct_disp.reshape((-1, 3)) - test_disp err[0] ``` array([ 4.4703484e-08, -1.7881393e-07, -5.4389238e-07], dtype=float32) ```python np.mean(np.abs(err)), np.max(np.abs(err)) ``` (2.9506162e-07, 1.2218952e-06) Okay, now that I've shown that `cutde.disp_free` is trustworthy, let's construct the full action of the left-hand side matrix. We need to transform all the rotation and extrapolation steps into a form that makes sense in an "on the fly" setting where we're not storing a matrix. ```python offsets = [2.0, 1.0] offset_centers = [(surf_centers_xyz - off * Vnormal).astype(ft) for off in offsets] surf_xyz_to_tdcs_R = surf_xyz_to_tdcs_R.astype(ft) # The extrapolate to the boundary step looked like: # lhs = 2 * eps_mats[1] - eps_mats[0] # This array stores the coefficients so that we can apply that formula # on the fly. extrapolation_mult = [-1, 2] def matvec(x): # Step 1) Rotate slip into the TDE-centric coordinate system. slip_xyz = x.reshape((-1, 3)).astype(ft) slip_tdcs = np.ascontiguousarray( np.sum(surf_xyz_to_tdcs_R * slip_xyz[:, None, :], axis=2) ) # Step 2) Compute the two point extrapolation to the boundary. out = np.zeros_like(offset_centers[0]) for i, off in enumerate(offsets): out += extrapolation_mult[i] * cutde.disp_free( offset_centers[i], surf_tri_pts_xyz_conv, slip_tdcs, 0.25 ) out = out.flatten() # Step 3) Don't forget the diagonal Identity matrix term! out += x return out ``` ```python %%time matvec(np.random.rand(surf_tris.shape[0] * 3)) ``` CPU times: user 8.16 s, sys: 0 ns, total: 8.16 s Wall time: 8.16 s array([-0.07595471, 0.14888829, 0.00571918, ..., 0.11337244, 0.06799013, 0.37440816], dtype=float32) Great! We computed a matrix-free matrix-vector product! This little snippet below will demonstrate that the memory usage is still well under 1 GB proving that we're not storing a matrix anywhere. ```python import os, psutil process = psutil.Process(os.getpid()) print(process.memory_info().rss / 1e9) ``` 0.178192384 ## Iterative linear solution Okay, so how do we use this matrix-vector product to solve the linear system? Because the entire matrix is never in memory, direct solvers like LU decomposition or Cholesky decomposition are no longer an option. But, iterative linear solvers are still an option. The [conjugate gradient (CG) method](https://en.wikipedia.org/wiki/Conjugate_gradient_method) is a well-known example of an iterative solver. However, CG requires a symmetric positive definite matrix. Because our columns come from integrals over elements but our rows come from observation points, there is an inherent asymmetry to the boundary element matrices we are producing here. [GMRES](https://en.wikipedia.org/wiki/Generalized_minimal_residual_method) is an iterative linear solver that tolerates asymmetry. It's specifically a type of ["Krylov subspace"](https://en.wikipedia.org/wiki/Krylov_subspace) iterative linear solver and as such requires only the set of vectors: \begin{equation} \{b, Ab, A^2b, ..., A^nb\} \end{equation} As such, only having an implementation of the matrix vector product $Ab$ is required since the later iterates can be computed with multiple matrix vector product. For example, $A^2b = A(Ab)$. To start, we compute the right-hand side which is nothing new or fancy. ```python slip = np.sum(fault_xyz_to_tdcs_R * dip_xyz[:, None, :], axis=2) rhs = cutde.disp_free( surf_centers_xyz.astype(ft), fault_pts_xyz[fault_tris].astype(ft), slip, 0.25 ).flatten() ``` /home/tbent/Dropbox/active/eq/cutde/cutde/fullspace.py:69: UserWarning: The slips input array has type float64 but needs to be converted to dtype float32. Converting slips to float32 may be expensive. warnings.warn( /home/tbent/Dropbox/active/eq/cutde/cutde/fullspace.py:78: UserWarning: The slips input array has Fortran ordering. Converting to C ordering. This may be expensive. warnings.warn( Now, the fun stuff: Here, I'll use the [`scipy` implementation of GMRES](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.gmres.html). First, we need to do use the `scipy.sparse.linalg.LinearOperator` interface to wrap our `matvec` function in a form that the `gmres` function will recognize as a something that represents a linear system that can be solved. ```python import time import scipy.sparse.linalg as spla # The number of rows and columns n = surf_tris.shape[0] * 3 # The matrix vector product function that serves as the "backend" for the LinearOperator. # This is just a handy wrapper around matvec to track the number of matrix-vector products # used during the linear solve process. def M(x): M.n_iter += 1 start = time.time() out = matvec(x) print("n_matvec", M.n_iter, "took", time.time() - start) return out M.n_iter = 0 lhs = spla.LinearOperator((n, n), M, dtype=rhs.dtype) lhs.shape ``` (85164, 85164) And then we can pass that `LinearOperator` as the left hand side of a system of equations to `gmres`. I'm also going to pass a simple callback that will print the current residual norm at each step of the iterative solver and require a solution tolerance of `1e-4`. ```python np.linalg.norm(rhs) ``` 26.985018 ```python soln = spla.gmres( lhs, rhs, tol=1e-4, atol=1e-4, restart=100, maxiter=1, callback_type="pr_norm", callback=lambda x: print(x), ) soln = soln[0].reshape((-1, 3)) ``` n_matvec 1 took 8.181740522384644 n_matvec 2 took 8.217356204986572 0.21284150158882 n_matvec 3 took 8.110730171203613 0.026337904611568017 n_matvec 4 took 8.143013715744019 0.0058701005433943266 n_matvec 5 took 8.101205348968506 0.0016042871687649372 n_matvec 6 took 8.221377849578857 0.0004220627227557851 n_matvec 7 took 8.234569311141968 9.5677343550821e-05 As the figures below demonstrate, only eight matrix-vector products got us a great solution! ```python inverse_transformer = Transformer.from_crs( "+proj=geocent +datum=WGS84 +units=m +no_defs", "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs", ) surf_xyz_to_lonlat_T = cutde.compute_projection_transforms( surf_centers_xyz, inverse_transformer ) surf_xyz_to_lonlat_T /= np.linalg.norm(surf_xyz_to_lonlat_T, axis=2)[:, :, None] soln_lonlat = np.sum(surf_xyz_to_lonlat_T * soln[:, None, :], axis=2) plt.figure(figsize=(13, 6)) for d in range(3): plt.subplot(1, 3, 1 + d) cntf = plt.tripcolor( surf_pts_lonlat[:, 0], surf_pts_lonlat[:, 1], surf_tris, soln_lonlat[:, d] ) plt.colorbar(cntf) plt.axis("equal") plt.xlim([-85, -70]) plt.ylim([-50, 10]) plt.title( ["$u_{\\textrm{east}}$", "$u_{\\textrm{north}}$", "$u_{\\textrm{up}}$"][d] ) plt.show() ``` ## Performance and convergence An important thing to note about the solution above is that only a few matrix-vector products are required to get to a high-level of accuracy. GMRES (and many other iterative linear and nonlinear optimization algorithms) converges at a rate proportional to the condition number of the matrix {cite:p}`Saad1986`. So in order to productively use an iterative linear solver, we need to have a matrix with a small condition number. It turns out that these free surface self-interaction matrices have condition numbers that are very close to 1.0, meaning that all the eigenvalues are very similar in magnitude. As a result, a highly accurate solution with GMRES requires less than ten matrix-vector products even for very large matrices. Because of this dependence on the condition number, in the worst case, iterative solvers are not faster than a direct solver. However, suppose that we need only 10 matrix-vector products. Then, the runtime is approximately $10(2n^2)$ because each matrix-vector product requires $2n^2$ operations (one multiplication and one addition per matrix entry). As a result, GMRES is solving the problem in $O(n^2)$ instead of the $O(n^3)$ asymptotic runtime of direct methods like LU decomposition. So, in addition to requiring less memory, the matrix free method here forced us into actually using a faster linear solver. Of course, LU decomposition comes out ahead again if we need to solve many linear systems with the same left hand side and different right hand sides. That is not the case here but would be relevant for many other problems (e.g. problems involving time stepping). The mess of code below builds a few figures that demonstrate these points regarding performance and accuracy as a function of the number of elements. ```python import time fault_L = 1000.0 fault_H = 1000.0 fault_D = 0.0 fault_pts = np.array( [ [-fault_L, 0, -fault_D], [fault_L, 0, -fault_D], [fault_L, 0, -fault_D - fault_H], [-fault_L, 0, -fault_D - fault_H], ] ) fault_tris = np.array([[0, 1, 2], [0, 2, 3]], dtype=np.int64) results = [] for n_els_per_dim in [2, 4, 8, 16, 32, 48]: surf_L = 4000 mesh_xs = np.linspace(-surf_L, surf_L, n_els_per_dim + 1) mesh_ys = np.linspace(-surf_L, surf_L, n_els_per_dim + 1) mesh_xg, mesh_yg = np.meshgrid(mesh_xs, mesh_ys) surf_pts = np.array([mesh_xg, mesh_yg, 0 * mesh_yg]).reshape((3, -1)).T.copy() surf_tris = [] nx = ny = n_els_per_dim + 1 idx = lambda i, j: i * ny + j for i in range(n_els_per_dim): for j in range(n_els_per_dim): x1, x2 = mesh_xs[i : i + 2] y1, y2 = mesh_ys[j : j + 2] surf_tris.append([idx(i, j), idx(i + 1, j), idx(i + 1, j + 1)]) surf_tris.append([idx(i, j), idx(i + 1, j + 1), idx(i, j + 1)]) surf_tris = np.array(surf_tris, dtype=np.int64) surf_tri_pts = surf_pts[surf_tris] surf_centroids = np.mean(surf_tri_pts, axis=1) fault_surf_mat = cutde.disp_matrix(surf_centroids, fault_pts[fault_tris], 0.25) rhs = np.sum(fault_surf_mat[:, :, :, 0], axis=2).flatten() start = time.time() eps_mats = [] offsets = [0.002, 0.001] offset_centers = [ np.mean(surf_tri_pts, axis=1) - off * np.array([0, 0, 1]) for off in offsets ] for i, off in enumerate(offsets): eps_mats.append(cutde.disp_matrix(offset_centers[i], surf_pts[surf_tris], 0.25)) lhs = 2 * eps_mats[1] - eps_mats[0] lhs_reordered = np.empty_like(lhs) lhs_reordered[:, :, :, 0] = lhs[:, :, :, 1] lhs_reordered[:, :, :, 1] = lhs[:, :, :, 0] lhs_reordered[:, :, :, 2] = lhs[:, :, :, 2] lhs_reordered = lhs_reordered.reshape( (surf_tris.shape[0] * 3, surf_tris.shape[0] * 3) ) lhs_reordered += np.eye(lhs_reordered.shape[0]) direct_build_time = time.time() - start start = time.time() soln = np.linalg.solve(lhs_reordered, rhs).reshape((-1, 3)) direct_solve_time = time.time() - start def matvec(x): extrapolation_mult = [-1, 2] slip = np.empty((surf_centroids.shape[0], 3)) xrshp = x.reshape((-1, 3)) slip[:, 0] = xrshp[:, 1] slip[:, 1] = xrshp[:, 0] slip[:, 2] = xrshp[:, 2] out = np.zeros_like(offset_centers[0]) for i, off in enumerate(offsets): out += extrapolation_mult[i] * cutde.disp_free( offset_centers[i], surf_tri_pts, slip, 0.25 ) return out.flatten() + x n = surf_tris.shape[0] * 3 def M(x): M.n_iter += 1 return matvec(x) M.n_iter = 0 lhs = spla.LinearOperator((n, n), M, dtype=rhs.dtype) start = time.time() soln_iter = spla.gmres(lhs, rhs, tol=1e-4)[0].reshape((-1, 3)) iterative_runtime = time.time() - start l1_err = np.mean(np.abs((soln_iter - soln) / soln)) results.append( dict( l1_err=l1_err, n_elements=surf_tris.shape[0], iterations=M.n_iter, direct_build_time=direct_build_time, direct_solve_time=direct_solve_time, iterative_runtime=iterative_runtime, direct_memory=rhs.nbytes + lhs_reordered.nbytes, iterative_memory=rhs.nbytes, ) ) ``` ```python import pandas as pd results_df = pd.DataFrame({k: [r[k] for r in results] for k in results[0].keys()}) results_df["direct_runtime"] = ( results_df["direct_build_time"] + results_df["direct_solve_time"] ) results_df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>l1_err</th> <th>n_elements</th> <th>iterations</th> <th>direct_build_time</th> <th>direct_solve_time</th> <th>iterative_runtime</th> <th>direct_memory</th> <th>iterative_memory</th> <th>direct_runtime</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.000390</td> <td>8</td> <td>6</td> <td>0.001730</td> <td>0.000297</td> <td>0.196446</td> <td>4800</td> <td>192</td> <td>0.002027</td> </tr> <tr> <th>1</th> <td>0.000052</td> <td>32</td> <td>7</td> <td>0.001941</td> <td>0.000353</td> <td>0.045686</td> <td>74496</td> <td>768</td> <td>0.002294</td> </tr> <tr> <th>2</th> <td>0.000371</td> <td>128</td> <td>7</td> <td>0.007796</td> <td>0.001663</td> <td>0.152800</td> <td>1182720</td> <td>3072</td> <td>0.009458</td> </tr> <tr> <th>3</th> <td>0.000520</td> <td>512</td> <td>7</td> <td>0.085798</td> <td>0.037337</td> <td>0.748936</td> <td>18886656</td> <td>12288</td> <td>0.123135</td> </tr> <tr> <th>4</th> <td>0.000599</td> <td>2048</td> <td>7</td> <td>1.271554</td> <td>1.452238</td> <td>2.974715</td> <td>302039040</td> <td>49152</td> <td>2.723793</td> </tr> <tr> <th>5</th> <td>0.000887</td> <td>4608</td> <td>7</td> <td>6.120567</td> <td>13.449475</td> <td>11.854967</td> <td>1528934400</td> <td>110592</td> <td>19.570042</td> </tr> </tbody> </table> </div> ```python plt.rcParams["text.usetex"] = False ``` ```python plt.figure(figsize=(8, 4)) plt.subplot(1, 2, 1) plt.plot(results_df["n_elements"], results_df["direct_runtime"], label="direct") plt.plot(results_df["n_elements"], results_df["iterative_runtime"], label="iterative") plt.legend() plt.title("Run time (secs)") plt.subplot(1, 2, 2) plt.plot(results_df["n_elements"], results_df["direct_memory"] / 1e6, label="direct") plt.plot( results_df["n_elements"], results_df["iterative_memory"] / 1e6, label="iterative" ) plt.legend() plt.title("Memory usage (MB)") plt.show() ```
092c30e207552524c39528baed202ae640096e79
413,849
ipynb
Jupyter Notebook
tutorials/tdes/free_matvec.ipynb
tbenthompson/BIE_book
dcbbd7f0777ebf4a35d70737643e67138d9d684b
[ "MIT" ]
1
2021-06-18T18:02:55.000Z
2021-06-18T18:02:55.000Z
tutorials/tdes/free_matvec.ipynb
tbenthompson/BIE_notebooks
dcbbd7f0777ebf4a35d70737643e67138d9d684b
[ "MIT" ]
null
null
null
tutorials/tdes/free_matvec.ipynb
tbenthompson/BIE_notebooks
dcbbd7f0777ebf4a35d70737643e67138d9d684b
[ "MIT" ]
1
2021-07-14T19:47:00.000Z
2021-07-14T19:47:00.000Z
459.832222
312,036
0.931982
true
6,354
Qwen/Qwen-72B
1. YES 2. YES
0.819893
0.83762
0.686759
__label__eng_Latn
0.934743
0.433903
### Core collapse Heat trasnfer due to self interactions can lead to core collapse of SIDM halos, particularly at high cross sections. This process can be accelerated if the halos exist in a tidal field (i.e. are subhalos). To run this notebook, you'll need to install the software package pyHalo https://github.com/dangilman/pyHalo ```python from sidmpy.CrossSections.power_law import PowerLaw from sidmpy.CrossSections.tchannel import TChannel from sidmpy.CrossSections.velocity_independent import VelocityIndependentCrossSection from sidmpy.core_collapse_timescale import * from sidmpy.Solver.util import nfw_velocity_dispersion, nfw_circular_velocity from matplotlib import cm import matplotlib.pyplot as plt plt.rcParams['axes.linewidth'] = 2.5 plt.rcParams['xtick.major.width'] = 2.5 plt.rcParams['xtick.major.size'] = 8 plt.rcParams['xtick.minor.size'] = 5 plt.rcParams['ytick.major.width'] = 2.5 plt.rcParams['ytick.major.size'] = 8 plt.rcParams['ytick.minor.size'] = 4 plt.rcParams['ytick.labelsize'] = 15 plt.rcParams['xtick.labelsize'] = 15 ``` ## Timescales for subhalos and field halos Eventually, all SIDM halos should undergoe core collapse. The timescale for this process depends on the strength of the interaction cross section and other processes like tidal stripping. Depending on these factors, it can be much longer than, comparable, or shorter than the age of the Universe. We will use a characteristic timescale for core collapse \begin{equation} t_c = \frac{1}{3 \rho_s \langle \sigma\left(v\right) v \rangle } \end{equation} ### Core collapse timescale as a function of halo mass and redshift. #### Note: this cell requires the software package pyHalo ```python from pyHalo.Halos.lens_cosmo import LensCosmo import numpy as np from sidmpy.Solver.util import nfw_velocity_dispersion, nfw_mass_from_velocity_dispersion import matplotlib.pyplot as plt from sidmpy.sidmpy import solve_rho_with_interpolation, solve_sigmav_with_interpolation help(evolution_timescale_scattering_rate) lc = LensCosmo() t1 = [] t2 = [] t3 = [] kwargs_cross_section_1 = {'norm': 35., 'v_ref': 10} kwargs_cross_section_2 = {'norm': 20., 'v_ref': 25} kwargs_cross_section_3 = {'norm': 5., 'v_ref': 100} cross_section_1 = TChannel(**kwargs_cross_section_1) cross_section_2 = TChannel(**kwargs_cross_section_2) cross_section_3 = TChannel(**kwargs_cross_section_3) cmap = cm.gist_heat z = 0. m = np.logspace(6, 10, 100) for mi in m: c = lc.NFW_concentration(mi, z, scatter=False) rhos, rs, _ = lc.NFW_params_physical(mi, c, z) v1 = solve_sigmav_with_interpolation(mi, z, 0., 'TCHANNEL', kwargs_cross_section_1) v2 = solve_sigmav_with_interpolation(mi, z, 0., 'TCHANNEL', kwargs_cross_section_2) v3 = solve_sigmav_with_interpolation(mi, z, 0., 'TCHANNEL', kwargs_cross_section_3) t0 = evolution_timescale_scattering_rate(rhos, v1, cross_section_1, rescale=1.) t1.append(t0) t0 = evolution_timescale_scattering_rate(rhos, v2, cross_section_2, rescale=1.) t2.append(t0) t0 = evolution_timescale_scattering_rate(rhos, v3, cross_section_3, rescale=1.) t3.append(t0) fig = plt.figure(1) fig.set_size_inches(6, 6) ax = plt.subplot(111) ax.plot(np.log10(m), t1, color='k', lw=5) ax.plot(np.log10(m), t2, color=cmap(0.4), lw=5) ax.plot(np.log10(m), t3, color=cmap(0.8), lw=5) ax.set_xlabel(r'$M_{200} \left[M_{\odot}\right]$', fontsize=18) ax.set_ylabel('evolution timescale '+r'$t_0 \ \left[\rm{Gyr}\right]$', fontsize=16) ax.set_xticks([6, 7, 8, 9, 10]) ax.set_xticklabels([r'$10^{6}$', r'$10^{7}$', r'$10^{8}$', r'$10^{9}$', r'$10^{10}$'], fontsize=20) ax.set_yticks([0., 0.5, 1., 1.5, 2, 2.5, 3]) ax.set_ylim(0, 3) ax.set_xlim(6,10) ax.legend(frameon=False, fontsize=14) ``` ```python ```
d1cc2cfcf239f98c06bff1d254c5d82e797c0b69
41,864
ipynb
Jupyter Notebook
example_notebooks/core_collapse.ipynb
jhod0/SIDMpy
e41d75e05af560614c9b1b0f3870a01ae1a35882
[ "MIT" ]
2
2020-09-25T12:56:15.000Z
2020-09-30T17:52:04.000Z
example_notebooks/core_collapse.ipynb
jhod0/SIDMpy
e41d75e05af560614c9b1b0f3870a01ae1a35882
[ "MIT" ]
1
2022-02-03T12:57:37.000Z
2022-02-07T22:16:33.000Z
example_notebooks/core_collapse.ipynb
jhod0/SIDMpy
e41d75e05af560614c9b1b0f3870a01ae1a35882
[ "MIT" ]
2
2021-09-26T19:00:23.000Z
2022-01-28T21:55:36.000Z
206.226601
34,852
0.904405
true
1,153
Qwen/Qwen-72B
1. YES 2. YES
0.861538
0.679179
0.585138
__label__eng_Latn
0.627404
0.197803
# Method of averaging Find solution fo a 2nd order system with damping using method if averaging. The common equation in unitless form: $$\ddot{x}+\frac{1}{Q}\dot{x}+x=a\cos{\Omega t}$$ Since the equation corresponds to a non-free vibration, consider the solution in general form: \begin{aligned} x&=r\cos(\Omega t + \phi) \\ &=r\cos\phi\cdot\cos\Omega t-r\sin\phi\cdot\sin\Omega t \\ &=u\cos\Omega t + v\sin\Omega t \end{aligned} where $u$ and $v$ are slowly varying in time finctions in comparioson with $\cos\Omega t$, such that $$\dot{u}\cos\Omega t + \dot{v}\sin\Omega t = 0$$ Accounting for that, derivatives \begin{align} \dot{x}&=\Omega (-u\sin\Omega t+ v\cos\Omega t) \\ \ddot{x}&=\Omega(-\dot{u}\sin\Omega t +\dot{v}\cos\Omega t) -\Omega^2x \end{align} Substituting them to the main equation \begin{equation} \begin{pmatrix} \cos\Omega t & \sin\Omega t \\ -\sin\Omega t & \cos\Omega t \end{pmatrix} \begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix}= \begin{pmatrix} 0 \\ F(t,x,\dot{x}) \end{pmatrix} \end{equation} where $$F(t,x,\dot{x})=-\frac{1-\Omega^2}{\Omega}x-\frac{1}{Q\Omega}\dot{x}+\frac{a}{\Omega}\cos\Omega t$$ Finaly, get rid of the trigonometry by averaging $\dot{u}$ and $\dot{v}$ over period \begin{aligned} \dot{u}&\approx-\frac{1}{T}\int_0^T F(t,x,\dot{x}) \sin(\Omega t)dt \\ \dot{v}&\approx\frac{1}{T}\int_0^T F(t,x,\dot{x})\cos(\Omega t) dt \end{aligned} ```python import sympy as sp ``` ```python a, W, Q, t, u, v = sp.symbols('a, \Omega, Q, t, u, v') ``` ```python x = u * sp.cos(W*t) + v * sp.sin(W*t) dx = -W * u * sp.sin(W*t) + W * v * sp.cos(W*t) ``` ```python F = -(1-W**2)/W * x - 1/Q/W * dx + a/W*sp.cos(W*t) sp.collect(F.expand(),(sp.cos(W*t), sp.sin(W*t))) ``` $\displaystyle \left(\Omega v - \frac{v}{\Omega} + \frac{u}{Q}\right) \sin{\left(\Omega t \right)} + \left(\Omega u + \frac{a}{\Omega} - \frac{u}{\Omega} - \frac{v}{Q}\right) \cos{\left(\Omega t \right)}$ ```python T = 2*sp.pi / W ``` ```python du = (sp.integrate(-sp.sin(W*t)*F, (t,0,T))/T).expand() du ``` $\displaystyle - \frac{\Omega v}{2} + \frac{v}{2 \Omega} - \frac{u}{2 Q}$ ```python dv = (sp.integrate(sp.cos(W*t)*F, (t,0,T))/T).expand() dv ``` $\displaystyle \frac{\Omega u}{2} + \frac{a}{2 \Omega} - \frac{u}{2 \Omega} - \frac{v}{2 Q}$ Amplitude-frequency responce, for instance, can be obtained from the stationary solutiton: ```python sol = sp.solve((du,dv), [u,v]) ``` ```python sp.sqrt((sol[u]**2+sol[v]**2)/a**2).simplify() ``` $\displaystyle \sqrt{\frac{Q^{2} \left(Q^{2} \left(\Omega^{2} - 1\right)^{2} + \Omega^{2}\right)}{\left(Q^{2} \Omega^{4} - 2 Q^{2} \Omega^{2} + Q^{2} + \Omega^{2}\right)^{2}}}$ simplify this equation manually: $$|K(\Omega)| = \frac{1}{\sqrt{(1-\Omega^2)^2+\frac{1}{Q^2}\Omega^2}}$$ For comparison, the same result can be derived in more traditional way: $$\ddot{x}+\frac{1}{Q}\dot{x}+x=y$$ let $x=X\exp(i\Omega t)$, $y=Y\exp(i\Omega t)$, then $$((1-\Omega^2)+\frac{1}{Q}i\Omega)X=Y$$ frerquency responce $$K=\frac{Y}{X}=\frac{1}{(1-\Omega^2)+\frac{1}{Q}i\Omega}$$ taking the amplitude of the responce matches the same expression $$|K| = \frac{1}{\sqrt{(1-\Omega^2)^2+\frac{1}{Q^2}\Omega^2}}$$ ```python from sympy.plotting import plot ``` ```python fig = plot(1/sp.sqrt((1-W**2)**2+W**2/100), 1/sp.sqrt((1-W**2)**2+W**2/25), 1/sp.sqrt((1-W**2)**2+W**2/4), (W,0,2), show=False) fig[0].line_color='blue' fig[1].line_color='green' fig[2].line_color='orange' fig[0].label='Q=10' fig[1].label='Q=5' fig[2].label='Q=2' fig.axis_center = 1, 0 fig.ylabel = '|K|' fig.xlabel = '$\Omega$' fig.legend = True fig.show() ``` ```python ```
b44da790c8f7404cb0faa32419b7ca401a8560f7
93,749
ipynb
Jupyter Notebook
duffing-oscillator/linear-averaging.ipynb
vr050714/nonlinear-vibration-seminar
663584d46708857383b637610e54fafa753250e2
[ "CC0-1.0" ]
1
2021-05-26T05:38:38.000Z
2021-05-26T05:38:38.000Z
duffing-oscillator/linear-averaging.ipynb
vr050714/nonlinear-vibration-seminar
663584d46708857383b637610e54fafa753250e2
[ "CC0-1.0" ]
null
null
null
duffing-oscillator/linear-averaging.ipynb
vr050714/nonlinear-vibration-seminar
663584d46708857383b637610e54fafa753250e2
[ "CC0-1.0" ]
null
null
null
306.369281
64,344
0.698845
true
1,432
Qwen/Qwen-72B
1. YES 2. YES
0.927363
0.822189
0.762468
__label__eng_Latn
0.243699
0.609801
Rechneranwendungen in der Physik - Übung N.4 Umlaufbahnen Santiago.R ```python import numpy as np import sympy as sy from scipy import optimize import matplotlib.pyplot as plt from scipy import integrate ``` # Simulation der Erdumlaufbahn $U_E(t)$ Zuerst werden die wichtigen Konstanten und Startparameter definiert; ```python #Konstanten G = 6.67430e-11 #in m3/kg*s2 m_sonne = 1.989e30 #in kg m_erde = 5.972e24 #in kg (wird in dieser Lösung vernachlässigt, da die Sonne als stationär im Punkt (x,y)=(0,0) angenohmen wird) r_ES = 1.496e11 #in m v_E = 29.78e3 #in m/s #Startparameter der Erde y0_erde = r_ES x0_erde = 0 v_x0_erde=-v_E #negativ um in Richtung gegen den Uhrzeigersinn zu zeigen v_y0_erde=0 ``` Um einen Plot $U_E(t)$ für die Umlaufbahn der Erde um die Sonne zu erstellen müssen zuerst die Bewegungsgleichungen formuliert werden. Diese hängen im wesetlichen von der einzigen in diesem System relevanten Kraft, die Gravitationskraft $\vec{F_g}=-G \cdot \frac{M \cdot m}{\vec{r}^2}$ ab. Diese kann dann mit $\vec{r}=\frac{\vec{r_e}}{|r|}$ und $|r|=\sqrt{x^2+y^2}$ umgeschrieben werden als $\vec{F_g}=-G \cdot \frac{M \cdot m}{\sqrt{x^2+y^2}^{3/2}} \cdot \vec{r_e}$. Die $x$- und $y$-Komponenten der angreifenden Gravitationskraft können dann mit $F_x=-G \cdot \frac{M \cdot m}{\sqrt{x^2+y^2}^{3}} \cdot x$ und $F_y=-G \cdot \frac{M \cdot m}{\sqrt{x^2+y^2}^{3}} \cdot y$ parametrisiert und anschließend auf die gekoppelten Differentialgleichungen $\frac{d^2x}{dt^2}=-\frac{GM}{\sqrt{x^2+y^2}^{3}} \cdot x$ und $\frac{d^2y}{dt^2}=- \frac{GM}{\sqrt{x^2+y^2}^{3}} \cdot y$ überführt werden. Nummerisches Integrieren dieser Differentialgleichungen nach der Zeit $t$ liefert dann die $x$- und $y$-Werte der Umlaufbahn $U_E(t)$ an jedem integrierten Zeitpunkt $t$ ```python def dgl_erde_sonne(i, t): x, y, v_x, v_y = i #Input für die Startparameter g = G*m_sonne/np.sqrt(x**2+y**2)**3; #der angreifende Parameter an jedem Punkt x,y return [v_x, v_y, -x*g, -y*g]; t = np.linspace(0, 31536000, 50000) #in SI-Einheiten ist die Angabe für ein Jahr auf Sekunden umgestellt startparameter = [x0_erde, y0_erde, v_x0_erde, v_y0_erde] s_t = integrate.odeint(dgl_erde_sonne, startparameter, t) x,y,_,_ = s_t.T plt.plot(0,0,'oy', ms=8, label = 'Sonne') plt.plot(x,y, label = 'Erdumlaufbahn'); plt.axis('equal'); plt.xlabel("x-Achse in 10^11 Meter") plt.ylabel("y-Achse in 10^11 Meter") plt.legend(loc='upper right') plt.show() ``` # Simulation für unterschiedliche Toleranzen [e-1,e-5] ```python t = np.linspace(0, 31536000, 50000) #in SI-Einheiten ist die Angabe für ein Jahr auf Sekunden umgestellt startparameter = [x0_erde, y0_erde, v_x0_erde, v_y0_erde] for i in range(1,6,1): s_t = integrate.odeint(dgl_erde_sonne, startparameter, t, rtol=10**(-i)) x,y,_,_ = s_t.T plt.plot(x,y, label = 10**(-i)); plt.axis('equal'); plt.plot(0,0,'oy', ms=8, label = 'Sonne') plt.xlabel("x-Achse in 10^11 Meter") plt.ylabel("y-Achse in 10^11 Meter") plt.legend(title='Plot-Toleranz',loc='upper right') plt.show() ``` # Simulation für unterschiedliche Startwerte $r_0$ ```python #Neue Startwerte y1_erde=0.6*r_ES y2_erde=1.4*r_ES #Integration für y1 t = np.linspace(0, 4*31536000, 50000) #in SI-Einheiten ist die Angabe für ein Jahr auf Sekunden umgestellt startparameter1 = [x0_erde, y1_erde, v_x0_erde, v_y0_erde] s_t1 = integrate.odeint(dgl_erde_sonne, startparameter1, t) #Integration für y2 startparameter2 = [x0_erde, y2_erde, v_x0_erde, v_y0_erde] s_t2 = integrate.odeint(dgl_erde_sonne, startparameter2, t) #Plots x1,y1,_,_ = s_t1.T x2,y2,_,_ = s_t2.T plt.plot(0,0,'oy', ms=8, label = 'Sonne') plt.plot(x1,y1, label = '0.6*r_ES'); plt.axis('equal'); plt.plot(x2,y2, label = '1.4*r_ES'); plt.axis('equal'); plt.xlabel("x-Achse in 10^11 Meter") plt.ylabel("y-Achse in 10^11 Meter") plt.legend(title='Startparameter',loc='upper right') plt.show() ```
0210a28d586aff0f0fceb0991879bde1b7a5b18e
88,825
ipynb
Jupyter Notebook
Umlaufbahnen/Umlaufbahnen.ipynb
RemovedMoney326/Rechneranwendungen-in-der-Physik-Uebungen
a189dbc3ae003189797ace97026d4abe010cda54
[ "MIT" ]
2
2020-06-11T21:32:54.000Z
2021-04-17T13:42:56.000Z
Umlaufbahnen/Umlaufbahnen.ipynb
RemovedMoney326/Rechneranwendungen-in-der-Physik-Uebungen
a189dbc3ae003189797ace97026d4abe010cda54
[ "MIT" ]
null
null
null
Umlaufbahnen/Umlaufbahnen.ipynb
RemovedMoney326/Rechneranwendungen-in-der-Physik-Uebungen
a189dbc3ae003189797ace97026d4abe010cda54
[ "MIT" ]
null
null
null
407.454128
39,336
0.936099
true
1,469
Qwen/Qwen-72B
1. YES 2. YES
0.926304
0.828939
0.767849
__label__deu_Latn
0.796622
0.622303
<a href="https://colab.research.google.com/github/justin-hsieh/DS-Unit-1-Sprint-3-Statistical-Tests-and-Experiments/blob/master/LS_DS_132_Sampling_Confidence_Intervals_and_Hypothesis_Testing.ipynb" target="_parent"></a> # Lambda School Data Science Module 142 ## Sampling, Confidence Intervals, and Hypothesis Testing ## Prepare - examine other available hypothesis tests If you had to pick a single hypothesis test in your toolbox, t-test would probably be the best choice - but the good news is you don't have to pick just one! Here's some of the others to be aware of: ``` import numpy as np from scipy.stats import chisquare # One-way chi square test # Chi square can take any crosstab/table and test the independence of rows/cols # The null hypothesis is that the rows/cols are independent -> low chi square # The alternative is that there is a dependence -> high chi square # Be aware! Chi square does *not* tell you direction/causation ind_obs = np.array([[1, 1], [2, 2]]).T print(ind_obs) print(chisquare(ind_obs, axis=None)) dep_obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T print(dep_obs) print(chisquare(dep_obs, axis=None)) ``` ``` # Distribution tests: # We often assume that something is normal, but it can be important to *check* # For example, later on with predictive modeling, a typical assumption is that # residuals (prediction errors) are normal - checking is a good diagnostic from scipy.stats import normaltest # Poisson models arrival times and is related to the binomial (coinflip) sample = np.random.poisson(5, 1000) print(normaltest(sample)) # Pretty clearly not normal ``` ``` # Kruskal-Wallis H-test - compare the median rank between 2+ groups # Can be applied to ranking decisions/outcomes/recommendations # The underlying math comes from chi-square distribution, and is best for n>5 from scipy.stats import kruskal x1 = [1, 3, 5, 7, 9] y1 = [2, 4, 6, 8, 10] print(kruskal(x1, y1)) # x1 is a little better, but not "significantly" so x2 = [1, 1, 1] y2 = [2, 2, 2] z = [2, 2] # Hey, a third group, and of different size! print(kruskal(x2, y2, z)) # x clearly dominates ``` And there's many more! `scipy.stats` is fairly comprehensive, though there are even more available if you delve into the extended world of statistics packages. As tests get increasingly obscure and specialized, the importance of knowing them by heart becomes small - but being able to look them up and figure them out when they *are* relevant is still important. ## T-test Assumptions <https://statistics.laerd.com/statistical-guides/independent-t-test-statistical-guide.php> - Independence of means Are the means of our voting data independent (do not affect the outcome of one another)? The best way to increase thel likelihood of our means being independent is to randomly sample (which we did not do). ``` from scipy.stats import ttest_ind ?ttest_ind ``` - "Homogeneity" of Variance? Is the magnitude of the variance between the two roughly the same? I think we're OK on this one for the voting data, although it probably could be better, one party was larger than the other. If we suspect this to be a problem then we can use Welch's T-test ``` ?ttest_ind ``` - "Dependent Variable" (sample means) are Distributed Normally <https://stats.stackexchange.com/questions/9573/t-test-for-non-normal-when-n50> Lots of statistical tests depend on normal distributions. We can test for normality using Scipy as was shown above. This assumption is often assumed even if the assumption is a weak one. If you strongly suspect that things are not normally distributed, you can transform your data to get it looking more normal and then run your test. This problem typically goes away for large sample sizes (yay Central Limit Theorem) and is often why you don't hear it brought up. People declare the assumption to be satisfied either way. ## Central Limit Theorem ``` import numpy as np import matplotlib.pyplot as plt import pandas as pd sample_means = [] for x in range(0,3000): coinflips = np.random.binomial(n=1, p=.5, size=30) one_sample = coinflips sample_means.append(coinflips.mean()) print(len(sample_means)) print(sample_means) ``` ``` df = pd.DataFrame({'a': one_sample}) df.head() ``` ``` df.a.hist() ``` ``` ax = plt.hist(sample_means, bins=30) plt.title('Distribution of 3000 sample means \n (of 30 coinflips each)'); ``` What does the Central Limit Theorem State? That no matter the initial distribution of the population, the distribution of sample means taken will approximate a normal distribution as $n \rightarrow \infty$. This has very important implications for hypothesis testing and is precisely the reason why the t-distribution begins to approximate the normal distribution as our sample size increases. ## Standard Error of the Mean What does it mean to "estimate"? the Population mean? ``` import numpy as np import pandas as pd lambda_heights = np.random.uniform(4,6.5, size=2000) print(len(lambda_heights)) lambda_heights ``` ``` print("Population Mean:", lambda_heights.mean()) print("Population Standard Deviation:", lambda_heights.std()) ``` ``` population = pd.DataFrame({'heights': lambda_heights}) print(population.shape) population.head() ``` ``` sample = population.sample(100) print(sample.shape) sample.head() ``` ``` print("Sample Mean 1:", sample['heights'].mean()) ``` ``` sample = population.sample(100) print(sample.shape) sample.head() ``` ``` print("Sample Mean 2:", sample['heights'].mean()) ``` ## Build and Interpret a Confidence Interval ``` def confidence_interval(data, confidence=0.95): """ Calculate a confidence interval around a sample mean for given data. Using t-distribution and two-tailed test, default 95% confidence. Arguments: data - iterable (list or numpy array) of sample observations confidence - level of confidence for the interval Returns: tuple of (mean, lower bound, upper bound) """ data = np.array(data) mean = np.mean(data) n = len(data) stderr = stats.sem(data) interval = stderr * stats.t.ppf((1 + confidence) / 2.0, n - 1) return (mean, mean - interval, mean + interval) ``` ``` coinflips_100 = np.random.binomial(n=1, p=.5, size=100) sample_std = np.std(coinflips_100) print("sample standard deviation:", sample_std) sample_size = len(coinflips_100) print("sample size:", sample_size) ``` ``` standard_error = sample_std / (sample_size**(.5)) print("standard error:", standard_error) ``` ``` from scipy import stats stderr = stats.sem(coinflips_100, ddof=0) stderr ``` ###What confidence level do we want our confidence interval to represent? ``` t = stats.t.ppf(.975 , sample_size-1) ``` ``` sample_mean = coinflips_100.mean() ``` ``` confidence_interval = (sample_mean - t*stderr, sample_mean + t*stderr) margin_of_error = t*stderr print("Sample Mean", sample_mean) print("Margin of Error:", margin_of_error) print("Confidence Interval:", confidence_interval) ``` ``` confidence_interval[0] ``` ``` confidence_interval[1] ``` ## Graphically Represent a Confidence Interval ``` import seaborn as sns sns.kdeplot(coinflips_100) plt.axvline(x=confidence_interval[0], color='red') plt.axvline(x=confidence_interval[1], color='red') plt.axvline(x=sample_mean, color='k'); ``` ## Relationship between Confidence Intervals and T-tests Confidence Interval == Bounds of statistical significance for our t-test A sample mean that falls inside of our confidence interval will "FAIL TO REJECT" our null hypothesis A sample mean that falls outside of our confidence interval will "REJECT" our null hypothesis ``` from scipy.stats import t, ttest_1samp ``` ``` import numpy as np coinflip_means = [] for x in range(0,100): coinflips = np.random.binomial(n=1, p=.5, size=30) coinflip_means.append(coinflips.mean()) print(coinflip_means) ``` ``` # Sample Size n = len(coinflip_means) # Degrees of Freedom dof = n-1 # The Mean of Means: mean = np.mean(coinflip_means) # Sample Standard Deviation sample_std = np.std(coinflip_means, ddof=1) # Standard Error std_err = sample_std/n**.5 CI = t.interval(.95, dof, loc=mean, scale=std_err) print("95% Confidence Interval: ", CI) ``` ``` '''You can roll your own CI calculation pretty easily. The only thing that's a little bit challenging is understanding the t stat lookup''' # 95% confidence interval t_stat = t.ppf(.975, dof) print("t Statistic:", t_stat) CI = (mean-(t_stat*std_err), mean+(t_stat*std_err)) print("Confidence Interval", CI) ``` t Statistic: 1.9842169515086827 Confidence Interval (0.48189276007256693, 0.5181072399274331) A null hypothesis that's just inside of our confidence interval == fail to reject ``` ttest_1samp(coinflip_means, .49) ``` A null hypothesis that's just outside of our confidence interval == reject ``` ttest_1samp(coinflip_means, .4818927) ``` ## Run a $\chi^{2}$ Test "by hand" (Using Numpy) ``` df = pd.read_csv('https://raw.githubusercontent.com/ryanleeallred/datasets/master/adult.csv', na_values=" ?") print(df.shape) df.head() ``` ``` df.describe() ``` ``` df.describe(exclude='number') ``` ``` cut_points = [0, 9, 19, 29, 39, 49, 1000] label_names = ['0-9', '10-19', '20-29', '30-39', '40-49', '50+'] df['hours_per_week_categories'] = pd.cut(df['hours-per-week'], cut_points, labels=label_names) df.head() ``` ``` df['sex'].value_counts() ``` ``` df['hours_per_week_categories'].value_counts() ``` ``` df = df.sort_values(by='hours_per_week_categories', ascending=True) df.head() ``` ``` contingency_table = pd.crosstab(df['sex'], df['hours_per_week_categories'], margins=True) contingency_table ``` ``` femalecount = contingency_table.iloc[0][0:6].values femalecount ``` ``` malecount = contingency_table.iloc[1][0:6].values malecount ``` ``` import matplotlib.pyplot as plt import seaborn as sns #Plots the bar chart fig = plt.figure(figsize=(10, 5)) sns.set(font_scale=1.8) categories = ["0-9","10-19","20-29","30-39","40-49","50+"] p1 = plt.bar(categories, malecount, 0.55, color='#d62728') p2 = plt.bar(categories, femalecount, 0.55, bottom=malecount) plt.legend((p2[0], p1[0]), ('Female', 'Male')) plt.xlabel('Hours per Week Worked') plt.ylabel('Count') plt.show() ``` ## Expected Value Calculation \begin{align} expected_{i,j} =\frac{(row_{i} \text{total})(column_{j} \text{total}) }{(\text{total observations})} \end{align} ``` # Get Row Sums row_sums = contingency_table.iloc[0:2, 6].values col_sums = contingency_table.iloc[2, 0:6].values print(row_sums) print(col_sums) ``` ``` total = contingency_table.loc['All','All'] total ``` 32561 ``` expected = [] for i in range(len(row_sums)): expected_row = [] for column in col_sums: expected_val = column*row_sums[i]/total expected_row.append(expected_val) expected.append(expected_row) expected = np.array(expected) print(expected.shape) print(expected) ``` ``` observed = pd.crosstab(df['sex'], df['hours_per_week_categories']).values print(observed.shape) observed ``` ## Chi-Squared Statistic with Numpy \begin{align} \chi^2 = \sum \frac{(observed_{i}-expected_{i})^2}{(expected_{i})} \end{align} For the $observed$ values we will just use a version of our contingency table without the margins as a numpy array. In this way, if our observed values array and our expected values array are the same shape, then we can subtract them and divide them directly which makes the calculations a lot cleaner. No for loops! ``` chi_squared = ((observed - expected)**2/(expected)).sum() print(f"Chi-Squared: {chi_squared}") ``` ``` # Calculate Degrees of Freedom dof = (len(row_sums)-1)*(len(col_sums)-1) print(f"Degrees of Freedom: {dof}") ``` ## Run a $\chi^{2}$ Test using Scipy ``` chi_squared, p_value, dof, expected = stats.chi2_contingency(observed) print(f"Chi-Squared: {chi_squared}") print(f"P-value: {p_value}") print(f"Degrees of Freedom: {dof}") print("Expected: \n", np.array(expected)) ``` Null Hypothesis: Hours worked per week bins is **independent** of sex. Due to a p-value of 0, we REJECT the null hypothesis that hours worked per week and sex are independent, and conclude that there is an association between hours worked per week and sex. ## Assignment - Build a confidence interval A confidence interval refers to a neighborhood around some point estimate, the size of which is determined by the desired p-value. For instance, we might say that 52% of Americans prefer tacos to burritos, with a 95% confidence interval of +/- 5%. 52% (0.52) is the point estimate, and +/- 5% (the interval $[0.47, 0.57]$) is the confidence interval. "95% confidence" means a p-value $\leq 1 - 0.95 = 0.05$. In this case, the confidence interval includes $0.5$ - which is the natural null hypothesis (that half of Americans prefer tacos and half burritos, thus there is no clear favorite). So in this case, we could use the confidence interval to report that we've failed to reject the null hypothesis. But providing the full analysis with a confidence interval, including a graphical representation of it, can be a helpful and powerful way to tell your story. Done well, it is also more intuitive to a layperson than simply saying "fail to reject the null hypothesis" - it shows that in fact the data does *not* give a single clear result (the point estimate) but a whole range of possibilities. How is a confidence interval built, and how should it be interpreted? It does *not* mean that 95% of the data lies in that interval - instead, the frequentist interpretation is "if we were to repeat this experiment 100 times, we would expect the average result to lie in this interval ~95 times." For a 95% confidence interval and a normal(-ish) distribution, you can simply remember that +/-2 standard deviations contains 95% of the probability mass, and so the 95% confidence interval based on a given sample is centered at the mean (point estimate) and has a range of +/- 2 (or technically 1.96) standard deviations. Different distributions/assumptions (90% confidence, 99% confidence) will require different math, but the overall process and interpretation (with a frequentist approach) will be the same. Your assignment - using the data from the prior module ([congressional voting records](https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records)): ### Confidence Intervals: 1. Generate and numerically represent a confidence interval 2. Graphically (with a plot) represent the confidence interval 3. Interpret the confidence interval - what does it tell you about the data and its distribution? ### Chi-squared tests: 4. Take a dataset that we have used in the past in class that has **categorical** variables. Pick two of those categorical variables and run a chi-squared tests on that data - By hand using Numpy - In a single line using Scipy Stretch goals: 1. Write a summary of your findings, mixing prose and math/code/results. *Note* - yes, this is by definition a political topic. It is challenging but important to keep your writing voice *neutral* and stick to the facts of the data. Data science often involves considering controversial issues, so it's important to be sensitive about them (especially if you want to publish). 2. Apply the techniques you learned today to your project data or other data of your choice, and write/discuss your findings here. 3. Refactor your code so it is elegant, readable, and can be easily run for all issues. ``` import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from scipy import stats from scipy.stats import t, ttest_1samp ``` ``` df1 = pd.read_csv('house-votes-84.data') df1.columns = ['Class Name', 'Handicapped_Infants','Water_project_cost_sharing', 'Adoption_of_the_budget_res', 'Physician_fee_freeze','El_Salvador_aid', 'Religious_Groups_in_schools', 'Anti_Satellite_test_ban','Aid_to_Nicaraguan_contras','Mx_missile', 'Immigration','Synfuels_corporation_cutback','Education_spending', 'Superfund_right_to_sue','Crime','Duty_free_exports','export_Admin_act_SA'] df1.replace({'y': 1, 'n': 0,'?': np.nan}, inplace=True) df1.head() ``` ``` dems = df1[df1['Class Name'] == 'democrat'] reps = df1[df1['Class Name'] == 'republican'] #Sample Mean and size dem_crime = dems['Crime'].dropna() sample_size = len(dem_crime) # Sample Standard Deviation and Standard Error sample_std = np.std(dem_crime) standard_e = sample_std / (sample_size**(0.5)) # T-stat, margin of error, confidence interval t = stats.t.ppf(.975 , sample_size-1) margin_of_error = t*standard_e confidence_interval = (dem_crime.mean() - t*standard_e, dem_crime.mean() + t*standard_e) print("Sample Mean", dem_crime.mean()) print("Margin of Error:", margin_of_error) print("Confidence Interval:", confidence_interval) ``` Sample Mean 0.35019455252918286 Margin of Error: 0.05859842293726726 Confidence Interval: (0.2915961295919156, 0.4087929754664501) ``` sns.kdeplot(dem_crime, color='orange') plt.axvline(x=confidence_interval[0], color='blue') plt.axvline(x=confidence_interval[1], color='blue') plt.axvline(x=dem_crime.mean(), color='g'); ``` Using the given data found in the 'Crime" column of dems, the 95% confidence interval was calculated to be: (0.2915961295919156, 0.4087929754664501) Any sample mean that falls within this interval will fail to reject the null hypothesis, whereas any sample mean that falls outside of it will reject the null hypothesis. ##Chi Squared Test ``` cut_points = [0, 19, 39, 59, 79, 99, 1000] label_names = ['0-19', '20-39', '40-59', '60-79', '80-99', '100+'] df['age_cats'] = pd.cut(df['age'], cut_points, labels=label_names) df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>age</th> <th>workclass</th> <th>fnlwgt</th> <th>education</th> <th>education-num</th> <th>marital-status</th> <th>occupation</th> <th>relationship</th> <th>race</th> <th>sex</th> <th>capital-gain</th> <th>capital-loss</th> <th>hours-per-week</th> <th>country</th> <th>salary</th> <th>age_cats</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>39</td> <td>State-gov</td> <td>77516</td> <td>Bachelors</td> <td>13</td> <td>Never-married</td> <td>Adm-clerical</td> <td>Not-in-family</td> <td>White</td> <td>Male</td> <td>2174</td> <td>0</td> <td>40</td> <td>United-States</td> <td>&lt;=50K</td> <td>20-39</td> </tr> <tr> <th>1</th> <td>50</td> <td>Self-emp-not-inc</td> <td>83311</td> <td>Bachelors</td> <td>13</td> <td>Married-civ-spouse</td> <td>Exec-managerial</td> <td>Husband</td> <td>White</td> <td>Male</td> <td>0</td> <td>0</td> <td>13</td> <td>United-States</td> <td>&lt;=50K</td> <td>40-59</td> </tr> <tr> <th>2</th> <td>38</td> <td>Private</td> <td>215646</td> <td>HS-grad</td> <td>9</td> <td>Divorced</td> <td>Handlers-cleaners</td> <td>Not-in-family</td> <td>White</td> <td>Male</td> <td>0</td> <td>0</td> <td>40</td> <td>United-States</td> <td>&lt;=50K</td> <td>20-39</td> </tr> <tr> <th>3</th> <td>53</td> <td>Private</td> <td>234721</td> <td>11th</td> <td>7</td> <td>Married-civ-spouse</td> <td>Handlers-cleaners</td> <td>Husband</td> <td>Black</td> <td>Male</td> <td>0</td> <td>0</td> <td>40</td> <td>United-States</td> <td>&lt;=50K</td> <td>40-59</td> </tr> <tr> <th>4</th> <td>28</td> <td>Private</td> <td>338409</td> <td>Bachelors</td> <td>13</td> <td>Married-civ-spouse</td> <td>Prof-specialty</td> <td>Wife</td> <td>Black</td> <td>Female</td> <td>0</td> <td>0</td> <td>40</td> <td>Cuba</td> <td>&lt;=50K</td> <td>20-39</td> </tr> </tbody> </table> </div> ``` df1 = pd.crosstab(df['salary'], df['age_cats'], margins = True) df1 ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th>age_cats</th> <th>0-19</th> <th>20-39</th> <th>40-59</th> <th>60-79</th> <th>80-99</th> <th>All</th> </tr> <tr> <th>salary</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>&lt;=50K</th> <td>1655</td> <td>13849</td> <td>7224</td> <td>1887</td> <td>105</td> <td>24720</td> </tr> <tr> <th>&gt;50K</th> <td>2</td> <td>2818</td> <td>4369</td> <td>636</td> <td>16</td> <td>7841</td> </tr> <tr> <th>All</th> <td>11593</td> <td>1657</td> <td>16667</td> <td>2523</td> <td>121</td> <td>32561</td> </tr> </tbody> </table> </div> ``` row_sums = df1.iloc[0:2, 5].values col_sums = df1.iloc[2, 0:5].values total = df1.loc['All','All'] expected = [] for i in range(len(row_sums)): expected_row = [] for column in col_sums: expected_val = column*row_sums[i]/total expected_row.append(expected_val) expected.append(expected_row) expected = np.array(expected) print(expected.shape) print(expected) observed = pd.crosstab(df['salary'], df['age_cats']).values print(observed.shape) observed ``` (2, 5) [[ 8801.29480053 1257.97856331 12653.42710605 1915.43748656 91.86204355] [ 2791.70519947 399.02143669 4013.57289395 607.56251344 29.13795645]] (2, 5) array([[ 1655, 13849, 7224, 1887, 105], [ 2, 2818, 4369, 636, 16]]) ``` chi_squared = ((observed - expected)**2/(expected)).sum() print(f"Chi-Squared: {chi_squared}") dof = (len(row_sums)-1)*(len(col_sums)-1) print(f"Degrees of Freedom: {dof}") ``` Chi-Squared: 2172.824317596846 Degrees of Freedom: 4 ``` chi_squared, p_value, dof, expected = stats.chi2_contingency(observed) print(f"Chi-Squared: {chi_squared}") print(f"P-value: {p_value}") print(f"Degrees of Freedom: {dof}") print("Expected: \n", np.array(expected)) ``` Chi-Squared: 2172.824317596846 P-value: 0.0 Degrees of Freedom: 4 Expected: [[ 1257.97856331 12653.42710605 8801.29480053 1915.43748656 91.86204355] [ 399.02143669 4013.57289395 2791.70519947 607.56251344 29.13795645]] ## Resources - [Interactive visualize the Chi-Squared test](https://homepage.divms.uiowa.edu/~mbognar/applets/chisq.html) - [Calculation of Chi-Squared test statistic](https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test) - [Visualization of a confidence interval generated by R code](https://commons.wikimedia.org/wiki/File:Confidence-interval.svg) - [Expected value of a squared standard normal](https://math.stackexchange.com/questions/264061/expected-value-calculation-for-squared-normal-distribution) (it's 1 - which is why the expected value of a Chi-Squared with $n$ degrees of freedom is $n$, as it's the sum of $n$ squared standard normals)
be30451b50ef143574c77c2db0854c015ca855fe
72,410
ipynb
Jupyter Notebook
LS_DS_132_Sampling_Confidence_Intervals_and_Hypothesis_Testing.ipynb
justin-hsieh/DS-Unit-1-Sprint-3-Statistical-Tests-and-Experiments
8df28a369a1b282dead1dede3c6b97ab6393d094
[ "MIT" ]
null
null
null
LS_DS_132_Sampling_Confidence_Intervals_and_Hypothesis_Testing.ipynb
justin-hsieh/DS-Unit-1-Sprint-3-Statistical-Tests-and-Experiments
8df28a369a1b282dead1dede3c6b97ab6393d094
[ "MIT" ]
null
null
null
LS_DS_132_Sampling_Confidence_Intervals_and_Hypothesis_Testing.ipynb
justin-hsieh/DS-Unit-1-Sprint-3-Statistical-Tests-and-Experiments
8df28a369a1b282dead1dede3c6b97ab6393d094
[ "MIT" ]
null
null
null
41.259259
17,562
0.578401
true
6,941
Qwen/Qwen-72B
1. YES 2. YES
0.70253
0.715424
0.502607
__label__eng_Latn
0.888778
0.006053
# Building blocks of Reservoir Computing ```python from pyrcn.base.blocks import InputToNode from sklearn.datasets import make_blobs ``` ```python # Generate a toy dataset U, y = make_blobs(n_samples=100, n_features=10) ``` ## Input-to-Node The "Input-to-Node" component describes the connections from the input features to the reservoir and the activation functions of the reservoir neurons. Normally, the input weight matrix $\mathbf{W}^{\mathrm{in}}$ has the dimension of $N^{\mathrm{res}}\times N^{\mathrm{in}}$, where $N^{\mathrm{res}}$ and $N^{\mathrm{in}}$ are the size of the reservoir and dimension of the input feature vector $\mathbf{u}[n]$ with the time index $n$, respectively. With \begin{align} \label{eq:InputToNode} \mathbf{r}'[n] = f'(\mathbf{W}^{\mathrm{in}}\mathbf{u}[n] + \mathbf{w}^{\mathrm{bi}}) \text{ , } \end{align} we can describe the non-linear projection of the input features $\mathbf{u}[n]$ into the high-dimensional reservoir space $\mathbf{r}'[n]$ via the non-linear input activation function $f'(\cdot)$. The values inside the input weight matrix are usually initialized randomly from a uniform distribution on the interval $[-1, 1]$ and are afterwards scaled using the input scaling factor $\alpha_{\mathrm{u}}$. Since in case of a high dimensional input feature space and/or large reservoir sizes $N^{\mathrm{res}}$, this leads to a huge input weight matrix and expensive computations to feed the feature vectors into the reservoir, it was shown that it is sufficient to have only a very small number of connections from the input nodes to the nodes inside the reservoir. Each node of the reservoir may therefore be connected to only $K^{\mathrm{in}}$ ($\ll N^{\mathrm{in}}$) randomly selected input entries. This makes $\mathbf{W}^{\mathrm{in}}$ typically very sparse and feeding the feature vectors into the reservoir potentially more efficient. The bias weights $\mathbf{w}^{\mathrm{bi}}$ with dimension $N^{\mathrm{res}}$ are typically initialized by fixed random values from a uniform distribution between $\pm 1$ and multiplied by the hyper-parameter $\alpha_{\mathrm{bi}}$. ```python # _ _ _ _ _ _ _ _ # | | # ----| Input-to-Node |------ # u[n]|_ _ _ _ _ _ _ _|r'[n] # U R_i2n input_to_node = InputToNode(hidden_layer_size=50, k_in=5, input_activation="tanh", input_scaling=1.0, bias_scaling=0.1) R_i2n = input_to_node.fit_transform(U) print(U.shape, R_i2n.shape) ``` ## Node-to-Node The "Node-to-Node" component describes the connections inside the reservoir. The output of "Input-to-Node" $\mathbf{r}'[n]$ together with the output of "Node-to-Node" from the previous time step $\mathbf{r}[n-1]$ are used to compute the new output of "Node-to-Node" $\mathbf{r}[n]$ using \begin{align} \label{eq:NodeToNode} \mathbf{r}[n] = (1-\lambda)\mathbf{r}[n-1] + \lambda f(\mathbf{r}'[n] + \mathbf{W}^{\mathrm{res}}\mathbf{r}[n-1])\text{ , } \end{align} which is a leaky integration of the time-dependent reservoir states $\mathbf{r}[n]$. $f(\cdot)$ acts as the non-linear reservoir activation functions of the neurons in "Node-to-Node". The leaky integration is equivalent to a first-order lowpass filter. Depending on the leakage $\lambda \in (0, 1]$, the reservoir states are globally smoothed. The reservoir weight matrix $\mathbf{W}^{\mathrm{res}}$ is a square matrix of the size $N^{\mathrm{res}}$. These weights are typically initialized from a standard normal distribution. The Echo State Property (ESP) requires that the states of all reservoir neurons need to decay in a finite time for a finite input pattern. In order to fulfill the ESP, the reservoir weight matrix is typically normalized by its largest absolute eigenvalue and rescaled to a spectral radius $\rho$, because it was shown that the ESP holds as long as $\rho \le 1$. The spectral radius and the leakage together shape the temporal memory of the reservoir. Similar as for "Input-to-Node", the reservoir weight matrix gets huge in case of large reservoir sizes $N^{\mathrm{res}}$, it can be sufficient to only connect each node in the reservoir only to $K^{\mathrm{rec}}$ ($\ll N^{\mathrm{res}}$) randomly selected other nodes in the reservoir, and to set the remaining weights to zero. To incorporate some information from the future inputs, bidirectional RCNs have been introduced. ```python from pyrcn.base.blocks import NodeToNode ``` ```python # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | | | | # ----| Input-to-Node |------| Node-to-Node |------ # u[n]|_ _ _ _ _ _ _ _|r'[n] |_ _ _ _ _ _ _ |r[n] # U R_i2n R_n2n # Initialize, fit and apply NodeToNode node_to_node = NodeToNode(hidden_layer_size=50, reservoir_activation="tanh", spectral_radius=1.0, leakage=0.9, bidirectional=False) R_n2n = node_to_node.fit_transform(R_i2n) print(U.shape, R_n2n.shape) ``` ## Node-to-Output The "Node-to-Output" component is the mapping of the reservoir state $\mathbf{r}[n]$ to the output $\mathbf{y}[n]$ of the network. In conventional RCNs, this mapping is trained using (regularized) linear regression. To that end, all reservoir states $\mathbf{r}[n]$ are concatenated into the reservoir state collection matrix $\mathbf{R}$. As linear regression usually contains an intercept term, every reservoir state $\mathbf{r}[n]$ is expanded by a constant of 1. All desired outputs $\mathbf{d}[n]$ are collected into the desired output collection matrix $\mathbf{D}$. Then, the mapping matrix $\mathbf{W}^{\mathrm{out}}$ can be computed using \begin{align} \label{eq:linearRegression} \mathbf{W}^{\mathrm{out}} =\left(\mathbf{R}\mathbf{R}^{\mathrm{T}} + \epsilon\mathbf{I}\right)^{-1}(\mathbf{D}\mathbf{R}^{\mathrm{T}}) \text{,} \end{align} where $\epsilon$ is a regularization parameter. The size of the output weight matrix $N^{\mathrm{out}}\times (N^{\mathrm{res}} + 1)$ or $N^{\mathrm{out}}\times (2 \times N^{\mathrm{res}} + 1)$ in case of a bidirectional "Node-to-Node" determines the total number of free parameters to be trained in the neural network. After training, the output $\mathbf{y}[n]$ can be computed using Equation \begin{align} \label{eq:readout} \mathbf{y}[n] = \mathbf{W}^{\mathrm{out}}\mathbf{r}[n] \text{ . } \end{align} Note that, in general, other training methodologies could be used to compute output weights. ```python from sklearn.linear_model import Ridge ``` ```python # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | | | | | | # ----|Input-to-Node |-----|Node-to-Node |-----|Node-to-Output | # u[n]| _ _ _ _ _ _ _|r'[n]|_ _ _ _ _ _ _|r[n] | _ _ _ _ _ _ _ | # U R_i2n R_n2n | # | # y[n] | y_pred # Initialize, fit and apply NodeToOutput y_pred = Ridge().fit(R_n2n, y).predict(R_n2n) print(y_pred.shape) ``` ## Predicting the Mackey-Glass equation Set up and train vanilla RCNs for predicting the Mackey-Glass time series with the same settings as used to introduce ESNs. The minimum working example shows the simplicity of implementing a model with PyRCN and the inter-operability with scikit-learn; it needs only four lines of code to load the Mackey-Glass dataset that is part of PyRCN and only two lines to fit the different RCN models, respectively. Instead of the default incremental regression, we have customized the ```ELMRegressor()``` by using ```Ridge``` from scikit-learn. ```python from sklearn.linear_model import Ridge as skRidge from pyrcn.echo_state_network import ESNRegressor from pyrcn.extreme_learning_machine import ELMRegressor from pyrcn.datasets import mackey_glass ``` ```python # Load the dataset X, y = mackey_glass(n_timesteps=5000) # Define Train/Test lengths trainLen = 1900 X_train, y_train = X[:trainLen], y[:trainLen] X_test, y_test = X[trainLen:], y[trainLen:] # Initialize and train an ELMRegressor and an ESNRegressor esn = ESNRegressor().fit(X=X_train.reshape(-1, 1), y=y_train) elm = ELMRegressor(regressor=skRidge()).fit(X=X_train.reshape(-1, 1), y=y_train) print("Fitted models") ``` # Build Reservoir Computing Networks with PyRCN By combining the building blocks introduced above, a vast number of different RCNs can be constructed. In this section, we build two important variants of RCNs, namely ELMs and ESNs. ## Extreme Learning Machines The vanilla ELM as a single-layer feedforward network consists of an "Input-to-Node" and a "Node-to-Output" module and is trained in two steps: 1. Compute the high-dimensional reservoir states $\mathbf{R}'$, which is the collection of reservoir states $\mathbf{r}'[n]$. 2. Compute the output weights $\mathbf{W}^{\mathrm{out}}$ with $\mathbf{R}'$. ```python U, y = make_blobs(n_samples=100, n_features=10) from pyrcn.extreme_learning_machine import ELMRegressor ``` ```python # Vanilla ELM for regression tasks with input_scaling # _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | | | | # ----|Input-to-Node |-----|Node-to-Output |------ # u[n]| _ _ _ _ _ _ _|r'[n]| _ _ _ _ _ _ _ |y[n] # y_pred # vanilla_elm = ELMRegressor(input_scaling=0.9) vanilla_elm.fit(U, y) print(vanilla_elm.predict(U)) ``` Example of how to construct an ELM with a BIP "Input-to-Node" ELMs with PyRCN. ```python from pyrcn.base.blocks import BatchIntrinsicPlasticity # Custom ELM with BatchIntrinsicPlasticity # _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | | | | # ----| BIP |-----|Node-to-Output |------ # u[n]| _ _ _ _ _ _ _|r'[n]| _ _ _ _ _ _ _ |y[n] # y_pred # bip_elm = ELMRegressor(input_to_node=BatchIntrinsicPlasticity(), regressor=Ridge(alpha=1e-5)) bip_elm.fit(U, y) print(bip_elm.predict(U)) ``` Hierarchical or Ensemble ELMs can then be built using multiple "Input-to-Node" modules in parallel or in a cascade. This is possible when using using scikit-learn's ```sklearn.pipeline.Pipeline``` (cascading) or ```sklearn.pipeline.FeatureUnion``` (ensemble). ```python from sklearn.pipeline import Pipeline, FeatureUnion ``` ```python # ELM with cascaded InputToNode and default regressor # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | (bip) | | (base) | | | # ----|Input-to-Node1|-----|Input-to-Node2|-----|Node-to-Output | # u[n]| _ _ _ _ _ _ _| | _ _ _ _ _ _ _|r'[n]| _ _ _ _ _ _ _ | # | # | # y[n] | y_pred # i2n = Pipeline([('bip', BatchIntrinsicPlasticity()), ('base', InputToNode(bias_scaling=0.1))]) casc_elm = ELMRegressor(input_to_node=i2n).fit(U, y) # Ensemble of InputToNode with activations # _ _ _ _ _ _ _ # | (i) | # |----|Input-to-Node1|-----| # | | _ _ _ _ _ _ _| | _ _ _ _ _ _ _ # | -----| | # -----o r'[n]|Node-to-Output |------ # u[n] | _ _ _ _ _ _ _ |-----| _ _ _ _ _ _ _ |y[n] # | | (th) | | y_pred # |----|Input-to-Node2|-----| # | _ _ _ _ _ _ _| # i2n = FeatureUnion([('i', InputToNode(input_activation="identity")), ('th', InputToNode(input_activation="tanh"))]) ens_elm = ELMRegressor(input_to_node=i2n) ens_elm.fit(U, y) print(casc_elm, ens_elm) ``` ## Echo State Networks ESNs, as variants of RNNs, consist of an "Input-to-Node", a "Node-to-Node" and a "Node-to-Output" module and are trained in three steps. 1. Compute the neuron input states $\mathbf{R}'$, which is the collection of reservoir states $\mathbf{r}'[n]$. Note that here the activation function $f'(\cdot)$ is typically linear. 2. Compute the reservoir states $\mathbf{R}$, which is the collection of reservoir states $\mathbf{r}[n]$. Note that here the activation function $f(\cdot)$ is typically non-linear. 3. Compute the output weights $\mathbf{W}^{\mathrm{out}}$ using 1. Linear regression with $\mathbf{R}$ when considering an ESN. 2. Backpropagation or other optimization algorithm when considering a CRN or when using an ESN with non-linear outputs. What follows is an example of how to construct such a vanilla ESN with PyRCN, where the ```ESNRegressor``` internally passes the input features through "Input-to-Node" and "Node-to-Node", and trains "Node-to-Output" using ```pyrcn.linear_model.IncrementalRegression```. ```python from pyrcn.echo_state_network import ESNRegressor ``` ```python # Vanilla ESN for regression tasks with spectral_radius and leakage # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | | | | | | # ----|Input-to-Node |-----|Node-to-Node |-----|Node-to-Output | # u[n]| _ _ _ _ _ _ _|r'[n]|_ _ _ _ _ _ _|r[n] | _ _ _ _ _ _ _ | # | # | # y[n] | y_pred # vanilla_esn = ESNRegressor(spectral_radius=1, leakage=0.9) vanilla_esn.fit(U, y) print(vanilla_esn.predict(U)) ``` As for ELMs, various unsupervised learning techniques can be used to pre-train "Input-to-Node" and "Node-to-Node". ```python from pyrcn.base.blocks import HebbianNodeToNode ``` ```python # Custom ESN with BatchIntrinsicPlasticity and HebbianNodeToNode # _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ # | (bip) | | (hebb) | | | # ----|Input-to-Node |-----|Node-to-Node |-----|Node-to-Output | # u[n]| _ _ _ _ _ _ _|r'[n]|_ _ _ _ _ _ _|r[n] | _ _ _ _ _ _ _ | # | # | # y[n] | y_pred # bip_esn = ESNRegressor(input_to_node=BatchIntrinsicPlasticity(), node_to_node=HebbianNodeToNode(), regressor=Ridge(alpha=1e-5)) bip_esn.fit(U, y) print(bip_esn.predict(U)) ``` The term "Deep ESN" can refer to different approaches of hierarchical ESN architectures: Example of how to construct a rather complex ESN consisting of two layers. It is built out of two small parallel reservoirs in the first layer and a large reservoir in the second layer. ```python # Multilayer ESN # u[n] # | # | # _________o_________ # | | # _ _ _ | _ _ _ _ _ _ | _ _ _ # | (i) | | (i) | # |Input-to-Node1| |Input-to-Node2| # | _ _ _ _ _ _ _| | _ _ _ _ _ _ _| # |r1'[n] | r2'[n] # _ _ _ | _ _ _ _ _ _ | _ _ _ # | (th) | | (th) | # | Node-to-Node1| | Node-to-Node2| # | _ _ _ _ _ _ _| | _ _ _ _ _ _ _| # |r1[n] | r2[n] # |_____ _____| # | | # _ | _ _ _ | _ # | | # | Node-to-Node3 | # | _ _ _ _ _ _ _ | # | # r3[n]| # _ _ _ | _ _ _ # | | # |Node-to-Output | # | _ _ _ _ _ _ _ | # | # y[n]| l1 = Pipeline([('i2n1', InputToNode(hidden_layer_size=100)), ('n2n1', NodeToNode(hidden_layer_size=100))]) l2 = Pipeline([('i2n2', InputToNode(hidden_layer_size=400)), ('n2n2', NodeToNode(hidden_layer_size=400))]) i2n = FeatureUnion([('l1', l1), ('l2', l2)]) n2n = NodeToNode(hidden_layer_size=500) layered_esn = ESNRegressor(input_to_node=i2n, node_to_node=n2n) layered_esn.fit(U, y) print(layered_esn.predict(U)) ``` ## Complex example: Optimize the hyper-parameters of RCNs Example for a sequential parameter optimization with PyRCN. Therefore, a model with initial parameters and various search steps are defined. Internally, ```SequentialSearchCV``` will perform the list of optimization steps sequentially. ```python from sklearn.metrics import make_scorer from sklearn.metrics import mean_squared_error from sklearn.model_selection import TimeSeriesSplit from sklearn.model_selection import RandomizedSearchCV, \ GridSearchCV from scipy.stats import uniform from pyrcn.model_selection import SequentialSearchCV from pyrcn.datasets import mackey_glass ``` ```python # Load the dataset X, y = mackey_glass(n_timesteps=5000) X_train, X_test = X[:1900], X[1900:] y_train, y_test = y[:1900], y[1900:] # Define initial ESN model esn = ESNRegressor(bias_scaling=0, spectral_radius=0, leakage=1) # Define optimization workflow scorer = make_scorer(mean_squared_error, greater_is_better=False) step_1_params = {'input_scaling': uniform(loc=1e-2, scale=1), 'spectral_radius': uniform(loc=0, scale=2)} kwargs_1 = {'n_iter': 200, 'n_jobs': -1, 'scoring': scorer, 'cv': TimeSeriesSplit()} step_2_params = {'leakage': [0.2, 0.4, 0.7, 0.9, 1.0]} kwargs_2 = {'verbose': 5, 'scoring': scorer, 'n_jobs': -1, 'cv': TimeSeriesSplit()} searches = [('step1', RandomizedSearchCV, step_1_params, kwargs_1), ('step2', GridSearchCV, step_2_params, kwargs_2)] # Perform the search esn_opti = SequentialSearchCV(esn, searches).fit(X_train.reshape(-1, 1), y_train) print(esn_opti) ``` ## Programming pattern for sequence processing This complex use-case requires a serious hyper-parameter tuning. To keep the code example simple, we did not include the optimization in this paper and refer the interested readers to the Jupyter Notebook [^1] that was developed to produce these results. [^1]: https://github.com/TUD-STKS/PyRCN/blob/master/examples/digits.ipynb ```python from sklearn.base import clone from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_validate from sklearn.model_selection import ParameterGrid from sklearn.metrics import make_scorer from pyrcn.echo_state_network import ESNClassifier from pyrcn.metrics import accuracy_score from pyrcn.datasets import load_digits ``` ```python # Load the dataset X, y = load_digits(return_X_y=True, as_sequence=True) print("Number of digits: {0}".format(len(X))) print("Shape of digits {0}".format(X[0].shape)) # Divide the dataset into training and test subsets X_tr, X_te, y_tr, y_te = train_test_split(X, y, test_size=0.2, random_state=42) print("Number of digits in training set: {0}".format(len(X_train))) print("Shape of the first digit: {0}".format(X_train[0].shape)) print("Number of digits in test set: {0}".format(len(X_test))) print("Shape of the first digit: {0}".format(X_test[0].shape)) # These parameters were optimized using SequentialSearchCV esn_params = {'input_scaling': 0.1, 'spectral_radius': 1.2, 'input_activation': 'identity', 'k_in': 5, 'bias_scaling': 0.5, 'reservoir_activation': 'tanh', 'leakage': 0.1, 'k_rec': 10, 'alpha': 1e-5, 'decision_strategy': "winner_takes_all"} b_esn = ESNClassifier(**esn_params) param_grid = {'hidden_layer_size': [50, 100, 200, 400, 500], 'bidirectional': [False, True]} for params in ParameterGrid(param_grid): esn_cv = cross_validate(clone(b_esn).set_params(**params), X=X_tr, y=y_tr, scoring=make_scorer(accuracy_score)) esn = clone(b_esn).set_params(**params).fit(X_tr, y_tr, n_jobs=-1) acc_score = accuracy_score(y_te, esn.predict(X_te)) ``` ```python ```
202a66e00a627fa22fd2900dd4f9b57745622e9f
29,364
ipynb
Jupyter Notebook
examples/PyRCN_Intro.ipynb
michael-schindler/PyRCN
f280ea8290a12888f6b275e5a925a8613a9bcf4b
[ "BSD-3-Clause" ]
null
null
null
examples/PyRCN_Intro.ipynb
michael-schindler/PyRCN
f280ea8290a12888f6b275e5a925a8613a9bcf4b
[ "BSD-3-Clause" ]
null
null
null
examples/PyRCN_Intro.ipynb
michael-schindler/PyRCN
f280ea8290a12888f6b275e5a925a8613a9bcf4b
[ "BSD-3-Clause" ]
null
null
null
42.25036
984
0.545634
true
5,499
Qwen/Qwen-72B
1. YES 2. YES
0.853913
0.73412
0.626874
__label__eng_Latn
0.932543
0.294769
# Holonomic Robot **need to fix formatting** Robots come in a variety of types and configurations: wheeled, tracked, legs, flying, etc. Common wheeled robots typically have two wheels (directly driven) with a caster wheel to make the robot stable. There are some without the caster wheel and employ a control system to keep them upright (inverted pendulum problem) and resemble a Segway scooter. All of these two wheeled robot are non-holonomic systems. A **nonholonomic system** in physics and mathematics is a system whose state depends on the path taken in order to achieve it. A car is a typical example of a nonholonomic system. It can occupy any location (x,y) in any orientation ($\phi$), but the path from one location/orientation to another position/orientation is not always linear. Thus you have to parallel park. A **holonomic system** is not constrained by this. Thus it can move anywhere at will. ```python %matplotlib inline ``` ```python from __future__ import division from __future__ import print_function import numpy as np from numpy.linalg import norm from math import cos, sin, pi import matplotlib.pyplot as plt ``` ## Soccer These types of robots are great for soccer, especially the goalie. Typical configuration are 3 or 4 motors. Omni wheels allow slip perpendicular to the axis. Due to these constraints, a holonomic robot which could travel in any direction and immediately change its position and orientation is much more desirable. There are a variety of different wheels which make this type of robot possible such as mecanum or omni wheels. Omni wheels operate like standard wheels in that the force is produced normal to the motor's axis of rotation and as a result of friction. However, there are a series of smaller wheels which ring the main wheel and allow the wheel to slip in the direction of the motor rotational axis. Note that no force is produced parallel to the motor axis, just slippage. ## Dynamics The dynamics for a holonomic robot with 4 omni directional wheels (can be derived using Euler-Largrange ($\mathcal{L}$) which defines a system's kinectic ($T$) and potential ($V$) energies in relation to a set of generalized coordinates ($q$) and generalized forces ($Q$): \begin{equation} \newcommand{\dpar}[2]{\frac{\partial #1}{\partial #2}} \end{equation} \begin{equation} \mathcal{L}=T-V \\ \frac{d}{dt} \left\{ \dpar{ \mathcal{L} }{\dot q} \right\} - \dpar{ \mathcal{L} }{q} = Q \\ T = \frac{1}{2}M v_w^2+ \frac{1}{2}J \dot \psi^2 + \frac{1}{2} J_w (\dot \theta_1^2 + \dot \theta_2^2 + \dot \theta_3^2 + \dot \theta_4^2) \\ V = 0 \end{equation} However, the dynamics must be calculated from an inertial reference frame (${W}$) and take into account the rotating body frame dynamics (${B'}$). Now, assume the body frame is offset from the center of mass (CM) by $x_m$ and $y_m$ which compose a vector $r_m$. Thus the velocity of the robot in the rotating frame would be: \begin{equation*} v_w = v_{B'} + \dot \psi \times r_m \\ v_w = v_{B'} + \begin{bmatrix} 0 & 0 & \dot \psi \end{bmatrix}^T \times \begin{bmatrix} x_m & y_m & 0 \end{bmatrix}^T = \begin{bmatrix} \dot x & \dot y & 0 \end{bmatrix}^T + \begin{bmatrix} -y_m \dot \psi & x_m \dot \psi & 0 \end{bmatrix}^T \\ v_{B'} = \begin{bmatrix} \dot x & \dot y & 0 \end{bmatrix}^T \end{equation*} where $v_{B'}$ is the speed of the body frame. Now substituting that into the above kinetic energy equation $T$, we get: \begin{equation} T = \frac{1}{2}M( ( \dot x - \dot \psi y )^2 + (\dot y + \dot \psi x)^2)+ \dots \\ T = \frac{1}{2}M( \dot x^2 - 2 \dot \psi y_m \dot x +\dot \psi^2 y_m^2 + \dot y^2 + 2 \dot \psi x_m \dot y + \dot \psi^2 x_m^2)+ \frac{1}{2}J \dot \psi^2 + \frac{1}{2} J_w (\dot \theta_1^2 + \dot \theta_2^2 + \dot \theta_3^2 + \dot \theta_4^2) \\ \frac{d}{dt} \left\{ \dpar{ \mathcal{L} }{\dot x} \right\} = M ( \ddot x - \ddot \psi y - \dot \psi \dot y ) \hspace{1cm} \dpar{ \mathcal{L} }{x} = M(\dot \psi \dot y + \dot \psi^2 x) \\ \frac{d}{dt} \left\{ \dpar{ \mathcal{L} }{\dot y} \right\} = M (\ddot y + \ddot \psi x + \dot \psi \dot x) \hspace{1cm} \dpar{ \mathcal{L} }{y} = M( -\dot \psi \dot x + \dot \psi^2 y) \\ \frac{d}{dt} \left\{ \dpar{ \mathcal{L} }{\dot \psi} \right\} = J \ddot \psi \hspace{1cm} \dpar{ \mathcal{L} }{\phi} = 0 \\ \frac{d}{dt} \left\{ \dpar{ \mathcal{L} }{\dot \theta} \right\} = J_w \sum \limits_{i=1}^4 \ddot \theta_i \hspace{1cm} \dpar{ \mathcal{L} }{\theta} = 0 \end{equation} Now we make the following assumptions: ${B'}$ is coincident with ${B}$, $x_m = 0$, $y_m = 0$, $\dot x = v_x$, $\dot y = v_y$ \begin{equation*} F_x = M (\ddot x - 2 \dot \psi \dot y ) \\ F_y = M (\ddot y + 2 \dot \psi \dot x) \\ T = J \ddot \psi \\ \tau_w = J_w \ddot \theta_1 \hspace{1cm} \tau_w = J_w \ddot \theta_2 \hspace{1cm} \tau_w = J_w \ddot \theta_3 \hspace{1cm} \tau_w = J_w \ddot \theta_4 \end{equation*} \begin{equation*} \begin{bmatrix} F_x \\ F_y \\ T \end{bmatrix} = \begin{bmatrix} M & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & J \end{bmatrix} \begin{bmatrix} \ddot x \\ \ddot y \\ \ddot \psi \end{bmatrix} + \begin{bmatrix} 0 & -2M \dot \psi & 0 \\ 2M \dot \psi & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot x \\ \dot y \\ \dot \psi \end{bmatrix} = \mathcal{M} \ddot X + \mathcal{O} \dot X = Q \end{equation*} ## World Coordinates Now the dynamics derived so far are all in the body frame and we could stop here and develop a controller which performs velocity control. However, position control is more useful and a transform needs to be performed to move the velocities and accelerations into the world frame. \begin{equation} \dot X^W = R_B^W \dot X^B \\ R_B^W = \begin{bmatrix} \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \ddot X^W = \dot R_B^W \dot X^B + R_B^W \ddot X^B \\ \dot R_B^W = \begin{bmatrix} \sin \psi & -\cos \psi & 0 \\ \cos \psi & \sin \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{equation} Now, substituting this into the dynamics, gives dynamics in the world coordinate system of: \begin{equation} F = \mathcal{M} (\dot R \dot X + R \ddot X ) + \mathcal{O} R \dot X \\ F = \mathcal{M} R \ddot X + (\mathcal{M} \dot R + \mathcal{O} R) \dot X \end{equation} ## External Forces and Torques Now summing the forces into their body referenced $x$ and $y$ directions and the torque about the $z$ axis, gives us: \begin{equation} \sum F_x=f_1 \sin(\phi) - f_2 \sin(\phi) - f_3 \sin(\phi) + f_4 \sin(\phi) \\ \sum F_y=f_1 \cos(\phi) + f_2 \cos(\phi) - f_3 \cos(\phi) - f_4 \cos(\phi) \\ \sum T=L(f_1+f_2+f_3+f_4) \end{equation} Additionally, we can simplify this by assuming all of the angles are the same (e.g., $\phi_1 = \phi_2 = \phi_3 = \phi_4$) and can now put this into a matrix form: \begin{equation} \begin{bmatrix} F_x \\ F_y \\ T \end{bmatrix} = \begin{bmatrix} \sin(\phi) & 0 & 0 \\ 0 & \cos(\phi) & 0 \\ 0 & 0 & L \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 & 1\\ 1 & 1 & -1 & -1\\ 1 & 1 & 1& 1 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} \end{equation} where $\phi$ is again the angle of the motors, $f_i$ is the magnitude of the force produced by the motors, and $L$ is the radius of the robot. where $pinv()$ is defined as the pseudoinverse since $A(\phi)$ is not a square matrix. Finally, substituting these into the original equation, we can calculate the torques given the desired accelerations. \begin{equation} \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \tau_4 \end{bmatrix} = \frac {M r_w} {4} \begin{bmatrix} -1 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sin(\phi)} & 0 & 0 \\ 0 & \frac{1}{\cos(\phi)} & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} a_x \\ a_y \\ R \dot \omega \end{bmatrix} \end{equation} Now looking at this equation, we notice that $\phi$ can not be equal to 0, 90, 180, 270, or 360 otherwise we get a singularity in the $A(\phi)$ matrix. This however is not an issue in the real world, since the motors would occupy the same physical space and the robot would essentially only have 2 and not 4 motors. ## Holonomic Robot Kinematics Number of equivalent motors for any direction under linear movement only, no rotational movement allowed. Now performing a similar exercise for what was done with the dynamics, looking at $coordinate$, the velocity of motor 1is given by $v_1 = -\sin(\phi) v_x + \cos(\phi) v_y + R \omega$. Performing this for each wheel gives: \begin{equation} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} -\sin(\phi) & \cos(\phi) & L \\ -\sin(\phi) & -\cos(\phi) & L \\ \sin(\phi) & -\cos(\phi) & L \\ \sin(\phi) & \cos(\phi) & L \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ \omega \end{bmatrix} = \begin{bmatrix} -1 & 1 & 1 \\ -1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \sin(\phi) & 0 & 0 \\ 0 & \cos(\phi) & 0 \\ 0 & 0 & L \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ \omega \end{bmatrix} \end{equation} Now setting $\omega$ to zero and calculating only linear movement, we can determine the number of equivalent motors as shown in \figref{fig:equivalent_motors}. For example, setting $\phi$ to 30 $^\circ$ (the red line in \figref{fig:equivalent_motors}) and traveling in the x direction only ($\begin{bmatrix} v_x & v_y & \omega \end{bmatrix}^T = \begin{bmatrix}1& 0 & 0 \end{bmatrix}^T$), the above equation simplifies to $4 \sin(30)$ or 2 equivalent motors. Repeating for the y direction results in $4 \cos(30)$ or 3.46 equivalent motors. Now it is interesting to note that when $\phi$ is set to 30 $^\circ$, the robot has more equivalent motors when going forward or backwards, while a $\phi$ of 60 $^\circ$ provides more equivalent motors moving left or right. When the motors are are angled at 45 $^\circ$, movement is clearly equally optimized for both forward/backwards and left/right ( $2 \sin(45)$ is 2.83 motors) movement. \figref{fig:equivalent_motors} tells us that no mater how the 4 motors are oriented in a realistic configuration, the robot will never have the equivalent use of all 4 motors. Movement in one direction or another can be optimized, but then a sacrifice is made in another direction. This fact is intuitively obvious. Another issue is these results are also ideal. This logic assumes that the wheels will not slip and have good traction in any orientation. Unfortunately real world results do not mimic this situation and the robot's performance will be reduced. ## Equvilent Motors Since this robot has 4 motors with omni wheels, in certain configurations, you can get more power/speed in certain directions than others. Let's look at a configuration with the wheels oriented at the $\phi$ angles of: 30, 45, and 60 degrees. ```python def motors(phi, angles): """ in: phi - orientation of motors angles - array of angles from 0 ... 2*pi out: array of results """ phi = phi*pi/180 ans = [] for angle in angles: a = np.array([ [-sin(phi), cos(phi), 1.0], [-sin(phi), -cos(phi), 1.0], [ sin(phi), -cos(phi), 1.0], [ sin(phi), cos(phi), 1.0] ]) b = np.array([ cos(angle), sin(angle), 0.0 ]) v = sum(abs(a.dot(b))) ans.append(v) return ans ``` ```python theta = np.arange(0,2*pi,0.1) em30 = motors(30, theta) em45 = motors(45, theta) em60 = motors(60, theta) ``` ```python plt.polar(theta, em30, label='30'); plt.polar(theta, em45, label='45'); plt.polar(theta, em60, label='60'); plt.grid(True) plt.legend(loc='upper left'); ``` As seen above, 30 and 60 degrees orientations favor certain directions. However, 45 degrees is better in all directions and all around movement. ## Control Using the equations above to transform desired movement into motor actions, the robot can move in any direction. A basic summery of robot movement to motor direction is shown above. # References --- * Alexander Gloye, Raul Rojas, Holonomic Control of a Robot with an Omnidirectional Drive, accepted for publication by Künstliche Intelligenz, Springer-Verlag, 2006. * http://en.wikipedia.org/wiki/Non-holonomic_system * http://en.wikipedia.org/wiki/Lagrangian_mechanics * http://www.kornylak.com * R. Balakrishna, Ashitava Ghosal, "Modeling of Slip for Wheeled Mobile Robots," lEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. I I , NO. I , FEBRUARY 1995, pp. 126-132 * J. Agullo, S. Cardona, and J. Vivancos, “Kinematics of vehicles with directional sliding wheels,” Mechanisms and Muchine Theory, vol. 22, no. 4, pp. 295-301, 1987. * Pseudoinverse: for m > n: $A_{left}^{-1}=(A^TA)^{-1}A^T$ or m < n: $A_{right}^{-1} = A^T(AA^T)^{-1}$ such that $AA^{-1}=I$ or $A^{-1}A=I$ * Masayoshi Wada (2010). Motion Control of a Four-wheel-drive Omnidirectional Wheelchair with High Step Climbing Capability, Climbing and Walking Robots, Behnam Miripour (Ed.), ISBN: 978-953-307-030-8, [InTech](http://www.intechopen.com/books/climbing-and-walking-robots/motion-control-of-a-four-wheeldrive-omnidirectional-wheelchair-with-high-step-climbing-capability) ----------- <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"></a><br />This work is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.
d9fb15211565b0e497304d643f031caa6a1d8899
89,140
ipynb
Jupyter Notebook
docs/ipython/motion.ipynb
MomsFriendlyRobotCompany/soccer
9068506e374d8f9162cfa7730176adf43f0dcd86
[ "MIT" ]
null
null
null
docs/ipython/motion.ipynb
MomsFriendlyRobotCompany/soccer
9068506e374d8f9162cfa7730176adf43f0dcd86
[ "MIT" ]
null
null
null
docs/ipython/motion.ipynb
MomsFriendlyRobotCompany/soccer
9068506e374d8f9162cfa7730176adf43f0dcd86
[ "MIT" ]
1
2017-01-23T19:31:41.000Z
2017-01-23T19:31:41.000Z
172.417795
69,090
0.863024
true
4,630
Qwen/Qwen-72B
1. YES 2. YES
0.76908
0.782662
0.60193
__label__eng_Latn
0.958407
0.236816
## Lista de Exercício 02 - Fundamentos de Matemática para Computação. # Universidade Federal do ABC - UFABC ## Centro de Matemática, Computação e Cognição - CMCC ## Disciplina: Fundamentos de Matemática para a Computação - CCM-007 Responsável: Prof. Dr. Saul Leite Estudantes: Bruno Aristimunha. Santo André, 26 de Fevereiro de 2019 ### Primeira Parte do Curso #### Objetivos O objetivo dessa lista é explorar e aplicar os conceitos de sala de aula sobre **Polinômio de Taylor**. Para alcançar esse objetivo a resolução dos exercícios é necessária. ``` import matplotlib.pylab as plt import sympy as sy import numpy as np from scipy.special import factorial ``` ___ ## Exercício 01. Encontre o polinômio de Taylor de grau 1, 2, 3, e 4 para a função $f (x) = e^{x^{2}}$ , expandindo em torno de $x_0 = 0$. Usando Python, faça os gráficos dos polinômios e da função. ___ $f(x) = e^{x^{2}}$ $f'(x) = \frac{d(e^{x^{2}})}{dx} = e^{x^{2}}\cdot 2 \cdot = 2 \cdot x \cdot e^{x^{2}}$ $f^{''}(x) = \frac{d (2 \cdot x \cdot e^{x^{2}})}{dx} = 2 \cdot (e^{x^{2}} + x\cdot e^{x^{2}} \cdot 2x) = 2\cdot e^{x^{2}} + 2\cdot x \cdot e^{x^{2}} = 2 \cdot e^{x^2} (1 + 2x^2) $ $f^{(3)}(x) = \frac{d (2\cdot e^{x^2} \cdot (1+2x^2))}{dx} = 2 \cdot e^{x^{2}} \cdot 2\cdot x (1+2x^2) + 2 \cdot e^{x^{2}} (4x) = 4 e^2\cdot x + 8x^3 \cdot e^{x^2} + 8\cdot e^{x^{2}}\cdot x $ $\qquad \quad = 12x\cdot e^{x^{2}} + 8 x^3 e^{x^2} = 4 x e^{x^2} (3 + 2x^2)$ $f^{(4)} = 12 e^{x^2} + 12xe^{x^2}\cdot 2x + 24 x^2 e^{x^2} + 8x^3 e^{x^2}2x $ $f^{(4)} = 12 e^{x^2} + 48xe^{x^2} + 16x^3 e^{x^2}$ Para $x_0 = 0$. > $f(x_0) = f(0) = e^{0^2} = 1$ > $f'(x_0) = f'(0) = 2\cdot 0 \cdot e^{0^{2}} = 0 $ > $f''(x_0) = 2 \cdot e^{0^{2}} (1 + 2\cdot 0^{2}) = 2\cdot 1 = 2 $ > $f^{(3)}(x_0) = 4\cdot 0 \cdot e^{x^{2}} \cdot (3+2\cdot 0^2) = 0$ > $f^{(4)}(x_0) = 16\cdot 0^{4} \cdot e^{x^{2}} + 48\cdot 0^2 \cdot e^{0^2} + 12\cdot e^{0^²}) = 0$ Grau 1: >$P_n (x) = f(x_0) + f'(x_0)(x-x_0)$ >$P_1 (x) = 1 + 0\cdot (x-0) = 1$ Grau 2: >$P_2(x) = f(x_0) + f'(x_0)(x-x_0)) + f^{''}(x) \frac{(x-x_0)^2}{2}$ >$P_2(x) = 1 + 0\cdot (x-0) + 2 \frac{(x-0)^2}{2} = 1 + 0 + x² = x²+1$ Grau 3: >$P_3(x) = 1+ x^2 $ Grau 4: > $P_4(x) = 1 +x^2 +12 \cdot \frac{x^{4}}{24} = 1 + x^2 + \frac{x^4}{2}$ ``` plt.style.use("ggplot") x1 = np.linspace(-1, 1, 10) f = [lambda x: np.e**x**2, # função original lambda x: 1, # polinômio de Taylor de grau 1 lambda x: x**2 + 1, # polinômio de Taylor de grau 2 lambda x: 1 + x**2, # polinômio de Taylor de grau 3 lambda x: 1 + x**2 +x**4 # polinômio de Taylor de grau 4 ] ``` ``` plt.plot(list(map(f[0],x1)),label = 'função original',c ='r') plt.plot(list(map(f[1],x1)),label = '1 grau' ,c = 'b') plt.plot(list(map(f[2],x1)),label = '2 grau' ,c = 'y') plt.plot(list(map(f[3],x1)),label = '3 grau' ,c = 'g') plt.plot(list(map(f[4],x1)),label = '4 grau', c ='k') plt.legend(loc='upper center', fontsize='x-large') plt.show() ``` --- ## Exercício 02. E2: Use os polinômios de Taylor para mostrar que $(1 + t)^n = \sum_{j=0}^n {n\choose j} \cdot t^{j}$, para $n$ inteiro e maior do que 1 e onde é o coeficiente binomial --- Seja: $f(t)=(1+t)^n\\$ $f'(t) = n \cdot (1+t)^{n-1}\\$ $f''(t) = n \cdot (n-1)\cdot (1+t)^{n-2}\\$ $f'''(t) = n \cdot (n-1) \cdot (n-2) \cdot (1+t)^{n-3}$ Do caso geral do polinômio de Taylor temos que: $\sum_{k=0}^n f^{(k)}(t_0) \frac{(t-t_0)^k}{k!}$ Partindo o polinômio de Taylor, seja uma $f(x) = x^n$ polinomial qualquer. Ao expandir o polinômio, temos que: >$f(x-\varepsilon) = x^n + n x^{n-1} \varepsilon + (n(n+1))x^{n-2}\frac{\varepsilon}{2!} + \dots + n! x^{0} \frac{\varepsilon^{n}}{n!} + \varnothing$ Seja $x = 1$. > $1 + n \varepsilon +n(n-1) \frac{\varepsilon^2}{2!} + n(n-1)(n-2) \frac{\varepsilon^3}{3!} + \dots + n! \frac{\varepsilon^n}{n!}$ Manipulando algebricamente temos: > $\frac{n!}{n!} + \frac{n!}{1!(n-1)!}\varepsilon + \frac{n!}{(n-2)!}\frac{\varepsilon^2}{2!} + \frac{n!}{(n-3)!}\frac{\varepsilon^3}{3!} + \dots + \frac{n!}{n! 1!} \varepsilon^n$ Ou seja: >$\sum^n_{j=0} {n \choose j} \varepsilon^j$. Com $\varepsilon = t$, C.Q.D. --- ## Exercício 03. E3: Usando a linguagem Python, criar uma função para calcular $f (x) = sin(x)$ utilizando os polinômios de Taylor em torno de $x_0 = 0$. O polinômio deve ter o menor grau possível de modo que o erro da aproximação seja inferior a $10^{−7}$ para qualquer valor de $x$. (Dica: o valor de $x$, argumento da sua função, pode ser transformado antes de operar o polinômio.) --- Inicialmente precisamos descobri qual o grau minímo do polinômio de Taylor para aproximar com a precisão com resíduo igual $10^{-7}$. $R_{n+1} \leq 10^{-7}$, para todo $x\in[-\pi,\pi]$ Observe: $|R_n(x)| = f^{n+1} (\xi_n) \frac{\varepsilon^{n+1}}{(n+1)!}$ $|R_{n+1}(x)| \leq |\sin(\xi)| \left| \frac{x^{n+1}}{(n+1)!} \right|$ $|R_{n+1}(x) |\leq \max_{t\in [-\pi,\pi]}|\sin(t)| \cdot \max_{y\in [-\pi,\pi]} \left| \frac{y^{n+1}}{(n+1)!} \right|$ Apesar da derivada da função $\sin$ depender do $n$ do resíduo, o máximo nesse intervalo será $1$. $|R_{n+1}(x) |\leq 1 \cdot \left| \frac{\pi^{n+1}}{(n+1)!} \right|$, para todo $x \in [-\pi, \pi]$ Dessa forma: $(n+1)! \geq 10^7 \left( \pi^{n+1} \right)$ ``` fd condicao = False while not condicao: condicao = (factorial(n+1) >=10**7 *(np.pi)**(n+1)) print("teste com n =",n,"é: ", condicao) n = n+1 ``` teste com n = 1 é: False teste com n = 2 é: False teste com n = 3 é: False teste com n = 4 é: False teste com n = 5 é: False teste com n = 6 é: False teste com n = 7 é: False teste com n = 8 é: False teste com n = 9 é: False teste com n = 10 é: False teste com n = 11 é: False teste com n = 12 é: False teste com n = 13 é: False teste com n = 14 é: False teste com n = 15 é: False teste com n = 16 é: False teste com n = 17 é: False teste com n = 18 é: True Dessa forma, o nosso polinômio será de grau 9. ``` from sympy.functions import sin #Implementação retirada de: http://firsttimeprogrammer.blogspot.com/2015/03/taylor-series-with-python-and-sympy.html # Define the variable and the function to approximate x = sy.Symbol('x') f_sen = sin(x) # Taylor approximation at x0 of the function 'function' def taylor(function,x0,n): i = 0 p = 0 while i <= n: p = p + (function.diff(x,i).subs(x,x0))/(factorial(i))*(x-x0)**i i += 1 return p ``` ``` x2 = np.arange(-np.pi,np.pi, 0.00001) taylor(f_sen,0,18) ``` 2.81145725434552e-15*x**17 - 7.64716373181982e-13*x**15 + 1.60590438368216e-10*x**13 - 2.50521083854417e-8*x**11 + 2.75573192239859e-6*x**9 - 0.000198412698412698*x**7 + 0.00833333333333333*x**5 - 0.166666666666667*x**3 + 1.0*x ``` f_taylor_18 = lambda x: 2.81145725434552e-15*x**17 - 7.64716373181982e-13*x**15 + 1.60590438368216e-10*x**13 - 2.50521083854417e-8*x**11 + 2.75573192239859e-6*x**9 - 0.000198412698412698*x**7 + 0.00833333333333333*x**5 - 0.166666666666667*x**3 + 1.0*x ``` ``` plt.plot(f_taylor_18(x2), c='b') plt.plot(np.sin(x2), c='r') ``` Soma das diferenças no intervalo ### Dentro do erro esperado :) O valor de $\pi$ usado será esse: ``` sum(f_taylor_18(x2)-np.sin(x2)) ``` -1.1898375539887341e-08 ### Dado a periodicidade da função $\sin$, para cada valor recebido basta retirar o módulo de $2\pi$. Testando para duas vezes o valor de $\pi$ temos que: ``` entrada = float(input("Informe o valor de x que você deseja calcular sen(x)")) ``` Informe o valor de x que você deseja calcular sen(x)-6.283185307179586 ``` f_taylor_18(entrada%(2*np.pi)) ``` 0.0
11822d86df94941a652b2408ed2ce531002d898d
88,608
ipynb
Jupyter Notebook
list_02.ipynb
bruAristimunha/FMC
8fbc7bd1f3296efcfd5114791b59a5a5b940f305
[ "MIT" ]
null
null
null
list_02.ipynb
bruAristimunha/FMC
8fbc7bd1f3296efcfd5114791b59a5a5b940f305
[ "MIT" ]
null
null
null
list_02.ipynb
bruAristimunha/FMC
8fbc7bd1f3296efcfd5114791b59a5a5b940f305
[ "MIT" ]
null
null
null
146.217822
44,932
0.842305
true
3,333
Qwen/Qwen-72B
1. YES 2. YES
0.689306
0.752013
0.518366
__label__por_Latn
0.711071
0.042668
# Homework 14: Nonlinear Equations ### Problem 1 Use fsolve to find the roots of the polynomial $f(x) = 2x^2 + 3x - 10$. ```python import numpy as np from scipy.optimize import fsolve ``` ```python ``` ### Problem 2 Use fsolve to find the solution of the following two equations: \begin{align} f(x,y) &= 2x^{2/3}+y^{2/3}-9^{1/3} \\ g(x,y) &= \frac{x^2}{4} + \sqrt{y} - 1. \end{align} Use an initial guess of $x_0=1$, $y_0$ = 1. ```python ``` ### Problem 3 ```python # import or install wget try: import wget except: try: from pip import main as pipmain except: from pip._internal import main as pipmain pipmain(['install','wget']) import wget # retrieve thermoData.yaml url = 'https://apmonitor.com/che263/uploads/Main/thermoData.yaml' filename = wget.download(url) print('') print('Retrieved thermoData.yaml') ``` 100% [..............................................................................] 14985 / 14985 Retrieved thermoData.yaml Compute the adiabatic flame temperature for a stoichiometric methane-air flame. The code is given below. There is a thermo class that is modified from your last homework. Also, you'll need thermoData.yaml again. Then there is a function to define. Fill in the blanks as indicated. You should also read all of the code given below and make sure you understand it. **Equation Summary:** * Your function (started for you below) is: ```f_flame(Ta) = 0```. * That is, $f_{flame}(T_a) = 0 = H_r(T_r) - H_p(T_a) = 0$. * $T_a$ is the unknown. * $T_r = 300\,K$ * $H_r(T_r) = y_{CH4}h_{CH4}(T_r) + y_{O2}h_{O2}(T_r) + y_{N2}h_{N2}(T_r)$. * $H_p(T_a) = y_{CO2}h_{CO2}(T_a) + y_{H2O}h_{H2O}(T_a) + y_{N2}h_{N2}(T_a)$. * $y_i = m_i/m_t$. * $m_i = n_iM_i$. * $n_i$ and $M_i$ are given. * $m_t = \sum_im_i$. * **Do these separately for reactants and products** That is: $m_t = m_{O2}+m_{N2}+m_{CH4}$ for the reactants. (Also $m_t$ is the same for products since mass is conserved.) * $h_i$ is computed using the thermo class. So, if ```t_CO2``` is my thermo class object for $CO_2$, then ```h_CO2=t_CO2.h_mass(T)```. **Description:** * We have a chemical reaction: * $CH_4 + 2O_2 + 7.52N_2 \rightarrow CO_2 + 2H_2O$ + 7.52$N_2$. * You can think of the burning as potential energy stored in the reactant bonds being released as kinetic energy in the products so the product temperature is higher. * Adiabatic means there is no enthalpy loss. You can think of enthalpy as energy. This means the products have the same enthalpy as the reactants. And this is just a statement that energy is conserved, like mass is. * The idea is to take a known reactant temperature, find the reactant enthalpy (which is an easy explicit equation you can calculate directly), then set the product enthalpy equal to the reactant enthalpy and find the corresponding product temperature (which is a harder nonlinear solve). * $T_r\rightarrow h_r = h_p \rightarrow T_p$. * The reactants start at room temperature, $T=300\,K$, so we can compute their enthalpy. * We know the moles of reactants: $n_{ch4}=1$, $n_{O2}=2$, $n_{N2}=7.52$. * So, we can compute the corresponding masses using the molecular weights. * Then we sum the masses of each species to get the total mass, and compute the mass fractions. * Then we can compute the enthalpy as $h=\sum_iy_ih_i$. That is, the total enthalpy is the sum of the enthalpy per unit mass of each species times the mass fraction of each species. * For reactants we have $h_r = y_{CH4}h_{CH4}+y_{O2}h_{O2}+y_{N2}h_{N2}$, where $h_i$ are evaluated using the class function h_mass(T), and T=300 for reactants. * Now, $h_p=h_r$. For products, we have $h_p = y_{CO2}h_{CO2}+y_{H2O}h_{H2O}+y_{N2}h_{N2}$, where we evaluate the class function h_mass(Tp), where Tp is the product temperature we are trying to compute. * Solving for $T_p$ amounts to solving $f(T_p)=0$, where $$f(T_p) = h_p - y_{CO2}h_{CO2}(T_p)+y_{H2O}h_{H2O}(T_p)+y_{N2}h_{N2}(T_p)$$. ```python import numpy as np from scipy.optimize import fsolve import yaml class thermo: def __init__(self, species, MW) : """ species: input string name of species in thermoData.yaml M: input (species molecular weight, kg/kmol) """ self.Rgas = 8314.46 # J/kmol*K self.M = MW with open("thermoData.yaml") as yfile : yfile = yaml.load(yfile) self.a_lo = yfile[species]["a_lo"] self.a_hi = yfile[species]["a_hi"] self.T_lo = 300. self.T_mid = 1000. self.T_hi = 3000. #-------------------------------------------------------- def h_mole(self,T) : """ return enthalpy in units of J/kmol T: input (K) """ if T<=self.T_mid and T>=self.T_lo : a = self.a_lo elif T>self.T_mid and T<=self.T_hi : a = self.a_hi else : print ("ERROR: temperature is out of range") hrt = a[0] + a[1]/2.0*T + a[2]/3.0*T*T + a[3]/4.0*T**3.0 + a[4]/5.0*T**4.0 + a[5]/T return hrt * self.Rgas * T #-------------------------------------------------------- def h_mass(self,T) : """ return enthalpy in units of J/kg T: input (K) """ return self.h_mole(T)/self.M ``` ```python def f_flame(Ta) : """ We are solving for hp = sum_i y_i*h_i. In f=0 form this is f = hp - sum_i y_i*h_i We know the reactant temperature, so we can compute enthalpy (h). Then we know hp = hr (adiabatic). Vary T until sum_i y_i*h_i = hp. Steps: 1. Given moles --> mass --> mass fractions. 2. Make thermo classes for each species. 3. Compute hr = sum_i y_i*h_i. ... Do this for the reactants, then products. """ no2 = 2. # kmol nch4 = 1. nn2 = 7.52 nco2 = 1. nh2o = 2. Mo2 = 32. # kg/kmol Mch4 = 16. Mn2 = 28. Mco2 = 44. Mh2o = 18. mo2 = no2*Mo2 # mass mch4 = nch4*Mch4 # mass mn2 = nn2*Mn2 # mass mh2o = nh2o*Mh2o mco2 = nco2*Mco2 t_o2 = thermo("O2",Mo2) # thermo object; use as: t_o2.h_mass(T) to get h_O2, etc. t_ch4 = thermo("CH4",Mch4) t_n2 = thermo("N2",Mn2) t_co2 = thermo("CO2",Mco2) t_h2o = thermo("H2O",Mh2o) #-------- Reactants # TO DO: compute total mass, then mass fractions # TO DO: Set reactant temperature, then compute reactant enthalpy #---------- Products # TO DO: Set the product enthalpy = reactant enthalpy # TO DO: Set the product mass fractions # TO DO: Compute the enthalpy of the products corresponding to the current Tp # Then return the function: f(Tp) = hp - hp_based_on_current_Tp ``` ```python # TO DO: Set a guess temperature, then solve for the product temperature ``` ### Problem 4 **Example: Solve a system of 6 equations in 6 unknowns** This is solving a parallel pipe network where we have three pipes that are connected at the beginning and the end. The pipes can be of different lengths and diameter and pipe roughness. Given the total flow rate, and the pipe properties, find the flow rate through each of three parallel pipes. * **Unknowns: three flow rates: $Q_1$, $Q_2$, $Q_3$**. * We need ***three equations***. * We'll label the pipes 1, 2, and 3. * **Eq. 1:** $Q_{tot} = Q_1+Q_2+Q_3$. * That is, the total flow rate is just the sum through each pipe. * Because the pipes are connected, the pressure drop across each pipe is the same: * **Eq. 2:** $\Delta P_1=\Delta P_2,$ * **Eq. 3:** $\Delta P_1=\Delta P_3$ * Now we need to relate the pressure drop equations to the unknowns. The pressure is related to the flow rate by: * $\Delta P=\frac{fL\rho v^2}{2D}$, and we use $Q=Av=\frac{\pi}{4}D^2v\rightarrow v=\frac{4Q}{\pi D^2}$, where $Q$ is volumetric flow rate. Then, substitute for v to get: $$\Delta P=\frac{fL\rho}{2D}\left(\frac{4Q}{\pi D^2}\right)^2$$ * Here, $f$ is the friction factor in the pipe. We treat it as an unknown so we have **three more unknowns: $f_1$, $f_2$, $f_3$**. The Colbrook equation relates $f$ to $Q$ for given pipe properties. So, we have **three more equations**. * Here are the **six equations** in terms of the **six unknowns: $Q_1$, $Q_2$, $Q_3$, $f_1$, $f_2$, $f_3$**. 1. $Q_1+Q_2+Q_3-Q_{tot} = 0$. 2. $\frac{f_1L_1\rho}{2D_1}\left(\frac{4Q_1}{\pi D_1^2}\right)^2 - \frac{f_2L_2\rho}{2D_2}\left(\frac{4Q_2}{\pi D_2^2}\right)^2 = 0$ 3. $\frac{f_1L_1\rho}{2D_1}\left(\frac{4Q_1}{\pi D_1^2}\right)^2 - \frac{f_3L_3\rho}{2D_3}\left(\frac{4Q_3}{\pi D_3^2}\right)^2 = 0$ 4. Colbrook equation relating $f_1$ to $Q_1$: $$\frac{1}{\sqrt{f_1}}+2\log_{10}\left(\frac{\epsilon_1}{3.7D_1} + \frac{2.51\mu\pi D_1}{\rho 4Q_1\sqrt{f_1}}\right).$$ 5. Colbrook equation relating $f_2$ to $Q_2$. 6. Colbrook equation relating $f_3$ to $Q_3$. * All units are SI. ```python def F_pipes(x) : Q1 = x[0] # rename the vars so we can read our equations below. Q2 = x[1] Q3 = x[2] f1 = x[3] f2 = x[4] f3 = x[5] Qt = 0.01333 # Given total volumetric flow rate e1 = 0.00024 # pipe roughness (m) (epsilon in the equation) e2 = 0.00012 e3 = 0.0002 L1 = 100 # pipe length (m) L2 = 150 L3 = 80 D1 = 0.05 # pipe diameter (m) D2 = 0.045 D3 = 0.04 mu = 1.002E-3 # viscosity (kg/m*s) rho = 998. # density (kg/m3) F = np.zeros(6) # initialize the function array # TO DO: Define the functions here return F #-------------------------------------- # TO DO: make a guess array for the unknowns: Q1, Q2, Q3, f1, f2, f3 # (use Q3 = Qtot-Q1-Q2 in your guess, for consistency) # TO DO: Solve the problem and print the results. ``` ```python ```
bb7179fd05fcbff338da682a036e5c9900f9c5be
14,375
ipynb
Jupyter Notebook
python/HW14.ipynb
uw-cheme375/uw-cheme375.github.io
5b20393705c4640a9e6af89708730eb08cb15ded
[ "BSD-3-Clause" ]
null
null
null
python/HW14.ipynb
uw-cheme375/uw-cheme375.github.io
5b20393705c4640a9e6af89708730eb08cb15ded
[ "BSD-3-Clause" ]
null
null
null
python/HW14.ipynb
uw-cheme375/uw-cheme375.github.io
5b20393705c4640a9e6af89708730eb08cb15ded
[ "BSD-3-Clause" ]
null
null
null
39.491758
371
0.500313
true
3,360
Qwen/Qwen-72B
1. YES 2. YES
0.890294
0.92523
0.823727
__label__eng_Latn
0.95461
0.752126
# Fundamentals of Data Science Winter Semester 2021 ## Prof. Fabio Galasso, Guido D'Amely, Alessandro Flaborea, Luca Franco, Muhammad Rameez Ur Rahman and Alessio Sampieri <galasso@di.uniroma1.it>, <damely@di.uniroma1.it>, <flaborea@di.uniroma1.it>, <franco@diag.uniroma1.it>, <rahman@di.uniroma1.it>, <alessiosampieri27@gmail.com> ## Exercise 2: Classification In Exercise 2, you will re-derive and implement logistic regression and optimize the parameters with Gradient Descent and with the Newton's method. Also, in this exercise you will re-derive and implement Gassian Discriminant Analysis. We will use datasets generated from the make_classification function from the SkLearn library. Its first output contains the feature values $x^{(i)}_1$ and $x^{(i)}_2$ for the $i$-th data sample $x^{(i)}$. The second contains the ground truth label $y^{(i)}$ for each corresponding data sample. The completed exercise should be handed in as a single notebook file. Use Markdown to provide equations. Use the code sections to provide your scripts and the corresponding plots. Submit it by sending an email to galasso@di.uniroma1.it, flaborea@di.uniroma1.it, franco@diag.uniroma1.it and alessiosampieri27@gmail.com by Wednesday November 17th 2021, 23:59. ## Notation - $x^i$ is the $i^{th}$ feature vector - $y^i$ is the expected outcome for the $i^{th}$ training example - $m$ is the number of training examples - $n$ is the number of features Let's start by setting up our Python environment and importing the required libraries: ```python %matplotlib inline import numpy as np # imports a fast numerical programming library import scipy as sp # imports stats functions, amongst other things import matplotlib as mpl # this actually imports matplotlib import matplotlib.cm as cm # allows us easy access to colormaps import matplotlib.pyplot as plt # sets up plotting under plt import pandas as pd # lets us handle data as dataframes from sklearn.datasets import make_classification import seaborn as sns # sets up pandas table display pd.set_option('display.width', 500) pd.set_option('display.max_columns', 100) pd.set_option('display.notebook_repr_html', True) import seaborn as sns # sets up styles and gives us more plotting options ``` ## Question 1: Logistic Regression with Gradient Ascent **(10 Points)** ### Code and Theory #### Exercise 1.a **(3 Points)** Equations for the log likelihood, its gradient, and the gradient ascent update rule. Write and simplify the likelihood $L(\theta)$ and log-likelihood $l(\theta)$ of the parameters $\theta$. Recall the probabilistic interpretation of the hypothesis $h_\theta(x)= P(y=1|x;\theta)$ and that $h_\theta(x)=\frac{1}{1+\exp(-\theta^T x)}$. Also derive the gradient $\frac{\delta l(\theta)}{\delta \theta_j}$ of $l(\theta)$ and write the gradient update equation. Question: Are we looking for a local minimum or a local maximum using the gradient ascent rule? ################# Do not write above this line ################# Assuming that $y$ could have only two different values $(0,1)$, the distribution of $y$ could be rapresented by a $Ber(h_{\theta}(x))$, knowing that $m$ is the number of examples. * Write and simplify the likelihood $L(\theta)$ and log-likelihood $l(\theta)$ of the parameters $\theta$. We can write the $L(\theta)$ as follow: $ L(\theta) = \mathbb{P}(\vec{y} | x;\theta) = \prod_{i = 1}^{m}\mathbb{P}(y^{(i)} | x^{(i)};\theta) = \prod_{i = 1}^{m}(h_{\theta}(x^{(i)}))^{y^{(i)}}\times (1-(h_{\theta}(x^{(i)}))^{1-y^{(i)}} $ Then for $l(\theta)$ we have: $ l(\theta) = \log(L(\theta)) = \sum_{i=1}^{m}y^{(i)} \log(h_{\theta}(x^{(i)})) + (1-y^{(i)}) \log (1-h_{\theta}(x^{(i)}))$ * Recall the probabilistic interpretation of the hypothesis $h_\theta(x)= P(y=1|x;\theta)$ and that $h_\theta(x)=\frac{1}{1+\exp(-\theta^T x)}$. $h_\theta(x)= P(y=1|x;\theta)$ is the probability to predict class 1 of the features x parametrized by $\theta$ $h_\theta(x)=\frac{1}{1+\exp(-\theta^T x)}$: in the linear regression the hypotesis could have assume values in $\mathbb{R}$ but now we want to classify in two different classes: {0,1} so we need to remap the values $\theta^T x \in [0,1]$ and to do so we apply the sigmoid function. * Also derive the gradient $\frac{\delta l(\theta)}{\delta \theta_j}$ of $l(\theta)$ and write the gradient update equation. The gradient $\frac{\delta l(\theta)}{\delta \theta_j}$ of $l(\theta)$ is: $ \frac{\delta l(\theta)}{\delta \theta_j} = \sum_{i=1}^{m}(y^{(i)}-h_{\theta}(x^{(i)}))\times x_{j}^{(i)} $ The gradient ascent update equation is: $ \theta_{j} := \theta_{j} + \alpha \sum_{i=1}^{m}(y^{(i)}-h_{\theta}(x^{(i)}))\times x_{j}^{(i)} $ * Question: Are we looking for a local minimum or a local maximum using the gradient ascent rule? Are we looking for a local maximum because we want to maximaze $l(\theta)$ that is a concave function. ################# Do not write below this line ################# #### Exercise 1.b **(7 Points)** Implementation of logistic regression with Gradient Ascent Code up the equations above to learn the logistic regression parameters. The dataset used here is created using the make_classification function present in the SkLearn library. $x^{(i)}_1$ and $x^{(i)}_2$ represent the two features for the $i$-th data sample $x^{(i)}$ and $y^{(i)}$ is its ground truth label. ```python X, y = make_classification(n_samples=500, n_features=2, n_informative=2, n_redundant=0, n_classes=2, random_state=5) X.shape, y.shape ``` ((500, 2), (500,)) ```python sns.scatterplot(x=X[:,0], y=X[:,1], hue=y); ``` Adding a column of 1's to $X$ to take into account the zero intercept ```python x = np.hstack([np.ones((X.shape[0], 1)), X]) ``` ```python [x[:5,:],x[-5:,:]] # Plot the first and last 5 lines of x, now containing features x0 (constant=1), x1 and x2 ``` [array([[ 1. , 2.25698215, -1.34710915], [ 1. , 1.43699308, 1.28420453], [ 1. , 0.57927295, 0.23690172], [ 1. , 0.42538132, -0.24611145], [ 1. , 1.13485101, -0.61162683]]), array([[ 1. , 1.56638944, 0.81749944], [ 1. , -1.94913831, -1.90601147], [ 1. , 1.53440506, -0.11687238], [ 1. , -0.39243599, 1.39209018], [ 1. , -0.11881249, 0.96973739]])] ```python [y[:5],y[-5:]] # Plot the first and last 5 lines of y ``` [array([1, 1, 1, 0, 1]), array([1, 0, 0, 0, 1])] Define the sigmoid function "sigmoid", the function to compute the gradient of the log likelihood "grad_l" and the gradient ascent algorithm. ################# Do not write above this line ################# ```python def sigmoid(x): ''' Function to compute the sigmoid of a given input x. Input: x: it's the input data matrix. The shape is (N, H) Output: g: The sigmoid of the input x ''' ##################################################### ## YOUR CODE HERE ## ##################################################### g = 1/(1 + np.exp(-x)) return g def log_likelihood(theta,features,target): ''' Function to compute the log likehood of theta according to data x and label y Input: theta: it's the model parameter matrix. features: it's the input data matrix. The shape is (N, H) target: the label array Output: log_g: the log likehood of theta according to data x and label y ''' # theta^T*x h = np.dot(features, theta) # apply sigmoid function h = sigmoid(h) dim = features.shape m = dim[0] # number of training example # log_likelihood log_l = (1/m)*np.sum( target*np.log(h)+(1-target)*np.log(1-h) ) return log_l def predictions(features, theta): ''' Function to compute the predictions for the input features Input: theta: it's the model parameter matrix. features: it's the input data matrix. The shape is (N, H) Output: preds: the predictions of the input features ''' ##################################################### ## YOUR CODE HERE ## ##################################################### # predictions = our hypothesis h = np.dot(features, theta) preds = sigmoid(h) return preds def update_theta(theta, target, preds, features, lr): ''' Function to compute the gradient of the log likelihood and then return the updated weights Input: theta: the model parameter matrix. target: the label array preds: the predictions of the input features features: it's the input data matrix. The shape is (N, H) lr: the learning rate Output: theta: the updated model parameter matrix. ''' ##################################################### ## YOUR CODE HERE ## ##################################################### # calculate the derivative of the log_likelihood for all theta dlog = np.dot(features.T, target - preds) dim = features.shape m = dim[0] # number of training example # 1 time gradiant ascent rule: update theta theta = theta + lr*dlog/m return theta def gradient_ascent(theta, features, target, lr, num_steps): ''' Function to execute the gradient ascent algorithm Input: theta: the model parameter matrix. target: the label array num_steps: the number of iterations features: the input data matrix. The shape is (N, H) lr: the learning rate Output: theta: the final model parameter matrix. log_likelihood_history: the values of the log likelihood during the process ''' log_likelihood_history = np.zeros(num_steps) ##################################################### ## YOUR CODE HERE ## ##################################################### # iter over the num_steps and compute the gradient ascent for i in range(0,num_steps): preds = predictions(features, theta) theta = update_theta(theta, target, preds, features, lr) # save the log_likelihood history log_likelihood_history[i] = log_likelihood(theta,features,target) return theta, log_likelihood_history ``` ################# Do not write below this line ################# Check your grad_l implementation: grad_l applied to the theta_test (defined below) should provide a value for log_l_test close to the target_value (defined below); in other words the error_test should be 0, up to machine error precision. ```python target_value = -1.630501731599431 output_test = log_likelihood(np.array([-7,4,1]),x,y) error_test=np.abs(output_test-target_value) print("{:f}".format(error_test)) ``` 0.000000 Let's now apply the function gradient_ascent and print the final theta as well as theta_history ```python # Initialize theta0 theta0 = np.zeros(x.shape[1]) # Run Gradient Ascent method n_iter=1000 theta_final, log_l_history = gradient_ascent(theta0,x,y,lr=0.5,num_steps=n_iter) print(theta_final) ``` [-0.46097042 2.90036399 0.23146846] Let's plot the log likelihood over iterations ```python fig,ax = plt.subplots(num=2) ax.set_ylabel('l(Theta)') ax.set_xlabel('Iterations') _=ax.plot(range(len(log_l_history)),log_l_history,'b.') ``` Plot the data and the decision boundary: ```python # Generate vector to plot decision boundary x1_vec = np.linspace(X[:,0].min(),X[:,1].max(),2) print(x1_vec) # Plot raw data sns.scatterplot(x=X[:,0], y=X[:,1], hue=y, data=X) # Plot decision boundary plt.plot(x1_vec,(-x1_vec*theta_final[1]-theta_final[0])/theta_final[2], color="red") plt.ylim(X[:,1].min()-1,X[:,1].max()+1) # Save the theta_final value for later comparisons theta_GA = theta_final.copy() ``` ################# Do not write above this line ################# Discuss these two points: 1. You have implemented the gradient ascent rule. Could we have also used gradient descent instead for the proposed problem? Why/Why not? In the form we write the likelihood $l(\theta)$ we can't use directly the gradient descent because we want to maximaze this function that is concave. The only way to use gradient descent in this analysis is to apply it to $-l(\theta)$ changing the sign having a convex function. 2. Let's deeply analyze how the learning rate $\alpha$ and the number of iterations affect the final results. Run the algorithm you have written for different values of $\alpha$ and the number of iterations and look at the outputs you get. Is the decision boundary influenced by these parameters change? Why do you think these parameters are affecting/not affecting the results? We observe that for $\alpha \to 0$ we have that $\theta_j = \theta_j$ and $l(\theta) \to \ln(1/2)$, in fact for very small value of $\alpha$ the update of $\theta$ is very slow and remain approximately near zero, than $\theta^T*x \to 0$ i.e the decision boundary approch the vertical axis x = 0. In set $alpha \to 0$ we also had modified the number of iterarions and we notice that incresing the iteration increse also the precision of the log_likelihood history graph that gives a smoother increase curve and more accuracy. ################# Do not write below this line ################# ## Question 2: Logistic Regression with non linear boundaries (7 points) #### Exercise 2.a **(4 Points)** Polynomial features for logistic regression Define new features, e.g. of 2nd and 3rd degrees, and learn a logistic regression classifier by using the new features, by using the gradient ascent optimization algorithm you defined in Question 1. In particular, we would consider a polynomial boundary with equation: $f(x_1, x_2) = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1^2 + c_4 x_2^2 + c_5 x_1 x_2 + c_6 x_1^3 + c_7 x_2^3 + c_8 x_1^2 x_2 + c_9 x_1 x_2^2$ We would therefore compute 7 new features: 3 new ones for the quadratic terms and 4 new ones for the cubic terms. Create new arrays by stacking x and the new 7 features (in the order x1x1, x2x2, x1x2, x1x1x1, x2x2x2, x1x1x2, x1x2x2). In particular create x_new_quad by additionally stacking with x the quadratic features, and x_new_cubic by additionally stacking with x the quadratic and the cubic features. ```python from sklearn.datasets import make_classification X, y = make_classification(n_samples=500, n_features=2, n_informative=2, n_redundant=0, n_classes=2, random_state=5) X.shape, y.shape ``` ((500, 2), (500,)) ```python x = np.hstack([np.ones((X.shape[0], 1)), X]) ``` ```python import seaborn as sns import matplotlib.pyplot as plt sns.scatterplot(x=X[:,0], y=X[:,1], hue=y); ``` ```python # First extract features x1 and x2 from x and reshape them to x1 vector arrays x1 = x[:,1] x2 = x[:,2] x1 = x1.reshape(x1.shape[0], 1) x2 = x2.reshape(x2.shape[0], 1) print(x[:5,:]) # For visualization of the first 5 values print(x1[:5,:]) # For visualization of the first 5 values print(x2[:5,:]) # For visualization of the first 5 values ``` [[ 1. 2.25698215 -1.34710915] [ 1. 1.43699308 1.28420453] [ 1. 0.57927295 0.23690172] [ 1. 0.42538132 -0.24611145] [ 1. 1.13485101 -0.61162683]] [[2.25698215] [1.43699308] [0.57927295] [0.42538132] [1.13485101]] [[-1.34710915] [ 1.28420453] [ 0.23690172] [-0.24611145] [-0.61162683]] ################# Do not write above this line ################# Your code here ```python def new_features(x, degree=2): ''' Function to create n-degree features from the input Input: x: the initial features degree: the maximum degree you want the features Output: features: the final features. 2nd degree features must have the order [x, x1x1, x1x2, x2x2] 3nd degree features must have the order [x, x1x1, x1x2, x2x2, x1x1x1, x1x1x2, x1x2x2, x2x2x2] ''' # Initialize features as x0 features = np.ones(x[:,1].shape[0]) # take x1 and x2 x1 = x[:,1] x2 = x[:,2] # initialize array that store the feature at time-step i tmp_new = x[:,1:3] # initialize tmp_old tmp_old = np.array([]) # Generating the new_features if degree < 2: return x else: for i in range(1, degree): # intialize tmp array array_1 = np.empty((tmp_new.shape[0], tmp_new.shape[1])) x1 = x1.T # multiply the feature of previous degree with x1 np.multiply(tmp_new, x1[:,np.newaxis], out = array_1) x2 = x2.T # same for x2 tmp_new = np.column_stack((array_1, np.multiply(tmp_new, x2[:,np.newaxis])[:,-1])) # store the new feature tmp_old = np.column_stack((tmp_old, tmp_new)) if tmp_old.size else tmp_new # stack the desire feature features = np.column_stack((x, tmp_old)) return features ``` ################# Do not write below this line ################# ```python x_new_quad = new_features(x, degree=2) x_new_cubic = new_features(x, degree=3) #reordering output features temp = np.copy(x_new_quad[:, -1]) x_new_quad[:, -1] = x_new_quad[:, -2] x_new_quad[:, -2] = temp temp = np.copy(x_new_cubic[:, -1]) x_new_cubic[:, -1] = x_new_cubic[:, -2] x_new_cubic[:, -2] = x_new_cubic[:, -3] x_new_cubic[:, -3] = temp ``` Now use the gradient ascent optimization algorithm to learn theta by maximizing the log-likelihood, both for the case of x_new_quad and x_new_cubic. ```python # Initialize theta0, in case of quadratic features theta0_quad = np.zeros(x_new_quad.shape[1]) theta_final_quad, log_l_history_quad = gradient_ascent(theta0_quad,x_new_quad,y,lr=0.5,num_steps=n_iter) # Initialize theta0, in case of quadratic and cubic features theta0_cubic = np.zeros(x_new_cubic.shape[1]) # Run Newton's method, in case of quadratic and cubic features theta_final_cubic, log_l_history_cubic = gradient_ascent(theta0_cubic,x_new_cubic,y,lr=0.5,num_steps=n_iter) # check and compare with previous results print(theta_final_quad) print(theta_final_cubic) ``` [ 0.07548038 3.32398303 0.27106753 -0.51873505 -0.34088582 -0.04846172] [ 0.82395453 2.41957969 1.66049077 -1.13927962 -0.20657699 -0.96074035 0.34384121 -0.64078458 0.95132383 1.40927121] ```python # Plot the log likelihood values in the optimization iterations, in one of the two cases. fig,ax = plt.subplots(num=2) ax.set_ylabel('l(Theta)') ax.set_xlabel('Iterations') _=ax.plot(range(len(log_l_history_quad)),log_l_history_quad,'b.') ``` #### Exercise 2.b **(3 Points)** Plot the computed non-linear boundary and discuss the questions First, define a boundary_function to compute the boundary equation for the input feature vectors $x_1$ and $x_2$, according to estimated parameters theta, both in the case of quadratic (theta_final_quad) and of quadratic and cubic features (theta_final_cubic). Refer for the equation to the introductory part of Question 2. ################# Do not write above this line ################# Your code here ```python def boundary_function(x1_vec, x2_vec, theta_final): x1_vec, x2_vec = np.meshgrid(x1_vec,x2_vec) if len(theta_final) == 6: # boundary function value for features up to quadratic c_0, c_1, c_2, c_3, c_4, c_5 = theta_final f = c_0 + c_1*x1_vec + c_2*x2_vec + c_3*(x1_vec**2) + c_4*(x2_vec**2) + c_5*(x1_vec*x2_vec) elif len(theta_final) == 10: # boundary function value for features up to cubic c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9 = theta_final f = c_0 + c_1*x1_vec + c_2*x2_vec + c_3*(x1_vec**2) + c_4*(x2_vec**2) + c_5*(x1_vec*x2_vec) + c_6*(x1_vec**3) + c_7*(x2_vec**3) + c_8*(x1_vec**2 * x2_vec) + c_9*(x1_vec*x2_vec**2) else: raise("Number of Parameters is not correct") return x1_vec, x2_vec, f ``` ################# Do not write below this line ################# Now plot the decision boundaries corresponding to the theta_final_quad and theta_final_cubic solutions. ```python x1_vec = np.linspace(X[:,0].min()-1,X[:,0].max()+1,200); x2_vec = np.linspace(X[:,1].min()-1,X[:,1].max()+1,200); x1_vec, x2_vec, f = boundary_function(x1_vec, x2_vec, theta_final_quad) sns.scatterplot(x=X[:,0], y=X[:,1], hue=y, data=X); plt.contour(x1_vec, x2_vec, f, colors="red", levels=[0]) plt.show() ``` ```python x1_vec = np.linspace(X[:,0].min()-1,X[:,0].max()+1,200); x2_vec = np.linspace(X[:,1].min()-1,X[:,1].max()+1,200); x1_vec, x2_vec, f = boundary_function(x1_vec, x2_vec, theta_final_cubic) sns.scatterplot(x=X[:,0], y=X[:,1], hue=y, data=X); plt.contour(x1_vec, x2_vec, f, colors="red", levels=[0]) plt.show() ``` #### Confusion Matrix Here you can see the confusion matrices related to the three models you've implemented. ```python from sklearn.metrics import confusion_matrix ``` ```python ## logistic regression with linear buondary z = np.dot(x,theta_final) probabilities = sigmoid(z) y_hat = np.array(list(map(lambda x: 1 if x>0.5 else 0, probabilities))) confusion_matrix(y, y_hat) ``` array([[218, 35], [ 22, 225]], dtype=int64) ```python ## logistic regression with non linear buondary - quadratic z = np.dot(x_new_quad,theta_final_quad) probabilities = sigmoid(z) y_hat = np.array(list(map(lambda x: 1 if x>0.5 else 0, probabilities))) confusion_matrix(y, y_hat) ``` array([[220, 33], [ 15, 232]], dtype=int64) ```python ## logistic regression with non linear buondary - cubic z = np.dot(x_new_cubic,theta_final_cubic) probabilities = sigmoid(z) y_hat = np.array(list(map(lambda x: 1 if x>0.5 else 0, probabilities))) confusion_matrix(y, y_hat) ``` array([[225, 28], [ 11, 236]], dtype=int64) ################# Do not write above this line ################# Write now your considerations. Discuss in particular: - Look back at the plots you have generated. What can you say about the differences between the linear, quadratic, and cubic decision boundaries? Can you say if the model is improving in performances, increasing the degree of the polynomial? Do you think you can incur in underfitting increasing more and more the degree? The decision boundary is more precise when we increase the degree, in fact we can see that the model is predicting very well classes with our training data. There could be problem if we increase too much the degree for the decision boundary because we could encounter the phenomenon of "overfitting" (so not "underfitting") in which we are tracking a too precise and high degree boundary with our training data that when we supply new data the algorithm will fail in classification. In conclusion, a exaggeratedly high degree could affect negatively our model and could generate an overfitting problem. - Let's now delve into some quantitative analysis. The three tables you have generated represent the confusion matrix for the model you have implemented in the first two questions. What can you say about actual performances? Does the increase of the degree have a high effect on the results? The performances of our model are increasing as increase of the degree chosen for the logistic regression. In the three confusion matrix we could observe that the number of true positive and true negative is increasing and, at the same time, the false positive and the false negative are decreasing, so in conclusion the model is working better with higher degrees. ################# Do not write below this line ################# ## Question 3: Multinomial Classification (Softmax Regression) **(13 Points)** ### Code and Theory **(10 Points)** ### Report **(3 Points)** #### Exercise 3.a **(4 Points)** In the multinomial classification we generally have $K>2$ classes. So the label for the $i$-th sample $X_i$ is $y_i\in\{1,...,K\}$, where $i=1,...,N$. The output class for each sample is estimated by returning a score $s_i$ for each of the K classes. This results in a vector of scores of dimension K. In this exercise we'll use the *Softmax Regression* model, which is the natural extension of *Logistic Regression* for the case of more than 2 classes. The score array is given by the linear model: \begin{equation} s_i = X_i \theta \end{equation} Scores may be interpreted probabilistically, upon application of the function *softmax*. The position in the vector with the highest probability will be predicted as the output class. The probability of the class k for the $i$-th data sample is: \begin{equation} p_{ik} = \frac{\exp(X_i \theta_k)}{\sum_{j=1}^K(X_i \theta_j))} \end{equation} We will adopt the *Cross Entropy* loss and optimize the model via *Gradient Descent*. In the first of this exercise we have to: - Write the equations of the Cross Entropy loss for the Softmax regression model; - Compute the equation for the gradient of the Cross Entropy loss for the model, in order to use it in the gradient descent algorithm. #### A bit of notation * N: is the number of samples * K: is the number of classes * X: is the input dataset and it has shape (N, H) where H is the number of features * y: is the output array with the labels; it has shape (N, 1) * $\theta$: is the parameter matrix of the model; it has shape (H, K) ################# Do not write above this line ################# Your equations here. \begin{equation} L(\theta) = -\sum_{i=1}^k p(y_k) \times \log(p_{ik}) = -\log(p_{iC}) = -\log\Bigg(\frac{\exp(X_i \theta_C)}{\sum_{j=1}^K(X_i \theta_j)}\Bigg) \end{equation} Where $p(y_k)$ is the one-hot vector and $C = \text{right class}$ \begin{equation} \nabla_{\theta_k} L(\theta) = \frac{1}{m}\sum_{i=1}^m (p_{ik}-p(y_k)^{(i)})\times x^{(i)} \end{equation} Credits for the derivative equation (we didn't do it during the lessions): https://medium.datadriveninvestor.com/softmax-classifier-using-gradient-descent-and-early-stopping-7a2bb99f8500#:~:text=We%20will%20be%20using%20the%20following%20function%20for%20cross%2Dentropy%3A ################# Do not write below this line ################# #### Exercise 3.b **(4 Points)** Now we will implement the code for the equations. Let's implement the functions: - softmax - CELoss - CELoss gradient - gradient descent We generate a toy dataset with *sklearn* library. Do not change anything outside the parts provided of your own code (else the provided checkpoint will not work). ```python from sklearn.datasets import make_classification X, y = make_classification(n_samples=300, n_features=7, n_informative=7, n_redundant=0, n_classes=3, random_state=1) X.shape, y.shape ``` ((300, 7), (300,)) As a hint for the implementations of your functions: consider the labels $y$ as one-hot vector. This will allow matrix operations (element-wise multiplication and summation). ```python import scipy import numpy as np def class2OneHot(vec): out_sparse = scipy.sparse.csr_matrix((np.ones(vec.shape[0]), (vec, np.array(range(vec.shape[0]))))) out_onehot = np.array(out_sparse.todense()).T return out_onehot y_onehot = class2OneHot(y) ``` Let's visualize the generated dataset. We use as visualizzation method the *Principal Component Analysis* (PCA). PCA summarize the high-dimensional feature vectors of each sample into 2 features, which we can illustrate with a 2D plot. Look at the following plot, the 3 generated classes do not seem separable. ```python from sklearn.decomposition import PCA import pandas as pd pca = PCA(n_components=2) principalComponents = pca.fit_transform(X) principalDf = pd.DataFrame(data = principalComponents, columns = ['pc1', 'pc2']) finalDf = pd.concat([principalDf, pd.DataFrame(y, columns = ['target'])], axis = 1) ``` ```python import seaborn as sns import matplotlib.pyplot as plt sns.scatterplot(x='pc1', y='pc2', hue='target', data=finalDf); ``` ################# Do not write above this line ################# ```python def softmax(theta, X): ''' Function to compute associated probability for each sample and each class. Input: theta: it's the model parameter matrix. The shape is (H, K) X: it's the input data matrix. The shape is (N, H) Output: softmax: it's the matrix containing probability for each sample and each class. The shape is (N, K) ''' ##################################################### ## YOUR CODE HERE ## ##################################################### # calculete the normalition term of the softmax normalization = np.sum( np.exp(np.matmul(X,theta)) , axis = 1) # apply the softmax formula softmax = np.exp(np.matmul(X,theta)) / normalization[: , np.newaxis] return softmax def CELoss(theta, X, y_onehot): ''' Function to compute softmax regression model and Cross Entropy loss. Input: theta: it's the model parameter matrix. The shape is (H, K) X: it's the input data matrix. The shape is (N, H) y_onehot: it's the label array in encoded as one hot vector. The shape is (N, K) Output: loss: The scalar that is the mean error for each sample. ''' ##################################################### ## YOUR CODE HERE ## ##################################################### # calculate the cross entropy using the formula psoft = np.log(softmax(theta, X)) loss = - np.sum ( np.multiply( y_onehot, psoft ), axis = 1) # taking the mean of the loss values loss = np.mean(loss) return loss def CELoss_jacobian(theta, X, y_onehot): ''' Function to compute gradient of the cross entropy loss with respect the parameters. Input: theta: it's the model parameter matrix. The shape is (H, K) X: it's the input data matrix. The shape is (N, H) y_onehot: it's the label array in encoded as one hot vector. The shape is (N, K) Output: jacobian: A matrix with the partial derivatives of the loss. The shape is (H, K) ''' ##################################################### ## YOUR CODE HERE ## ##################################################### psoft = softmax(theta, X) m = X.shape[0] # calculate the jacobian matrix using the formula jacobian = (1/m)*np.dot(X.T, psoft-y_onehot) return jacobian def gradient_descent(theta, X, y_onehot, alpha=0.01, iterations=100): ''' Function to compute gradient of the cross entropy loss with respect the parameters. Input: theta: it's the model parameter matrix. The shape is (H, K) X: it's the input data matrix. The shape is (N, H) y_onehot: it's the label array in encoded as one hot vector. The shape is (N, K) alpha: it's the learning rate, so it determines the speed of each step of the GD algorithm iterations: it's the total number of step the algorithm performs Output: theta: it's the updated matrix of the parameters after all the iterations of the optimization algorithm. The shape is (H, K) loss_history: it's an array with the computed loss after each iteration ''' # We initialize an empty array to be filled with loss value after each iteration loss_history = np.zeros(iterations) # With a for loop we compute the steps of GD algo for it in range(iterations): loss_history[it] = CELoss(theta, X, y_onehot) # gradient descent theta = theta - alpha * CELoss_jacobian(theta, X, y_onehot) return theta, loss_history ``` ################# Do not write below this line ################# ```python # Initialize a theta matrix with random parameters theta0 = np.random.rand(X.shape[1], len(np.unique(y))) print("Initial Loss with initialized theta is:", CELoss(theta0, X, y_onehot)) # Run Gradient Descent method n_iter = 1000 theta_final, log_l_history = gradient_descent(theta0, X, y_onehot, alpha=0.01, iterations=n_iter) ``` Initial Loss with initialized theta is: 1.5982827200914658 ```python theta_final ``` array([[ 0.46609239, 0.52911426, 0.54754199], [ 0.70465698, 0.57336488, 0.67684666], [-0.01248112, -0.00863701, 0.63646858], [ 0.18673016, -0.12676055, 0.96504178], [ 0.90906325, 0.37700336, 0.43062136], [ 0.71457232, 0.70276477, 0.49710281], [ 0.66020061, -0.37887338, 0.88270064]]) ```python loss = CELoss(theta_final, X, y_onehot) loss ``` 0.5856876967961754 ```python fig,ax = plt.subplots(num=2) ax.set_ylabel('loss') ax.set_xlabel('Iterations') _=ax.plot(range(len(log_l_history)), log_l_history,'b.') ``` #### Exercise 3.c **(2 Points)** Let's now evaluate the goodness of the learnt based on accuracy: \begin{equation} Accuracy = \frac{Number\ of\ correct\ predictions}{Total\ number\ of\ predictions} \end{equation} Implement the compute_accuracy function. You may compare the accuracy achieved with learnt model Vs. a random model (random $\Theta$) or one based on $\Theta$'s filled with zeros. ################# Do not write above this line ################# ```python def compute_accuracy(theta, X, y): ''' Function to compute accuracy metrics of the softmax regression model. Input: theta: it's the final parameter matrix. The one we learned after all the iterations of the GD algorithm. The shape is (H, K) X: it's the input data matrix. The shape is (N, H) y: it's the label array. The shape is (N, 1) Output: accuracy: Score of the accuracy. ''' # we compute the hypothesis h(theta) i.e the softmax h = softmax(theta,X) # we take the index of the maximum score of each row corrisponding to the class predicted pred = np.argmax(h, axis = 1) # compute favorite case comparing with the TRUE vector fav = np.sum(pred == y) accuracy = fav/len(y) return accuracy ``` ################# Do not write below this line ################# ```python compute_accuracy(theta_final, X, y) ``` 0.7933333333333333 ```python theta0 = np.random.rand(X.shape[1], len(np.unique(y))) compute_accuracy(theta0, X, y) ``` 0.44 ```python compute_accuracy(np.zeros((X.shape[1], len(np.unique(y)))), X, y) ``` 0.3333333333333333 ### Report **(3 Points)** Experiment with different values for the learning rate $\alpha$ and the number of iterations. Look how the loss plot changes the convergence rate and the resulting accuracy metric. Report also execution time of each run. For this last step you could you %%time at the beginning of the cell to display time needed for the algorithm. ```python %%time # Initialize a theta matrix with random parameters theta0 = np.random.rand(X.shape[1], len(np.unique(y))) print("Initial Loss with initialized theta is:", CELoss(theta0, X, y_onehot)) # Run Gradient Descent method n_iter = 100 theta_final, log_l_history = gradient_descent(theta0, X, y_onehot, alpha=0.001, iterations=n_iter) ``` Initial Loss with initialized theta is: 1.7431235982316517 Wall time: 16 ms **Write your Report here** | LR | Iter | Accuracy | Time | |---|---|---|---| | | | | | | | | | | | | | | | | ... | | | | ## Question 4: Multinomial Naive Bayes **(6 Points)** ### Code and Theory The Naive Bayes classifier is a probabilistic machine learning model often used for classification tasks, e.g. document classification problems. In the multinomial Naive Bayes classification you generally have $K>2$ classes, and the features are assumed to be generated from a multinomial distribution. ##### __*Example Data*__ General models consider input data as values. In the case of MultinomialNB, being used mainly in the field of document classification, these data consider how many features $X_i$ are present in the sample. Basically, it is a count of features within each document. Taking into account $D=3$ documents and a vocabulary consisting of $N=4$ words, the data are considered as follows. | | $w_1$ | $w_2$ | $w_3$ | $w_4$ | |---|---|---|---|---| | $d_1$ | 3 | 0 | 1 | 1 | | $d_2$ | 2 | 1 | 3 |0| | $d_3$ | 2 | 2 | 0 |2| By randomly generating the class to which each document belongs we have $y=[1,0,1]$ ##### __*A bit of notation*__ - $Y =\{y_1, y_2, ... , y_{|Y|}\}$: set of classes - $V =\{w_1, w_2, ... , w_{|V|}\}$: set of vocabulary - $D =\{d_1, d_2, ... , d_{|D|}\}$: set of documents - $N_{yi}$: count of a specific word $w_i$ in each unique class, e.g. for $y=1$ you select $D_1$ and $D_3$, then for third column you have $N_{y,3}=1$ - $N_y$: total count of features for a specific class, e.g. for $y=1$ you sum all rows values which the correspondent label is 1, so $N_y=11$ - $n$: total number of features (words in vocabulary) - $\alpha$: smoothing parameters ##### __*Task*__ Find the class $y$ to which the document is most likely to belong given the words $w$. Use the Bayes formula and the posterior probability for it. Bayes Formula: \begin{equation} P(A|B) = \frac{P(A)*P(B|A)}{P(B)} \end{equation} Where: - P(A): Prior probability of A - P(B): Prior probability of B - P(B|A): Likelihood, multiplying posterior probability, that is multinomial Naive Bayes is: \begin{equation} P(B|A) = \left(\frac{N_{yi}+\alpha}{N_{y}+\alpha*n\_features}\right)^{X_{doc,i}} \end{equation} **Reminder: do not change any part of this notebook outside the assigned work spaces** #### Generate random dataset ```python import numpy as np from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score X, y = make_classification(n_samples=300, n_features=7, n_informative=7, n_redundant=0, n_classes=3, random_state=1) X = np.floor(X)-np.min(np.floor(X)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train.shape, y_train.shape ``` ((240, 7), (240,)) #### Step0: $N_y$ and $N_{yi}$ ```python def feature_count(X, y, classes, n_classes, n_features): ''' Function to compute the count of a specific word in each unique class and the total count. Input: X: it's the input data matrix. y: label array classes: unique values of y n_classes: number of classes n_features: it's the number of word in Vocabulary. Output: N_yi: count of a specific word $w_i$ in each unique class N_y: total count of features for a specific class ''' N_yi = np.zeros((n_classes, n_features)) # feature count N_y = np.zeros((n_classes)) # total count ##################################################### ## YOUR CODE HERE ## ##################################################### # iterate over the classes for class_ in classes: # create a mask to find the document belonging to the # selected class select_class = np.where(y == class_) # sum over the columns of X (i.e the word fixed) N_yi[class_] = np.sum(X[select_class], axis = 0) # sum over the rows of N_yi (i.e. over the all words of a class) N_y = np.sum(N_yi, axis = 1) return N_yi, N_y ``` ```python n_samples_train, n_features = X_train.shape classes = np.unique(y_train) n_classes = 3 alpha = 0.1 N_yi, N_y = feature_count(X_train, y_train, classes, n_classes, n_features) ``` #### Step1: Prior Probability The probability of a document being in a specific category from the given set of documents. ###################################### Your equations here: \begin{equation} P(y_j) = \frac{\sum_{i=1}^{|D|} \mathbb{1}(\{ y^{(i)} = j\}) }{|D|} \hspace{0.3cm} \forall y_j \in Y = \{y_0, \ldots , y_{|Y|} \} \end{equation} Where: <br> * $|D|$ = number of documents * $y^{(i)}$ = is the class of $document_i$ We are counting the relative frequence of $document_i$ to be classified as $j$. ###################################### ```python def prior_(X, y, n_classes, n_samples): """ Calculates prior for each unique class in y. Input: X: it's the input data matrix. y: label array n_classes: number of classes n_samples: number of documents Output: P: prior probability for each class. Shape: (, n_classes) """ classes = np.unique(y) P = np.zeros(n_classes) # Implement Prior Probability P(A) ##################################################### ## YOUR CODE HERE ## ##################################################### for class_ in classes: P[class_] = np.sum(y==class_) / n_samples return P ``` ```python prior_prob = prior_(X_train, y_train, n_classes, n_samples_train) print(prior_prob) ``` [0.3 0.34583333 0.35416667] #### Step2 Posterior Probability: The conditional probability of a word occurring in a document given that the document belongs to a particular category. \begin{equation} P(w_i|y_j) = \left(\frac{N_{yi}+\alpha}{N_{y}+\alpha*n\_features}\right)^{X_{doc,i}} \end{equation} Likelihood for a single document: ###################################### Your equations here: \begin{equation} P(w|y_j) = \prod_{i = 1}^{n\_features} P(w_i|y_j) \end{equation} We use the fact of $ w = (w_1, \dots ,w_{n\_features} )$ as each component indipendent ###################################### ```python def posterior_(x_i, i, h, N_y, N_yi, n_features, alpha): """ Calculates posterior probability. aka P(w_i|y_j) using equation in the notebook. Input: x_i: feature x_i i: feature index. h: a class in y N_yi: count of a specific word in each unique class N_y: total count of features for a specific class n_features: it's the number of word in Vocabulary. alpha: smoothing parameter Output: posterior: P(xi | y). Float. """ # Implement Posterior Probability ##################################################### ## YOUR CODE HERE ## ##################################################### # formula posterior = ( (N_yi[h,i] + alpha) / (N_y[h] + alpha * n_features) )**x_i return posterior def likelihood_(x, h, N_y, N_yi, n_features, alpha): """ Calculates Likelihood P(w|j_i). Input: x: a row of test data. Shape(n_features,) h: a class in y N_yi: count of a specific word in each unique class N_y: total count of features for a specific class n_features: it's the number of word in Vocabulary. alpha: smoothing parameter Output: likelihood: Float. """ tmp = [] for i in range(x.shape[0]): tmp.append(posterior_(x[i], i, h, N_y, N_yi, n_features, alpha)) # Implement Likelihood ##################################################### ## YOUR CODE HERE ## ##################################################### likelihood = np.prod(tmp) return likelihood ``` ```python # Example of likelihood for first document likelihood_(X_test[0], 0, N_y, N_yi, n_features, alpha) ``` 2.7754694679413126e-53 #### Step3 Joint Likelihood that, given the words, the documents belongs to specific class ###################################### Your equations here: \begin{equation} P(y_i|w) = \frac{P(y_i)P(w|y_j)}{P(w)} \end{equation} Where $ P(w) = 1/|D| $ ###################################### Finally, from the probability that the document is in that class given the words, take the argument correspond to max value. \begin{equation} y(D) = argmax_{y \in Y} \frac{P(y|w)}{\sum_{j}P(y_j|w)} \end{equation} ```python def joint_likelihood(X, prior_prob, classes, n_classes, N_y, N_yi, n_features, alpha): """ Calculates the joint probability P(y_i|w) for each class and makes it probability. Then take the argmax. Input: X: test data prior_prob: classes: n_classes: N_yi: count of a specific word in each unique class N_y: total count of features for a specific class n_features: it's the number of word in Vocabulary. alpha: smoothing parameter Output: predicted_class: Predicted class of the documents. Int. Shape: (,#documents) """ samples, features = X.shape predict_proba = np.zeros((samples,n_classes)) # Calculate Joint Likelihood of each row for each class, then normalize in order to make them probabilities # Finally take the argmax to have the predicted class for each document ##################################################### ## YOUR CODE HERE ## ##################################################### # Calculate the likelihood for each document and classes likelihood = np.zeros((samples, n_classes)) for d in range(samples): for class_ in classes: likelihood[d][class_] = likelihood_(X[d], class_, N_y, N_yi, n_features, alpha) # Calculate the joint likelihood Pw = 1/samples predicted_proba = (1/Pw)*(np.multiply(prior_prob,likelihood)) # normalize predicted_proba = predicted_proba / np.sum(predicted_proba, axis = 1)[:, np.newaxis] # argmax predicted_class = np.argmax(predicted_proba, axis = 1) return predicted_class ``` ```python yhat = joint_likelihood(X_test, prior_prob, classes, n_classes, N_y, N_yi, n_features, alpha) ``` #### Step4: Calculate the Accuracy Score ```python print('Accuracy: ', np.round(accuracy_score(yhat, y_test),3)) ``` Accuracy: 0.717 **Sanity Check** Here we use a function from the sklearn library, one of the most widely used in machine learning. MultinomialNB() implements the required algorithm, so the result of your implementation should be equal to the output of the following function. ```python from sklearn import naive_bayes clf = naive_bayes.MultinomialNB(alpha=0.1) clf.fit(X_train,y_train) sk_y = clf.predict(X_test) print('Accuracy: ', np.round(accuracy_score(sk_y, y_test),3)) ``` Accuracy: 0.717
88a7ad252b42273fe9d4de37d91d5f93ed6269dc
408,962
ipynb
Jupyter Notebook
FDS_2_Giulio.ipynb
obster991/FDS---HW2
e9c85adc0f194a8d0973442c2ab18ea3a29d4803
[ "MIT" ]
1
2021-12-03T10:51:19.000Z
2021-12-03T10:51:19.000Z
FDS_2_Giulio.ipynb
obster991/FDS-HW2
e9c85adc0f194a8d0973442c2ab18ea3a29d4803
[ "MIT" ]
null
null
null
FDS_2_Giulio.ipynb
obster991/FDS-HW2
e9c85adc0f194a8d0973442c2ab18ea3a29d4803
[ "MIT" ]
1
2021-11-05T17:04:35.000Z
2021-11-05T17:04:35.000Z
163.978348
53,420
0.882911
true
12,525
Qwen/Qwen-72B
1. YES 2. YES
0.749087
0.890294
0.666908
__label__eng_Latn
0.957889
0.387782
<a href="https://colab.research.google.com/github/jmamath/UVS-Probabilite-Statistiques/blob/master/Risque_empirique_et_biais_d'un_estimateur.ipynb" target="_parent"></a> ## 0. Introduction Objectifs pédagogiques: 1. Être capable de calculer les notions de risque quadratique d'un estimateur. 1. Être capable de calculer le biais d'un estimateur. 1. Renforcer la comprehénsion qu'un estimateur est une variable aléatoire. Commençons par importer quelques modules. ``` import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt import seaborn as sns # settings for seaborn plotting style sns.set(color_codes=True) # settings for seaborn plot sizes sns.set(rc={'figure.figsize':(5,5)}) ``` /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm ## 1. Risque quadratique d'un estimateur Le risque quadratique est l'une des mesure les plus brute de la performance d'un estimateur. Cependant il offre un premier moyen de comparer divers estimateurs. Plaçons nous dans le cas ou le jeu de données est issu d'une loi normale centrée réduite $\mathcal{N}(0,1)$. ``` # Create a Standard Gaussian and sample from it num_sample = 10000 # generate random numbers from N(0,1) data_normal = norm.rvs(size=num_sample,loc=0,scale=1) ax = sns.distplot(data_normal, bins=100, kde=True, color='skyblue', hist_kws={"linewidth": 20,'alpha':1}) ax.set(xlabel='Loi normale', ylabel='Fréquence') # data = g.sample([num_sample]).numpy() ``` En connaissant uniquement la moyenne, l'estimateur de la variance issu du maxium de vraisemblance peut être utile car il incorpore la valeur de la moyenne. ### Questions * Implémenter l'estimateur de la moyenne et de la variance que vous avez trouvé avec le maximum de vraisemblance que nous noterons $T_{n}$ et $S_{n}$ * Implémenter un estimateur de la variance empririque $S_{n}^{2}$ * Implémenter un estimateur de la variance empririque corrigée $\hat S_{n}^{2}$ Pour rappel en notant la loi normale $\mathcal{N}(\mu,\sigma^{2})$ \begin{align} T_{n} &= \frac{1}{n} \sum_{i=1}^{n} x_{i} \\ S_{n} &= \frac{1}{n} \sum_{i=1}^{n} (x_{i}-\mu)^{2}\\ S_{n}^{2} &= \frac{1}{n} \sum_{i=1}^{n} (x_{i}-T_{n})^{2}\\ \hat S_{n}^{2} &= \frac{1}{n-1} \sum_{i=1}^{n} (x_{i}-T_{n})^{2} \end{align} Vous utiliserez les fonctions ci-dessous à remplir. ``` def estimateur_moyenne_vraisemblance(data): """ Input: data: Tableau de nombre: le jeu de données Output: moyenne: estimation de la moyenne """ length = len(data) moyenne = 0 for i in range(length): moyenne = moyenne + data[i] return moyenne / length def estimateur_variance_vraisemblance(data, moyenne): """ Input: data: Tableau de nombre: le jeu de données moyenne: la moyenne connue Output: var: estimation de la variance """ length = len(data) variance = 0 for i in range(length): variance = variance + (data[i]-moyenne)**2 return variance / length def estimateur_variance_empirique(data): """ Input: data: Tableau de nombre: le jeu de données Output: var: estimation de la variance """ length = len(data) moyenne = estimateur_moyenne_vraisemblance(data) variance = 0 for i in range(length): variance = variance + (data[i]-moyenne)**2 return variance / length def estimateur_variance_empirique_corrigee(data): """ Input: data: Tableau de nombre: le jeu de données Output: var: estimation de la variance """ length = len(data) moyenne = estimateur_moyenne_vraisemblance(data) variance = 0 for i in range(length): variance = variance + (data[i]-moyenne)**2 return variance / (length-1) ``` ``` # generate random numbers from N(0,1) num_sample = 5 data_normal = norm.rvs(size=num_sample, loc=0, scale=1) # Estimations moyenne = estimateur_moyenne_vraisemblance(data_normal) var_vraisemblance = estimateur_variance_vraisemblance(data_normal, 0) var_empirique = estimateur_variance_empirique(data_normal) print("Moyenne: {}",moyenne) print("Variance vraisemblance: ", var_vraisemblance) print("Variance empirique: ", var_empirique) ``` Moyenne: {} -0.16555148152533544 Variance vraisemblance: 0.1391702385661771 Variance empirique: 0.11176294553094361 Nous connaissons les valeurs des paramètres, nous pouvons calculer le risque quadratique de nos estimateurs: * Rappelez la formule du risque quadratique. * Éxécutez la cellule de code suivante pour estimer la moyenne de l'échantillon `data_normal` avec $T_{n}$ et sa variance avec respectivement $S_{n},S_{n}^{2}$ et $\hat S_{n}^{2}$. * Calculez Le risque quadratique associé aux estimateurs: $T_{n}, S_{n}, S_{n}^{2}, \hat S_{n}^{2}$ en utilisant la fonction `risque_quad` à remplir. * Comparez les divers estimateurs de la variance. Lequel est le plus bas ? ``` ``` ``` # 1 Generer des donnees aleatoires suivant une loi normale from N(0,1) num_sample = 5 data_normal = norm.rvs(size=num_sample, loc=0, scale=1) # 2. Obtenir une estimation de la variance avec chaque estimateur variance_vraisemblance = estimateur_variance_vraisemblance(data_normal, 0) variance_empirique = estimateur_variance_empirique(data_normal) variance_empirique_corrigee = estimateur_variance_empirique_corrigee(data_normal) # 3. Calculer le risque empirique pour chaque estimateur def risque_quad(estimation, parametre): """ Input: estimation: Float, estimation donnee par un estimateur parametre: Float, la veritable valeur du parametre Return: risque_quadratique: Float. Risque quadratique de l'estimateur """ return (estimation-parametre)**2 # On connait la variance de nos donnees: 1 risque_var_empirique = risque_quad(variance_empirique, 1) risque_var_vraisemblance = risque_quad(variance_vraisemblance, 1) risque_var_empirique_corrige = risque_quad(variance_empirique_corrigee, 1) print("Risque quadratique variance empirique", risque_var_empirique) print("Risque quadratique variance vraisemblance", risque_var_vraisemblance) print("Risque quadratique variance empirique corrige", risque_var_empirique_corrige) ``` Risque quadratique variance empirique 0.7837840635598172 Risque quadratique variance vraisemblance 0.77402836881981 Risque quadratique variance empirique corrige 0.7338402250781214 Dans le cas ou le jeu de données connu on peut utiliser $S_{n}$ pour estimer la variance. Dans le cas contraire, il est nécessaire d'utiliser des estimateurs se basant uniquement sur les données comme $S_{n}^{2}, \hat S_{n}^{2}$. ## 2. Biais et variance d'un estimateur On veut maintenant calculer le biais d'un estimateur. On va s'intéresser aux estimateurs de la variance, car nous avons vu que l'estimateur de la variance empirique était biaisé. On va illustrer ce que ça signifie. Dans la suite on continue de considérer la variable aléatoire $X \sim \mathcal{N}(0,1)$ ### Question * Rapellez la définition du biais d'un estimateur * Remplissez le code de `esperance_estimateur` ci dessous pour calculer l'espérance d'un estimateur, vous utiliserez cette fonction pour calculer le biais. ``` def esperance_estimateur(data, estimateur, taille_echantillon, iteration): """ Input: data: Jeux de données complet estimateur: Estimateur à évaluer taille_echantillon: nombre d'éléments à tirer dans le jeu de données pour effectuer une estimation iteration: Nombre d'itération pour estimer l'espérance. Output: biais: le biais de l'estimateur """ estimation = 0 for i in range(iteration): echantillon = np.random.choice(data, taille_echantillon) estimation = estimation + estimateur(echantillon) esperance_estimateur = estimation / iteration return esperance_estimateur ``` On va comparer plusieurs estimateurs de la variance, dans la suite l'indice représente le nombre d'exemples utilisé pour chaque estimation. * Comparez le biais de la variance empirique $S_{10}^{2}$ et de la variance empirique corrigée $\hat S_{10}^{2}$. * Comparez le biais de la variance empirique $S_{100}^{2}$ et de la variance empirique corrigée $\hat S_{100}^{2}$. Qu'observez-vous ? ``` # Create a Standard Gaussian and sample from it num_sample = 10000 # generate random numbers from N(0,1) data_normal = norm.rvs(size=num_sample,loc=0,scale=1) ``` ``` esperance_var_emp = esperance_estimateur(data_normal, estimateur_variance_empirique, 15, 50) esperance_var_corr = esperance_estimateur(data_normal, estimateur_variance_empirique_corrigee, 15, 50) ``` 0.9324079338421366 ``` print("Biais estimateur variance empirique", (1-esperance_var_emp)) print("Biais estimateur variance empirique corrigee", 1-esperance_var_corr) ``` Biais estimateur variance empirique 0.0675920661578634 Biais estimateur variance empirique corrigee -0.02453540939903709 ## 3. Ouverture On a vu la notion de biais d'un estimateur, dans la suite, on s'intéressera aux propriétés de convergences de ces derniers. maintenant, on va illustrer la convergence d'un estimateur. On va donc voir pourquoi les big data permettent souvent d'obtenir de meilleurs estimateurs. ``` ```
d412f60e8d115da1b72ddc074736c6ea6d73f4de
33,249
ipynb
Jupyter Notebook
Risque_empirique_et_biais_d'un_estimateur.ipynb
jmamath/UVS-Probabilite-Statistiques
b5874aa10a13d4ad6893cedad1c56e63f8caa7df
[ "MIT" ]
null
null
null
Risque_empirique_et_biais_d'un_estimateur.ipynb
jmamath/UVS-Probabilite-Statistiques
b5874aa10a13d4ad6893cedad1c56e63f8caa7df
[ "MIT" ]
null
null
null
Risque_empirique_et_biais_d'un_estimateur.ipynb
jmamath/UVS-Probabilite-Statistiques
b5874aa10a13d4ad6893cedad1c56e63f8caa7df
[ "MIT" ]
1
2021-03-26T21:36:50.000Z
2021-03-26T21:36:50.000Z
62.264045
14,754
0.71921
true
2,733
Qwen/Qwen-72B
1. YES 2. YES
0.897695
0.808067
0.725398
__label__fra_Latn
0.870318
0.523675
# 微分の基礎 ## 微分と関数最小化の関係 前章で微分が目的関数の最小化に役立つと紹介しました。本節ではまず具体例を用いてそのことを直感的に理解しましょう。 例として、下図のような下向きにくぼんだ形をした関数がどこで最小値をとるかを探す問題を考えます。 適当な点 $\theta_{1}$ でこの関数のグラフに接する直線(**接線**)を考えます([注釈1](#note1))。 仮にこの接線の傾きが $+3$ 、すなわち正の値であったとしましょう。この時、接線は右に進むほど高さが上がり,逆に左に進むほど高さが下がります。 $\theta_{1}$ の周辺では、関数のグラフと接線は非常に近く、両者はほとんど見分けることができません。 すると、関数も接線と同じように $\theta_{1}$ 右に進むと増加し,左に進むと減少していることがわかります。 次に、グラフ上の別の点 $\theta_{2}$ においてこのグラフに接する接線を考えます。 今度は接線の傾きが $-1$ であるとします。傾きが負のため、接線は右肩下がりの直線です。 グラフは接線と非常に近いため、グラフも $\theta_{2}$ の周辺では、同じように右肩下がりであるとわかります。 最後にちょうどグラフの谷となっている点 $\theta_{3}$ を考えます。 図を見て分かる通り、関数はこの点で最小値を取ります。 一方、点 $\theta_{3}$ でグラフに接する接線は水平、すなわち**傾きが0**です。 これまでの観察をまとめると、接線の傾きと関数の振る舞いには次の関係があることがわかります。 - ある点で接する接線の傾きが正ならば、その点の近くでグラフは右肩上がり(= 左に進むと高さが下がる) - ある点で接する接線の傾きが負ならば、その点の近くでグラフは右肩下がり(= 右に進むと高さが下がる) - 関数が最小値をとる点に接する接線の傾きは $0$ である つまり、関数の最小値をとる点を求める問題では、接線の傾きが $0$ となる点が答えの候補([注釈2](#note2))となることがわかります。 本章で説明するように、**微分を用いると接線の傾きを計算することができます**。 このことから、微分が関数の最小化問題に有用なツールであることがわかります。 以降では、微分の定義と微分に関する公式を紹介します。さらに、入力が多変数の関数での微分(偏微分)についても解説します。 ## 2 点間を通る直線の傾き 接線の傾きと微分の関係を調べるため、まずは2点を通る直線の傾きを求める問題を考えます。 直線の傾きは 「$y$ (縦方向)の増加量 / $x$ (横方向)の増加量」で計算できるので、上図の直線の傾き $a$ は、 $$ a = \dfrac{f(x_{2}) - f(x_{1})}{x_{2}-x_{1}} $$ で求められます。 ## 接線の傾き 上図での点 $x_1$ における接線の傾きを求めるために、もう一方の点 $x_2$ を $x_1$ に近づけていきます。ただし、 $x_1$ と $x_2$ が完全に同じになってしまうと、$x$ 方向、 $y$ 方向の増加量がどちらも $0$ になってしまうため、傾きは $0/0$ で計算することができません。 そこで 2 点は異なる点でありつつ、 $x_2$ を限りなく $x_1$ に近づけていった時、直線の傾きがどのように振る舞うかを見る必要があります。これを数式的に表現するには、**極限**の考えが必要になります。 極限では、変数がある値に限りなく近づくとき、その変数によって記述される関数がどのような値に近づくかを考えます。 関数 $f$ に対し、$h$ という変数を $a$ に近づけていったときの $f(h)$ が近づく値を $\lim$ という記号を用いて $$ \displaystyle \lim _{h\rightarrow a} f(h) $$ と書きます。例えば、 $h$ を限りなく $0$ に近づけた時に、 $3h$ も限りなく $0$ に近づいていきます。 従って $$ \displaystyle \lim _{h\rightarrow 0} 3h=0 $$ です。もっと一般に $n$ を自然数、 $c$ を定数として、 $$ \displaystyle \lim _{h\rightarrow a} c h^n=c a^n $$ が成立します。これだけ見ると単に関数 $\lim _{h\rightarrow a} f(h)$ は $h$ に $a$ を代入した値 $f(a)$ のように思えるかも知れません。しかし、今考えている直線の傾きの場合、そのような代入操作を行うと先程のように $0/0$ の形が現れてしまうため。単純な代入では極限を求めることはできません。 極限の計算方法は後ほど詳しく解説します。 それでは、下図のある点 $x$ における接線の傾き $a$ を求めていきましょう。 2点を通る直線の傾きの式と極限を組み合わせて、接線の傾きを求めることができます。 はじめに、 $x$ から $h$ だけ離れた点 $x + h$ を考え、2点を通る直線の傾きを求めてみます。 次に $h$ を $0$ に限りなく近づけていけば、1点 $x$ で接する接線を考えることができます。 これを式でみると $$ \begin{aligned} a &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{(x + h) - x} \\ &= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} \\ \end{aligned} $$ となります。よく見るとこの式は $x$ を決めるごとにある1つの値を定めています、すなわちこの式は $x$ の関数です($h$ は $h\to 0$ の極限を取っているので $h$ の関数にはなっていないことに注意してください)。 この式を $f$ の **導関数 (derivative)**と呼び、 $f'(x)$ と書きます。すなわち、 $$ f'(x)= \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h} $$ です。導関数を求めることを**微分(differentiation)**するといいます。 記号の使い方として、 $f'(x)$ を $$ \frac{d}{dx}f (x) $$ または $$ \frac{df}{dx} (x) $$ と書いても構いません。 この $d$ という記号は増分をとる操作を表しており、例えば $dx$ は $x$ の変化量を表します。 この記法は煩雑ですが、$x, y$ など変数が複数ある場合、 どの変数で微分しているかが明確になるため、表現を正確にすることができます。 ## 微分の公式 ある関数の導関数を計算するには、導関数の定義通りに計算するのが最も愚直な方法です. しかし、これから紹介する種々の公式を組み合わせることで、わざわざ定義に戻らなくても、複雑な関数の導関数を計算できます。 以下では、 $c$ は定数、 $x$ は変数を表します。 まずはじめに、以下の 3 つの公式を紹介します。 $$ \begin{align} \left( c\right)^{'} &= 0 \\ \left( x\right)^{'} &= 1\\ \left( x^{2}\right)^{'} &= 2x \end{align} $$ 1つ目の左辺は定数関数 $f(x) = c$ を $x$ で微分した導関数を表しています。 定数関数のグラフを書くと $x$ 軸に平行になるため、どの点で接線を引いてもその傾きは $0$です(グラフと接線は同一の直線となります)。これは導関数は 0 であることを意味します。これが 1 つ目の式の図形的な理解です。 同様に2つ目の公式は 「$y=x$ のグラフではどの点で接線を引いても傾きが1」であることを意味します(この場合もグラフと接線は同一の直線です)。 極限の扱いに慣れるために、3番目の公式を証明しましょう。導関数の定義から左辺は $$ \displaystyle \lim _{h\to 0} \frac{(x+h)^2 - x^2}{(x+h) - x} $$ です。これは $$ \begin{align} \lim _{h\to 0} \frac{(x+h)^2 - x^2}{(x+h) - x} = \lim _{h\to 0} \frac{2xh + h^2}{h} = \lim _{h\to 0} (2x + h) \end{align} $$ と計算できます。ここで $h\to 0$ 、すなわち $h$ を限りなく $0$ に近づけると、 $2x + h$ は $2x$ に限りなく近づいていきます。従って、 $\left( x^{2}\right)^{'} = 2x$ が導かれました。 以下の公式も頻繁に利用します。 $$ \begin{align} \left( x^{n} \right)^{'} &= nx^{n-1} \\ \left( e^{ax} \right)^{'} &= ae^{ax} \end{align} $$ ここで、$a$ は定数、 $e$ は**自然対数の底**、もしくは **ネイピア数** と呼ばれる特別な定数で、およそ $2.71828\cdots$ です。 $1$ つ目の公式で $n=1, 2$とすると、本節の最初に紹介した $x$, $x^2$ の微分の公式に帰着されることに注意してください。 $e^{ax}$ は $\exp(ax)$ のように表記されることがよくあります。その表記を用いると最後の公式は $$ \bigl( \exp(ax) \bigr)^{'} = a\exp(ax) $$ とも書けます。 ## 線形性 微分は**線形性**という性質を持っています。 それがどのような性質なのか、具体例を挙げて見ていきましょう。 微分には線形性という性質によって、 $$ (3x)' = 3 \times (x)' $$ のように定数項を微分の演算の外側に出すことができます。 また、 $$ \left( 3x^{2} + 4x - 5 \right)' = \left( 3x^{2} \right)' + \left( 4x \right)' - \left( 5 \right)' $$ のように、加算や減算はそれぞれ項ごとに独立に微分の演算を行うことができます。 この 2 つの特性を合わせて線形性と呼びます。 もう少し微分の計算を練習してみましょう。 $$ \begin{aligned} \left( 3x^{2} + 4x + 5 \right)' &= \left( 3x^{2} \right)' + \left( 4x \right)' - \left( 5 \right)' \\ &= 3 \times \left( x^{2} \right)' + 4 \times \left( x \right)' - 5 \times \left( 1 \right)' \\ &= 3 \times 2x + 4 \times 1 - 5 \times 0 \\ &= 6x + 4 \end{aligned} $$ この線形性に関しては、下記のように公式としてまとめることができます。 $$ \begin{align} \left( cf(x) \right)^{'} &= c f'(x) \\ \left( f(x) + g(x) \right)^{'} &= f^{'}(x) + g^{'}(x) \\ \end{align} $$ 2 つの関数の積の形で書かれている関数に関しては次の公式が成り立ちます。 $$ \bigl( f(x) g(x) \bigr)^{'} = f^{'}(x)g(x) + f(x)g^{'}(x) $$ 関数 $f$ の導関数と関数 $g$ の導関数がわかれば、関数 $fg$ を計算できることがわかります。 ## 合成関数の微分 関数 $y = f(x)$ と $z = g(y)$ の**合成**とは $f$ を適用したあとに $g$ を適用する関数、すなわち $z = g(f(x))$ のことを指します。 ディープラーニングで用いるニューラルネットワークは、層を何層も重ねて複雑な関数を表現します。各々の層を 1 つの関数とみなすと、ニューラルネットワークは多くの関数(層)を合成した**合成関数**と見ることができます。 合成関数の微分を考える時には次に紹介する公式(合成関数の微分の公式)が有用です。 この公式は**連鎖律 (chain rule)** とも呼ばれています。 連鎖律は合成関数を微分を簡単に計算するための公式というだけではなく、ニューラルネットワークの訓練方法である誤差逆伝播法を理解する上で本質的な役割を果たします。 簡単な例として、 $$ \left\{ (3x + 4)^{2} \right\}' $$ を計算することを考えます。 この式は、 $3x+4$ という内側の部分と $(\cdot)^{2}$ という外側の部分で構成されています。 この式を $(9x^2 + 24x + 16)'$ のように展開してから微分を計算しても良いのですが、3乗や4乗とべき数が増えると式を展開するのが大変になります。 ここで役に立つ考え方が合成関数の微分です。 合成関数の微分は、内側の微分と外側の微分をそれぞれ行い、その結果をかけ合わせることで求めることができます。 外側の微分の際には関数の引数を入力とみなし、その入力についての微分を計算します。 それでは、具体的にこの $(3x+4)^2$ という関数の微分を考えてみます。 まず内側の関数を $u = (3x+4)$ とおいて、 $$ \left\{ (3x + 4)^{2} \right\}' = (u^{2})' $$ と見ます。ここで、 $(\cdot)'$ をもう少し厳密に考える必要が出てきます。 今変数は $x$, $u$ の2つありるため、 $(\cdot)'$ という表記では、 $x$ で微分しているのか $u$ で微分しているのかの区別がつきません。 そこで、多少複雑に見えますが、先程紹介した $d$ を使った記法を用いて微分する変数を明示します。 合成関数の微分を公式としてまとめると次のようになります。 $$ \frac{d}{dx} f(g(x)) = \frac{df(u)}{du}\frac{du}{dx} $$ ここで $u = g(x)$ です。 公式を見るよりも実際の適用例を見た方が理解しやすいかも知れません。 合成関数の微分の公式を用いて、先程の $(3x+4)^2$ の微分を計算すると次のようになります。 2行目で合成関数の微分の公式を利用していることに注目してください。 $$ \begin{aligned} \left\{ (3x + 4)^{2} \right\}' &= \frac{d}{dx} \left\{ (3x + 4)^{2} \right\} \\ &= \frac{du}{dx} \frac{d}{du} (u^2) \\ &= \frac{d}{dx} (3x + 4) \cdot \frac{d}{du} (u^{2}) \\ &= 3 \cdot 2u \\ &= 6u = 6(3x + 4) = 18x + 24 \\ \end{aligned} $$ 気になる人は、 $(3x + 4)^2$ を展開してから各項を微分した場合と結果が一致していることを確かめてみてください。 ## 偏微分 機械学習では、1つの入力変数 $x$ から出力変数 $y$ を予測するケースは稀であり、多くの場合、複数の入力変数 $x_1, x_2, \dots, x_M$ を用いて $y$ を予測する**多変数関数**が扱われます。 例えば、家賃を予測する場合、部屋の広さだけではなく、駅からの距離や周辺の犯罪発生率なども同時に考慮した方がより正確に予測ができると期待されます。 複数の入力 $x_1, x_2, \dots, x_M$ をとる関数 $f(x_1, x_2, \dots, x_M)$ を多変数関数とよびます。 この多変数関数において、ある入力 $x_m$ にのみ注目して微分することを **偏微分** とよび、 $$ \frac{\partial}{\partial x_{m}} f(x_1, x_2, \dots, x_M) $$ と表します。微分を意味する記号が、 $d$ から $\partial$ に変わっています。こうすると、 $\frac{\partial}{\partial x_m}$ は $x_m$ 以外を定数と考え、 $x_m$ にのみ着目して微分を行うという意味となります([注釈3](#note3))。 以下の例で具体的な計算の流れを確認しましょう。 $$ \begin{aligned} \frac{\partial}{\partial x_1} \left( 3x_1+4x_2 \right) &= \frac{\partial}{\partial x_1} \left( 3x_1 \right) + \frac{\partial}{\partial x_1} \left( 4x_2 \right) \\ &= 3 \times \frac{\partial}{\partial x_1} \left( x_1 \right) + 4 \times \frac{\partial}{\partial x_1} x_2 \\ &= 3 \times 1 + 4 \times 0 \\ &= 3 \end{aligned} $$ 偏微分でも微分と同じ公式を適用できます。今回のケースでは、 $x_1$ にだけ着目しており、 $x_2$ は定数として扱かっています。そのため、上式の 2 行目から 3 行目で $x_2$ を $x_1$ で偏微分した値を $0$ としています(定数の微分は $0$ であったことを思い出してください)。 <hr /> <div class="alert alert-info"> **注釈 1** ここで考えている関数のグラフでは、グラフ上のどの点を取ってもその点で接する接線がただ1本だけ引ける状況を考えています。例えば関数のグラフが谷の部分で「尖った」形をしていると,谷の底で複数の接線が引けてしまいます。ここではそのようなケースは考えず、関数のグラフは図のような「滑らか」なカーブになっている場合をイメージしてください。 [▲上へ戻る](#ref_note1) </div> <div class="alert alert-info"> **注釈 2** 今は関数のグラフの「谷」を考えましたが、「山」でも同様に接線の傾きが $0$ となるため、ある点での接線の傾きが $0$ だからと言って、必ずしも関数がその点で最小値をとるとは限りません。 [▲上へ戻る](#ref_note2) </div> <div class="alert alert-info"> **注釈 3** 入力変数が他の入力変数と独立でない場合は定数と考えることはできません。しかし本資料ではそのようなケースは出てきません。 [▲上へ戻る](#ref_note3) </div>
d3008eb4d659f81e4d9477883afbb7af1a2d417d
13,282
ipynb
Jupyter Notebook
ja/04_Basics_of_Differential_ja.ipynb
Kazumaitani/tutorials
df1a9020f5fb347d784aed5a234b0f10703fef03
[ "BSD-3-Clause" ]
null
null
null
ja/04_Basics_of_Differential_ja.ipynb
Kazumaitani/tutorials
df1a9020f5fb347d784aed5a234b0f10703fef03
[ "BSD-3-Clause" ]
null
null
null
ja/04_Basics_of_Differential_ja.ipynb
Kazumaitani/tutorials
df1a9020f5fb347d784aed5a234b0f10703fef03
[ "BSD-3-Clause" ]
null
null
null
30.888372
180
0.522587
true
6,547
Qwen/Qwen-72B
1. YES 2. YES
0.833325
0.721743
0.601446
__label__jpn_Jpan
0.621504
0.235692
```python from sympy.physics.mechanics import * from sympy import symbols, atan, cos, Matrix ``` ```python q = dynamicsymbols('q:2') qd = dynamicsymbols('q:2', level=1) l = symbols('l:2') m = symbols('m:2') g, t = symbols('g, t') ``` ```python # Compose World Frame N = ReferenceFrame('N') A = N.orientnew('A', 'axis', [q[0], N.z]) B = N.orientnew('B', 'axis', [q[1], N.z]) A.set_ang_vel(N, qd[0] * N.z) B.set_ang_vel(N, qd[1] * N.z) ``` ```python O = Point('O') P = O.locatenew('P', l[0] * A.x) R = P.locatenew('R', l[1] * B.x) ``` ```python O.set_vel(N, 0) P.v2pt_theory(O, N, A) R.v2pt_theory(P, N, B) ``` $\displaystyle l_{0} \dot{q}_{0}\mathbf{\hat{a}_y} + l_{1} \dot{q}_{1}\mathbf{\hat{b}_y}$ ```python ParP = Particle('ParP', P, m[0]) ParR = Particle('ParR', R, m[1]) ``` ```python FL = [(P, m[0] * g * N.x), (R, m[1] * g * N.x)] ``` ```python # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, ParP, ParR) LM = LagrangesMethod(Lag, q, forcelist=FL, frame=N) lag_eqs = LM.form_lagranges_equations() ``` ```python lag_eqs ``` $\displaystyle \left[\begin{matrix}g l_{0} m_{0} \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} + g l_{0} m_{1} \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} + l_{0}^{2} m_{0} \frac{d^{2}}{d t^{2}} \operatorname{q_{0}}{\left(t \right)} + l_{0}^{2} m_{1} \frac{d^{2}}{d t^{2}} \operatorname{q_{0}}{\left(t \right)} + l_{0} l_{1} m_{1} \left(\sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} + \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)}\right) \frac{d^{2}}{d t^{2}} \operatorname{q_{1}}{\left(t \right)} - l_{0} l_{1} m_{1} \left(- \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)} + \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)}\right) \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)} + l_{0} l_{1} m_{1} \left(- \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} + \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)} + \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} - \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)}\right) \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)}\\g l_{1} m_{1} \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} + l_{0} l_{1} m_{1} \left(\sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} + \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)}\right) \frac{d^{2}}{d t^{2}} \operatorname{q_{0}}{\left(t \right)} - l_{0} l_{1} m_{1} \left(\sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)} - \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)}\right) \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)} + l_{0} l_{1} m_{1} \left(- \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} + \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)} + \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} - \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} \cos{\left(\operatorname{q_{0}}{\left(t \right)} \right)} \frac{d}{d t} \operatorname{q_{1}}{\left(t \right)}\right) \frac{d}{d t} \operatorname{q_{0}}{\left(t \right)} + l_{1}^{2} m_{1} \frac{d^{2}}{d t^{2}} \operatorname{q_{1}}{\left(t \right)}\end{matrix}\right]$ ```python lag_eqs.simplify() ``` ```python lag_eqs ``` $\displaystyle \left[\begin{matrix}l_{0} \left(g m_{0} \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} + g m_{1} \sin{\left(\operatorname{q_{0}}{\left(t \right)} \right)} + l_{0} m_{0} \frac{d^{2}}{d t^{2}} \operatorname{q_{0}}{\left(t \right)} + l_{0} m_{1} \frac{d^{2}}{d t^{2}} \operatorname{q_{0}}{\left(t \right)} + l_{1} m_{1} \sin{\left(\operatorname{q_{0}}{\left(t \right)} - \operatorname{q_{1}}{\left(t \right)} \right)} \left(\frac{d}{d t} \operatorname{q_{1}}{\left(t \right)}\right)^{2} + l_{1} m_{1} \cos{\left(\operatorname{q_{0}}{\left(t \right)} - \operatorname{q_{1}}{\left(t \right)} \right)} \frac{d^{2}}{d t^{2}} \operatorname{q_{1}}{\left(t \right)}\right)\\l_{1} m_{1} \left(g \sin{\left(\operatorname{q_{1}}{\left(t \right)} \right)} - l_{0} \sin{\left(\operatorname{q_{0}}{\left(t \right)} - \operatorname{q_{1}}{\left(t \right)} \right)} \left(\frac{d}{d t} \operatorname{q_{0}}{\left(t \right)}\right)^{2} + l_{0} \cos{\left(\operatorname{q_{0}}{\left(t \right)} - \operatorname{q_{1}}{\left(t \right)} \right)} \frac{d^{2}}{d t^{2}} \operatorname{q_{0}}{\left(t \right)} + l_{1} \frac{d^{2}}{d t^{2}} \operatorname{q_{1}}{\left(t \right)}\right)\end{matrix}\right]$ ```python ```
e447edf79e05251a5242710b90e96719ab84f0f0
10,178
ipynb
Jupyter Notebook
InvertedPendulumCart/triplePendulum/double_pendulum.ipynb
Chachay/PythonRobotics
d9114af5637295c73ce8eec511baec38a819af53
[ "MIT" ]
null
null
null
InvertedPendulumCart/triplePendulum/double_pendulum.ipynb
Chachay/PythonRobotics
d9114af5637295c73ce8eec511baec38a819af53
[ "MIT" ]
null
null
null
InvertedPendulumCart/triplePendulum/double_pendulum.ipynb
Chachay/PythonRobotics
d9114af5637295c73ce8eec511baec38a819af53
[ "MIT" ]
1
2021-08-03T10:55:52.000Z
2021-08-03T10:55:52.000Z
55.923077
3,763
0.525545
true
2,346
Qwen/Qwen-72B
1. YES 2. YES
0.919643
0.740174
0.680696
__label__kor_Hang
0.272501
0.419816
# Lab Manual ## Propagation of Uncertainties *** ### The Sophisticated Approach We can use calculus to tell us how much a function varies if we change one of its parameters. For the following, we’ll assume that we are trying to compute some value, Y , using the inputs A, B, and C. This could be the perimeter of a rectangle, in which case the perimeter, Y , is the sum of four variables: $$Y(A, B, C, D) = A + B + C + D$$ In the case of a volume measurement, the volume, Y , would be the product of length, width, and height: $$Y(A, B, C) = ABC$$ The uncertainties in our measured values will be given by δA, δB, and δC. The uncertainty in the computed value is, then, δY . If we have a function which is the sum or difference of a number of variables, $$Y = A \pm B \pm C$$ Then we can compute the uncertainty in Y with the following formula: \begin{equation} (\delta Y)^2 = (\delta A)^2 + (\delta B)^2 + (\delta C)^2 \tag{R1} \end{equation} If the function is some kind of product of our three variables, $$ Y = ABC \quad \textrm{or} \quad Y = \frac{AB}{C} \quad \textrm{or} \quad Y = \frac{A}{BC} \quad \textrm{or} \quad Y = \frac{1}{ABC}$$ Then we can compute the uncertainty in Y via: \begin{equation} (\frac{\delta Y}{Y})^2 = (\frac{\delta A}{A})^2 + (\frac{\delta B}{B})^2 + (\frac{\delta C}{C})^2 \tag{R2} \end{equation} Finally, if our function is a power of one of our variables (for example, the area of a circle), $$Y = A^\alpha$$ Then we can compute the uncertainty by \begin{equation} \frac{\delta Y}{Y} = |\alpha| \frac{\delta A}{A} \tag{R3} \end{equation} Let’s try our volume example. Because V = xyz, we use ([R2](#mjx-eqn)), \begin{align*} \frac{\delta V}{V} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2 + \left(\frac{\delta z}{z}\right)^2} \\ = \sqrt{\left(\frac{0.5}{100}\right)^2 + \left(\frac{0.5}{50}\right)^2 + \left(\frac{0.5}{20}\right)^2} \\ \frac{\delta V}{1 * 10^5} = 0.027386 \\ \delta V = 2738.6 \nonumber \end{align*} Therefore we may write $$V = (1.000 \pm 0.027) * 10^5 cm^3 \quad \textrm{or} \quad V = (0.1000 \pm 0.0027) m^3$$ Or, in more modern notation, $$V = 1.000(27) * 10^5 cm^3 \quad \textrm{or} \quad V = 0.1000(27) m^3$$ Although this method seems complicated, it gives the best estimate of our uncertainties. After you’ve used it a few times, it will become second nature. ### Combining Formulae What happens if we have something like the volume of a cylinder: $$ V = \pi r^2 h$$ Here we must work with both ([R3](#mjx-eqn)) and ([R2](#mjx-eqn)). The key is to look at the formula as the product of $r^2$ and *h* ($\pi$ is exact and has no uncertainty). This requires us to use ([R2](#mjx-eqn)). But to get $\delta r^2$, we’ll need ([R3](#mjx-eqn)). Let’s start with ([R2](#mjx-eqn)): \begin{equation} (\frac{\delta V}{V})^2 = (\frac{\delta r^2}{r^2})^2 + (\frac{\delta h}{h})^2 \nonumber \end{equation} Now, ([R3](#mjx-eqn)) tells us that \begin{equation} \frac{\delta \left(r^2 \right)}{r^2} = 2 \frac{\delta r}{r} \nonumber \end{equation} So we can make the substitution: \begin{equation} \left(\frac{\delta V}{V}\right)^2 = \left(2 \frac{\delta r}{r} \right)^2 + \left(\frac{\delta h}{h}\right)^2 \nonumber \end{equation} Although it is tempting to multiply through by $V^2 = (\pi r^2 h)^2$ on both sides before we compute, it’s usually easier if we don’t. The fractional errors ($ \delta x/x$) are used in so many places that it makes sense to use those more often than not.
7b260cbd29ad0eaca2dfea61331f6e585a7925d7
5,275
ipynb
Jupyter Notebook
LabManual.ipynb
JNichols-19/PhysicsLabs
289cb0d07408afde252fe2cabad17fc0b4d987c8
[ "MIT" ]
null
null
null
LabManual.ipynb
JNichols-19/PhysicsLabs
289cb0d07408afde252fe2cabad17fc0b4d987c8
[ "MIT" ]
null
null
null
LabManual.ipynb
JNichols-19/PhysicsLabs
289cb0d07408afde252fe2cabad17fc0b4d987c8
[ "MIT" ]
null
null
null
36.37931
317
0.529858
true
1,202
Qwen/Qwen-72B
1. YES 2. YES
0.855851
0.870597
0.745102
__label__eng_Latn
0.983613
0.569453
<a href="https://colab.research.google.com/github/alirezash97/Time-frequency-analysis-course/blob/main/TayPaper/Tay2005.ipynb" target="_parent"></a> ``` import math import numpy as np import matplotlib.pyplot as plt import sympy as sym from sympy import * ``` ``` def K(x): output = [] for i in range(int((filter_length-1)/2)): combination_statement = math.factorial(filter_length) / (math.factorial(i) * math.factorial(filter_length-i)) second_statement = np.multiply( np.power(x, i), np.power( (1-x), filter_length-i )) final_statement = np.multiply(combination_statement, second_statement) output.append(final_statement) return np.sum(output) ###################################### ``` ``` def kl(x, l): combination_statement = math.factorial(filter_length) / (math.factorial(l) * math.factorial(filter_length-l)) second_statement = np.multiply(np.power(x, l), np.power((1-x), (filter_length-l))) tirth_statement = np.multiply( np.power(x, (filter_length-l)), np.power((1-x), l)) final_statement = np.multiply(combination_statement, (second_statement - tirth_statement)) return final_statement ##################################### ``` ``` def B(x, alpha_list): sigma = [] for l in range( Vanishing_moments, int((filter_length-1)/2) ): sigma.append(np.multiply( kl(x, l), alpha_list[l])) final_equation = K(x) - np.sum(sigma) return final_equation ``` ``` def main_function(): # inputs global filter_length global Vanishing_moments filter_length = int(input("Please enter filter length: ")) Vanishing_moments = int(input("Please enter the number of vanishing moments: ")) while int(((filter_length-1)/2-Vanishing_moments)) %2 != 0: Vanishing_moments = int(input("Please enter another number for vanishing moments: ")) else: pass global number_of_pin number_of_pin = int(1/2*((filter_length - 1) /2-Vanishing_moments)) print("You have to choose %d"%number_of_pin, "pins") global zero_pinning zero_pinning = [] for i in range(number_of_pin): temp = float(input("Enter %dth pin: " %(i+1))) zero_pinning.append(temp) ############# # create symbols global alpha_list alpha_list = [] for i in range(1, filter_length+1): alpha_list.append(sym.symbols('alpha%d'%i)) global x_list x_list = [] for i in range(len(zero_pinning)): x_list.append(sym.symbols('x%d'%i)) ############# # create equations global my_equations my_equations = [] for i in range(len(x_list)): Eq1 = sym.Eq(B(x_list[i], alpha_list), 0) my_equations.append(Eq1) Eq2 = sym.Eq(diff(B(x_list[i], alpha_list), x_list[i])) my_equations.append(Eq2) ############## # replace x with zero pinning values global replaced_equations replaced_equations = [] for i, equation in enumerate(my_equations): replaced = equation.subs(x_list[math.floor(i/2)], zero_pinning[math.floor(i/2)]) replaced_equations.append(replaced) ############### # find alphas using equations global alpha_results alpha_results = solve([i for i in replaced_equations], [j for j in alpha_list[Vanishing_moments : int((filter_length-1)/2)]]) ############### # plot my_array = [] for key in alpha_results: my_array.append(alpha_results[key]) alpha_values = np.zeros((len(alpha_list))) alpha_values[Vanishing_moments : int((filter_length-1)/2)] = my_array x = np.linspace(0, 1, num=100) fx = [] for i in range(len(x)): fx.append(B(x[i], alpha_values)) plt.plot(x, fx) return alpha_values, alpha_results ``` ``` alphas_list, alpha_results = main_function() print(alpha_results) ``` ``` alphas_list, alpha_results = main_function() print(alpha_results) ``` ``` alphas_list, alpha_results = main_function() print(alpha_results) ``` ``` # spectoral factorization z = sym.symbols('z') spectoral_factorization = np.multiply(-1/4*z, np.power((1-np.power(z, -1)), 2)) based_on_z = B(spectoral_factorization, alphas_list) print(based_on_z) ``` -0.000663369854565131*z**9*(1 - 1/z)**18*(0.25*z*(1 - 1/z)**2 + 1)**3 - 0.00613771873923674*z**8*(1 - 1/z)**16*(0.25*z*(1 - 1/z)**2 + 1)**4 + 3.5048497472446*z**4*(1 - 1/z)**8*(0.25*z*(1 - 1/z)**2 + 1)**8 - 0.720337075701222*z**3*(1 - 1/z)**6*(0.25*z*(1 - 1/z)**2 + 1)**9 + 4.125*z**2*(1 - 1/z)**4*(0.25*z*(1 - 1/z)**2 + 1)**10 - 3.0*z*(1 - 1/z)**2*(0.25*z*(1 - 1/z)**2 + 1)**11 + 1.0*(0.25*z*(1 - 1/z)**2 + 1)**12 ``` ```
3a4427b9d6ba658cb6a00491bb64f4d87a977e89
46,354
ipynb
Jupyter Notebook
TayPaper/Tay2005.ipynb
alirezash97/Time-frequency-analysis-course
9e326ba32a43d411a338e68611ef5e8e75b78fa3
[ "MIT" ]
null
null
null
TayPaper/Tay2005.ipynb
alirezash97/Time-frequency-analysis-course
9e326ba32a43d411a338e68611ef5e8e75b78fa3
[ "MIT" ]
null
null
null
TayPaper/Tay2005.ipynb
alirezash97/Time-frequency-analysis-course
9e326ba32a43d411a338e68611ef5e8e75b78fa3
[ "MIT" ]
null
null
null
127.69697
12,346
0.840726
true
1,353
Qwen/Qwen-72B
1. YES 2. YES
0.888759
0.803174
0.713828
__label__eng_Latn
0.391609
0.496793
<p align="center"> </p> ## Data Analytics ### Bootstrap Confidence Intervals in Python #### Michael Pyrcz, Associate Professor, University of Texas at Austin ##### [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) ### Bootstrap Confidence Intervals in Python Here's a simple workflow, demonstration of bootstrap for modeling workflows. This should help you get started with this important data analytics method to evaluate and integrate uncertainty in any sample statistics or model. #### Bootstrap The uncertainty in an estimated population parameter from a sample, represented as a range, lower and upper bound, based on a specified probability interval known as the **confidence level**. * one source of uncertainty is the paucity of data. * do 200 or even less sample data provide a precise (and accurate estimate) of the mean? standard deviation? skew? 13th percentile / P13? 3rd central moment? experimental variogram? mutual information? Shannon entropy? etc. Would it be useful to know the uncertainty due to limited sampling? * what is the impact of uncertainty in the mean porosity e.g. 20%+/-2%? **Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement. Assumptions * sufficient, representative sampling, identical, idependent samples Limitations 1. assumes the samples are representative 2. assumes stationarity 3. only accounts for uncertainty due to too few samples, e.g. no uncertainty due to changes away from data 4. does not account for boundary of area of interest 5. assumes the samples are independent 6. does not account for other local information sources The Bootstrap Approach (Efron, 1982) Statistical resampling procedure to calculate uncertainty in a calculated statistic from the data itself. * Does this work? Prove it to yourself, for uncertainty in the mean solution is standard error: \begin{equation} \sigma^2_\overline{x} = \frac{\sigma^2_s}{n} \end{equation} Extremely powerful - could calculate uncertainty in any statistic! e.g. P13, skew etc. * Would not be possible access general uncertainty in any statistic without bootstrap. * Advanced forms account for spatial information and sampling strategy (game theory and Journel’s spatial bootstrap (1993). Steps: 1. assemble a sample set, must be representative, reasonable to assume independence between samples 2. optional: build a cumulative distribution function (CDF) * may account for declustering weights, tail extrapolation * could use analogous data to support 3. For $\ell = 1, \ldots, L$ realizations, do the following: * For $i = \alpha, \ldots, n$ data, do the following: * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). 6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\ell$, $\sigma^2_{\ell}$. Return to 3 for another realization. 7. Compile and summarize the $L$ realizations of the statistic of interest. * calculate and display the histogram or CDF to see the full distribution * report the percentiles representing the lower and upper confidence intervals, e.g. for a confidence level of 95%, the 2.5 and 97.5 percentiles. This is a very powerful method. Let's demonstrate a bunch of measures. * when available, I compare to the distributions from the analytic expressions. Let's demonstrate for a variety of parameters / statistics: * mean / arithmetic average * proportion * interquartile range * coefficient of variation * correlation coefficient #### Objective The objective is to remove the hurdles of subsurface modeling workflow construction by providing building blocks and sufficient examples. This is not a coding class per se, but we need the ability to 'script' workflows working with numerical methods. #### Getting Started Here's the steps to get setup in Python with the GeostatsPy package: 1. Install Anaconda 3 on your machine (https://www.anaconda.com/download/). 2. From Anaconda Navigator (within Anaconda3 group), go to the environment tab, click on base (root) green arrow and open a terminal. 3. In the terminal type: pip install geostatspy. 4. Open Jupyter and in the top block get started by copy and pasting the code block below from this Jupyter Notebook to start using the geostatspy functionality. You will need to copy the data file to your working directory. They are available here: * Tabular data - sample_data_biased.csv at https://git.io/fh0CW We need some standard packages. These should have been installed with Anaconda 3. ```python import numpy as np # ndarrys for gridded data import pandas as pd # DataFrames for tabular data import os # set working directory, run executables import matplotlib.pyplot as plt # plotting import matplotlib # plotting import seaborn as sns # plotting from scipy import stats # summary statistics import math # trig etc. import scipy.signal as signal # kernel for moving window calculation import random # random sampling from scipy.stats import gaussian_kde # for PDF calculation from scipy.stats import t # Student's t distribution for analytical solution ``` #### Set the working directory I always like to do this so I don't lose files and to simplify subsequent read and writes (avoid including the full address each time). ```python os.chdir("c:/PGE383") # set the working directory ``` #### Set the Random Number Seed For repeatability, set the random number seed. * this ensures that the same random samples are drawn each run and everyone in the class will have the same results. * change this seed number for a new set of random realizations ```python seed = 73073 np.random.seed(seed = seed) ``` #### Loading Tabular Data Here's the command to load our comma delimited data file in to a Pandas' DataFrame object. ```python df = pd.read_csv('sample_data_biased.csv') # load our data table ``` Let's drop some samples so that we increase the variations in bootstrap samples for our demonstration below. ```python df = df.sample(frac = 0.02) # extract 50 random samples to reduce the size of the dataset print('Using ' + str(len(df)) + ' number of samples') ``` Using 6 number of samples Visualizing the DataFrame would be useful and we already learned about these methods in this demo (https://git.io/fNgRW). We can preview the DataFrame by printing a slice or by utilizing the 'head' DataFrame member function (with a nice and clean format, see below). With the slice we could look at any subset of the data table and with the head command, add parameter 'n=13' to see the first 13 rows of the dataset. ```python df.head() # display first 4 samples in the table as a preview ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>X</th> <th>Y</th> <th>Facies</th> <th>Porosity</th> <th>Perm</th> </tr> </thead> <tbody> <tr> <th>131</th> <td>320</td> <td>99</td> <td>1</td> <td>0.141749</td> <td>13.154686</td> </tr> <tr> <th>180</th> <td>750</td> <td>679</td> <td>0</td> <td>0.074619</td> <td>0.089169</td> </tr> <tr> <th>120</th> <td>900</td> <td>559</td> <td>1</td> <td>0.133474</td> <td>13.104697</td> </tr> <tr> <th>276</th> <td>730</td> <td>79</td> <td>1</td> <td>0.134691</td> <td>15.160833</td> </tr> <tr> <th>13</th> <td>300</td> <td>400</td> <td>1</td> <td>0.118448</td> <td>8.495566</td> </tr> </tbody> </table> </div> #### Summary Statistics for Tabular Data The table includes X and Y coordinates (meters), Facies 1 and 0 (1 is sandstone and 0 interbedded sand and mudstone), Porosity (fraction), and permeability as Perm (mDarcy). There are a lot of efficient methods to calculate summary statistics from tabular data in DataFrames. The describe command provides count, mean, minimum, maximum, and quartiles all in a nice data table. We use transpose just to flip the table so that features are on the rows and the statistics are on the columns. ```python df.describe().transpose() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>count</th> <th>mean</th> <th>std</th> <th>min</th> <th>25%</th> <th>50%</th> <th>75%</th> <th>max</th> </tr> </thead> <tbody> <tr> <th>X</th> <td>6.0</td> <td>628.333333</td> <td>253.725574</td> <td>300.000000</td> <td>422.500000</td> <td>740.000000</td> <td>765.000000</td> <td>900.000000</td> </tr> <tr> <th>Y</th> <td>6.0</td> <td>467.500000</td> <td>351.097565</td> <td>79.000000</td> <td>174.250000</td> <td>479.500000</td> <td>649.000000</td> <td>989.000000</td> </tr> <tr> <th>Facies</th> <td>6.0</td> <td>0.666667</td> <td>0.516398</td> <td>0.000000</td> <td>0.250000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> </tr> <tr> <th>Porosity</th> <td>6.0</td> <td>0.112892</td> <td>0.030695</td> <td>0.074373</td> <td>0.085576</td> <td>0.125961</td> <td>0.134387</td> <td>0.141749</td> </tr> <tr> <th>Perm</th> <td>6.0</td> <td>8.457717</td> <td>6.605513</td> <td>0.089169</td> <td>2.679906</td> <td>10.800132</td> <td>13.142189</td> <td>15.160833</td> </tr> </tbody> </table> </div> #### Visualizing Tabular Data with Location Maps It is natural to set the x and y coordinate and feature ranges manually. e.g. do you want your color bar to go from 0.05887 to 0.24230 exactly? Also, let's pick a color map for display. I heard that plasma is known to be friendly to the color blind as the color and intensity vary together (hope I got that right, it was an interesting Twitter conversation started by Matt Hall from Agile if I recall correctly). We will assume a study area of 0 to 1,000m in x and y and omit any data outside this area. ```python xmin = 0.0; xmax = 1000.0 # range of x values ymin = 0.0; ymax = 1000.0 # range of y values pormin = 0.05; pormax = 0.25; # range of porosity values permmin = 0.01; permmax = 10000 nx = 100; ny = 100; csize = 10.0 cmap = plt.cm.plasma # color map cumul_prob = np.linspace(0.0,1.0,100) # list of cumulative probabilities ``` Let's try out location maps, histograms and scatter plots. ```python plt.subplot(231) plt.scatter(df['X'],df['Y'],s = 20,c = df['Porosity'],cmap = plt.cm.inferno,linewidths = 0.3,edgecolor = 'black',alpha = 0.8,vmin = pormin,vmax = pormax) plt.colorbar(); plt.xlabel('X (m)'); plt.ylabel('Y (m)'); plt.title('Porosity Location Map') plt.subplot(234) plt.hist(df['Porosity'],color = 'red',alpha = 0.3,edgecolor='black',bins = np.linspace(pormin,pormax,int(len(df)/3))) plt.xlabel('Porosity (fraction)'); plt.ylabel('Frequency'); plt.title('Porosity Histogram') plt.subplot(232) plt.scatter(df['X'],df['Y'],s = 20,c = df['Perm'],cmap = plt.cm.inferno,linewidths = 0.3,edgecolor = 'black',alpha = 0.8,vmin = permmin,vmax = permmax,norm=matplotlib.colors.LogNorm()) plt.colorbar(); plt.xlabel('X (m)'); plt.ylabel('Y (m)'); plt.title('Permeability Location Map') plt.subplot(235) plt.hist(df['Perm'],color = 'red',alpha = 0.3,edgecolor='black',bins=np.logspace(np.log10(permmin),np.log10(permmax),int(len(df)/3))) #sns.kdeplot(x=df['Perm'],color = 'black',alpha = 0.2,levels = 1,log_scale = True,bw_adjust = 1) plt.xlabel('Permeability (mD)'); plt.ylabel('Frequency'); plt.title('Permeability Histogram'); plt.xscale('log') plt.subplot(233) plt.scatter(df['Porosity'],df['Perm'],s = 20,color = 'red',alpha = 0.3,edgecolor='black') #plt.contour(df['Porosity'],df['Perm'] Z, colors='black'); plt.ylabel('Permeability (mD)'); plt.xlabel('Porosity (fraction)'); plt.title('Permeability-Porosity Scatter Plot') plt.yscale('log') sns.kdeplot(x=df['Porosity'],y=df['Perm'],color = 'black',alpha = 0.2,levels = 4) plt.subplots_adjust(left=0.0, bottom=0.0, right=3.0, top=2.2, wspace=0.2, hspace=0.2) plt.show() ``` ### Bootstrap Method in Python If you are new to bootstrap and Python, here's the most simple code possible for bootstrap. * specify the number of bootstrap realizations, $L$ * declare a list to store the bootstrap realizations of the statistic of interest * loop over L bootstrap realizations * n MCS, random samples with replacement for a new realization of the data * calculate the realization of the statistic from the realization of the data * summarize the resulting uncertainty model, histogram, summary statistics etc. #### Bootstrap of the Sample Mean, Arithmetic Average Let's demonstrate bootstrap for uncertainty in the arithmetic average with a simple workflow. ```python por_avg_real = [] # declare an empty list to store the bootstrap realizations of the statistic for k in range(0,L): # loop over the L bootstrap realizations samples = random.choices(df['Porosity'].values, k=len(df)) # n Monte Carlo simulations por_avg_real.append(np.average(samples)) # calculate the statistic of interest from the new bootstrap dataset ``` We will compare the bootstrap uncertainty in the sample arithmetic average distribution with the analytical expression: \begin{equation} \overline{x} \pm t_{\frac{\alpha}{2},n-1}\sqrt{\frac{s^2}{n}} \end{equation} The remaining code in this block is just a super cool set of plots with the results. ```python # Bootstrap method for uncertainty in the sample mean L = 1000 # set the number of bootstrap realizations por_avg_real = [] # declare an empty list to store the bootstrap realizations of the statistic for k in range(0,L): # loop over the L bootstrap realizations samples = random.choices(df['Porosity'].values, k=len(df)) # n Monte Carlo simulations por_avg_real.append(np.average(samples)) # calculate the statistic of interest from the new bootstrap dataset # Analytical solution for the uncertainty in the sample mean, Student's t distribution with the correct mean and standard deviation analytical = t.pdf(np.linspace(pormin,pormax,100), len(df)-1,loc=np.average(df['Porosity']),scale=math.sqrt(np.var(df['Porosity'].values)/len(df))) # Plot of the original data and bootstap and analytical results fig = plt.subplot(131) plt.hist(df['Porosity'],color = 'red',alpha = 0.3,edgecolor='black',bins = np.linspace(pormin,pormax,int(len(df)/3))) #plt.plot([np.average(df['Porosity']),np.average(df['Porosity'])],[0,100]) plt.axvline(x=np.average(df['Porosity']),linestyle="--",c='black') plt.text(np.average(df['Porosity'])+0.005, 8.8, r'Average = ' + str(round(np.average(df['Porosity']),3)), fontsize=12) plt.text(np.average(df['Porosity'])+0.005, 8.3, r'St.Dev. = ' + str(round(np.std(df['Porosity']),3)), fontsize=12) plt.text(np.average(df['Porosity'])+0.005, 7.8, r'P10 = ' + str(round(np.percentile(df['Porosity'],10),3)), fontsize=12) plt.text(np.average(df['Porosity'])+0.005, 7.3, r'P90 = ' + str(round(np.percentile(df['Porosity'],90),3)), fontsize=12) plt.xlabel('Porosity (fraction)'); plt.ylabel('Frequency'); plt.title('Original Porosity Histogram') plt.subplot(132) plt.hist(por_avg_real,color = 'red',alpha = 0.2,edgecolor = 'black',bins=np.linspace(pormin,pormax,100),label = 'bootstrap',density = True) # plot the distribution, could also calculate any summary statistics plt.plot(np.linspace(pormin,pormax,100),analytical,color = 'black',label = 'analytical',alpha=0.4) plt.axvline(x=np.average(por_avg_real),linestyle="--",c='black') plt.fill_between(np.linspace(pormin,pormax,100), 0, analytical, where = np.linspace(pormin,pormax,100) <= np.percentile(por_avg_real,10), facecolor='red', interpolate=True, alpha = 0.5) plt.fill_between(np.linspace(pormin,pormax,100), 0, analytical, where = np.linspace(pormin,pormax,100) >= np.percentile(por_avg_real,90), facecolor='red', interpolate=True, alpha = 0.5) plt.text(np.average(por_avg_real)+0.009, L*0.07, r'Average = ' + str(round(np.average(por_avg_real),3)), fontsize=12) plt.text(np.average(por_avg_real)+0.009, L*0.066, r'St.Dev. = ' + str(round(np.std(por_avg_real),3)), fontsize=12) plt.text(np.average(por_avg_real)+0.009, L*0.062, r'P90 = ' + str(round(np.percentile(por_avg_real,90),3)), fontsize=12) plt.text(np.average(por_avg_real)+0.009, L*0.058, r'P10 = ' + str(round(np.percentile(por_avg_real,10),3)), fontsize=12) plt.xlabel('Bootstrap Realizations and Analytical Uncertainty Distribution for Mean'); plt.ylabel('Frequency'); plt.title('Distribution of Average') plt.legend() fig = plt.subplot(133) plt.hist(df['Porosity'],color = 'red',alpha = 0.2,edgecolor='grey',bins = np.linspace(pormin,pormax,int(len(df)/3))) #plt.plot([np.average(df['Porosity']),np.average(df['Porosity'])],[0,100]) plt.axvline(x=np.average(df['Porosity']),c='black') plt.axvline(x=np.percentile(por_avg_real,90),linestyle="--",c='black') plt.axvline(x=np.percentile(por_avg_real,10),linestyle="--",c='black') plt.text(np.percentile(por_avg_real,90)+0.009,8.8, r'Average = ' + str(round(np.average(por_avg_real),3)), fontsize=12) plt.text(np.percentile(por_avg_real,90)+0.009,8.3, r'Average P90 = ' + str(round(np.percentile(por_avg_real,90),3)), fontsize=12) plt.text(np.percentile(por_avg_real,90)+0.009,7.8, r'Average P10 = ' + str(round(np.percentile(por_avg_real,10),3)), fontsize=12) plt.xlabel('Porosity (fraction)'); plt.ylabel('Frequency'); plt.title('Porosity Histogram with Uncertainty in Average') plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` #### Bootstrap of the Proportion Let's demonstrate another case for which we have the analytical solution. We will compare the bootstrap results with the analytical expression: \begin{equation} \hat{p} \pm t_{\frac{\alpha}{2},n-1}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \end{equation} ```python # L = 100000 # set the number of bootstrap realizations sand_prop_real = [] # declare an empty list to store the bootstrap realizations of the statistic shale_prop_real = [] for k in range(0,L): # loop over the L bootstrap realizations samples = random.choices(df['Facies'].values, k=len(df)) # n Monte Carlo simulations sand_prop_real.append(samples.count(1)/len(df)) # calculate the statistic of interest from the new bootstrap dataset shale_prop_real.append(samples.count(0)/len(df)) # calculate the statistic of interest from the new bootstrap dataset sand_prop = np.sum(df['Facies'] == 1)/len(df); shale_prop = np.sum(df['Facies'] == 0)/len(df) analytical_shale = t.pdf(np.linspace(0.0,1.0,100), len(df)-1,loc=shale_prop,scale=math.sqrt(shale_prop*(1.0-shale_prop)/len(df))) fig = plt.subplot(121) barlist = plt.bar(x=['shale','sand'],height = [1-sand_prop,sand_prop],color = 'red',alpha = 0.3,edgecolor='black') barlist[0].set_color('blue') plt.text(-.3, shale_prop+0.02, r'Prop. Shale = ' + str(round(shale_prop,2)), fontsize=12) plt.text(0.7, sand_prop+0.02, r'Prop. Sand = ' + str(round(sand_prop,2)), fontsize=12) plt.xlabel('Rock Type / Facies'); plt.ylabel('Proportion'); plt.title('Facies Histogram') plt.ylim([0,1]); plt.yticks(np.arange(0, 1.1, 0.1)) plt.subplot(122) plt.hist(sand_prop_real,color = 'red',alpha = 0.2,edgecolor = 'black',bins=np.linspace(0.0,1.0,40),label = 'sand',density = True) # plot the distribution, could also calculate any summary statistics analytical = t.pdf(np.linspace(0.0,1.0,100), len(df)-1,loc=sand_prop,scale=math.sqrt(sand_prop*(1.0-sand_prop)/len(df))) plt.plot(np.linspace(0.0,1.0,100),analytical,color = 'black',label = 'analytical',alpha=0.4) plt.axvline(x=sand_prop,linestyle="--",c='black') plt.fill_between(np.linspace(0.0,1.0,100), 0, analytical, where = np.linspace(0.0,1.0,100) <= np.percentile(sand_prop_real,10), facecolor='red', interpolate=True, alpha = 0.5) plt.fill_between(np.linspace(0.0,1.0,100), 0, analytical, where = np.linspace(0.0,1.0,100) >= np.percentile(sand_prop_real,90), facecolor='red', interpolate=True, alpha = 0.5) plt.text(np.average(sand_prop_real)+0.009, 7.0, r'Prop. = ' + str(round(sand_prop,2)), fontsize=12) plt.text(np.average(sand_prop_real)+0.009, 6.4, r'Prop. P90 = ' + str(round(np.percentile(sand_prop_real,90),2)), fontsize=12) plt.text(np.average(sand_prop_real)+0.009, 5.8, r'Prop. P10 = ' + str(round(np.percentile(sand_prop_real,10),2)), fontsize=12) plt.hist(shale_prop_real,color = 'blue',alpha = 0.2,edgecolor = 'black',bins=np.linspace(0.0,1.0,40),label = 'shale',density = True) # plot the distribution, could also calculate any summary statistics plt.plot(np.linspace(0.0,1.0,100),analytical_shale,color = 'black',alpha=0.4) plt.axvline(x=shale_prop,linestyle="--",c='black') plt.fill_between(np.linspace(0.0,1.0,100), 0, analytical_shale, where = np.linspace(0.0,1.0,100) <= np.percentile(shale_prop_real,10), facecolor='blue', interpolate=True, alpha = 0.5) plt.fill_between(np.linspace(0.0,1.0,100), 0, analytical_shale, where = np.linspace(0.0,1.0,100) >= np.percentile(shale_prop_real,90), facecolor='blue', interpolate=True, alpha = 0.5) plt.text(np.average(shale_prop_real)+0.009, 7.0, r'Prop. = ' + str(round(shale_prop,2)), fontsize=12) plt.text(np.average(shale_prop_real)+0.009, 6.4, r'Prop. P90 = ' + str(round(np.percentile(shale_prop_real,90),2)), fontsize=12) plt.text(np.average(shale_prop_real)+0.009, 5.8, r'Prop. P10 = ' + str(round(np.percentile(shale_prop_real,10),2)), fontsize=12) plt.xlabel('Bootstrap Realizations and Analytical Uncertainty Distributions for Proportion'); plt.ylabel('Frequency'); plt.title('Distribution of Bootstrap Proportions') plt.legend(loc = 'upper left') plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` #### Bootstrap of the Interquartile Range To prove that we can bootstrap any statistic let's select a more complicated measure of dispersion, the interquartile range. ```python L = 1000 # set the number of bootstrap realizations iqr_real = [] # declare an empty list to store the bootstrap realizations of the statistic for k in range(0,L): # loop over the L bootstrap realizations samples = random.choices(df['Porosity'].values, k=len(df)) # n Monte Carlo simulations iqr_real.append(np.percentile(samples,75) - np.percentile(samples,25)) # calculate the statistic of interest from the new bootstrap dataset iqr = np.percentile(df['Porosity'],75) - np.percentile(df['Porosity'],25) plt.subplot(111) plt.hist(iqr_real,color = 'red',alpha = 0.2,edgecolor = 'black',bins=np.linspace(0.0,0.125,100),label = 'bootstrap',density = True) # plot the distribution, could also calculate any summary statistics plt.axvline(x=iqr,c='black') plt.axvline(x=np.percentile(iqr_real,10),linestyle="--",c='black') plt.axvline(x=np.percentile(iqr_real,90),linestyle="--",c='black') sns.kdeplot(x=iqr_real,color = 'grey',alpha = 0.1,levels = 1,bw_adjust = 1) plt.text(np.percentile(iqr_real,90)+0.009, L*0.07, r'Average = ' + str(round(np.average(iqr_real),3)), fontsize=12) plt.text(np.percentile(iqr_real,90)+0.009, L*0.066, r'St.Dev. = ' + str(round(np.std(iqr_real),3)), fontsize=12) plt.text(np.percentile(iqr_real,90)+0.009, L*0.062, r'P90 = ' + str(round(np.percentile(iqr_real,90),3)), fontsize=12) plt.text(np.percentile(iqr_real,90)+0.009, L*0.058, r'P10 = ' + str(round(np.percentile(iqr_real,10),3)), fontsize=12) plt.xlabel('Boostrap Realizations of Interquartile Range'); plt.ylabel('Frequency'); plt.title('Distribution of Interquartile Range') # plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` #### Bootstrap of the Coefficient of Variation Here's another statistic that requires multiple measures from the each bootstrap realization of the data. * this reinforces that we bootstrap dataset realizations and then calculate the statistic on this dataset realization For the coefficient of variation we will: * calculate a bootstrap realization of the dataset with $n$ samples with replacement * calculate the mean and standard deviation from this bootstrapped realization of the dataset * calculate a boostrap realization of the coefficient of variation as the standard deviation divided by the mean Repeat this $L$ times and then evaluate the resulting distribution. ```python L = 1000 # set the number of bootstrap realizations cv_real = [] # declare an empty list to store the bootstrap realizations of the statistic for k in range(0,L): # loop over the L bootstrap realizations samples = random.choices(df['Porosity'].values, k=len(df)) # n Monte Carlo simulations cv_real.append(np.std(samples)/np.average(samples)) # calculate the statistic of interest from the new bootstrap dataset cv = np.std(df['Porosity'])/np.average(df['Porosity']) plt.subplot(111) plt.hist(cv_real,color = 'red',alpha = 0.2,edgecolor = 'black',bins=np.linspace(0.1,0.4,100),label = 'bootstrap',density = True) # plot the distribution, could also calculate any summary statistics plt.axvline(x=cv,c='black') plt.axvline(x=np.percentile(cv_real,10),linestyle="--",c='black') plt.axvline(x=np.percentile(cv_real,90),linestyle="--",c='black') sns.kdeplot(x=cv_real,color = 'grey',alpha = 0.1,levels = 1,bw_adjust = 1) plt.text(np.percentile(cv_real,90)+0.009, 16, r'Average = ' + str(round(np.average(cv_real),3)), fontsize=12) plt.text(np.percentile(cv_real,90)+0.009, 15, r'St.Dev. = ' + str(round(np.std(cv_real),3)), fontsize=12) plt.text(np.percentile(cv_real,90)+0.009, 14, r'P90 = ' + str(round(np.percentile(cv_real,90),3)), fontsize=12) plt.text(np.percentile(cv_real,90)+0.009, 13, r'P10 = ' + str(round(np.percentile(cv_real,10),3)), fontsize=12) plt.xlabel('Boostrap Realizations of Coefficient of Variation'); plt.ylabel('Frequency'); plt.title('Distribution of Coefficient of Variation') # plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` #### Bootstrap of the Correlation Coefficient Here's a statistic that requires us to work with multiple, paired features at once. * this reinforces that we boostrap for a new realization of the dataset, a set of samples with all their features. For the correlation coefficient we will: * calculate a bootstrap realization of the dataset with $n$ samples with replacement as a new DataFrame with all features * calculate the the correlation coefficient between 2 paired features Repeat this $L$ times and then evaluate the resulting distribution. ```python L = 1000 # set the number of bootstrap realizations corr_real = [] # declare an empty list to store the bootstrap realizations of the statistic for k in range(0,L): # loop over the L bootstrap realizations samples = df.sample(n=len(df),replace=True,random_state = seed + k) # n random samples with replacement as a new DataFrame corr_real.append(samples[['Porosity','Perm']].corr()['Porosity'][1]) # calculate the statistic of interest from the new bootstrap dataset corr = df[['Porosity','Perm']].corr()['Porosity'][1] plt.subplot(111) plt.hist(corr_real,color = 'red',alpha = 0.2,edgecolor = 'black',bins=np.linspace(0.5,1.0,100),label = 'bootstrap',density = True) # plot the distribution, could also calculate any summary statistics plt.axvline(x=corr,c='black') plt.axvline(x=np.percentile(corr_real,10),linestyle="--",c='black') plt.axvline(x=np.percentile(corr_real,90),linestyle="--",c='black') sns.kdeplot(x=corr_real,color = 'grey',alpha = 0.1,levels = 1,bw_adjust = 1) # plt.text(np.percentile(corr_real,90)+0.009, 16, r'Average = ' + str(round(np.average(corr_real),3)), fontsize=12) # plt.text(np.percentile(corr_real,90)+0.009, 15, r'St.Dev. = ' + str(round(np.std(corr_real),3)), fontsize=12) # plt.text(np.percentile(corr_real,90)+0.009, 14, r'P90 = ' + str(round(np.percentile(corr_real,90),3)), fontsize=12) # plt.text(np.percentile(corr_real,90)+0.009, 13, r'P10 = ' + str(round(np.percentile(corr_real,10),3)), fontsize=12) plt.xlabel('Boostrap Realizations of Correlation Coefficient'); plt.ylabel('Frequency'); plt.title('Distribution of Correlation Coefficient') # plt.legend() plt.subplots_adjust(left=0.0, bottom=0.0, right=2.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` #### Comments This was a basic demonstration of bootstrap. * you can use bootstrap to calculate uncertainty in any statistic! * you are calculating a set of realizations of the statistic, representing uncertainty due to small sample size * note the assumptions of bootstrap, including stationarity and representativity * remember, get a dataset realization by bootstrap and then calculate the realization of the statistic from the dataset realization * if your statistic has multiple inputs (e.g. P25 and P75), calculate each from the same bootstrap realization of the dataset. I have other demonstrations on the basics of working with DataFrames, ndarrays, univariate statistics, plotting data, declustering, data transformations, trend modeling and many other workflows available at https://github.com/GeostatsGuy/PythonNumericalDemos and https://github.com/GeostatsGuy/GeostatsPy. I hope this was helpful, *Michael* #### The Author: ### Michael Pyrcz, Associate Professor, University of Texas at Austin *Novel Data Analytics, Geostatistics and Machine Learning Subsurface Solutions* With over 17 years of experience in subsurface consulting, research and development, Michael has returned to academia driven by his passion for teaching and enthusiasm for enhancing engineers' and geoscientists' impact in subsurface resource development. For more about Michael check out these links: #### [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) #### Want to Work Together? I hope this content is helpful to those that want to learn more about subsurface modeling, data analytics and machine learning. Students and working professionals are welcome to participate. * Want to invite me to visit your company for training, mentoring, project review, workflow design and / or consulting? I'd be happy to drop by and work with you! * Interested in partnering, supporting my graduate student research or my Subsurface Data Analytics and Machine Learning consortium (co-PIs including Profs. Foster, Torres-Verdin and van Oort)? My research combines data analytics, stochastic modeling and machine learning theory with practice to develop novel methods and workflows to add value. We are solving challenging subsurface problems! * I can be reached at mpyrcz@austin.utexas.edu. I'm always happy to discuss, *Michael* Michael Pyrcz, Ph.D., P.Eng. Associate Professor The Hildebrand Department of Petroleum and Geosystems Engineering, Bureau of Economic Geology, The Jackson School of Geosciences, The University of Texas at Austin #### More Resources Available at: [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) ```python ```
e0dbcc4f35cf241e60e131381502e74b602d3c49
327,278
ipynb
Jupyter Notebook
PythonDataBasics_BootstrapConfidence.ipynb
AndrewAnnex/PythonNumericalDemos
11a7dec09bf08527b358fa95119811b6f73023b5
[ "MIT" ]
403
2017-10-15T02:07:38.000Z
2022-03-30T15:27:14.000Z
PythonDataBasics_BootstrapConfidence.ipynb
AndrewAnnex/PythonNumericalDemos
11a7dec09bf08527b358fa95119811b6f73023b5
[ "MIT" ]
4
2019-08-21T10:35:09.000Z
2021-02-04T04:57:13.000Z
PythonDataBasics_BootstrapConfidence.ipynb
AndrewAnnex/PythonNumericalDemos
11a7dec09bf08527b358fa95119811b6f73023b5
[ "MIT" ]
276
2018-06-27T11:20:30.000Z
2022-03-25T16:04:24.000Z
327.933868
76,520
0.913315
true
9,322
Qwen/Qwen-72B
1. YES 2. YES
0.699254
0.760651
0.531888
__label__eng_Latn
0.848989
0.074084
(rotational_motion)= # Rotational Motion ## Angular Momentum Theorem From Newton's second law: \\[\vec{F}=ma=m\frac{d\vec{v}}{dt}=\frac{d(m\vec{v})}{dt}\\] The product \\(m\vec{v}\\) is called **linear momentum**, written as \\(\vec{p}\\). Taking the cross product of both sides with the position vector \\(\vec{r}\\): \\[\vec{r}\times\vec{F} = \vec{r}\times(\frac{d\vec{p}}{dt})\\] The product \\(\vec{r}\times\vec{F}\\) is called the **torque**, denoted by \\(\vec{\tau}\\). From the rules of cross product, the magnitude of \\(\vec{\tau}\\) is given by: \\[|\tau|=rF_\theta\\] where \\(F_\theta\\) is the **tangential component** of \\(\vec{F}\\). The direction of \\(\vec{\tau}\\) is perpendicular to the plane formed by \\(r\\) and \\(F\\). Therefore: \\[\vec{\tau}=\vec{r}\times\frac{d\vec{p}}{dt}\\] From the product rule of differentiation: \\[\frac{d(\vec{r}\times\vec{p})}{dt}=\vec{r}\times\frac{d\vec{p}}{dt}+\frac{d\vec{r}}{dt}\times\vec{p}\\] Since \\(\frac{d\vec{r}}{dt}=\vec{v}\\) and \\(m\vec{v}=\vec{p}\\), RHS in the equation above becomes: \\[\vec{v}\times(m\vec{v})=m(\vec{v}\times\vec{v})=0\\] Thus: \\[\vec{\tau}=\frac{d(\vec{r}\times\vec{p})}{dt}\\] The product \\(\vec{r}\times\vec{p}\\) is defined as the angular momentum \\(\vec{L}\\), and this is the **angular momentum theorem**: \\[\vec{\tau}=\frac{d\vec{L}}{dt}\\] ## Moment of inertia The moment of inertia of a body \\(I\\) composed of N discrete sub-bodies is defined as: \\[I=\sum_{i=1}^{N}m_ir_i^2\\] Where \\(m_i\\) is the mass of each sub-bodies, and \\(r_i\\) is the distance of those sub-bodies from the axis of rotation. With this definition, the angular momentum equation reduces to: \\[\vec{\tau}=I\frac{d^2\theta}{dt^2}\\] where \\(\frac{d^2\theta}{dt^2}\\) represents angular acceleration. For a continuous body, its moment of inertia \\(I\\) is defined as: \\[I=\int r^2dm=\int\rho(r)r^2dV\\] ## Tutorial Problem 4.5 A cable is wrapped several times around a uniform, solid circular cylinder that can rotate about its axis. The cylinder has radius \\(R\\), and mass \\(m\\). The cable is pulled with a force of magnitude \\(F\\). Assuming that the cable unwinds without stretching or slipping, what will be the angular acceleration of the cylinder? Ignore the weight of the cable. ```python import numpy as np %matplotlib inline import matplotlib.pyplot as plt from matplotlib import animation, rc from IPython.display import HTML from sympy import Symbol, integrate F = Symbol('F') # force M = Symbol('M') # mass of cylinder R = Symbol('R') # distance from the centre of the cylinder to where the force is applied t = Symbol('t') # time # x component of N = -F # y component of N = Mg # only F contributes to net torque # sub into angular momentum equation # for cylinder, I=MR**2/2 angular_acceleration = -(2*F)/(M*R) angular_velocity = integrate(angular_acceleration, t) angle = integrate(angular_velocity, t) print("angular acceleration = ", angular_acceleration) print("angular velocity = ", angular_velocity) print("angle = ", angle) ``` angular acceleration = -2*F/(M*R) angular velocity = -2*F*t/(M*R) angle = -F*t**2/(M*R) ```python # substitute arbitrary numbers F = 10 # N M = 10 # kg R = 1 # m t = np.linspace(0, 10, 500) # create list of time from 0 to 10 seconds a_a = -(2*F)/(M*R) # angular acceleration a_v = -2 * F * t / (M * R) # angular velocity a = -(F * t**2) / (M * R) # angle print("Angular acceleration = %.2f rad/s2" % (a_a)) X = R * np.cos(a) # x coordinate Y = R * np.sin(a) # y coordinate length = R * (-a / (2 * np.pi)) # length of string l = np.zeros((len(t), len(t))) # store data in matrix to make animation for i in range(len(t)): for j in range(i+1): l[i][j] = length[j] # plot angular velocity over time fig = plt.figure(figsize=(6,4)) plt.plot(t, a_v, 'k') plt.xlabel('time (s)') plt.ylabel('angular velocity (rad/s)') plt.title('Angular velocity over time', fontsize=14) plt.grid(True) plt.show() ``` ```python nframes = len(t) # Plot background axes fig, ax = plt.subplots(figsize=(10,2)) # plot lines line1, = ax.plot([], [], 'ro', lw=2) line2, = ax.plot([], [], 'k', lw=0.5) line3, = ax.plot([], [], 'k', lw=2) # customise axis ax.set_xlim(-2,18) ax.set_ylim(-2,2) ax.set_title('Motion of cylinder and string') lines = [line1, line2, line3] # Plot background for each frame def init(): for line in lines: line.set_data([], []) return lines # Set what data to plot in each frame def animate(i): x1 = X[i] y1 = Y[i] lines[0].set_data(x1, y1) x2 = X y2 = Y lines[1].set_data(x2, y2) x3 = l[i] y3 = 1 lines[2].set_data(x3, y3) return lines # Call the animator anim = animation.FuncAnimation(fig, animate, init_func=init, frames=nframes, interval=10, blit=True) ``` ```python HTML(anim.to_html5_video()) ``` ### References Course notes from Lecture 4 of the module ESE 95011 Mechanics
ab81fda6ef30a6529cf47b9651814ce6b9d08fd7
109,210
ipynb
Jupyter Notebook
notebooks/a_modules/mechanics/4_Rotational_Motion.ipynb
primer-computational-mathematics/book
305941b4f1fc4f15d472fd11f2c6e90741fb8b64
[ "MIT" ]
3
2020-08-02T07:32:14.000Z
2021-11-16T16:40:43.000Z
notebooks/a_modules/mechanics/4_Rotational_Motion.ipynb
primer-computational-mathematics/book
305941b4f1fc4f15d472fd11f2c6e90741fb8b64
[ "MIT" ]
5
2020-07-27T10:45:26.000Z
2020-08-12T15:09:14.000Z
notebooks/a_modules/mechanics/4_Rotational_Motion.ipynb
primer-computational-mathematics/book
305941b4f1fc4f15d472fd11f2c6e90741fb8b64
[ "MIT" ]
4
2020-08-05T13:57:32.000Z
2022-02-02T19:03:57.000Z
94.065461
20,264
0.839612
true
1,584
Qwen/Qwen-72B
1. YES 2. YES
0.884039
0.867036
0.766494
__label__eng_Latn
0.905954
0.619154
```python # https://colab.research.google.com/github/kassbohm/tm-snippets/blob/master/ipynb/TM_A/TM_0/trafo_tensor/trafo_tensor_2.ipynb from sympy.physics.units import * from sympy import * # Input: # 1. # (i1, i2, i3)-components of symmetric tensor: T11, T12, T13 = -1, 4, 0 T22, T23 = 5, 0 T33 = 0 # 2. # (i1, i2, i3)-components of unit vector: d1, d2, d3 = 0, 1, 0 pprint("\nInput 1: (i1, i2, i3)-tensor-components:") T = Matrix([ [T11, T12, T13], [T12, T22, T23], [T13, T23, T33] ]) pprint(T) pprint("\nInput 2: (i1, i2, i3)-unit-vector-components:") d = Matrix([d1, d2, d3]) tmp = d.norm() assert(tmp==1) pprint("\nOutput: Tensor-component in unit-vector-direction:") tmp = d.transpose()*T*d pprint(tmp) # Input 1: (i1, i2, i3)-tensor-components: # ⎡-1 4 0⎤ # ⎢ ⎥ # ⎢4 5 0⎥ # ⎢ ⎥ # ⎣0 0 0⎦ # # Input 2: (i1, i2, i3)-unit-vector-components: # # Output: Tensor-component in unit-vector-direction: # [5] ```
b754a9f4da103715e9d7f349b3af49e0f44764cf
2,246
ipynb
Jupyter Notebook
ipynb/TM_A/TM_0/trafo_tensor/trafo_tensor_2.ipynb
kassbohm/tm-snippets
5e0621ba2470116e54643b740d1b68b9f28bff12
[ "MIT" ]
null
null
null
ipynb/TM_A/TM_0/trafo_tensor/trafo_tensor_2.ipynb
kassbohm/tm-snippets
5e0621ba2470116e54643b740d1b68b9f28bff12
[ "MIT" ]
null
null
null
ipynb/TM_A/TM_0/trafo_tensor/trafo_tensor_2.ipynb
kassbohm/tm-snippets
5e0621ba2470116e54643b740d1b68b9f28bff12
[ "MIT" ]
null
null
null
28.43038
138
0.435886
true
409
Qwen/Qwen-72B
1. YES 2. YES
0.927363
0.824462
0.764576
__label__eng_Latn
0.102466
0.614698
## ph237 Caltech 2018 ### Gravitational Radiation #### Assignment #1 ```python # standard preamble for ph237 notebooks %matplotlib notebook from __future__ import division, print_function import numpy as np #from mpl_toolkits.mplot3d import Axes3D import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import cm plt.style.use('seaborn-paper') #plt.style.use('fivethirtyeight') import scipy.constants as const from astropy.constants import M_sun mpl.rcParams.update({'text.usetex': False, 'lines.linewidth': 2.5, 'font.size': 18, 'xtick.labelsize': 'medium', 'ytick.labelsize': 'medium', 'axes.labelsize': 'small', 'axes.grid': True, 'grid.alpha': 0.73, 'lines.markersize': 12, 'legend.borderpad': 0.2, 'legend.fancybox': True, 'legend.fontsize': 13, 'legend.framealpha': 0.7, 'legend.handletextpad': 0.1, 'legend.labelspacing': 0.2, 'legend.loc': 'best', 'savefig.dpi': 100, 'figure.figsize': (9,6), 'pdf.compression': 9}) ``` ## Problem 1: Fabry-Perot Cavity **There exists a Fabry-Perot cavity with a length of 4000\,m. The power transmission, $T_I$, of the input mirror is 1% and the transmission of the end mirror, $T_E$, is 10 ppm. The cavity is illuminated from the input side with a 100 W laser having a wavelength of 437 nm.** ### Part (a) ** Using the steady state fields approach, solve for the transmitted power as a function of cavity length.** The Fabry-Perot Cavity is schematically drawn below To use the steady state fields approach, we make the ansatz that the field is a superposition of a left-going wave and a right going wave to the left of the cavity (with amplitudes $E_{\rm in}$ and $E_{\rm R}$ in the figure), a superposition of a left-going wave and a right going wave inside the cavity (with amplitudes $E_{1}$ and $E_{2}$ in the figure) and a right-going wave to the right of the cavity ( (with amplitude $E_{\rm T}$). To use the steady state field approach we have to make sure the ansatz is consistent with the reflectivity and transmissivity at each mirror. This means we solve the system of equations (for $E_1$, $E_2$, $E_{\rm R}$ and $E_{\rm T}$ as a function of L , $\omega$, and $E_{\rm In}$) \begin{align} E_{\rm R}&=-r_I E_{\rm In} \\ E_1&=t_I E_{\rm In}-r_I E_2 \\ E_2& =-r_E e^{-2i\phi}E_1 \\ E_{\rm T}&=t_E e^{-i\phi}E_1, \end{align} where the phase $\phi =\omega_0L/c$ and the lower case $t$ and $r$ are the amplitude transmissivity and reflectivity (which are the square roots of the energy transmissivity and reflectivity). This solution for the transmitted field is \begin{align} E_{\rm T}=\frac{t_Et_I e^{-i\phi}}{1-r_Ir_E e^{-2i\phi}}E_{\rm In} \end{align} The power is proportional to the field modulus squared $P\propto |E|^2$; Hence the transmitted power is \begin{align} P_T&=\left |\frac{t_Et_I e^{-i\phi}}{1-r_Ir_E e^{-2i\phi}} \right |^2P_{\rm In} \nonumber \\ &=\frac{T_ET_I}{1+R_IR_E-2r_Ir_E\cos(2\phi)} , \end{align} where $P_{\rm In}$ is the laser power, ### Part b Draw a diagram of the cavity, label each of the nodes, and write down the Adjacency Matrix, $A$, for the Fabry-Perot cavity. Solve for the System Matrix, $G$ using Mathematica or Python or otherwise, and show how one of the elements of $G$ can be used to find the solution in part a) We translate the optical system into a directed graph and then write down the adjacency matrix, defined as $A_{ij}=\text{value of connection connecting node j to node i}$ as well as the system matrix $G=(1-A)^{-1}$ ```python # Define adjacency matrix for FP def A(w): M = np.zeros([7,7],complex) prop = np.exp(-1j*ph(w)) M[1,0] = tI M[1,5] = -rI M[2,1] = prop M[3,2] = tE M[4,2] = -rE M[5,4] = prop M[6,0] = rI M[6,5] = tI return M # function that calculates system matrix G = (1-A)^(-1) for FP def G(w): return np.linalg.inv(np.identity(7,complex) - A(w)) ``` Recall that the vector of fields $\vec E =(E_0, \dots, E_6)^T$ obeys \begin{align} \vec E =A \vec E +\vec E_{\rm Inj}, \end{align} where the vector of injected fields is (in this case) $\vec E_{\rm Inj}=(E_{\rm In},\dots)^T$. This means that we can use the system matrix $G=(1-A)^{-1}$ to find the field at any of the node locations via \begin{align} \vec E =G \vec E_{\rm Inj} . \end{align} Performing the matrix multiplication, we see that \begin{align} E_i=G_{i0}E_{\rm In}. \end{align} # Problem 2: Frequency Respons **In this problem we will compute the frequency response of a LIGO-like interferometer to gravitational waves. Assume that the results from above still hold.** ## Part (a) **Assume that we now drive the end mirror with a sinusoidal modulation having an amplitude of $x_0$ and a frequency, $\omega$. Write down an expression for the fields reflected from the mirror, utilizing the Jacobi-Anger expansion.** As is shown below, suppose the central location of the mirror is $x=L$ and it is driven so that is position becomes $x=L+\delta L$, with $\delta L =x_0 \cos \omega t$. We calculate the values of the reflected field $E_{\rm R}$ (referred to at $x=0$) in terms of the ingoing field $E_{\rm In}$ (also referred to at $x=0$). At the mirror location $x=L+\delta L$ the reflected field is simply $-r$ times the ingoing field evaluated at the mirror. The propagation to the mirror from $x=0$ contributes a phase factor $e^{-i\phi}$ and the propagation from the mirror to $x=0$, also contributes a phase factor of $e^{-i\phi}$, where $\phi=\omega_0(L+\delta L)/c=\omega_0(L+x_0\cos\omega t)/c$ and $\omega_0$ is the light frequency. Hence the reflected field is \begin{align} E_R&=-r_E e^{-2i\phi}E_{\rm In} =-r_E e^{-2i\omega_0L/c}e^{-2i x_0 \cos (\omega t)/c} E_{\rm In} \end{align} Taylor expanding in small $x_0$ (at fancy restaurants they call this utilizing the Jacobi-Anger expansion) \begin{align} E_R=-r_E e^{-2i\omega_0 L/c}\left[1-i\frac{x_0\omega_0}{c}(e^{i\omega t}+e^{-i\omega t})\right]E_{\rm In} \label{eq:side} \end{align} Note if we restore the time dependent factor $e^{i\omega_0t}$ that the first term has a time dependence $e^{i\omega_0t}$ (and is simply the reflected field when there is no modulation) while the second two terms are sideband fields with the time dependence $e^{i(\omega_0\pm\omega)t}$. ## Part b **Use your knowledge of the frequency dependent System Matrix derived above to compute an expression for the transmitted power. Make a plot of the transfer function of the transmitted power as a function of modulation frequency (the y-axis should be in units of Watts/meter). Hint Remember that the transmitted field will be the sum of the DC fields (computed above) and the AC fields}** Now consider the Fabry Perot Cavity of problem one and imagine that we modulate the end mirror with $\delta L =x_0 \cos\omega t$. From part (a), we know that this produces sideband fields at node 4, i.e \begin{align} E_4=-r_E E_2+ir_E\frac{x_0\omega_0}{c}(e^{i\omega t}+e^{-i\omega t})E_{2}, \end{align} As we are working to first order in the amplitude modulation, we can take $x_0=0$ when we evaluate $E_2$ the second term. From problem 1, when $x_0=0$, we know how to evaluate $E_2$ in terms of $E_{\rm In}$ and the system matrix $E_2=G_{20}(\omega_0)E_{\rm in}$. Hence \begin{align} E_4=-r_E E_2+ir_E\frac{x_0\omega_0}{c}(e^{i\omega t}+e^{-i\omega t})G_{20}(\omega_0)E_{\rm in}. \end{align} Here we are now writing the system matrix $G(\omega)$ as a function of frequency, with the frequency dependence coming from the frequency dependent phase $\phi(\omega)=\omega L/c$. Thus we see that we are effectively injecting fields at the sideband frequencies $\omega_0\pm \omega$ at node 4. The system matrix evaluated at the sideband frequencies also governs how light at the sideband frequencies propagates through the optical system. Thus we can write the complete field (with it's time dependence) as \begin{align} \vec E(t)&=G(\omega_0) \begin{bmatrix} E_{\rm In} \\ 0 \\0 \\0 \\0 \\0 \\0 \end{bmatrix} e^{i\omega_0 t} \nonumber \\ &+G(\omega_0 +\omega) \begin{bmatrix} 0 \\ 0 \\ 0 \\0 \\ ir_EG_{20}(\omega_0)E_{\rm In}x_0\omega_0/c \\ 0 \\0 \end{bmatrix} e^{i(\omega_0+\omega)t} +G(\omega_0 -\omega) \begin{bmatrix} 0 \\ 0 \\ 0 \\0 \\ ir_EG_{20}(\omega_0)E_{\rm In}x_0\omega_0/c \\ 0 \\0 \end{bmatrix} e^{i(\omega_0-\omega)t} \end{align} Performing the matrix multiplication yields a transmitted field (including all of the time dependence) of \begin{align} E_T(t)&=G_{30}(\omega_0)E_{\rm In}e^{i\omega_0 t} \nonumber \\ &+G_{34}(\omega_0+\omega)ir_EG_{20}(\omega_0)x_0\frac{\omega_0}{c}E_{\rm In}e^{i(\omega+\omega_0)t} +G_{34}(\omega_0-\omega)ir_EG_{20}(\omega_0)x_0\frac{\omega_0}{c}E_{\rm In}e^{i(-\omega+\omega_0)t} \label{eq:ETmod} \end{align} Thus we see that the transmitted field also has components at the carrier frequency $\omega_0$ and and the sideband frequencies $\omega_0\pm \omega$. This produces an output power with a DC component (computed in problem 1) and a slowly varying (relative to the carrier frequency) modulation at $\omega$. Namely, anytime the complex electric field is of the form \begin{align} E(t)=E_0e^{i\omega_0 t}+E_+e^{i(\omega_0+\omega)t}+E_-e^{i(\omega_0-\omega)t}, \end{align} with $E_\pm\ll E_0$, then the power is \begin{align} P&\propto |E|^2 \nonumber \\ &=|E_0|^2+E_0 e^{i\omega_0 t}(E_+^*e^{-i(\omega_0+\omega)t}+E_-^*e^{i(\omega_0+\omega)t}) +E_0^* e^{-i\omega_0 t}(E_+e^{i(\omega_0+\omega)t}+E_-e^{-i(\omega_0+\omega)t}) +\mathcal{O}(E_\pm^2) \nonumber \\ &=|E_0|^2+e^{i\omega t}\left[E_0^*E_++E_0E_-^*\right]+e^{-i\omega t}\left[E_0E_+^*+E_0^*E_-\right] \nonumber \\ &=|E_0|^2 +2A\cos(\omega t+\delta), \end{align} where $A$ and $\delta$ are the amplitude and phase of $E_0^*E_++E_0E_-^*=Ae^{i\delta}$. The transmitted field is of this form with \begin{align} &E_0=G_{30}(\omega_0)E_{\rm In},& &E_{\pm}=ir_Ex_0\frac{\omega_0}{c}G_{34}(\omega_0\pm \omega)G_{20}(\omega_0)E_{\rm In}& \end{align} Note both $E_0$ and $E_{\pm}$ are proportional to $E_{\rm in}$. Note that both $A$ and $|E_0|^2$ are proportional to $|E_{\rm In}|^2$ or equivalently the input power $P_{\rm In}$. Hence, we can write \begin{align} P_T=|G_{30}(\omega_0)|^2P_{\rm In}+\Delta P\cos(\omega t+\Phi), \end{align} where \begin{align} \Delta P e^{i\Phi}&=2G^*_{30}(\omega_0)ir_Ex_0\frac{\omega_0}{c}G_{34}(\omega_0+\omega)G_{20}(\omega_0)+2G_{30}(\omega_0)(ir_Ex_0\frac{\omega_0}{c}G_{34}(\omega_0-\omega)G_{20}(\omega_0))^*P_{\rm In} \nonumber \\ &=2ir_Ex_0\frac{\omega_0}{c}\left[G^*_{30}(\omega_0)G_{34}(\omega_0+\omega)G_{20}(\omega_0)-G_{30}(\omega_0)G^*_{34}(\omega_0-\omega)G^*_{20}(\omega_0)\right]P_{\rm in}, \end{align} We consider the transfer function from modulation amplitude to power to be $\Delta P/x_0$. The constants characterizing the Fabry-Perot Cavity in this probelm are below. Note that the length of the cavity is micro-tuned to be slightly off resonance. ```python #Defining constants c = const.c # speed of light lam = 437e-9 # laser wavelength w0 = 2*np.pi*c/lam # laser frequency L0 = 4000 # initial length guess L = round(L0/lam)*lam # length of Fabry Perot cavity (tuned to int # of waves) L += 10e-12 # add small offset so that there is a linear readout TI = 0.014 # power transmissivity of input mirror TE = 1e-5 # power transmissivity of end mirror tI = np.sqrt(TI) # amplitude transmissivity of input mirror tE = np.sqrt(TE) # amplitdue transmissivity of end mirror RI = 1-TI # energy reflectivity of input mirror RE = 1-TE # energy reflectivity of end mirror rI = np.sqrt(RI) # amplitude reflectivity of input mirror rE = np.sqrt(RE) # amplitude reflectivity of end mirror Pin = 1 # laser power def ph(w): # phase accumaled over a half round trip in the FP cavity return w*L/c ``` A function that computes $\frac{\Delta P}{x_0} e^{i\Phi}$. The transfer function for the modulation amplitude is the absolute value of this function and the transfer function for the phase is the arguement. ```python # define a function that computes Delta P/ x_0 in eq. 22 for FP def P_trans(w): wc = w0 z = 2j*rE*(2*np.pi/lam)*Pin * (np.conj(G(wc)[3,0]) * (G(wc+w)[3,4] * G(wc)[2,0]) - G(wc)[3,0] * np.conj(G(wc-w)[3,4] * G(wc)[2,0])) return z ``` Bode plots for magnitude of the tranfer function ```python #plot (zoomed out) for FP f = np.logspace(0, 5, 1300) omega = 2*np.pi*f #y = list(map(Transfer, omega)) y = np.zeros_like(omega, complex) for i in range(len(omega)): y[i] = P_trans(omega[i]) ``` ```python fig1,ax = plt.subplots(2,1, sharex=True, figsize=(8,7)) ax[0].loglog(f, np.abs(y), rasterized=True) ax[0].set_title(r'Single Fabry-Perot transfer function') ax[0].set_ylabel(r'$\Delta P/x_0 [W/m]$') ax[1].semilogx(f, np.angle(y, deg=True), rasterized=True) ax[1].set_ylabel(r'Phase [deg]') ax[1].set_xlabel(r'Frequency [Hz]') ax[1].set_yticks(np.arange(-180,181,45)) plt.savefig("Figures/2bwide.pdf", bbox_inches='tight') ``` A close up of the resonances. The yellow lines denote the resonances frequency of the static cavity ```python # plot (zoomed in) for FP f = np.linspace(0, 1e5, 1000) y = np.zeros_like(f, complex) for i in range(len(f)): y[i] = P_trans(2*np.pi*f[i]) plt.figure(221) plt.semilogy(f/1000, np.abs(y), rasterized=True) plt.axvline(c/2/L/1000, color='xkcd:tangerine', alpha=0.5, lw=5) plt.axvline(c/1/L/1000, color='xkcd:shit', alpha=0.5, lw=5) plt.xlabel(r'Frequency [kHz]') plt.ylabel(r'$\Delta P/x_0 [W/m]$') plt.savefig("Figures/2bclose.pdf", bbox_inches='tight') ``` ## Part c **Now write down a larger Adjacency Matrix which represents a Michelson interferometer with Fabry-Perot cavities in place of the usual end mirrors. Assume that there is a small asymmetry in the Michelson, such that the distance from the beamsplitter to one of the FP cavities is 100 pm larger than the distance to the other cavity. Make a Bode plot of the transfer function as in part b), but instead of the transmission of the FP cavity, use the anti-symmetric (detection) port as the readout.** The optical layout of the Michelson interferometer is The corresponding directed graph is We take the mirrors in each Fabry-Perot cavity to be identical. We assume the y-axis FP cavity is located a distance d from the beam splitter\footnote{The field at the antisymmetric port depends on d when $\Delta \neq 0$, but that the power does not. Hence we will set $d=0$ in our numerical computations of the power.} and the the x-cavity is located a distance $d+\Delta$ from the beam splitter with $\Delta =100\,pm$. We take the transmissivity and reflectivity of the beam splitter to be $t_{\rm BS}=r_{\rm BS}=1/\sqrt{2}$. ```python # part 2c # extra parameters for 2c TBS = 0.5 tBS = np.sqrt(TBS) #beam splitter tranmissivity rBS = np.sqrt(1 - TBS) #beam splitter reflectivity # distance to the y FP cavity. # The field at the antisymmetric port depends on d when Del is not zero, but the power doesn't d = 0 Del = 1e-10 #difference between distance to x cavity and the distance to the y cavity ``` We now imagine that the x-axis end mirror is shaken about its central location with $\delta L= x_0\cos\omega t$. Using the results of problem 2 (a) and the logic of 2 (b), this means that the field at the anti-symmetric port is now the field at the carrier frequency plus the result of injecting the field (including the full time dependence) \begin{align} E_{side}(t)=ir_E\frac{x_0\omega_0}{c}(e^{i(\omega_0 +\omega)t}+e^{+i(\omega_0-\omega )t})G_{20}(\omega_0)E_{\rm in} \end{align} in node 3. Again using the system matrix to propagate the fields, the field at the antisymmetric port is \begin{align} E_{AS}(t)&=G_{12,0}(\omega_0)E_{\rm In}e^{i\omega_0 t} \nonumber \\ &+G_{12,3}(\omega_0+\omega)ir_EG_{20}(\omega_0)x_0\frac{\omega_0}{c}E_{\rm In}e^{i(\omega+\omega_0)t} +G_{12,3}(\omega_0-\omega)ir_EG_{20}(\omega_0)x_0\frac{\omega_0}{c}E_{\rm In}e^{i(-\omega+\omega_0)t}, \label{eq:EASmod} \end{align} which is exactly of the same form of the field as the transmitted field from the modulated Fabry-Perot Cavity, with the exception that we have relabeled the elements of the system matrix to correspond to the correct nodes. Hence, the same logic as above reveals that the power at the antisymmetric port is \begin{align} P_T=|G_{12,0}(\omega_0)|^2P_{\rm In}+\Delta P\cos(\omega t+\Phi), \end{align} where \begin{align} \Delta P e^{i\Phi}&=2G^*_{12,0}(\omega_0)ir_Ex_0\frac{\omega_0}{c}G_{12,3}(\omega_0+\omega)G_{20}(\omega_0)+2G_{12,0}(\omega_0)(ir_Ex_0\frac{\omega_0}{c}G_{12,3}(\omega_0-\omega)G_{20}(\omega_0))^*P_{\rm In} \nonumber \\ &=2ir_Ex_0\frac{\omega_0}{c}\left[G^*_{12,0}(\omega_0)G_{12,3}(\omega_0+\omega)G_{20}(\omega_0)-G_{12,0}(\omega_0)G^*_{12,3}(\omega_0-\omega)G^*_{20}(\omega_0)\right]P_{\rm in}, \end{align} The nonzero components of the adjacency matrix A are \begin{align} &A_{10}=t_{BS}e^{-i\phi_x} & \nonumber \\ &A_{21}=t_I, & &A_{23}=-r_Ie^{-i\phi}& \nonumber \\ &A_{32}=-r_Ee^{-i\phi}& \nonumber \\ &A_{42}=t_Ee^{-i\phi}& \nonumber \\ &A_{51}=r_I, & &A_{53}=t_I e^{-i\phi}& \nonumber \\ &A_{60}=-r_{BS}e^{-i\phi_y}& \nonumber \\ &A_{76}=t_I,& &A_{7,9}=-r_Ie^{-i\phi}& \nonumber \\ &A_{87}=t_E e^{-i\phi},& \nonumber \\ &A_{97}=-r_E e^{-i\phi},& \nonumber \\ &A_{10,6}=r_I,& &A_{10,9}=t_I e^{-i\phi},& \nonumber \\ &A_{11,5}=t_{BS}e^{-i\phi_x},& &A_{11,10}=-r_{BS}e^{-i\phi_y}& \nonumber \\ &A_{12,5}=r_{BS}e^{-i\phi_x},& &A_{12,10}=t_{BS}e^{-i\phi_y}&, \end{align} where the phases are \begin{align} \phi(\omega)&=\omega L/c \nonumber \\ \phi_y(\omega)&=\omega d/c \nonumber \\ \phi_x(\omega) &=\omega(d+\Delta)/c \end{align} We compute the adjacency matrix, the system matrix and the power transfer funciton $\frac{\Delta P}{x_0}e^{i\Phi}$ ```python def phx(w): #phase accumulated travelling to the x FP cavity return w*(d+Del)/c def phy(w): #phase accumulated travelling to the y FP cavity return w*(d)/c#plot (zoomed out) for FP # make x be a list of f rather than \omega, so we can plot transmitted power versus f f = np.logspace(0, 5, 1000) #y = list(map(Transfer, 2*np.pi*f)) ``` ```python #Define adjacency matrix for Michelson def A(w): M = np.zeros([13,13],complex) M[1,0] = tBS*np.exp(-1j*phx(w)) M[2,1] = tI M[2,3] = -rI*np.exp(-1j*ph(w)) M[3,2] = -rE*np.exp(-1j*ph(w)) M[4,2] = tE*np.exp(-1j*phx(w)) M[5,1] = +rI M[5,3] = tI*np.exp(-1j*ph(w)) M[6,0] = -rBS*np.exp(-1j*phy(w)) M[7,6] = tI M[7,9] = -rI*np.exp(-1j*ph(w)) M[8,7] = tE*np.exp(-1j*ph(w)) M[9,7] = -rE*np.exp(-1j*ph(w)) M[10,6] = +rI M[10,9] = tI*np.exp(-1j*ph(w)) M[11,5] = tBS*np.exp(-1j*phx(w)) M[11,10] = -rBS*np.exp(-1j*phy(w)) M[12,5] = rBS*np.exp(-1j*phx(w)) M[12,10] = tBS*np.exp(-1j*phy(w)) return M # function that calculates system matrix G = (1-A)^(-1) for Michelson def G(w): return np.linalg.inv(np.identity(13,complex) - A(w)) #define a function that computes Delta P/ x_0 in eq. 26 for Michelson def P_dark(w): z = 2j * rE * Pin* (w0/c) * (np.conj(G(w0)[12,0])* G(w0+w)[12,3] * G(w0)[2,0] - G(w0)[12,0] * np.conj(G(w0-w)[12,3] * G(w0)[2,0])) return z ``` Bode plots ```python #plot (zoomed out) for Fabry-Perot Michelson f = np.logspace(0, 5, 1000) #y = list(map(Transfer, omega)) y = np.zeros_like(f, complex) for i in range(len(f)): y[i] = P_dark(2*np.pi*f[i]) ``` ```python fig23, ax = plt.subplots(2,1, sharex=True, figsize=(8,7)) ax[0].loglog(f, np.abs(y), rasterized=True, c='xkcd:Burple') ax[0].set_title(r'Michelson w/ Fabry-Perot arms') ax[0].set_ylabel(r'$\Delta P/x_0 [W/m]$') ax[1].semilogx(f, np.angle(y, deg=True), rasterized=True, c='xkcd:primary blue') ax[1].set_ylabel(r'Phase [deg]') ax[1].set_xlabel(r'Frequency [Hz]') ax[1].set_yticks(np.arange(-180,181,45)) plt.savefig("Figures/2cwide.pdf") ``` Close up of the resonances. The yellow lines denote the resonances frequency of the static Fabry Perot cavity ```python #plot (zoomed in) for Michelson # make x be a list of f rather than \omega, so we can plot transmitted power versus f f = np.linspace(0, 1e5, 1000) y = np.zeros_like(f, complex) for i in range(len(f)): y[i] = P_dark(2*np.pi*f[i]) plt.figure(227) plt.semilogy(f/1000, np.abs(y), rasterized=True) plt.axvline(c/2/L/1000, color='xkcd:tangerine', alpha=0.5, lw=5) plt.axvline(c/1/L/1000, color='xkcd:shit', alpha=0.5, lw=5) plt.xlabel(r'Frequency [kHz]') plt.ylabel(r'$\Delta P/x_0 [W/m]$') plt.savefig("Figures/2cclose.pdf") ``` ```python ```
f6ac4d2db138152dcbf45d48ba482fff5cb1c091
28,681
ipynb
Jupyter Notebook
Assignments/2018/a1.ipynb
rxa254/ph237
a9b3b0360966268537e53b7cc073187596fc91ff
[ "MIT" ]
1
2020-04-05T22:58:54.000Z
2020-04-05T22:58:54.000Z
Assignments/2018/a1.ipynb
rxa254/ph237
a9b3b0360966268537e53b7cc073187596fc91ff
[ "MIT" ]
10
2018-04-16T01:10:34.000Z
2020-05-08T05:37:09.000Z
Assignments/2018/a1.ipynb
rxa254/ph237
a9b3b0360966268537e53b7cc073187596fc91ff
[ "MIT" ]
1
2018-04-05T17:37:09.000Z
2018-04-05T17:37:09.000Z
43.522003
544
0.557477
true
7,209
Qwen/Qwen-72B
1. YES 2. YES
0.882428
0.819893
0.723497
__label__eng_Latn
0.934561
0.519257
# Visualizing stationary paths of a functional Last revised: 02-Feb-2019 by Dick Furnstahl [furnstahl.1@osu.edu] Consider the functional $\begin{align} S = \int_{x_1}^{x_2} f[y(x), y'(x), x] \, dx \end{align}$ with $y_1 = y(x_1)$ and $y_2 = y(x_2)$ fixed. We denote by $y^*(x)$ the path that minimizes $S$ (or, more generally, makes it stationary). Then we consider the class of candidate paths $y(x)$ given by $\begin{align} y(x) = y^*(x) + \alpha \eta(x) \end{align}$ where $\eta(x)$ is some function that vanishes at the endpoints: $\eta(x_1) = \eta(x_2) = 0$. We can derive the Euler-Lagrange equations by minimizing $S(\alpha)$ with respect to $\alpha$. Here we visualize this problem by considering a particular $S$, choosing among some possible $\eta(x)$ definitions, and seeing how $S$ is minimized with respect to $\alpha$. We will also allow for an incorrect determination of $y^*(x)$, in which case we expect that the minimum alpha will give us a reasonable reproduction of the true $y^*(x)$. The variation of $\alpha$ and the choice of functions will be made using widgets from `ipywidgets`. ## Looking at a plot of the functional evaluation versus $\alpha$ \[We'll use `%matplotlib notebook` so that we can modify figures without redrawing them.\] ```python %matplotlib notebook ``` ```python import numpy as np import matplotlib.pyplot as plt import ipywidgets as widgets from IPython.display import display ``` ### Functional from Taylor problem 6.9 This problem states: "Find the equation of the path from the origin $O$ to the point $P(1,1)$ in the $xy$ plane that makes the integral $\int_O^P (y'^2 + y y' + y^2)$ stationary. The answer from solving the Euler-Lagrange equation is $y^*(x) = \sinh(x)/\sinh(1)$. ```python def y_star(x): """Path that minimizes the functional in Taylor problem 6.9.""" return np.sinh(x) / np.sinh(1.) ``` ```python delta_x = 0.001 x_pts = np.arange(0., 1., delta_x) fig = plt.figure(figsize=(6,3), num='Visualizing stationary paths of a functional') ax1 = fig.add_subplot(1,2,1) ax2 = fig.add_subplot(1,2,2) def setup_figure(): ax1.set_title('Show paths') ax1.plot(x_pts, y_star(x_pts), color='black', lw=2) ax1.set_xlabel('x') ax1.set_ylabel('y(x)') ax2.set_title('Evaluate functional') ax2.set_xlabel(r'$\alpha$') ax2.set_ylabel('functional') ax2.set_xlim(-0.4, 0.4) ax2.set_ylim(1.5, 3.) #ax2.axvline(0., color='black', alpha=0.3) ax2.axhline(evaluate_functional(x_pts, y_star(x_pts)), color='black', alpha=0.3) fig.tight_layout() def evaluate_functional(x_pts, y_pts): """Given arrays of x and y points, evaluate the functional from 6.9.""" # The numpy gradient function takes the derivative of an array y_pts # that is a function of points x in x_pts. y_deriv_pts = np.gradient(y_pts, x_pts) f = y_deriv_pts**2 + y_pts * y_deriv_pts + y_pts**2 # Use the numpy trapezoid rule (trapz) to do the integral over f. return np.trapz(f, x_pts) def make_path(alpha, ax1_passed, ax2_passed, base_function='exact', eta_function='sine'): """Given a base function, which may be the exact y^*(x) or a guess that is not correct, generate and plot the path corresponding to adding alpha*eta(x) to the base function, with eta(x) chosen among some functions that vanish at the endpoints in x. """ # map x_pts to zero to 1 (it may already be there) x_mapped_pts = (x_pts - x_pts[0]) / (x_pts[-1] - x_pts[0]) # Choices for the base function if (base_function == 'exact'): base = lambda x : y_star(x) elif (base_function == 'guess 1'): base = lambda x : np.sinh(2.*x) / np.sinh(2.) elif (base_function == 'guess 2'): base = lambda x : x**3 if (eta_function == 'sine'): eta = lambda x : np.sin(np.pi * x) elif (eta_function == 'parabola'): eta = lambda x : 4. * x * (1. - x) y_new_pts = base(x_pts) + alpha * eta(x_mapped_pts) ax1_passed.plot(x_pts, y_new_pts, color='red', lw=1) ax2_passed.plot(alpha, evaluate_functional(x_pts, y_new_pts), '.', color='red') def reset_graph(event): ax1.clear() ax2.clear() setup_figure() button = widgets.Button( description='reset graph' ) button.on_click(reset_graph) widgets.interact(make_path, alpha=widgets.FloatSlider(min=-1., max=1., step=.05, value=0.0, description=r'$\alpha$', continuous_update=False), ax1_passed=widgets.fixed(ax1), ax2_passed=widgets.fixed(ax2), base_function=widgets.Dropdown(options=['exact', 'guess 1', 'guess 2'], value='exact', description='base function'), eta_function=widgets.Dropdown(options=['sine', 'parabola'], value='sine', description=r'$\eta(x)$') ) setup_figure() button ``` <IPython.core.display.Javascript object> interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='$\\alpha$', max=1.0, min=-1… Button(description='reset graph', style=ButtonStyle()) ```python ```
4528a20383a3e9862a97ae430eabfd1653cf1fbe
149,782
ipynb
Jupyter Notebook
2020_week_6/.ipynb_checkpoints/visualizing_stationary_functional_v1-checkpoint.ipynb
CLima86/Physics_5300_CDL
d9e8ee0861d408a85b4be3adfc97e98afb4a1149
[ "MIT" ]
null
null
null
2020_week_6/.ipynb_checkpoints/visualizing_stationary_functional_v1-checkpoint.ipynb
CLima86/Physics_5300_CDL
d9e8ee0861d408a85b4be3adfc97e98afb4a1149
[ "MIT" ]
null
null
null
2020_week_6/.ipynb_checkpoints/visualizing_stationary_functional_v1-checkpoint.ipynb
CLima86/Physics_5300_CDL
d9e8ee0861d408a85b4be3adfc97e98afb4a1149
[ "MIT" ]
null
null
null
143.744722
106,275
0.826034
true
1,473
Qwen/Qwen-72B
1. YES 2. YES
0.817574
0.91611
0.748988
__label__eng_Latn
0.91674
0.578482
```python import opt_mo import numpy as np import sympy as sym import itertools sym.init_printing() ``` ```python p_1, p_2, p_3, p_4 = sym.symbols("p_1, p_2, p_3, p_4") q_1, q_2, q_3, q_4 = sym.symbols("q_1, q_2, q_3, q_4") ``` ```python p = (p_1, p_2, p_3, p_4) q = (q_1, q_2, q_3, q_4) ``` ```python pi_1, pi_2, pi_3, pi_4 = sym.symbols("pi_1, pi_2, pi_3, pi_4") pi = (pi_1, pi_2, pi_3, pi_4) ``` **Theorem 1 Proof** As discrubed in Section 2 the utility of a memory one player against another is given by the steady states of M multiplied by the payoffs. ```python M = opt_mo.mem_one_match_markov_chain(player=p, opponent=q) ``` ```python ss = opt_mo.steady_states(M, pi) ``` ```python v = sym.Matrix([[ss[pi_1]], [ss[pi_2]], [ss[pi_3]], [ss[pi_4]]]) ``` ```python utility = v.dot(np.array([3, 0, 5, 1])) ``` ```python expr = utility.factor() ``` ```python numerator, denominator = sym.fraction(expr) ``` ```python numerator ``` ```python numerator_elements = [[numerator.coeff(f1 * f2) * f1 * f2 for f2 in p] for f1 in p] ``` ```python flat_elements = list(itertools.chain.from_iterable(numerator_elements)) ``` ```python cross_prod = sum(flat_elements) / 2 ``` ```python cross_prod ``` ```python sym.latex(sum(flat_elements) / 2).replace("\\left", "").replace("\\right", "") ``` 'p_{1} p_{2} (q_{1} q_{2} - 5 q_{1} q_{4} - q_{1} - q_{2} q_{3} + 5 q_{3} q_{4} + q_{3}) + p_{1} p_{3} (- q_{1} q_{3} + q_{2} q_{3}) + p_{1} p_{4} (5 q_{1} q_{3} - 5 q_{3} q_{4}) + p_{2} p_{3} (- q_{1} q_{2} + q_{1} q_{3} + 3 q_{2} q_{4} + q_{2} - 3 q_{3} q_{4} - q_{3}) + p_{2} p_{4} (- 5 q_{1} q_{3} + 5 q_{1} q_{4} + 3 q_{2} q_{3} - 3 q_{2} q_{4} + 2 q_{3} - 2 q_{4}) + p_{3} p_{4} (- 3 q_{2} q_{3} + 3 q_{3} q_{4})' ```python linear_expr = numerator.subs({p_2: 0, p_3: 0, p_4: 0}).coeff(p_1) * p_1 linear_expr += numerator.subs({p_1: 0, p_3: 0, p_4: 0}).coeff(p_2) * p_2 linear_expr += numerator.subs({p_1: 0, p_2: 0, p_4: 0}).coeff(p_3) * p_3 linear_expr += numerator.subs({p_1: 0, p_2: 0, p_3: 0}).coeff(p_4) * p_4 ``` ```python linear_expr ``` ```python sym.latex(linear_expr).replace("\\left", "").replace("\\right", "") ``` 'p_{1} (- q_{1} q_{2} + 5 q_{1} q_{4} + q_{1}) + p_{2} (q_{2} q_{3} - q_{2} - 5 q_{3} q_{4} - q_{3} + 5 q_{4} + 1) + p_{3} (q_{1} q_{2} - q_{2} q_{3} - 3 q_{2} q_{4} - q_{2} + q_{3}) + p_{4} (- 5 q_{1} q_{4} + 3 q_{2} q_{4} + 5 q_{3} q_{4} - 5 q_{3} + 2 q_{4})' ```python constant = numerator.subs({p_2: 0, p_3: 0, p_4: 0, p_1: 0}) ``` ```python constant ``` ```python sym.latex(constant) ``` 'q_{2} - 5 q_{4} - 1' ```python ((constant + linear_expr + cross_prod) - numerator).simplify() ``` **Denominator** ```python denominator_elements = [[denominator.coeff(f1 * f2) * f1 * f2 for f2 in p] for f1 in p] ``` ```python flat_elements = list(itertools.chain.from_iterable(denominator_elements)) ``` ```python cross_prod = sum(flat_elements) / 2 ``` ```python cross_prod ``` ```python sym.latex(cross_prod).replace("\\left", "").replace("\\right", "") ``` 'p_{1} p_{2} (q_{1} q_{2} - q_{1} q_{4} - q_{1} - q_{2} q_{3} + q_{3} q_{4} + q_{3}) + p_{1} p_{3} (- q_{1} q_{3} + q_{1} q_{4} + q_{2} q_{3} - q_{2} q_{4}) + p_{1} p_{4} (- q_{1} q_{2} + q_{1} q_{3} + q_{1} + q_{2} q_{4} - q_{3} q_{4} - q_{4}) + p_{2} p_{3} (- q_{1} q_{2} + q_{1} q_{3} + q_{2} q_{4} + q_{2} - q_{3} q_{4} - q_{3}) + p_{2} p_{4} (- q_{1} q_{3} + q_{1} q_{4} + q_{2} q_{3} - q_{2} q_{4}) + p_{3} p_{4} (q_{1} q_{2} - q_{1} q_{4} - q_{2} q_{3} - q_{2} + q_{3} q_{4} + q_{4})' ```python linear_expr = denominator.subs({p_2: 0, p_3: 0, p_4: 0}).coeff(p_1) * p_1 linear_expr += denominator.subs({p_1: 0, p_3: 0, p_4: 0}).coeff(p_2) * p_2 linear_expr += denominator.subs({p_1: 0, p_2: 0, p_4: 0}).coeff(p_3) * p_3 linear_expr += denominator.subs({p_1: 0, p_2: 0, p_3: 0}).coeff(p_4) * p_4 ``` ```python sym.latex(linear_expr).replace("\\left", "").replace("\\right", "") ``` 'p_{1} (- q_{1} q_{2} + q_{1} q_{4} + q_{1}) + p_{2} (q_{2} q_{3} - q_{2} - q_{3} q_{4} - q_{3} + q_{4} + 1) + p_{3} (q_{1} q_{2} - q_{2} q_{3} - q_{2} + q_{3} - q_{4}) + p_{4} (- q_{1} q_{4} + q_{2} + q_{3} q_{4} - q_{3} + q_{4} - 1)' ```python constant = denominator.subs({p_2: 0, p_3: 0, p_4: 0, p_1: 0}) ``` ```python constant ``` ```python sym.latex(constant) ``` 'q_{2} - q_{4} - 1' ```python sym.Matrix(Q_num) ``` ```python n.collect(p_1 * p_2).collect(p_1 * p_3).collect(p_1 * p_4).collect(p_2 * p_3).collect(p_2 * p_4) ``` ```python ``` ```python element = [[n.coeff(f1 * f2) * f1 * f2 for f2 in p] for f1 in p] ``` ```python flat_elements = list(itertools.chain.from_iterable(list2d)) ``` ```python flat_elements ``` <function __main__.<lambda>(l)> ```python expr = 0 for i in range(3): for j in range() expr+= n.coeff(p[i] * p[i + 1]) * p[i] * p[i + 1] ``` ```python expr ``` ```python (n - expr).simplify() ``` ```python ```
1551641618bec275ea5d9dc1db0d63e382937555
79,103
ipynb
Jupyter Notebook
nbs/0.0.2 Proofs.ipynb
trallard/Memory-size-in-the-prisoners-dilemma
d674b3c6950beb3c4e0cc22230a1529c3959afb4
[ "MIT" ]
2
2020-03-31T16:34:06.000Z
2020-04-01T14:36:42.000Z
nbs/0.0.2 Proofs.ipynb
trallard/Memory-size-in-the-prisoners-dilemma
d674b3c6950beb3c4e0cc22230a1529c3959afb4
[ "MIT" ]
null
null
null
nbs/0.0.2 Proofs.ipynb
trallard/Memory-size-in-the-prisoners-dilemma
d674b3c6950beb3c4e0cc22230a1529c3959afb4
[ "MIT" ]
null
null
null
106.751687
11,224
0.806189
true
2,259
Qwen/Qwen-72B
1. YES 2. YES
0.843895
0.661923
0.558593
__label__eng_Latn
0.096635
0.13613
</a> # Modulo II: Vectores Palabra (Word Embeddings) y CBOW 02 Veremos cómo preparar los datos para aplicar: - Propagación hacia adelante (Forward propagation). - Pérdida de entropía cruzada (crosss-entropy loss). - Retropropagación (Backpropagation). - Descenso de gradiente (gradient descent). ```python import numpy as np ``` ## Forward propagation <div style="width:image width px; font-size:100%; text-align:center;"> Figure 2 </div> ```python N = 3 V = 5 # Inicializando los pesos de la red ``` ```python ``` ### Inicialización de pesos y bías ```python W1 = np.array([[ 0.41687358, 0.08854191, -0.23495225, 0.28320538, 0.41800106], [ 0.32735501, 0.22795148, -0.23951958, 0.4117634 , -0.23924344], [ 0.26637602, -0.23846886, -0.37770863, -0.11399446, 0.34008124]]) W2 = np.array([[-0.22182064, -0.43008631, 0.13310965], [ 0.08476603, 0.08123194, 0.1772054 ], [ 0.1871551 , -0.06107263, -0.1790735 ], [ 0.07055222, -0.02015138, 0.36107434], [ 0.33480474, -0.39423389, -0.43959196]]) b1 = np.array([[ 0.09688219], [ 0.29239497], [-0.27364426]]) b2 = np.array([[ 0.0352008 ], [-0.36393384], [-0.12775555], [-0.34802326], [-0.07017815]]) ``` Agregar las funciones vistas en los notebooks pasados ```python def get_dict(data): words = sorted(list(set(data))) n = len(words) idx = 0 # return these correctly word2Ind = {} Ind2word = {} for k in words: word2Ind[k] = idx Ind2word[idx] = k idx += 1 return word2Ind, Ind2word def get_windows(words, C): i = C while i < len(words) - C: center_word = words[i] context_words = words[(i - C):i] + words[(i+1):(i+C+1)] yield context_words, center_word i += 1 def word_to_one_hot_vector(word, word2Ind, V): one_hot_vector = np.zeros(V) one_hot_vector[word2Ind[word]] = 1 return one_hot_vector def context_words_to_vector(context_words, word2Ind, V): context_words_vectors = [word_to_one_hot_vector(w, word2Ind, V) for w in context_words] context_words_vectors = np.mean(context_words_vectors, axis=0) return context_words_vectors def get_training_example(words, C, word2Ind, V): for context_words, center_word in get_windows(words, C): yield context_words_to_vector(context_words, word2Ind, V), word_to_one_hot_vector(center_word, word2Ind, V) ``` ```python words = ['i', 'am', 'happy', 'because', 'i', 'am', 'learning'] ``` ```python word2Ind, Ind2word = get_dict(words) ``` ```python Ind2word ``` {0: 'am', 1: 'because', 2: 'happy', 3: 'i', 4: 'learning'} ```python word2Ind ``` {'am': 0, 'because': 1, 'happy': 2, 'i': 3, 'learning': 4} ## Datos de entrenamiento ```python training_examples = get_training_example(words, 2, word2Ind, V) ``` ```python training_examples ``` <generator object get_training_example at 0x7fc9f562b9e0> ```python x_array, y_array = next(training_examples) ``` ```python x_array ``` array([0.25, 0.25, 0. , 0.5 , 0. ]) ```python y_array ``` array([0., 0., 1., 0., 0.]) ```python x = x_array.copy() ``` ```python x.reshape(V,1) ``` array([[0.25], [0.25], [0. ], [0.5 ], [0. ]]) ```python x.shape=(V,1) x ``` array([[0.25], [0.25], [0. ], [0.5 ], [0. ]]) ```python y = y_array.copy() ``` ```python y.shape = (V,1) ``` ```python y ``` array([[0.], [0.], [1.], [0.], [0.]]) ```python def relu(z): result = z.copy() result[result<0]=0 return result def softmax(z): e_z= np.exp(z) sum_ez = np.sum(e_z) return e_z / sum_ez ``` ## Forward ### Valores de la capa oculta \begin{align} \mathbf{z_1} = \mathbf{W_1}\mathbf{x} + \mathbf{b1} \\ \mathbf{h} = \mathbf{ReLu}(\mathbf{z_1)} \\ \end{align} ```python z1 = np.dot(W1, x) + b1 ``` ```python z1 ``` array([[ 0.36483875], [ 0.63710329], [-0.3236647 ]]) ```python h = relu(z1) h ``` array([[0.36483875], [0.63710329], [0. ]]) ### Valores de la capa de salida \begin{align} \mathbf{z_2} = \mathbf{W_2}\mathbf{h} + \mathbf{b2} \\ \mathbf{\hat{y}} = \mathbf{softmax}(\mathbf{z_2)} \\ \end{align} ```python z2 = np.dot(W2, h) + b2 ``` ```python y_hat = softmax(z2) ``` ```python y_hat ``` array([[0.18519074], [0.19245626], [0.23107446], [0.18236353], [0.20891502]]) ```python ``` 2 ```python y ``` array([[0.], [0.], [1.], [0.], [0.]]) ```python Ind2word[y_hat.argmax()] ``` 'happy' ### Cross-entropy loss $$ J = -\sum\limits_{k=1}^{V} y_k \log{\hat{y}_k}$$ ```python def cross_entropy_loss(y_predicted, y_actual): loss = np.sum(-np.log(y_predicted)*y_actual) return loss ``` ```python cross_entropy_loss(y_hat, y) ``` 1.4650152923611106 ```python ``` ### Backpropagation Las formulas que necesitamos para implementar el backpropagation son: \begin{align} \frac{\partial J}{\partial \mathbf{W_1}} &= \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right )\mathbf{x}^\top \tag{7}\\ \frac{\partial J}{\partial \mathbf{W_2}} &= (\mathbf{\hat{y}} - \mathbf{y})\mathbf{h^\top} \tag{8}\\ \frac{\partial J}{\partial \mathbf{b_1}} &= \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right ) \tag{9}\\ \frac{\partial J}{\partial \mathbf{b_2}} &= \mathbf{\hat{y}} - \mathbf{y} \tag{10} \end{align} Calcule la derivada parcial de la función de pérdida con respecto a $ \mathbf {b_2} $ y almacene el resultado en `grad_b2`. $$\frac{\partial J}{\partial \mathbf{b_2}} = \mathbf{\hat{y}} - \mathbf{y} \tag{10}$$ ```python grad_b2 = y_hat - y ``` ```python grad_b2 ``` array([[ 0.18519074], [ 0.19245626], [-0.76892554], [ 0.18236353], [ 0.20891502]]) Calcular la derivada parcial de la función con respecto a $ \mathbf {w_2} $, y guardarlo en `grad_W2` $$\frac{\partial J}{\partial \mathbf{W_2}} = (\mathbf{\hat{y}} - \mathbf{y})\mathbf{h^\top} \tag{8}$$ ```python grad_w2 = np.dot((y_hat - y), h.T) grad_w2 ``` array([[ 0.06756476, 0.11798563, 0. ], [ 0.0702155 , 0.12261452, 0. ], [-0.28053384, -0.48988499, -0. ], [ 0.06653328, 0.1161844 , 0. ], [ 0.07622029, 0.13310045, 0. ]]) **Ahora, calcule la derivada con respecto a $\mathbf{b_1}$ y guardar el resultado en `grad_b1`.** $$\frac{\partial J}{\partial \mathbf{b_1}} = \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right ) \tag{9}$$ ```python grad_b1 = relu(np.dot(W2.T, (y_hat - y))) grad_b1 ``` array([[0. ], [0. ], [0.17045858]]) **Finalmente, calcular la derivada parcial del loss con respecto a $\mathbf{W_1}$, y guardarlo en`grad_W1`.** $$\frac{\partial J}{\partial \mathbf{W_1}} = \rm{ReLU}\left ( \mathbf{W_2^\top} (\mathbf{\hat{y}} - \mathbf{y})\right )\mathbf{x}^\top \tag{7}$$ ```python grad_w1 = np.dot(relu(np.dot(W2.T,grab_b2)),x.T) grad_w1 ``` array([[0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. ], [0.04261464, 0.04261464, 0. , 0.08522929, 0. ]]) Resultado esperado array([[0. , 0. , 0. , 0. , 0. ], [0. , 0. , 0. , 0. , 0. ], [0.04261464, 0.04261464, 0. , 0.08522929, 0. ]]) ## Gradiante descendente Durante la fase del gradiante descendente, actualizará los pesos y los bías $ \alpha $ veces el gradiente de las matrices y vectores originales, utilizando las siguientes fórmulas. \begin{align} \mathbf{W_1} &:= \mathbf{W_1} - \alpha \frac{\partial J}{\partial \mathbf{W_1}} \tag{11}\\ \mathbf{W_2} &:= \mathbf{W_2} - \alpha \frac{\partial J}{\partial \mathbf{W_2}} \tag{12}\\ \mathbf{b_1} &:= \mathbf{b_1} - \alpha \frac{\partial J}{\partial \mathbf{b_1}} \tag{13}\\ \mathbf{b_2} &:= \mathbf{b_2} - \alpha \frac{\partial J}{\partial \mathbf{b_2}} \tag{14}\\ \end{align} ```python alpha = 0.03 ``` ```python ``` **Ahora Calcule los nuevo valores de $\mathbf{W_2}$ (que serán guardados en `W2_new`), $\mathbf{b_1}$ (en `b1_new`), y $\mathbf{b_2}$ (en `b2_new`).** \begin{align} \mathbf{W_2} &:= \mathbf{W_2} - \alpha \frac{\partial J}{\partial \mathbf{W_2}} \tag{12}\\ \mathbf{b_1} &:= \mathbf{b_1} - \alpha \frac{\partial J}{\partial \mathbf{b_1}} \tag{13}\\ \mathbf{b_2} &:= \mathbf{b_2} - \alpha \frac{\partial J}{\partial \mathbf{b_2}} \tag{14}\\ \end{align} ```python # Actualizacion de pesos w1_new = W1 - alpha*grad_w1 w2_new = W2 - alpha*grad_w2 b1_new = b1 - alpha*grad_b1 b2_new = b2 - alpha*grad_b2 ``` ```python W1 ``` array([[ 0.41687358, 0.08854191, -0.23495225, 0.28320538, 0.41800106], [ 0.32735501, 0.22795148, -0.23951958, 0.4117634 , -0.23924344], [ 0.26637602, -0.23846886, -0.37770863, -0.11399446, 0.34008124]]) ```python w1_new ``` array([[ 0.41687358, 0.08854191, -0.23495225, 0.28320538, 0.41800106], [ 0.32735501, 0.22795148, -0.23951958, 0.4117634 , -0.23924344], [ 0.25359163, -0.25125325, -0.37770863, -0.13956325, 0.34008124]]) ```python ``` ## Opción 1: extraer los embeddings de W1 ```python w1_new ``` array([[ 0.41687358, 0.08854191, -0.23495225, 0.28320538, 0.41800106], [ 0.32735501, 0.22795148, -0.23951958, 0.4117634 , -0.23924344], [ 0.25359163, -0.25125325, -0.37770863, -0.13956325, 0.34008124]]) ```python for i in range(V): print(Ind2word[i]) ``` am because happy i learning ```python word2Ind ``` {'am': 0, 'because': 1, 'happy': 2, 'i': 3, 'learning': 4} ```python print(f'{x} ----> {w1_new[]}') ``` ## Opción 2: extraer los embeddings de W2 ```python w2_new ``` array([[-0.24209007, -0.465482 , 0.13310965], [ 0.06370138, 0.04444758, 0.1772054 ], [ 0.27131525, 0.08589287, -0.1790735 ], [ 0.05059224, -0.0550067 , 0.36107434], [ 0.31193865, -0.43416402, -0.43959196]]) ```python ``` ## Opción 3: extraer los embeddings de W1 y W2 ```python W3 = (W1 + W2)/2 ``` ```python ``` ```python def gradient_descent(xtrain,ytrain, N, V, numiter, alpha): #inicicalizar el modelo W1,W2,b1,b2 for i in range(numiter): z,h,yhat = forward(xtrain,ytrain,w1,w2,b1,b2) cost = funcion_costo(ytrain, yhat) grad_w1,grad_w2 ... = back_prop # actualizar los pesos W1 = W1 - alpha*grad_w1 W2 = W2 - alpha*grad_w2 b1 = b1 - alpha*grad_b1 b2 = b2 - alpha*grad_b2 ```
6a3bce63e0634d09fc6459c85030c07af3e99bc3
25,514
ipynb
Jupyter Notebook
Module_II/Notebooks_Clase/02-word-embeddings-cbow.ipynb
edgmz28/NLP_Course
c7638828727a685b4601b0f96d4990b94ba6820a
[ "MIT" ]
null
null
null
Module_II/Notebooks_Clase/02-word-embeddings-cbow.ipynb
edgmz28/NLP_Course
c7638828727a685b4601b0f96d4990b94ba6820a
[ "MIT" ]
null
null
null
Module_II/Notebooks_Clase/02-word-embeddings-cbow.ipynb
edgmz28/NLP_Course
c7638828727a685b4601b0f96d4990b94ba6820a
[ "MIT" ]
null
null
null
22.032815
243
0.450851
true
4,181
Qwen/Qwen-72B
1. YES 2. YES
0.890294
0.879147
0.782699
__label__spa_Latn
0.106933
0.656805
# Homework and bake-off: word-level entailment with neural networks ```python __author__ = "Christopher Potts" __version__ = "CS224u, Stanford, Spring 2020" ``` ## Contents 1. [Overview](#Overview) 1. [Set-up](#Set-up) 1. [Data](#Data) 1. [Edge disjoint](#Edge-disjoint) 1. [Word disjoint](#Word-disjoint) 1. [Baseline](#Baseline) 1. [Representing words: vector_func](#Representing-words:-vector_func) 1. [Combining words into inputs: vector_combo_func](#Combining-words-into-inputs:-vector_combo_func) 1. [Classifier model](#Classifier-model) 1. [Baseline results](#Baseline-results) 1. [Homework questions](#Homework-questions) 1. [Hypothesis-only baseline [2 points]](#Hypothesis-only-baseline-[2-points]) 1. [Alternatives to concatenation [2 points]](#Alternatives-to-concatenation-[2-points]) 1. [A deeper network [2 points]](#A-deeper-network-[2-points]) 1. [Your original system [3 points]](#Your-original-system-[3-points]) 1. [Bake-off [1 point]](#Bake-off-[1-point]) ## Overview The general problem is word-level natural language inference. Training examples are pairs of words $(w_{L}, w_{R}), y$ with $y = 1$ if $w_{L}$ entails $w_{R}$, otherwise $0$. The homework questions below ask you to define baseline models for this and develop your own system for entry in the bake-off, which will take place on a held-out test-set distributed at the start of the bake-off. (Thus, all the data you have available for development is available for training your final system before the bake-off begins.) ## Set-up See [the first notebook in this unit](nli_01_task_and_data.ipynb) for set-up instructions. ```python from collections import defaultdict import json import numpy as np import os import pandas as pd from torch_shallow_neural_classifier import TorchShallowNeuralClassifier import nli import utils ``` ```python DATA_HOME = 'data' NLIDATA_HOME = os.path.join(DATA_HOME, 'nlidata') wordentail_filename = os.path.join( NLIDATA_HOME, 'nli_wordentail_bakeoff_data.json') GLOVE_HOME = os.path.join(DATA_HOME, 'glove.6B') ``` ## Data I've processed the data into two different train/test splits, in an effort to put some pressure on our models to actually learn these semantic relations, as opposed to exploiting regularities in the sample. * `edge_disjoint`: The `train` and `dev` __edge__ sets are disjoint, but many __words__ appear in both `train` and `dev`. * `word_disjoint`: The `train` and `dev` __vocabularies are disjoint__, and thus the edges are disjoint as well. These are very different problems. For `word_disjoint`, there is real pressure on the model to learn abstract relationships, as opposed to memorizing properties of individual words. ```python with open(wordentail_filename) as f: wordentail_data = json.load(f) ``` The outer keys are the splits plus a list giving the vocabulary for the entire dataset: ```python wordentail_data.keys() ``` dict_keys(['edge_disjoint', 'vocab', 'word_disjoint']) ### Edge disjoint ```python wordentail_data['edge_disjoint'].keys() ``` dict_keys(['dev', 'train']) This is what the split looks like; all three have this same format: ```python wordentail_data['edge_disjoint']['dev'][: 5] ``` [[['sweater', 'stroke'], 0], [['constipation', 'hypovolemia'], 0], [['disease', 'inflammation'], 0], [['herring', 'animal'], 1], [['cauliflower', 'outlook'], 0]] Let's test to make sure no edges are shared between `train` and `dev`: ```python nli.get_edge_overlap_size(wordentail_data, 'edge_disjoint') ``` 0 As we expect, a *lot* of vocabulary items are shared between `train` and `dev`: ```python nli.get_vocab_overlap_size(wordentail_data, 'edge_disjoint') ``` 2916 This is a large percentage of the entire vocab: ```python len(wordentail_data['vocab']) ``` 8470 Here's the distribution of labels in the `train` set. It's highly imbalanced, which will pose a challenge for learning. (I'll go ahead and reveal that the `dev` set is similarly distributed.) ```python def label_distribution(split): return pd.DataFrame(wordentail_data[split]['train'])[1].value_counts() ``` ```python label_distribution('edge_disjoint') ``` 0 14650 1 2745 Name: 1, dtype: int64 ### Word disjoint ```python wordentail_data['word_disjoint'].keys() ``` dict_keys(['dev', 'train']) In the `word_disjoint` split, no __words__ are shared between `train` and `dev`: ```python nli.get_vocab_overlap_size(wordentail_data, 'word_disjoint') ``` 0 Because no words are shared between `train` and `dev`, no edges are either: ```python nli.get_edge_overlap_size(wordentail_data, 'word_disjoint') ``` 0 The label distribution is similar to that of `edge_disjoint`, though the overall number of examples is a bit smaller: ```python label_distribution('word_disjoint') ``` 0 7199 1 1349 Name: 1, dtype: int64 ## Baseline Even in deep learning, __feature representation is vital and requires care!__ For our task, feature representation has two parts: representing the individual words and combining those representations into a single network input. ### Representing words: vector_func Let's consider two baseline word representations methods: 1. Random vectors (as returned by `utils.randvec`). 1. 50-dimensional GloVe representations. ```python def randvec(w, n=50, lower=-1.0, upper=1.0): """Returns a random vector of length `n`. `w` is ignored.""" return utils.randvec(n=n, lower=lower, upper=upper) ``` ```python # Any of the files in glove.6B will work here: glove_dim = 50 glove_src = os.path.join(GLOVE_HOME, 'glove.6B.{}d.txt'.format(glove_dim)) # Creates a dict mapping strings (words) to GloVe vectors: GLOVE = utils.glove2dict(glove_src) def glove_vec(w): """Return `w`'s GloVe representation if available, else return a random vector.""" return GLOVE.get(w, randvec(w, n=glove_dim)) ``` ### Combining words into inputs: vector_combo_func Here we decide how to combine the two word vectors into a single representation. In more detail, where `u` is a vector representation of the left word and `v` is a vector representation of the right word, we need a function `vector_combo_func` such that `vector_combo_func(u, v)` returns a new input vector `z` of dimension `m`. A simple example is concatenation: ```python def vec_concatenate(u, v): """Concatenate np.array instances `u` and `v` into a new np.array""" return np.concatenate((u, v)) ``` `vector_combo_func` could instead be vector average, vector difference, etc. (even combinations of those) – there's lots of space for experimentation here; [homework question 2](#Alternatives-to-concatenation-[1-point]) below pushes you to do some exploration. ### Classifier model For a baseline model, I chose `TorchShallowNeuralClassifier`: ```python net = TorchShallowNeuralClassifier(hidden_dim=50, max_iter=100) ``` ### Baseline results The following puts the above pieces together, using `vector_func=glove_vec`, since `vector_func=randvec` seems so hopelessly misguided for `word_disjoint`! ```python word_disjoint_experiment = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=glove_vec, vector_combo_func=vec_concatenate) print("macro-f1: {0}".format(word_disjoint_experiment['macro-F1'])) ``` Finished epoch 100 of 100; error is 0.02750065876170993 precision recall f1-score support 0 0.919 0.939 0.929 1910 1 0.406 0.335 0.367 239 accuracy 0.872 2149 macro avg 0.662 0.637 0.648 2149 weighted avg 0.862 0.872 0.866 2149 macro-f1: 0.6477534575895934 ## Homework questions Please embed your homework responses in this notebook, and do not delete any cells from the notebook. (You are free to add as many cells as you like as part of your responses.) ### Hypothesis-only baseline [2 points] During our discussion of SNLI and MultiNLI, we noted that a number of research teams have shown that hypothesis-only baselines for NLI tasks can be remarkably robust. This question asks you to explore briefly how this baseline effects the 'edge_disjoint' and 'word_disjoint' versions of our task. For this problem, submit two functions: 1. A `vector_combo_func` function called `hypothesis_only` that simply throws away the premise, using the unmodified hypothesis (second) vector as its representation of the example. 1. A function called `run_hypothesis_only_evaluation` that does the following: 1. Loops over the two conditions 'word_disjoint' and 'edge_disjoint' and the two `vector_combo_func` values `vec_concatenate` and `hypothesis_only`, calling `nli.wordentail_experiment` to train on the conditions 'train' portion and assess on its 'dev' portion, with `glove_vec` as the `vector_func`. So that the results are consistent, use an `sklearn.linear_model.LogisticRegression` with default parameters as the model. 1. Returns a `dict` mapping `(condition_name, function_name)` pairs to the 'macro-F1' score for that pair, as returned by the call to `nli.wordentail_experiment`. (Tip: you can get the `str` name of your function `hypothesis_only` with `hypothesis_only.__name__`.) The test functions `test_hypothesis_only` and `test_run_hypothesis_only_evaluation` will help ensure that your functions have the desired logic. ```python ##### YOUR CODE HERE def hypothesis_only(u, v): """Just return the hypothesis part""" return v def run_hypothesis_only_evaluation(): ##### YOUR CODE HERE from sklearn.linear_model import LogisticRegression eval_results = {} net = LogisticRegression() for condition_name in ['edge_disjoint', 'word_disjoint']: for vec_combo_func in [vec_concatenate, hypothesis_only]: result = nli.wordentail_experiment( train_data=wordentail_data[condition_name]['train'], assess_data=wordentail_data[condition_name]['dev'], model=net, vector_func=glove_vec, vector_combo_func=vec_combo_func) print("macro-f1: {0}".format(result['macro-F1'])) eval_results[(condition_name, vec_combo_func.__name__)] = result['macro-F1'] return eval_results ``` ```python def test_hypothesis_only(hypothesis_only): v = hypothesis_only(1, 2) assert v == 2 ``` ```python test_hypothesis_only(hypothesis_only) ``` ```python def test_run_hypothesis_only_evaluation(run_hypothesis_only_evaluation): results = run_hypothesis_only_evaluation() assert ('word_disjoint', 'vec_concatenate') in results, \ "The return value of `run_hypothesis_only_evaluation` does not have the intended kind of keys" assert isinstance(results[('word_disjoint', 'vec_concatenate')], float), \ "The values of the `run_hypothesis_only_evaluation` result should be floats" ``` ```python test_run_hypothesis_only_evaluation(run_hypothesis_only_evaluation) ``` precision recall f1-score support 0 0.875 0.969 0.920 7376 1 0.574 0.230 0.328 1321 accuracy 0.857 8697 macro avg 0.725 0.600 0.624 8697 weighted avg 0.830 0.857 0.830 8697 macro-f1: 0.6242497026339122 precision recall f1-score support 0 0.872 0.975 0.920 7376 1 0.584 0.199 0.297 1321 accuracy 0.857 8697 macro avg 0.728 0.587 0.609 8697 weighted avg 0.828 0.857 0.826 8697 macro-f1: 0.6086585700699786 precision recall f1-score support 0 0.902 0.979 0.939 1910 1 0.474 0.151 0.229 239 accuracy 0.887 2149 macro avg 0.688 0.565 0.584 2149 weighted avg 0.854 0.887 0.860 2149 macro-f1: 0.5837810695455686 precision recall f1-score support 0 0.893 0.989 0.939 1910 1 0.382 0.054 0.095 239 accuracy 0.885 2149 macro avg 0.638 0.522 0.517 2149 weighted avg 0.836 0.885 0.845 2149 macro-f1: 0.5169358178053831 ### Alternatives to concatenation [2 points] We've so far just used vector concatenation to represent the premise and hypothesis words. This question asks you to explore two simple alternative: 1. Write a function `vec_diff` that, for a given pair of vector inputs `u` and `v`, returns the element-wise difference between `u` and `v`. 1. Write a function `vec_max` that, for a given pair of vector inputs `u` and `v`, returns the element-wise max values between `u` and `v`. You needn't include your uses of `nli.wordentail_experiment` with these functions, but we assume you'll be curious to see how they do! ```python def vec_diff(u, v): ##### YOUR CODE HERE return u - v def vec_max(u, v): ##### YOUR CODE HERE return np.maximum(u, v) ``` ```python def test_vec_diff(vec_diff): u = np.array([10.2, 8.1]) v = np.array([1.2, -7.1]) result = vec_diff(u, v) expected = np.array([9.0, 15.2]) assert np.array_equal(result, expected), \ "Expected {}; got {}".format(expected, result) ``` ```python test_vec_diff(vec_diff) ``` ```python def test_vec_max(vec_max): u = np.array([1.2, 8.1]) v = np.array([10.2, -7.1]) result = vec_max(u, v) expected = np.array([10.2, 8.1]) assert np.array_equal(result, expected), \ "Expected {}; got {}".format(expected, result) ``` ```python test_vec_max(vec_max) ``` ```python if 'IS_GRADESCOPE_ENV' not in os.environ: net = TorchShallowNeuralClassifier(hidden_dim=50, max_iter=100) print(net) for vec_combo_func in [vec_diff, vec_max, vec_concatenate, hypothesis_only]: result = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=glove_vec, vector_combo_func=vec_combo_func) print("macro-f1: {0}".format(result['macro-F1'])) ``` TorchShallowNeuralClassifier( hidden_dim=50, hidden_activation=Tanh(), batch_size=1028, max_iter=100, eta=0.01, optimizer=<class 'torch.optim.adam.Adam'>, l2_strength=0) Finished epoch 100 of 100; error is 0.28842502646148205 precision recall f1-score support 0 0.909 0.842 0.874 1910 1 0.205 0.326 0.252 239 accuracy 0.785 2149 macro avg 0.557 0.584 0.563 2149 weighted avg 0.831 0.785 0.805 2149 macro-f1: 0.5630849852522789 Finished epoch 100 of 100; error is 1.056394025683403 precision recall f1-score support 0 0.910 0.890 0.900 1910 1 0.252 0.297 0.273 239 accuracy 0.824 2149 macro avg 0.581 0.593 0.586 2149 weighted avg 0.837 0.824 0.830 2149 macro-f1: 0.586104297300003 Finished epoch 100 of 100; error is 0.02869832795113325 precision recall f1-score support 0 0.927 0.924 0.925 1910 1 0.409 0.423 0.416 239 accuracy 0.868 2149 macro avg 0.668 0.673 0.671 2149 weighted avg 0.870 0.868 0.869 2149 macro-f1: 0.6705681430526949 Finished epoch 100 of 100; error is 1.5673212707042694 precision recall f1-score support 0 0.903 0.919 0.911 1910 1 0.248 0.213 0.229 239 accuracy 0.840 2149 macro avg 0.575 0.566 0.570 2149 weighted avg 0.830 0.840 0.835 2149 macro-f1: 0.5700959707451074 ### A deeper network [2 points] It is very easy to subclass `TorchShallowNeuralClassifier` if all you want to do is change the network graph: all you have to do is write a new `define_graph`. If your graph has new arguments that the user might want to set, then you should also redefine `__init__` so that these values are accepted and set as attributes. For this question, please subclass `TorchShallowNeuralClassifier` so that it defines the following graph: $$\begin{align} h_{1} &= xW_{1} + b_{1} \\ r_{1} &= \textbf{Bernoulli}(1 - \textbf{dropout\_prob}, n) \\ d_{1} &= r_1 * h_{1} \\ h_{2} &= f(d_{1}) \\ h_{3} &= h_{2}W_{2} + b_{2} \end{align}$$ Here, $r_{1}$ and $d_{1}$ define a dropout layer: $r_{1}$ is a random binary vector of dimension $n$, where the probability of a value being $1$ is given by $1 - \textbf{dropout_prob}$. $r_{1}$ is multiplied element-wise by our first hidden representation, thereby zeroing out some of the values. The result is fed to the user's activation function $f$, and the result of that is fed through another linear layer to produce $h_{3}$. (Inside `TorchShallowNeuralClassifier`, $h_{3}$ is the basis for a softmax classifier, so no activation function is applied to it.) For your implementation, please use `nn.Sequential`, `nn.Linear`, and `nn.Dropout` to define the required layers. For comparison, using this notation, `TorchShallowNeuralClassifier` defines the following graph: $$\begin{align} h_{1} &= xW_{1} + b_{1} \\ h_{2} &= f(h_{1}) \\ h_{3} &= h_{2}W_{2} + b_{2} \end{align}$$ The following code starts this sub-class for you, so that you can concentrate on `define_graph`. Be sure to make use of `self.dropout_prob` For this problem, submit just your completed `TorchDeepNeuralClassifier`. You needn't evaluate it, though we assume you will be keen to do that! You can use `test_TorchDeepNeuralClassifier` to ensure that your network has the intended structure. ```python import torch.nn as nn class TorchDeepNeuralClassifier(TorchShallowNeuralClassifier): def __init__(self, dropout_prob=0.7, **kwargs): self.dropout_prob = dropout_prob super().__init__(**kwargs) def define_graph(self): """Complete this method! Returns ------- an `nn.Module` instance, which can be a free-standing class you write yourself, as in `torch_rnn_classifier`, or the outpiut of `nn.Sequential`, as in `torch_shallow_neural_classifier`. """ ##### YOUR CODE HERE return nn.Sequential( nn.Linear(self.input_dim, self.hidden_dim), nn.Dropout(p=self.dropout_prob), self.hidden_activation, nn.Linear(self.hidden_dim, self.n_classes_)) ##### YOUR CODE HERE if 'IS_GRADESCOPE_ENV' not in os.environ: net = TorchDeepNeuralClassifier() for vec_combo_func in [vec_diff, vec_max, vec_concatenate, hypothesis_only]: result = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=glove_vec, vector_combo_func=vec_combo_func) print("macro-f1: {0}".format(result['macro-F1'])) ``` Finished epoch 100 of 100; error is 3.103418618440628 precision recall f1-score support 0 0.919 0.919 0.919 1910 1 0.351 0.351 0.351 239 accuracy 0.856 2149 macro avg 0.635 0.635 0.635 2149 weighted avg 0.856 0.856 0.856 2149 macro-f1: 0.6351563013428553 Finished epoch 100 of 100; error is 3.0264479219913483 precision recall f1-score support 0 0.904 0.982 0.941 1910 1 0.534 0.163 0.250 239 accuracy 0.891 2149 macro avg 0.719 0.573 0.596 2149 weighted avg 0.863 0.891 0.864 2149 macro-f1: 0.5956472654290015 Finished epoch 100 of 100; error is 2.4502106606960297 precision recall f1-score support 0 0.905 0.987 0.944 1910 1 0.621 0.172 0.269 239 accuracy 0.896 2149 macro avg 0.763 0.579 0.607 2149 weighted avg 0.873 0.896 0.869 2149 macro-f1: 0.6065023627413547 Finished epoch 100 of 100; error is 2.7340420484542847 precision recall f1-score support 0 0.895 0.989 0.940 1910 1 0.447 0.071 0.123 239 accuracy 0.887 2149 macro avg 0.671 0.530 0.531 2149 weighted avg 0.845 0.887 0.849 2149 macro-f1: 0.5311554770666994 ```python def test_TorchDeepNeuralClassifier(TorchDeepNeuralClassifier): dropout_prob = 0.55 assert hasattr(TorchDeepNeuralClassifier(), "dropout_prob"), \ "TorchDeepNeuralClassifier must have an attribute `dropout_prob`." try: inst = TorchDeepNeuralClassifier(dropout_prob=dropout_prob) except TypeError: raise TypeError("TorchDeepNeuralClassifier must allow the user " "to set `dropout_prob` on initialization") inst.input_dim = 10 inst.n_classes_ = 5 graph = inst.define_graph() assert len(graph) == 4, \ "The graph should have 4 layers; yours has {}".format(len(graph)) expected = { 0: 'Linear', 1: 'Dropout', 2: 'Tanh', 3: 'Linear'} for i, label in expected.items(): name = graph[i].__class__.__name__ assert label in name, \ "The {} layer of the graph should be a {} layer; yours is {}".format(i, label, name) assert graph[1].p == dropout_prob, \ "The user's value for `dropout_prob` should be the value of `p` for the Dropout layer." ``` ```python test_TorchDeepNeuralClassifier(TorchDeepNeuralClassifier) ``` ### Your original system [3 points] This is a simple dataset, but our focus on the 'word_disjoint' condition ensures that it's a challenging one, and there are lots of modeling strategies one might adopt. You are free to do whatever you like. We require only that your system differ in some way from those defined in the preceding questions. They don't have to be completely different, though. For example, you might want to stick with the model but represent examples differently, or the reverse. Keep in mind that, for the bake-off evaluation, the 'edge_disjoint' portions of the data are off limits. You can, though, train on the combination of the 'word_disjoint' 'train' and 'dev' portions. You are free to use different pretrained word vectors and the like. Please do not introduce additional entailment datasets into your training data, though. Please embed your code in this notebook so that we can rerun it. In the cell below, please provide a brief technical description of your original system, so that the teaching team can gain an understanding of what it does. This will help us to understand your code and analyze all the submissions to identify patterns and strategies. ```python # Enter your system description in this cell. # Tried out different systems: # system_0 : Original system. # Uses bidirectional RNN classifier (0.68) # Choosing this as original system. # system_1 : Variations of vector_combo_func (0.70) # system_2 : Retrofit GLOVE using WordNet (0.64) # system_3 : Data augmentation of 'entails' class using WordNet to avoid imbalance during training. (0.48) # My peak score was: 0.68 if 'IS_GRADESCOPE_ENV' not in os.environ: from nltk.corpus import wordnet as wn from retrofitting import Retrofitter from torch_rnn_classifier import TorchRNNClassifier def get_wordnet_edges(): edges = defaultdict(set) for ss in wn.all_synsets(): lem_names = {lem.name() for lem in ss.lemmas()} for lem in lem_names: edges[lem] |= lem_names return edges wn_edges = get_wordnet_edges() # Idea: Bidirectional RNN classifier def system_0_original(): # Data------------ with open(wordentail_filename) as f: wordentail_data = json.load(f) print("Distribution of labels : \n{0}".format(pd.DataFrame(wordentail_data['word_disjoint']['train'])[1].value_counts())) # Model----------- X_glove = pd.DataFrame(GLOVE) X_glove['$UNK'] = 0 X_glove = X_glove.T vocab = list(X_glove.index) embedding = X_glove.values net = TorchRNNClassifier(vocab=vocab, embedding=embedding, bidirectional=True) # Exp------------- result = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=lambda x: np.array([x]), vector_combo_func=vec_concatenate) return result['macro-F1'] ############################################################################# # Idea: Variations of vector_combo_func. def system_1(): # Data------------ with open(wordentail_filename) as f: wordentail_data = json.load(f) print("Distribution of labels : \n{0}".format(pd.DataFrame(wordentail_data['word_disjoint']['train'])[1].value_counts())) def vec_merge(u, v): """Merge different feature reps including array diff, max, avg etc.""" return np.concatenate((u, v, vec_diff(u, v), vec_max(u,v))) # Model----------- net = TorchShallowNeuralClassifier(hidden_dim=50, max_iter=100) print(net) # Exp------------- result = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=glove_vec, vector_combo_func=vec_merge) return result['macro-F1'] ####################################################################### # Idea: Retrofit GLOVE using WordNet def system_2(): # Data------------ with open(wordentail_filename) as f: wordentail_data = json.load(f) X_glove = pd.DataFrame(GLOVE).T print(X_glove.shape) def convert_edges_to_indices(edges, Q): lookup = dict(zip(Q.index, range(Q.shape[0]))) index_edges = defaultdict(set) for start, finish_nodes in edges.items(): s = lookup.get(start) if s: f = {lookup[n] for n in finish_nodes if n in lookup} if f: index_edges[s] = f return index_edges wn_index_edges = convert_edges_to_indices(wn_edges, X_glove) wn_retro = Retrofitter(verbose=True) X_retro = wn_retro.fit(X_glove, wn_index_edges) print(X_retro.shape) def retro_vec(w): """Return `w`'s Retrofitted representation if available, else return a random vector.""" return X_retro.loc[w].values if w in X_retro.index else randvec(w, n=glove_dim) # Model----------- net = TorchShallowNeuralClassifier(hidden_dim=50, max_iter=100) print(net) # Exp------------- result = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=retro_vec, vector_combo_func=vec_concatenate) return result['macro-F1'] ################################################################ # Idea: Data augmentation of 'entails' class using wordnet def system_3(): # Data------------ with open(wordentail_filename) as f: wordentail_data = json.load(f) x_train = wordentail_data['word_disjoint']['train'] print("Existing distribution of labels : \n{0}".format(pd.DataFrame(x_train)[1].value_counts())) # get wordnet edges def get_wordnet_edges(): edges = defaultdict(set) for ss in wn.all_synsets(): lem_names = {lem.name() for lem in ss.lemmas()} for lem in lem_names: edges[lem] |= lem_names return edges wn_edges = get_wordnet_edges() # data augmentation of positive entailments. positive_entailments = [] for premise_hypothesis, label in x_train: if label == 1: positive_entailments.append(premise_hypothesis) print("Current count of positives: {0}".format(len(positive_entailments))) positive_entailments_ex = [] for premise_hypothesis in positive_entailments: premise = premise_hypothesis[0] hypothesis = premise_hypothesis[1] for wn_premise in wn_edges[premise]: if premise == wn_premise: continue for wn_hypothesis in wn_edges[hypothesis]: if wn_hypothesis == hypothesis: continue positive_entailments_ex.append([wn_premise, wn_hypothesis]) print("New count of positives to add: {0}".format(len(positive_entailments_ex))) x_train.extend([[item, 1] for item in positive_entailments_ex]) print("New distribution of labels : \n{0}".format(pd.DataFrame(wordentail_data['word_disjoint']['train'])[1].value_counts())) # Model----------- net = TorchShallowNeuralClassifier(hidden_dim=50, max_iter=100) # Exp------------- result = nli.wordentail_experiment( train_data=wordentail_data['word_disjoint']['train'], assess_data=wordentail_data['word_disjoint']['dev'], model=net, vector_func=glove_vec, vector_combo_func=vec_concatenate) return result['macro-F1'] ################################################################### print("System 0 (Original) Score:{0}".format(system_0_original())) print("="*100) # print("System 1 Score:{0}".format(system_1())) # print("="*100) # print("System 2 Score:{0}".format(system_2())) # print("="*100) # print("System 3 Score:{0}".format(system_3())) # print("="*100) #################################################################### # Please do not remove this comment. ``` Distribution of labels : 0 7199 1 1349 Name: 1, dtype: int64 Finished epoch 100 of 100; error is 0.02302360360044986 precision recall f1-score support 0 0.932 0.910 0.921 1910 1 0.396 0.469 0.429 239 accuracy 0.861 2149 macro avg 0.664 0.690 0.675 2149 weighted avg 0.872 0.861 0.866 2149 System 0 (Original) Score:0.6750996412104682 ==================================================================================================== ## Bake-off [1 point] The goal of the bake-off is to achieve the highest macro-average F1 score on __word_disjoint__, on a test set that we will make available at the start of the bake-off. The announcement will go out on the discussion forum. To enter, you'll be asked to run `nli.bake_off_evaluation` on the output of your chosen `nli.wordentail_experiment` run. The cells below this one constitute your bake-off entry. The rules described in the [Your original system](#Your-original-system-[3-points]) homework question are also in effect for the bake-off. Systems that enter will receive the additional homework point, and systems that achieve the top score will receive an additional 0.5 points. We will test the top-performing systems ourselves, and only systems for which we can reproduce the reported results will win the extra 0.5 points. Late entries will be accepted, but they cannot earn the extra 0.5 points. Similarly, you cannot win the bake-off unless your homework is submitted on time. The announcement will include the details on where to submit your entry. ```python # Enter your bake-off assessment code into this cell. # Please do not remove this comment. ##### YOUR CODE HERE ``` ```python # On an otherwise blank line in this cell, please enter # your macro-avg f1 value as reported by the code above. # Please enter only a number between 0 and 1 inclusive. # Please do not remove this comment. ##### YOUR CODE HERE ```
d48f79b4547a02c24f64014c8b3680fbfd344d6a
50,864
ipynb
Jupyter Notebook
hw_wordentail-Copy2.ipynb
abgoswam/cs224u
33e1a22d1c9586b473f43b388163a74264e9258a
[ "Apache-2.0" ]
null
null
null
hw_wordentail-Copy2.ipynb
abgoswam/cs224u
33e1a22d1c9586b473f43b388163a74264e9258a
[ "Apache-2.0" ]
null
null
null
hw_wordentail-Copy2.ipynb
abgoswam/cs224u
33e1a22d1c9586b473f43b388163a74264e9258a
[ "Apache-2.0" ]
null
null
null
33.136156
574
0.518579
true
8,776
Qwen/Qwen-72B
1. YES 2. YES
0.665411
0.824462
0.548606
__label__eng_Latn
0.892008
0.112924
>>> Work in Progress (Following are the lecture notes of Prof Fei-Fei Li/Prof Justin Johnson/Prof Serena Yeung - CS231n - Stanford. This is my interpretation of their excellent teaching and I take full responsibility of any misinterpretation or misinformation provided herein.) ### Lecture 3: Loss Function and Optimization #### Outline: - Loss functions - A loss function quantifies the unhappiness with the scores across the training data - a function that takes in a W and tells us how bad quantitatively is that W - minimize the loss on training example - different types of loss - Optimization - Come up with a way of efficient procedure to calculate W - efficiently come up with the procedure of searching through the space of all possible Ws and come up with what is the correct value of W that is the least bad #### Loss function - Given a dataset $\{(x_{i}, y_{i})\}_{i=1}^{N}$, where $x_{i}$ is image and $y_{i}$ is (integer) label - Loss over the dataset is sum of loss over examples: > $L(W) = \frac{1}{N}\sum\limits_{i}L_{i}(f(x_{i},W),y_{i}) + \lambda R(W)$ - where 1st term is the data loss - 2nd term is the regularization correction - making the model simple - binary SVM - has 2 classes - each example will be classified as positive or negative example - multinomial SVM - handle multiple classes #### Multiclass SVM loss - Given a dataset $\{(x_{i}, y_{i})\}_{i=1}^{N}$, where $x_{i}$ is image and $y_{i}$ is (integer) label - and scores vector $s = f(x_{i}, W)$ - predicted scores that are coming from the classifier - $y_{i}$ is the ground truth label - $s_{y_{i}}$ denotes score of the true class for the ith example in training set - $s_{1}$ and $s_{2}$ will be cat and dog score respectively - SVM loss has the form - **Hinge Loss**: > \begin{equation}\\ \begin{aligned}\\ L_{i} &= \sum\limits_{j \neq y_{i}} \begin{cases} 0 & \text{if $s_{y_{i}} \geq s_{j} + 1$}\\ s_{j} - s_{y_{i}} + 1 & \text{otherwise}\\ \end{cases}\\ &= \sum\limits_{j \neq y_{i}} max(0, s_{j} - s_{y_{i}} + 1) \end{aligned}\\ \end{equation}\\ $\tiny{\text{YouTube-Stanford-CS231n-Justin Johnson}}$ - If the true score is high, that is good. Otherwise, we will have to incur some loss and that would be bad. $\tiny{\text{YouTube-Stanford-CS231n-Justin Johnson}}$ $\tiny{\text{YouTube-Stanford-CS231n-Justin Johnson}}$ $\tiny{\text{YouTube-Stanford-CS231n-Justin Johnson}}$ - Why +1? - We care about the relative scores #### Regularization - 2nd term > $L(W) = \frac{1}{N}\sum\limits_{i}L_{i}(f(x_{i},W),y_{i}) + \lambda R(W)$ > where $\lambda$ is the regularization strength (hyperparameter) - Types of regularization: - L2 regularization - weight decay - Euclidean norm or squared norm - penalize the Euclidean norm of this weight vector > $R(W) = \sum_{k}\sum_{l}W^{2}_{k,l}$ - L1 regularization - nice property of encouraging sparsity in matrix W > $R(W) = \sum_{k}\sum_{l}|W_{k,l}|$ - Elastic net (L1 + L2) regularization - combination of L1 and L2 > $R(W) = \sum_{k}\sum_{l}\beta W^{2}_{k,l} + |W_{k,l}|$ - Max norm regularization - penalizes the max norm rather than L1 and L2 norm - Dropout regularization - specific to deep learning - Fancier regularization: Batch normalization, stochastic depth - Goal of regularization term is that it penalizes the complexity of the model rather than explicitly trying to fit the training data #### Softmax Classifier (Multinomial Logistic Regression) - Multiclass SVM - there was no interpretation of loss function - the model f spits out scores for the classes, which didn't actually had much interpretation - all we cared about was the score of correct class must be greater than score of incorrect class - Multinomial Logistic Regression - in this case, the scores will have meaning > Softmax function $P(Y=k|X=x_{i}) = \frac{e^{s}k}{\sum_{j}e^{s_{j}}}$ > where scores $s = f(x_{i}; W)$ = unnormalized log probabilities of the classes - the probability of softmax function sum to 1 - To maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class: > $L_{i} = -$log $P(Y=y_{i}|X=x_{i}) $ - more weight (i.e., probability of 1) should be on the cat and 0 probability for all other classes - computed probability distribution coming out of the softmax function should match this target probability distribution that has all the mass on the correct class - use KL divergence - maximum likelihood estimate - Goal is the probability of true class is high and as close to 1 - Loss function will be the -log of the probability of true class > $L_{i} = -$log $\frac{e^{s_{y_{i}}}}{\sum_{j}e^{s_{j}}} $ - Calculation steps: - Calculate unnormalized log probabilities, as above - calculate exponent of it(unnormalized probabilities) - calculate normalized value (probabilities) - calculate negative log (softmax loss function value) (or multinomial logistic regression) #### Optimization - find bottom of the valley - use types of iterative method - types - random search - depends on luck - follow the slope. - use local geometry, which way will take me little bit down - gradient is the vector of (partial derivatives) along each dimension - slope in any direction is the dot product of the direction with the gradient - direction of steepest descent is negative gradient - use finite differences - adv - easy to write - disadv - approximate - can be very slow if size is large - in practice, it is never used - instead compute analytic gradient - calculate dW in one step instead of looping over iteratively - adv - exact, fast - disadv - error prone - in practice, always use analytic gradient, but check implementation with numerical gradient - gradient check $\tiny{\text{YouTube-Stanford-CS231n-Justin Johnson}}$ $\tiny{\text{YouTube-Stanford-CS231n-Justin Johnson}}$ - gradient descent - most used - initialize W random - compute loss and gradient - update the weights in opposite of the gradient direction - gradient points to the direction of greatest increase - minus gradient points in the direction of greatest decrease - take small step in the direction of minus gradient - repeat till it converges - step size or learning rate is a hyperparameter - tells us how far we step in the direction of gradient - step size is the first hyperparameter we check - model size and regularization can be dealt later, but step size should be the primary focus #### Stochastic Gradient Descent (SGD) > $L(W) = \frac{1}{N}\sum\limits_{i}L_{i}(f(x_{i},y_{i},W) + \lambda R(W)$ > $\nabla_{W}L(W) = \frac{1}{N}\sum\limits_{i}\nabla_{W} L_{i}(f(x_{i},y_{i},W) + \lambda\nabla_{W} R(W)$ - Vanilla Minibatch Gradient Descent - minibatch of size 32/64/128 #### Image features - Instead of feeding raw pixels into linear classifiers doesnot work too well - Prior to deep neural network popularity, two stage approach was used - first, take your image, compute various feature representations - then concatenate these feature vectors to give some feature representation of image - trick is to use right feature transform for the problem statement - example - color histogram - count how many pixels fall into each bucket - tells us what type of color exist in image - histogram of oriented gradients (HoG) - dominant edge direction of each pixel - compute histogram over these different edge orientation in bucket - tells us what type of edge exist in image - was used for object recognition in the past - bag of words (comes from NLP) - in NLP, number of words in a paragraph are counted - apply same concept in images - no straightforward analogy of words and images - create your own version of vocabulary of visual words - get sample - ConvNets ```python ```
ced2358bcbcaa14af177af62d40d94575cccbdf1
12,085
ipynb
Jupyter Notebook
cs231n_cnn/lec03-lossFun-optimization.ipynb
chandrabsingh/learnings
a3f507bbbf46582ce5a64991983dfc0759db0af5
[ "MIT" ]
null
null
null
cs231n_cnn/lec03-lossFun-optimization.ipynb
chandrabsingh/learnings
a3f507bbbf46582ce5a64991983dfc0759db0af5
[ "MIT" ]
null
null
null
cs231n_cnn/lec03-lossFun-optimization.ipynb
chandrabsingh/learnings
a3f507bbbf46582ce5a64991983dfc0759db0af5
[ "MIT" ]
null
null
null
39.622951
283
0.582871
true
2,152
Qwen/Qwen-72B
1. YES 2. YES
0.874077
0.875787
0.765505
__label__eng_Latn
0.99603
0.616858
# Ejercicio 3 - Simulación de distribuciones condicionadas ### Julian Ferres - Nro.Padrón 101483 ## Enunciado: Sea $X$ \~ $N(0,1)$ truncada al intervalo $[-1,1]$ Imagine $m(x) = E[Y | X=x]$ como: \begin{equation} m(x) := \left\{ \begin{array}{ll} \frac{(x + 2)^2}{2} & \mathrm{si\ } si -1\leq x<-0.5 \\ \frac{x}{2}+0.875 & \mathrm{si\ } -0.5 \leq x \leq 0\\ -5(x-0.2)^2 +1.075 & \mathrm{si\ } 0 < x \leq 0.5 \\ x + 0.125 & \mathrm{si\ } 0.5 \leq x < 1 \end{array} \right. \end{equation} Dado un $x$, la distribución condicional de $Y - m(x)$ es $N(0, \sigma ^2(x))$, con $\sigma(x)=0.2-0.1 * \cos(2x)$ - Se pide simular $200$ puntos $(X,Y)$, y graficarlos en un plano. Además, vamos a necesitar Los $200$ pares ordenados en cuestión, para hacer análisis posteriores - Reconstruir $m(x)$ con los $200$ puntos, para eso: Realizar una partición de $[-1,1]$ en intervalos de longitud $h$ y en cada intervalo encontrar el polinomio $f$ de grado $M$ que minimice el error cuadratico medio $$ \frac{1}{n} \sum |f(X_i)-Y_i|^2$$ Usar: 1. $h = 0.5$ , $M=1$ 2. $h = 0.1$ , $M=1$ 3. $h = 0.25$ , $M=2$ 4. $h = 0.5$ , $M=2$ ## Solución: #### Importo todas las librerias e inicializo funciones ```python import matplotlib.pyplot as plt import pandas as pd import numpy as np from math import cos, pi from scipy.stats import truncnorm ``` ```python m1 = lambda x: (x+2)**2/2 m2 = lambda x: x/2 + 0.875 m3 = lambda x: -5*(x-0.2)**2 + 1.075 m4 = lambda x: x + 0.125 ``` ```python def m(x): if -1 <= x < -0.5: return m1(x) if -0.5 <= x < 0: return m2(x) if 0 <= x < 0.5: return m3(x) if 0.5 <= x < 1: return m4(x) m = np.vectorize(m) ``` ```python x_0 = np.linspace(-1,1,1000) #Me genero 1000 valores entre -1 y 1 para graficar m(x) 'suave' y_0 = m(x_0) ``` #### Normal truncada ```python a , b = -1 , 1 #Limites de la normal truncada ``` ```python x1 = np.linspace(truncnorm.ppf(0.01, a, b), truncnorm.ppf(0.99, a, b), 200) #Genero 200 cuantiles de la normal truncada plt.plot(x1, truncnorm.pdf(x1, a, b), 'r-', lw=3, alpha=0.75, label='Normal truncada') plt.title("Density Plot de X",fontsize='15') plt.legend(loc='best', frameon= True) plt.grid() ``` ```python x1 = truncnorm.rvs(a, b, size=200) #Me genero la muestra de distribucion X ``` ```python sigma = np.vectorize(lambda x : 0.2 - 0.1 * cos(2*pi*x)) normal = np.vectorize(np.random.normal) y1 = normal( m(x1),sigma(x1)) ``` ```python fig, ax = plt.subplots(figsize=(11,7)) plt.plot(x_0, y_0, 'g-', linewidth = 5, label = 'Función m(x)=E[Y|X=x]') plt.legend(loc='best', frameon= True) plt.plot(x1, y1, 'ro' ,markersize= 5, alpha = 0.5 ,label = 'Dispersion (X,Y)') plt.legend(loc='best', frameon= True) plt.title("Scatter Plot de (X,Y) y Line plot de m(x)", fontsize='15') plt.xlabel('X') plt.ylabel('Y') plt.show() ``` #### La muestra de los $200$ pares con distribución $(X,Y)$ se encuentra en la variable output ## Reconstruyo la regresión #### Con h=0.5 y M=1 ```python partition = [[],[],[],[]] for i in range(200): partition[int(2*(x1[i]+1))].append(i) ``` ```python polinomio_a_trozos = [] cuadrado_de_los_errores1 = 0 for i in range(4): x_aux , y_aux = [x1[j] for j in partition[i]],[y1[j] for j in partition[i]] z = np.polyfit(x_aux,y_aux,1) polinomio_a_trozos.append(np.poly1d(z)) #sumo los errores para cada trozo del polinomio for j in range(len(x_aux)): cuadrado_de_los_errores1 += (polinomio_a_trozos[i](x_aux[j])-y_aux[j])**2 ``` ```python xp=[] xp.append(np.linspace(-1, -0.5, 200)) xp.append(np.linspace(-0.5,0, 200)) xp.append(np.linspace(0, 0.5, 200)) xp.append(np.linspace(0.5,1, 200)) ``` ```python fig, ax = plt.subplots(figsize=(11,7)) plt.plot(x1, y1, 'ro', linewidth = 5, alpha = 0.5 ,label = 'Dispersion X,Y') plt.legend(loc='best', frameon= True) for i in range(4): plt.plot(xp[i], polinomio_a_trozos[i](xp[i]) ,'b-', linewidth = 5 ) plt.plot(x_0, y_0, 'g-', linewidth = 5, alpha = 0.75 ,label = 'Función m(x)=E[Y|X=x]') plt.legend(loc='best', frameon= True) plt.title("Estimación m(x) con h=0.5 y M=1", fontsize='15') plt.xlabel('X') plt.ylabel('Y') plt.show() ``` La estimación parece ajustarse bien a la función de regresion, no obstante, el error cuadrático medio es alto ya que no esta Overfitteando a la muestra. #### Estimación del error cuadrático medio ```python (cuadrado_de_los_errores1 / 200)**0.5 ``` 0.21568051286590767 #### Con h=0.1 y M=1 ```python partition = [[] for i in range(20)] for i in range(200): partition[int(10*(x1[i]+1))].append(i) ``` ```python polinomio_a_trozos = [] cuadrado_de_los_errores2 = 0 for i in range(20): x_aux , y_aux = [x1[j] for j in partition[i]],[y1[j] for j in partition[i]] z = np.polyfit(x_aux,y_aux,1) polinomio_a_trozos.append(np.poly1d(z)) #sumo los errores para cada trozo del polinomio for j in range(len(x_aux)): cuadrado_de_los_errores2 += (polinomio_a_trozos[i](x_aux[j])-y_aux[j])**2 ``` ```python xp=[] for i in range(20): xp.append(np.linspace(-1+i*(1/10), -0.9+i*(1/10), 200)) ``` ```python fig, ax = plt.subplots(figsize=(11,7)) plt.plot(x1, y1, 'ro', linewidth = 5, alpha = 0.5 ,label = 'Dispersion X,Y') plt.legend(loc='best', frameon= True) for i in range(20): plt.plot(xp[i], polinomio_a_trozos[i](xp[i]) ,'b-', linewidth = 5 ) plt.plot(x_0, y_0, 'g-', linewidth = 5, alpha = 0.75,label = 'Función m(x)=E[Y|X=x]') plt.legend(loc='best', frameon= True) plt.title("Estimación m(x) con h=0.1 y M=1", fontsize='15') plt.xlabel('X') plt.ylabel('Y') plt.show() ``` Se puede observar un claro caso de Overfitting, donde el error cuadrático medio es medianamente bajo, pero no estima correctamente la regresión. #### Estimación del error cuadrático medio ```python (cuadrado_de_los_errores2 / 200)**0.5 ``` 0.196030417748454 #### Con h=0.25 y M=2 ```python partition = [[] for i in range(8)] for i in range(200): partition[int(4*(x1[i]+1))].append(i) ``` ```python polinomio_a_trozos = [] cuadrado_de_los_errores3 = 0 for i in range(8): x_aux , y_aux = [x1[j] for j in partition[i]],[y1[j] for j in partition[i]] z = np.polyfit(x_aux,y_aux,2) polinomio_a_trozos.append(np.poly1d(z)) #sumo los errores para cada trozo del polinomio for j in range(len(x_aux)): cuadrado_de_los_errores3 += (polinomio_a_trozos[i](x_aux[j])-y_aux[j])**2 ``` ```python xp=[] for i in range(8): xp.append(np.linspace(-1+i*(1/4), -1+(i+1)*(1/4), 200)) ``` ```python fig, ax = plt.subplots(figsize=(11,7)) plt.plot(x1, y1, 'ro', linewidth = 5,alpha = 0.5, label ='Dispersion X,Y') plt.legend(loc='best', frameon= True) for i in range(8): plt.plot(xp[i], polinomio_a_trozos[i](xp[i]) ,'b-', linewidth = 5 ) plt.plot(x_0, y_0, 'g-', linewidth = 5,alpha = 0.75 ,label = 'Función m(x)=E[Y|X=x]') plt.legend(loc='best', frameon= True) plt.title("Estimación m(x) con h=0.25 y M=2", fontsize='15') plt.xlabel('X') plt.ylabel('Y') plt.show() ``` Se puede observar un claro caso de Overfitting, donde el error cuadrático medio es medianamente bajo, pero no estima correctamente la regresión. #### Estimación del error cuadrático medio ```python (cuadrado_de_los_errores3 / 200)**0.5 ``` 0.20118730938942803 #### Con h=0.5 y M=2 ```python partition = [[] for i in range(4)] for i in range(200): partition[int(2*(x1[i]+1))].append(i) ``` ```python polinomio_a_trozos = [] cuadrado_de_los_errores4 = 0 for i in range(4): x_aux , y_aux = [x1[j] for j in partition[i]],[y1[j] for j in partition[i]] z = np.polyfit(x_aux,y_aux,2) polinomio_a_trozos.append(np.poly1d(z)) #sumo los errores para cada trozo del polinomio for j in range(len(x_aux)): cuadrado_de_los_errores4 += (polinomio_a_trozos[i](x_aux[j])-y_aux[j])**2 ``` ```python xp=[] for i in range(4): xp.append(np.linspace(-1+i*(1/2), -1+(i+1)*(1/2), 200)) ``` ```python fig, ax = plt.subplots(figsize=(11,7)) plt.plot(x1, y1, 'ro', linewidth = 5,alpha = 0.5, label = 'Dispersion X,Y') plt.legend(loc='best', frameon= True) for i in range(4): plt.plot(xp[i], polinomio_a_trozos[i](xp[i]) ,'b-', linewidth = 5) plt.plot(x_0, y_0, 'g-', linewidth = 5,alpha = 0.75 ,label = 'Función m(x)=E[Y|X=x]') plt.legend(loc='best', frameon= True) plt.title("Estimación m(x) con h=0.5 y M=2", fontsize='15') plt.xlabel('X') plt.ylabel('Y') plt.show() ``` Se ve que el ECM es ligeramente superior a los casos con Overfitting, se ve que predice la regresión de forma bastante acertada. #### Estimación del error cuadrático medio ```python (cuadrado_de_los_errores4 / 200)**0.5 ``` 0.21280621089954807 ```python (cuadrado_de_los_errores1 / 200)**0.5 , (cuadrado_de_los_errores2 / 200)**0.5 , (cuadrado_de_los_errores3 / 200)**0.5 , (cuadrado_de_los_errores4 / 200)**0.5 ``` (0.21568051286590767, 0.196030417748454, 0.20118730938942803, 0.21280621089954807) ```python ``` Link al Repo de GitHub: https://github.com/julianferres/Aprendizaje-Estadistico.git
19f304dd3d9dbd58021a9409befa120e56bc2c18
306,309
ipynb
Jupyter Notebook
Ejercicios/06-Reconstruir Regresion (Penultima Clase)/.ipynb_checkpoints/EstimacionRegresion-checkpoint.ipynb
julianferres/Aprendizaje-Estadistico
897c5389afa2a0aad7ca46125540154b3b764e0d
[ "MIT" ]
null
null
null
Ejercicios/06-Reconstruir Regresion (Penultima Clase)/.ipynb_checkpoints/EstimacionRegresion-checkpoint.ipynb
julianferres/Aprendizaje-Estadistico
897c5389afa2a0aad7ca46125540154b3b764e0d
[ "MIT" ]
null
null
null
Ejercicios/06-Reconstruir Regresion (Penultima Clase)/.ipynb_checkpoints/EstimacionRegresion-checkpoint.ipynb
julianferres/Aprendizaje-Estadistico
897c5389afa2a0aad7ca46125540154b3b764e0d
[ "MIT" ]
null
null
null
397.803896
59,076
0.937279
true
3,359
Qwen/Qwen-72B
1. YES 2. YES
0.841826
0.718594
0.604931
__label__spa_Latn
0.273359
0.243788
<a href="https://colab.research.google.com/github/desabuh/elliptic_curves_cryptography_plots/blob/master/plot_for_eliptic_curves.ipynb" target="_parent"></a> ```python import matplotlib.pyplot as plt import math import numpy as np %matplotlib inline from ipywidgets import interact from sympy import nsolve ``` TOTIENT FUNCTION ```python def gcd(a, b): if b==0: return a return gcd(b, a % b) ``` ```python plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.xlabel("N") plt.ylabel("phi(N)") plt.scatter([*range(1,2500)], [sum(gcd(n, i) == 1 for i in range(1,n)) for n in range(1, 2500)], s = 1, c='green'); plt.show() ``` GENERAL TO WEISTRASS FORM ```python @interact(a = (-10,10,0.1), b=(-10,10,0.1), c=(-10,10,0.1), d=(-10,10,0.1), e=(-10,10,0.1)) def ell_curve(a, b, c, d, e): mx2, mx1 = np.ogrid[-10:10:0.1,-15:15:0.1] def evaluate_general(x,y): return np.power(y,2) + a*x*y + b*y - np.power(x, 3) - c * np.power(x,2) - d*x - e def transform_coord(x,y): return x - ((a**2 + 4*c) / 12), y - (a / 2)*x + ((a**3 + 4*a*c - 12 * b) / 24) def evaluate_normal(x,y): x, y = transform_coord(x,y) return np.power(y,2) - np.power(x,3) - d*x - e plt.contour(mx1.ravel(), mx2.ravel(), evaluate_general(mx1, mx2), [0], colors="blue") plt.contour(mx1.ravel(), mx2.ravel(), evaluate_normal(mx1, mx2), [0], colors="red") plt.show() ``` interactive(children=(FloatSlider(value=0.0, description='a', max=10.0, min=-10.0), FloatSlider(value=0.0, des… FINITE CURVE ```python def display_finite_curve(a, b, N): def is_point(x, y, a, b, N): return (y**2) % N == (x**3+ a*x + b) % N points = [(x,y) for x in range(N) for y in range(N) if is_point(x,y,a,b,N)] plt.text(-5,-5,s = "p = {}\n a = {}\n b= {}".format(N,a,b),c = "black",bbox={'facecolor': 'green', 'alpha': 0.5}) plt.scatter(list(zip(*points))[0], list(zip(*points))[1], s=10) ``` ```python display_finite_curve(1, -1, 39) ```
42e314c6b79a013b5e2452d76d764878412f599f
80,515
ipynb
Jupyter Notebook
plot_for_eliptic_curves.ipynb
desabuh/elliptic_curves_cryptography_plots
6d7a4d01cb38042a78bfbb3959d6856837e3b8be
[ "Apache-2.0" ]
null
null
null
plot_for_eliptic_curves.ipynb
desabuh/elliptic_curves_cryptography_plots
6d7a4d01cb38042a78bfbb3959d6856837e3b8be
[ "Apache-2.0" ]
null
null
null
plot_for_eliptic_curves.ipynb
desabuh/elliptic_curves_cryptography_plots
6d7a4d01cb38042a78bfbb3959d6856837e3b8be
[ "Apache-2.0" ]
null
null
null
91.598407
31,062
0.786673
true
720
Qwen/Qwen-72B
1. YES 2. YES
0.957912
0.863392
0.827053
__label__yue_Hant
0.19135
0.759855
# __Funciones__ Una función es un algoritmo que ayuda a automatizar el proceso de desarrollo de un algoritmo, ahorrando líneas de código. _Estructura:_ ``` def nombre_funcion(entradas): (desarrollo) return salidas ``` Las funciones son la base de la Programación Orientada a Objetos (OOP, por sus siglas en inglés). #### Particularidades: * Al igual que las condicionales y los ciclos, requiere de identaciones (espacios horizontales) que permitan identificar que un algoritmo particular pertenece a la función desarrollada. * Las variables declaradas __dentro__ de las funciones se catalogan como variables __locales__. Hasta el momento, hemos trabajado con variables _globales_. ```python #Creación de una función suma para dos números def suma_sencilla(x, y): return x+y ``` ```python #Podemos llamar, y utilizar, a la función suma de la siguiente forma print(suma_sencilla(1,1)) ``` ```python #Función suma de varios números def suma(nums): s = 0 for num in nums: s += num return s ``` ```python print(suma([1,2,3,4])) ``` ```python #Se pueden tener varias entradas y varias salidas def sum_div(x,y,z): return x+y, x/z print(sum_div(1,2,3)) ``` ### __Ejemplo:__ Elabora un algoritmo compacto que permita adicionar elementos al carrito de compras, eliminar artículos y que calcule el total de compra. ```python productos = { 'Martillo': 1000, 'Destornillador': 5000, 'Arandelas': 100, 'Tuercas': 50, 'Pernos': 200 } ``` ```python #FUNCIONES def totalCarrito(lista_compras): total = 0 for item in lista_compras: subtotal = productos[item[0]]*int(item[1]) total += subtotal return total def resumenCompra(lista_compras): msg = "Resumen de compra:\nArtículo\tCantidad\tSubtotal\n" for item in lista_compras: msg += item[0] + "\t" + str(item[1]) + "\t\t" + str(totalCarrito([item,])) + "\n" msg += "TOTAL\t" + str(totalCarrito(lista_compras)) return msg def eliminarArticulo(lista_compras, articulo): for item in lista_compras: if articulo in item: lista_compras.remove(item) break return lista_compras #DESARROLLO INTERACTIVO listaCompras = [] while True: art = input("\n¿Qué artículo deseas comprar? ") cant = input("¿Cuántas unidades desas? ") listaCompras.append((art, cant)) print(resumenCompra(listaCompras)) if input("¿Deseas eliminar un artículo del carrito? (s/n) ") == "s": listaCompras = eliminarArticulo(listaCompras, input("Escribe el nombre del artículo: ")) print(resumenCompra(listaCompras)) if input("¿Deseas seguir comprando? (s/n) ") == "n": break print("----------------------------------------------------------------") ``` ## __Ejercicio:__ Sin usar la función `factorial` de la librería `math`, elabora un algoritmo que resuelva la siguiente ecuación matemática: $$ \begin{equation} y = \frac{x^2+5}{2 x!} \end{equation} $$ Recuerda que: $$ \begin{equation} x! = x(x-1)(x-2) \cdots 1 \end{equation} $$ ```python ```
d792d304646aa59fe5ea8b1428fdad260495da3b
6,307
ipynb
Jupyter Notebook
Python/Colab/FuncionesPython.ipynb
judrodriguezgo/DesarrolloWeb
a020b1eb734e243114982cde9edfc3c25d60047a
[ "MIT" ]
1
2021-10-30T16:54:25.000Z
2021-10-30T16:54:25.000Z
Python/Colab/FuncionesPython.ipynb
judrodriguezgo/DesarrolloWeb
a020b1eb734e243114982cde9edfc3c25d60047a
[ "MIT" ]
null
null
null
Python/Colab/FuncionesPython.ipynb
judrodriguezgo/DesarrolloWeb
a020b1eb734e243114982cde9edfc3c25d60047a
[ "MIT" ]
3
2021-11-23T22:24:15.000Z
2021-12-31T23:51:47.000Z
28.031111
198
0.462661
true
887
Qwen/Qwen-72B
1. YES 2. YES
0.839734
0.803174
0.674452
__label__spa_Latn
0.903304
0.40531
# Under- and overfitting, model selection ## Preliminaries In the first set of exercises you had to implement the training and evaluation of the linear regression and $k$-NN methods from scratch in order to practice your `numpy` skills. From this set of exercises onward, you can use the implementations provided in `scikit-learn` or other higher-level libraries. We start this set of exercises by demonstrating some of the features of `scikit-learn`. For example, implementation of linear regression model fitting with an analytical solution for the parameters is provided by the class `sklearn.linar_model.LinearRegression`. You can train a linear regression model in the following way: ```python import numpy as np from sklearn import datasets, linear_model # load the diabetes dataset diabetes = datasets.load_diabetes() # use only one feature X = diabetes.data[:, np.newaxis, 2] y = diabetes.target # split the data into training/testing sets X_train = X[:-20] X_test = X[-20:] # split the targets into training/testing sets y_train = y[:-20] y_test = y[-20:] # create linear regression object model = linear_model.LinearRegression() # train the model using the training dataset model.fit(X_train, y_train) ``` LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) Let's visualize the training dataset and the learned regression model. ```python %matplotlib inline import matplotlib.pyplot as plt fig = plt.figure() plt.plot(X_train, y_train, 'r.', markersize=12) X_edge = np.array([np.min(X_train, 0), np.max(X_train, 0)]) plt.plot(X_edge, model.predict(X_edge), 'b-') plt.legend(('Data', 'Linear regression'), loc='lower right') plt.title('Linear regression')import numpy as np from sklearn import datasets, linear_model # load the diabetes dataset diabetes = datasets.load_diabetes() # use only one feature X = diabetes.data[:, np.newaxis, 2] y = diabetes.target # split the data into training/testing sets X_train = X[:-20] X_test = X[-20:] # split the targets into training/testing sets y_train = y[:-20] y_test = y[-20:] # create linear regression object model = linear_model.LinearRegression() # train the model using the training dataset model.fit(X_train, y_train) plt.xlabel('$x$') plt.ylabel('$y$') plt.show() ``` Once trained, the model can be used to make predictions on the test data: ```python # Make predictions using the testing dataset prediction = model.predict(X_test) ``` The next step (not shown here) is to evaluate the performance of the trained model. Note that the `scikit-learn` interface works by first initializing an object from the class that implements the machine learning model (linear regression in this case) and then fitting the initialized model using the data in the training set. Finally, the trained (fitted) model can be used to make predictions on unseen data. In fact, all models implemented in this library follow the same *initialize-fit-predict* programming interface. For example, a $k$-NN classifier can be trained in the following way: ```python from sklearn.model_selection import train_test_split from sklearn import datasets, neighbors breast_cancer = datasets.load_breast_cancer() X = breast_cancer.data y = breast_cancer.target # make use of the train_test_split() utility function instead # of manually dividing the data X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=40) # initialize a 3-NN classifier model = neighbors.KNeighborsClassifier(n_neighbors=3) # train the model using the training dataset model.fit(X_train, y_train) # make predictions using the testing dataset prediction = model.predict(X_test) ``` Note that the features in the breast cancer dataset have different scales (some have on average very small absolute values, and some very large), which means that the distance metric used by $k$-NN will me dominated by the features with large values. You can use any of the number of feature transformation methods implemented in `scikit-learn` to scale the features. For example, you can use the `sklearn.preprocessing.StandardScaler` method to transform all features to a have a zero mean and unit variance: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() scaler.fit(X_train) X_train_scaled = scaler.transform(X_train) ``` The scaler has its own parameters which are the means and standard deviations of the features estimated from the training set. If you train a model with the scaled features, you will have to remember to also apply the scaling transformation every time you make a prediction on new unseen and unscaled data. This is somewhat prone to error. One option for making the code more robust is to create a processing pipeline that includes the scaling and $k$-NN models in a sequence: ```python from sklearn.pipeline import Pipeline knn = neighbors.KNeighborsClassifier(n_neighbors=3) model = Pipeline([ ("scaler", scaler), ("knn", knn) ]) # train the model using the training dataset model.fit(X_train, y_train) # make predictions using the testing dataset prediction = model.predict(X_test) ``` If you are curious, more information about the design of the `scikit-learn` application programming interface (API) can be found [in this paper](https://arxiv.org/pdf/1309.0238.pdf). ## Exercises ### Bias-variance decomposition Show that the mean squared error of the estimate of a parameter can be decomposed into an expression that includes both the bias and variance (Eq. 5.53-5.54 in "Deep learning" by Goodfellow et al.). \begin{align} MSE(\hat{\theta}) & = E[(\hat{\theta} - \theta)^2] \\ & = E[(\hat{\theta}-E[\hat{\theta}]+E[\hat{\theta}]-\theta)^2] \\ & = E[(\hat{\theta}-E[\hat{\theta}])^2+2(\hat{\theta}-E[\hat{\theta}])(E[\hat{\theta}]-\theta)+(E[\hat{\theta}]-\theta)^2] \\ & = E[(\hat{\theta}-E[\hat{\theta}])^2]+E[2(\hat{\theta}-E[\hat{\theta}])(E[\hat{\theta}]-\theta)]+E[(E[\hat{\theta}]-\theta)^2] \\ & = E[(\hat{\theta}-E[\hat{\theta}])^2+2(E[\hat{\theta}]-\theta)E[\hat{\theta}-E[\hat{\theta}]]+(E[\hat{\theta}]-\theta)^2 &E[\hat{\theta}]-\theta = constant \\ & = E[(\hat{\theta}-E[\hat{\theta}])^2]+2(E[\hat{\theta}]-\theta)(E[\hat{\theta}]-E[\hat{\theta}])+(E[\hat{\theta}]-\theta)^2 &E[\hat{\theta}] = constant \\ & = E[(\hat{\theta}-E[\hat{\theta}])^2] + (E[\hat{\theta}]-\theta)^2 \\ & = Var(\hat{\theta}) + Bias(\hat{\theta},\theta)^2 \\ \end{align} ### Polynomial regression For this exercise we will be using generated data to better show the effects of the different polynomial orders. The data is created using the make_polynomial_regression function. ```python import numpy as np %matplotlib inline def generate_dataset(n=100, degree=1, noise=1, factors=None): # Generates a dataset by adding random noise to a randomly # generated polynomial function. x = np.random.uniform(low=-1, high=1, size=n) factors = np.random.uniform(0, 10, degree+1) y = np.zeros(x.shape) for idx in range(degree+1): y += factors[idx] * (x ** idx) # add noise y += np.random.normal(-noise, noise, n) return x, y # load generated data np.random.seed(0) X, y = generate_dataset(n=100, degree=4, noise=1.5) plt.plot(X, y, 'r.', markersize=12) ``` Implement polynomial regression using the `sklearn.preprocessing.PolynomialFeatures` transformation. Using the `sklearn.grid_search.GridSearchCV` class, perform a grid search of the polynomial order hyperparameter space with cross-validation and report the performance on an independent test set. Plot a learning curve that show the validation accuracy as a function of the polynomial order. <p><font color='#770a0a'>Which models have a high bias, and which models have high variance? Motivate your answer.</font><p> Repeat this experiment, this time using the diabetes dataset instead of the generated data. ```python import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression import operator #%% split data in train and test from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=40) #%% X_train = X_train[:,np.newaxis] y_train = y_train[:, np.newaxis] X_test = X_test[:,np.newaxis] y_test = y_test[:,np.newaxis] poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X_train) pol = LinearRegression() pol.fit(X_poly, y_train) y_poly_pred = pol.predict(X_poly) plt.scatter(X_train, y_train, s=10, label='training data') #waardes data plotten #soorteren x waardes voor plotten sort_axis = operator.itemgetter(0) sorted_zip = sorted(zip(X_train,y_poly_pred), key=sort_axis) X_train2, y_poly_pred = zip(*sorted_zip) #regressie plotten plt.plot(X_train2, y_poly_pred, color='r', label='model 2nd degree polynomial') plt.legend(loc = 'upper left') plt.show() ``` ```python from sklearn.model_selection import GridSearchCV from sklearn.pipeline import make_pipeline def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) param = {'polynomialfeatures__degree':np.arange(20)} grid = GridSearchCV(PolynomialRegression(), param, cv = 5) #find the optimum degree, 5-fold cross-validation grid.fit(X_train,y_train) values = grid.cv_results_ #results mean_test_score = values['mean_test_score'] polymodel = grid.best_estimator_ #the model with the best estimator performance = polymodel.score(X_test,y_test) #performance score on the independent test set y_predicted = polymodel.fit(X_train,y_train).predict(X_train) sorted_zip = sorted(zip(X_train,y_predicted), key=operator.itemgetter(0)) X_train_plt, y_predicted_plt = zip(*sorted_zip) plt.scatter(X_train,y_train, label='Train data') plt.plot(X_train_plt,y_predicted_plt,'r-',markersize=10, label= 'Model') plt.title('Best estimated model: 3rd degree polynomial') plt.legend(loc = 'upper left') plt.xlabel('x') plt.ylabel('y') plt.show() ``` ```python plt.plot(np.arange(20),values['mean_test_score']) plt.title('Validation accuracy dependence on degree of polynomial') plt.xlabel('degree of polynomial') plt.ylabel('Validation accuracy') plt.show() print(polymodel) print ("The optimum degree polynomial that fits this data is 3, with mean test score {}".format(mean_test_score[3])) print("The accuracy on the independent test set for degree = 3 is {}".format(performance)) ``` The models with a polynomial degree lower than the optimum (degree < 3) have a high bias. Low polynomial orders are insufficient to describe the data in a generalized manner. Using such few polynomials would result in underfitting. The models with a polynomial degree highger than the optimum (degree > 3) have a high variance. High polynomial orders describe the train data very well, but are too specific such that the model cannot be applied to and predict new data, because it is overfitted. The model should contain less polynomials to be more generalized. NOTE: In the following code polynomial orders are taken 0 to 5 and not to 20, to reduce the running time. Other ways of reducing running time, but still trying more polynomial degrees (for example 10, which will run for approx. 1 min) are: N-fold cross validation less than 4 could or decreasing the size of the training data set. However, generally, a higher cross-validation fold is beneficial for finding the right hyperparameter (degree polynomial) and a big training dataset increases the accuracy of the model. ```python diabetes = datasets.load_diabetes() Xdb = diabetes.data[:] ydb = diabetes.target[:] Xdb_train, Xdb_test, ydb_train, ydb_test = train_test_split(Xdb, ydb,test_size=0.20, random_state=30) #test_size may be changed def PolynomialRegression_db(degree=2, **kwargs): return make_pipeline(StandardScaler(), PolynomialFeatures(degree), LinearRegression(**kwargs)) poldegrees = 5 #define the polynomial degrees that are validated param = {'polynomialfeatures__degree':np.arange(poldegrees)} grid_db = GridSearchCV(PolynomialRegression_db(), param, cv = 4) #find the optimum degree, n-fold cross-validation (cv) import timeit start = timeit.default_timer() grid_db.fit(Xdb_train,ydb_train) stop = timeit.default_timer() print('Time: ', stop - start) values_db = grid_db.cv_results_ #results mean_test_score_db = values_db['mean_test_score'] polymodel_db = grid_db.best_estimator_ #the model with the best estimator performance_db = polymodel_db.score(Xdb_test,ydb_test) plt.plot(np.arange(poldegrees),values_db['mean_test_score']) plt.title('Validation accuracy diabetes dataset') plt.xlabel('degree of polynomial') plt.ylabel('Validation accuracy') plt.show() print(polymodel_db) print ("The optimum degree polynomial that fits this data is 1, with mean test score {}".format(mean_test_score_db[1])) print("The accuracy on the independent test set for degree = 1 is {}".format(performance_db)) ``` ### ROC curve analysis A common method to evaluate binary classifiers is the receiver operating characteristic (ROC) curve. Similar to the week one practicals, implement a $k$-NN classifier on the breast cancer dataset, however, his time use the $k$-NN pipeline from the preliminary. Train the model for different values of $k$ and evaluate their respective performance with an ROC curve, use the `sklearn.metrics.roc_curve` function. ```python from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn import datasets, neighbors from sklearn.pipeline import Pipeline from sklearn import metrics import matplotlib.pyplot as plt breast_cancer = datasets.load_breast_cancer() X = breast_cancer.data y = breast_cancer.target scaler = StandardScaler() # make use of the train_test_split() utility function instead # of manually dividing the data X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=40) #compute the mdoel for different k-values for k in range(3,len(X_train)+1,50): # the value of k needs always to be an odd number knn = neighbors.KNeighborsClassifier(n_neighbors=k) model = Pipeline([ ("scaler", scaler), ("knn", knn) ]) # train the model using the training dataset model.fit(X_train, y_train) prediction = model.predict(X_test) #compute false positive rate and true positive rate fpr,tpr,tresholds = metrics.roc_curve(y_test, prediction, pos_label=1) #calculate the area under the curve auc = metrics.roc_auc_score(y_test,prediction) #plot the calculated values plt.plot(fpr,tpr, label=' value of k = ' +str(k)) plt.plot() plt.xlabel('1-Specifity') plt.ylabel('Sensitivity') plt.title('Receiver Operating Characteristic') plt.legend(loc='lower right') plt.show() ``` The ROC plots the true positive rate vs the false positive rate. The greater the area under the curve the better the classifier. From the figure above it can be concluded that the best classifier is found for the value of k is 3. A random classifier is found with the value of k is 403. ### $F_1$ score and Dice similarity coefficient The Dice similarity coefficient is a very popular evaluation measure for image segmentation applications. Assuming that $A$ is the ground truth segmentation of an object represented as a binary image, and $B$ is the binary output of an image segmentation method, the Dice similarity coefficient is computed as: $\text{Dice}(A,B) = \frac{2|A\cap B|}{|A| + |B|}$ where $|\cdot|$ represents the cardinality of the objects (e.g. $|A|$ is the number of non-zero pixels in the ground truth segmentation). For example, the Dice similarity can be computed in the following way: ```python import numpy as np import matplotlib.pyplot as plt # generate some test objecys A = np.zeros((32, 32)) A[10:-10, 10:-10] = 1 B = np.zeros((32, 32)) B[5:-15, 5:-15] = 1 dice = 2*np.sum(A*B)/(np.sum(A)+np.sum(B)) # display the results plt.plot() plt.imshow(A) plt.imshow(B, alpha=0.7) print('The dice-score is = ',dice) ``` <p><font color='#770a0a'>Show that the $F_1$ score, which is the harmonic mean of precision and recall, is equivalent to the Dice similarity coefficient</font><p> ```python from sklearn.metrics import f1_score from sklearn.metrics import classification_report A = np.zeros((32, 32)) A[10:-10, 10:-10] = 1 B = np.zeros((32, 32)) B[5:-15, 5:-15] = 1 print('The f1 score = ',f1_score(A,B,average='weighted')) ``` The f1 score = 0.3402777777777778 A = ground_truth B = predicted_values Why are the dice-score and f1-score the same? f1 = 2 * (precision * recal) / (precision + recall) = 2 / ((precision/(precision * recal)) + (recal/(precision * recal)) = 2 / (1/recal) + (1/precision) wherein precision = |AB|/|B| and recal = |AB|/|A| if you write this in the f1 formula you get: f1= 2 / (|A|/|AB|) + (|B|/|AB|) dice_score = 2 * |AB| / (|A|+|B|) = 2 / ((|A|/|AB|) + (|B|/|AB|)) So as you can see these two (f1 and dice-score) are the same formulas. ```python ```
bc6a71f84ebcbf386e903c9221747f33ef1cbc87
184,214
ipynb
Jupyter Notebook
practicals/week_2.ipynb
ndkruif/8dm40-machine-learning10
fab34c1969b4ea161a3947dbc6358a716ed742f3
[ "MIT" ]
null
null
null
practicals/week_2.ipynb
ndkruif/8dm40-machine-learning10
fab34c1969b4ea161a3947dbc6358a716ed742f3
[ "MIT" ]
null
null
null
practicals/week_2.ipynb
ndkruif/8dm40-machine-learning10
fab34c1969b4ea161a3947dbc6358a716ed742f3
[ "MIT" ]
null
null
null
227.144266
43,276
0.908362
true
4,290
Qwen/Qwen-72B
1. YES 2. YES
0.845942
0.826712
0.699351
__label__eng_Latn
0.960621
0.463157
# Generative models - variational auto-encoders ### Author: Philippe Esling (esling@ircam.fr) In this course we will cover 1. A [quick recap](#recap) on simple probability concepts 2. A formal introduction to [Variational Auto-Encoders](#vae) (VAEs) 3. An explanation of the [implementation](#implem) of VAEs 4. Some [modifications and tips to improve the reconstruction](#improve) of VAEs **(exercise)** <a id="recap"> </a> ## Quick recap on probability The field of probability aims to model random or uncertain events. Hence, a random variable $X$ denotes a quantity that is uncertain, such as the result of an experiment (flipping a coin) or the measurement of an uncertain property (measuring the temperature). If we observe several occurrences of the variable $\{\mathbf{x}_{i}\}_{i=1}$, it might take different values on each occasion, but some values may occur more often than others. This information is captured by the _probability distribution_ $p(\mathbf{x})$ of the random variable. To understand these concepts graphically, we will rely on the `Pytorch Probability` package. ```python import torch import torch.nn as nn import torch.distributions as distrib import torchvision import matplotlib import matplotlib.pyplot as plt import numpy as np import seaborn as sns from helper_plot import hdr_plot_style hdr_plot_style() ``` ### Probability distributions #### Discrete distributions Let $\mathbf{x}$ be a discrete random variable with range $R_{X}=\{x_1,\cdots,x_n\}$ (finite or countably infinite). The function \begin{equation} p_{X}(x_{i})=p(X=x_{i}), \forall i\in\{1,\cdots,n\} \end{equation} is called the probability mass function (PMF) of $X$. Hence, the PMF defines the probabilities of all possible values for a random variable. The above notation allows to express that the PMF is defined for the random variable $X$, so that $p_{X}(1)$ gives the probability that $X=1$. For discrete random variables, the PMF is also called the \textit{probability distribution}. The PMF is a probability measure, therefore it satisfies all the corresponding properties - $0 \leq p_{X}(x_i) < 1, \forall x_i$ - $\sum_{x_i\in R_{X}} p_{X}(x_i) = 1$ - $\forall A \subset R_{X}, p(X \in A)=\sum_{x_a \in A}p_{X}(x_a)$ A very simple example of discrete distribution is the `Bernoulli` distribution. With this distribution, we can model a coin flip. If we throw the coin a very large number of times, we hope to see on average an equal amount of _heads_ and _tails_. ```python bernoulli = distrib.Bernoulli(0.5) samples = bernoulli.sample((10000,)) plt.figure(figsize=(10,8)) sns.distplot(samples) plt.title("Samples from a Bernoulli (coin toss)") plt.show() ``` However, we can also _sample_ from the distribution to have individual values of a single throw. In that case, we obtain a series of separate events that _follow_ the distribution ```python vals = ['heads', 'tails'] samples = bernoulli.sample((10,)) for s in samples: print('Coin is tossed on ' + vals[int(s)]) ``` #### Continuous distributions The same ideas apply to _continuous_ random variables, which can model for instance the height of human beings. If we try to guess the height of someone that we do not know, there is a higher probability that this person will be around 1m70, instead of 20cm or 3m. For the rest of this course, we will use the shorthand notation $p(\mathbf{x})$ for the distribution $p(\mathbf{x}=x_{i})$, which expresses for a real-valued random variable $\mathbf{x}$, evaluated at $x_{i}$, the probability that $\mathbf{x}$ takes the value $x_i$. One notorious example of such distributions is the Gaussian (or Normal) distribution, which is defined as \begin{equation} p(x)=\mathcal{N}(\mu,\sigma)=\frac{1}{\sqrt{2\pi\sigma^{2}}}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}} \end{equation} Similarly as before, we can observe the behavior of this distribution with the following code ```python normal = distrib.Normal(loc=0., scale=1.) samples = normal.sample((10000,)) plt.figure(figsize=(10,8)) sns.distplot(samples) plt.title("Samples from a standard Normal") plt.show() ``` ### Comparing distributions (KL divergence) $ \newcommand{\R}{\mathbb{R}} \newcommand{\bb}[1]{\mathbf{#1}} \newcommand{\bx}{\bb{x}} \newcommand{\by}{\bb{y}} \newcommand{\bz}{\bb{z}} \newcommand{\KL}[2]{\mathcal{D}_{\text{KL}}\left[#1 \| #2\right]}$ Originally defined in the field of information theory, the _Kullback-Leibler (KL) divergence_ (usually noted $\KL{p(\bx)}{q(\bx)}$) is a dissimilarity measure between two probability distributions $p(\bx)$ and $q(\bx)$. In the view of information theory, it can be understood as the cost in number of bits necessary for coding samples from $p(\bx)$ by using a code optimized for $q(\bx)$ rather than the code optimized for $p(\bx)$. In the view of probability theory, it represents the amount of information lost when we use $q(\bx)$ to approximate the true distribution $p(\bx)$. %that explicit the cost incurred if events were generated by $p(\bx)$ but charged under $q(\bx)$ Given two probability distributions $p(\bx)$ and $q(\bx)$, the Kullback-Leibler divergence of $q(\bx)$ _from_ $p(\bx)$ is defined to be \begin{equation} \KL{p(\bx)}{q(\bx)}=\int_{\R} p(\bx) \log \frac{p(\bx)}{q(\bx)}d\bx \end{equation} Note that this dissimilarity measure is \textit{asymmetric}, therefore, we have \begin{equation} \KL{p(\bx)}{q(\bx)}\neq \KL{q(\bx)}{p(\bx)} \end{equation} This asymmetry also describes an interesting behavior of the KL divergence, depending on the order to which it is evaluated. The KL divergence can either be a _mode-seeking_ or _mode-coverage} measure. <a id="vae"></a> ## Variational auto-encoders As we have seen in the previous AE course, VAEs are also a form generative models. However, they are defined from a more sound probabilistic perspective. to find the underlying probability distribution of the data $p(\mathbf{x})$ based on a set of examples in $\mathbf{x}\in\mathbb{R}^{d_{x}}$. To do so, we consider *latent variables* defined in a lower-dimensional space $\mathbf{z}\in\mathbb{R}^{d_{z}}$ ($d_{z} \ll d_{x}$) with the joint probability distribution $p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x} \vert \mathbf{z})p(\mathbf{z})$. Unfortunately, for complex distributions this integral is too complex and cannot be found in closed form. ### Variational inference The idea of *variational inference* (VI) allows to solve this problem through *optimization* by assuming a simpler approximate distribution $q_{\phi}(\mathbf{z}\vert\mathbf{x})\in\mathcal{Q}$ from a family $\mathcal{Q}$ of approximate densities. Hence, the goal is to minimize the difference between this approximation and the real distribution. Therefore, this turns into the optimization problem of minimizing the Kullback-Leibler (KL) divergence between the parametric approximation and the original density $$ q_{\phi}^{*}(\mathbf{z}\vert \mathbf{x})=\text{argmin}_{q_{\phi}(\mathbf{z} \vert \mathbf{x})\in\mathcal{Q}} \mathcal{D}_{KL} \big[ q_{\phi}\left(\mathbf{z} \vert \mathbf{x}\right) \parallel p\left(\mathbf{z} \vert \mathbf{x}\right) \big] \tag{2} $$ By developing this KL divergence and re-arranging terms (the detailed development can be found in [3](#reference1)), we obtain $$ \log{p(\mathbf{x})} - D_{KL} \big[ q_{\phi}(\mathbf{z} \vert \mathbf{x}) \parallel p(\mathbf{z} \vert \mathbf{x}) \big] = \mathbb{E}_{\mathbf{z}} \big[ \log{p(\mathbf{x} \vert \mathbf{z})}\big] - D_{KL} \big[ q_{\phi}(\mathbf{z} \vert \mathbf{x}) \parallel p(\mathbf{z}) \big] \tag{3} $$ This formulation describes the quantity we want to maximize $\log p(\mathbf{x})$ minus the error we make by using an approximate $q$ instead of $p$. Therefore, we can optimize this alternative objective, called the *evidence lower bound* (ELBO) $$ \begin{equation} \mathcal{L}_{\theta, \phi} = \mathbb{E} \big[ \log{ p_\theta (\mathbf{x|z}) } \big] - \beta \cdot D_{KL} \big[ q_\phi(\mathbf{z|x}) \parallel p_\theta(\mathbf{z}) \big] \end{equation} \tag{4} $$ We can see that this equation involves $q_{\phi}(\mathbf{z} \vert \mathbf{x})$ which *encodes* the data $\mathbf{x}$ into the latent representation $\mathbf{z}$ and a *decoder* $p(\mathbf{x} \vert \mathbf{z})$, which allows generating a data vector $\mathbf{x}$ given a latent configuration $\mathbf{z}$. Hence, this structure defines the *Variational Auto-Encoder* (VAE). The VAE objective can be interpreted intuitively. The first term increases the likelihood of the data generated given a configuration of the latent, which amounts to minimize the *reconstruction error*. The second term represents the error made by using a simpler posterior distribution $q_{\phi}(\mathbf{z} \vert \mathbf{x})$ compared to the true prior $p_{\theta}(\mathbf{z})$. Therefore, this *regularizes* the choice of approximation $q$ so that it remains close to the true posterior distribution [3]. ### Reparametrization trick Now, while this formulation has some very interesting properties, it involves sampling operations, where we need to draw the latent point $\mathbf{z}$ from the distribution $q_{\phi}(\mathbf{z}\vert\mathbf{x})$. The simplest choice for this variational approximate posterior is a multivariate Gaussian with a diagonal covariance structure (which leads to independent Gaussians on every dimension, called the *mean-field* family) so that $$ \text{log}q_\phi(\mathbf{z}\vert\mathbf{x}) = \text{log}\mathcal{N}(\mathbf{z};\mathbf{\mu}^{(i)},\mathbf{\sigma}^{(i)}) \tag{5} $$ where the mean $\mathbf{\mu}^{(i)}$ and standard deviation $\mathbf{\sigma}^{(i)}$ of the approximate posterior are different for each input point and are produced by our encoder parametrized by its variational parameters $\phi$. Now the KL divergence between this distribution and a simple prior $\mathcal{N}(\mathbf{0}, \mathbf{I})$ can be very simply obtained with $$ D_{KL} \big[ q_\phi(\mathbf{z|x}) \parallel \mathcal{N}(\mathbf{0}, \mathbf{I}) \big] = \frac{1}{2}\sum_{j=1}^{D}\left(1+\text{log}((\sigma^{(i)}_j)^2)+(\mu^{(i)}_j)^2+(\sigma^{(i)}_j)^2\right) \tag{6} $$ While this looks convenient, we will still have to perform gradient descent through a sampling operation, which is non-differentiable. To solve this issue, we can use the *reparametrization trick*, which takes the sampling operation outside of the gradient flow by considering $\mathbf{z}^{(i)}=\mathbf{\mu}^{(i)}+\mathbf{\sigma}^{(i)}\odot\mathbf{\epsilon}^{(l)}$ with $\mathbf{\epsilon}^{(l)}\sim\mathcal{N}(\mathbf{0}, \mathbf{I})$ <a id="implem"> </a> ## VAE implementation As we have seen, VAEs can be simply implemented by decomposing the above series of operations into an `encoder` which represents the distribution $q_\phi(\mathbf{z}\vert\mathbf{x})$, from which we will sample some values $\tilde{\mathbf{z}}$ (using the reparametrization trick) and compute the Kullback-Leibler (KL) divergence. Then, we use these values as input to a `decoder` which represents the distribution $p_\theta(\mathbf{x}\vert\mathbf{z})$ so that we can produce a reconstruction $\tilde{\mathbf{x}}$ and compute the reconstruction error. Therefore, we can define the VAE based on our previous implementation of the AE that we recall here ```python class AE(nn.Module): def __init__(self, encoder, decoder, encoding_dim): super(AE, self).__init__() self.encoding_dims = encoding_dim self.encoder = encoder self.decoder = decoder def forward(self, x): encoded = self.encoder(x) decoded = self.decoder(encoded) return decoded ``` In order to move to a probabilistic version, we need to add the latent space sampling mechanism, and change the behavior of our `call` function. This process is implemented in the following `VAE` class. Note that we purposedly rely on an implementation of the `encode` function where the `encoder` first produces an intermediate representation of size `encoder_dims`. Then, this representation goes through two separate functions for encoding $\mathbf{\mu}$ and $\mathbf{\sigma}$. This provides a clearer implementation but also the added bonus that we can ensure that $\mathbf{\sigma} > 0$ ```python class VAE(AE): def __init__(self, encoder, decoder, encoding_dims, latent_dims): super(VAE, self).__init__(encoder, decoder, encoding_dims) self.latent_dims = latent_dims self.mu = nn.Sequential(nn.Linear(self.encoding_dims, self.latent_dims), nn.ReLU()) self.sigma = nn.Sequential(nn.Linear(self.encoding_dims, self.latent_dims), nn.Softplus()) def encode(self, x): ###################### # YOUR CODE GOES HERE ###################### return mu, sigma def decode(self, z): return self.decoder(z) def forward(self, x): # Encode the inputs z_params = self.encode(x) # Obtain latent samples and latent loss z_tilde, kl_div = self.latent(x, z_params) # Decode the samples x_tilde = self.decode(z_tilde) return x_tilde.reshape(-1, 1, 28, 28), kl_div def latent(self, x, z_params): ###################### # YOUR CODE GOES HERE ###################### return z, kl_div ``` Now the interesting aspect of VAEs is that we can define any parametric function as `encoder` and `decoder`, as long as we can optimize them. Here, we will rely on simple feed-forward neural networks, but these can be largely more complex (with limitations that we will discuss later in the tutorial). ```python def construct_encoder_decoder(nin, n_latent = 16, n_hidden = 512, n_classes = 1): # Encoder network encoder = nn.Sequential( nn.Flatten(), nn.Linear(nin, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_hidden), nn.ReLU(), ) # Decoder network decoder = nn.Sequential( nn.Linear(n_latent, n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_hidden), nn.ReLU(), nn.Linear(n_hidden, nin * n_classes), nn.Sigmoid() ) return encoder, decoder ``` ### Evaluating the error In the definition of the `VAE` class, we directly included the computation of the $D_{KL}$ term to regularize our latent space. However, remember that the complete loss of equation (4) also contains a *reconstruction loss* which compares our reconstructed output to the original data. While there are several options to compare the error between two elements, there are usually two preferred choices among the generative literature depending on how we consider our problem 1. If we consider each dimension (pixel) to be a binary unit (following a Bernoulli distribution), we can rely on the `binary cross entropy` between the two distributions 2. If we turn our problem to a set of classifications, where each dimension can belong to a given set of *intensity classes*, then we can compute the `multinomial loss` between the two distributions In the following, we define both error functions and regroup them in the `reconstruction_loss` call (depending on the `num_classes` considered). However, as the `multinomial loss` requires a large computational overhead, and for the sake of simplicity, we will train all our first models by relying on the `binary cross entropy` ```python # Reconstruction criterion recons_criterion = torch.nn.MSELoss(reduction='sum') def compute_loss(model, x): ###################### # YOUR CODE GOES HERE ###################### return full_loss def train_step(model, x, optimizer): # Compute the loss. loss = compute_loss(model, x) # Before the backward pass, zero all of the network gradients optimizer.zero_grad() # Backward pass: compute gradient of the loss with respect to parameters loss.backward() # Calling the step function to update the parameters optimizer.step() return loss ``` ### Optimizing a VAE on a real dataset For this tutorial, we are going to take a quick shot at a real-life problem by trying to train our VAEs on the `FashionMNIST` dataset. This dataset can be natively used in PyTorch by relying on the `torchvision.datasets` classes as follows ```python dataset_dir = './data' # Going to use 80%/20% split for train/valid valid_ratio = 0.2 # Load the dataset for the training/validation sets train_valid_dataset = torchvision.datasets.FashionMNIST(root=dataset_dir, train=True, transform=torchvision.transforms.ToTensor(), download=True) # Split it into training and validation sets nb_train = int((1.0 - valid_ratio) * len(train_valid_dataset)) nb_valid = int(valid_ratio * len(train_valid_dataset)) train_dataset, valid_dataset = torch.utils.data.dataset.random_split(train_valid_dataset, [nb_train, nb_valid]) # Load the test set test_dataset = torchvision.datasets.FashionMNIST(root=dataset_dir, transform=torchvision.transforms.ToTensor(),train=False) # Prepare num_threads = 4 # Loading the dataset is using 4 CPU threads batch_size = 128 # Using minibatches of 128 samples train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, num_workers=num_threads) valid_loader = torch.utils.data.DataLoader(dataset=valid_dataset, batch_size=batch_size, shuffle=False, num_workers=num_threads) test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False,num_workers=num_threads) ``` The `FashionMNIST` dataset is composed of simple 28x28 black and white images of different items of clothings (such as shoes, bags, pants and shirts). We put a simple function here to display one batch of the test set (note that we keep a fixed batch from the test set in order to evaluate the different variations that we will try in this tutorial). ```python print("The train set contains {} images, in {} batches".format(len(train_loader.dataset), len(train_loader))) print("The validation set contains {} images, in {} batches".format(len(valid_loader.dataset), len(valid_loader))) print("The test set contains {} images, in {} batches".format(len(test_loader.dataset), len(test_loader))) nsamples = 10 classes_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal','Shirt', 'Sneaker', 'Bag', 'Ankle boot'] imgs_test, labels = next(iter(test_loader)) fig = plt.figure(figsize=(20,5)) for i in range(nsamples): ax = plt.subplot(1,nsamples, i+1) plt.imshow(imgs_test[i, 0, :, :], vmin=0, vmax=1.0, cmap=matplotlib.cm.gray) ax.set_title("{}".format(classes_names[labels[i]]), fontsize=15) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ``` Now based on our proposed implementation, the optimization aspects are defined in a very usual way ```python # Using Bernoulli or Multinomial loss num_classes = 1 # Number of hidden and latent n_hidden = 512 n_latent = 2 # Compute input dimensionality nin = imgs_test.shape[2] * imgs_test.shape[3] # Construct encoder and decoder encoder, decoder = construct_encoder_decoder(nin, n_hidden = n_hidden, n_latent = n_latent, n_classes = num_classes) # Build the VAE model model = VAE(encoder, decoder, n_hidden, n_latent) # Construct the optimizer optimizer = torch.optim.Adam(model.parameters(), lr=1e-4) ``` Now all that is left to do is train the model. We define here a `train_vae` function that we will reuse along the future implementations and variations of VAEs and flows. Note that this function is set to run for only a very few number of `epochs` and also most importantly, *only considers a subsample of the full dataset at each epoch*. This option is just here so that you can test the different models very quickly on any CPU or laptop. ```python def generate_and_save_images(model, epoch, test_sample): predictions, _ = model(test_sample) fig = plt.figure(figsize=(4, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i + 1) plt.imshow(predictions[i, 0, :, :].detach(), cmap='gray') plt.axis('off') # Tight_layout minimizes the overlap between 2 sub-plots #plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show() epochs=50 test_sample = imgs_test[0:16, :, :, :] for epoch in range(1, epochs + 1): full_loss = torch.Tensor([0]) # Forward pass: compute predicted y by passing x to the model. for i, (x, _) in enumerate(train_loader): full_loss += train_step(model, x, optimizer) #for i, (x, _) in enumerate(valid_loader): # train_step(model, x, optimizer) print('Epoch: {}, Test set ELBO: {}'.format(epoch, full_loss)) generate_and_save_images(model, epoch, test_sample) ``` ### Evaluating generative models In order to evaluate our upcoming generative models, we will rely on the computation of the Negative Log-Likelihood. This code for the following `evaluate_nll_bpd` is inspired by the [Sylvester flow repository](https://github.com/riannevdberg/sylvester-flows) ```python from scipy.special import logsumexp def evaluate_nll_bpd(data_loader, model, batch = 500, R = 5): # Set of likelihood tests likelihood_test = [] # Go through dataset for batch_idx, (x, _) in enumerate(data_loader): for j in range(x.shape[0]): a = [] for r in range(0, R): cur_x = x[j].unsqueeze(0) # Repeat it as batch x = cur_x.expand(batch, *cur_x.size()[1:]).contiguous() x = x.view(batch, -1) x_tilde, kl_div = model(x) rec = reconstruction_loss(x_tilde, x, average=False) a_tmp = (rec + kl_div) a.append(- a_tmp.cpu().data.numpy()) # calculate max a = np.asarray(a) a = np.reshape(a, (a.shape[0] * a.shape[1], 1)) likelihood_x = logsumexp(a) likelihood_test.append(likelihood_x - np.log(len(a))) likelihood_test = np.array(likelihood_test) nll = - np.mean(likelihood_test) # Compute the bits per dim (but irrelevant for binary data) bpd = nll / (np.prod(nin) * np.log(2.)) return nll, bpd ``` Now we can evaluate our VAE model more formally as follows. ```python # Plot final loss plt.figure() plt.plot(losses_kld[:, 0].numpy()); # Evaluate log-likelihood and bits per dim nll, _ = evaluate_nll_bpd(test_loader, model) print('Negative Log-Likelihood : ' + str(nll)) ``` We can also evaluate the latent space of our model, which should be organized (being the overall point of using a VAE instead of a common AE). ```python x = np.linspace(-3, 3, 8) y = np.linspace(-3, 3, 8) fig = plt.figure(figsize=(10, 8)) for i in range(8): for j in range(8): plt.subplot(8, 8, (i * 8) + j + 1) final_tensor = torch.zeros(2) final_tensor[0] = x[i] final_tensor[1] = y[j] plt.imshow(model.decode(final_tensor).detach().reshape(28, 28), cmap='gray') plt.axis('off') ``` ### Limitations of VAEs - (**exercise**) Although VAEs are extremely powerful tools, they still have some limitations. Here we list the three most important and known limitations (all of them are still debated and topics of active research). 1. **Blurry reconstructions.** As can be witnessed directly in the results of the previous vanilla VAE implementation, the reconstructions appear to be blurry. The precise origin of this phenomenon is still debated, but the proposed explanation are 1. The use of the KL regularization 2. High variance regions of the latent space 3. The reconstruction criterion (expectation) 4. The use of simplistic latent distributions 2. **Posterior collapse.** The previous *blurry reconstructions* issue can be mitigated by using a more powerful decoder. However, relying on a decoder with a large capacity causes the phenomenon of *posterior collapse* where the latent space becomes useless. A nice intuitive explanation can be found [here](https://ermongroup.github.io/blog/a-tutorial-on-mmd-variational-autoencoders/) 3. **Simplistic Gaussian approximation**. In the derivation of the VAE objective, recall that the KL divergence term needs to be computed analytically. Therefore, this forces us to rely on quite simplistic families. However, the Gaussian family might be too simplistic to model real world data In the present tutorial, we show how normalizing flows can be used to mostly solve the third limitation, while also adressing the two first problems. Indeed, we will see that normalizing flows also lead to sharper reconstructions and also act on preventing posterior collapse <a id="improve"></a> ## Improving the quality of VAEs As we discussed in the previous section, several known issues have been reported when using the vanilla VAE implementation. We listed some of the major issues as being 1. **Blurry reconstructions.** 2. **Posterior collapse.** 3. **Simplistic Gaussian approximation**. Here, we discuss some recent developments that were proposed in the VAE literature and simple adjustments that can be made to (at least partly) alleviate these issues. However, note that some more advanced proposals such as PixelVAE [5](#reference1) and VQ-VAE [6](#reference1) can lead to wider increases in quality ### Reducing the bluriness of reconstructions In this tutorial, we relied on extremely simple decoder functions, to show how we could easily define VAEs and normalizing flows together. However, the capacity of the decoder obviously directly influences the quality of the final reconstruction. Therefore, we could address this issue naively by using deep networks and of course convolutional layers as we are currently dealing with images. First you need to construct a more complex encoder and decoder ```python def construct_encoder_decoder_complex(nin, n_latent = 16, n_hidden = 512, n_params = 0, n_classes = 1): ###################### # YOUR CODE GOES HERE ###################### # Encoder network encoder = ... # Decoder network decoder = ... return encoder, decoder ``` ### Preventing posterior collapse with Wasserstein-VAE-MMD (InfoVAE) As we discussed earlier, the reason behind posterior collapse mostly relates to the KL divergence criterion (a nice intuitive explanation can be found [here](https://ermongroup.github.io/blog/a-tutorial-on-mmd-variational-autoencoders/). This can be mitigated by relying on a different criterion, such as regularizing the latent distribution by using the *Maximum Mean Discrepancy* (MMD) instead of the KL divergence. This model was independently proposed as the *InfoVAE* and later also as the *Wasserstein-VAE*. Here we provide a simple implementation of the `InfoVAEMMD` class based on our previous implementations. ```python ###################### # YOUR CODE GOES HERE ###################### def compute_kernel(x, y): return ... def compute_mmd(x, y): return ... class InfoVAEMMD(VAE): def __init__(self, encoder, decoder): super(InfoVAEMMD, self).__init__(encoder, decoder) def latent(self, x, z_params): return ... ``` ### Putting it all together Here we combine all these ideas (except for the MMD, which is not adequate as the flow definition already regularizes the latent space without the KL divergence) to perform a more advanced optimization of the dataset. Hence, we will rely on the complex encoder and decoder with gated convolutions, the multinomial loss and the normalizing flows in order to improve the overall quality of our reconstructions. ```python # Size of latent space n_latent = 16 # Number of hidden units n_hidden = 256 # Rely on Bernoulli or multinomial num_classes = 128 ###################### # YOUR CODE GOES HERE ###################### # Construct encoder and decoder encoder, decoder = ... # Create VAE or (InfoVAEMMD - WAE) model model_flow_p = ... # Create optimizer algorithm optimizer = ... # Add learning rate scheduler scheduler = ... # Launch our optimization losses_flow_param = ... ``` *NB*: It seems that the multinomial version have a hard time converging. Although I only let this run for 200 epochs and only for a subsampling of 5000 examples, it might need more time, but this might also come from a mistake somewhere in my code ... If you spot something odd please let me know :) ### References <a id="reference1"></a> [1] Rezende, Danilo Jimenez, and Shakir Mohamed. "Variational inference with normalizing flows." _arXiv preprint arXiv:1505.05770_ (2015). [link](http://arxiv.org/pdf/1505.05770) [2] Kingma, Diederik P., Tim Salimans, and Max Welling. "Improving Variational Inference with Inverse Autoregressive Flow." _arXiv preprint arXiv:1606.04934_ (2016). [link](https://arxiv.org/abs/1606.04934) [3] Kingma, D. P., & Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114. (2013). [link](https://arxiv.org/pdf/1312.6114) [4] Rezende, D. J., Mohamed, S., & Wierstra, D. Stochastic backpropagation and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082. (2014). [link](https://arxiv.org/pdf/1401.4082) [5] Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., & Courville, A. (2016). Pixelvae: A latent variable model for natural images. arXiv preprint arXiv:1611.05013. [link](https://arxiv.org/pdf/1611.05013) [6] Van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. In NIPS 2017 (pp. 6306-6315). [link](http://papers.nips.cc/paper/7210-neural-discrete-representation-learning.pdf) ### Inspirations and resources https://blog.evjang.com/2018/01/nf1.html https://github.com/ex4sperans/variational-inference-with-normalizing-flows https://akosiorek.github.io/ml/2018/04/03/norm_flows.html https://github.com/abdulfatir/normalizing-flows https://github.com/riannevdberg/sylvester-flows
e18e11a8a03ae202fda9c013da3ab1b932440c9e
39,188
ipynb
Jupyter Notebook
10a_variational_auto_encoders.ipynb
piptouque/atiam_ml
9da637eae179237d30a15dd9ce3e95a2a956c385
[ "MIT" ]
null
null
null
10a_variational_auto_encoders.ipynb
piptouque/atiam_ml
9da637eae179237d30a15dd9ce3e95a2a956c385
[ "MIT" ]
null
null
null
10a_variational_auto_encoders.ipynb
piptouque/atiam_ml
9da637eae179237d30a15dd9ce3e95a2a956c385
[ "MIT" ]
null
null
null
47.044418
698
0.616337
true
7,734
Qwen/Qwen-72B
1. YES 2. YES
0.872347
0.819893
0.715232
__label__eng_Latn
0.978203
0.500055
# Non-linear equations: introduction This notebook is based on Chapter 1 of <a id='thebook'></a> > Süli, Endre and Mayers, David F. _An introduction to numerical analysis_. Cambridge University Press, Cambridge, 2003. <https://doi.org/10.1017/CBO9780511801181> (ebook in [Helka](https://helka.helsinki.fi/permalink/358UOH_INST/1h3k2rg/alma9926836783506253)) In addition, some examples are taken from Chapters 1 and 2 of > Scott, L. Ridgway. _Numerical analysis_. Princeton University Press, Princeton, NJ, 2011. The equation $x^2 = 2$ has two solutions $x = \pm \sqrt{2}$, but how do we compute an approximation to $\sqrt{2}$ as a floating-point number? This problem has a long tradition, see the Babylonian clay tablet [YBC 7289](https://en.wikipedia.org/wiki/YBC_7289). Perhaps the first algorithm used for approximating $\sqrt{q}$, with $q > 0$, is the [Babylonian method](https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method): 1. Start with an initial guess $x_0$ 2. Set $$ x_{n+1} = \frac 1 2 (x_n + \frac q {x_n}) $$ 3. Repeat step 2 until the desired accuracy is achieved ```python def babylonian_method(x, q): return 0.5*(x + q/x) ``` ```python import numpy as np max_steps = 5 xs = np.zeros(max_steps) x = 1.5 for n in range(max_steps): x = babylonian_method(x, 2) xs[n] = x xs ``` ```python xtrue = np.sqrt(2) errs = np.abs(xs - xtrue) import pandas as pd df = pd.DataFrame({ 'x': xs, 'error': errs, }) df.index = range(1, max_steps+1) df.index.name = 'n' df.style.format({'error': '{:.1e}'}) ``` # Fixed-point iteration The Babylonian method is a fixed point iteration of the form $$ x_{n+1} = f(x_n), \qquad n=0,1,\dots $$ If the sequence $x_n$ converges to a point $\xi$ and $f$ is continuous, then $\xi$ is a fixed point of $f$, that is, $\xi = f(\xi)$. Indeed $$ \xi = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(\xi). $$ Note that while the Gaussian elimination terminates after a finite number of steps, a fixed point iteration may require infinite number of steps to converge. In the case of the Babylonian method $$ f(x) = \frac 1 2 (x + \frac q {x}) $$ and $$ \xi = f(\xi) \quad\iff\quad \xi = \frac q {\xi} \quad\iff\quad \xi^2 = q \quad\iff\quad \xi = \pm \sqrt{q}. $$ One may wonder if the simpler choice $f(x) = \frac q {x}$ would work as well. After all $\xi = f(\xi)$ is equivalent to $\xi = \pm \sqrt{q}$ also for this $f$. ```python def non_method(x, q): return q / x max_steps = 5 xs = np.zeros(max_steps) x = 1.5 # initial guess for n in range(max_steps): x = non_method(x, 2) xs[n] = x xs ``` Consider a closed interval $I = [a,b]$ with $a < b$. A function $f : I \to \mathbb R$ is a _contraction_ if there is $0 < L < 1$ such that \begin{equation}\tag{1} |f(x) - f(y)| \le L |x - y|, \qquad x,y \in I. \end{equation} The [mean value theorem](https://en.wikipedia.org/wiki/Mean_value_theorem) implies that (1) holds with $L = \max_{x \in I} |f'(x)|$ whenever $f$ is differentiable. ## Theorem: Banach fixed-point > Suppose that $f : I \to I$ is a contraction. Then there is a unique fixed point $\xi \in I$ of $f$, and the sequence $x_{n+1} = f(x_{n})$ converges to $\xi$ for any initial guess $x_0 \in I$. For a proof, see Theorem 1.3 of [the book](#thebook). ## Theorem: local convergence > Let $\xi$ be a fixed point of $f : \mathbb R \to \mathbb R$ and suppose that $f$ is continuously differentiable near $\xi$. If $|f'(\xi)| < 1$, then there is an open interval $I$ containing $\xi$ such that the sequence $x_{n+1} = f(x_{n})$ converges to $\xi$ for any initial guess $x_0 \in I$. _Proof_. The continuity of $f'$ near $\xi$, together with $|f'(\xi)| < 1$, implies that there are $\epsilon > 0$ and $0 <\delta < 1$ such that $$ |f'(x)| \le \delta, \qquad x \in (\xi - \epsilon, \xi + \epsilon) =: I. $$ The mean value theorem implies $$ |f(x) - f(y)| \le L |x - y|, \qquad x,y \in I, $$ with $L = \delta$. In particular, $$ |f(x) - \xi| = |f(x) - f(\xi)| \le \delta |x - \xi| < \delta \epsilon < \epsilon, \qquad x \in I. $$ Hence $f$ maps $I$ to itself and we can apply the Banach fixed-point theorem. $\blacksquare$ In the case of the Babylonian method $$ f(x) = \frac 1 2 (x + \frac q {x}) \quad \text{and} \quad f'(x) = \frac 1 2 (1 - \frac q {x^2}). $$ Thus $f'(\xi) = 0$ at the fixed point $\xi = \sqrt{q}$, and the method converges locally (that is, for an initial guess near $\xi$). On the other hand, in the case of the "non-method" $$ f(x) = \frac q {x}, \quad \text{and} \quad f'(x) = - \frac q {x^2}. $$ Thus $f'(\xi) = -1$ at $\xi = \sqrt{q}$, and $f$ is **not** a contraction on any open interval containing $\xi$. ## Definition: order of convergence > Suppose that a sequence $x_n$ converges to $\xi$ in $\mathbb R$. If there are $p > 1$ and $\mu > 0$ such that > >\begin{align} \tag{1} \lim_{n \to \infty} \frac{|x_{n+1} - \xi|}{|x_{n} - \xi|^p} = \mu, \end{align} > > then $x_n$ is said to converge with order $p$. If (1) holds with $p = 1$ and $0 < \mu < 1$, then $x_n$ is said to converge linearly. Finally, if (1) holds with $p = 1$ and $\mu = 1$, then $x_n$ is said to converge sublinearly. ## Example: different orders of convergence Let $\lambda \in (0,1)$. Then * sequence $x_n = \lambda^n$ converges linearly to zero, * sequence $x_n = \lambda^{2^n}$ converges quadratically (that is, with order 2) to zero, * sequence $x_n = 1/n$ converges sublinearly to zero, * sequence $x_n = \lambda^{n!}$ converges superpolynomially to zero in the sense that for all $p > 1$ $$ \frac{x_{n+1}}{x_n^p} \to 0. $$ ```python from matplotlib import pyplot as plt lam = 0.5 def f(n): return lam**n N = 10 ns = np.arange(1, N+1) plt.semilogy(ns, f(ns)); ``` ## Theorem: local _linear_ convergence > Let $f$, $\xi$ and $I$ be as in the local convergence theorem. Suppose that $f'(\xi) \ne 0$. Then the sequence $x_{n+1} = f(x_{n})$ converges linearly to $\xi$ for any initial guess $x_0 \in I$. _Proof_. The _local convergence_ theorem implies that $x_n \to \xi$. The mean value theorem implies that there is $\tilde x_n$ between $\xi$ and $x_n$ such that $$ f(x_n) - f(\xi) = f'(\tilde x_n)(x_n - \xi). $$ As $x_n \to \xi$, also $\tilde x_n \to \xi$. Recalling that $f'$ is continuous near $\xi$, we have $$ \frac{|x_{n+1} - \xi|}{|x_{n} - \xi|} = \frac{|f(x_n) - f(\xi)|}{|x_{n} - \xi|} = |f'(\tilde x_n)| \to |f'(\xi)| =: \mu. $$ To conclude, we observe that $0 < \mu < 1$. $\blacksquare$ ## Theorem: local _higher-order_ convergence > Let $f$, $\xi$ and $I$ be as in the local convergence theorem. Suppose that $f$ has continuous derivatives up to order $p \ge 2$ near $\xi$, and that $f'(\xi) = \dots = f^{(p - 1)}(\xi) = 0$ and $f^{(p)}(\xi) \ne 0$. Then the sequence $x_{n+1} = f(x_{n})$ converges with order $p$ to $\xi$ for any initial guess $x_0 \in I$. _Proof_. The _local convergence_ theorem implies that $x_n \to \xi$. [Taylor's theorem](https://en.wikipedia.org/wiki/Taylor's_theorem#Explicit_formulas_for_the_remainder), with Lagrange form of the remainder, says that there is $\tilde x_n$ between $\xi$ and $x_n$ such that $$ f(x_n) - f(\xi) = \frac{f^{(p)}(\tilde x_n)}{p!}(x_n - \xi)^p. $$ As $x_n \to \xi$, also $\tilde x_n \to \xi$. Recalling that $f^{(p)}$ is continuous near $\xi$, we have $$ \frac{|x_{n+1} - \xi|}{|x_{n} - \xi|^p} = \frac{|f(x_n) - f(\xi)|}{|x_{n} - \xi|^p} = \frac{|f^{(p)}(\tilde x_n)|}{p!} \to \frac{|f^{(p)}(\xi)|}{p!} \ne 0. $$ $\blacksquare$ # Relaxation and Newton's method The problem to solve $\phi(x) = 0$ can be rewritten as the problem to find a fixed point $x = f(x)$. Indeed, these two problems are equivalent if $f(x) = x - \phi(x)$. ## Theorem: relaxation > Let $\phi : \mathbb R \to \mathbb R$ be continuously differentiable near a point $\xi \in \mathbb R$. Suppose that $\phi(\xi) = 0$ and $\phi'(\xi) > 0$. Then there are an open interval $I$ containing $\xi$ and $\lambda > 0$ such that the relaxation iteration > > $$ x_{n+1} = x_n - \lambda \phi(x_n), \quad n=0,1\dots $$ > > converges to $\xi$ for any initial guess $x_0 \in I$. If instead $\phi(\xi) = 0$ and $\phi'(\xi) < 0$, then we can apply the theorem to $-\phi$. _Proof_. The function $f(x) = x - \lambda \phi(x)$ satisfies $$ -1 < f'(\xi) = 1 - \lambda \phi'(\xi) < 1 $$ for small $\lambda > 0$, and we can apply the _local convergence_ theorem. $\blacksquare$ Note that the choice $\lambda = 1/\phi'(\xi)$ leads to $f'(\xi) = 0$ and gives a method with at least quadratic convergence. Of course, we typically don't know $\xi$ (we are solving for it), and hence can not make this optimal choice in practice. Let's apply relaxation to the "non-method" $f(x) = q / x$. In this case $$ \phi(x) = x - \frac q x, \quad \phi'(x) = 1 + \frac q {x^2}. $$ In particular, $\phi'(\xi) = 2$ at $\xi = \sqrt{q}$. Taking $\lambda = 1/\phi'(\xi) = 1/2$ gives the Babylonian method $$ x_{n+1} = x_n - \frac 1 2 \phi(x_n) = \frac 1 2 (x_n + \frac q {x_n}). $$ Newton's method can be viewed as a generalization of the relaxation iteration where we let $\lambda$ to be non-constant, and take $\lambda = 1/\phi'(x_n)$: $$ x_{n+1} = x_n - \frac {\phi(x_n)}{\phi'(x_n)}, \quad n=0,1\dots $$ Put differently, we take $\phi'(x_n)$ as a proxy of $\phi'(\xi)$. Another, way to arrive to Newton's method is to replace $\phi(x)$ in the equation $\phi(x) = 0$ by its first order Taylor polynomial at $x = x_n$, that is, $$ 0 = \phi(x) \approx \phi(x_n) + \phi'(x_n) (x - x_n). $$ Then solving for $x$ gives $x = x_{n+1}$ with $x_{n+1}$ as above. Let us apply Newton's method to the equation $x^2 = q$ and take $\phi(x) = x^2 - q$. Then $$ x_{n+1} = x_n - \frac {x_n^2 - q} {2 x_n} = \frac 1 2 (x_n + \frac q {x_n}), $$ the Babylonian method once again. ## Theorem: convergence of Newton's method >Suppose that $\phi : \mathbb R \to \mathbb R$ has continuous derivatives up to order 3 near a point $\xi \in \mathbb R$, and that $\phi(\xi) = 0$ and $\phi'(\xi) \ne 0$. Then there is an open interval $I$ containing $\xi$ such that Newton's method > >$$ x_{n+1} = x_n - \frac {\phi(x_n)}{\phi'(x_n)}, \quad n=0,1\dots $$ > >converges at least quadratically to $\xi$ for any initial guess $x_0 \in I$. _Proof_. The function $$ f(x) = x - \frac {\phi(x)}{\phi'(x)} $$ satisfies $f'(\xi) = 0$, and we can apply the _local higher-order convergence_ theorem. $\blacksquare$ A slightly sharper proof shows that the assumptions can be weakened to $\phi$ having continuous derivatives up to order 2 near $\xi$, see Theorem 1.8 of the [the book](#thebook). ## Example: Kepler's equation In orbital mechanics, [Kepler's equation](https://en.wikipedia.org/wiki/Kepler%27s_equation) relates various geometric properties of the orbit of a body subject to a central force. It reads $$ M = E - e \sin E $$ where $M$ is the mean anomaly, $E$ is the eccentric anomaly, and $e$ is the eccentricity. The first published use by Newton of his eponymous method in an iterative form, and applied to a nonpolynomial equation, is in the second and third editions of his _Philosophiae Naturalis Principia Mathematica_, where it is applied to Kepler's equation. For more details, see Section 6 of >Ypma, Tjalling J. _Historical development of the Newton-Raphson method_. SIAM Rev. 37 (1995), no. 4, 531–551. <https://doi.org/10.1137/1037125> Let us consider the following calculation that is reproduced from p. 148 of > Duffett-Smith, Peter and Zwart, Jonathan. _Practical Astronomy with your Calculator or Spreadsheet_. Cambridge University Press, Cambridge, UK, 2011. (ebook in [Helka](https://helka.helsinki.fi/permalink/358UOH_INST/1h3k2rg/alma9932214283506253)) ```python # Parameters from the book by Duffett-Smith and Zwart M = 6.108598 E0 = 5.31 e = 0.9673 # eccentricity of the orbit of Halley is given on p. 145 # Solve Kepler's equation E - e sin(E) - M = 0 def f(E): return E - e*np.sin(E) - M def fprime(E): return 1 - e*np.cos(E) def newton_demo(f, x0, fprime, max_steps = 5): '''Newton's method with a fixed number of steps''' x = x0 for n in range(max_steps): x = x - f(x)/fprime(x) return x E = newton_demo(f, E0, fprime) print(f'newton_demo: {E = }') import scipy.optimize as opt E = opt.newton(f, E0, fprime) print(f'opt.newton: {E = }') ``` ## Example: global behavior of Newton's method Consider $$ f(x) = x \exp(- x^2). $$ The only solution to $f(x) = 0$ is $x = 0$, and $f'(0) = 1$. Hence Newton's method converges starting from an initial guess $x_0$ close enough to the origin. But it does not converge if the initial guess is not good enough. ```python def f(x): return x * np.exp(-x**2) xs = np.linspace(-4, 4) plt.plot(xs, f(xs)); x0 = 1 plt.plot([x0, x0], [-0.5, 0.5], 'r'); ``` ```python def fprime(x): return (1 - 2*x**2) * np.exp(-x**2) x = newton_demo(f, x0, fprime, max_steps=100) print(f'{x0 = }, {x = }') ``` # On the optimization sub-package of SciPy We have already seen [newton](https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.optimize.newton.html), the implementation of Newton's method in SciPy. Calling `newton` without giving the derivative makes SciPy to use the secant method, described in Section 1.5 of [the book](#thebook). The bisection method is given by [bisect](https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.optimize.bisect.html) and it is described in Section 1.6 of [the book](#thebook). Most of the methods in the optimization sub-package are outside the scope of this course. Some of them are described in the optimization course at UH. For more information on the sub-package see the [tutorial](https://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html). ```python # Compare Newton, secant and bisection def f(x): return np.exp(x) - x - 2 def fprime(x): return np.exp(x) - 1 x0, x1 = 1, 3 x, rres = opt.newton(f, x0, fprime, full_output=True) print(f" Newton's method converged to {x} in {rres.iterations} steps") x, rres = opt.newton(f, x0, x1=x1, full_output=True) print(f' The secant method converged to {x} in {rres.iterations} steps') x, rres = opt.bisect(f, x0, x1, full_output=True) print(f"The bisection method converged to {x} in {rres.iterations} steps") ``` ```python ```
daf1ff351ad48290988ed5131dce57f42de7041d
138,438
ipynb
Jupyter Notebook
nonlinear-eqs/lecture.ipynb
rmsb/notebooks
fd06c9d068acc0ed738ca60a5a727c9581357e5f
[ "CC-BY-4.0" ]
2
2022-01-11T13:08:56.000Z
2022-01-11T13:09:47.000Z
nonlinear-eqs/lecture.ipynb
rmsb/notebooks
fd06c9d068acc0ed738ca60a5a727c9581357e5f
[ "CC-BY-4.0" ]
null
null
null
nonlinear-eqs/lecture.ipynb
rmsb/notebooks
fd06c9d068acc0ed738ca60a5a727c9581357e5f
[ "CC-BY-4.0" ]
2
2022-01-18T09:48:10.000Z
2022-01-24T18:03:41.000Z
157.137344
112,456
0.881882
true
4,898
Qwen/Qwen-72B
1. YES 2. YES
0.782662
0.785309
0.614632
__label__eng_Latn
0.965013
0.266325
# <span style="color:#2c061f"> PS6: Solving the Solow-model</span> <br> ## <span style="color:#374045"> Introduction to Programming and Numerical Analysis </span> *Oluf Kelkjær* ### **Today's Plan** 1. Dataproject 1. Working with equations * Scipy's `linalg` * `Sympy` 2. Let's work on PS6 ## Dataproject Expect feedback from me before the next exercise class! Remember to do peer-feedback - **deadline**: 24th april 23:59 ## Scipy's `linalg` Linalg is one of scipy's submodules. Can basically do anything with the realm of linear algebra: - Basic stuff: determinant, invert, norm - Matrix decompositions (LU, Cholesky etc.) - Solve a system of equations - Find eigenvalues ## An example: Let's solve for x $$Ax = b$$ ```python import numpy as np from scipy import linalg np.random.seed(1900) A = np.random.uniform(size=(5,5)) b = np.random.uniform(size=5) print(f'Matrix A:\n{A}\n\nMatrix b:\n {b}') ``` Matrix A: [[0.33224607 0.71427591 0.37834749 0.24908241 0.83598633] [0.02005845 0.32670359 0.05606653 0.4008206 0.13288711] [0.88711192 0.15490098 0.01708181 0.95781716 0.58999632] [0.83959058 0.7146372 0.58705537 0.40933648 0.14603168] [0.16407166 0.65717511 0.146494 0.67717016 0.47425348]] Matrix b: [0.78485347 0.85159023 0.84757586 0.42016935 0.20991113] ```python # Solve using LU factorization -> # Split A in a lower, upper triangular matrix and a permutation matrix -> Speed # LU factorize A using linalg LU,piv = linalg.lu_factor(A) # Solve using linalg x = linalg.lu_solve((LU,piv),b) print(x) ``` [-15.33189031 -24.00998148 40.02675108 15.24193293 4.89008792] ```python # or you could use a regular solve print(linalg.solve(A,b)) ``` [-15.33189031 -24.00998148 40.02675108 15.24193293 4.89008792] ## What do we use it for? In the first question of the exam 2020 you had to implement the OLS estimator using linear algebra. Recall that, $$\hat{\beta}=(X^{'}X)^{-1}X^{'}y$$ ## Symbolic Python `SymPy` is a Python library for symbolic mathematics and lets you solve equations **analytically**! (*like* WolframAlpha or Symbolab) Say that you want implement the utility function of standard OLG agent. We assume agents derive utility from consumption in both periods: $$U_t = u(c_{1t})+\frac{1}{1+\rho}u(c_{2t+1})$$ We assume log-preferences ```python import sympy as sm # Initialize variabels in Sympy c1,c2 = sm.symbols('c_1t'), sm.symbols('c_2t+1') rho = sm.symbols('rho') # Setup utility in sympy uc1 = sm.ln(c1) uc2 = sm.ln(c2) U = uc1 + 1/(1+rho) * uc2 U ``` $\displaystyle \log{\left(c_{1t} \right)} + \frac{\log{\left(c_{2t+1} \right)}}{\rho + 1}$ With `sympy` we are able to do many calculations. Say that we need the derivate of $U$ w.r.t. $c_{2t+1}$: ```python # We just use SymPy's .diff() method: sm.diff(U,c2) ``` $\displaystyle \frac{1}{c_{2t+1} \left(\rho + 1\right)}$ Another cool feature is that you can turn your SymPy equations into python functions. This can really tie your model projects together: * Solve model analytically with SymPy * Convert your solution to a python function e.g. the law-of-motion in OLG * Find steady state level of capital using an optimizer How is it done? ```python # Use SymPy's lambdify method which takes an iterable of arguments in our case the consumptions and rho # and of course the function in our case U util = sm.lambdify((c1,c2,rho),U) # Compute some utility util(7,8,0.1) ``` 3.836311550582437 ## Lets work on PS6 :)
44c62ed132b74b9f80d5db1b7d496bc40bbc1c21
8,630
ipynb
Jupyter Notebook
Slides/exc_11/class11.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
Slides/exc_11/class11.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
Slides/exc_11/class11.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
23.972222
146
0.529432
true
1,179
Qwen/Qwen-72B
1. YES 2. YES
0.890294
0.859664
0.765354
__label__eng_Latn
0.869806
0.616505
# Programación lineal > La programación lineal es el campo de la optimización matemática dedicado a maximizar o minimizar (optimizar) funciones lineales, denominada función objetivo, de tal forma que las variables de dicha función estén sujetas a una serie de restricciones expresadas mediante un sistema de ecuaciones o inecuaciones también lineales. **Referencias:** - https://es.wikipedia.org/wiki/Programaci%C3%B3n_lineal - https://docs.scipy.org/doc/scipy-0.18.1/reference/optimize.html ## 1. Apuntes históricos - 1826: Joseph Fourier anticipa la programación lineal. Carl Friedrich Gauss resuelve ecuaciones lineales por eliminación "gaussiana". - 1902: Gyula Farkas concibe un método para resolver sistemas de inecuaciones. - Es hasta la Segunda Guerra Mundial que se plantea la programación lineal como un modelo matemático para planificar gastos y retornos, de modo que se reduzcan costos de guerra y aumentar pérdidas del enemigo. Secreto hasta 1947 (posguerra). - 1947: George Dantzig publica el algoritmo simplex y John von Neumann desarrolló la teoría de la dualidad. Se sabe que Leonid Kantoróvich también formuló la teoría en forma independiente. - Fue usado por muchas industrias en la planificación diaria. **Hasta acá, tiempos exponenciales de solución. Lo siguiente, tiempo polinomial.** - 1979: Leonid Khachiyan, diseñó el llamado Algoritmo del elipsoide, a través del cual demostró que el problema de la programación lineal es resoluble de manera eficiente, es decir, en tiempo polinomial. - 1984: Narendra Karmarkar introduce el método del punto interior para resolver problemas de programación lineal. **Mencionar complejidad computacional.** ## 2. Motivación Cuando se quiere optimizar una función de varias variables con restricciones, se puede aplicar siempre el método de Multiplicadores de Lagrange. Sin embargo, este método es computacionalmente muy complejo conforme crece el número de variables. Por tanto, cuando la función a optimizar y las restricciones son de caracter lineal, los métodos de solución que se pueden desarrollar son computacionalmente eficientes, por lo que es útil realizar la distinción. ## 3. Problemas de programación lineal De acuerdo a lo descrito anteriormente, un problema de programación lineal puede escribirse en la siguiente forma: \begin{equation} \begin{array}{ll} \min_{x_1,\dots,x_n} & c_1x_1+\dots+c_nx_n \\ \text{s. a. } & a^{eq}_{j,1}x_1+\dots+a^{eq}_{j,n}x_n=b^{eq}_j \text{ para } 1\leq j\leq m_1 \\ & a_{k,1}x_1+\dots+a_{k,n}x_n\leq b_k \text{ para } 1\leq k\leq m_2, \end{array} \end{equation} donde: - $x_i$ para $i=1,\dots,n$ son las incógnitas o variables de decisión, - $c_i$ para $i=1,\dots,n$ son los coeficientes de la función a optimizar, - $a^{eq}_{j,i}$ para $j=1,\dots,m_1$ e $i=1,\dots,n$, son los coeficientes de la restricción de igualdad, - $a_{k,i}$ para $k=1,\dots,m_2$ e $i=1,\dots,n$, son los coeficientes de la restricción de desigualdad, - $b^{eq}_j$ para $j=1,\dots,m_1$ son valores conocidos que deben ser respetados estrictamente, y - $b_k$ para $k=1,\dots,m_2$ son valores conocidos que no deben ser superados. Equivalentemente, el problema puede escribirse como \begin{equation} \begin{array}{ll} \min_{\boldsymbol{x}} & \boldsymbol{c}^T\boldsymbol{x} \\ \text{s. a. } & \boldsymbol{A}_{eq}\boldsymbol{x}=\boldsymbol{b}_{eq} \\ & \boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}, \end{array} \end{equation} donde: - $\boldsymbol{x}=\left[x_1\quad\dots\quad x_n\right]^T$, - $\boldsymbol{c}=\left[c_1\quad\dots\quad c_n\right]^T$, - $\boldsymbol{A}_{eq}=\left[\begin{array}{ccc}a^{eq}_{1,1} & \dots & a^{eq}_{1,n}\\ \vdots & \ddots & \vdots\\ a^{eq}_{m_1,1} & \dots & a^{eq}_{m_1,n}\end{array}\right]$, - $\boldsymbol{A}=\left[\begin{array}{ccc}a_{1,1} & \dots & a_{1,n}\\ \vdots & \ddots & \vdots\\ a_{m_2,1} & \dots & a_{m_2,n}\end{array}\right]$, - $\boldsymbol{b}_{eq}=\left[b^{eq}_1\quad\dots\quad b^{eq}_{m_1}\right]^T$, y - $\boldsymbol{b}=\left[b_1\quad\dots\quad b_{m_2}\right]^T$. **Nota:** el problema $\max_{\boldsymbol{x}}\boldsymbol{g}(\boldsymbol{x})$ es equivalente a $\min_{\boldsymbol{x}}-\boldsymbol{g}(\boldsymbol{x})$. ## 4. Ejemplo básico Una compañía produce dos productos ($X_1$ y $X_2$) usando dos máquinas ($A$ y $B$). Cada unidad de $X_1$ que se produce requiere 50 minutos en la máquina $A$ y 30 minutos en la máquina $B$. Cada unidad de $X_2$ que se produce requiere 24 minutos en la máquina $A$ y 33 minutos en la máquina $B$. Al comienzo de la semana hay 30 unidades de $X_1$ y 90 unidades de $X_2$ en inventario. El tiempo de uso disponible de la máquina $A$ es de 40 horas y el de la máquina $B$ es de 35 horas. La demanda para $X_1$ en la semana actual es de 75 unidades y de $X_2$ es de 95 unidades. La política de la compañía es maximizar la suma combinada de unidades de $X_1$ e $X_2$ en inventario al finalizar la semana. Formular el problema de decidir cuánto hacer de cada producto en la semana como un problema de programación lineal. ### Solución Sean: - $x_1$ la cantidad de unidades de $X_1$ a ser producidas en la semana, y - $x_2$ la cantidad de unidades de $X_2$ a ser producidas en la semana. Notar que lo que se quiere es maximizar $x_1+x_2$. Restricciones: 1. El tiempo de uso disponible de la máquina $A$ es de 40 horas: $50x_1+24x_2\leq 40(60)\Rightarrow 50x_1+24x_2\leq 2400$. 2. El tiempo de uso disponible de la máquina $B$ es de 35 horas: $30x_1+33x_2\leq 35(60)\Rightarrow 30x_1+33x_2\leq 2100$. 3. La demanda para $X_1$ en la semana actual es de 75 unidades: $x_1+30\geq 75\Rightarrow x_1\geq 45\Rightarrow -x_1\leq -45$. 4. La demanda para $X_2$ en la semana actual es de 95 unidades: $x_2+90\geq 95\Rightarrow x_2\geq 5\Rightarrow -x_2\leq -5$. Finalmente, el problema puede ser expresado en la forma explicada como: \begin{equation} \begin{array}{ll} \min_{x_1,x_2} & -x_1-x_2 \\ \text{s. a. } & 50x_1+24x_2\leq 2400 \\ & 30x_1+33x_2\leq 2100 \\ & -x_1\leq -45 \\ & -x_2\leq -5, \end{array} \end{equation} o, eqivalentemente \begin{equation} \begin{array}{ll} \min_{\boldsymbol{x}} & \boldsymbol{c}^T\boldsymbol{x} \\ \text{s. a. } & \boldsymbol{A}_{eq}\boldsymbol{x}=\boldsymbol{b}_{eq} \\ & \boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b}, \end{array} \end{equation} con - $\boldsymbol{c}=\left[-1 \quad -1\right]^T$, - $\boldsymbol{A}=\left[\begin{array}{cc}50 & 24 \\ 30 & 33\\ -1 & 0\\ 0 & -1\end{array}\right]$, y - $\boldsymbol{b}=\left[2400\quad 2100\quad -45\quad -5\right]^T$. Preferiremos, en adelante, la notación vectorial/matricial. Este problema está sencillo pues solo es en dos variables. La solución gráfica es válida. ```python import matplotlib.pyplot as plt %matplotlib inline import numpy as np ``` ```python def res1(x1): return (2400-50*x1)/24 def res2(x1): return (2100-30*x1)/33 ``` ```python x1 = np.linspace(40, 50) r1 = res1(x1) r2 = res2(x1) ``` ```python plt.figure(figsize = (8,6)) plt.plot(x1, res1(x1), 'b--', label = 'res1') plt.plot(x1, res2(x1), 'r--', label = 'res2') plt.plot([45, 45], [0, 25], 'k', label = 'res3') plt.plot([40, 50], [5, 5], 'm', label = 'res4') plt.fill_between(np.array([45.0, 45.6]), res1(np.array([45.0, 45.6])), 5*np.ones(2)) plt.text(44.8,4.9,'$(45,5)$',fontsize=10) plt.text(44.75,6.25,'$(45,6.25)$',fontsize=10) plt.text(45.6,5.1,'$(45.6,5)$',fontsize=10) plt.legend(loc = 'best') plt.xlabel('$x_1$') plt.ylabel('$x_2$') plt.axis([44, 46, 4, 7]) plt.show() ``` ## 5. ¿Cómo se resuelve en python? ### 5.1 Librería `SciPy` `SciPy` es un software de código abierto basado en `Python` para matemáticas, ciencia e ingeniería. En particular, los siguientes son algunos de los paquetes básicos: - `NumPy` - **Librería `SciPy`** - `SymPy` - `matplotlib` - `pandas` La **Librería `SciPy`** es uno de los paquetes principales y provee varias rutinas numéricas eficientes. Entre ellas, para integración numérica y optimización. En esta clase, y en lo que resta del módulo, estaremos utilizando el módulo `optimize` de la librería `SciPy`. ```python import scipy.optimize as opt ``` El módulo `optimize` que acabamos de importar contiene varias funciones para optimización y búsqueda de raices ($f(x)=0$). Entre ellas se encuentra la función `linprog` ```python help(opt.linprog) ``` Help on function linprog in module scipy.optimize._linprog: linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None) Minimize a linear objective function subject to linear equality and inequality constraints. Linear Programming is intended to solve the following problem form: Minimize: c^T * x Subject to: A_ub * x <= b_ub A_eq * x == b_eq Parameters ---------- c : array_like Coefficients of the linear objective function to be minimized. A_ub : array_like, optional 2-D array which, when matrix-multiplied by x, gives the values of the upper-bound inequality constraints at x. b_ub : array_like, optional 1-D array of values representing the upper-bound of each inequality constraint (row) in A_ub. A_eq : array_like, optional 2-D array which, when matrix-multiplied by x, gives the values of the equality constraints at x. b_eq : array_like, optional 1-D array of values representing the RHS of each equality constraint (row) in A_eq. bounds : sequence, optional ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. Use None for one of ``min`` or ``max`` when there is no bound in that direction. By default bounds are ``(0, None)`` (non-negative) If a sequence containing a single tuple is provided, then ``min`` and ``max`` will be applied to all variables in the problem. method : str, optional Type of solver. At this time only 'simplex' is supported :ref:`(see here) <optimize.linprog-simplex>`. callback : callable, optional If a callback function is provide, it will be called within each iteration of the simplex algorithm. The callback must have the signature `callback(xk, **kwargs)` where xk is the current solution vector and kwargs is a dictionary containing the following:: "tableau" : The current Simplex algorithm tableau "nit" : The current iteration. "pivot" : The pivot (row, column) used for the next iteration. "phase" : Whether the algorithm is in Phase 1 or Phase 2. "basis" : The indices of the columns of the basic variables. options : dict, optional A dictionary of solver options. All methods accept the following generic options: maxiter : int Maximum number of iterations to perform. disp : bool Set to True to print convergence messages. For method-specific options, see `show_options('linprog')`. Returns ------- A `scipy.optimize.OptimizeResult` consisting of the following fields: x : ndarray The independent variable vector which optimizes the linear programming problem. fun : float Value of the objective function. slack : ndarray The values of the slack variables. Each slack variable corresponds to an inequality constraint. If the slack is zero, then the corresponding constraint is active. success : bool Returns True if the algorithm succeeded in finding an optimal solution. status : int An integer representing the exit status of the optimization:: 0 : Optimization terminated successfully 1 : Iteration limit reached 2 : Problem appears to be infeasible 3 : Problem appears to be unbounded nit : int The number of iterations performed. message : str A string descriptor of the exit status of the optimization. See Also -------- show_options : Additional options accepted by the solvers Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. The default method is :ref:`Simplex <optimize.linprog-simplex>`. Method *Simplex* uses the Simplex algorithm (as it relates to Linear Programming, NOT the Nelder-Mead Simplex) [1]_, [2]_. This algorithm should be reasonably reliable and fast. .. versionadded:: 0.15.0 References ---------- .. [1] Dantzig, George B., Linear programming and extensions. Rand Corporation Research Study Princeton Univ. Press, Princeton, NJ, 1963 .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to Mathematical Programming", McGraw-Hill, Chapter 4. .. [3] Bland, Robert G. New finite pivoting rules for the simplex method. Mathematics of Operations Research (2), 1977: pp. 103-107. Examples -------- Consider the following problem: Minimize: f = -1*x[0] + 4*x[1] Subject to: -3*x[0] + 1*x[1] <= 6 1*x[0] + 2*x[1] <= 4 x[1] >= -3 where: -inf <= x[0] <= inf This problem deviates from the standard linear programming problem. In standard form, linear programming problems assume the variables x are non-negative. Since the variables don't have standard bounds where 0 <= x <= inf, the bounds of the variables must be explicitly set. There are two upper-bound constraints, which can be expressed as dot(A_ub, x) <= b_ub The input for this problem is as follows: >>> c = [-1, 4] >>> A = [[-3, 1], [1, 2]] >>> b = [6, 4] >>> x0_bounds = (None, None) >>> x1_bounds = (-3, None) >>> from scipy.optimize import linprog >>> res = linprog(c, A_ub=A, b_ub=b, bounds=(x0_bounds, x1_bounds), ... options={"disp": True}) Optimization terminated successfully. Current function value: -22.000000 Iterations: 1 >>> print(res) fun: -22.0 message: 'Optimization terminated successfully.' nit: 1 slack: array([ 39., 0.]) status: 0 success: True x: array([ 10., -3.]) Note the actual objective value is 11.428571. In this case we minimized the negative of the objective function. ### 5.2 Solución del ejemplo básico con linprog Ya hicimos la solución gráfica. Contrastemos con la solución que nos da `linprog`... ```python import numpy as np ``` ```python # Resolver... c = np.array([-1, -1]) A = np.array([[50, 24], [30, 33], [-1, 0], [0, -1]]) b = np.array([2400, 2100, -45, -5]) ``` ```python resultado = opt.linprog(c, A_ub=A, b_ub=b) ``` ```python resultado ``` fun: -51.25 message: 'Optimization terminated successfully.' nit: 4 slack: array([ 0. , 543.75, 0. , 1.25]) status: 0 success: True x: array([ 45. , 6.25]) ```python ``` Las cantidades de $X_1$ y $X_2$ que se deben producir para maximizar el inventario al final de la semana, con las restricciones de tiempo de uso de las máquinas y de demanda es: $$x_1=45$$ $$x_2=6.25$$ ## 6. Optimización de inversión en bonos ### 6.1 Ejemplo 1 **Referencia:** ```python from IPython.display import YouTubeVideo YouTubeVideo('gukxBus8lOs') ``` El objetivo de este problema es determinar la mejor estrategia de inversión, dados diferentes tipos de bono, la máxima cantidad que puede ser invertida en cada bono, el porcentaje de retorno y los años de madurez. También hay una cantidad fija de dinero disponible ($\$750,000$). Por lo menos la mitad de este dinero debe ser invertido en bonos con 10 años o más para la madurez. Se puede invertir un máximo del $25\%$ de esta cantidad en cada bono. Finalmente, hay otra restricción que no permite usar más de $35\%$ en bonos de alto riesgo. Existen seis (6) opciones de inversión con las letras correspondientes $A_i$ 1. $A_1$:(Tasa de retorno=$8.65\%$; Años para la madurez=11, Riesgo=Bajo) 1. $A_2$:(Tasa de retorno=$9.50\%$; Años para la madurez=10, Riesgo=Alto) 1. $A_3$:(Tasa de retorno=$10.00\%$; Años para la madurez=6, Riesgo=Alto) 1. $A_4$:(Tasa de retorno=$8.75\%$; Años para la madurez=10, Riesgo=Bajo) 1. $A_5$:(Tasa de retorno=$9.25\%$; Años para la madurez=7, Riesgo=Alto) 1. $A_6$:(Tasa de retorno=$9.00\%$; Años para la madurez=13, Riesgo=Bajo) Lo que se quiere entonces es maximizar el retorno que deja la inversión. Este problema puede ser resuelto con programación lineal. Formalmente, puede ser descrito como: $$\max_{A_1,A_2,...,A_6}\sum^{6}_{i=1} A_iR_i,$$ donde $A_i$ representa la cantidad invertida en la opción, y $R_i$ representa la tasa de retorno respectiva. Plantear restricciones... ```python # Resolver... c = -np.array([8.65, 9.5, 10, 8.75, 9.25, 9])/100 A = np.array([[-1, -1, 0, -1, 0, -1], [0, 1, 1, 0, 1, 0], [1, 1, 1, 1, 1, 1]]) b = np.array([-.5, .35, 1])*750000 bounds = (0, 0.25*750000) ``` ```python res_bonos = opt.linprog(c, A_ub=A, b_ub=b, bounds=(bounds, bounds, bounds, bounds, bounds, bounds)) ``` ```python res_bonos.x ``` array([ 112500., 75000., 187500., 187500., 0., 187500.]) ### 6.2 Ejemplo 2 **Referencia:** - https://la.mathworks.com/help/optim/ug/maximize-long-term-investments-using-linear-programming.html Suponga que se tiene una cantidad inicial de dinero $C_0$ para invertir en un periodo de tiempo $T$ años en $N$ bonos sin cupones. Cada bono paga una tasa de interés compuesta anualmente, y paga el principal más el interés compuesto al final del periodo de madurez. El objetivo es maximizar la cantidad total de dinero después de $T$ años. Se puede incluir la restricción de que ninguna inversión individual puede superar una fracción del capital total. Suponga que: - El capital inicial es $C_0=\$1000$. - El periodo de tiempo es $T=5$ años. - El número de bonos es $N=4$. Para modelar dinero que no se invierte, tenemos una opción $B_0$ disponible cada año que tiene periodo de madurez un año y una tasa de interés del $0\%$. - El Bono 1, denotado por $B_1$, se puede comprar en el año 1, tiene periodo de madurez de 4 años, y una tasa de interés del $2\%$. - El Bono 2, denotado por $B_2$, se puede comprar en el año 5, tiene periodo de madurez de 1 año, y una tasa de interés del $4\%$. - El Bono 3, denotado por $B_3$, se puede comprar en el año 2, tiene periodo de madurez de 4 años, y una tasa de interés del $6\%$. - El Bono 4, denotado por $B_4$, se puede comprar en el año 2, tiene periodo de madurez de 3 años, y una tasa de interés del $6\%$. Separando la opción $B_0$ (no invertir) en 5 bonos con periodo de madurez de 1 año y tasa de interés del $0\%$, este problema se puede modelar equivalentemente como si se tuviera un total de 9 bonos disponibles: $B_k$ para $k=1,\dots,9$. <font color=red>Ver en el tablero una representación gráfica y plantear</font> ```python # Resolver... rho = np.array([0, 0, 0, 0, 0, 2, 4, 6, 6]) mad = np.array([1, 1, 1, 1, 1, 4, 1, 4, 3]) r = (1+rho/100)**mad # Matrices para linprog c = -np.array([0, 0, 0, 0, r[4], 0, r[6], r[7], 0]) Aeq = np.array([[1, 0, 0, 0, 0, 1, 0, 0, 0], [-r[0], 1, 0, 0, 0, 0, 0, 1, 1], [0, -r[1], 1, 0, 0, 0, 0, 0, 0], [0, 0, -r[2], 1, 0, 0, 0, 0, 0], [0, 0, 0, -r[3], 1, -r[5], 1, 0, -r[8]]]) beq = np.array([1000, 0, 0, 0, 0]) ``` ```python res_bonos2 = opt.linprog(c, A_eq=Aeq, b_eq=beq) ``` ```python res_bonos2 ``` fun: -1262.4769600000004 message: 'Optimization terminated successfully.' nit: 7 slack: array([], dtype=float64) status: 0 success: True x: array([ 1000., 0., 0., 0., 0., 0., 0., 1000., 0.]) ```python res_bonos2.x ``` array([ 1000., 0., 0., 0., 0., 0., 0., 1000., 0.]) <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by Esteban Jiménez Rodríguez. </footer>
6b8a8e56d9efcb31c8510b54a6dfeaa9fca37df2
78,367
ipynb
Jupyter Notebook
Modulo4/Clase16_IntroProgLineal.ipynb
esjimenezro/SimRC2018-1
26d1e6c611f3887550cdaf32af65ae689cc8cd81
[ "MIT" ]
null
null
null
Modulo4/Clase16_IntroProgLineal.ipynb
esjimenezro/SimRC2018-1
26d1e6c611f3887550cdaf32af65ae689cc8cd81
[ "MIT" ]
null
null
null
Modulo4/Clase16_IntroProgLineal.ipynb
esjimenezro/SimRC2018-1
26d1e6c611f3887550cdaf32af65ae689cc8cd81
[ "MIT" ]
13
2018-01-22T16:27:05.000Z
2021-06-10T22:09:13.000Z
97.471393
27,729
0.802034
true
6,495
Qwen/Qwen-72B
1. YES 2. YES
0.839734
0.885631
0.743695
__label__spa_Latn
0.817352
0.566184
```python %matplotlib inline ``` # Scaling the regularization parameter for SVCs The following example illustrates the effect of scaling the regularization parameter when using `svm` for `classification <svm_classification>`. For SVC classification, we are interested in a risk minimization for the equation: \begin{align}C \sum_{i=1, n} \mathcal{L} (f(x_i), y_i) + \Omega (w)\end{align} where - $C$ is used to set the amount of regularization - $\mathcal{L}$ is a `loss` function of our samples and our model parameters. - $\Omega$ is a `penalty` function of our model parameters If we consider the loss function to be the individual error per sample, then the data-fit term, or the sum of the error for each sample, will increase as we add more samples. The penalization term, however, will not increase. When using, for example, `cross validation <cross_validation>`, to set the amount of regularization with `C`, there will be a different amount of samples between the main problem and the smaller problems within the folds of the cross validation. Since our loss function is dependent on the amount of samples, the latter will influence the selected value of `C`. The question that arises is `How do we optimally adjust C to account for the different amount of training samples?` The figures below are used to illustrate the effect of scaling our `C` to compensate for the change in the number of samples, in the case of using an `l1` penalty, as well as the `l2` penalty. l1-penalty case ----------------- In the `l1` case, theory says that prediction consistency (i.e. that under given hypothesis, the estimator learned predicts as well as a model knowing the true distribution) is not possible because of the bias of the `l1`. It does say, however, that model consistency, in terms of finding the right set of non-zero parameters as well as their signs, can be achieved by scaling `C1`. l2-penalty case ----------------- The theory says that in order to achieve prediction consistency, the penalty parameter should be kept constant as the number of samples grow. Simulations ------------ The two figures below plot the values of `C` on the `x-axis` and the corresponding cross-validation scores on the `y-axis`, for several different fractions of a generated data-set. In the `l1` penalty case, the cross-validation-error correlates best with the test-error, when scaling our `C` with the number of samples, `n`, which can be seen in the first figure. For the `l2` penalty case, the best result comes from the case where `C` is not scaled. .. topic:: Note: Two separate datasets are used for the two different plots. The reason behind this is the `l1` case works better on sparse data, while `l2` is better suited to the non-sparse case. ```python print(__doc__) # Author: Andreas Mueller <amueller@ais.uni-bonn.de> # Jaques Grobler <jaques.grobler@inria.fr> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.svm import LinearSVC from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.utils import check_random_state from sklearn import datasets rnd = check_random_state(1) # set up dataset n_samples = 100 n_features = 300 # l1 data (only 5 informative features) X_1, y_1 = datasets.make_classification(n_samples=n_samples, n_features=n_features, n_informative=5, random_state=1) # l2 data: non sparse, but less features y_2 = np.sign(.5 - rnd.rand(n_samples)) X_2 = rnd.randn(n_samples, n_features // 5) + y_2[:, np.newaxis] X_2 += 5 * rnd.randn(n_samples, n_features // 5) clf_sets = [(LinearSVC(penalty='l1', loss='squared_hinge', dual=False, tol=1e-3), np.logspace(-2.3, -1.3, 10), X_1, y_1), (LinearSVC(penalty='l2', loss='squared_hinge', dual=True, tol=1e-4), np.logspace(-4.5, -2, 10), X_2, y_2)] colors = ['navy', 'cyan', 'darkorange'] lw = 2 for fignum, (clf, cs, X, y) in enumerate(clf_sets): # set up the plot for each regressor plt.figure(fignum, figsize=(9, 10)) for k, train_size in enumerate(np.linspace(0.3, 0.7, 3)[::-1]): param_grid = dict(C=cs) # To get nice curve, we need a large number of iterations to # reduce the variance grid = GridSearchCV(clf, refit=False, param_grid=param_grid, cv=ShuffleSplit(train_size=train_size, n_splits=250, random_state=1)) grid.fit(X, y) scores = grid.cv_results_['mean_test_score'] scales = [(1, 'No scaling'), ((n_samples * train_size), '1/n_samples'), ] for subplotnum, (scaler, name) in enumerate(scales): plt.subplot(2, 1, subplotnum + 1) plt.xlabel('C') plt.ylabel('CV Score') grid_cs = cs * float(scaler) # scale the C's plt.semilogx(grid_cs, scores, label="fraction %.2f" % train_size, color=colors[k], lw=lw) plt.title('scaling=%s, penalty=%s, loss=%s' % (name, clf.penalty, clf.loss)) plt.legend(loc="best") plt.show() ```
28fd91a7f2e481e099a913d6b309b824b228518b
6,433
ipynb
Jupyter Notebook
lab03/svm/plot_svm_scale_c.ipynb
cruxiu/MLStudies
2b0a9ac7dbede4200080666dfdcba6a2f65f93af
[ "MIT" ]
1
2019-08-22T01:35:16.000Z
2019-08-22T01:35:16.000Z
lab03/svm/plot_svm_scale_c.ipynb
cruxiu/MLStudies
2b0a9ac7dbede4200080666dfdcba6a2f65f93af
[ "MIT" ]
null
null
null
lab03/svm/plot_svm_scale_c.ipynb
cruxiu/MLStudies
2b0a9ac7dbede4200080666dfdcba6a2f65f93af
[ "MIT" ]
null
null
null
119.12963
2,855
0.640914
true
1,346
Qwen/Qwen-72B
1. YES 2. YES
0.658417
0.774583
0.509999
__label__eng_Latn
0.98891
0.023228
We consider the polar corrdinates in which (by mapping theorem), raindrops are a point process with $\lambda r$ $drops/cm$ ~~ $$ \begin{align} P[\Lambda^1([0,r] \times [0, 1] \times R^2)=0] &=exp(-\int_{0}^r \int_{0}^{1} \int_{R^2}\lambda p(x,y)dxdydtdr)\\ &= exp(-\lambda t 2\pi \int_0^r \rho e^{-\rho}d\rho)\\ &= exp(-\lambda t 2\pi(1-e^{-r}(r+1)))\\ \end{align} $$ ~~
d6e1691a91ac623e4fed2238bf60cd1a50d14874
992
ipynb
Jupyter Notebook
2015_Fall/MATH-578B/Homework3/Untitled.ipynb
NeveIsa/hatex
c5cfa2410d47c7e43a476a8c8a9795182fe8f836
[ "MIT" ]
19
2015-09-10T02:45:33.000Z
2022-02-10T03:20:47.000Z
2015_Fall/MATH-578B/Homework3/Untitled.ipynb
NeveIsa/hatex
c5cfa2410d47c7e43a476a8c8a9795182fe8f836
[ "MIT" ]
1
2015-09-16T23:11:00.000Z
2015-09-23T21:21:52.000Z
2015_Fall/MATH-578B/Homework3/Untitled.ipynb
saketkc/hatex
c5cfa2410d47c7e43a476a8c8a9795182fe8f836
[ "MIT" ]
12
2015-09-25T19:06:45.000Z
2022-02-10T03:21:09.000Z
24.195122
194
0.507056
true
162
Qwen/Qwen-72B
1. YES 2. YES
0.967899
0.774583
0.749719
__label__eng_Latn
0.545679
0.58018
# North American Einstein Toolkit School 2021: NRPy+ Tutorial ### Authors: Leo Werneck, Terrence Pierre Jacques, Patrick Nelson, Zach Etienne, & Thiago Assumpção ## You can access this tutorial by going to https://tinyurl.com/ETKSchoolNRPytutorial <table><tr> <td style="background-color: white;"> <a href=http://nrpyplus.net> </a> </td> <td style="background-color: white;"> <a href=https://www.wvu.edu> </a> </td> <td style="background-color: white;"> <a href=https://www.uidaho.edu> </a> </td> <td style="background-color: white;"> <a href=https://einsteintoolkit.org> </a> </td> <td style="background-color: white;"> <a href=https://www.nsf.gov> </a> </td> </tr></table> <a id='toc'></a> # Table of Contents $$\label{toc}$$ This tutorial notebook is organized as follows: 0. [Step 0](#introduction): **Introduction** 1. [Step 0.a](#maxwell_equations): Maxwell's equations in vacuum, flat space, and Cartesian coordinates 1. [Step 0.b](#potential_formulation_maxwell_equations): Potential formulation of Maxwell's equations 1. [Step 0.c](#hyperbolicity_maxwell_equations): Improving the hyperbolicity of Maxwell's equations 1. [Step 0.d](#systems_I_and_II): Summary 1. [Step 1](#implementation): **Part I - Implementing Maxwell's equations using NRPy+** 1. [Step 1.a](#initializenrpy): Initialize core Python/NRPy+ modules 1. [Step 1.b](#gridfunction_declaration): Gridfunction declaration 1. [Step 1.c](#finite_differences): Finite difference derivatives 1. [Step 1.d](#system_I_implementation): Implementation of system I 1. [Step 1.d.i](#system_I_evolution_eqs): *System I evolution equations* 1. [Step 1.d.ii](#system_I_constraint_eqs): *System I constraint equation* 1. [Step 1.e](#system_II_implementation): Implementation of system II 1. [Step 1.e.i](#system_II_evolution_eqs): *System II evolution equations* 1. [Step 1.e.ii](#system_II_constraint_eqs): *System II constraint equations* 1. [Step 2](#thorn_writing): **Part II - Einstein Toolkit thorn writing** 1. [Step 2.a](#generating_c_code_kernels): Generating C code kernels for Maxwell's equations 1. [Step 2.a.i](#system_I_c_code_generation): *System I C code generation* 1. [Step 2.a.ii](#system_II_c_code_generation): *System II C code generation* 1. [Step 2.a.iii](#zero_rhss): *C code to initialize right-hand sides to zero* 1. [Step 2.b](#rhs_driver): The right-hand side driver function 1. [Step 2.c](#constraints_driver): The constraints driver function 1. [Step 2.d](#mol_registration): Registering gridfunctions for the Method of Lines 1. [Step 2.e](#gridfunction_symmetries): Set gridfunction symmetries 1. [Step 2.f](#boundary_conditions): Boundary condition configuration 1. [Step 2.g](#nrpy_banner): `NRPy+` banner 1. [Step 2.h](#ccl_files): Thorn configuration files 1. [Step 2.h.i](#param_ccl): *Generating the `param.ccl` file* 1. [Step 2.h.ii](#interface_ccl): *Generating the `interface.ccl` file* 1. [Step 2.h.iii](#schedule_ccl): *Generating the `schedule.ccl` file* 1. [Step 2.h.iv](#configuration_ccl): *Generating the `configuration.ccl` file* 1. [Step 2.h.v](#make_code_defn): *Generating the `make.code.defn` file* 1. [Step 3](#results): **Part III - Results** 1. [Step 4](#latex_pdf_output): **Output this notebook to $\LaTeX$-formatted PDF file** <a id='introduction'></a> # Step 0: Introduction \[Back to [top](#toc)\] $$\label{introduction}$$ In this tutorial we will provide a hands-on introduction on how to use the [NRPy+ infrastructure](http://nrpyplus.net) to write thorns for the [Einstein Toolkit (ETK)](https://einsteintoolkit.org). Although we will give an overview of NRPy+ and provide a high level description of some of its modules, we do not aim to thoroughly describe every aspect of the infrastructure. For more details on NRPy+'s inner workings, we refer the reader to: * [NRPy+'s webpage](http://nrpyplus.net) * [NRPy+ tutorial from the 2020 ETK workshop by Zach Etienne](https://www.youtube.com/watch?v=TIPiW5-mPOM) The material covered by this tutorial notebook is also based on many of the pedagogical `Jupyter` notebooks that form `NRPy+`'s documentation. We mention here the ones that are most useful as **additional reading material**: * [Terrence's presentation on `MaxwellVacuum` thorns](https://lsu.app.box.com/s/9hrfzrh8dkmvpba4uqatnthjwafwahnv) * [NRPy+ indexed expressions tutorial notebook](Tutorial-Indexed_Expressions.ipynb) * [NRPy+ finite differences tutorial notebook](Tutorial-Finite_Difference_Derivatives.ipynb) * [How NRPy+ computs finite differences coefficients tutorial notebook](Tutorial-How_NRPy_Computes_Finite_Difference_Coeffs.ipynb) * [NRPy+ MaxwellVacuum formulation in Cartesian coordinates tutorial notebook](Tutorial-VacuumMaxwell_formulation_Cartesian.ipynb) * [NRPy+ MaxwellVacuum formulation in Curvilinear coordinates tutorial notebook](Tutorial-VacuumMaxwell_formulation_Curvilinear.ipynb) * [NRPy+ MaxwellVacuum right-hand sides tutorial notebook](Tutorial-VacuumMaxwell_Cartesian_RHSs.ipynb) * [NRPy+ MaxwellVacuum ETK thorn tutorial notebook](Tutorial-ETK_thorn-MaxwellVacuum.ipynb) <hr style="width:100%;height:3px;color:black"/> <a id='maxwell_equations'></a> ## Step 0.a: Maxwell's equations in vacuum, flat space, and Cartesian coordinates \[Back to [top](#toc)\] $$\label{maxwell_equations}$$ In this tutorial we will generate an ETK thorn to solve [Maxwell's equations](https://en.wikipedia.org/wiki/Maxwell%27s_equations) in flat space using Cartesian coordinates. In [Gaussian](https://en.wikipedia.org/wiki/Gaussian_units) and $c = 1$ units, the system of equations we are interested in is $$ \begin{align} \vec{\nabla} \cdot \vec{E} &= 0, \\ \vec{\nabla} \cdot \vec{B} &= 0, \\ \frac{\partial \vec{E}}{\partial t} &= \vec{\nabla} \times \vec{B}, \\ \frac{\partial \vec{B}}{\partial t} &= -\vec{\nabla} \times \vec{E}, \end{align} $$ where $\vec{E}$ is the electric field, $\vec{B}$ is the magnetic field, and $\vec{\nabla}\cdot\vec{V}$ and $\vec{\nabla}\times\vec{V}$ are the divergence and the curl of the vector $\vec{V}$, respectively. The last two equations involve time derivatives of $\vec{E}$ and $\vec{B}$ and therefore are referred to as *evolution* equations. The first two equations must be satisfied for all times, and are referred to as *constraint* equations. <a id='potential_formulation_maxwell_equations'></a> ## Step 0.b: Potential formulation of Maxwell's equations \[Back to [top](#toc)\] $$\label{potential_formulation_maxwell_equations}$$ A formulation of Maxwell's equations that is particularly useful for numerical integration can be found by introducing auxiliary variables. We start by introducing a new vector quantity, $\vec{A}$, known as the *magnetic* or *vector* potential, such that $$ \vec{B} = \vec{\nabla}\times\vec{A}. $$ Note that the "no-magnetic monopole" constraint is automatically satisfied: $$ \vec{\nabla} \cdot \vec{B} = \vec{\nabla} \cdot \bigl(\vec{\nabla}\times\vec{A}\bigr) = 0. $$ [Ampère's law](https://en.wikipedia.org/wiki/Ampère%27s_circuital_law), which is the evolution equation for $\vec{B}$, can then be written as $$ \frac{\partial}{\partial t}\bigl(\vec{\nabla}\times\vec{A}\bigr) = -\vec{\nabla} \times \vec{E} \implies \vec{\nabla}\times\left(\frac{\partial\vec{A}}{\partial t} + \vec{E}\right) = 0 \implies \frac{\partial\vec{A}}{\partial t} + \vec{E} = -\vec{\nabla}\Phi, $$ where $\Phi$ is an arbitrary scalar function known as the *electric* (or *scalar*) potential. Finally, [Faraday's law](https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction), the evolution equation for $\vec{E}$, can be written as $$ \frac{\partial\vec{E}}{\partial t} = \vec{\nabla}\times\bigl(\vec{\nabla}\times\vec{A}\bigr) = -\nabla^{2}\vec{A} + \vec{\nabla}\bigl(\vec{\nabla}\cdot\vec{A}\bigr). $$ Thus Maxwell's equations now read $$ \begin{align} \vec{\nabla} \cdot \vec{E} &= 0, \\ \frac{\partial\vec{E}}{\partial t} &= -\nabla^{2}\vec{A} + \vec{\nabla}\bigl(\vec{\nabla}\cdot\vec{A}\bigr),\\ \frac{\partial\vec{A}}{\partial t} &= -\vec{E} - \vec{\nabla}\Phi. \end{align} $$ Note that we now end up with 7 dynamical fields, namely $\left(\Phi,\vec{A},\vec{E}\right)$, but only 6 evolution equations. We can remedy this by adopting a particular gauge. We will choose here the [Lorenz gauge](https://en.wikipedia.org/wiki/Lorenz_gauge_condition), which reads $$ \frac{\partial\Phi}{\partial t} = -\vec{\nabla}\cdot\vec{A}. $$ Thus we arrive at the evolution equations $$ \boxed{ \begin{align} \frac{\partial\vec{E}}{\partial t} &= -\nabla^{2}\vec{A} + \vec{\nabla}\bigl(\vec{\nabla}\cdot\vec{A}\bigr)\\ \frac{\partial\vec{A}}{\partial t} &= -\vec{E} - \vec{\nabla}\Phi\\ \frac{\partial\Phi}{\partial t} &= -\vec{\nabla}\cdot\vec{A} \end{align} }\ , $$ plus the constraints $$ \boxed{ \vec{\mathcal{C}} \equiv \vec{\nabla} \cdot \vec{E} = 0}\ , $$ which must be satisfied at all times. <a id='hyperbolicity_maxwell_equations'></a> ## Step 0.c: Improving the hyperbolicity of Maxwell's equations \[Back to [top](#toc)\] $$\label{hyperbolicity_maxwell_equations}$$ If we take a time derivative of the evolution equation for the vector potential and plug in the evolution equation for the electric field and the scalar potential we find $$ \frac{\partial^{2}\vec{A}}{\partial t^{2}} = -\frac{\partial\vec{E}}{\partial t} - \vec{\nabla}\left(\frac{\partial\Phi}{\partial t}\right) = \nabla^{2}\vec{A} - \vec{\nabla}\bigl(\vec{\nabla}\cdot\vec{A}\bigr) - \vec{\nabla}\left(\frac{\partial\Phi}{\partial t}\right). $$ Notice that this is almost a wave equation for the vector potential $\vec{A}$, but we have a mixed derivative term on the right-hand side that spoils this behaviour. We can thus introduce a new auxiliary variable defined as $$ \Gamma \equiv \vec{\nabla}\cdot\vec{A}, $$ so that we have $$ \frac{\partial^{2}\vec{A}}{\partial t^{2}} = \nabla^{2}\vec{A} - \vec{\nabla}\Gamma - \vec{\nabla}\left(\frac{\partial\Phi}{\partial t}\right). $$ The resulting system of equations now becomes $$ \boxed{ \begin{align} \frac{\partial\vec{E}}{\partial t} &= -\nabla^{2}\vec{A} + \vec{\nabla}\Gamma\\ \frac{\partial\vec{A}}{\partial t} &= -\vec{E} - \vec{\nabla}\Phi\\ \frac{\partial\Phi}{\partial t} &= -\Gamma\\ \frac{\partial\Gamma}{\partial t} &= -\nabla^{2}\Phi \end{align} }\ , $$ while the constraints that must satisfied are $$ \boxed{ \begin{align} \mathcal{C} &\equiv \vec{\nabla} \cdot \vec{E} = 0\\ \mathcal{G} &\equiv \Gamma - \vec{\nabla}\cdot\vec{A} = 0 \end{align} }\ . $$ <a id='systems_I_and_II'></a> ## Step 0.d: Summary \[Back to [top](#toc)\] $$\label{systems_I_and_II}$$ Switching to index notation, we write $$ \frac{\partial}{\partial t} \equiv \partial_{t}\ ;\ \frac{\partial}{\partial x^{i}} \equiv \partial_{i}, $$ where $\vec{x} \equiv x^{i} = (x,y,z)$. We are thus interested in solving Maxwell's equations in vacuum (i.e. without source terms), in flat space, and in Cartesian coordinates, and we will do so using: $$ \text{System I:}\ \boxed{ \begin{align} \color{blue}{\partial_{t}E^{i}} &\, \color{blue}{= -\partial^{j}\partial_{j}A^{i} + \partial^{i}\partial_{j}A^{j}}\\ \color{blue}{\partial_{t}A^{i}} &\, \color{blue}{= -E^{i} - \partial^{i}\Phi}\\ \color{blue}{\partial_{t}\Phi} &\, \color{blue}{= -\partial_{i}A^{i}}\\ \color{red}{\partial_{i}E^{i}} &\, \color{red}{= 0} \end{align} } \ , $$ and $$ \text{System II:}\ \boxed{ \begin{align} \color{blue}{\partial_{t}E^{i}} &\, \color{blue}{= -\partial^{j}\partial_{j}A^{i} + \partial^{i}\Gamma}\\ \color{blue}{\partial_{t}A^{i}} &\, \color{blue}{= -E^{i} - \partial^{i}\Phi}\\ \color{blue}{\partial_{t}\Phi} &\, \color{blue}{= -\Gamma}\\ \color{blue}{\partial_{t}\Gamma} &\, \color{blue}{= -\partial^{i}\partial_{i}\Phi}\\ \color{red}{\partial_{i}E^{i}} &\, \color{red}{= 0}\\ \color{red}{\Gamma} &\, \color{red}{= \partial_{i}A^{i}} \end{align} }\ . $$ In the colorcode above, $\color{blue}{\text{blue}}$ equations are the $\color{blue}{\text{evolution}}$ equations, while $\color{red}{\text{red}}$ equations are the $\color{red}{\text{constraint}}$ equations. <hr style="width:100%;height:3px;color:black"/> <a id='implementation'></a> # Step 1: Part I - Implementing Maxwell's equations using NRPy+ \[Back to [top](#toc)\] $$\label{implementation}$$ In this part of the tutorial we will focus on the implementation of Maxwell's equations. At the end of this part, we will have written a series of `Python` functions which can be used to generate symbolic expressions for Maxwell's equations. We will go over: * Basic `NRPy+` syntax * Handling indexed expressions * Finite difference derivatives * Implementation of Maxwell's equations <a id='initializenrpy'></a> ## Step 1.a: Initialize core Python/NRPy+ modules \[Back to [top](#toc)\] $$\label{initializenrpy}$$ Let's start by importing all the needed modules from NRPy+: ```python # Step 1.a: Import core Python/NRPy+ modules # Step 1.a.i: Import needed Python modules import shutil, os, sys # Standard Python modules for multiplatform OS-level functions import sympy as sp # SymPy: a Python library for symbolic mathematics # Step 1.a.ii: Add the "nrpy_core" directory to the path base_dir = os.getcwd() nrpy_core_dir = os.path.join(base_dir,"..","..") sys.path.append(nrpy_core_dir) # Step 1.b: Load needed NRPy+ modules from outputC import lhrh, outCfunction # NRPy+: Core C code output module import finite_difference as fin # NRPy+: Finite difference C code generation module import NRPy_param_funcs as par # NRPy+: Parameter interface import grid as gri # NRPy+: Functions having to do with numerical grids import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support import reference_metric as rfm # NRPy+: Reference metric support import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface import NRPy_logo as logo # NRPy+: contains NRPy+ logo in ASCII art ``` <a id='gridfunction_declaration'></a> ## Step 1.b: Gridfunction declaration \[Back to [top](#toc)\] $$\label{gridfunction_declaration}$$ When solving Maxwell's equations numerically using `NRPy`, we will *discretize* space as a *grid*. Assuming we choose a cube of length $L$ and discretize the $(x,y,z)$-directions using $(N_{x},N_{y},N_{z})$ points, respectively, we introduce the notation $$ \begin{alignat}{2} x \to x_{i} &\equiv x_{\rm min} + i \cdot \Delta x,\ &i=0,1,\ldots,N_{x}-1\\ y \to y_{j} &\equiv y_{\rm min} + j \cdot \Delta y,\ &j=0,1,\ldots,N_{y}-1\\ z \to z_{k} &\equiv z_{\rm min} + k \cdot \Delta z,\ &k=0,1,\ldots,N_{z}-1 \end{alignat} $$ where $(\Delta x,\Delta y,\Delta z)$ are known as the *step sizes*. Our particular choice of discretization does not avoid the origin and is known as *vertex-centered*. A particular function $f(x,y,z)$ can be evaluated on the points in the grid. We introduce the notation $$ f_{ijk} \equiv f(x_{i},y_{j},z_{k}) = f(i\cdot\Delta x,j\cdot\Delta y,k\cdot\Delta z). $$ $f_{ijk}$, i.e. the function $f(x,y,z)$ evaluated at the points of our numerical grid, is referred to as a *gridfunction*. Notice that the indices $i,j,k$ in this case are *not* indices associated with spacetime, but simply provide a useful bookeeping of where we are in our numerical grid. In order to implement systems I and II, we will need the following *gridfunctions*: * The electric field, $E^{i} = \bigl(E^{x},E^{y},E^{z}\bigr)$; * The vector potential, $A^{i} = \bigl(A^{x},A^{y},A^{z}\bigr)$; * The scalar potential, $\Phi$; * The auxiliary scalar, $\Gamma$, which is only used in system II. This means we need a total of 7 gridfunctions for system I and 8 gridfunctions for system II. We will now learn how to register [`SymPy`](https://www.sympy.org) variables which correspond to the gridfunctions above. Notice first that the gridfunctions above fall into two distinct categories: scalar gridfunctions, $(\Phi,\Gamma)$, and 3-vector gridfunctions, $(E^{i},A^{i})$. Because of this, their declaration within `NRPy+` is also slightly different. ><font size=4>Scalar gridfunctions are registered using the `NRPy+` module [`grid.py`](#FIXME)</font> ><font size=4>Indexed expression gridfunctions are registered using the `NRPy+` module [`indexedexp.py`](#FIXME)</font> We handle contravariant ("Up") and covariant ("Down") indices by appending "U"'s and "D"'s to the names of indexed expression variables. For example, in standard `NRPy+` notation, the variable that represents the tensor $M^{ab}_{\ \ \ \ \ \ cd}$ should be defined using $$ \underbrace{M^{ab}_{\ \ \ \ \ \ cd}}_{\text{Indexed expression}} \leftrightarrow \underbrace{\text{MUUDD}}_{\text{NRPy+ variable}}. $$ Variables that represent 4-dimensional indexed expressions should have a "4" in their names. For example, the 4-dimensional indexed expression $V_{\mu}$ is declared as $$ \underbrace{V_{\mu}}_{\text{Indexed expression}} \leftrightarrow \underbrace{\text{V4D}}_{\text{NRPy+ variable}}. $$ ```python # Step 1.b: Gridfunction declaration def declare_MaxwellVacuum_gridfunctions_if_not_declared_already(): # Step 1.b.i: This if statement simply prevents multiple # declarations of the same gridfunctions, # which would result in errors. for i in range(len(gri.glb_gridfcs_list)): if "Phi" in gri.glb_gridfcs_list[i].name: Phi,Gamma = sp.symbols("Phi Gamma",real=True) EU = ixp.declarerank1("EU",DIM=3) AU = ixp.declarerank1("AU",DIM=3) return Phi,Gamma,EU,AU # Step 1.b.i: Scalar gridfunctions: Phi and Gamma Phi,Gamma = gri.register_gridfunctions("EVOL",["Phi","Gamma"]) # Step 1.b.ii: 3-vector gridfunctions: E^{i} and A^{i} EU = ixp.register_gridfunctions_for_single_rank1("EVOL","EU",DIM=3) AU = ixp.register_gridfunctions_for_single_rank1("EVOL","AU",DIM=3) return Phi,Gamma,EU,AU Phi,Gamma,EU,AU = declare_MaxwellVacuum_gridfunctions_if_not_declared_already() ``` <a id='finite_differences'></a> ## Step 1.c: Finite difference derivatives \[Back to [top](#toc)\] $$\label{finite_differences}$$ `NRPy+` handles derivatives numerically using [finite differences](https://en.wikipedia.org/wiki/Finite_difference). For example, to obtain the expression for $\partial_{x}f(x)$, we can use the following: $$ f(x\pm\Delta x) = f(x) \pm \Delta x \partial_{x}f(x) + \frac{(\Delta x)^{2}}{2}\partial_{x}^{2}f(x) + \mathcal{O}\bigl(\Delta x^{3}\bigr), $$ from which we can construct the *second-order accurate centered finite difference* approximation $$ \underbrace{\partial_{x}f(x)}_{\text{Derivative}} = \underbrace{\frac{f(x+\Delta x) - f(x-\Delta x)}{2\Delta x}}_{\text{FD approximation}} + \mathcal{O}\bigl(\Delta x^{2}\bigr). $$ In `NRPy+` the derivatives are replaced by the finite difference approximation only when we are generating the C code from the symbolic expressions. So let us begin our discussion by explaining how to represent derivatives in our symbolic expressions. From the point of view of the programmer, a derivative of an object should be considered simply as another indexed expression. For example, we can think of the second derivative of the vector $P^{i}$ as the new object $p^{k}_{\ \ ij}$, i.e. $$ p^{k}_{\ \ ij} \equiv \partial_{i}\partial_{j}P^{k}. $$ This means that the declaration of derivatives is also performed using the [`indexedexp.py`](FIXME) module. However, there is a special notation to distinguish "derivative indices" ($i$ and $j$ in the example above) from "regular indices" ($k$ in the example above). This distinction must be introduced so that the [`outputC.py`](FIXME) module correctly identifies derivatives and replaces them with the appropriate finite difference expression. This special notation consists of appending "_d" (lowercase!) to the end of the variable's name, followed by the derivative indices. For example: $$ \partial_{i}\partial_{j}P^{k} \equiv \underbrace{P^{k}_{\ ,ij}}_{\text{Indexed expression}} \leftrightarrow \underbrace{\text{PU_dDD}}_{\text{NRPy+ variable}}. $$ The underscore preceding the derivative indices is introduced to distinguish *numerical* derivatives (i.e. those which we evaluate using finite differences) from *analytic* derivatives (i.e. those which we evaluate using `SymPy` and exact, symbolic differentiation). Here we provide a simple example that evaluates the derivative of a scalar $\psi$ using finite differences. This variable will not be used again, so we prepend its name with an underscore to identify it as a dummy variable. Note also that we will remove $\psi$ from the list of gridfunctions after using it, thus avoiding undesireable gridfunctions when generating the ETK thorn. [Using fourth-order accurate finite differences, the expressions we should obtain for the first and second derivatives](https://en.wikipedia.org/wiki/Finite_difference_coefficient) of $\psi$ along the $x$-direction are, respectively, $$ \begin{align} \partial_{x}\psi &= \frac{1}{\Delta x}\left(\frac{1}{12}\psi_{i-2} - \frac{2}{3}\psi_{i-1} + \frac{2}{3}\psi_{i+1} - \frac{1}{12}\psi_{i+2}\right),\\ \partial_{x}^{2}\psi &= \frac{1}{\Delta x^{2}}\left(-\frac{1}{12}\psi_{i-2} + \frac{4}{3}\psi_{i-1} - \frac{5}{2}\psi_{i} + \frac{4}{3}\psi_{i+1} - \frac{1}{12}\psi_{i+2}\right). \end{align} $$ Let us now demonstrate that `NRPy+` gives us the above expressions. ```python # Step 1.c: Finite differences # Step 1.c.i: Declare the gridfunction psi and # its first and second derivatives _psi = gri.register_gridfunctions("EVOL","psi") _psi_dD = ixp.declarerank1("psi_dD") _psi_dDD = ixp.declarerank2("psi_dDD","sym01") # <- symmetric under i <-> j # Step 1.c.ii: Now get the finite difference expression par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",4) # Step 1.c.iii: Generate the C code print(fin.FD_outputC("returnstring", [lhrh(lhs="First__derivative",rhs=_psi_dD[0]), lhrh(lhs="Second_derivative",rhs=_psi_dDD[0][0])], params="outCverbose=False")) # Step 1.c.iv: Remove the gridfunction psi from the list of gridfunctions for gf in gri.glb_gridfcs_list: if gf.name == "psi": gri.glb_gridfcs_list.remove(gf) ``` { /* * NRPy+ Finite Difference Code Generation, Step 1 of 2: Read from main memory and compute finite difference stencils: */ const double psi_i0m2_i1_i2 = in_gfs[IDX4(PSIGF, i0-2,i1,i2)]; const double psi_i0m1_i1_i2 = in_gfs[IDX4(PSIGF, i0-1,i1,i2)]; const double psi = in_gfs[IDX4(PSIGF, i0,i1,i2)]; const double psi_i0p1_i1_i2 = in_gfs[IDX4(PSIGF, i0+1,i1,i2)]; const double psi_i0p2_i1_i2 = in_gfs[IDX4(PSIGF, i0+2,i1,i2)]; const double FDPart1_Rational_2_3 = 2.0/3.0; const double FDPart1_Rational_1_12 = 1.0/12.0; const double FDPart1_Rational_5_2 = 5.0/2.0; const double FDPart1_Rational_4_3 = 4.0/3.0; const double psi_dD0 = invdx0*(FDPart1_Rational_1_12*(psi_i0m2_i1_i2 - psi_i0p2_i1_i2) + FDPart1_Rational_2_3*(-psi_i0m1_i1_i2 + psi_i0p1_i1_i2)); const double psi_dDD00 = ((invdx0)*(invdx0))*(FDPart1_Rational_1_12*(-psi_i0m2_i1_i2 - psi_i0p2_i1_i2) + FDPart1_Rational_4_3*(psi_i0m1_i1_i2 + psi_i0p1_i1_i2) - FDPart1_Rational_5_2*psi); /* * NRPy+ Finite Difference Code Generation, Step 2 of 2: Evaluate SymPy expressions and write to main memory: */ First__derivative = psi_dD0; Second_derivative = psi_dDD00; } <a id='system_I_implementation'></a> ## Step 1.d: Implementation of system I \[Back to [top](#toc)\] $$\label{system_I_implementation}$$ We now implement system I, derived in [Step 0.b](#potential_formulation_maxwell_equations) above, which read $$ \text{System I:}\ \boxed{ \begin{align} \color{blue}{\partial_{t}E^{i}} &\, \color{blue}{= -\partial^{j}\partial_{j}A^{i} + \partial^{i}\partial_{j}A^{j}}\\ \color{blue}{\partial_{t}A^{i}} &\, \color{blue}{= -E^{i} - \partial^{i}\Phi}\\ \color{blue}{\partial_{t}\Phi} &\, \color{blue}{= -\partial_{i}A^{i}}\\ \color{red}{\partial_{i}E^{i}} &\, \color{red}{= 0} \end{align} } \ . $$ In the colorcode above, $\color{blue}{\text{blue}}$ equations are $\color{blue}{\text{evolution}}$ equations, while $\color{red}{\text{red}}$ equations are $\color{red}{\text{constraint}}$ equations. <a id='system_I_evolution_eqs'></a> ### Step 1.d.i: System I evolution equations \[Back to [top](#toc)\] $$\label{system_I_evolution_eqs}$$ We will now implement the evolution equations of system I, namely $$ \begin{align} \partial_{t}E^{i} &= -\partial^{j}\partial_{j}A^{i} + \partial^{i}\partial_{j}A^{j},\\ \partial_{t}A^{i} &= -E^{i} - \partial^{i}\Phi,\\ \partial_{t}\Phi &= -\partial_{i}A^{i}. \end{align} $$ ```python # Step 1.d: Implementation of system I # Step 1.d.i: System I evolution equations def MaxwellVacuum_system_I_evolution_equations(): # Step 1.d.i.1: Declare Maxwell gridfunctions _Phi,_Gamma,_EU,_AU = declare_MaxwellVacuum_gridfunctions_if_not_declared_already() # Step 1.d.i.2: Declare all derivatives appearing on the # right-hand sides of the evolution equations # of system I AU_dDD = ixp.declarerank3("AU_dDD","sym12") AU_dD = ixp.declarerank2("AU_dD","nosym") Phi_dD = ixp.declarerank1("Phi_dD") # Step 1.d.i.3: Right-hand side of E^{i}: # # partial_{t}E^{i} = -partial^{j}partial_{j}A^{i} + partial^{i}partial_{j}A^{j} ErhsU = ixp.zerorank1() for i in range(DIM): for j in range(DIM): ErhsU[i] += -AU_dDD[i][j][j] + AU_dDD[j][j][i] # Step 1.d.i.4: Right-hand side of A^{i}: # # partial_{t}A^{i} = -E^{i} - partial^{i}Phi ArhsU = ixp.zerorank1() for i in range(DIM): ArhsU[i] = -EU[i] - Phi_dD[i] # Step 1.d.i.5: Right-hand side of Phi: # # partial_{t}Phi = -partial_{i}A^{i} Phi_rhs = sp.sympify(0) for i in range(DIM): Phi_rhs += -AU_dD[i][i] return ErhsU,ArhsU,Phi_rhs ``` <a id='system_I_constraint_eqs'></a> ### Step 1.d.ii: System I constraint equation \[Back to [top](#toc)\] $$\label{system_I_constraint_eqs}$$ We now implement the constraint equation $$ \mathcal{C} = \partial_{i}E^{i}. $$ Notice that $\mathcal{C}=0$ *analytically*, but this constraint *is not* enforced during an evolution. It can instead be used as a diagnostic of how well our numerical solution satisfies Maxwell's equations. ```python # Step 1.d.ii: System I constraint equation def MaxwellVacuum_system_I_constraint_equation(): # Step 1.d.ii.1: Declare Maxwell gridfunctions _Phi,_Gamma,_EU,_AU = declare_MaxwellVacuum_gridfunctions_if_not_declared_already() # Step 1.d.ii.2: Declare all derivatives appearing on the # right-hand sides of the constraint equations # of system I EU_dD = ixp.declarerank2("EU_dD", "nosym") # Step 1.d.ii.3: Constraint equation (Gauss' law in vacuum): # # C = partial_{i}E^{i} C = sp.sympify(0) for i in range(DIM): C += EU_dD[i][i] return C ``` <a id='system_II_implementation'></a> ## Step 1.e: Implementation of system II \[Back to [top](#toc)\] $$\label{system_II_implementation}$$ We now implement system II, derived in [Step 0.c](#hyperbolicity_maxwell_equations) above, which read $$ \text{System II:}\ \boxed{ \begin{align} \color{blue}{\partial_{t}E^{i}} &\, \color{blue}{= -\partial^{j}\partial_{j}A^{i} + \partial^{i}\Gamma}\\ \color{blue}{\partial_{t}A^{i}} &\, \color{blue}{= -E^{i} - \partial^{i}\Phi}\\ \color{blue}{\partial_{t}\Phi} &\, \color{blue}{= -\Gamma}\\ \color{blue}{\partial_{t}\Gamma} &\, \color{blue}{= -\partial^{i}\partial_{i}\Phi}\\ \color{red}{\partial_{i}E^{i}} &\, \color{red}{= 0}\\ \color{red}{\Gamma} &\, \color{red}{= \partial_{i}A^{i}} \end{align} }\ . $$ In the colorcode above, $\color{blue}{\text{blue}}$ equations are $\color{blue}{\text{evolution}}$ equations, while $\color{red}{\text{red}}$ equations are $\color{red}{\text{constraint}}$ equations. <a id='system_II_evolution_eqs'></a> ### Step 1.e.i: System II evolution equations \[Back to [top](#toc)\] $$\label{system_II_evolution_eqs}$$ We will now implement the evolution equations of system II, namely $$ \begin{align} \partial_{t}E^{i} &= -\partial^{j}\partial_{j}A^{i} + \partial^{i}\Gamma,\\ \partial_{t}A^{i} &= -E^{i} - \partial^{i}\Phi,\\ \partial_{t}\Phi &= -\Gamma,\\ \partial_{t}\Gamma &= -\partial^{i}\partial_{i}\Phi. \end{align} $$ ```python # Step 1.e: Implementation of system II # Step 1.e.i: System II evolution equations def MaxwellVacuum_system_II_evolution_equations(): # Step 1.e.i.1: Declare Maxwell gridfunctions _Phi,Gamma,_EU,_AU = declare_MaxwellVacuum_gridfunctions_if_not_declared_already() # Step 1.e.i.2: Declare all derivatives appearing on the # right-hand sides of the evolution equations # of system II AU_dDD = ixp.declarerank3("AU_dDD","sym12") Phi_dD = ixp.declarerank1("Phi_dD") Phi_dDD = ixp.declarerank2("Phi_dDD","sym01") Gamma_dD = ixp.declarerank1("Gamma_dD") # Step 1.e.i.3: Right-hand side of E^{i}: # # partial_{t}E^{i} = -partial^{j}partial_{j}A^{i} + partial^{i}Gamma ErhsU = ixp.zerorank1() for i in range(DIM): ErhsU[i] += Gamma_dD[i] for j in range(DIM): ErhsU[i] -= AU_dDD[i][j][j] # Step 1.e.i.4: Right-hand side of A^{i}: # # partial_{t}A^{i} = -E^{i} - partial^{i}Phi ArhsU = ixp.zerorank1() for i in range(DIM): ArhsU[i] = -EU[i] - Phi_dD[i] # Step 1.e.i.5: Right-hand side of Phi: # # partial_{t}Phi = -Gamma Phi_rhs = -Gamma # Step 1.e.i.6: Right-hand side of Gamma: # # partial_{t}Gamma = -partial^{i}partial_{i}Phi Gamma_rhs = sp.sympify(0) for i in range(DIM): Gamma_rhs -= Phi_dDD[i][i] return ErhsU,ArhsU,Phi_rhs,Gamma_rhs ``` <a id='system_II_constraint_eqs'></a> ### Step 1.e.ii: System II constraint equations \[Back to [top](#toc)\] $$\label{system_II_constraint_eqs}$$ We now implement the constraint equations $$ \begin{align} \mathcal{C} &= \partial_{i}E^{i},\\ \mathcal{G} &= \Gamma - \partial_{i}A^{i}. \end{align} $$ Notice that $\mathcal{C}=0$ and $\mathcal{G}=0$ *analytically*, but these constraints *are not* enforced during an evolution. They can instead be used as diagnostics of how well our numerical solution satisfies Maxwell's equations. ```python # Step 1.e.ii: System I constraint equations def MaxwellVacuum_system_II_constraint_equations(): # Step 1.e.ii.1: Declare Maxwell gridfunctions _Phi,_Gamma,_EU,_AU = declare_MaxwellVacuum_gridfunctions_if_not_declared_already() # Step 1.e.ii.2: Declare all derivatives appearing on the # right-hand sides of the constraint equations # of system II EU_dD = ixp.declarerank2("EU_dD", "nosym") AU_dD = ixp.declarerank2("AU_dD", "nosym") # Step 1.e.ii.3: Gauss' law in vacuum: # # C = partial_{i}E^{i} C = sp.sympify(0) for i in range(DIM): C += EU_dD[i][i] # Step 1.e.ii.4: Gamma-constraint: # # G = Gamma - partial_{i}A^{i} G = Gamma for i in range(DIM): G += -AU_dD[i][i] return C,G ``` <hr style="width:100%;height:3px;color:black"/> <a id='thorn_writing'></a> # Step 2: Part II - Einstein Toolkit thorn writing \[Back to [top](#toc)\] $$\label{thorn_writing}$$ In this part of the tutorial we will focusing on writing the `MaxwellVacuum` ETK thorn. We will go over: * Generating C code kernels from the symbolic expressions, including a function to initialize the right-hand sides to zero * Writing all additional functions that are needed by the thorn: * The right-hand sides driver function * The constraints driver function * Registering the evolved, and respective right-hand sides, gridfunctions so that they can be used by the [Method of Lines](https://einsteintoolkit.org/thornguide/CactusNumerical/MoL/documentation.html) thorn * Specifying gridfunctions symmetries * Boundary conditions * Printing the `NRPy+` logo when using this thorn * Writing the thorn's configuration (`*.ccl`) files <a id='generating_c_code_kernels'></a> ## Step 2.a: Generating C code kernels for Maxwell's equations \[Back to [top](#toc)\] $$\label{generating_c_code_kernels}$$ We now focus on generating the C code kernels that are needed by the `MaxwellVacuum` thorn. These will be source files containing a single C function each. The functions can be used to compute, for example, the right-hand sides of Maxwell's evolution equations, and the source code which composes the core of the function's body is the result of converting the `SymPy` symbolic expressions into highly optimized C code. We will then focus on how to generate this highly optimized C code in `NRPy+` using the `outputC.py` module. Because we want our symbolic derivatives to be replaced by finite differences approximations, we will be using the wrapper function `FD_outputC()`, defined in the `finite_differences.py` module. ```python # Step 2.a: Generating C code kernels for Maxwell's equations # Step 2.a.0.i: Set the thorn's directories Thorndir = "MaxwellVacuum" Ccodesdir = os.path.join(Thorndir,"src") shutil.rmtree(Thorndir, ignore_errors=True) cmd.mkdir(Thorndir) cmd.mkdir(Ccodesdir) # Step 2.a.0.ii: Copy SIMD compiler intrinsics files cmd.mkdir(os.path.join(Ccodesdir,"SIMD")) shutil.copy(os.path.join(nrpy_core_dir,"SIMD","SIMD_intrinsics.h"),os.path.join(Ccodesdir,"SIMD")) # Step 2.a.0.iii: Enable rfm precompute cmd.mkdir(os.path.join(Ccodesdir,"rfm_files")) par.set_parval_from_str("reference_metric::enable_rfm_precompute","True") par.set_parval_from_str("reference_metric::rfm_precompute_Ccode_outdir",os.path.join(Ccodesdir,"rfm_files")) # Step 2.a.0.iv: Set gridfunction memory access mode par.set_parval_from_str("grid::GridFuncMemAccess","ETK") # Step 2.a.0.v: Set coordinate system and generate reference_metric files CoordSystem = "Cartesian" par.set_parval_from_str("reference_metric::CoordSystem",CoordSystem) rfm.reference_metric() # Step 2.a.0.vi: Set number of spatial dimensions par.set_parval_from_str("grid::DIM",3) DIM = par.parval_from_str("grid::DIM") # Step 2.a.0.vii: Master C code generating function def MaxwellVacuum_C_code_generation_function(name,desc,gf_and_expr_list,make_code_defn_list=None): outfile = os.path.join(Ccodesdir,name+".c") outCfunction( includes = ["math.h","cctk.h","cctk_Arguments.h","cctk_Parameters.h","SIMD/SIMD_intrinsics.h"], outfile = outfile, desc = desc, name = name, enableCparameters = False, params = "CCTK_ARGUMENTS", preloop = """ DECLARE_CCTK_ARGUMENTS; const CCTK_REAL NOSIMDinvdx0 = 1.0/CCTK_DELTA_SPACE(0); const REAL_SIMD_ARRAY invdx0 = ConstSIMD(NOSIMDinvdx0); const CCTK_REAL NOSIMDinvdx1 = 1.0/CCTK_DELTA_SPACE(1); const REAL_SIMD_ARRAY invdx1 = ConstSIMD(NOSIMDinvdx1); const CCTK_REAL NOSIMDinvdx2 = 1.0/CCTK_DELTA_SPACE(2); const REAL_SIMD_ARRAY invdx2 = ConstSIMD(NOSIMDinvdx2); #pragma omp parallel for for(int i2=cctk_nghostzones[2];i2<cctk_lsh[2]-cctk_nghostzones[2];i2++) { #include "rfm_files/rfm_struct__SIMD_inner_read2.h" for(int i1=cctk_nghostzones[1];i1<cctk_lsh[1]-cctk_nghostzones[1];i1++) { #include "rfm_files/rfm_struct__SIMD_inner_read1.h" for(int i0=cctk_nghostzones[0];i0<cctk_lsh[0]-cctk_nghostzones[0];i0+=SIMD_width) { #include "rfm_files/rfm_struct__SIMD_inner_read0.h" """, body =fin.FD_outputC("returnstring",gf_and_expr_list, params="outCverbose=False,includebraces=False,enable_SIMD=True,preindent=8"), postloop = """ } // for(int i0=cctk_nghostzones[0];i0<cctk_lsh[0]-cctk_nghostzones[0];i0+=SIMD_width) } // for(int i1=cctk_nghostzones[1];i1<cctk_lsh[1]-cctk_nghostzones[1];i1++) } // for(int i2=cctk_nghostzones[2];i2<cctk_lsh[2]-cctk_nghostzones[2];i2++) """) if make_code_defn_list is not None: make_code_defn_list.append(name+".c") ``` <a id='system_I_c_code_generation'></a> ### Step 2.a.i: System I C code generation \[Back to [top](#toc)\] $$\label{system_I_c_code_generation}$$ We will now generate the C code kernels for [System I](#systems_I_and_II). We will generate a total of 8 source files containing: * Functions to evaluate the right-hand sides of the evolution equations in System I using: * 2nd order finite differences * 4th order finite differences * 6th order finite differences * 8th order finite differences * Functions to evaluate the constraint equation in System I using: * 2nd order finite differences * 4th order finite differences * 6th order finite differences * 8th order finite differences ```python # Step 2.a.i: System I C code generation # Step 2.a.i.1: Clear list of registered gridfunctions gri.glb_gridfcs_list = [] # Step 2.a.i.2: Declare an auxiliary gridfunction "C" to store Gauss' law _CGF = gri.register_gridfunctions("AUX","C") # Step 2.a.i.3: Store the current (dfault) finite difference order FD_order_orig = par.parval_from_str("finite_difference::FD_CENTDERIVS_ORDER") # Step 2.a.i.4: Set which finite difference orders we want FD_order_min = 2 FD_order_max = 8 FD_order_step = 2 # Step 2.a.i.5: Generate the C code kernels make_code_defn_list = [] for FD_order in range(FD_order_min,FD_order_max+1,FD_order_step): # Update finite difference order par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",FD_order) # Evolution equations name = "MaxwellVacuum_System_I_RHSs_FD_order_%d"%(FD_order) desc = "Right-hand sides of the evolution equations in system I - FD order = %d"%(FD_order) ErhsU,ArhsU,Phi_rhs = MaxwellVacuum_system_I_evolution_equations() gf_and_expr_list = [lhrh(lhs=gri.gfaccess("rhs_gfs","EU0"),rhs=ErhsU[0]), lhrh(lhs=gri.gfaccess("rhs_gfs","EU1"),rhs=ErhsU[1]), lhrh(lhs=gri.gfaccess("rhs_gfs","EU2"),rhs=ErhsU[2]), lhrh(lhs=gri.gfaccess("rhs_gfs","AU0"),rhs=ArhsU[0]), lhrh(lhs=gri.gfaccess("rhs_gfs","AU1"),rhs=ArhsU[1]), lhrh(lhs=gri.gfaccess("rhs_gfs","AU2"),rhs=ArhsU[2]), lhrh(lhs=gri.gfaccess("rhs_gfs","Phi"),rhs=Phi_rhs)] MaxwellVacuum_C_code_generation_function(name,desc,gf_and_expr_list,make_code_defn_list=make_code_defn_list) # Constraint equations name = "MaxwellVacuum_System_I_constraints_FD_order_%d"%(FD_order) desc = "Constraint equations in system I - FD order = %d"%(FD_order) C = MaxwellVacuum_system_I_constraint_equation() gf_and_expr_list = lhrh(lhs=gri.gfaccess("aux_gfs","C"),rhs=C) MaxwellVacuum_C_code_generation_function(name,desc,gf_and_expr_list,make_code_defn_list=make_code_defn_list) # Step 2.a.i.6: Restore original FD_order par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",FD_order_orig) ``` Output C function MaxwellVacuum_System_I_RHSs_FD_order_2() to file MaxwellVacuum/src/MaxwellVacuum_System_I_RHSs_FD_order_2.c Output C function MaxwellVacuum_System_I_constraints_FD_order_2() to file MaxwellVacuum/src/MaxwellVacuum_System_I_constraints_FD_order_2.c Output C function MaxwellVacuum_System_I_RHSs_FD_order_4() to file MaxwellVacuum/src/MaxwellVacuum_System_I_RHSs_FD_order_4.c Output C function MaxwellVacuum_System_I_constraints_FD_order_4() to file MaxwellVacuum/src/MaxwellVacuum_System_I_constraints_FD_order_4.c Output C function MaxwellVacuum_System_I_RHSs_FD_order_6() to file MaxwellVacuum/src/MaxwellVacuum_System_I_RHSs_FD_order_6.c Output C function MaxwellVacuum_System_I_constraints_FD_order_6() to file MaxwellVacuum/src/MaxwellVacuum_System_I_constraints_FD_order_6.c Output C function MaxwellVacuum_System_I_RHSs_FD_order_8() to file MaxwellVacuum/src/MaxwellVacuum_System_I_RHSs_FD_order_8.c Output C function MaxwellVacuum_System_I_constraints_FD_order_8() to file MaxwellVacuum/src/MaxwellVacuum_System_I_constraints_FD_order_8.c <a id='system_II_c_code_generation'></a> ### Step 2.a.ii: System II C code generation \[Back to [top](#toc)\] $$\label{system_II_c_code_generation}$$ We will now generate the C code kernels for [System II](#systems_I_and_II). We will generate a total of 8 source files containing: * Functions to evaluate the right-hand sides of the evolution equations in System II using: * 2nd order finite differences * 4th order finite differences * 6th order finite differences * 8th order finite differences * Functions to evaluate the constraint equation in System II using: * 2nd order finite differences * 4th order finite differences * 6th order finite differences * 8th order finite differences ```python # Step 2.a.ii: System II C code generation # Step 2.a.ii.1: Clear list of registered gridfunctions gri.glb_gridfcs_list = [] # Step 2.a.ii.2: Declare an auxiliary gridfunction "C" to store Gauss' law _CGF,_GGF = gri.register_gridfunctions("AUX",["C","G"]) # Step 2.a.ii.3: Store the current (dfault) finite difference order FD_order_orig = par.parval_from_str("finite_difference::FD_CENTDERIVS_ORDER") # Step 2.a.ii.4: Set which finite difference orders we want FD_order_min = 2 FD_order_max = 8 FD_order_step = 2 # Step 2.a.ii.5: Generate the C code kernels for FD_order in range(FD_order_min,FD_order_max+1,FD_order_step): # Update finite difference order par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",FD_order) # Evolution equations desc = "Right-hand sides of the evolution equations in system II - FD order = %d"%(FD_order) name = "MaxwellVacuum_System_II_RHSs_FD_order_%d"%(FD_order) ErhsU,ArhsU,Phi_rhs,Gamma_rhs = MaxwellVacuum_system_II_evolution_equations() gf_and_expr_list = [lhrh(lhs=gri.gfaccess("rhs_gfs","EU0" ),rhs=ErhsU[0]), lhrh(lhs=gri.gfaccess("rhs_gfs","EU1" ),rhs=ErhsU[1]), lhrh(lhs=gri.gfaccess("rhs_gfs","EU2" ),rhs=ErhsU[2]), lhrh(lhs=gri.gfaccess("rhs_gfs","AU0" ),rhs=ArhsU[0]), lhrh(lhs=gri.gfaccess("rhs_gfs","AU1" ),rhs=ArhsU[1]), lhrh(lhs=gri.gfaccess("rhs_gfs","AU2" ),rhs=ArhsU[2]), lhrh(lhs=gri.gfaccess("rhs_gfs","Phi" ),rhs=Phi_rhs), lhrh(lhs=gri.gfaccess("rhs_gfs","Gamma"),rhs=Gamma_rhs)] MaxwellVacuum_C_code_generation_function(name,desc,gf_and_expr_list,make_code_defn_list=make_code_defn_list) # Constraint equations desc = "Constraint equations in system II - FD order = %d"%(FD_order) name = "MaxwellVacuum_System_II_constraints_FD_order_%d"%(FD_order) C,G = MaxwellVacuum_system_II_constraint_equations() gf_and_expr_list = [lhrh(lhs=gri.gfaccess("aux_gfs","C"),rhs=C), lhrh(lhs=gri.gfaccess("aux_gfs","G"),rhs=G)] MaxwellVacuum_C_code_generation_function(name,desc,gf_and_expr_list,make_code_defn_list=make_code_defn_list) # Step 2.a.ii.6: Restore original FD_order par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER",FD_order_orig) ``` Output C function MaxwellVacuum_System_II_RHSs_FD_order_2() to file MaxwellVacuum/src/MaxwellVacuum_System_II_RHSs_FD_order_2.c Output C function MaxwellVacuum_System_II_constraints_FD_order_2() to file MaxwellVacuum/src/MaxwellVacuum_System_II_constraints_FD_order_2.c Output C function MaxwellVacuum_System_II_RHSs_FD_order_4() to file MaxwellVacuum/src/MaxwellVacuum_System_II_RHSs_FD_order_4.c Output C function MaxwellVacuum_System_II_constraints_FD_order_4() to file MaxwellVacuum/src/MaxwellVacuum_System_II_constraints_FD_order_4.c Output C function MaxwellVacuum_System_II_RHSs_FD_order_6() to file MaxwellVacuum/src/MaxwellVacuum_System_II_RHSs_FD_order_6.c Output C function MaxwellVacuum_System_II_constraints_FD_order_6() to file MaxwellVacuum/src/MaxwellVacuum_System_II_constraints_FD_order_6.c Output C function MaxwellVacuum_System_II_RHSs_FD_order_8() to file MaxwellVacuum/src/MaxwellVacuum_System_II_RHSs_FD_order_8.c Output C function MaxwellVacuum_System_II_constraints_FD_order_8() to file MaxwellVacuum/src/MaxwellVacuum_System_II_constraints_FD_order_8.c <a id='zero_rhss'></a> ### Step 2.a.iii: C code to initialize right-hand sides to zero \[Back to [top](#toc)\] $$\label{zero_rhss}$$ This is a simple function that is used to initialize the right-hand side gridfunctions to zero. ```python # Step 2.a.iii: C code to initialize right-hand sides to zero zero = sp.sympify(0) name = "MaxwellVacuum_zero_rhss" desc = "Set right-hand sides of the evolution equations to zero" gf_and_expr_list = [lhrh(lhs=gri.gfaccess("rhs_gfs","EU0" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","EU1" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","EU2" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","AU0" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","AU1" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","AU2" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","Phi" ),rhs=zero), lhrh(lhs=gri.gfaccess("rhs_gfs","Gamma"),rhs=zero)] outfile = os.path.join(Ccodesdir,name+".c") outCfunction( includes = ["math.h","cctk.h","cctk_Arguments.h","cctk_Parameters.h","SIMD/SIMD_intrinsics.h"], outfile = outfile, desc = desc, name = name, enableCparameters=False, params = "CCTK_ARGUMENTS", preloop = """ DECLARE_CCTK_ARGUMENTS; #pragma omp parallel for for(int i2=0;i2<cctk_lsh[2];i2++) { for(int i1=0;i1<cctk_lsh[1];i1++) { for(int i0=0;i0<cctk_lsh[0];i0+=SIMD_width) { """, body =fin.FD_outputC("returnstring",gf_and_expr_list, params="outCverbose=False,includebraces=False,enable_SIMD=True,preindent=8"), postloop = """ } // for(int i0=0;i0<cctk_lsh[0];i0+=SIMD_width) } // for(int i1=0;i1<cctk_lsh[1];i1++) } // for(int i2=0;i2<cctk_lsh[2];i2++) """) make_code_defn_list.append(name+".c") ``` Output C function MaxwellVacuum_zero_rhss() to file MaxwellVacuum/src/MaxwellVacuum_zero_rhss.c <a id='rhs_driver'></a> ## Step 2.b: The right-hand side driver function \[Back to [top](#toc)\] $$\label{rhs_driver}$$ This function is used to select which of the right-hand sides functions we have defined above should be called. There are two parameters in the `MaxwellVacuum` thorn (which we will declare below) that steer the behaviour of the right-hand side driver: * `FD_order` * `which_system` The first of them, `FD_order`, selects which finite difference order we want to use when evaluating the right-hand sides of the evolution equations. The second of them, `which_system`, selects whether we will use the evolution equations in System I or System II. ```python # Step 2.b: The right-hand side driver function # Step 2.b.i: Get the names of the RHSs functions fct_names = [] for fct in make_code_defn_list: if "RHSs" in fct: fct_names.append(fct.split(".")[0]) # Step 2.b.ii: Includes we will need in our driver funtion include_string = "" for fct_name in fct_names: include_string += "extern void "+fct_name+"(CCTK_ARGUMENTS);\n" # Step 2.b.iii: Right-hand side evaluation driver function driver_function_string = """ #include <math.h> #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "SIMD/SIMD_intrinsics.h" """+include_string+""" void MaxwellVacuum_RHSs(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; if( CCTK_EQUALS(which_system,"SystemI")) { if(FD_order == 2) { MaxwellVacuum_System_I_RHSs_FD_order_2(CCTK_PASS_CTOC); } else if(FD_order == 4) { MaxwellVacuum_System_I_RHSs_FD_order_4(CCTK_PASS_CTOC); } else if(FD_order == 6) { MaxwellVacuum_System_I_RHSs_FD_order_6(CCTK_PASS_CTOC); } else if(FD_order == 8) { MaxwellVacuum_System_I_RHSs_FD_order_8(CCTK_PASS_CTOC); } else { CCTK_VError(__LINE__,__FILE__,CCTK_THORNSTRING, "Error: unsupported FD_order: %d",FD_order); } } else if( CCTK_EQUALS(which_system,"SystemII")) { if(FD_order == 2) { MaxwellVacuum_System_II_RHSs_FD_order_2(CCTK_PASS_CTOC); } else if(FD_order == 4) { MaxwellVacuum_System_II_RHSs_FD_order_4(CCTK_PASS_CTOC); } else if(FD_order == 6) { MaxwellVacuum_System_II_RHSs_FD_order_6(CCTK_PASS_CTOC); } else if(FD_order == 8) { MaxwellVacuum_System_II_RHSs_FD_order_8(CCTK_PASS_CTOC); } else { CCTK_VError(__LINE__,__FILE__,CCTK_THORNSTRING, "Error: unsupported FD_order: %d. Supported orders are: 2, 4, 6, and 8.",FD_order); } } else { CCTK_VError(__LINE__,__FILE__,CCTK_THORNSTRING, "Error: unsupported which_system: %s. Supported systems are \\"SystemI\\" and \\"SystemII\\".",which_system); } } """ # Step 2.b.iv: Write the right-hand side evaluation driver function to file name = "MaxwellVacuum_RHSs.c" outfile = os.path.join(Ccodesdir,name) with open(outfile,"w") as file: file.write(driver_function_string) print("Wrote file \"%s\""%outfile) make_code_defn_list.append(name) ``` Wrote file "MaxwellVacuum/src/MaxwellVacuum_RHSs.c" <a id='constraints_driver'></a> ## Step 2.c: The constraints driver function \[Back to [top](#toc)\] $$\label{constraints_driver}$$ This function is used to select which of the constraint functions we have generated above should be called. There are two parameters in the `MaxwellVacuum` thorn (which we will declare below) that steer the behaviour of the constraints driver: * `FD_order` * `which_system` The first of them, `FD_order`, selects which finite difference order we want to use when evaluating the constraint equations. The second of them, `which_system`, selects whether we will use the constraint equations in System I or System II. ```python # Step 2.c: The constraints driver function # Step 2.c.i: Get the names of the constraints functions fct_names = [] for fct in make_code_defn_list: if "constraint" in fct: fct_names.append(fct.split(".")[0]) # Step 2.c.ii: Includes we will need in our driver funtion include_string = "" for fct_name in fct_names: include_string += "extern void "+fct_name+"(CCTK_ARGUMENTS);\n" # Step 2.c.iii: Constraints driver function driver_function_string = """ #include <math.h> #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "SIMD/SIMD_intrinsics.h" """+include_string+""" void MaxwellVacuum_constraints(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; if( CCTK_EQUALS(which_system,"SystemI")) { if(FD_order == 2) { MaxwellVacuum_System_I_constraints_FD_order_2(CCTK_PASS_CTOC); } else if(FD_order == 4) { MaxwellVacuum_System_I_constraints_FD_order_4(CCTK_PASS_CTOC); } else if(FD_order == 6) { MaxwellVacuum_System_I_constraints_FD_order_6(CCTK_PASS_CTOC); } else if(FD_order == 8) { MaxwellVacuum_System_I_constraints_FD_order_8(CCTK_PASS_CTOC); } else { CCTK_VError(__LINE__,__FILE__,CCTK_THORNSTRING, "Error: unsupported FD_order: %d",FD_order); } } else if( CCTK_EQUALS(which_system,"SystemII")) { if(FD_order == 2) { MaxwellVacuum_System_II_constraints_FD_order_2(CCTK_PASS_CTOC); } else if(FD_order == 4) { MaxwellVacuum_System_II_constraints_FD_order_4(CCTK_PASS_CTOC); } else if(FD_order == 6) { MaxwellVacuum_System_II_constraints_FD_order_6(CCTK_PASS_CTOC); } else if(FD_order == 8) { MaxwellVacuum_System_II_constraints_FD_order_8(CCTK_PASS_CTOC); } else { CCTK_VError(__LINE__,__FILE__,CCTK_THORNSTRING, "Error: unsupported FD_order: %d. Supported orders are: 2, 4, 6, and 8.",FD_order); } } else { CCTK_VError(__LINE__,__FILE__,CCTK_THORNSTRING, "Error: unsupported which_system: %s. Supported systems are \\"SystemI\\" and \\"SystemII\\".",which_system); } } """ # Step 2.c.iv: Write the constraints driver function to file name = "MaxwellVacuum_constraints.c" outfile = os.path.join(Ccodesdir,name) with open(outfile,"w") as file: file.write(driver_function_string) print("Wrote file \"%s\""%outfile) make_code_defn_list.append(name) ``` Wrote file "MaxwellVacuum/src/MaxwellVacuum_constraints.c" <a id='mol_registration'></a> ## Step 2.d: Registering gridfunctions for the Method of Lines \[Back to [top](#toc)\] $$\label{mol_registration}$$ We now register the gridfunctions from the `MaxwellVacuum` thorn so that they can be used the [Method of Lines](https://einsteintoolkit.org/thornguide/CactusNumerical/MoL/documentation.html) ETK thorn. ```python make_code_defn_list.append("MaxwellVacuum_MoL_registration.c") ``` ```python %%writefile $Ccodesdir/MaxwellVacuum_MoL_registration.c //-------------------------------------------------------------------------- // Register with the Method of Lines time stepper // (MoL thorn, found in arrangements/CactusBase/MoL) // MoL documentation located in arrangements/CactusBase/MoL/doc //-------------------------------------------------------------------------- #include <stdio.h> #include "cctk.h" #include "cctk_Parameters.h" #include "cctk_Arguments.h" #include "Symmetry.h" void MaxwellVacuum_MoL_registration(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; CCTK_INT group, rhs, ierr=0; // Register evolution & RHS gridfunction groups with MoL, so it knows group = CCTK_GroupIndex("MaxwellVacuum::evol_variables"); rhs = CCTK_GroupIndex("MaxwellVacuum::evol_variables_rhs"); ierr += MoLRegisterEvolvedGroup(group, rhs); if(ierr) CCTK_ERROR("Problems registering with MoL"); } ``` Writing MaxwellVacuum/src/MaxwellVacuum_MoL_registration.c <a id='gridfunction_symmetries'></a> ## Step 2.e: Set gridfunction symmetries \[Back to [top](#toc)\] $$\label{gridfunction_symmetries}$$ This function tells the [`CartGrid3D`](https://einsteintoolkit.org/thornguide/CactusBase/CartGrid3D/documentation.html) ETK thorn what are the symmetry properties of each of the gridfunctions used by the `MaxwellVacuum` thorn. This is used to know the parity of the gridfunctions, for example $$ f(-x,y,z) = s f(x,y,z), $$ with $s=+1\ (-1)$ meaning the function is even (odd) in $x$. ```python # Step 2.e: Set gridfuntion symmetries # Step 2.e.i: Get list of evolved and auxiliary gridfunctions evol_gfs_list = [] aux_gfs_list = [] for i in range(len(gri.glb_gridfcs_list)): if gri.glb_gridfcs_list[i].gftype == "EVOL": evol_gfs_list.append(gri.glb_gridfcs_list[i].name+"GF") if gri.glb_gridfcs_list[i].gftype == "AUX": aux_gfs_list.append( gri.glb_gridfcs_list[i].name+"GF") # Step 2.e.ii: Sort gridfunction lists evol_gfs_list.sort() aux_gfs_list.sort() # Step 2.e.iii: Get list of all (evol+aux) gridfunctions full_gfs_list = [] full_gfs_list.extend(evol_gfs_list) full_gfs_list.extend(aux_gfs_list) # Step 2.e.iv: Write the function to a string outstr = """ #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "Symmetry.h" void MaxwellVacuum_Symmetry_registration(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; // Stores gridfunction parity across x=0, y=0, and z=0 planes, respectively int sym[3]; // Next register parities for each gridfunction based on its name // (to ensure this algorithm is robust, gridfunctions with integers // in their base names are forbidden in NRPy+). """ outstr += "" for gfname in full_gfs_list: gfname_without_GFsuffix = gfname[:-2] outstr += """ // Default to scalar symmetry: sym[0] = 1; sym[1] = 1; sym[2] = 1; // Now modify sym[0], sym[1], and/or sym[2] as needed // to account for gridfunction parity across // x=0, y=0, and/or z=0 planes, respectively """ # If gridfunction name does not end in a digit, by NRPy+ syntax, it must be a scalar if gfname_without_GFsuffix[len(gfname_without_GFsuffix) - 1].isdigit() == False: outstr += " // (this gridfunction is a scalar -- no need to change default sym[]'s!)\n" elif len(gfname_without_GFsuffix) > 2: # Rank-1 indexed expression (e.g., vector) if gfname_without_GFsuffix[len(gfname_without_GFsuffix) - 2].isdigit() == False: if int(gfname_without_GFsuffix[-1]) > 2: print("Error: Found invalid gridfunction name: "+gfname) sys.exit(1) symidx = gfname_without_GFsuffix[-1] if int(symidx) < 3: outstr += " sym[" + symidx + "] = -1;\n" # Rank-2 indexed expression elif gfname_without_GFsuffix[len(gfname_without_GFsuffix) - 2].isdigit() == True: if len(gfname_without_GFsuffix) > 3 and gfname_without_GFsuffix[len(gfname_without_GFsuffix) - 3].isdigit() == True: print("Error: Found a Rank-3 or above gridfunction: "+gfname+", which is at the moment unsupported.") print("It should be easy to support this if desired.") sys.exit(1) symidx0 = gfname_without_GFsuffix[-2] if int(symidx0) >= 0: outstr += " sym[" + symidx0 + "] *= -1;\n" symidx1 = gfname_without_GFsuffix[-1] if int(symidx1) >= 0: outstr += " sym[" + symidx1 + "] *= -1;\n" else: print("Don't know how you got this far with a gridfunction named "+gfname+", but I'll take no more of this nonsense.") print(" Please follow best-practices and rename your gridfunction to be more descriptive") sys.exit(1) outstr += " SetCartSymVN(cctkGH, sym, \"MaxwellVacuum::" + gfname + "\");\n" outstr += "}\n" # Step 2.e.v: Write the function string to file name = "MaxwellVacuum_Symmetry_registration.c" outfile = os.path.join(Ccodesdir,name) with open(outfile,"w") as file: file.write(outstr) print("Wrote file \"%s\""%outfile) # Step 2.e.vi: Add function name to the list of functions # to be added to the make.code.defn file make_code_defn_list.append(name) ``` Wrote file "MaxwellVacuum/src/MaxwellVacuum_Symmetry_registration.c" <a id='boundary_conditions'></a> ## Step 2.f: Boundary condition configuration \[Back to [top](#toc)\] $$\label{boundary_conditions}$$ ```python # Step 2.f: Register with the boundary conditions thorns. # Step 2.f.i Set BC type to "none" for all variables # Since we choose NewRad boundary conditions, we must register all # gridfunctions to have boundary type "none". This is because # NewRad is seen by the rest of the Toolkit as a modification to the # RHSs. # Step 2.f.ii: This code is based on Kranc's McLachlan/ML_Maxwell/src/Boundaries.cc code. outstr = """ #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" #include "cctk_Faces.h" #include "util_Table.h" #include "Symmetry.h" // Set `none` boundary conditions on Maxwell RHSs, as these are set via NewRad. void MaxwellVacuum_BoundaryConditions_evolved_gfs(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; CCTK_INT ierr CCTK_ATTRIBUTE_UNUSED = 0; """ for gf in evol_gfs_list: outstr += """ ierr = Boundary_SelectVarForBC(cctkGH, CCTK_ALL_FACES, 1, -1, "MaxwellVacuum::"""+gf+"""", "none"); if (ierr < 0) CCTK_ERROR("Failed to register BC for MaxwellVacuum::"""+gf+"""!"); """ outstr += """ } // Set `none` boundary conditions on Maxwell constraints void MaxwellVacuum_BoundaryConditions_aux_gfs(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; CCTK_INT ierr CCTK_ATTRIBUTE_UNUSED = 0; """ for gf in aux_gfs_list: outstr += """ ierr = Boundary_SelectVarForBC(cctkGH, CCTK_ALL_FACES, cctk_nghostzones[0], -1, "MaxwellVacuum::"""+gf+"""", "none"); if (ierr < 0) CCTK_ERROR("Failed to register BC for MaxwellVacuum::"""+gf+"""!"); """ outstr += "}\n" # Step 2.f.iii: Write the function string to file name = "MaxwellVacuum_BoundaryConditions_evolved_gfs.c" outfile = os.path.join(Ccodesdir,name) with open(outfile,"w") as file: file.write(outstr) print("Wrote file \"%s\""%outfile) # Step 2.f.iv: Add function name to the list of functions # to be added to the make.code.defn file make_code_defn_list.append(name) # Step 2.f.v: Set C code for calling NewRad BCs # As explained in lean_public/LeanMaxwellMoL/src/calc_mwev_rhs.F90, # the function NewRad_Apply takes the following arguments: # NewRad_Apply(cctkGH, var, rhs, var0, v0, radpower), # which implement the boundary condition: # var = var_at_infinite_r + u(r-var_char_speed*t)/r^var_radpower # Obviously for var_radpower>0, var_at_infinite_r is the value of # the variable at r->infinity. var_char_speed is the propagation # speed at the outer boundary, and var_radpower is the radial # falloff rate. outstr = """ #include <math.h> #include "cctk.h" #include "cctk_Arguments.h" #include "cctk_Parameters.h" void MaxwellVacuum_NewRad(CCTK_ARGUMENTS) { DECLARE_CCTK_ARGUMENTS; DECLARE_CCTK_PARAMETERS; """ for gf in evol_gfs_list: var_at_infinite_r = "0.0" var_char_speed = "1.0" var_radpower = "3.0" outstr += " NewRad_Apply(cctkGH, "+gf+", "+gf.replace("GF","")+"_rhsGF, "+var_at_infinite_r+", "+var_char_speed+", "+var_radpower+");\n" outstr += "}\n" # Step 2.f.vi: Write the function string to file name = "MaxwellVacuum_NewRad.c" outfile = os.path.join(Ccodesdir,name) with open(outfile,"w") as file: file.write(outstr) print("Wrote file \"%s\""%outfile) # Step 2.f.vii: Add function name to the list of functions # to be added to the make.code.defn file make_code_defn_list.append(name) ``` Wrote file "MaxwellVacuum/src/MaxwellVacuum_BoundaryConditions_evolved_gfs.c" Wrote file "MaxwellVacuum/src/MaxwellVacuum_NewRad.c" <a id='nrpy_banner'></a> ## Step 2.g: `NRPy+` banner \[Back to [top](#toc)\] $$\label{nrpy_banner}$$ ```python # Step 2.g: Function that prints the NRPy+ banner # Step 2.g.i: Write the function to a string outstr = """ #include <stdio.h> void MaxwellVacuum_Banner() { """ logostr = logo.print_logo(print_to_stdout=False) outstr += " printf(\"MaxwellVacuum: another Einstein Toolkit thorn generated by\\n\");\n" for line in logostr.splitlines(): outstr += " printf(\""+line+"\\n\");\n" outstr += "}\n" # Step 2.g.ii: Write the function string to file name = "MaxwellVacuum_Banner.c" outfile = os.path.join(Ccodesdir,name) with open(outfile,"w") as file: file.write(outstr) print("Wrote file \"%s\""%outfile) # Step 2.g.iii: Add function name to the list of functions # to be added to the make.code.defn file make_code_defn_list.append(name) ``` Wrote file "MaxwellVacuum/src/MaxwellVacuum_Banner.c" <a id='ccl_files'></a> ## Step 2.h: Thorn configuration files \[Back to [top](#toc)\] $$\label{ccl_files}$$ <a id='make_code_defn'></a> ### Step 2.h.i: Generating the `make.code.defn` file \[Back to [top](#toc)\] $$\label{make_code_defn}$$ The `make.code.defn` file specifies which files must be compiled during the ETK build. The general format is: ``` # Files to be compiled SRCS = file_1.ext \ file_2.ext \ file_3.ext # Subdirectories containing source files SUBDIRS = subdirectory_1 \ subdirectory_2 ``` or, equivalently, ``` # Files to be compiled SRCS = file_1.ext file_2.ext file_3.ext # Subdirectories containing source files SUBDIRS = subdirectory_1 subdirectory_2 ``` ```python # Step 2.c: Thorn configuration files # Step 2.c.i: Generating the make.code.defn file # Step 2.c.i.1: Write the make.code.defn file to string make_code_defn_list.sort() make_code_defn_string = """ # Main make.code.defn file for thorn MaxwellVacuum # Source files in this directory SRCS = """ for i in range(len(make_code_defn_list)): fct = make_code_defn_list[i] if i == 0: make_code_defn_string += fct+" \\\n" elif i > 0 and i < len(make_code_defn_list)-1: make_code_defn_string += " "+fct+" \\\n" else: make_code_defn_string += " "+fct # Step 2.c.i.2: Write the make.code.defn file outfile = os.path.join(Ccodesdir,"make.code.defn") with open(outfile,"w") as file: file.write(make_code_defn_string) print("Wrote file \"%s\""%outfile) ``` Wrote file "MaxwellVacuum/src/make.code.defn" <a id='param_ccl'></a> ### Step 2.h.ii: Generating the `param.ccl` file \[Back to [top](#toc)\] $$\label{param_ccl}$$ The `param.ccl` file constains the parameters defined by our thorn and those which we wish to use in our thorn but are defined by other thorns. The general structure of an entry in the `param.ccl` file is: <pre> <code> <font color='purple'>PARAMETER_TYPE</font> <font color='blue'>parameter_name</font> <font color='red'>"Description of the parameter"</font> { <font color='green'>&#60;allowed or disallowed values&#62;</font> :: <font color='red'>"Description of the value"</font> } <font color='green'>parameter_default_value</font> </code> </pre> Typical values of `PARAMETER_TYPE` are `CCTK_REAL`, `CCTK_INT`, `CCTK_STRING`, and `BOOLEAN`. The `<allowed or disallowed>` values can actually span multiple lines. Let us now look at the simplest of examples. Let us define a parameter `key`, which is an `integer`, can have any value, and defaults to 1. This is achieved by doing: <pre> <code> <font color='purple'>CCTK_INT</font> <font color='blue'>key</font> <font color='red'>"A very simple integer parameter"</font> { <font color='green'>*:*</font> :: <font color='red'>"Can be anything"</font> } <font color='green'>1</font> </code> </pre> As mentioned before, our thorn contains two parameters: `FD_order` and `which_system`, which are of types `CCTK_INT` and `CCTK_STRING`, respectively. It also shares parameters with the `Method of Lines` ETK thorn. ```python %%writefile $Thorndir/param.ccl # This param.ccl file was automatically generated by NRPy+. # You are advised against modifying it directly; instead # modify the Python code that generates it. shares: MethodOfLines restricted: CCTK_INT FD_order "Finite-differencing order" { 2:2 :: "finite-differencing order = 2" 4:4 :: "finite-differencing order = 4" 6:6 :: "finite-differencing order = 6" 8:8 :: "finite-differencing order = 8" } 4 CCTK_STRING which_system "Which system to evolve" { "SystemI" :: "Evolve system I" "SystemII" :: "Evolve system II" } "SystemII" ``` Writing MaxwellVacuum/param.ccl <a id='interface_ccl'></a> ### Step 2.h.iii: Generating the `interface.ccl` file \[Back to [top](#toc)\] $$\label{interface_ccl}$$ We will now generate the `interface.ccl` file for the `MaxwellVacuum` thorn. This file specifies how the thorn interacts with the other thorns in the toolkit. For example, if we want to implement a function that can be used by other thorns, then we would include its prototype to this file. Similarly, if you want to use a function or parameter defined by another thorn, you have to mention that in this file. This is also the place to define the gridfunctions that we need for our thorn, i.e. $\bigl(E^{i},A^{i},\Phi,\Gamma,\mathcal{C},\mathcal{G}\bigr)$. The [official Einstein Toolkit documentation](https://einsteintoolkit.org/usersguide/UsersGuide.html#x1-179000D2.2) defines what must/should be included in an `interface.ccl` file in detail. ```python %%writefile $Thorndir/interface.ccl # This interface.ccl file was automatically generated by NRPy+. # You are advised against modifying it directly; instead # modify the Python code that generates it. # With "implements", we give our thorn its unique name. implements: MaxwellVacuum # By "inheriting" other thorns, we tell the Toolkit that we # will rely on variables/function that exist within those # functions. inherits: Boundary grid MethodofLines # Needed functions and #include's: USES INCLUDE: Symmetry.h USES INCLUDE: Boundary.h # Needed Method of Lines function CCTK_INT FUNCTION MoLRegisterEvolvedGroup(CCTK_INT IN EvolvedIndex, CCTK_INT IN RHSIndex) REQUIRES FUNCTION MoLRegisterEvolvedGroup # Needed Boundary Conditions function CCTK_INT FUNCTION GetBoundarySpecification(CCTK_INT IN size, \ CCTK_INT OUT ARRAY nboundaryzones, \ CCTK_INT OUT ARRAY is_internal, \ CCTK_INT OUT ARRAY is_staggered, \ CCTK_INT OUT ARRAY shiftout) USES FUNCTION GetBoundarySpecification CCTK_INT FUNCTION SymmetryTableHandleForGrid(CCTK_POINTER_TO_CONST IN cctkGH) USES FUNCTION SymmetryTableHandleForGrid CCTK_INT FUNCTION Boundary_SelectVarForBC(CCTK_POINTER_TO_CONST IN GH, \ CCTK_INT IN faces, \ CCTK_INT IN boundary_width, \ CCTK_INT IN table_handle, \ CCTK_STRING IN var_name, \ CCTK_STRING IN bc_name) USES FUNCTION Boundary_SelectVarForBC # Needed for EinsteinEvolve/NewRad outer boundary condition driver: CCTK_INT FUNCTION NewRad_Apply(CCTK_POINTER_TO_CONST IN cctkGH, \ CCTK_REAL ARRAY IN var, \ CCTK_REAL ARRAY INOUT rhs, \ CCTK_REAL IN var0, \ CCTK_REAL IN v0, \ CCTK_INT IN radpower) REQUIRES FUNCTION NewRad_Apply # Tell the Toolkit that we want all gridfunctions # to be visible to other thorns by using # the keyword "public". Note that declaring these # gridfunctions *does not* allocate memory for them; # that is done by the schedule.ccl file. public: CCTK_REAL evol_variables type = GF Timelevels=3 { AU0GF,AU1GF,AU2GF,EU0GF,EU1GF,EU2GF,GammaGF,PhiGF } "Maxwell evolved gridfunctions" CCTK_REAL evol_variables_rhs type = GF Timelevels=1 TAGS='InterpNumTimelevels=1 prolongation="none"' { AU0_rhsGF,AU1_rhsGF,AU2_rhsGF,EU0_rhsGF,EU1_rhsGF,EU2_rhsGF,Gamma_rhsGF,Phi_rhsGF } "right-hand-side storage for Maxwell evolved gridfunctions" CCTK_REAL aux_variables type = GF Timelevels=3 { CGF,GGF } "Auxiliary gridfunctions for Maxwell diagnostics" ``` Writing MaxwellVacuum/interface.ccl <a id='schedule_ccl'></a> ### Step 2.h.iv: Generating the `schedule.ccl` file \[Back to [top](#toc)\] $$\label{schedule_ccl}$$ We will now generate the `schedule.ccl` file for the `MaxwellVacuum` thorn. This file specifies: * Which variables/gridfunctions we need to allocate memory to * What function calls are performed by the toolkit scheduler and the order in which these function calls happen * Function scope (global or local) * (Optional for now) which gridfunctions our functions read from and write to Official documentation on constructing ETK `schedule.ccl` files is found [here](https://einsteintoolkit.org/usersguide/UsersGuide.html#x1-187000D2.4). ```python %%writefile $Thorndir/schedule.ccl # This schedule.ccl file was automatically generated by NRPy+. # You are advised against modifying it directly; instead # modify the Python code that generates it. # Next allocate storage for all 3 gridfunction groups used in MaxwellVacuum STORAGE: evol_variables[3] # Evolution variables STORAGE: evol_variables_rhs[1] # Variables storing right-hand-sides STORAGE: aux_variables[3] # Diagnostics variables # The following scheduler is based on Lean/LeanMaxwellMoL/schedule.ccl schedule MaxwellVacuum_Banner at STARTUP { LANG: C OPTIONS: meta } "Output ASCII art banner" schedule MaxwellVacuum_Symmetry_registration at BASEGRID { LANG: C OPTIONS: Global } "Register symmetries, the CartGrid3D way." schedule MaxwellVacuum_zero_rhss at BASEGRID after MaxwellVacuum_Symmetry_registration { LANG: C } "Idea from Lean: set all rhs functions to zero to prevent spurious nans" # MoL: registration schedule MaxwellVacuum_MoL_registration in MoL_Register { LANG: C OPTIONS: META } "Register variables for MoL" # MoL: compute RHSs, etc schedule MaxwellVacuum_RHSs in MoL_CalcRHS as MaxwellVacuum_RHS { LANG: C } "MoL: Evaluate Maxwell RHSs" schedule MaxwellVacuum_NewRad in MoL_CalcRHS after MaxwellVacuum_RHS { LANG: C } "NewRad boundary conditions, scheduled right after RHS eval." schedule MaxwellVacuum_BoundaryConditions_evolved_gfs in MoL_PostStep { LANG: C OPTIONS: LEVEL SYNC: evol_variables } "Apply boundary conditions and perform AMR+interprocessor synchronization" schedule GROUP ApplyBCs as MaxwellVacuum_ApplyBCs in MoL_PostStep after MaxwellVacuum_BoundaryConditions_evolved_gfs { } "Group for applying boundary conditions" # Compute divergence and Gamma constraints schedule MaxwellVacuum_constraints in MoL_PseudoEvolution { LANG: C OPTIONS: Local } "Compute Maxwell (divergence and Gamma) constraints" ``` Writing MaxwellVacuum/schedule.ccl <hr style="width:100%;height:3px;color:black"/> <a id='code_validation'></a> # Step 3: Part III - Code validation (Courtesy: Terrence Pierre Jacques) \[Back to [top](#toc)\] $$\label{code_validation}$$ **Code tests adopting fourth-order finite differencing, coupled to 2nd order Iterative Crank-Nicholson method-of-lines for time integration** Inside the directory *`test_results/`* are the files used for this convergence test: **maxwell_toroidaldipole-0.125_OB4.par & maxwell_toroidaldipole-0.0625_OB4.par** : ETK parameter files needed for performing the tests. These parameter files set up a toroidal dipole field propagating in a 3D numerical grid that extends from -4. to +4. along the x-, y-, and z-axes (in units of $c=1$). The parameter files are identical, except the latter has grid resolution that is twice as high as the former (so the errors should drop in the higher resolution case by a factor of $2^2$, since we adopt fourth-order finite differencing coupled to 2nd order Iterative Crank-Nicholson time integration.) **Second-order code validation test results:** The plot below shows the discrepancy between numerical and exact solutions to x-components of system I $\vec{E}$ and $\vec{A}$ at two different resolutions, at t = 2.0 (to not have errors at the boundary propagate too far inward): dashed is low resolution ($\Delta x_{\rm low}=0.125$) and solid is high resolution ($\Delta x_{\rm high}=0.0625$). Since this test adopts **fourth**-order finite differencing for spatial derivatives and **second**-order Iterative Crank-Nicholson timestepping, we would expect this error to drop by a factor of approximately $(\Delta x_{\rm low}/\Delta x_{\rm high})^2 = (0.125/0.0625)^2 = 2^2=4$ when going from low to high resolution, and after rescaling the error in the low-resolution case, we see that indeed it overlaps the high-resolution result quite nicely, confirming second-order convergence. We note that we also observe convergence for all other evolved variables (in both systems) with a nonzero exact solutions. ```python from IPython.display import Image Image("test_results/Ex-convergence.png", width=700, height=700) ``` ```python Image("test_results/Ax-convergence.png", width=700, height=700) ``` Because System I is weakly hyperbolic (see [Tutorial-VacuumMaxwell_formulation_Cartesian](Tutorial-VacuumMaxwell_formulation_Cartesian.ipynb) for more discussion), zero speed error nodes of the constraint violation sit on our numerical grid, adding to the errors of our evolution variables. In contrast, System II is strongly hyperbolic, and the error nodes propagate away at the speed of light, leading to more stable evolution of the evolution variables. The plot below demostrates the qualitative behavior for both systems. Contrast these plots to Figure 1 in [Knapp, Walker, & Baumgarte (2002)](https://arxiv.org/abs/gr-qc/0201051); we observe excellent qualitative agreement. ```python Image("test_results/constraintviolation.png") ``` <hr style="width:100%;height:3px;color:black"/> <a id='latex_pdf_output'></a> # Step 4: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](#toc)\] $$\label{latex_pdf_output}$$ The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename [ETK_Workshop_2021-NRPy_tutorial.pdf](ETK_Workshop_2021-NRPy_tutorial.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ```python # Step 4: Generate a PDF version of this tutorial notebook # Step 4.a: First copy the latex_nrpy_style.tplx from the # nrpy_core directory to the base directory src_file = os.path.join(nrpy_core_dir,"latex_nrpy_style.tplx") dst_file = os.path.join(base_dir ,"latex_nrpy_style.tplx") shutil.copyfile(src_file,dst_file) # Step 4.b: Now generate the PDF file cmd.output_Jupyter_notebook_to_LaTeXed_PDF("ETK_Workshop_2021-NRPy_tutorial") # Step 4.c: Clean up by removing the latex_nrpy_style.tplx from # the base directory cmd.delete_existing_files(dst_file) ``` Created ETK_Workshop_2021-NRPy_tutorial.tex, and compiled LaTeX file to PDF file ETK_Workshop_2021-NRPy_tutorial.pdf
fc829f51c2ea74419abc71f0790f2f33be513b00
685,692
ipynb
Jupyter Notebook
in_progress/2021_ETK_School/ETK_Workshop_2021-NRPy_tutorial.ipynb
Harmohit-Singh/nrpytutorial
81e6fe09c6882a2d95e1d0ea57f465fc7eda41e1
[ "BSD-2-Clause" ]
66
2018-06-26T22:18:09.000Z
2022-02-09T21:12:33.000Z
in_progress/2021_ETK_School/ETK_Workshop_2021-NRPy_tutorial.ipynb
Harmohit-Singh/nrpytutorial
81e6fe09c6882a2d95e1d0ea57f465fc7eda41e1
[ "BSD-2-Clause" ]
14
2020-02-13T16:09:29.000Z
2021-11-12T14:59:59.000Z
in_progress/2021_ETK_School/ETK_Workshop_2021-NRPy_tutorial.ipynb
Harmohit-Singh/nrpytutorial
81e6fe09c6882a2d95e1d0ea57f465fc7eda41e1
[ "BSD-2-Clause" ]
30
2019-01-09T09:57:51.000Z
2022-03-08T18:45:08.000Z
266.495142
222,140
0.902076
true
23,046
Qwen/Qwen-72B
1. YES 2. YES
0.831143
0.785309
0.652704
__label__eng_Latn
0.764436
0.35478
# **`PoissonGeometry`** ## **Downloading from PyPi** Run the following: ``` !pip install poissongeometry==0.1.2 !pip install galgebra==0.4.3 ``` To verify that `PoissonGeometry` module it was installed correctly run: ``` def test_poissongeometry(): """ This method verifies if the module was installed correctly """ try: import poisson result = 'The module was installed correctly' except: result = 'The module was NOT installed correctly' return result test_poissongeometry() ``` **More information**: see [Github](https://github.com/appliedgeometry/poissongeometry) repository or [PyPi](https://pypi.org/project/poissongeometry/) page. ## **Preparing the Environment to Work with `PoissonGeometry`** ### Obtaining $\LaTeX$ format With this code you can print the results of certain functions in `PoissonGeometry` with $\LaTeX$ typography: ``` import sympy def custom_latex_printer(exp, **options): from google.colab.output._publish import javascript url = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=default" javascript(url=url) return sympy.printing.latex(exp, **options) sympy.init_printing(use_latex="mathjax", latex_printer=custom_latex_printer) ``` ### $\LaTeX$ code * To print the result of a function in $\LaTeX$ code we just need to add the flag `latex_format=True`, whose default value is `False`: function_name(param_1, ..., param_n, latex_format=True) ### Syntax * A scalar function in `PoissonGeometry` is written using *string literal expressions*. For example, the function $f:\mathbb{R}^{3} \to \mathbb{R}$ given by $$f(x_1,x_2,x_3) = ax_1^2 + bx_2^2 + cx_3^2, \quad a,b,c \in \mathbb{R}$$ should be written exactly as follows: ``` "a*x1**2 + b*x2**2 + c*x3**2" ``` Here, `x1, x2, x3` are symbolic variables that `PoissonGeometry` defines by default and that represent in this case the coordinates $(x_1,x_2,x_3)$. **Remark.** All characters that are not local coordinates are treated as (symbolic) parameters: for example `a`, `b`, `c` above. **Note.** Python supports the following basic operations: | Expression | Description || Expression | Description | | :--------: | ------------ || :--------: | -------------- | | + | Addition || * | Multiplication | | - | Substraction || ** | Power | | / | Division || * A multivector field or a differential form in `Poisson Geometry` is written using *dictionaries* with *tuples of integers* as **keys** and *string* type **values**. For example, in $\mathbb{R}^{3}$: * The vector field $x_1\frac{\partial}{\partial x_1} + x_2\frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_3}$ should be written as \\ ```{(1,):'x1', (2,):'x2', (3,):'x3'}``` **Note:** Commas on keys are important! * The bivector field $x_1\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_3 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3}$ should be written as \\ ```{(1,2):'x1', (1,3):'-x2', (2,3):'x3'}``` * The 3-multivector field $x_1\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3}$ should be written as \\ ```{(1,2,3):'x1'}``` **Remarks:** 1. In `Python`, a variable \\ ```{key_1: value_1, ..., key_n: value_n}``` \\ it is called 'dictionary'. Each `key_1,...,key_n` is called a *key* of the dictionary and each `value_1,...,value_n` is called the *value* of the corresponding key. 2. In our case, each key is a `tuple` and each value a `string` type variable. When we have a multivector $A$ of degree $a$ on $\mathbb{R}^{m}$ $$A = \sum_{1 \leq i_1 < i_2 < \cdots < i_a \leq m} A^{i_1 i_2 \cdots i_a}\,\frac{\partial}{\partial{x_{i_1}}} \wedge \frac{\partial}{\partial{x_{i_2}}} \wedge \cdots \wedge \frac{\partial}{\partial{x_{i_a}}},$$ \\ the keys of the dictionary are tuples $(i_1,i_2,\ldots,i_a)$ corresponding to the ordered indices $i_1 i_2 \cdots i_a$ of $A^{i_1 i_2 \cdots i_a}$ and the values the corresponding string expression of the coefficient (scalar function) $A^{i_1 i_2 \cdots i_a}$. **Note.** We can only write the keys and values of *non-zero coefficients*. 3. We can change the order of the indeces in each `tuple` adding the minus sign in the corresponding `string` value. For example, * The bivector field $x_1\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2}$ can be written as \\ ```{(1,2): 'x1'}``` or as ```{(2,1): '-x1'}``` where this last dictionary corresponds to the bivector field $-x_1\frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_1}$. **Note.** Although we have the option of disregarding the index order, we recommend not doing so, to avoid possible computation errors. 4. The syntax for differential forms is the same as for multivectors. For example, the differential 2-form on $\mathbb{R}^4$ $$-\mathrm{d}x_{1} \wedge \mathrm{d}x_{2} - (x_1 + x_4)\mathrm{d}x_{3} \wedge \mathrm{d}x_{4}$$ is written as \\ ```{(1,2):'-1', (3,4): '-(x1 + x4)'}``` 5. Finally, in `PoissonGeometry` we use the following notation: * `Dxi` is equivalent to $\frac{\partial}{\partial x_{i}}$. * `dxi` is equivalent to $\mathrm{d}x_{i}$. This assignment is given because in `SymPy` it's not possible to define variables $\frac{\partial}{\partial x_{i}}$ or $\mathrm{d}x_{i}$. ## **Testing the `PoissonGeometry` Class** ### Instantiating and knowing the Class First, it is necessary to instantiate the class. For this, we must tell to `PoissonGeometry` the dimension and the symbolic variable that names the coordinates. For example, if we want to work in dimension 4 and use $z$ to name the coordinates: ``` # We import the class and give it a short name for simplicity. from poisson.poisson import PoissonGeometry as pg # We declare the variables and the dimension pg4 = pg(4, variable="z") ``` **Remark:** By default, `variable`=`"x"`. To know the dimension in which we are working write: ``` pg4.dim ``` To know the (current) coordinates write: ``` pg4.coordinates ``` In addition, `PoissonGeometry` builds a basis $\left\{\frac{\partial}{\partial x_{1}},...,\frac{\partial}{\partial x_{n}}\right\}$ of vector fields. In our running example, for $n=4$. ``` pg4.Dx_basis ``` Moreover, it's possible to operate on this basis. For example, to compute wedge products: ``` Dz1, Dz2, Dz3, Dz4 = pg4.Dx_basis print(F'Wedge product of Dz1 with Dz2: {Dz1 ^ Dz2}') # The wedge product in Galgebra is denoted with the symbol ^ print(F'Wedge product of Dz1 with Dz2: {Dz1 ^ Dz1}') ``` The following operations can be carried out in `Galgebra`: | Expression | Description | Expression | Description | | :----------: | ---------- | :----------: | ---------- | | * | Multiplication | ^ | Wdege Product | | + | Addition | - | Substraction | ## **Functions of `PoissonGeometry`** ###Function: `bivector_to_matrix` COMPUTES THE MATRIX OF A BIVECTOR FIELD For example, the matrix of the bivector field on $\mathbb{R}^4$ $$\Pi = x_3\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ can be computed as follows: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) # We entered the bivector field bivector = {(1,2): 'x3', (1,3): '-x2', (2,3): 'x1'} pg4.bivector_to_matrix(bivector) ``` **Remember.** If we want the $\LaTeX$ code of the previous matrix we just need to add the flag `latex_format=True`, whose default value is `False`: ``` print(pg4.bivector_to_matrix(bivector, latex_format=True)) ``` * The 'power' of the `latex_format`: you can just copy and paste the result into a `.tex` file ###Function: `sharp_morphism` COMPUTES THE IMAGE OF A DIFFERENTIAL 1-FORM UNDER THE VECTOR BUNDLE MORPHISM 'SHARP' INDUCED BY A BIVECTOR FIELD For example, consider the Lie-Poisson bivector field on $\mathbb{R}^{3}$ $$\Pi = x_3\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ associated to the Lie algebra $\mathfrak{so}(3)$ [4], and the differential 1-form $$\alpha = x_1 \mathrm{d}x_{1} + x_{2} \mathrm{d}x_{2} + x_{3} \mathrm{d}x_{3}.$$ To compute *$\Pi^{\natural}(\alpha)$*, run: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) # We entered the bivector field and the 1-form. bivector = {(1,2): 'x3', (1,3): '-x2', (2,3): 'x1'} alpha = {(1,): 'x1', (2,): 'x2', (3,): 'x3'} pg3.sharp_morphism(bivector, alpha) ``` Therefore, $\Pi^{\natural}(\alpha)=0$. ###Function: `hamiltonian_vf` COMPUTES THE HAMILTONIAN VECTOR FIELD OF A SCALAR FUNCTION RESPECT TO A POISSON BIVECTOR FIELD For example, consider the Poisson bivector field on $\mathbb{R}^{6}$, $$\Pi = \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_4} + \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_5} + \frac{\partial}{\partial x_3}\wedge \frac{\partial}{\partial x_6},$$ and the function $$h = -\frac{1}{x_{2}-x_{1}}-\frac{1}{x_{3}-x_{1}}-\frac{1}{x_{3}-x_{2}} +\frac{1}{2} (x_{4}^{2} + x_{5}^{2} + x_{6}^{2}).$$ The Hamiltonian vector field of $h$ respect to $\Pi$ is given by \begin{align} X_{h} &= - x_4\frac{\partial}{\partial{x_1}}- x_5\frac{\partial}{\partial{x_2}} - x_6\frac{\partial}{\partial{x_3}} + \left[ \frac{1}{(x_1-x_3)|x_1-x_3|} + \frac{1}{(x_1-x_2)|x_1-x_2|} \right]\frac{\partial}{\partial{x_4}} \\ &+ \left[ \frac{1}{(x_2-x_3)|x_2-x_3|} + \frac{1}{(x_1-x_2)|x_1-x_2|} \right]\frac{\partial}{\partial{x_5}} -\left[ \frac{1}{(x_2-x_3)|x_2-x_3|} + \frac{1}{(x_1-x_3)|x_1-x_3|} \right]\frac{\partial}{\partial{x_6}}. \end{align} This vector field is the associated to the Hamiltonian system of a particular case of the three bodies problem [3]. To compute this vector field with `Poisson Geometry` run: ``` # This module is for Python readable printing import pprint pp = pprint.PrettyPrinter(indent=2) # Instantiated the Poisson Geometry class from poisson.poisson import PoissonGeometry pg6 = PoissonGeometry(6) bivector = {(1,4): '1', (2,5): '1', (3,6): '1'} h = '- 1/sqrt((x2 - x1)**2) - 1/sqrt((x3 - x1)**2) - 1/sqrt((x3 - x2)**2)+ 1/2*(x4**2 + x5**2 + x6**2)' pp.pprint(pg6.hamiltonian_vf(bivector, h)) ``` We must remember that we declared `Dxi` $\equiv \frac{\partial}{\partial x_{i}}$. ### Function: `lichnerowicz_poisson_operator` COMPUTES THE IMAGE OF A MULTIVECTOR FIELD UNDER THE COBOUNDARY OPERATOR INDUCED BY A POISSON BIVECTOR FIELD RELATIVE TO THE SCHOUTEN-NIJENHUIS BRACKET FOR MULTIVECTOR FIELDS Consider the bivector field on $\mathbb{R}^{3}$ $$\Pi = x_{1}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - ax_{1}x_{3} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_3(2x_{1} - ax_{2}) \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ and the 3-multivector field $$A = (bx_{2}^{2}x_{3} + c)\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3}.$$ Computing the Schouten-Nijenhuis bracket of two multivector fields is a complicated affair. The `PoissonGeometry` class can do this computation very quickly!: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) P = {(1,2): 'x1**2', (1,3): '-a*x1*x3', (2,3): 'x3*(2*x1 - a*x2)'} A = {(1,2,3): 'b*x2**2*x3 + c'} pg3.lichnerowicz_poisson_operator(P, A) ``` Therefore, $A$ is a cocycle of $\Pi$. The formal cohomology group of degree 3 of the Lichnerowicz-Poisson complex of $\Pi$ is given by (see [1]): $$\mathscr{H}^{3}(\Pi) \simeq\ \mathbb{R} \cdot \frac{\partial}{\partial{x_{1}}} \wedge \frac{\partial}{\partial{x_{2}}} \wedge \frac{\partial}{\partial{x_{3}}} \bigoplus \mathbb{R} \cdot x_{2}^2x_{3}\,\frac{\partial}{\partial{x_{1}}} \wedge \frac{\partial}{\partial{x_{2}}} \wedge \frac{\partial}{\partial{x_{3}}}.$$ ### Function: `curl_operator` Consider the following Poisson bivector field (Flaskcha-Ratiu) on $\mathbb{R}^6$, $$\Pi = x_{1}x_{2}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - x_{1}x_{3} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_2 x_3 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3} + \frac{\partial}{\partial x_3}\wedge \frac{\partial}{\partial x_4} - \frac{\partial}{\partial x_3}\wedge \frac{\partial}{\partial x_5} + \frac{\partial}{\partial x_4}\wedge \frac{\partial}{\partial x_6}.$$ With `curl_operator` we can calculate the divergence of $\Pi$ respect to the volume form $f\Omega_{0}$ on $\mathbb{R}^6$, where $\Omega_{0}$ is te euclidean volume form and $f$ is a nonwhere vanishing function: ``` from poisson.poisson import PoissonGeometry pg6 = PoissonGeometry(6) bivector = {(1,2): 'x1*x2', (1,3): '-x1*x3', (2,3): 'x2*x3', (3,4): '1', (3,5): '-1', (4,6): '1'} pg6.curl_operator(bivector, 1) ``` So the divergence of $\Pi$ is trivial. __Remark.__ The parameter `1` in `curl_operator` means that $f \equiv 1$, therefore the divergence is respect to the euclidean volume $\Omega_{0}$ on $\mathbb{R}^6$. ### Function: `poisson_bracket` COMPUTES THE POISSON BRACKET, INDUCED BY A POISSON BIVECTOR FIELD, OF TWO SCALAR FUNCTIONS For example, consider the Lie-Poisson bivector field on $\mathbb{R}^{3}$, $$\Pi = x_3\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ associated to the Lie algebra $\mathfrak{sl}(2)$ [7]. It is well known that $\{x_{1},x_{2}\}_{\Pi} = -x_{3}$, $\{x_{2},x_{3}\}_{\Pi} = x_{1}$ y $\{x_{3},x_{1}\}_{\Pi} = x_{2}$ are the commutation relations of this Lie algebra: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) bivector ={(1,2): '-x3', (1,3): '-x2', (2,3): 'x1'} x1_x2 = pg3.poisson_bracket(bivector, 'x1', 'x2') x2_x3 = pg3.poisson_bracket(bivector, 'x2', 'x3') x3_x1 = pg3.poisson_bracket(bivector, 'x3', 'x1') print(F'{{x1, x2}} = {x1_x2}') print(F'{{x2, x3}} = {x2_x3}') print(F'{{x3, x1}} = {x3_x1}') ``` ###Function: `modular_vf` Consider the bivector field on $\mathbb{R}^{4}$, $$\Pi = 2x_{4}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + 2x_{3} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_4} - 2x_{4} \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3} + 2x_{3} \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_4} + (x_{1}-x_{2}) \frac{\partial}{\partial x_3}\wedge \frac{\partial}{\partial x_4}.$$ This bivector field is a particular case of a family of Poisson bivector fields that arise in the analysis of the orbital stability of the Pais-Uhlenbeck oscillator. * The function `modular_vf` computes the modular field of $\Pi$ respect to a volume form $f\Omega_{0}$ on $\mathbb{R}^4$ ( here $f$ is nonwhere vanishing function and $\Omega_{0}$ the euclidean volume form on $\mathbb{R}^4$ ): ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) bivector ={(1,3):'2*x4', (1,4): '2*x3', (2,3): '-2*x4', (2,4): '2*x3', (3,4):'x1-x2'} pg4.modular_vf(bivector, 1) ``` So in this case the modular field of $\Pi$ respect to the euclidean volume form is trivial. __Note__: The second entry for the function `curl_operator`, in this example `1`, can intake any real function $f$, in order to modify the volume form. For example, with the bivector field on $\mathbb{R}^3$, $$\Pi = x_{3}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} -x_{2} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_{1}\frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ and the function $f(x_{1},x_{2},x_{3}) = \mathrm{exp}(x_1 + x_2 + x_3)$, let's calculate the modular field of $\Pi$ with respect to the form of volume $f\Omega_{0}$: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) bivector = {(1,2): 'x3', (1,3): '-x2', (2,3): 'x1'} function = 'exp(x1 + x2 + x3)' pg3.modular_vf(bivector, function) ``` Therfore the modular field of $\Pi$ respect to the volume form $f\Omega_{0}$ is given by \begin{equation*} (x_{3} - x_{2})\frac{\partial}{\partial{x_{1}}} + (x_{1} - x_{3})\frac{\partial}{\partial{x_{2}}} + (x_{2} - x_{1})\frac{\partial}{\partial{x_{3}}}. \end{equation*} ###Function: `flashcka_ratiu_bivector` COMPUTES THE FLASCHKA-RATIU BIVECTOR FIELD AND THE CORRESPONDING SYMPLECTIC FORM OF A 'MAXIMAL' SET OF SCALAR FUNCTIONS For example, consider the functions $$f(x_1, x_2, x_3, x_4) = x_4$$ and $$g(x_1, x_2, x_3, x_4) = −x_1^2 + x_2^2 + x_3^2$$ which locally describe a 'broken' singularity of a Lefschetz foliation on a 4-dimensional manifold [6]. We can construct a Poisson bivector field $\Pi$ in such a way that the functions $f$ and $g$ are Casimirs of $\Pi$: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) casimirs = ['x4', '-x1**2 + x2**2 + x3**2'] pg4.flaschka_ratiu_bivector(casimirs) ``` To obtain the symplectic form of $\Pi$ on 2-dimensional leaves, we add the flag `symplectic_form=True` ``` bivector, symplectic_form = pg4.flaschka_ratiu_bivector(casimirs, symplectic_form=True) print(f'Poisson bivector field: {bivector}') print(f'Symplectic form: {symplectic_form}') ``` ###Function: `linear_normal_form_R3` COMPUTES A NORMAL FORM OF ANY LIE-POISSON BIVECTOR FIELD ON R^3 For example, consider the Lie-Poisson bivector field on $\mathbb{R}^{3}$, $$\Pi = -10x_{3}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} +10x_{2} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} -10x_{1}\frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3}$$ To compute a normal form of $\Pi$, run: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) bivector = {(1,2): '-10*x3', (1,3): '10*x2', (2,3): '-10*x1'} pg3.linear_normal_form_R3(bivector) ``` Note that $\Pi$ is a multiple ($-10$) of the Lie-Poisson bivector field on $\mathbb{R}^{3}$ induced by the Lie algebra $\mathfrak{so}(3)$. Therefore, they belong to the same equivalence class. ### Function: `one_forms_bracket` COMPUTES THE LIE BRACKET OF TWO DIFFERENTIAL 1-FORMS INDUCED BY A POISSON BIVECTOR FIELD For example, consider the following bivector on $\mathbb{R}^{4}$, $$\Pi = \big( x_3^2 + x_4^2 \big)\frac{\partial}{\partial{x_{1}}} \wedge \frac{\partial}{\partial{x_{2}}} + \big( x_2x_3 - x_1x_4\big)\frac{\partial}{\partial{x_{1}}} \wedge \frac{\partial}{\partial{x_{3}}} - \big( x_1x_3 + x_2x_4\big)\frac{\partial}{\partial{x_{1}}} \wedge \frac{\partial}{\partial{x_{4}}} + \big( x_1x_3 + x_2x_4\big)\frac{\partial}{\partial{x_{2}}} \wedge \frac{\partial}{\partial{x_{3}}} + \big( x_2x_3 - x_1x_4\big)\frac{\partial}{\partial{x_{2}}} \wedge \frac{\partial}{\partial{x^{4}}} + \big( x_1^2 + x_2^2 \big)\frac{\partial}{\partial{x_{3}}} \wedge \frac{\partial}{\partial{x_{4}}},$$ and the 1-forms $$\alpha = x_1\mathrm{d}{x_1} - x_2\mathrm{d}{x_2} + x_3\mathrm{d}{x_3} - x_4\mathrm{d}{x_4} \quad \mathrm{and} \quad \beta = x_2\mathrm{d}{x_1} + x_1\mathrm{d}{x_2} + x_4\mathrm{d}{x_3} + x_3\mathrm{d}{x_4}$$. To compute the Lie bracket, induced by $\Pi$, of $\alpha$ and $\beta$, run: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) bivector ={(1,2): 'x3**2 + x4**2', (1,3): 'x2*x3 - x1*x4', (1,4): '-x1*x3 - x2*x4', (2,3): 'x1*x3 + x2*x4', (2,4): 'x2*x3 - x1*x4', (3,4): 'x1**2 + x2**2'} alpha = {(1,): 'x1', (2,): '-x2', (3,): 'x3', (4,): '-x4'} beta = {(1,): 'x2', (2,): 'x1', (3,): 'x4', (4,): 'x3'} pg4.one_forms_bracket(bivector, alpha, beta) ``` So $\{\alpha, \beta\}_{\Pi} = 0$. ## **Applications** ### Function: `gauge_transformation` COMPUTES THE GAUGE TRANSFORMATION OF A BIVECTOR FIELD WITH RESPECT TO A GIVEN DIFFERENTIAL 2-FORM For example, consider an arbitrary bivector field on $\mathbb{R}^3$, $$\Pi=\Pi_{12} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}} + \Pi_{13} \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{3}} + \Pi_{23} \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}$$ and a differential $2$-form, $$\lambda = \lambda_{12} \mathrm{d}x_{1}\wedge \mathrm{d}x_{2} + \lambda_{13} \mathrm{d}x_{1}\wedge \mathrm{d}x_{3} + \lambda_{23} \mathrm{d}x_{2}\wedge \mathrm{d}x_{3}$$ To compute the gauge transformation of $\Pi$ induced by $\lambda$, run: ``` import pprint pp = pprint.PrettyPrinter(indent=2) from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) P = {(1,2): 'P12', (1,3): 'P13', (2,3): 'P23'} L = {(1,2): 'L12', (1,3): 'L13', (2,3): 'L23'} gauge_bivector, determinant = pg3.gauge_transformation(P, L) print('L-gauge transformation of P:') pp.pprint(gauge_bivector) print(f'\nIt\'s well-defined on the open subset \n {{{determinant} != 0}} \n of R^3') ``` * Therefore we obtain [5]: **Proposition 3.1** Let $\Pi$ be a bivector field on a 3-dimensional smooth manifold $M$. Then, given a differential 2-form $\lambda$ on $M$, the $\lambda$-gauge transformation $\overline{\Pi}$ of $\Pi$ is well defined on the open subset of $M$ \begin{equation*} \{F := \big\langle \lambda,\Pi \big\rangle + 1 \neq 0 \} \subseteq M. \end{equation*} Moreover, $\overline{\Pi}$ is given by \begin{equation*} \overline{\Pi} = \tfrac{1}{F}\Pi. \end{equation*} If $\Pi$ is a Poisson bivector field and $\lambda$ is closed along the leaves of $\Pi$, then $\overline{\Pi}$ is also Poisson. ### Function: `jacobiator` COMPUTES THE SCHOUTEN-NIJENHUIS BRACKET OF A BIVECTOR FIELD WITH ITSELF For example, we can modify the following $4$-parametric bivector field on $\mathbb{R}^{4}$ $$ \Pi=a_1 x_2 \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{2}} + a_2 x_3 \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{3}} + a_3 x_4 \frac{\partial}{\partial x_{1}} \wedge \frac{\partial}{\partial x_{4}} + a_4 x_1 \frac{\partial}{\partial x_{2}} \wedge \frac{\partial}{\partial x_{3}}, $$ using the `jacobiator` function, to construct a family of Poisson bivector fields on $\mathbb{R}^{4}$: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) bivector = {(1,2): 'a1*x2', (1,3): 'a2*x3', (1,4): 'a3*x4', (2,3): 'a4*x1'} pg4.jacobiator(bivector) ``` Therefore, \begin{equation*} [\hspace{-0.065cm}[ \Pi,\Pi ]\hspace{-0.065cm}] = -2a_{4}(a_{1}+a_{2})x^1\,\frac{\partial}{\partial{x^{1}}} \wedge \frac{\partial}{\partial{x^{2}}} \wedge \frac{\partial}{\partial{x^{3}}} - 2a_{3}a_{4}x^4\frac{\partial}{\partial{x^{2}}} \wedge \frac{\partial}{\partial{x^{3}}} \wedge \frac{\partial}{\partial{x^{4}}}. \end{equation*} Hence, we have two cases, explained in the following lemma [5]. **Lemma 3.2** If $a_{4}=0$, then $\Pi$ determines a 3-parametric family of Poisson bivector fields on $\mathbb{R}^{4}_{x}$: \begin{equation} \Pi \,=\, a_{1}x^2\,\frac{\partial}{\partial{x^{1}}} \wedge \frac{\partial}{\partial{x^{2}}} + a_{2}x^3\,\frac{\partial}{\partial{x^{1}}} \wedge \frac{\partial}{\partial{x^{3}}} + a_{3}x^4\,\frac{\partial}{\partial{x^{1}}} \wedge \frac{\partial}{\partial{x^{4}}}. \end{equation} If $a_{2}=-a_{1}$ and $a_{3}=0$, then $\Pi$ determines a 2-parametric family of Poisson bivector fields on $\mathbb{R}^{4}_{x}$: \begin{equation} \Pi \,=\, a_{1}x^2\,\frac{\partial}{\partial{x^{1}}} \wedge \frac{\partial}{\partial{x^{2}}} - a_{1}x^3\,\frac{\partial}{\partial{x^{1}}} \wedge \frac{\partial}{\partial{x^{3}}} + a_{4}x^1\,\frac{\partial}{\partial{x^{2}}} \wedge \frac{\partial}{\partial{x^{3}}}. \end{equation} ## **'Test-Type' Functions** Functions which allow us to verify whether a given geometric object on a Poisson manifold satisfies certain property. ### Function: `is_homogeneous_unimodular` VERIFIES WHETHER AN HOMOGENEOUS POISSON BIVECTOR FIELD ON R^m IS UNIMODULAR, OR NOT For example, consider the bivector of Poisson on $\mathbb{R}^{4}$, $$\Pi = 2x_{4}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + 2x_{3} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_4} - 2x_{4} \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3} + 2x_{3} \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_4} + (x_{1}-x_{2}) \frac{\partial}{\partial x_3}\wedge \frac{\partial}{\partial x_4}.$$ This Poisson bivector field arises in the analysis of the orbital stability of the Pais-Uhlenbeck oscillator at $\mathbb{R}^{4}$ [2]. As we saw above, $\Pi$ has a trivial modular field relative to the euclidean volume form on $\mathbb{R}^{4}$, so it's an unimodular Poisson bivector on $\mathbb{R}^{4}$. We can verify this with: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) P ={(1,3): '-2*x4', (1,4): '2*x3', (2,3): '-2*x4', (2,4): '2*x3', (3,4): 'x1 + x2'} pg4.is_homogeneous_unimodular(P) ``` ### Function: `isomorphic_lie_poisson` VERIFIES WHETHER TWO LIE-POISSON BIVECTOR FIELDS ON R^3 ARE ISOMORPHIC, OR NOT For example, the bivector fields $$\Pi_{1} = x_{3}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} -x_{2} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_{1}\frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ and $$\Pi_{2} = -x_{3}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} -x_{2} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_{1}\frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ \\ which are induced by the Lie algebras $\mathfrak{so}(3)$ and $\mathfrak{sl}(2)$, respectively, are NOT isomorphic: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) P1 ={(1,2): 'x3', (1,3): '-x2', (2,3): 'x1'} P2 ={(1,2): '-x3', (1,3): '-x2', (2,3): 'x1'} pg3.isomorphic_lie_poisson_R3(P1, P2) ``` ### Function: `is_poisson_bivector` VERIFIES IF A GIVEN BIVECTOR FIELD IS A POISSON BIVECTOR FIELD OR NOT For example, we can verify that the bivector field on $\mathbb{R}^{4}$, $$\Pi = x_{2}\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} + x_{3} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_{4} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_4} + x_{1} \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3}$$ It's NOT a Poisson bivector field: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) bivector = {(1,2): 'x2', (1,3): 'x3', (1,4): 'x4', (2,3): 'x1'} pg4.is_poisson_bivector(bivector) ``` ###Function: `is_in_kernel` VERIFIES WHETHER A DIFFERENTIAL 1-FORM BELONGS TO THE KERNEL OF A (POISSON) BIVECTOR FIELD For example, for the quadratic Flaschka-Ratiu bivector field on $\mathbb{R}^{4}$ [6] \begin{align*} \Pi &= (x_{3}^{2}+x_{4}^{2})\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} + (x_{2}x_{3} - x_{1}x_{4}) \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} - (x_{1}x_{3} + x_{2}x_{4}) \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_4} + (x_{1}x_{3} + x_{2}x_{4}) \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3} \\ &+ (x_{2}x_{3} - x_{1}x_{4}) \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_4} + (x_{1}^{2} + x_{2}^{2}) \frac{\partial}{\partial x_3}\wedge \frac{\partial}{\partial x_4}, \end{align*} we can verify that the differential 1-form $\alpha = x _{1}\mathrm{d}_{1} + x_{2}\mathrm{d}_{2} + x_{3}\mathrm{d}_{3} + x_{4}\mathrm{d}_{4}$ belongs to the kernel of $\Pi$. In other words, that $\Pi^{\#}(\alpha)=0$: ``` from poisson.poisson import PoissonGeometry pg4 = PoissonGeometry(4) bivector = {(1,2): 'x3**2 + x4**2', (1,3): 'x2*x3 - x1*x4', (1,4): '-x1*x3 - x2*x4', (2,3): 'x1*x3 + x2*x4', (2,4): 'x2*x3 - x1*x4', (3,4): 'x1**2 + x2**2'} alpha ={(1,): 'x1', (2,): '-x2', (3,): 'x3', (4,): '-x4'} pg4.is_in_kernel(bivector, alpha) ``` ### Functions: `is_casimir` and `is_poisson_vf` GIVEN A POISSON BIVECTOR FIELD P, WITH THESE FUNCTIONS WE CAN VERIFY WHETHER A SCALAR FUNCTION IS A CASIMIR FUNCTION OF P OR WHETHER A VECTOR FIELD IS A POISSON VECTOR FIELD FOR P, RESPECTIVELY Consider the Lie-Poisson bivector field on $\mathbb{R}^{3}$ $$\Pi = -x_3\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - x_2\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + x_1 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3},$$ associated to the Lie algebra $\mathfrak{sl}(2)$ and a Casimir function $K$ of $\Pi$ given by $$K = x_{1}^{2} + x_{2}^{2} + x_{3}^{2}$$: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) bivector = {(1,2): '-x3', (1,3): '-x2', (2,3): 'x1'} K = 'x1**2 + x2**2 - x3**2' pg3.is_casimir(bivector, K) ``` This verifies that in effect $K$ is a Casimir function of $\Pi$. Now let's consider the function $f:\mathbb{R}\to\mathbb{R}$ defined by $$f(t) := \left\{ \begin{array}{ll} e^{-\frac{1}{t^2}} & \hbox{if} \quad t>0, \\ 0 & \hbox{en otro caso.} \end{array} \right.$$ Let's define a smooth function $F$ by $F:=f\circ K$. Then, The vector field $$ W := \frac{x_1 F}{x_1^2 + x_2^2}\,\frac{\partial}{\partial{x_1}} \,+\, \frac{x_1 F}{x_2^2 + x_2^2} \frac{\partial}{\partial{x_2}}$$ is a Poisson vector field of $\Pi$: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) bivector = {(1,2): '-x3', (1,3): '-x2', (2,3): 'x1'} W = {(1,): 'x1*exp(-1/(x1**2 + x2**2 - x3**2))/(x1**2 + x2**2)', (2,): 'x2*exp(-1/(x1**2 + x2**2 - x3**2))/(x1**2 + x2**2)', (3,): 0} pg3.is_poisson_vf(bivector, W) ``` Notice that $W$ **IS NOT** a **Hamiltonian** field of $\Pi$ [8]. ### Function: `is_poisson_pair` VERIFIES WHETHER A COUPLE OF POISSON BIVECTOR FIELDS FORM A POISSON PAIR. Consider $$ \Pi = ax_1 x_2\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2} - b x_1 x_3\frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_3} + b x_2 x_3 \frac{\partial}{\partial x_2}\wedge \frac{\partial}{\partial x_3}, $$ and $$ \Psi = x_3^{2} \frac{\partial}{\partial x_1}\wedge \frac{\partial}{\partial x_2}.$$ Then: ``` from poisson.poisson import PoissonGeometry pg3 = PoissonGeometry(3) Pi = {(1,2): 'a*x1*x2', (1,3): '-b*x1*x3', (2,3): 'b*x2*x3'} Psi = {(1,2): 'x3**2'} pg3.is_poisson_pair(Pi, Psi) ``` Therefore, $\Pi$ and $\Psi$ form a Poisson pair. ## __Bibliografía__ [1] M. Ammar, G. Kass, M. Masmoudi, N. Poncin, *Strongly R-Matrix Induced Tensors, Koszul Cohomology, and Arbitrary-Dimensional Quadratic Poisson Cohomology*, Pac. J. Math. 245, 1-23 (2010) [2] M. Avendaño-Camacho, J. A. Vallejo and Yu. Vorobiev, *A Perturbation Theory Approach to the Stability of the Pais-Uhlenbeck Oscillator*, J. Math. Phys. 58, (2017) [3] P. G. Breen, C. N. Foley, T. Boekholt, S. P. Zwart, *Newton vs the Machine: Solving the Chaotic Three-Body Problem Using Deep Neural Networks*, arXiv:1910.07291 [astro-ph.GA] [4] J. P. Dufour and N. T. Zung, *Poisson Structures and their Normal Forms*, Progress in Mathematics, 242, Birkh\"auser Verlag, Basel, (2005) [5] M. Evangelista-Alvarado, J. C. Ruíz-Pantaleón, P. Suárez-Serrato, *On Computational Poisson Geometry I: Symbolic Foundations* [6] L. C. Garcia-Naranjo, P. Suárez-Serrato and R. Vera, *Poisson Structures on Smooth 4-manifolds*, Lett. Math. Phys. 105, 1533-1550 (2015) [7] C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, *Poisson Structures*, Grundlehren der mathematischen Wissenschaften, 347, Springer-Verlag Berlin Heidelberg, (2013) [8] N. Nakanishi, *On the Structure of Infinitesimal Automorphisms of Linear Poisson Manifolds I*, J. Math. Kyoto Univ. 31, 71-82 (1991)
23fa26b54e42f4b81d4756b8dd0a79b6e4b94e25
59,283
ipynb
Jupyter Notebook
docs/Tutorial_Ingles.ipynb
mevangelista-alvarado/poisson_geometry
98bea08d9127f1bda45bc04b88d73b05dd480c65
[ "MIT" ]
null
null
null
docs/Tutorial_Ingles.ipynb
mevangelista-alvarado/poisson_geometry
98bea08d9127f1bda45bc04b88d73b05dd480c65
[ "MIT" ]
null
null
null
docs/Tutorial_Ingles.ipynb
mevangelista-alvarado/poisson_geometry
98bea08d9127f1bda45bc04b88d73b05dd480c65
[ "MIT" ]
null
null
null
36.45941
624
0.487644
true
11,699
Qwen/Qwen-72B
1. YES 2. YES
0.800692
0.731059
0.585353
__label__eng_Latn
0.726474
0.198301
# 1. 1-D example with 3 parameters The following example shows how to construct the kernel, automatically, from a symbolic expression defining the linear differential operator in **1D**. We consider the following operator, for an unknwon *u* $$ \mathcal{L}^{\mu, \alpha, \beta} u := \mu u + \alpha \partial_x u + \beta \partial_{xx} u $$ ```python # imports from mlhiphy.calculus import dx, dy, dz from mlhiphy.calculus import Constant from mlhiphy.calculus import Unknown from mlhiphy.kernels import compute_kernel, generic_kernel from sympy import expand from sympy import symbols from sympy import exp ``` ```python x, x_i, x_j = symbols('x x_i x_j') u = Unknown('u') alpha = Constant('alpha') beta = Constant('beta') mu = Constant('mu') theta = Constant('theta') expr = mu * u + alpha * dx(u) + beta * dx(dx(u)) ``` ```python kuu = generic_kernel(expr, u, (x_i, x_j)) ``` ```python from IPython.display import Math from sympy import latex Math(latex(expand(kuu))) ``` $$\alpha^{2} \frac{\partial^{2}}{\partial x_{i}\partial x_{j}} u{\left (x_{i},x_{j} \right )} + \alpha \beta \frac{\partial^{3}}{\partial x_{i}^{2}\partial x_{j}} u{\left (x_{i},x_{j} \right )} + \alpha \beta \frac{\partial^{3}}{\partial x_{i}\partial x_{j}^{2}} u{\left (x_{i},x_{j} \right )} + \alpha \mu \frac{\partial}{\partial x_{i}} u{\left (x_{i},x_{j} \right )} + \alpha \mu \frac{\partial}{\partial x_{j}} u{\left (x_{i},x_{j} \right )} + \beta^{2} \frac{\partial^{4}}{\partial x_{i}^{2}\partial x_{j}^{2}} u{\left (x_{i},x_{j} \right )} + \beta \mu \frac{\partial^{2}}{\partial x_{i}^{2}} u{\left (x_{i},x_{j} \right )} + \beta \mu \frac{\partial^{2}}{\partial x_{j}^{2}} u{\left (x_{i},x_{j} \right )} + \mu^{2} u{\left (x_{i},x_{j} \right )}$$ ```python # RBF kernel kuu = theta * exp(-0.5*((x_i - x_j)**2)) ``` ```python kuf = compute_kernel(expr, kuu, x_i) kfu = compute_kernel(expr, kuu, x_j) kff = compute_kernel(expr, kuu, (x_i, x_j)) ``` ```python Math(latex(expand(kuf))) ``` $$- 1.0 \alpha \theta x_{i} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \alpha \theta x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \beta \theta x_{i}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 2.0 \beta \theta x_{i} x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \beta \theta x_{j}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 1.0 \beta \theta e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + \mu u{\left (x_{i} \right )}$$ ```python Math(latex(expand(kfu))) ``` $$1.0 \alpha \theta x_{i} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 1.0 \alpha \theta x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \beta \theta x_{i}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 2.0 \beta \theta x_{i} x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \beta \theta x_{j}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 1.0 \beta \theta e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + \mu u{\left (x_{j} \right )}$$ ```python Math(latex(expand(kff))) ``` $$- 1.0 \alpha^{2} \theta x_{i}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 2.0 \alpha^{2} \theta x_{i} x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 1.0 \alpha^{2} \theta x_{j}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \alpha^{2} \theta e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \beta^{2} \theta x_{i}^{4} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 4.0 \beta^{2} \theta x_{i}^{3} x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 6.0 \beta^{2} \theta x_{i}^{2} x_{j}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 6.0 \beta^{2} \theta x_{i}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 4.0 \beta^{2} \theta x_{i} x_{j}^{3} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 12.0 \beta^{2} \theta x_{i} x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 1.0 \beta^{2} \theta x_{j}^{4} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 6.0 \beta^{2} \theta x_{j}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 3.0 \beta^{2} \theta e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 2.0 \beta \mu \theta x_{i}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 4.0 \beta \mu \theta x_{i} x_{j} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + 2.0 \beta \mu \theta x_{j}^{2} e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} - 2.0 \beta \mu \theta e^{- 0.5 x_{i}^{2}} e^{- 0.5 x_{j}^{2}} e^{1.0 x_{i} x_{j}} + \mu^{2} u{\left (x_{i},x_{j} \right )}$$ ```python from IPython.core.display import HTML def css_styling(): styles = open("../styles/custom.css", "r").read() return HTML(styles) css_styling() ``` <link href='http://fonts.googleapis.com/css?family=Fenix' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Alegreya+Sans:100,300,400,500,700,800,900,100italic,300italic,400italic,500italic,700italic,800italic,900italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Source+Code+Pro:300,400' rel='stylesheet' type='text/css'> <style> @font-face { font-family: "Computer Modern"; src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf'); } div.cell{ width:600px; margin-left:16% !important; margin-right:auto; } h1 { font-family: 'Alegreya Sans', sans-serif; } h2 { font-family: 'Fenix', serif; } h3{ font-family: 'Fenix', serif; margin-top:12px; margin-bottom: 3px; } h4{ font-family: 'Fenix', serif; } h5 { font-family: 'Alegreya Sans', sans-serif; } div.text_cell_render{ font-family: 'Alegreya Sans',Computer Modern, "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif; line-height: 135%; font-size: 120%; width:600px; margin-left:auto; margin-right:auto; } .CodeMirror{ font-family: "Source Code Pro"; font-size: 90%; } /* .prompt{ display: None; }*/ .text_cell_render h1 { font-weight: 200; font-size: 50pt; line-height: 100%; color:#054BCD; margin-bottom: 0.5em; margin-top: 0.5em; display: block; } .text_cell_render h5 { font-weight: 300; font-size: 16pt; color: #054BCD; font-style: italic; margin-bottom: .5em; margin-top: 0.5em; display: block; } .warning{ color: rgb( 240, 20, 20 ) } </style>
3f8e2f7dcdcc2cac2207579038b9502e3ea186c2
11,729
ipynb
Jupyter Notebook
autoker/01_example_1d.ipynb
ratnania/mlhiphy
c75b5c4b5fbc557f77d234df001fe11b10681d7d
[ "MIT" ]
6
2018-07-12T09:03:43.000Z
2019-10-29T09:50:34.000Z
autoker/01_example_1d.ipynb
ratnania/mlhiphy
c75b5c4b5fbc557f77d234df001fe11b10681d7d
[ "MIT" ]
null
null
null
autoker/01_example_1d.ipynb
ratnania/mlhiphy
c75b5c4b5fbc557f77d234df001fe11b10681d7d
[ "MIT" ]
4
2018-04-25T06:33:03.000Z
2020-03-13T02:25:07.000Z
37.234921
1,678
0.444283
true
2,992
Qwen/Qwen-72B
1. YES 2. YES
0.868827
0.709019
0.616015
__label__yue_Hant
0.080117
0.269539
# Solving orbital equations with different algorithms This notebook was adapted from `Orbit_games.ipynb`. We consider energy plots and orbital solutions in polar coordinates for the general potential energy $\begin{align} U(r) = k r^n \end{align}$ for different ODE solution algorithms. The `solve_ivp` function can itself be specified to use different solution methods (with the `method` keyword). Here we will set it by default to use 'RK23', which is a variant on the Runge-Kutta second-order algorithm. Second-order in this context means that the accuracy of a calculation will improve by a factor of $10^2 = 100$ if $\Delta t$ is reduced by a factor of ten. We will compare it with the crudest algorithm, Euler's method, which is first order, and a second-order algorithm called Leapfrog, which is designed to be precisely <em>time-reversal invariant</em>. This property guarantees conservation of energy, which is not true of the other algorithms we will consider. To solve the differential equations for orbits, we have defined the $\mathbf{y}$ and $d\mathbf{y}/dt$ vectors as $\begin{align} \mathbf{y} = \left(\begin{array}{c} r(t) \\ \dot r(t) \\ \phi(t) \end{array} \right) \qquad \frac{d\mathbf{y}}{dt} = \left(\begin{array}{c} \dot r(t) \\ \ddot r(t) \\ \dot\phi(t) \end{array} \right) = \left(\begin{array}{c} \dot r(t) \\ -\frac{1}{\mu}\frac{dU_{\rm eff}(r)}{dr} \\ \frac{l}{\mu r^2} \end{array} \right) \end{align}$ where we have substituted the differential equations for $\ddot r$ and $\dot\phi$. Then Euler's method can be written as a simple prescription to obtain $\mathbf{y}_{i+1}$ from $\mathbf{y}_i$, where the subscripts label the elements of the `t_pts` array: $\mathbf{y}_{i+1} = \mathbf{y}_i + \left(d\mathbf{y}/dt\right)_i \Delta t$, or, by components: $\begin{align} r_{i+1} &= r_i + \frac{d\mathbf{y}_i[0]}{dt} \Delta t \\ \dot r_{i+1} &= \dot r_{i} + \frac{d\mathbf{y}_i[1]}{dt} \Delta t \\ \phi_{i+1} &= \phi_i + \frac{d\mathbf{y}_i[2]}{dt} \Delta t \end{align}$ **Look at the** `solve_ode_Euler` **method below and verify the algorithm is correctly implemented.** The leapfrog method does better by evaluating $\dot r$ at a halfway time step before and after the $r$ evaluation, which is both more accurate and incorporates time reversal: $\begin{align} \dot r_{i+1/2} &= \dot r_{i} + \frac{d\mathbf{y}_i[1]}{dt} \Delta t/2 \\ r_{i+1} &= r_i + \dot r_{i+1/2} \Delta t \\ \dot r_{i+1} &= \dot r_{i+1/2} + \frac{d\mathbf{y}_{i+1}[1]}{dt} \Delta t/2 \\ \phi_{i+1} &= \phi_i + \frac{d\mathbf{y}_i[2]}{dt} \Delta t \end{align}$ **Look at the** `solve_ode_Leapfrog` **method below and verify the algorithm is correctly implemented.** A third method is the second-order Runge-Kutta algorithm, which we invoke from `solve_ivp` as `RK23`. It does not use a fixed time-step as in our "homemade" implementations, so there is not a direct comparison, but we can still check if it conserves energy. **Run the notebook. You are to turn in and comment on the "Change in energy with time" plot at the end. Where do you see energy conserved or not conserved? Show that Euler is first order and leapfrog is second order by changing $\Delta t$; describe what you did and what you found.** **Try another potential to see if you get the same general conclusions.** ```python import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp ``` ```python # Change the common font size font_size = 14 plt.rcParams.update({'font.size': font_size}) ``` ```python class Orbit: """ Potentials and associated differential equations for central force motion with the potential U(r) = k r^n. Several algorithms for integration of ordinary differential equations are now available. """ def __init__(self, m_1=1., m_2=1., G=1,): self.m_1 = m_1 self.m_2 = m_2 self.G = G def dz_dt(self, t, z): """ This function returns the right-hand side of the diffeq: [dz/dt d^2z/dt^2] Parameters ---------- t : float time z : float 8-component vector with z[0] = x_1(t), z[1] = x_dot_1(t) z[2] = y_1(t), z[3] = y_dot_1(t) z[4] = x_2(t), z[5] = x_dot_2(t) z[6] = y_2(t), z[7] = y_dot_2(t) """ r_12=np.sqrt( (z[0]-z[4])**2 + (z[2]-z[6])**2 ) return [ z[1], self.G * self.m_2 * (z[4] - z[0]) / r_12 ** 3,\ z[3], self.G * self.m_2 * (z[6] - z[2]) / r_12 ** 3,\ z[5], -self.G * self.m_1 * (z[4] - z[0]) / r_12 ** 3,\ z[7], -self.G * self.m_1 * (z[6] - z[2]) / r_12 ** 3 ] def solve_ode(self, t_pts, z_0, abserr=1.0e-8, relerr=1.0e-8): """ Solve the ODE given initial conditions. Use solve_ivp with the option of specifying the method. Specify smaller abserr and relerr to get more precision. """ solution = solve_ivp(self.dz_dt, (t_pts[0], t_pts[-1]), z_0, t_eval=t_pts, method='RK23', atol=abserr, rtol=relerr) x_1, x_dot_1, y_1, y_dot_1, x_2, x_dot_2, y_2, y_dot_2 = solution.y return x_1, x_dot_1, y_1, y_dot_1, x_2, x_dot_2, y_2, y_dot_2 def solve_ode_Leapfrog(self, t_pts, z_0): """ Solve the ODE given initial conditions with the Leapfrog method. """ delta_t = t_pts[1] - t_pts[0] x_1_0, x_dot_1_0, y_1_0, y_dot_1_0, x_2_0, x_dot_2_0, y_2_0, y_dot_2_0 = z_0 # initialize the arrays with zeros num_t_pts = len(t_pts) x_1 = np.zeros(num_t_pts) x_dot_1 = np.zeros(num_t_pts) x_dot_1_half = np.zeros(num_t_pts) y_1 = np.zeros(num_t_pts) y_dot_1 = np.zeros(num_t_pts) y_dot_1_half = np.zeros(num_t_pts) x_2 = np.zeros(num_t_pts) x_dot_2 = np.zeros(num_t_pts) x_dot_2_half = np.zeros(num_t_pts) y_2 = np.zeros(num_t_pts) y_dot_2 = np.zeros(num_t_pts) y_dot_2_half = np.zeros(num_t_pts) # initial conditions x_1[0] = x_1_0 x_dot_1[0] = x_dot_1_0 y_1[0] = y_1_0 y_dot_1[0] = y_dot_1_0 x_2[0] = x_2_0 x_dot_2[0] = x_dot_2_0 y_2[0] = y_2_0 y_dot_2[0] = y_dot_2_0 # step through the differential equation for i in np.arange(num_t_pts - 1): t = t_pts[i] z = [x_1[i], x_dot_1[i], y_1[i], y_dot_1[i],\ x_2[i], x_dot_2[i], y_2[i], y_dot_2[i] ] out=self.dz_dt(t,z) x_dot_1_half[i] = x_dot_1[i] + out[1] * delta_t/2. x_1[i+1] = x_1[i] + x_dot_1_half[i] * delta_t y_dot_1_half[i] = y_dot_1[i] + out[3] * delta_t/2. y_1[i+1] = y_1[i] + y_dot_1_half[i] * delta_t x_dot_2_half[i] = x_dot_2[i] + out[5] * delta_t/2. x_2[i+1] = x_2[i] + x_dot_2_half[i] * delta_t y_dot_2_half[i] = y_dot_2[i] + out[7] * delta_t/2. y_2[i+1] = y_2[i] + y_dot_2_half[i] * delta_t z = [x_1[i+1], x_dot_1[i], y_1[i+1], y_dot_1[i],\ x_2[i+1], x_dot_2[i], y_2[i+1], y_dot_2[i] ] out = self.dz_dt(t,z) x_dot_1[i+1] = x_dot_1_half[i] + out[1] * delta_t/2. y_dot_1[i+1] = y_dot_1_half[i] + out[3] * delta_t/2. x_dot_2[i+1] = x_dot_2_half[i] + out[5] * delta_t/2. y_dot_2[i+1] = y_dot_2_half[i] + out[7] * delta_t/2. return x_1, x_dot_1, y_1, y_dot_1, x_2, x_dot_2, y_2, y_dot_2 ``` ```python def start_stop_indicies(t_pts, plot_start, plot_stop): start_index = (np.fabs(t_pts-plot_start)).argmin() # index in t_pts array stop_index = (np.fabs(t_pts-plot_stop)).argmin() # index in t_pts array return start_index, stop_index ``` ```python def plot_y_vs_x(x, y, axis_labels=None, label=None, title=None, color=None, linestyle=None, semilogy=False, loglog=False, ax=None): """ Generic plotting function: return a figure axis with a plot of y vs. x, with line color and style, title, axis labels, and line label """ if ax is None: # if the axis object doesn't exist, make one ax = plt.gca() if (semilogy): line, = ax.semilogy(x, y, label=label, color=color, linestyle=linestyle) elif (loglog): line, = ax.loglog(x, y, label=label, color=color, linestyle=linestyle) else: line, = ax.plot(x, y, label=label, color=color, linestyle=linestyle) if label is not None: # if a label if passed, show the legend ax.legend() if title is not None: # set a title if one if passed ax.set_title(title) if axis_labels is not None: # set x-axis and y-axis labels if passed ax.set_xlabel(axis_labels[0]) ax.set_ylabel(axis_labels[1]) return ax, line ``` # Start The Plots The first one is a normal plot using 'RK23', the second one is using Leapfrog method, the thrid one is a simple plot, setting the initial conditions so that they move in the opposite directions. ```python #Labels for individual plot axes orbit_labels=(r'$x$',r'$y$') #common plotting time t_start=0. t_end=10. delta_t=0.01 t_pts=np.arange(t_start, t_end+delta_t,delta_t) G = 1. m_1 = 1. m_2 = 5. o1 = Orbit(m_1, m_2, G) #Initial conditions with the velocity of the center of mass to be 0 x_1_0, x_dot_1_0 = 1., -1. y_1_0, y_dot_1_0 = 1., 1. x_2_0, x_dot_2_0 = -(m_1 / m_2) * x_1_0, -(m_1 / m_2) * x_dot_1_0 y_2_0, y_dot_2_0 = -(m_1 / m_2) * y_1_0, -(m_1 / m_2) * y_dot_1_0 z_0 = [x_1_0, x_dot_1_0, y_1_0, y_dot_1_0,\ x_2_0, x_dot_2_0, y_2_0, y_dot_2_0] x_1,x_dot_1, y_1, y_dot_1, x_2, x_dot_2, y_2, y_dot_2 = o1.solve_ode(t_pts,z_0) ``` ```python fig = plt.figure(figsize=(7,5)) ax = fig.add_subplot(1,1,1) ax.plot(x_1, y_1, color='blue', label=r'$m_1$') ax.plot(x_2, y_2, color='red', label=r'$m_2$') start, stop = start_stop_indicies(t_pts, t_start, t_end) ax.set_title('Simple gravitational orbit') ax.legend() ax.set_aspect(1) fig.tight_layout() fig.savefig('Gravitation_orbit.png') ``` ## Plot orbit and check energy conservation ```python #common plotting time t_start=0. t_end=20. delta_t=0.001 t_pts=np.arange(t_start, t_end+delta_t,delta_t) G = 10. m_1 = 10. m_2 = 1. o2 = Orbit(m_1, m_2, G) #Initial conditions with the velocity of the center of mass to be 0 x_1_0, x_dot_1_0 = 0.1, 0. y_1_0, y_dot_1_0 = 0., 0.75 x_2_0, x_dot_2_0 = -(m_1 / m_2) * x_1_0, -(m_1 / m_2) * x_dot_1_0 y_2_0, y_dot_2_0 = -(m_1 / m_2) * y_1_0, -(m_1 / m_2) * y_dot_1_0 z_0 = [x_1_0, x_dot_1_0, y_1_0, y_dot_1_0,\ x_2_0, x_dot_2_0, y_2_0, y_dot_2_0] x_1,x_dot_1, y_1, y_dot_1, x_2, x_dot_2, y_2, y_dot_2 = o2.solve_ode_Leapfrog(t_pts,z_0) ``` ```python fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(1,1,1) ax.plot(x_1, y_1, color='blue', label=r'$m_1$') ax.plot(x_2, y_2, color='red', label=r'$m_2$') start, stop = start_stop_indicies(t_pts, t_start, t_end) ax.set_title('Simple gravitational orbit') ax.legend() ax.set_aspect(1) fig.tight_layout() fig.savefig('Gravitation_orbit_LeapFrog.png') ``` ```python #common plotting time t_start=0. t_end=50. delta_t=0.01 t_pts=np.arange(t_start, t_end+delta_t,delta_t) G = 10. m_1 = 1. m_2 = 1. o2 = Orbit(m_1, m_2, G) #Initial conditions with the velocity of the center of mass to be 0 x_1_0, x_dot_1_0 = 1., 0. y_1_0, y_dot_1_0 = 0., 1. x_2_0, x_dot_2_0 = -(m_1 / m_2) * x_1_0, -(m_1 / m_2) * x_dot_1_0 y_2_0, y_dot_2_0 = -(m_1 / m_2) * y_1_0, -(m_1 / m_2) * y_dot_1_0 z_0 = [x_1_0, x_dot_1_0, y_1_0, y_dot_1_0,\ x_2_0, x_dot_2_0, y_2_0, y_dot_2_0] x_1,x_dot_1, y_1, y_dot_1, x_2, x_dot_2, y_2, y_dot_2 = o2.solve_ode(t_pts,z_0) ``` ```python fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(1,1,1) ax.plot(x_1, y_1, color='blue', label=r'$m_1$') ax.plot(x_2, y_2, color='red', label=r'$m_2$') start, stop = start_stop_indicies(t_pts, t_start, t_end) ax.set_title('Simple gravitational orbit') ax.legend() ax.set_aspect(1) fig.tight_layout() fig.savefig('Simple orbits.png') ``` ```python ``` ```python ```
18411bd5c9218bfaf4dbba86cfb58063a9dbb2e2
73,194
ipynb
Jupyter Notebook
Orbital_eqs_with_different_algorithms.ipynb
YupengLu-hub/5300_final
da4e4b6e76a20a0faece93977eeb4b29251a2f18
[ "MIT" ]
null
null
null
Orbital_eqs_with_different_algorithms.ipynb
YupengLu-hub/5300_final
da4e4b6e76a20a0faece93977eeb4b29251a2f18
[ "MIT" ]
null
null
null
Orbital_eqs_with_different_algorithms.ipynb
YupengLu-hub/5300_final
da4e4b6e76a20a0faece93977eeb4b29251a2f18
[ "MIT" ]
null
null
null
131.881081
21,356
0.843812
true
4,467
Qwen/Qwen-72B
1. YES 2. YES
0.875787
0.887205
0.777002
__label__eng_Latn
0.803622
0.643569
# Analysis of a quantum wave packet ## Introduction This script studies the initialization of the wavepacket and its initial properties. In what follows we will consider an harmonic potential and the wave packet of an electron. We are interested in the following properties: * probability density * average position * momentum * kinetic energy * potential energy (for an harmonic potential) * total energy The first part is concerned with the theory. We manually calculate the physical quantities of interest and we use Sympy to check them. The second part provides an implementation using Numpy. The physical quantities are again computed but this time numerically. Finally, a comparison between the theory and the numerical results if performed. ```python import numpy as np import sympy as sp from sympy import simplify, factor sp.init_printing() # Init pretty print as default ``` ## Theory ### First properties We initialize the wavefunction with a wavepacket centered in $x_0$ spatially localized within $\sigma$ of $x_0$ with an initial momentum $p_0$: \begin{align} \psi(x,t=0) = \psi(x) = & \frac{1}{(2\pi)^{1/4} \sqrt{\sigma}} e^{- \frac 1 2 \frac{(x-x_0)^2}{2\sigma^2}} e^{i p_0(x-x_0)/\hbar} \\ |\psi|^2= & \frac{1}{\sigma \sqrt{2 \pi}} e^{- \frac{(x-x_0)^2}{2\sigma^2}} \end{align} Notice that $|\psi|^2$ is the expression of the probability density function (PDF) of a [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution) $\mathcal N (x_0, \sigma^2)$, which will prove useful to compute integrals. We can first check that the wave packet is indeed normalized. This is also coherent with the fact that $|\psi|^2$ is a PDF. \begin{equation} \int_\mathbb{R} |\psi|^2 dx = 1 \end{equation} Secondly, the average position is easily calculated, again thanks to the properties of the normal distribution: \begin{equation} \left\langle x \right\rangle = \int_\mathbb{R} x |\psi|^2 dx = x_0 \end{equation} ### Momentum Let us now turn our attention to the average momentum. The associated observable is $\hat{p} = \frac{\hbar}{i} \frac{d}{dx}$. We can compute the following expressions: \begin{align} \frac{d\psi}{dx} = & \left(- \frac{x-x_0}{2 \sigma^2} + i \frac{p_0}{\hbar}\right) \psi\\ = & \left(i \frac{p_0}{\hbar} - \frac{x-x_0}{2 \sigma^2} \right) \psi\\ \frac{\hbar}{i} \frac{d}{dx} = & \left(p_0 + i \hbar \frac{x-x_0}{2 \sigma^2} \right) \psi \end{align} Let us use sympy to check the result of the first derivative: ```python # Define some symbols x, x0, sigma, hbar, m, w = sp.symbols('x x_0 sigma \hbar m omega', real = True, positive = True) p0 = sp.symbols('p_0', real=True) pi = sp.pi i = sp.I psi = 1/((2*sp.pi)**sp.Rational(1,4) * sp.sqrt(sigma)) * sp.exp(-sp.Rational(1,2) * (x-x0)**2/(2*sigma**2)) * sp.exp(i*p0*(x-x0)/hbar) psi2 = sp.Abs(psi)**2 dpsidx = simplify(sp.diff(psi, x)) dpsidx_theory = psi*(i*p0/hbar - (x-x0)/(2*sigma**2)) ``` We can check that the expression derived previously are correct by looking at the difference of our expression and the one computed by sympy, and the result should be 0: ```python simplify(dpsidx_theory-dpsidx) ``` We can then compute the average momentum: \begin{align} \left\langle p \right\rangle = & \int_\mathbb{R} \psi^* \frac{\hbar} i \frac{d\psi}{dx} dx = \int_\mathbb{R} \left(p_0 + i \hbar \frac{x-x_0}{2 \sigma^2} \right) |\psi|^2 dx\\ = & p_0 \int_\mathbb{R} |\psi|^2 dx + \frac{i \hbar}{2 \sigma} \left( \int_\mathbb{R} x |\psi|^2 dx - x_0 \int_\mathbb{R}|\psi|^2 dx \right) \\ = & p_0 + \frac{i \hbar}{2 \sigma} (x_0 - x_0 \times 1) = p_0 \end{align} Below is the result from sympy for comparison: ```python sp.integrate(sp.conjugate(psi) * hbar/i * dpsidx, (x, -sp.oo, sp.oo)) ``` #### Kinetic energy We can then turn our attention to the kinetic energy. Since the observable is $\hat{E_c} = \frac{1}{2m} \hat{p}^2 = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$, we first need to compute the second derivative $\frac{d^2\psi}{dx^2}$. This is fairly easy since we know that $\frac{d\psi}{dx} = \left(i \frac{p_0}{\hbar} - \frac{x-x_0}{2 \sigma^2} \right) \psi$: \begin{align} \frac{d^2\psi}{dx^2} = & - \frac{1}{2\sigma^2} \psi(x) + \left(i \frac{p_0}{\hbar} - \frac{x-x_0}{2 \sigma^2} \right) \frac{d\psi}{dx} \\ = & - \frac{1}{2\sigma^2} \psi(x) + \left(i \frac{p_0}{\hbar} - \frac{x-x_0}{2 \sigma^2} \right)^2 \psi \\ = & \left(- \frac{1}{2\sigma^2} - \frac{p_0^2}{\hbar^2} -2i \frac{p_0}{\hbar} \frac{x-x_0}{2\sigma^2} + \left(\frac{x-x_0}{2\sigma^2} \right)^2 \right) \psi(x)\\ = & \left(- \left(\frac{p_0^2}{\hbar^2} + \frac{1}{2\sigma^2} \right) + \left(\frac{x-x_0}{2\sigma^2} \right)^2 -2i \frac{p_0}{\hbar} \frac{x-x_0}{2\sigma^2} \right) \psi(x) \end{align} Once again let us use sympy to check the result of the second derivative: ```python d2psidx2 = simplify(sp.diff(dpsidx, x)) d2psidx2_theory = psi * (-(p0**2/hbar**2 + 1 / (2*sigma**2)) + (x-x0)**2/(2*sigma**2)**2 -2*i*p0/hbar*(x-x0)/(2*sigma**2)) simplify(d2psidx2_theory-d2psidx2) ``` We are now in a position to compute the average kinetic energy: \begin{align} \left\langle E_c \right\rangle = & \frac{-\hbar^2}{2m} \int_\mathbb{R} \psi^* \left(- \left(\frac{p_0^2}{\hbar^2} + \frac{1}{2\sigma^2} \right) + \left(\frac{x-x_0}{2\sigma^2} \right)^2 -2i \frac{p_0}{\hbar} \frac{x-x_0}{2\sigma^2} \right) \psi(x) dx \\ = & \frac{-\hbar^2}{2m} \int_\mathbb{R} \left(- \left(\frac{p_0^2}{\hbar^2} + \frac{1}{2\sigma^2} \right) + \left(\frac{x-x_0}{2\sigma^2} \right)^2 -2i \frac{p_0}{\hbar} \frac{x-x_0}{2\sigma^2} \right) |\psi(x)|^2 dx \\ = & \frac{\hbar^2}{2m} \left(\frac{p_0^2}{\hbar^2} + \frac{1}{2\sigma^2} \right) \int_\mathbb{R} |\psi(x)|^2 dx - \frac{\hbar^2}{2m} \frac{1}{4 \sigma^4} \int_\mathbb{R} \left(x-x_0\right)^2 |\psi(x)|^2 dx + \frac{\hbar^2}{2m} 2i \frac{p_0}{\hbar} \frac{1}{2\sigma^2} \int_\mathbb{R} \left(x-x_0 \right) |\psi(x)|^2 dx\\ = & \left(\frac{p_0^2}{2m} + \frac{\hbar^2}{2m} \frac{1}{2\sigma^2} \right) \int_\mathbb{R} |\psi(x)|^2 dx - \frac{\hbar^2}{2m} \frac{1}{4 \sigma^4} \int_\mathbb{R} \left(x-x_0\right)^2 |\psi(x)|^2 dx \\ = & \frac{p_0^2}{2m} + \frac{\hbar^2}{2m} \frac{1}{2\sigma^2} - \frac{\hbar^2}{2m} \frac{1}{4 \sigma^4} \sigma^2 \\ = & \frac{p_0^2}{2m} + \frac{\hbar^2}{2m} \left( \frac{1}{2\sigma^2} - \frac{1}{4 \sigma^2}\right) \\ = & \frac{p_0^2}{2m} + \frac{\hbar^2}{2m} \frac{1}{4\sigma^2} \end{align} Let's see what sympy has to say: ```python sp.integrate(sp.conjugate(psi) * (-hbar**2/(2*m)) * d2psidx2, (x, -sp.oo, sp.oo)) ``` #### Potential energy Given an harmonic potential $V(x) = \frac 1 2 m \omega^2 (x-x_0)^2$ centered in $x_0$, the average potential energy is easy to find: \begin{align} \left\langle V \right\rangle = & \int_\mathbb{R} \psi^* V(x) \psi dx = \int_\mathbb{R} \psi^* \frac 1 2 m \omega^2 (x-x_0)^2 \psi dx\\ = & \int_\mathbb{R}\frac 1 2 m \omega^2 (x-x_0)^2 |\psi|^2 dx = \frac 1 2 m \omega^2 \int_\mathbb{R}(x-x_0)^2 |\psi|^2 dx\\ = & \frac 1 2 m \omega^2 \sigma^2 \end{align} Let's check with sympy: ```python V = sp.Rational(1,2) * m * w**2 * (x-x0)**2 sp.integrate(sp.conjugate(psi) * V *psi, (x, -sp.oo, sp.oo)) ``` #### Total energy The total energy $\mathcal E$ is the sum of the kinetic energy and the potential energy. Hence: \begin{align} \mathcal E = &\left\langle E_c \right\rangle + \left\langle V \right\rangle \\ = & \frac{p_0^2}{2m} + \frac{\hbar^2}{2m} \frac{1}{4\sigma^2} + \frac 1 2 m \omega^2 \sigma^2 \end{align} ## Implementation ### Simulation parameters The settings below define the characteristics of the spatial grid used. ```python Nx = 1000 # Number of grid points x_start = 000e-9 # Position to start the computations from x_end = 100e-9 # Position at which to end the computations x = np.linspace(x_start,x_end,Nx, dtype="float128") # Position vector dx = x[2] - x[1] # Spatial precision dx ``` 1.00100100100100100176e-10 ### Physical constants We choose to study the behavior of an electron for instance in silicon. Hence we use its effective mass instead of the normal mass. ```python me = 9.10938291e-31 # Electron mass meff = 0.19*me # Electron effective mass m = meff hbar = 1.054571726e-34 # Reduced Planck's constant e = 1.602176565e-19 # Elementary charge h = hbar*2*np.pi # Planck's constant ``` ### Potential characteristic We assume an harmonic potential with a level spacing of $\Delta E = 10$ meV. The energy levels of an harmonic oscillator are given by $E_n = \left(n + \frac 1 2 \right) \hbar \omega$, so the level spacing is $\Delta E = \hbar \omega$, which gives us the value of the parameter $\omega$ to use. Note the $e$ factor when defining `omega` to convert `deltaE` in Joules. ```python deltaE = 10e-3 # Level spacing of the QD (eV) omega = e*deltaE / hbar # s^-1 ``` Now that $\omega$ is defined, we can compute the energy levels, for instance $E_0 = \frac{\hbar \omega}{2}$: ```python E_0 = hbar*omega/2 E_0 ``` Which converted in meV gives: ```python E_0 / e * 1e3 ``` ### Wave packet initialization The code below defines the center $x_0$ of the wave packet and its spatial width. ```python x0 = 25e-9 # Position of the center sigma = 10e-9 # Width of the Gaussian ``` How to choose the value of the momentum ? We can try setting the speed of the wave packet $v$ which then determines the momentum as $p = mv$. However, let us try to find the momentum such that the energy of the wave packet is exactly that of the ground state of the harmonic oscillator $E_0$. From the previous section, the total energy of the wave packet is $\mathcal E = \left\langle E_c \right\rangle + \left\langle V \right\rangle$ which depends on $p_0$. We can inverse that relation to get $p_0$: \begin{align} \mathcal E = & \frac{p_0^2}{2m} + \frac{\hbar^2}{2m} \frac{1}{4\sigma^2} + \frac 1 2 m \omega^2 \sigma^2 \\ 2m \mathcal E = & p_0^2 + \frac{\hbar^2}{4\sigma^2} + m^2 \omega^2 \sigma^2 \\ p_0^2 = & 2m \mathcal E - \frac{\hbar^2}{4\sigma^2} - m^2 \omega^2 \sigma^2 \end{align} For $\mathcal E = E_0= \frac{\hbar \omega}{2}$, we get: \begin{align} p_0^2 = & 2m \frac{\hbar \omega}{2} - \frac{\hbar^2}{4\sigma^2} - m^2 \omega^2 \sigma^2\\ p_0^2 = & m \hbar \omega - \frac{\hbar^2}{4\sigma^2} - m^2 \omega^2 \sigma^2\\ \end{align} When is this quantity positive ? Let's look at each term: ```python m*hbar*omega, hbar**2/(4*sigma**2), m**2 * omega**2 * sigma**2 ``` We conclude that with our choice of parameters $\omega$ and $\sigma$, the momentum is not real. Let us see what values are better visually. We will draw the surface of equation $p_0^2$ with $\omega$ and $\sigma$ varying and see when this is greater than 0. ```python %matplotlib notebook from mpl_toolkits.mplot3d import Axes3D # Axes3D import has side effects, it enables using projection='3d' in add_subplot import matplotlib.pyplot as plt from matplotlib import cm def p0_squared(omega, sigma): return m*hbar*omega - hbar**2/(4*sigma**2) - m**2 * omega**2 * sigma**2 fig = plt.figure(figsize=(5, 5)) ax = fig.add_subplot(111, projection='3d') deltaE_range = np.linspace(0, 100, 10) * 1e-3 omega_range = e*deltaE_range / hbar sigma_range = np.linspace(1e-9, 100e-9, 10) X, Y = np.meshgrid(omega_range, sigma_range) zs = np.array(p0_squared(np.ravel(X), np.ravel(Y))) Z = zs.reshape(X.shape) ax.plot_surface(X, Y, Z, cmap=cm.jet) ax.set_xlabel('$\omega$') ax.set_ylabel('$\sigma$') ax.set_zlabel('$p_0^2$') plt.title("Max value: %e" % max(zs)) plt.show() ``` <IPython.core.display.Javascript object> ```python p0 = m * 1e-9 * 1e-9/1e-12 ``` The value of the momentum is quite abstract. However wavelength and group velocity are easier to understand. Luckily we can get these two values very easily from the momentum. The associated wavelength and group velocity are given below in nm and nm/ps respectively: ```python wavelength = 2*np.pi*hbar/p0 v = p0/m wavelength * 1e9, v * 1e9/1e12 ``` Finally, we define the wave function $\psi$ and its associated probability density $|\psi|^2$: ```python psi = 1/((2*np.pi)**(1/4)*np.sqrt(sigma)) * np.exp(-1/2 *(x-x0)**2/(2*sigma**2)) * np.exp(1j*p0*(x-x0)/hbar) prob = abs(psi)**2 ``` ### Verification of theoretical properties What follow are some checks to verify the initial conditions of the wavepacket. We begin by computing derivatives of the wavefunction: ```python # First spatial derivative of psi dpsi0dx = np.zeros(Nx, dtype="complex256") # dpsi0dx(1:Nx-1) = (psi(2:Nx) - psi(1:Nx-1)) / dx # dpsi0dx(1) = (psi(2) - psi(1)) / (dx) dpsi0dx[2:Nx-1] = (psi[3:Nx] - psi[1:Nx-2]) / (2*dx) # dpsi0dx(Nx) = (psi(Nx) - psi(Nx-1)) / (dx) # Second spatial derivative of psi d2psi0dx2 = np.zeros(Nx, dtype="complex256") # d2psi0dx2(1:Nx-1) = (dpsi0dx(2:Nx) - dpsi0dx(1:Nx-1)) / dx # d2psi0dx2(1) = (dpsi0dx(2) - dpsi0dx(1)) / dx d2psi0dx2[2:Nx-1] = (dpsi0dx[3:Nx] - dpsi0dx[1:Nx-2]) / (2*dx) # d2psi0dx2(Nx) = (dpsi0dx(Nx) - dpsi0dx(Nx-1)) / dx ``` We can then check the physical quantities we computed in the theory section: ```python total_probability = np.trapz(prob * dx) total_probability ``` 0.99378996877180826765 ```python average_position = np.trapz(x * prob * dx); x0, average_position ``` (2.5e-08, 2.5020039908209068836e-08) ```python average_momentum = np.trapz(np.conj(psi) * hbar / 1j * dpsi0dx * dx); p0, average_momentum ``` (1.7307827529000001e-37, (1.7195488195355279624e-37+9.594754951586863072e-29j)) ```python kinetic_energy = p0**2/(2*m) + hbar**2/(2*m) * 1/(4*sigma**2) average_kinetic_energy = np.trapz(np.conj(psi) * -hbar**2/(2*m) * d2psi0dx2 * dx) kinetic_energy, average_kinetic_energy ``` (8.031926041954226e-23, (7.978957460834612074e-23+4.857173437671517596e-35j)) ```python potential_energy = 1/2 * m * omega**2 * sigma**2 V = 1/2 * m * omega**2 * (x-x0)**2 average_potential_energy = np.trapz(V * prob * dx) potential_energy, average_potential_energy ``` (1.9974736850373786e-21, 1.897536138239393811e-21) ```python total_energy = kinetic_energy + potential_energy; average_total_energy = average_kinetic_energy + average_potential_energy; E_0, total_energy, average_total_energy ``` (8.010882825e-22, 2.077792945456921e-21, (1.9773257128477399318e-21+4.857173437671517596e-35j)) ## Conclusion Globally, all physical quantities follow the theoretical predictions for any good momentum. However, the problem is choosing the initial value of the momentum depending on the parameters (namely $\sigma$ and $\Delta E$). There also seems to be an influence on the precision depending on the value of $p_0$.
1dbe33815b28e67ea63363bdbb00df12aae68639
213,988
ipynb
Jupyter Notebook
physics/quantum-gaussian-wavepacket.ipynb
greglan/python_scripts
f2e98ed3fd975d79b0a6b569b65c850a7f4f3ab3
[ "MIT" ]
null
null
null
physics/quantum-gaussian-wavepacket.ipynb
greglan/python_scripts
f2e98ed3fd975d79b0a6b569b65c850a7f4f3ab3
[ "MIT" ]
null
null
null
physics/quantum-gaussian-wavepacket.ipynb
greglan/python_scripts
f2e98ed3fd975d79b0a6b569b65c850a7f4f3ab3
[ "MIT" ]
null
null
null
131.76601
133,259
0.833313
true
5,343
Qwen/Qwen-72B
1. YES 2. YES
0.92944
0.874077
0.812403
__label__eng_Latn
0.811068
0.725816
# Kapitel 4 ## Perceptron Lernalgorithmus ```python # Grafische Darstellung import matplotlib.pyplot as plt # Zufall from random import choice # Für die mathematischen Operationen from numpy import array, dot, random, linspace, zeros # Ganz wichtig, sonst wird der Plot nicht angezeigt %matplotlib inline # Trainingsdaten # Pro Zeile: die binären Inputdaten und die gewünschte binäre Ausgabe # in einer Liste von Tupeln. # An der Stelle 0 des Inputvektors ist das Bias Neuron training_data_set = [ (array([1,0,0]), 0), (array([1,0,1]), 1), (array([1,1,0]), 1), (array([1,1,1]), 1), ] # Die heaviside Stufenfunktion als Lambda Funktion heaviside = lambda x: 0 if x < 0 else 1 # Anfangsinitialisierung des Zufallgenerators wegen # Reproduzierbarkeit der Ergebnisse random.seed( 18 ) # irgendein Wert # Array von Länge 3 mit 0 initialisieren w = zeros(3) # Die Anzahl der Durchläufe. Erfahrungswert durch Probieren iterations = 25 # Start des Trainierens def fit(iterations, training_data_set,w): """ Lernen im Perceptron iterations: Ein Vorwärts- und Rückwärtslauf aller Trainingsbeispiele trainings_data_set: Die Trainingsbeispiele w: Die Gewichte zum Starten """ errors = [] weights = [] for i in range(iterations): # zufällige Auswahl eines Trainingsbeispiels training_data = choice(training_data_set) x = training_data[0] y = training_data[1] # Den errechneten Output ermitteln: Gewichtete Summe mit # nachgelagerter Stufenfunktion y_hat = heaviside(dot(w, x)) # Fehler berechnen als Differenz zwischen gewünschtem und # aktuellem Output error = y - y_hat # Fehler sammeln für die Ausgabe errors.append(error) # Gewichte sammeln für spätere Ausgabe weights.append(w) # Gewichtsanpassung = Das Lernen… x_i ist entweder 0 oder 1 w += error * x # Rückgabe der Fehler und Gewichte return errors, weights # Trainieren # Wir sammeln die Fehler/Gewichte in jedem Schritt für die grafische Ausgabe errors, weights = fit(iterations, training_data_set,w) # Den letzten Gewichtsvektor ausgeben w = weights[iterations-1] print("Gewichtsvektor am Ende des Trainings:") print((w)) # Auswertung nach dem Trainieren print("Auswertung am Ende des Trainings:") for x, y in training_data_set: y_hat = heaviside(dot(x, w)) print("{}: {} -> {}".format(x, y, y_hat)) #------------------------------------------------------- # Grafik für Fehler pro Lernbeispiel :-) # Figure Nummern Start fignr = 1 # Druckgröße in inch plt.figure(fignr,figsize=(10,10)) # Ausgabe Fehler als Plot plt.plot(errors) # Raster plt.style.use('seaborn-whitegrid') # Labels plt.xlabel('Iterationen') # Label der y-Achse mit Hilfe von LaTex plt.ylabel(r"$(y - \hat y)$") ``` ## Estimator und Predictor ```python # Numpy hilft uns mit den arrays import numpy as np # Das sind unsere Basisklassen from sklearn.base import BaseEstimator, ClassifierMixin # Prüfroutinen für die Konsistenz der Daten, etc. from sklearn.utils.validation import check_X_y, check_is_fitted, check_random_state # Puffern der unterschiedlichen Zielwerte from sklearn.utils.multiclass import unique_labels # Ganz wichtig, sonst wird der Plot nicht angezeigt %matplotlib inline # Unser Estimator, passend bezeichnet und die Basisklassen class PerceptronEstimator(BaseEstimator, ClassifierMixin): # Initialisierung def __init__(self, n_iterations=20, random_state=None): """ Initialisierung der Objekte n_iterations: Anzahl der Iterationen für das Lernen random_state: Um Wiederholbarkeit zu garantieren sollte ein numpy.random.RandomState Objekt konstruiert werden, das mit random_state Seed initialisiert wurde """ # Die Anzahl der Iterationen self.n_iterations = n_iterations # Die Seed für den Zufallsgenerator self.random_state = random_state # Die Fehler im Lernprozeß für den Plot gepuffert self.errors = [] # Eine Stufenfunktion, benannt nach dem Mathematiker und Physiker # Oliver Heaviside def heaviside(self, x): """ Eine Stufenfunktion x: Der Wert für den die Stufenfunktion ausgewertet wird """ if x < 0: result = 0 else: result = 1 return result # Lernen def fit(self, X=None, y=None ): """ Trainieren X: Array-ähnliche Struktur mit [N,D], wobei N = Zeilen = Anzahl der Lernbeispiele und D = Spalten = Anzahl der Features y: Array mit [N], mit N so wie oben """ # Erzeugung des Zufallsgenerators (RNG) self.random_state_ = check_random_state(self.random_state) # Gewichtinitialisierung # np.size(.,1) = Anzahl der Spalten self.w = self.random_state_.random_sample(np.size(X,1)) # Prüfe, ob X und y die korrekte shape haben: X.shape[0] = y.shape[0] X, y = check_X_y(X, y) # Die eindeutigen Zielwerte speichern self.classes_ = unique_labels(y) # Lerndaten für spätere Prüfung in Methode predict speichern self.X_ = X self.y_ = y # Lernen for i in range(self.n_iterations): # zufälliges durchwürfeln, für batch size = 1 # np.size(.,0) = Anzahl der Zeilen rand_index = self.random_state_.randint(0,np.size(X,0)) # Ein zufälliger Inputvektor x_ = X[rand_index] # Ein dazu passender Output y_ = y[rand_index] # Den errechneten Output ermitteln: # Gewichtete Summe mit nachgelagerter Stufenfunktion y_hat = self.heaviside(dot(self.w, x_)) # Fehler berechnen als Differenz zwischen gewünschtem und # aktuellem Output error = y_ - y_hat # Fehler sammeln für die Ausgabe self.errors.append(error) # Gewichtsanpassung = Das Lernen self.w += error * x_ # Rückgabe des Estimators für verknüpfte Aufrufe return self # Auswerten def predict(self, x): """ Auswerten eines Vektors x: Ein Test Inputvektor """ # Prüfen, ob fit berereits aufgerufen wurde # Die Daten wurden in der Methode fit gesetzt check_is_fitted(self, ['X_', 'y_']) # Auswerten, Forward Path y_hat = self.heaviside(dot(self.w,x)) return y_hat # Plot def plot(self): """ Ausgabe des Fehlers Die im Fehlerarray gespeicherten Fehler als Grafik ausgeben """ # Figure Nummern Start fignr = 1 # Druckgröße in inch plt.figure(fignr,figsize=(5,5)) # Ausgabe Fehler als Plot plt.plot(self.errors) # Raster plt.style.use('seaborn-whitegrid') # Labels plt.xlabel('Iterationen') plt.ylabel(r"$(y - \hat y)$") # Trainingsdaten X = np.array([[1,0,0], [1,0,1], [1,1,0],[1,1,1]]) y = np.array([0,1,1,1]) # Lernen Perceptron = PerceptronEstimator(20,10) Perceptron.fit(X,y) # Testdaten x = np.array([1,0,0]) # Auswertung for index, x in enumerate(X): p = Perceptron.predict(x) print("{}: {} -> {}".format(x, y[index],p)) # Graph ausgeben Perceptron.plot() ``` ## Scikit-Learn Perceptron ```python # Scikit-Learn Perceptron import numpy as np # Das bereits bekannte Iris Dataset from sklearn.datasets import load_iris # Ladies and Gentlemen – Das Perceptron from sklearn.linear_model import Perceptron # Den Iris Datensatz laden iris = load_iris() # Die Eingabevektoren für das Lernen. # 150 Vektoren mit 5 Spalten X = iris.data[:,(2,3)] # petal length, petal width # Die gewünschten Werte y = iris.target # Das Perceptron instanziieren # random_state = Seed für Zufallsgenerator # max_iter = Maximale Anzahl an Iterationen # tol = Stoppkriterium Perceptron = Perceptron(random_state=49,max_iter=100000,tol=None) # Lernen bitte Perceptron.fitt(X,y) # und auswerten: Iris-setosa, Iris-versicolor, Iris-virginca y_prediction = Perceptron.predict([ [1.4,0.2], [3.5,1.0], [6.0,2.5]]) # natürlich die Ausgabe nicht vergessen print(y_prediction) ``` ## Adaline ```python from sklearn.base import BaseEstimator, ClassifierMixin # Prüfroutinen from sklearn.utils.validation import check_X_y, check_array, check_is_fitted, check_random_state # Speichern from sklearn.utils.multiclass import unique_labels # Ganz wichtig, sonst wird der Plot nicht angezeigt %matplotlib inline import numpy as np import matplotlib.pyplot as plt from random import choice import math import sympy class AdalineEstimator(BaseEstimator, ClassifierMixin): # Init def __init__(self, eta=.001, n_iterations=500, random_state=None): """ Initialisierung der Objekte eta: Lernrate n_iterations: Anzahl der Iterationen für das Lernen random_state: Um Wiederholbarkeit zu garantieren sollte ein numpy.random.RandomState Objekt konstruiert werden, das mit random_state Seed initialisiert wurde batch: Batchlernen anwenden? """ # Die Anzahl der Iterationen self.n_iterations = n_iterations # Die Lernrate self.eta = eta # Die Seed für den Zufallsgenerator self.random_state = random_state # Die Fehler im Lernprozeß self.errors = [] # Gewichte für die Berechnung im KNN self.w = [] # Alle Gewichte für Plot, zum Zeichnen der Trenngeraden self.wAll = [] # Der gewichtete Input def net_i(self, x): """ Den gewichteten Input w*x berechnen x: Ein Vektor """ return np.dot(x, self.w) # Aktivierungsfunktion, so wie im Kapitel 1 besprochen def activation(self, x): """ Lineare Aktivierungsfunktion """ return self.net_i(x) # Outputfunktion, wobei der Output 1 und -1 sein kann # im Gegensatz zum Perceptron, wo 1 und 0 ausgegeben werden def output(self, x): """ Outputfunktion """ if self.activation(x) >= 0.0: return 1 else: return -1 # Lernen def fit(self, X=None, y=None): """ Trainieren X: Array-ähnliche Struktur mit [N,D], wobei N = Zeilen = Anzahl der Lernbeispiele und D = Spalten = Anzahl der Features y: Array mit [N], mit N so wie oben """ # Erzeugung des Zufallsgenerators (RNG) self.random_state_ = check_random_state(self.random_state) # Gewichtinitialisierung self.w = self.random_state_.random_sample(np.size(X,1)) # np.size(.,1) = Anzahl der Spalten # Prüfe, ob X und y die korrekte Shape haben: X.shape[0] = y.shape[0] X, y = check_X_y(X, y) # Lerndaten für spätere Verwendung ablegen self.X_ = X self.y_ = y # Lernen mit Gradientenabstieg for i in range(self.n_iterations): # Optimales zufälliges durchwürfeln, für batch size = 1 rand_index = self.random_state_.randint(0,np.size(X,0)) # np.size(.,0) = Anzahl der Zeilen # Ein zufälliger Inputvektor x_ = X[rand_index] # Ein dazu passender Output (+1,-1) y_ = y[rand_index] # net input berechnen net_j = np.dot(x_, self.w) # Fehler zwischen gewünschem Output und net input error = (y_ - net_j)**2 self.errors.append(error) # Online Learning # Variante 1: Schön langsam erklärt, bei Verwendung Variante 2 kommentieren for j in range(3): weight = {} self.w[j] += self.eta * x_[j] * (y_ - net_j) weight[0] = self.w[0] weight[1] = self.w[1] weight[2] = self.w[2] self.wAll.append(weight) # 3 * nr_iterations # Variante 2: Kompakter implementiert, bei Verwendung Variante 1 kommentieren # self.w += self.eta * x_ * (y_ - net_j) # self.wAll.append(self.w) # Auswerten def predict(self,x): """ Auswerten eines Vektors x: Ein Test Inputvektor """ # Prüfen, ob fit gerufen wurde check_is_fitted(self, ['X_', 'y_']) return self.output(x) # Anzeigen def plot(self): x1 = [] x2 = [] colors = [] for i in range(self.X_.shape[0]): x1.append(self.X_[i][1]) x2.append(self.X_[i][2]) y = self.y_[i] if y == 1: colors.append('r') # rot else: colors.append('b') # blau # Errors plt.plot(self.errors) # Learning Curve plt.figure(1) plt.show() # Scatter plt.figure(2) plt.scatter(x1, x2,c=colors) # Result Line x1Line = np.linspace(0.0, 1.0, 2) x2Line = lambda x1, w0, w1, w2: (-x1*w1 - w0) / w2; alpha = 0.0 for idx, weight in enumerate(self.wAll): # alpha = Transparenz, je näher zum Ziel desto dünkler if (idx % 500 == 0): alpha = 1.0 #( idx / len(self.wAll) ) plt.plot(x1Line, x2Line(x1Line,weight[0],weight[1],weight[2]), alpha=alpha , linestyle='solid', label=str(idx), linewidth=1.5) # Ergebnisgerade plt.plot(x1Line, x2Line(x1Line,weight[0],weight[1],weight[2]), alpha=alpha , linestyle='solid', label=str(idx), linewidth=2.0) plt.legend(loc='best', shadow=True) ### MAIN ### # Erzeugung des Zufallsgenerators (RNG) random_state = check_random_state(10) # Initialisierung I = [] o = [] # Datensatz aufbauen for x in random_state.random_sample(20): y = random_state.random_sample() I.append([1, x, y+1.0]) # Falls +0.0, dann überlappende Mengen o.append(1) for x in random_state.random_sample(20): y = random_state.random_sample() I.append([1, x, y-1.0]) # Falls +0.0, dann überlappende Mengen o.append(-1) # numpy array bauen X = np.array(I) y = np.array(o) # Walte deines Amtes Estimator Adaline = AdalineEstimator(eta=0.01,n_iterations=500, random_state=10) Adaline.fit(X,y) Adaline.plot() ``` ```python ```
fa2e5b6241509b2010cda2c560e5d6804985ae75
71,683
ipynb
Jupyter Notebook
Kapitel 4.ipynb
RolandSchwaigerNor/knn_mit_python
5973decdd3e276ef66c8a21579a553a307ebe59e
[ "MIT" ]
null
null
null
Kapitel 4.ipynb
RolandSchwaigerNor/knn_mit_python
5973decdd3e276ef66c8a21579a553a307ebe59e
[ "MIT" ]
null
null
null
Kapitel 4.ipynb
RolandSchwaigerNor/knn_mit_python
5973decdd3e276ef66c8a21579a553a307ebe59e
[ "MIT" ]
null
null
null
119.671119
31,924
0.820948
true
4,074
Qwen/Qwen-72B
1. YES 2. YES
0.896251
0.718594
0.644041
__label__deu_Latn
0.894281
0.334654
<a href="https://colab.research.google.com/github/pedroblossbraga/MachineLearning-Pre-Processing-with-Python/blob/master/Effects_of_transformations_in_XGBoostRegressor_example.ipynb" target="_parent"></a> ## Tests with different data transformations applied to XGBoost Samples: - original data - linearly transformated data - minmax scaled data - pseudo-random data ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from xgboost import XGBRegressor from sklearn.metrics import mean_absolute_error ``` ```python from sklearn.metrics import mean_squared_error ``` ```python import matplotlib.pyplot as plt import seaborn as sns import statistics from IPython.display import display ``` ```python import warnings warnings.filterwarnings("ignore") ``` ```python from sklearn.datasets import load_boston X, y = load_boston(return_X_y=True) ``` ```python train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2) ``` ```python # lidar com os valores ausentes df_imputer = SimpleImputer() train_X = df_imputer.fit_transform(train_X) test_X = df_imputer.transform(test_X) ``` ```python def test_XGBoost(train_X, train_y, test_X, test_y, plot_residuals=True): # instanciar o modelo XGBoost model = XGBRegressor() # chamar o fit para o modelo model.fit(train_X, train_y, verbose=False) # fazer previsões em cima do dataset de teste predictions = model.predict(test_X) print("Mean Absolute Error: {:.2f}".format(mean_absolute_error(predictions, test_y))) if plot_residuals: plt.figure(figsize=(15,3)) plt.subplot(1,2,1) plt.title("predictions") sns.distplot(predictions) plt.axvline(statistics.mean(predictions), color='red') plt.subplot(1,2,2) plt.title(r'residuals $\epsilon = |\hat{y} - y|$') sns.distplot(abs(predictions-test_y)) plt.axvline(statistics.mean(abs(predictions-test_y)), color='red') plt.show() return mean_absolute_error(y_pred=predictions, y_true=test_y), mean_squared_error(y_true=test_y, y_pred=predictions) ``` ### original data ```python mae0, mse0 = test_XGBoost(train_X, train_y, test_X, test_y) ``` ### linearly transformed \begin{equation} X_1 = \{x_j + k\}_{j=1}^N, k \in \mathbb{N} \end{equation} ```python k=20 mae1, mse1 = test_XGBoost(train_X+k, train_y+k, test_X+k, test_y+k) ``` ### Min-Max scaled \begin{equation} \hat{X} = \left\{ \frac{x_j - min \{ X \} }{max \{ X \} - min \{ X \} } \right\}_{j=1}^N \end{equation} ```python def minmaxscale(v): return (v - v.min(axis=0))/(v.max(axis=0)-v.min(axis=0)) mae2, mse2 = test_XGBoost( minmaxscale(train_X), minmaxscale(train_y), minmaxscale(test_X), minmaxscale(test_y) ) ``` ```python import numpy as np def randomize_matrix(X): X_ = X.copy() if len(X_.shape)==1: # vector for i in range(X_.shape[0]): X_[i] = np.random.randint(-20, 20) else: # matrix for lin in range(X_.shape[0]): for col in range(X_.shape[1]): X_[lin][col] = np.random.randint(-20, 20) return X_ ``` ### Pseudo-random data ```python mae3, mse3 = test_XGBoost( randomize_matrix(train_X), randomize_matrix(train_y), randomize_matrix(test_X), randomize_matrix(test_y) ) ``` ```python erros = { 'MAE': [mae0, mae1, mae2, mae3], 'MSE': [mse0, mse1, mse2, mse3], 'transf': ['original', 'linear', 'minmax', 'pseudo-random'] } display(pd.DataFrame(erros)) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>MAE</th> <th>MSE</th> <th>transf</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1.947568</td> <td>7.555698</td> <td>original</td> </tr> <tr> <th>1</th> <td>1.960215</td> <td>8.868490</td> <td>linear</td> </tr> <tr> <th>2</th> <td>0.057456</td> <td>0.006035</td> <td>minmax</td> </tr> <tr> <th>3</th> <td>11.327111</td> <td>170.878044</td> <td>pseudo-random</td> </tr> </tbody> </table> </div>
de408b4ce889cc61377a3c7c58c48e2a65dcd657
116,443
ipynb
Jupyter Notebook
Effects_of_transformations_in_XGBoostRegressor_example.ipynb
pedroblossbraga/MachineLearning-Pre-Processing-with-Python
55aa2897ddf75e295aa8a014049273e8636e5c5b
[ "MIT" ]
2
2020-01-13T20:09:37.000Z
2020-01-20T01:13:49.000Z
Effects_of_transformations_in_XGBoostRegressor_example.ipynb
pedroblossbraga/MachineLearning-Pre-Processing-with-Python
55aa2897ddf75e295aa8a014049273e8636e5c5b
[ "MIT" ]
null
null
null
Effects_of_transformations_in_XGBoostRegressor_example.ipynb
pedroblossbraga/MachineLearning-Pre-Processing-with-Python
55aa2897ddf75e295aa8a014049273e8636e5c5b
[ "MIT" ]
1
2021-03-16T17:53:12.000Z
2021-03-16T17:53:12.000Z
235.238384
28,454
0.902227
true
1,358
Qwen/Qwen-72B
1. YES 2. YES
0.851953
0.833325
0.709953
__label__eng_Latn
0.279714
0.487791
# Numerical norm bounds for cartpole For a cartpole system with state $y = \begin{bmatrix}x & \dot{x} & \varphi & \dot{\varphi} \end{bmatrix}^T$ we have | \begin{equation} \dot{y} = \begin{bmatrix} \dot{x} \\ \frac{u + m_p \sin\varphi (l \dot{\varphi}^2 + g \cos\varphi)}{m_c + m_p \sin^2\varphi} \\ \dot{\varphi} \\ \frac{-u\cos\varphi - m_p l \dot{\varphi}^2 \cos\varphi \sin\varphi - (m_c+m_p)g\sin\varphi}{l(m_c + m_p \sin^2\varphi)} \end{bmatrix}. \end{equation} Evaluating the corresponding Jacobian at 0 (in the state and action space) yields: \begin{equation} \nabla_{\begin{bmatrix} y & u \end{bmatrix}^T} f(0)\begin{bmatrix} y \\ u \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \frac{-m_p g \varphi + u}{m_c}\\ \dot{\varphi} \\ \frac{g(m_c + m_p)\varphi - u}{l m_c} \end{bmatrix} \end{equation} We want to find an NLDI of the form \begin{equation} \dot{y} = \nabla_{\begin{bmatrix} y & u \end{bmatrix}^T} f(0) \begin{bmatrix} y \\ u \end{bmatrix} + I p, \;\; \|p\| \leq \|Cy + Du\| \end{equation} To find $C$ and $D$," we determine an entry-wise norm bound. That is, for $i=1,\ldots,4$, we want to find $F_i$ such that for all $y$ such that $y_{\text{min}} \leq y \leq y_{\text{max}}$, and all $u$ such that $u_{\text{min}} \leq u \leq u_{\text{max}}$: \begin{equation} (\nabla f_i(0) \begin{bmatrix} y \\ u \end{bmatrix} - \dot{y}_i)^2 \leq \begin{bmatrix} y \\ u \end{bmatrix}^T F_i \begin{bmatrix} y \\ u \end{bmatrix} \end{equation} and then write \begin{equation} \|\dot{y} - \nabla f(0)\begin{bmatrix} y \\ u \end{bmatrix}\|_2 \leq \|\begin{bmatrix} F_1^{1/2} \\ F_2^{1/2} \\ F_3^{1/2} \\ F_4^{1/2} \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} \| = \|\begin{bmatrix} F_1^{1/2} \\ F_2^{1/2} \\ F_3^{1/2} \\ F_4^{1/2} \end{bmatrix}_{:, :n} y + \begin{bmatrix} F_1^{1/2} \\ F_2^{1/2} \\ F_3^{1/2} \\ F_4^{1/2} \end{bmatrix}_{:, n:n+m} u \|, \end{equation} where $n = \dim(y) = 4$, $m = \dim(u) = 1$. ```python import numpy as np import cvxpy as cp import scipy.linalg as sla ``` ```python g = 9.81 l = 1 mc = 1 mp = 1 ``` ## Define max and min values ```python # State is: [y, u] = [x, xdot, phi, phidot, u]^T s_max = np.array([1.2, 1.0, 0.1, 1.0, 10]) s_min = np.array([-1.2, -1.0, -0.1, -1.0, -10]) x_max, xdot_max, phi_max, phidot_max, u_max = s_max x_min, xdot_min, phi_min, phidot_min, u_min = s_min n = 4 m = 1 nm = n+m x_idx, xdot_idx, phi_idx, phidot_idx, u_idx = range(nm) ``` ## Find element-wise bounds ### $f_1$ No error -- linearization is the same as original ### $f_2$ ```python gridnum = 50 phi = np.linspace(phi_min, phi_max, gridnum) phidot = np.linspace(phidot_min, phidot_max, gridnum) u = np.linspace(u_min, u_max, gridnum) Phi, Phidot, U = np.meshgrid(phi, phidot, u) v2 = np.ravel(( (-mp*g*Phi + U)/mc - (U + mp*np.sin(Phi)*(l*Phidot**2 - g*np.cos(Phi)))/(mc + mp*np.sin(Phi)**2) )**2) U2 = np.array([np.ravel(Phi*Phi), np.ravel(Phidot*Phidot), np.ravel(U*U), 2*np.ravel(Phi*Phidot), 2*np.ravel(Phi*U), 2*np.ravel(Phidot*U)]).T ``` ```python c2 = cp.Variable(6) cp.Problem(cp.Minimize(cp.max(U2@c2 - v2)), [U2@c2 >= v2, c2[:3]>=0]).solve(verbose=True, solver=cp.MOSEK) ``` Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250003 Cones : 0 Scalar variables : 7 Matrix variables : 0 Integer variables : 0 Optimizer started. Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250003 Cones : 0 Scalar variables : 7 Matrix variables : 0 Integer variables : 0 Optimizer - threads : 2 Optimizer - solved problem : the dual Optimizer - Constraints : 7 Optimizer - Cones : 0 Optimizer - Scalar variables : 122381 conic : 0 Optimizer - Semi-definite variables: 0 scalarized : 0 Factor - setup time : 0.06 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 28 after factor : 28 Factor - dense dim. : 0 flops : 6.01e+06 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 1.5e+00 9.1e+04 2.2e+01 0.00e+00 0.000000000e+00 1.625858229e+01 2.1e+00 0.39 1 3.6e-01 2.1e+04 5.2e+00 3.53e+01 4.163932841e-02 1.532790485e-01 4.9e-01 0.44 2 6.7e-02 4.0e+03 9.8e-01 1.68e+00 3.515579040e-02 4.940871768e-02 9.3e-02 0.48 3 2.7e-03 5.0e+02 1.5e-01 1.56e+00 2.985705958e-02 3.168708727e-02 1.1e-02 0.50 4 9.3e-04 1.7e+02 5.2e-02 1.50e+00 2.376829379e-02 2.427345456e-02 3.8e-03 0.53 5 5.9e-04 1.1e+02 3.2e-02 1.29e+00 2.174807682e-02 2.204270508e-02 2.4e-03 0.57 6 5.8e-04 1.1e+02 3.2e-02 1.17e+00 2.174438032e-02 2.203805958e-02 2.4e-03 0.60 7 3.4e-04 6.2e+01 1.9e-02 1.17e+00 2.063719469e-02 2.080234539e-02 1.4e-03 0.63 8 3.4e-04 6.2e+01 1.9e-02 1.05e+00 2.066347025e-02 2.082840854e-02 1.4e-03 0.67 9 2.3e-04 4.1e+01 1.3e-02 1.06e+00 2.047042791e-02 2.057992248e-02 9.4e-04 0.69 10 1.9e-04 3.4e+01 1.0e-02 1.03e+00 2.047127610e-02 2.056123143e-02 7.7e-04 0.73 11 1.3e-05 2.4e+00 7.2e-04 1.03e+00 2.039796556e-02 2.040419103e-02 5.4e-05 0.75 12 2.7e-06 4.9e-01 1.5e-04 1.00e+00 2.035598433e-02 2.035726696e-02 1.1e-05 0.78 13 5.0e-07 9.0e-02 2.8e-05 1.00e+00 2.035544856e-02 2.035568516e-02 2.0e-06 0.80 14 4.5e-08 8.2e-03 2.5e-06 1.00e+00 2.035505409e-02 2.035507569e-02 1.9e-07 0.83 15 4.6e-12 8.3e-07 2.5e-10 1.00e+00 2.035504100e-02 2.035504101e-02 1.9e-11 0.86 Basis identification started. Primal basis identification phase started. Primal basis identification phase terminated. Time: 0.00 Dual basis identification phase started. Dual basis identification phase terminated. Time: 0.00 Basis identification terminated. Time: 0.04 Optimizer terminated. Time: 0.99 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 2.0355041003e-02 nrm: 2e+00 Viol. con: 4e-14 var: 0e+00 Dual. obj: 2.0355041005e-02 nrm: 3e-01 Viol. con: 0e+00 var: 2e-12 Basic solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 2.0355041003e-02 nrm: 2e+00 Viol. con: 1e-11 var: 0e+00 Dual. obj: 2.0355041002e-02 nrm: 4e-01 Viol. con: 1e-17 var: 1e-14 0.020355041002912407 ```python c2 = c2.value c2 ``` array([ 1.73328132e+00, 1.28470585e-02, 2.62093606e-05, 5.11706867e-13, -6.42813415e-03, 1.55358430e-15]) ```python C2 = np.zeros((nm,nm)) C2[phi_idx, phi_idx] = c2[0]/2 C2[phidot_idx, phidot_idx] = c2[1]/2 C2[u_idx, u_idx] = c2[2]/2 C2[phi_idx, phidot_idx] = c2[3] C2[phi_idx, u_idx] = c2[4] C2[phidot_idx, u_idx] = c2[5] C2 += C2.T ``` ```python np.linalg.eig(C2)[0] ``` array([1.28470585e-02, 1.73330516e+00, 2.36962697e-06, 0.00000000e+00, 0.00000000e+00]) ```python gam2 = np.real(sla.sqrtm(C2)) gam2 ``` array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.31653239e+00, 3.57965622e-13, -4.87685586e-03], [ 0.00000000e+00, 0.00000000e+00, 3.57965622e-13, 1.13344865e-01, 2.87142270e-14], [ 0.00000000e+00, 0.00000000e+00, -4.87685586e-03, 2.87142270e-14, 1.55744585e-03]]) ### $f_3$ No error -- linearization is the same as original ### $f_4$ ```python gridnum = 50 phi = np.linspace(phi_min, phi_max, gridnum) phidot = np.linspace(phidot_min, phidot_max, gridnum) u = np.linspace(u_min, u_max, gridnum) "" Phi, Phidot, U = np.meshgrid(phi, phidot, u) "" v4 = np.ravel(( (g*(mc+mp)*Phi - U)/(l*mc) - (U*np.cos(Phi) + mp*l*(Phidot**2)*np.cos(Phi)*np.sin(Phi) - (mc+mp)*g*np.sin(Phi))/( -l*(mc + mp*np.sin(Phi)**2)) )**2) U4 = np.array([np.ravel(Phi*Phi), np.ravel(Phidot*Phidot), np.ravel(U*U), 2*np.ravel(Phi*Phidot), 2*np.ravel(Phi*U), 2*np.ravel(Phidot*U)]).T ``` ```python c4 = cp.Variable(6) cp.Problem(cp.Minimize(cp.max(U4@c4 - v4)), [U4@c4 >= v4, c4[:3]>=0]).solve(verbose=True, solver=cp.MOSEK) ``` Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250003 Cones : 0 Scalar variables : 7 Matrix variables : 0 Integer variables : 0 Optimizer started. Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250003 Cones : 0 Scalar variables : 7 Matrix variables : 0 Integer variables : 0 Optimizer - threads : 2 Optimizer - solved problem : the dual Optimizer - Constraints : 7 Optimizer - Cones : 0 Optimizer - Scalar variables : 122381 conic : 0 Optimizer - Semi-definite variables: 0 scalarized : 0 Factor - setup time : 0.06 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 28 after factor : 28 Factor - dense dim. : 0 flops : 6.01e+06 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 1.6e+00 9.2e+04 3.9e+01 0.00e+00 0.000000000e+00 2.778799058e+01 2.1e+00 0.41 1 3.0e-01 1.7e+04 7.4e+00 2.87e+01 6.326255012e-02 2.890161114e-01 4.1e-01 0.46 2 3.7e-02 2.2e+03 9.2e-01 1.47e+00 5.633976511e-02 7.704543125e-02 5.0e-02 0.50 3 1.1e-03 4.5e+02 2.7e-01 1.58e+00 4.680001018e-02 5.190181357e-02 1.0e-02 0.53 4 3.0e-04 1.3e+02 7.6e-02 1.37e+00 3.869236676e-02 3.989925610e-02 2.8e-03 0.56 5 1.5e-04 6.1e+01 3.7e-02 1.34e+00 3.354007279e-02 3.406089289e-02 1.4e-03 0.59 6 1.5e-04 6.1e+01 3.7e-02 1.16e+00 3.354082164e-02 3.406080416e-02 1.4e-03 0.62 7 1.1e-04 4.7e+01 2.8e-02 1.16e+00 3.276598661e-02 3.315636257e-02 1.1e-03 0.66 8 8.2e-05 3.4e+01 2.0e-02 1.09e+00 3.244980364e-02 3.273125973e-02 7.7e-04 0.68 9 7.8e-05 3.2e+01 1.9e-02 1.04e+00 3.248495838e-02 3.275085703e-02 7.2e-04 0.71 10 9.4e-06 3.9e+00 2.3e-03 1.03e+00 3.232963484e-02 3.236145378e-02 8.7e-05 0.74 11 1.9e-06 8.0e-01 4.8e-04 1.01e+00 3.227233826e-02 3.227891845e-02 1.8e-05 0.77 12 1.4e-07 5.8e-02 3.5e-05 1.00e+00 3.226362929e-02 3.226411067e-02 1.3e-06 0.80 13 4.9e-09 2.0e-03 1.2e-06 1.00e+00 3.226272756e-02 3.226274403e-02 4.5e-08 0.82 14 8.0e-13 3.3e-07 2.0e-10 1.00e+00 3.226271785e-02 3.226271786e-02 7.4e-12 0.84 Basis identification started. Primal basis identification phase started. Primal basis identification phase terminated. Time: 0.00 Dual basis identification phase started. Dual basis identification phase terminated. Time: 0.00 Basis identification terminated. Time: 0.03 Optimizer terminated. Time: 0.97 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 3.2262717854e-02 nrm: 3e+00 Viol. con: 1e-14 var: 0e+00 Dual. obj: 3.2262717857e-02 nrm: 5e-01 Viol. con: 0e+00 var: 2e-11 Basic solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 3.2262717854e-02 nrm: 3e+00 Viol. con: 1e-12 var: 0e+00 Dual. obj: 3.2262717853e-02 nrm: 5e-01 Viol. con: 0e+00 var: 7e-15 0.032262717853947874 ```python c4 = c4.value c4 ``` array([ 2.86341906e+00, 1.43252388e-02, 8.28430784e-05, -1.71779544e-12, -1.05858385e-02, -1.88719950e-14]) ```python C4 = np.zeros((nm,nm)) C4[phi_idx, phi_idx] = c4[0]/2 C4[phidot_idx, phidot_idx] = c4[1]/2 C4[u_idx, u_idx] = c4[2]/2 C4[phi_idx, phidot_idx] = c4[3] C4[phi_idx, u_idx] = c4[4] C4[phidot_idx, u_idx] = c4[5] C4 += C4.T ``` ```python np.linalg.eig(C4)[0] ``` array([1.43252388e-02, 2.86345820e+00, 4.37074558e-05, 0.00000000e+00, 0.00000000e+00]) ```python gam4 = np.real(sla.sqrtm(C4)) gam4 ``` array([[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 1.69215254e+00, -9.48768893e-13, -6.23141107e-03], [ 0.00000000e+00, 0.00000000e+00, -9.48768893e-13, 1.19688090e-01, -1.96197871e-13], [ 0.00000000e+00, 0.00000000e+00, -6.23141107e-03, -1.96197871e-13, 6.63419885e-03]]) ## Final system ```python A = np.array([[0, 1, 0, 0], [0, 0, -mp*g/mc, 0], [0, 0, 0, 1], [0, 0, g*(mc+mp)/(l*mc), 0]]) B = np.expand_dims(np.array([0, 1/mc, 0, -1/(l*mc)]), 1) # G_inv = np.array([[1, 0, 0, 0], # [0, a2[0], 0, a2[1]], # [0, 0, 1, 0], # [0, a4[0], 0, a4[1]]]) # G = np.linalg.inv(G_inv) G = np.eye(4) F = np.vstack([gam2, gam4]) C = F[:,:n] D = F[:,n:] ``` ### Check correctness ```python from IPython.core.debugger import set_trace ``` ```python def xdot_f(state, u): # x = state[:, 0] x_dot = state[:, 1] theta = state[:, 2] theta_dot = state[:, 3] u = u.flatten() sin_theta = np.sin(theta) cos_theta = np.cos(theta) temp = 1/(mc + mp * (sin_theta * sin_theta)) x_ddot = temp * (u + mp * np.sin(theta) * (l * (theta_dot**2) - g * cos_theta)) theta_ddot = -(1/l) * temp * (u * cos_theta + mp * l * (theta_dot**2) * cos_theta * sin_theta - (mc + mp) * g * sin_theta) return np.vstack([x_dot, x_ddot, theta_dot, theta_ddot]).T ``` ```python prop = np.random.random((10000, nm)) rand_ss = s_max*prop + s_min*(1-prop) rand_ys = rand_ss[:,:n] rand_us = rand_ss[:,n:] fx = xdot_f(rand_ys, rand_us) # print(np.linalg.norm((fx - rand_ys@A.T - rand_us@B.T)@np.linalg.inv(G).T, axis=1) <= \ # np.linalg.norm(rand_ys@C.T + rand_us@D.T, axis=1)) print((np.linalg.norm((fx - rand_ys@A.T - rand_us@B.T)@np.linalg.inv(G).T, axis=1) <= \ np.linalg.norm(rand_ys@C.T + rand_us@D.T, axis=1)).all()) ratio = np.linalg.norm(rand_ys@C.T + rand_us@D.T, axis=1)/np.linalg.norm( (fx - rand_ys@A.T - rand_us@B.T)@np.linalg.inv(G).T, axis=1) print(ratio.max()) print(ratio.mean()) print(np.median(ratio)) ``` True 84078.10099634247 69.84146506508074 5.992302081027291 ### Save ```python np.save('A.npy', A) np.save('B.npy', B) np.save('G.npy', G) np.save('C.npy', C) np.save('D.npy', D) ``` ## Check if robust LQR solves ```python import scipy.linalg as la ``` ```python Q = np.random.randn(n, n) Q = Q.T @ Q # Q = np.eye(n) R = np.random.randn(m, m) R = R.T @ R # R = np.eye(m) ``` ```python alpha = 0.001 n, m = B.shape wq = C.shape[0] S = cp.Variable((n, n), symmetric=True) Y = cp.Variable((m, n)) mu = cp.Variable() R_sqrt = la.sqrtm(R) f = cp.trace(S @ Q) + cp.matrix_frac(Y.T @ R_sqrt, S) cons_mat = cp.bmat(( (A @ S + S @ A.T + cp.multiply(mu, G @ G.T) + B @ Y + Y.T @ B.T + alpha * S, S @ C.T + Y.T @ D.T), (C @ S + D @ Y, -cp.multiply(mu, np.eye(wq))) )) cons = [S >> 0, mu >= 1e-2] + [cons_mat << 0] cp.Problem(cp.Minimize(f), cons).solve(solver=cp.MOSEK, verbose=True) K = np.linalg.solve(S.value, Y.value.T).T ``` Problem Name : Objective sense : min Type : CONIC (conic optimization problem) Constraints : 259 Cones : 0 Scalar variables : 31 Matrix variables : 3 Integer variables : 0 Optimizer started. Problem Name : Objective sense : min Type : CONIC (conic optimization problem) Constraints : 259 Cones : 0 Scalar variables : 31 Matrix variables : 3 Integer variables : 0 Optimizer - threads : 2 Optimizer - solved problem : the primal Optimizer - Constraints : 237 Optimizer - Cones : 1 Optimizer - Scalar variables : 17 conic : 16 Optimizer - Semi-definite variables: 3 scalarized : 130 Factor - setup time : 0.00 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 2.28e+04 after factor : 2.28e+04 Factor - dense dim. : 0 flops : 2.96e+06 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 1.0e+00 1.0e+01 1.0e+00 0.00e+00 0.000000000e+00 0.000000000e+00 1.0e+00 0.01 1 1.9e-01 1.9e+00 1.4e-01 -2.81e-01 -2.281270483e-01 7.099763692e-03 1.9e-01 0.04 2 4.4e-02 4.3e-01 1.4e-02 8.16e-01 -1.864024979e-02 7.937994766e-03 4.3e-02 0.05 3 5.6e-03 5.6e-02 5.5e-04 1.07e+00 1.033468323e-02 1.059336267e-02 5.5e-03 0.06 4 1.5e-03 1.5e-02 1.1e-04 9.37e-01 6.738530686e-02 6.977829923e-02 1.5e-03 0.07 5 4.3e-04 4.2e-03 3.2e-05 6.82e-03 1.795084991e-01 1.833424876e-01 4.2e-04 0.07 6 8.6e-05 8.5e-04 9.4e-06 -1.86e-01 4.157593139e-01 4.266345494e-01 8.5e-05 0.08 7 1.9e-05 1.9e-04 4.2e-06 -7.94e-01 1.197600207e+00 1.244557314e+00 1.9e-05 0.09 8 2.9e-06 2.9e-05 6.6e-07 -5.18e-01 2.986824762e+00 3.040107799e+00 2.9e-06 0.09 9 6.2e-07 6.2e-06 7.6e-08 3.93e-01 4.314244561e+00 4.329628937e+00 6.1e-07 0.10 10 8.3e-08 8.3e-07 4.0e-09 8.88e-01 4.623217394e+00 4.625594375e+00 8.2e-08 0.10 11 8.8e-09 8.7e-08 1.6e-10 9.85e-01 4.682839944e+00 4.683176564e+00 8.6e-09 0.11 12 1.1e-09 2.1e-10 2.0e-14 9.98e-01 4.688770677e+00 4.688771600e+00 2.3e-11 0.12 13 5.0e-10 5.2e-10 7.3e-15 1.00e+00 4.688778732e+00 4.688779198e+00 1.2e-11 0.12 14 4.7e-10 2.5e-10 4.8e-15 1.00e+00 4.688780771e+00 4.688781120e+00 8.8e-12 0.13 15 4.7e-10 2.5e-10 4.8e-15 1.00e+00 4.688780771e+00 4.688781120e+00 8.8e-12 0.14 16 4.5e-10 2.3e-10 4.6e-15 1.00e+00 4.688780962e+00 4.688781301e+00 8.5e-12 0.15 17 4.4e-10 1.9e-10 4.4e-15 1.00e+00 4.688781055e+00 4.688781389e+00 8.4e-12 0.15 18 4.4e-10 1.8e-10 4.4e-15 1.00e+00 4.688781077e+00 4.688781410e+00 8.4e-12 0.16 19 4.4e-10 1.8e-10 4.4e-15 1.00e+00 4.688781083e+00 4.688781415e+00 8.4e-12 0.17 20 4.4e-10 1.8e-10 4.4e-15 1.00e+00 4.688781085e+00 4.688781417e+00 8.4e-12 0.17 21 4.4e-10 1.8e-10 4.4e-15 1.00e+00 4.688781085e+00 4.688781417e+00 8.4e-12 0.18 22 4.4e-10 1.8e-10 4.4e-15 1.00e+00 4.688781085e+00 4.688781417e+00 8.4e-12 0.18 Optimizer terminated. Time: 0.20 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 4.6887810853e+00 nrm: 3e+00 Viol. con: 3e-06 var: 0e+00 barvar: 0e+00 Dual. obj: 4.6887814174e+00 nrm: 4e+03 Viol. con: 0e+00 var: 1e-08 barvar: 4e-08 ```python print((rand_ys@K.T).max()) print((rand_ys@K.T).min()) print((rand_ys@K.T).mean()) print(np.median(rand_ys@K.T)) print(abs(rand_ys@K.T).mean()) print(np.median(abs(rand_ys@K.T))) ``` 33.38321398489339 -33.42043056485856 0.014336330683547194 -0.047685520942526205 10.38160108794252 9.56790890554478 ## Get a sense for u size in non-robust case ```python import control ``` ```python K, S, _ = control.lqr(A, B, Q, R) K = np.array(-K) ``` ```python print((rand_ys@K.T).max()) print((rand_ys@K.T).min()) print((rand_ys@K.T).mean()) print(np.median(rand_ys@K.T)) print(abs(rand_ys@K.T).mean()) print(np.median(abs(rand_ys@K.T))) ``` 30.167968588820685 -30.21452996513471 0.015277241681704091 -0.019151745702437273 9.448202543340196 8.76269849972503 ```python c2 = cp.Variable(6) c4 = cp.Variable(6) a2 = cp.Variable(2) a4 = cp.Variable(2) prob2 = cp.Problem(cp.Minimize(cp.max(U2@c2 - v2 * a2[0])), [U2@c2 >= v2 * a2[0] + v4 * a2[1], c2[:3]>=0, a2 >= 0, cp.sum(a2) == 1]) prob2.solve(verbose=True, solver=cp.MOSEK) prob4 = cp.Problem(cp.Minimize(cp.max(U2@c4 - v4 * a4[1])), [U4@c4 >= v2 * a4[0] + v4 * a4[1], c4[:3]>=0, a4 >= 0, cp.sum(a4) == 1]) prob4.solve(verbose=True, solver=cp.MOSEK) # cp.Problem(cp.Minimize(cp.max(U4@c4 - v4)), [U4@c4 >= v4, c4[:3]>=0]).solve(verbose=True, solver=cp.MOSEK) a2 = a2.value a4 = a4.value ``` Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250006 Cones : 0 Scalar variables : 9 Matrix variables : 0 Integer variables : 0 Optimizer started. Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250006 Cones : 0 Scalar variables : 9 Matrix variables : 0 Integer variables : 0 Optimizer - threads : 2 Optimizer - solved problem : the dual Optimizer - Constraints : 9 Optimizer - Cones : 0 Optimizer - Scalar variables : 125257 conic : 0 Optimizer - Semi-definite variables: 0 scalarized : 0 Factor - setup time : 0.07 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 44 after factor : 45 Factor - dense dim. : 0 flops : 9.00e+06 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 2.0e+00 1.3e+05 2.0e+00 0.00e+00 0.000000000e+00 0.000000000e+00 4.0e+00 0.53 1 2.0e+00 1.2e+05 2.0e+00 1.37e+01 1.224002180e-02 2.304281952e-01 3.9e+00 0.61 2 3.1e-01 1.9e+04 3.1e-01 1.01e+01 3.753776839e-02 3.391134664e-02 6.2e-01 0.65 3 3.2e-02 2.0e+03 3.2e-02 1.30e+00 3.398683590e-02 3.371474003e-02 6.5e-02 0.69 4 7.9e-03 5.0e+02 7.9e-03 1.35e+00 2.819589589e-02 2.813767667e-02 1.6e-02 0.73 5 2.6e-03 1.6e+02 2.6e-03 1.48e+00 2.245436813e-02 2.243856695e-02 5.2e-03 0.77 6 2.6e-03 1.6e+02 2.6e-03 1.23e+00 2.245877548e-02 2.244298639e-02 5.2e-03 0.80 7 1.6e-03 1.0e+02 1.6e-03 1.24e+00 2.102925627e-02 2.101975397e-02 3.3e-03 0.86 8 1.6e-03 1.0e+02 1.6e-03 1.09e+00 2.102538773e-02 2.101589908e-02 3.3e-03 0.91 9 1.4e-03 9.0e+01 1.4e-03 1.13e+00 2.089475367e-02 2.088642708e-02 2.9e-03 0.97 10 1.4e-03 8.7e+01 1.4e-03 1.10e+00 2.084917784e-02 2.084116391e-02 2.8e-03 1.00 11 1.2e-03 7.5e+01 1.2e-03 1.09e+00 2.079637629e-02 2.078949437e-02 2.4e-03 1.04 12 6.0e-04 3.7e+01 6.0e-04 1.07e+00 2.052228711e-02 2.051887928e-02 1.2e-03 1.07 13 1.1e-04 6.9e+00 1.1e-04 1.03e+00 2.040319965e-02 2.040256450e-02 2.2e-04 1.10 14 1.9e-05 1.2e+00 1.9e-05 1.01e+00 2.035764978e-02 2.035754016e-02 3.8e-05 1.14 15 2.4e-06 1.5e-01 2.4e-06 1.00e+00 2.035567233e-02 2.035565854e-02 4.7e-06 1.18 16 2.3e-07 1.5e-02 2.3e-07 1.00e+00 2.035509001e-02 2.035508864e-02 4.7e-07 1.21 17 7.3e-10 4.6e-05 7.3e-10 1.00e+00 2.035504100e-02 2.035504100e-02 1.5e-09 1.24 18 7.3e-10 4.6e-05 7.3e-10 1.00e+00 2.035504100e-02 2.035504100e-02 1.5e-09 1.28 Basis identification started. Primal basis identification phase started. Primal basis identification phase terminated. Time: 0.00 Dual basis identification phase started. Dual basis identification phase terminated. Time: 0.00 Basis identification terminated. Time: 0.05 Optimizer terminated. Time: 1.45 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 2.0355041001e-02 nrm: 2e+00 Viol. con: 8e-12 var: 0e+00 Dual. obj: 2.0355040997e-02 nrm: 3e-01 Viol. con: 0e+00 var: 9e-10 Basic solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 2.0355041001e-02 nrm: 2e+00 Viol. con: 3e-11 var: 0e+00 Dual. obj: 2.0355041002e-02 nrm: 4e-01 Viol. con: 0e+00 var: 9e-16 Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250006 Cones : 0 Scalar variables : 9 Matrix variables : 0 Integer variables : 0 Optimizer started. Problem Name : Objective sense : min Type : LO (linear optimization problem) Constraints : 250006 Cones : 0 Scalar variables : 9 Matrix variables : 0 Integer variables : 0 Optimizer - threads : 2 Optimizer - solved problem : the dual Optimizer - Constraints : 9 Optimizer - Cones : 0 Optimizer - Scalar variables : 125257 conic : 0 Optimizer - Semi-definite variables: 0 scalarized : 0 Factor - setup time : 0.07 dense det. time : 0.00 Factor - ML order time : 0.00 GP order time : 0.00 Factor - nonzeros before factor : 44 after factor : 45 Factor - dense dim. : 0 flops : 9.00e+06 ITE PFEAS DFEAS GFEAS PRSTATUS POBJ DOBJ MU TIME 0 2.0e+00 1.3e+05 2.0e+00 0.00e+00 0.000000000e+00 0.000000000e+00 4.0e+00 0.58 1 1.9e+00 1.2e+05 1.9e+00 9.21e+00 1.988813072e-02 1.237263300e-01 3.7e+00 0.65 2 2.1e-01 1.3e+04 2.1e-01 3.87e+00 4.440114845e-02 8.870150714e-02 4.3e-01 0.69 3 2.2e-02 1.4e+03 2.2e-02 1.23e+00 4.389134968e-02 5.036073443e-02 4.5e-02 0.72 4 3.9e-03 2.4e+02 3.9e-03 1.22e+00 3.789448769e-02 3.843203431e-02 7.7e-03 0.75 5 3.6e-03 2.2e+02 3.6e-03 1.28e+00 3.728573314e-02 3.776977959e-02 7.1e-03 0.79 6 1.3e-03 8.1e+01 1.3e-03 1.31e+00 3.254960215e-02 3.268404911e-02 2.6e-03 0.83 7 7.4e-04 4.6e+01 7.4e-04 1.15e+00 3.128041100e-02 3.135063874e-02 1.5e-03 0.87 8 7.4e-04 4.6e+01 7.4e-04 1.08e+00 3.128047126e-02 3.135060056e-02 1.5e-03 0.90 9 5.4e-04 3.4e+01 5.4e-04 1.08e+00 3.082784339e-02 3.087616144e-02 1.1e-03 0.94 10 3.1e-04 2.0e+01 3.1e-04 1.06e+00 3.055534700e-02 3.058187761e-02 6.3e-04 0.97 11 9.3e-05 5.8e+00 9.3e-05 1.02e+00 3.043514736e-02 3.044098303e-02 1.9e-04 1.01 12 1.6e-05 9.8e-01 1.6e-05 1.00e+00 3.039998840e-02 3.040078916e-02 3.1e-05 1.04 13 3.0e-06 1.9e-01 3.0e-06 1.00e+00 3.039772651e-02 3.039783211e-02 6.1e-06 1.08 14 1.5e-07 9.5e-03 1.5e-07 1.00e+00 3.039467957e-02 3.039468462e-02 3.0e-07 1.11 15 9.6e-10 6.0e-05 9.6e-10 1.00e+00 3.039464239e-02 3.039464241e-02 1.9e-09 1.13 16 9.6e-10 6.0e-05 9.6e-10 1.00e+00 3.039464239e-02 3.039464241e-02 1.9e-09 1.16 Basis identification started. Primal basis identification phase started. Primal basis identification phase terminated. Time: 0.01 Dual basis identification phase started. Dual basis identification phase terminated. Time: 0.00 Basis identification terminated. Time: 0.06 Optimizer terminated. Time: 1.36 Interior-point solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 3.0394642393e-02 nrm: 2e+00 Viol. con: 1e-11 var: 0e+00 Dual. obj: 3.0394642413e-02 nrm: 5e-01 Viol. con: 0e+00 var: 1e-09 Basic solution summary Problem status : PRIMAL_AND_DUAL_FEASIBLE Solution status : OPTIMAL Primal. obj: 3.0394642393e-02 nrm: 2e+00 Viol. con: 1e-09 var: 0e+00 Dual. obj: 3.0394642071e-02 nrm: 4e-01 Viol. con: 0e+00 var: 7e-15 ```python C_old = np.load('C.npy') C - C_old ``` array([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.]]) ```python ```
dd1093b58a794f3ae48202abf2bdb1731f2a8253
44,509
ipynb
Jupyter Notebook
problem_gen/cartpole/Numerical Norm Bounds.ipynb
locuslab/robust-nn-control
666fb1540f20555aa04bccde12603e67a1c0b913
[ "Apache-2.0" ]
34
2020-11-20T05:19:42.000Z
2022-03-14T13:03:37.000Z
problem_gen/cartpole/Numerical Norm Bounds.ipynb
locuslab/robust-nn-control
666fb1540f20555aa04bccde12603e67a1c0b913
[ "Apache-2.0" ]
null
null
null
problem_gen/cartpole/Numerical Norm Bounds.ipynb
locuslab/robust-nn-control
666fb1540f20555aa04bccde12603e67a1c0b913
[ "Apache-2.0" ]
6
2020-11-22T16:03:14.000Z
2021-04-24T09:45:02.000Z
39.704728
541
0.464872
true
13,915
Qwen/Qwen-72B
1. YES 2. YES
0.908618
0.760651
0.691141
__label__kor_Hang
0.105517
0.444083
```python import numpy as np import scipy.misc from scipy.fftpack import dct, idct import sys from PIL import Image import matplotlib import matplotlib.pyplot as plt import random from tqdm._tqdm_notebook import tqdm_notebook from scipy.fftpack import dct, idct import seaborn as sns from skimage.metrics import structural_similarity as ssim import pandas as pd import sympy %matplotlib inline class ImageLoader: def __init__(self, FILE_PATH): self.img = np.array(Image.open(FILE_PATH)) # 行数 self.row_blocks_count = self.img.shape[0] // 8 # 列数 self.col_blocks_count = self.img.shape[1] // 8 def get_points(self, POINT): Row = random.randint(0, len(self.img) - POINT - 1) Col = random.randint(0, len(self.img) - 1) return self.img[Row : Row + POINT, Col] def get_block(self, col, row): return self.img[col * 8 : (col + 1) * 8, row * 8 : (row + 1) * 8] # plt.rcParams['font.family'] ='sans-serif'#使用するフォント # plt.rcParams["font.sans-serif"] = "Source Han Sans" plt.rcParams["font.family"] = "Source Han Sans JP" # 使用するフォント plt.rcParams["xtick.direction"] = "in" # x軸の目盛線が内向き('in')か外向き('out')か双方向か('inout') plt.rcParams["ytick.direction"] = "in" # y軸の目盛線が内向き('in')か外向き('out')か双方向か('inout') plt.rcParams["xtick.major.width"] = 1.0 # x軸主目盛り線の線幅 plt.rcParams["ytick.major.width"] = 1.0 # y軸主目盛り線の線幅 plt.rcParams["font.size"] = 12 # フォントの大きさ plt.rcParams["axes.linewidth"] = 1.0 # 軸の線幅edge linewidth。囲みの太さ matplotlib.font_manager._rebuild() MONO_DIR_PATH = "../../Mono/" AIRPLANE = ImageLoader(MONO_DIR_PATH + "airplane512.bmp") BARBARA = ImageLoader(MONO_DIR_PATH + "barbara512.bmp") BOAT = ImageLoader(MONO_DIR_PATH + "boat512.bmp") GOLDHILL = ImageLoader(MONO_DIR_PATH + "goldhill512.bmp") LENNA = ImageLoader(MONO_DIR_PATH + "lenna512.bmp") MANDRILL = ImageLoader(MONO_DIR_PATH + "mandrill512.bmp") MILKDROP = ImageLoader(MONO_DIR_PATH + "milkdrop512.bmp") SAILBOAT = ImageLoader(MONO_DIR_PATH + "sailboat512.bmp") ``` ```python n_bar = 5 N = 32 ``` # MSDS ```python def msds(N,arr): w_e = 0 e_e = 0 n_e = 0 s_e = 0 nw_e = 0 ne_e = 0 sw_e = 0 se_e = 0 for row in range(arr.shape[0] // N): for col in range(arr.shape[1] // N): f_block = arr[row * N : (row + 1) * N, col * N : (col + 1) * N] # w if col == 0: w_block = np.fliplr(f_block) else: w_block = arr[row * N : (row + 1) * N, (col - 1) * N : col * N] # e if col == arr.shape[1] // N - 1: e_block = np.fliplr(f_block) else: e_block = arr[row * N : (row + 1) * N, (col + 1) * N : (col + 2) * N] # n if row == 0: n_block = np.flipud(f_block) else: n_block = arr[(row - 1) * N : row * N, col * N : (col + 1) * N] # s if row == arr.shape[0] // N - 1: s_block = np.flipud(f_block) else: s_block = arr[(row + 1) * N : (row + 2) * N, col * N : (col + 1) * N] w_d1 = f_block[:, 0] - w_block[:, N-1] e_d1 = f_block[:, N-1] - e_block[:, 0] n_d1 = f_block[0, :] - n_block[N-1, :] s_d1 = f_block[N-1, :] - s_block[0, :] w_d2 = (w_block[:, N-1] - w_block[:, N-2] + f_block[:, 1] - f_block[:, 0]) / 2 e_d2 = (e_block[:, 1] - e_block[:, 0] + f_block[:, N-1] - f_block[:, N-2]) / 2 n_d2 = (n_block[N-1, :] - n_block[N-2, :] + f_block[1, :] - f_block[0, :]) / 2 s_d2 = (s_block[1, :] - s_block[0, :] + f_block[N-1, :] - f_block[N-2, :]) / 2 w_e += np.sum((w_d1 - w_d2) ** 2 ) e_e += np.sum((e_d1 - e_d2) ** 2 ) n_e += np.sum((n_d1 - n_d2) ** 2) s_e += np.sum((s_d1 - s_d2) ** 2) # nw if row == 0 or col == 0: nw_block = np.flipud(np.fliplr(f_block)) else: nw_block = arr[(row - 1) * N : row * N, (col - 1) * N : col * N] # ne if row == 0 or col == arr.shape[1] // N - 1: ne_block = np.flipud(np.fliplr(f_block)) else: ne_block = arr[(row-1) * N : row * N, (col + 1) * N : (col + 2) * N] # sw if row == arr.shape[0] // N -1 or col == 0: sw_block = np.flipud(np.fliplr(f_block)) else: sw_block = arr[row * N : (row+1) * N, (col-1) * N : col * N] # se if row == arr.shape[0]//N-1 or col == arr.shape[0] // N -1: se_block = np.flipud(np.fliplr(f_block)) else: se_block = arr[(row + 1) * N : (row + 2) * N, (col+1) * N : (col + 2) * N] nw_g1 = f_block[0, 0] - nw_block[N-1, N-1] ne_g1 = f_block[0, N-1] - ne_block[N-1, 0] sw_g1 = f_block[N-1, 0] - sw_block[0, N-1] se_g1 = f_block[N-1, N-1] - se_block[0, 0] nw_g2 = (nw_block[N-1,N-1] - nw_block[N-2,N-2] + f_block[1,1] - f_block[0,0])/2 ne_g2 = (ne_block[N-1,0] - ne_block[N-2,1] + f_block[1,N-2] - f_block[0,N-1])/2 sw_g2 = (sw_block[0,N-1] - nw_block[1,N-2] + f_block[N-2,1] - f_block[N-1,0])/2 se_g2 = (nw_block[0,0] - nw_block[1,1] + f_block[N-2,N-2] - f_block[N-1,N-1])/2 nw_e += (nw_g1 - nw_g2) ** 2 ne_e += (ne_g1 - ne_g2) ** 2 sw_e += (sw_g1 - sw_g2) ** 2 se_e += (se_g1 - se_g2) ** 2 MSDSt = (w_e + e_e + n_e + s_e + nw_e + ne_e + sw_e + se_e)/ ((arr.shape[0]/N)**2) MSDS1 = (w_e + e_e + n_e + s_e)/ ((arr.shape[0]/N)**2) MSDS2 = (nw_e + ne_e + sw_e + se_e)/ ((arr.shape[0]/N)**2) return MSDSt, MSDS1, MSDS2 ``` ```python class DMLCT: def __init__(self, n_bar, N): self.n_bar = n_bar self.N = N self.x_l = (2 * np.arange(N) + 1) / (2 * N) self.s_l = np.arange(n_bar) / (n_bar - 1) self.xi = (np.arange(n_bar + 1) - 0.5) / (n_bar - 1) self.lambda_kh = self.get_lambda_kh(self.n_bar) self.w_k_j = self.get_w_k_j(self.n_bar, self.N) self.W_L_k_kh = self.get_W_L_k_kh(self.n_bar, self.N) self.W_k_kh = self.get_W_k_kh(self.n_bar, self.N) self.W_R_k_kh = self.get_W_R_k_kh(self.n_bar, self.N) def Lagrange_j(self, j): x = sympy.Symbol("x") L_x = 1.0 for l in range(self.n_bar): if l != j: L_x *= (x - self.s_l[l]) / (self.s_l[j] - self.s_l[l]) return sympy.integrate(L_x) def get_lambda_kh(self, n_bar): lambda_kh = np.ones(n_bar) lambda_kh[0] = np.sqrt(1 / 2) return lambda_kh def get_w_k_j(self, n_bar, N): L_j = np.zeros((n_bar, N)) x = sympy.Symbol("x") for j in range(n_bar): temp = [] Lj = self.Lagrange_j(j) for k in range(N): temp.append(Lj.subs(x, self.x_l[k])) L_j[j] = np.array(temp) w_k_j = np.zeros((n_bar, N)) for j in range(n_bar): w_k_j[j] = scipy.fftpack.dct(L_j[j], norm="ortho") return w_k_j def get_W_L_k_kh(self, n_bar, N): W_L_k_kh = np.zeros((n_bar - 1, N)) lambda_kh = self.get_lambda_kh(n_bar) for kh in range(n_bar - 1): W_L_k_kh[kh] = ( (1 - n_bar) * np.sqrt(2 / N) * lambda_kh[kh] * np.cos(np.pi * kh * (self.xi[0] + 1)) * self.w_k_j[0] ) return W_L_k_kh def get_W_k_kh(self, n_bar, N): W_k_kh = np.zeros((n_bar - 1, N)) for kh in range(n_bar - 1): sum_sin = np.zeros(N) for j in range(1, n_bar - 2 + 1): sum_sin += np.sin(np.pi * kh * self.s_l[j]) * self.w_k_j[j] W_k_kh[kh] = ( (n_bar - 1) * np.sqrt(2 / N) * self.lambda_kh[kh] * ( np.cos(np.pi * kh * self.xi[1]) * (self.w_k_j[0] - (-1) ** (kh) * self.w_k_j[n_bar - 1]) - 2 * np.sin((np.pi * kh) / (2 * (n_bar - 1))) * sum_sin ) ) return W_k_kh def get_W_R_k_kh(self, n_bar, N): W_R_k_kh = np.zeros((n_bar - 1, N)) for kh in range(n_bar - 1): W_R_k_kh[kh] = ( (n_bar - 1) * np.sqrt(2 / N) * self.lambda_kh[kh] * np.cos(np.pi * kh * (self.xi[n_bar] - 1)) * self.w_k_j[n_bar - 1] ) return W_R_k_kh ``` ```python def get_F_L_k_horizontal(arr, N, row, col): # w if col == 0: # w_block = np.zeros(N) w_block = arr[row, col * N : (col + 1) * N] else: w_block = arr[row, (col - 1) * N : col * N] return w_block ``` ```python def get_F_R_k_horizontal(arr, N, row, col): # e if col == arr.shape[1] // N - 1: # e_block = np.zeros(N) e_block = arr[row, col * N : (col + 1) * N] else: e_block = arr[row, (col + 1) * N : (col + 2) * N] return e_block ``` ```python def get_F_L_k_vertical(arr, N, row, col): # n if row == 0: # n_block = np.zeros(N) n_block = arr[row * N : (row + 1) * N, col] else: n_block = arr[(row - 1) * N : row * N, col] return n_block ``` ```python def get_F_R_k_vertical(arr, N, row, col): # s if row == arr.shape[0] // N - 1: # s_block = np.zeros(N) s_block = arr[row * N : (row + 1) * N, col] else: s_block = arr[(row + 1) * N : (row + 2) * N, col] return s_block ``` ```python # dmlct = DMLCT(n_bar, N) ``` ```python IMG = LENNA # IMG = ImageLoader(MONO_DIR_PATH + "LENNA.bmp") ``` ```python Fk = np.zeros(IMG.img.shape) ``` # 順変換 ## 縦方向 ### DCT ```python for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): eight_points = IMG.img[N * row : N * (row + 1), col] c = scipy.fftpack.dct(eight_points, norm="ortho") Fk[N * row : N * (row + 1), col] = c ``` ### 残差 ```python dmlct = DMLCT(n_bar, N) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): # ビューなら直接いじっちゃう F = Fk[N * row : N * (row + 1), col] F_L = get_F_L_k_vertical(Fk, N, row, col) F_R = get_F_R_k_vertical(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range(n_bar - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) # n_bar = 4 なら 0,1,2は残す 3,4,5,6,7を書き換える F[n_bar - 2 + 1 :] -= U_k_n_bar[n_bar - 2 + 1 :] ``` ```python # 0を残す for k in reversed(range(1, n_bar - 2 + 1)): dmlct = DMLCT(k+1, N) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): # ビューなら直接いじっちゃう F = Fk[N * row : N * (row + 1), col] F_L = get_F_L_k_vertical(Fk, N, row, col) F_R = get_F_R_k_vertical(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range((k + 1) - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) F[k] -= U_k_n_bar[k] ``` ## 横方向 ### DCT ```python for row in range(Fk.shape[0]): for col in range(Fk.shape[1] // N): eight_points = Fk[row, N * col : N * (col + 1)] c = scipy.fftpack.dct(eight_points, norm="ortho") Fk[row, N * col : N * (col + 1)] = c ``` ### 残差 ```python dmlct = DMLCT(n_bar, N) for row in range(IMG.img.shape[0]): for col in range(IMG.img.shape[1] // N): F = Fk[row, N * col : N * (col + 1)] F_L = get_F_L_k_horizontal(Fk, N, row, col) F_R = get_F_R_k_horizontal(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range(n_bar - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) # n_bar = 4 なら 0,1,2は残す 3,4,5,6,7を書き換える F[n_bar - 2 + 1 :] -= U_k_n_bar[n_bar - 2 + 1 :] ``` ```python # 0を残す for k in reversed(range(1, n_bar - 2 + 1)): dmlct = DMLCT(k+1, N) for row in range(IMG.img.shape[0]): for col in range(IMG.img.shape[1] // N): F = Fk[row, N * col : N * (col + 1)] F_L = get_F_L_k_horizontal(Fk, N, row, col) F_R = get_F_R_k_horizontal(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range((k + 1) - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) F[k] -= U_k_n_bar[k] ``` ```python plt.imshow(Fk) # pd.DataFrame(Fk).to_csv("DMLCT_lenna_hiroya_coef.csv",header=False,index=False) ``` # 係数の確保 ```python Fk_Ori = np.copy(Fk) ``` # 逆変換 ```python recover = np.zeros(IMG.img.shape) ``` ## 横方向 ### 残差 ```python for k in range(1, n_bar - 2 + 1): dmlct = DMLCT(k+1, N) for row in range(IMG.img.shape[0]): for col in range(IMG.img.shape[1] // N): F = Fk[row, N * col : N * (col + 1)] F_L = get_F_L_k_horizontal(Fk, N, row, col) F_R = get_F_R_k_horizontal(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range((k + 1) - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) F[k] += U_k_n_bar[k] ``` ```python dmlct = DMLCT(n_bar, N) for row in range(IMG.img.shape[0]): for col in range(IMG.img.shape[1] // N): F = Fk[row, N * col : N * (col + 1)] F_L = get_F_L_k_horizontal(Fk, N, row, col) F_R = get_F_R_k_horizontal(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range(n_bar - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) # n_bar = 4 なら 0,1,2は残す 3,4,5,6,7を書き換える F[n_bar - 2 + 1 :] += U_k_n_bar[n_bar - 2 + 1 :] ``` ### IDCT ```python for row in range(Fk.shape[0]): for col in range(Fk.shape[1] // N): F = Fk[row, N * col : N * col + N] data = scipy.fftpack.idct(F, norm="ortho") # Fkに代入した後、縦方向に対して処理 Fk[row, N * col : N * col + N] = data ``` ## 縦方向 ### 残差 ```python for k in range(1, n_bar - 2 + 1): dmlct = DMLCT(k+1, N) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): # ビューなら直接いじっちゃう F = Fk[N * row : N * (row + 1), col] F_L = get_F_L_k_vertical(Fk, N, row, col) F_R = get_F_R_k_vertical(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range((k + 1) - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) F[k] += U_k_n_bar[k] ``` ```python dmlct = DMLCT(n_bar, N) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): # ビューなら直接いじっちゃう F = Fk[N * row : N * (row + 1), col] F_L = get_F_L_k_vertical(Fk, N, row, col) F_R = get_F_R_k_vertical(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range(n_bar - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) # n_bar = 4 なら 0,1,2は残す 3,4,5,6,7を書き換える F[n_bar - 2 + 1 :] += U_k_n_bar[n_bar - 2 + 1 :] ``` ### IDCT ```python for row in range(Fk.shape[0] // N): for col in range(Fk.shape[1]): F = Fk[N * row : N * (row + 1), col] data = scipy.fftpack.idct(F, norm="ortho") # 復元画像 recover[N * row : N * (row + 1), col] = data ``` ```python plt.imshow(recover.astype("u8"), cmap="gray") ``` もどった...! # 量子化テーブル ```python Q = 108 Q_Luminance = np.ones((N,N)) * Q ``` # 量子化 ```python Fk = np.copy(Fk_Ori) Q_Fk = np.zeros(Fk.shape) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1] // N): block = Fk[row * N : (row + 1) * N, col * N : (col + 1) * N] # 量子化 block = np.round(block / Q_Luminance) # 逆量子化 block = block * Q_Luminance Q_Fk[row * N : (row+1)*N, col * N : (col+1)*N] = block ``` ```python Fk = np.copy(Q_Fk) Q_recover = np.zeros(Q_Fk.shape) ``` ## 横方向 ### 残差 ```python for k in range(1, n_bar - 2 + 1): dmlct = DMLCT(k+1, N) for row in range(IMG.img.shape[0]): for col in range(IMG.img.shape[1] // N): F = Fk[row, N * col : N * (col + 1)] F_L = get_F_L_k_horizontal(Fk, N, row, col) F_R = get_F_R_k_horizontal(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range((k + 1) - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) F[k] += U_k_n_bar[k] ``` ```python dmlct = DMLCT(n_bar, N) for row in range(IMG.img.shape[0]): for col in range(IMG.img.shape[1] // N): F = Fk[row, N * col : N * (col + 1)] F_L = get_F_L_k_horizontal(Fk, N, row, col) F_R = get_F_R_k_horizontal(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range(n_bar - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) # n_bar = 4 なら 0,1,2は残す 3,4,5,6,7を書き換える F[n_bar - 2 + 1 :] += U_k_n_bar[n_bar - 2 + 1 :] ``` ### IDCT ```python for row in range(Fk.shape[0]): for col in range(Fk.shape[1] // N): F = Fk[row, N * col : N * col + N] data = scipy.fftpack.idct(F, norm="ortho") # Fkに代入した後、縦方向に対して処理 Fk[row, N * col : N * col + N] = data ``` ## 縦方向 ### 残差 ```python for k in range(1, n_bar - 2 + 1): dmlct = DMLCT(k+1, N) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): # ビューなら直接いじっちゃう F = Fk[N * row : N * (row + 1), col] F_L = get_F_L_k_vertical(Fk, N, row, col) F_R = get_F_R_k_vertical(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range((k + 1) - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) F[k] += U_k_n_bar[k] ``` ```python dmlct = DMLCT(n_bar, N) for row in range(IMG.img.shape[0] // N): for col in range(IMG.img.shape[1]): # ビューなら直接いじっちゃう F = Fk[N * row : N * (row + 1), col] F_L = get_F_L_k_vertical(Fk, N, row, col) F_R = get_F_R_k_vertical(Fk, N, row, col) U_k_n_bar = np.zeros(N) for kh in range(n_bar - 2 + 1): U_k_n_bar += ( F_L[kh] * dmlct.W_L_k_kh[kh] + F[kh] * dmlct.W_k_kh[kh] + F_R[kh] * dmlct.W_R_k_kh[kh] ) # n_bar = 4 なら 0,1,2は残す 3,4,5,6,7を書き換える F[n_bar - 2 + 1 :] += U_k_n_bar[n_bar - 2 + 1 :] ``` ### IDCT ```python for row in range(Fk.shape[0] // N): for col in range(Fk.shape[1]): F = Fk[N * row : N * (row + 1), col] data = scipy.fftpack.idct(F, norm="ortho") # 復元画像 Q_recover[N * row : N * (row + 1), col] = data ``` ```python Q_recover = np.round(Q_recover) ``` ```python plt.imshow(Q_recover, cmap="gray") plt.imsave("DMLCT_16x16_n"+str(n_bar)+ "_LENNA.png",Q_recover,cmap="gray") ``` # 情報量 ```python qfk = pd.Series(Q_Fk.flatten()) pro = qfk.value_counts() / qfk.value_counts().sum() pro.head() ``` -0.0 0.981468 108.0 0.007042 -108.0 0.007008 216.0 0.001083 -216.0 0.000996 dtype: float64 ```python S = 0 for pi in pro: S -= pi * np.log2(pi) S ``` 0.1806067711578881 # PSNR ```python MSE = np.sum(np.sum(np.power((IMG.img - Q_recover),2)))/(Q_recover.shape[0] * Q_recover.shape[1]) PSNR = 10 * np.log10(255 * 255 / MSE) PSNR ``` 28.991609974679005 # MSSIM ```python MSSIM = ssim(IMG.img,Q_recover.astype(IMG.img.dtype),gaussian_weights=True,sigma=1.5,K1=0.01,K2=0.03) MSSIM ``` 0.7870765007405786 ```python dmlct = DMLCT(n_bar, N) ``` # MSDS ```python MSDSt, MSDS1, MSDS2 = msds(N,Q_recover) ``` ```python MSDS1 ``` 39983.40234375 ```python MSDS2 ``` 6007.1181640625 ```python ```
b0ad42060853735a08373a0c1818290f7ce75e1e
224,150
ipynb
Jupyter Notebook
DMLCT/32x32/DMLCT 32x32.ipynb
Hiroya-W/TPHLCT_and_DMLCT
5acb7553792335e178d8b99ca1ee42431cc26f92
[ "MIT" ]
null
null
null
DMLCT/32x32/DMLCT 32x32.ipynb
Hiroya-W/TPHLCT_and_DMLCT
5acb7553792335e178d8b99ca1ee42431cc26f92
[ "MIT" ]
2
2021-03-31T19:34:33.000Z
2022-01-13T02:01:43.000Z
DMLCT/32x32/DMLCT 32x32.ipynb
Hiroya-W/Python_DCT
5acb7553792335e178d8b99ca1ee42431cc26f92
[ "MIT" ]
null
null
null
172.158218
93,072
0.880071
true
7,853
Qwen/Qwen-72B
1. YES 2. YES
0.79053
0.692642
0.547555
__label__eng_Latn
0.18365
0.110482
```python import sympy as sm ``` ```python x = sm.symbols('x') ``` ```python y1 = sm.Pow(sm.E, x) ``` ```python y1.diff(x) ``` $\displaystyle e^{x}$ ```python y1.integrate(x) ``` $\displaystyle e^{x}$ ```python %matplotlib inline fig = sm.plotting.plot(y1, x) ``` ```python ```
2779966df0b40662f28d4b9803e890ef32358ca0
15,152
ipynb
Jupyter Notebook
ch02_HomeWork_1.ipynb
loucadgarbon/pattern-recognition
2fd45db9597c01f8b76aba1cad9575c2b3a764ec
[ "MIT" ]
null
null
null
ch02_HomeWork_1.ipynb
loucadgarbon/pattern-recognition
2fd45db9597c01f8b76aba1cad9575c2b3a764ec
[ "MIT" ]
null
null
null
ch02_HomeWork_1.ipynb
loucadgarbon/pattern-recognition
2fd45db9597c01f8b76aba1cad9575c2b3a764ec
[ "MIT" ]
null
null
null
113.924812
12,898
0.889586
true
101
Qwen/Qwen-72B
1. YES 2. YES
0.935347
0.803174
0.751246
__label__yue_Hant
0.300945
0.583728
# <span style="color:#2c061f"> Inaugural project: Getting an Insurance</span> <br> ## <span style="color:#374045"> Introduction to Programming and Numerical Analysis </span> *Oluf Kelkjær* ### **Today's Plan** 1. Objectives 2. Remember to... 3. Important formal requirement 4. Question hints ## Objectives * Apply simple numerical solution and simulation methods * Solve the problem using SciPy and numpy * Structure a code project * Notebook, .py-files, readme etc. * Document code * Document and explain your code using what you learned in **lecture 5** * Present results in text form and in figures * Create nice tables and figures + create nice markdown cells ## Remember (general hint) (1/4) Create a python-file for your functions **Remember** autoreload ```python import pythonfile as py %load_ext autoreload %autoreload 2 ``` ## Remember (general hint) (2/4) Document your code - at the exam you might have forgotten what you did and why ```python import numpy as np # 1. Initiliaze vectors of goods and container for utilities psis = np.linspace(-10, -5, 5) utility = np.empty((psis.shape)) # empty array with same shape as psi's # 2. Calculate utility for all psis (relative risk aversion parameter for i, psi in enumerate(psis): # i. Calculate utility using functions module u_psi = py.utility(1,psi) # ii. store the utility at the respective place (i) utility[i] = u_psi # iii. print result print(f'u(1,psi={psi:.2f})={u_psi:.2f}') ``` u(1,psi=-10.00)=-0.11 u(1,psi=-8.75)=-0.13 u(1,psi=-7.50)=-0.15 u(1,psi=-6.25)=-0.19 u(1,psi=-5.00)=-0.25 ## Remember (general hint) (3/4) Incoporate markdown cells in your project that describes the model, intuition, etc. Remember you do can do equation in markdown using either LaTeX syntax, `$$ math $$`: $$ y_i = \beta_0 + \beta_1 x_i + \epsilon_i $$ or `\begin{equation} math \end{equation}` \begin{align} y_i = \beta_0 + \beta_1 x_i + \epsilon_i \end{align} Other formatting? * An indent followed by `*` or `1.` creates list 1. list item 1 2. list item 2 * list item 3 * `** text **` produces **text** * `*text*` produces *text* * `#` creates a large header, `##` smaller header and so on * Google it! ## Remember (general hint) (4/4) **Always** add docstrings to your functions. The function name in itself isn't always as informal as you'd want ```python def utility(z,psi): """ Calculates utility of given some assets, z, and relative risk aversion, psi. Args: z (float): the agents assets psi (float): the agents relative risk aversion Returns: (float): utility of assets """ return (z**(1+psi))/(1+psi) ``` ## Important requirement! **ALLWAYS** restart your *kernel* and *run all cells* **before** handing in! This goes for the mandatory assignments along with the exam. It is crucial! If you have crucual old variables in memory that makes your notebook run, then i cannot run your notebook!! **Red flag** if the notebook can't be run from start to end!! ## Getting an insurance Uninsured agents expected utility: <p style="text-align: center;">$V_0 = pu(y-x)+(1-p)u(y)$</p> Insured agent expected utility: <p style="text-align: center;">$V(q;\pi)=pu(y-x+q-\pi(p,q))+(1-p)u(y-\pi(p,q))$</p> Insurance company requires premium (in order to not go broke): <p style="text-align: center;">$\pi(p,q) = pq$</p> Agents utility given by: <p style="text-align: center;">$u(z) = \frac{z^{1+\psi}}{1+\psi}$</p> Parameters are: <p style="text-align: center;">$y=1, p = 0.2, \psi = -2$</p> ## Hints for question 1 Once the *utility function*, *insurance premium* and the *insured agents expected utility* has been defined, we're ready to solve **question 1**. Find optimal coverage, $q^*$, for $x$ in range $[0.01,0.9]$: <p style="text-align: center;">$q^\ast = \underset{q\in[0,x]}{\operatorname{argmax}} V(q;\pi)$</p> 1. create `x` array in range `[0.01,0.9]` and an empty array for optimal `q's` to be stored. 2. Loop over `x's` where you define an ojective function for each `x`. * You can solve the objective function using the `minimize_scalar` funtion and store $q^*(x)$ * Remember that $q\in[0,x]$ which means your solver should be **bounded** * Remember remember that we're maximizing (-minimize) Plot the `x` and `q` arrays and comment! ## Hints for question 2: Find $\tilde{\pi}$ such that $V(q;\tilde{\pi})=V_0$ at each point in $q$-array. 1. Construct $q$ and (empty) $\pi$-array 2. Create new objective function $V(q;\tilde{\pi})=V_0\rightarrow V(q;\tilde{\pi})-V_0=0$ 3. Loop through the $q$'s * Can use `optimize.root` (solves objective function = 0) **seen in lecture 3** * store results in $\pi$-array 4. plot $q$ and $\pi$-array and comment! ## Hints for question 3: Create a function for Monte Carlo integration - **seen in lecture 4**. You can advantageously use two different `SimpleNamespace()` One for model parameters and the other for different policy parameters ## Hints for question 4: Define new objective function (MC under no coverage - MC under coverage) Solve the objective function using `optimize.root` with `method='broyden1'`
0bd92678d1fb03f6b2efe2c3af3070da0c470834
9,972
ipynb
Jupyter Notebook
Slides/exc_6/6.class.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
Slides/exc_6/6.class.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
Slides/exc_6/6.class.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
28.904348
161
0.543422
true
1,549
Qwen/Qwen-72B
1. YES 2. YES
0.785309
0.91118
0.715557
__label__eng_Latn
0.964933
0.500811
```python import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import pyplot from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix import math import keras from keras import optimizers from keras.models import Sequential from keras.layers import Dense import warnings warnings.filterwarnings("ignore") %matplotlib inline ``` Using TensorFlow backend. ```python df = pd.read_csv("Churn_Modelling.csv") ``` # Pre-processing ```python df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>RowNumber</th> <th>CustomerId</th> <th>Surname</th> <th>CreditScore</th> <th>Geography</th> <th>Gender</th> <th>Age</th> <th>Tenure</th> <th>Balance</th> <th>NumOfProducts</th> <th>HasCrCard</th> <th>IsActiveMember</th> <th>EstimatedSalary</th> <th>Exited</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>15634602</td> <td>Hargrave</td> <td>619</td> <td>France</td> <td>Female</td> <td>42</td> <td>2</td> <td>0.00</td> <td>1</td> <td>1</td> <td>1</td> <td>101348.88</td> <td>1</td> </tr> <tr> <th>1</th> <td>2</td> <td>15647311</td> <td>Hill</td> <td>608</td> <td>Spain</td> <td>Female</td> <td>41</td> <td>1</td> <td>83807.86</td> <td>1</td> <td>0</td> <td>1</td> <td>112542.58</td> <td>0</td> </tr> <tr> <th>2</th> <td>3</td> <td>15619304</td> <td>Onio</td> <td>502</td> <td>France</td> <td>Female</td> <td>42</td> <td>8</td> <td>159660.80</td> <td>3</td> <td>1</td> <td>0</td> <td>113931.57</td> <td>1</td> </tr> <tr> <th>3</th> <td>4</td> <td>15701354</td> <td>Boni</td> <td>699</td> <td>France</td> <td>Female</td> <td>39</td> <td>1</td> <td>0.00</td> <td>2</td> <td>0</td> <td>0</td> <td>93826.63</td> <td>0</td> </tr> <tr> <th>4</th> <td>5</td> <td>15737888</td> <td>Mitchell</td> <td>850</td> <td>Spain</td> <td>Female</td> <td>43</td> <td>2</td> <td>125510.82</td> <td>1</td> <td>1</td> <td>1</td> <td>79084.10</td> <td>0</td> </tr> </tbody> </table> </div> As it can be seen, the variables <b>"RowNumber", "CustomerId", and "Surname"</b> are not useful for the model. <br> The values of these variables are unique for each observation. ```python X = df.iloc[:, 3:13] y = df.iloc[:, 13] ``` ### Creating dummy variables Machine learning models cannot process words, for this reason, columns that show categories need to be converted into dummy variables. <br> For example, the variable <b>"Gender"</b> will be transformed into a dummy variable with 0 being a female and 1 being a male. However, variables that <br> include more than two categories, will be split into more columns. <br> For instance, the <b>"Geography"</b> category has three levels, namely Germany, Spain, and France. This variable needs to be transformed into two binary columns. <br> In general, the number of columns/variables that will be created from a categorical variable are <b>c-1</b>, where c is the number of levels. ```python cat = [1,2] cat_cols = pd.get_dummies(X.iloc[:, cat], drop_first=True) ``` ```python cat_cols.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Geography_Germany</th> <th>Geography_Spain</th> <th>Gender_Male</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>1</th> <td>0</td> <td>1</td> <td>0</td> </tr> <tr> <th>2</th> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>3</th> <td>0</td> <td>0</td> <td>0</td> </tr> <tr> <th>4</th> <td>0</td> <td>1</td> <td>0</td> </tr> </tbody> </table> </div> ```python X.drop(X.columns[cat], axis=1, inplace=True) ``` ```python X = pd.concat([X,cat_cols], axis=1) ``` ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 42) ``` Standardize the variables for the Neural Network ```python sc = StandardScaler() X_train = pd.DataFrame(sc.fit_transform(X_train),columns = X_train.columns) X_test = pd.DataFrame(sc.transform(X_test),columns = X_test.columns) ``` Now, in an Artificial Neural Network, there is an input layer, some hidden layers and an output layer. <br> The input layer corresponds to a row/observation that travels through the neural network and outputs a specific value. <br> So, in the image below, <b>X1, X2, and X3,</b> are the independent variables for one row. In addition, <b>W1, W1, and W3,</b> are the weights for each variable. Note that this image does not depict the current Neural Network that we are using for this problem, but it rather shows a Neural Network with a dataset of 3 independent variables and a dependent variable. The neuron in the middle, applies an activation function based on the signals it receives. There are different activation functions, but one of the most common activation functions for the hidden layers is the Rectified Linear Unit (ReLU). \begin{align} f (x) = max(x,0) \end{align} <br> What the ReLU does, is that it returns x, if the $\sum_{i=1}^{n} W_{i}X_{i}$ is above zero and 0 otherwise, where $x = \sum_{i=1}^{n} W_{i}X_{i}$ ```python # rectified linear function def rectified(x): return max(0.0, x) # define a series of inputs series_in = [x for x in range(-10, 11)] # calculate outputs for our inputs series_out = [rectified(x) for x in series_in] # line plot of raw inputs to rectified outputs pyplot.plot(series_in, series_out) pyplot.xlabel('x') pyplot.ylabel('y') pyplot.title('ReLU Function') pyplot.show() ``` The Neural Network above includes only an input layer and an output layer. For a binary classification problem such as this one, where the customer will either churn or not, the sigmoid activation function for the output layer is a more proper function. <br> \begin{align} f(x) = \frac{1}{1 + e^{-x}} \end{align} The Sigmoid function returns values ranging from 0 to 1, which is useful because in this situation, the dependent variable is either 0 (not churn) or 1 (churn). <br> Later, by applying a threshold (e.g., 0.5), we can assign values above this threshold as 1 and below as 0. ```python def sigmoid(x): return (1/(1 + math.exp(-x))) # define a series of inputs series_in = [x for x in range(-10, 11)] # calculate outputs for our inputs series_out = [sigmoid(x) for x in series_in] # line plot of raw inputs to sigmoid outputs pyplot.plot(series_in, series_out) pyplot.xlabel('x') pyplot.ylabel('y') pyplot.title('Sigmoid Function') pyplot.show() ``` The Neural Network below, includes an input layer with 3 neurons, a hidden layer with 4 neurons, and an output layer. <br> In this example, the activation function of the hidden layer can be the ReLU function whereas for the output layer, it can be the sigmoid function. ### Neural Network The ANN is build using the Keras framework, which uses TensorFlow in the backend. <br> In the code below, the number of nodes in the input layers needs to be defined. This is the <b>"input_dim"</b> argument, which corresponds to the number of independent variables. Next, the <b>"units"</b> argument, defines the number of neurons in the hidden layer. Note that the architecture below shows a Neural Network with two hidden layers. The input layer and the first hidden layer are both defined in one line of code, while the rest of the layers are defined later. <br> This means that the hidden layers have 6 neurons each with a <i>ReLU</i> activation function as described above while the output layer has 1 neuron and a <i>sigmoid</i> activation function as this is a binary classification problem. <br> <br> Next, the ANN model is compiled where the <b>optimizer</b>, the <b>loss</b>, and the <b>metric</b> is being defined. The optimizer argument defines the optimizer that will be used in order to update the weights of the model. Amongst those are the <i>Stochastic Gradient Descent</i>, the <i>Adaptive Moment Estimation (Adam)</i>, and the <i>Root Mean Squared Propagetion (RMSProp)</i>. The most popular optimizers are the Adam and the RMSProp. <br> For this problem, the <i>binary cross entropy (logarithmic)</i> loss is used. \begin{align} \small Logarithmic Loss = - \frac{1}{n} \; \sum_{i=1}^{n} \bigg(y^{i} \; log\phi \bigg( \sum_{j=1}{m}w_{j}x_{j}^{i} \bigg) + (1-y^{i})log \bigg(1 - \phi \bigg(\sum_{j=1}^{m}w_{j}x_{j}^{i} \bigg) \bigg) \bigg) \end{align} where $\phi$ is the sigmoid function, i is the index of the observation and j is the index of the feature. <br> <br> The metric, is the metric that will be shown, and in this case it is the accuracy. ### Model Architecture ```python classifier = Sequential() classifier.add(Dense(units=6, activation='relu',input_dim=11)) classifier.add(Dense(units=6, activation='relu')) classifier.add(Dense(units=1, activation='sigmoid')) classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` WARNING:tensorflow:From C:\Users\Hella\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. The architecture of the current ANN is shown below. ```python print(classifier.summary()) ``` _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense_1 (Dense) (None, 6) 72 _________________________________________________________________ dense_2 (Dense) (None, 6) 42 _________________________________________________________________ dense_3 (Dense) (None, 1) 7 ================================================================= Total params: 121 Trainable params: 121 Non-trainable params: 0 _________________________________________________________________ None After defining the model architecture, in order to train the model to the training data, the batch size as well as the number of epochs need to be defined. <br> The batch size essentially shows after how many observations the weights will be updated. For instance, with a batch size of 32, 32 observations will pass through the ANN and after that, the weights will be updated. <br> <br> Next, the number of epochs shows how many times all the observations will pass through the neural network. ```python classifier.fit(X_train, y_train, batch_size=32, epochs=50) ``` WARNING:tensorflow:From C:\Users\Hella\Anaconda3\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.cast instead. Epoch 1/50 8000/8000 [==============================] - 4s 477us/step - loss: 0.5187 - acc: 0.7902 Epoch 2/50 8000/8000 [==============================] - 1s 132us/step - loss: 0.4584 - acc: 0.7945 Epoch 3/50 8000/8000 [==============================] - 1s 137us/step - loss: 0.4435 - acc: 0.7945 Epoch 4/50 8000/8000 [==============================] - 1s 128us/step - loss: 0.4356 - acc: 0.7943 Epoch 5/50 8000/8000 [==============================] - 1s 119us/step - loss: 0.4285 - acc: 0.8103 Epoch 6/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.4218 - acc: 0.8197 Epoch 7/50 8000/8000 [==============================] - 1s 121us/step - loss: 0.4162 - acc: 0.8216 Epoch 8/50 8000/8000 [==============================] - 1s 121us/step - loss: 0.4115 - acc: 0.8233 Epoch 9/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.4076 - acc: 0.8239 Epoch 10/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.4039 - acc: 0.8249 Epoch 11/50 8000/8000 [==============================] - 1s 125us/step - loss: 0.4004 - acc: 0.8246 Epoch 12/50 8000/8000 [==============================] - 1s 133us/step - loss: 0.3975 - acc: 0.8261 Epoch 13/50 8000/8000 [==============================] - 1s 131us/step - loss: 0.3945 - acc: 0.8265 Epoch 14/50 8000/8000 [==============================] - 1s 131us/step - loss: 0.3922 - acc: 0.8267 Epoch 15/50 8000/8000 [==============================] - 1s 133us/step - loss: 0.3897 - acc: 0.8277 Epoch 16/50 8000/8000 [==============================] - 1s 133us/step - loss: 0.3870 - acc: 0.8281 Epoch 17/50 8000/8000 [==============================] - 1s 130us/step - loss: 0.3847 - acc: 0.8301 Epoch 18/50 8000/8000 [==============================] - 1s 121us/step - loss: 0.3821 - acc: 0.8286 Epoch 19/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3796 - acc: 0.8339 Epoch 20/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3773 - acc: 0.8410 Epoch 21/50 8000/8000 [==============================] - 1s 128us/step - loss: 0.3749 - acc: 0.8415 Epoch 22/50 8000/8000 [==============================] - 1s 120us/step - loss: 0.3726 - acc: 0.8427 Epoch 23/50 8000/8000 [==============================] - 1s 119us/step - loss: 0.3701 - acc: 0.8449 Epoch 24/50 8000/8000 [==============================] - 1s 126us/step - loss: 0.3676 - acc: 0.8474 Epoch 25/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3660 - acc: 0.8471 Epoch 26/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.3637 - acc: 0.8514 Epoch 27/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.3615 - acc: 0.8500 Epoch 28/50 8000/8000 [==============================] - 1s 121us/step - loss: 0.3604 - acc: 0.8540 Epoch 29/50 8000/8000 [==============================] - 1s 124us/step - loss: 0.3580 - acc: 0.8538 Epoch 30/50 8000/8000 [==============================] - 1s 119us/step - loss: 0.3567 - acc: 0.8526 Epoch 31/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3550 - acc: 0.8561 Epoch 32/50 8000/8000 [==============================] - 1s 134us/step - loss: 0.3533 - acc: 0.8575 Epoch 33/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.3517 - acc: 0.8578 Epoch 34/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3506 - acc: 0.8578 Epoch 35/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3492 - acc: 0.8594 Epoch 36/50 8000/8000 [==============================] - 1s 119us/step - loss: 0.3487 - acc: 0.8592 Epoch 37/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.3473 - acc: 0.8606 Epoch 38/50 8000/8000 [==============================] - 1s 124us/step - loss: 0.3469 - acc: 0.8587 Epoch 39/50 8000/8000 [==============================] - 1s 119us/step - loss: 0.3459 - acc: 0.8584 Epoch 40/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3450 - acc: 0.8589 Epoch 41/50 8000/8000 [==============================] - 1s 122us/step - loss: 0.3446 - acc: 0.8604 Epoch 42/50 8000/8000 [==============================] - 1s 117us/step - loss: 0.3436 - acc: 0.8594 Epoch 43/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3432 - acc: 0.8591 Epoch 44/50 8000/8000 [==============================] - 1s 119us/step - loss: 0.3429 - acc: 0.8590 Epoch 45/50 8000/8000 [==============================] - 1s 122us/step - loss: 0.3421 - acc: 0.8592 Epoch 46/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3418 - acc: 0.8608 Epoch 47/50 8000/8000 [==============================] - 1s 118us/step - loss: 0.3415 - acc: 0.8599 Epoch 48/50 8000/8000 [==============================] - 1s 127us/step - loss: 0.3407 - acc: 0.8596 Epoch 49/50 8000/8000 [==============================] - 1s 128us/step - loss: 0.3407 - acc: 0.8595 Epoch 50/50 8000/8000 [==============================] - 1s 122us/step - loss: 0.3407 - acc: 0.8601 <keras.callbacks.History at 0x2b8a8328b00> Furthermore, as explained previously, the model will make predictions on the test set, and a threshold will be set in order to classify the customers that are going to churn and those that are not. <br> The threshold that is applied here is 0.5. ```python y_pred = classifier.predict(X_test) y_pred = (y_pred > 0.5) ``` Finally, with a <b>confusion matrix</b>, we can see how many observations were correctly predicted. More specifically, a confusion matrix gives information about the <b>True Positive rate, True Negative rate, False Positive rate, and False Negative rate</b>. It is also useful in cases when the dataset is severely unbalanced. In these cases, the confusion matrix shows if the model predicts every observation into one class. The accuracy values in these unbalanced datasets can be misleading, as it can be very high. <br> <br> For this particular problem, the dataset is balanced. ```python labels = [0, 1] cm = confusion_matrix(y_test, y_pred, labels) print(cm) print('Accuracy: ',(cm[0,0]+cm[1,1])/len(y_test)*100) ``` [[1528 79] [ 206 187]] Accuracy: 85.75 For this classification problem regarding customer churn, the model correctly predicted that 1528 customers will not churn and 187 customers will churn. In addition, it falsely predicted that 79 customers will churn and that 206 will not churn. The <b>accuracy</b> of the model is <b>85.75%</b>. Below, a plot of the confusion matrix is shown. ```python fig = plt.figure() ax = fig.add_subplot(111) cax = ax.matshow(cm) plt.title('Confusion matrix of the classifier') fig.colorbar(cax) ax.set_xticklabels([''] + ['Not Churn', 'Churn']) ax.set_yticklabels([''] + ['Not Churn', 'Churn']) plt.xlabel('Predicted') plt.ylabel('True') plt.show() ```
11e6f0d2209a878083779e2609b8d60a69770990
65,898
ipynb
Jupyter Notebook
churn.ipynb
SteliosGian/Simple-ANN
df6197fa936cc45a6911a52626e1ba79bb0f6e63
[ "MIT" ]
null
null
null
churn.ipynb
SteliosGian/Simple-ANN
df6197fa936cc45a6911a52626e1ba79bb0f6e63
[ "MIT" ]
null
null
null
churn.ipynb
SteliosGian/Simple-ANN
df6197fa936cc45a6911a52626e1ba79bb0f6e63
[ "MIT" ]
1
2021-03-29T16:14:47.000Z
2021-03-29T16:14:47.000Z
77.801653
12,180
0.742739
true
6,125
Qwen/Qwen-72B
1. YES 2. YES
0.774583
0.76908
0.595717
__label__eng_Latn
0.805165
0.22238
``` %matplotlib inline from __future__ import division from IPython.html.widgets import interact,fixed from scipy import stats import sympy from sympy import S, init_printing, Sum, summation,expand from sympy import stats as st from sympy.abc import k import re ``` ## Maximum likelihood estimation $$\hat{p} = \frac{1}{n} \sum_{i=1}^n X_i$$ $$ \mathbb{E}(\hat{p}) = p $$ $$ \mathbb{V}(\hat{p}) = \frac{p(1-p)}{n} $$ ``` sympy.plot( k*(1-k),(k,0,1),ylabel='$n^2 \mathbb{V}$',xlabel='p',fontsize=28) ``` ``` b=stats.bernoulli(p=.8) samples=b.rvs(100) print var(samples) print mean(samples) ``` 0.1659 0.79 ``` def slide_figure(n=100,m=1000,p=0.8): fig,ax=subplots() ax.axis(ymax=25) b=stats.bernoulli(p=p) v=iter(b.rvs,2) samples=b.rvs(n*1000) tmp=(samples.reshape(n,-1).mean(axis=0)) ax.hist(tmp,normed=1) ax1=ax.twinx() ax1.axis(ymax=25) ax1.plot(linspace(0,1,200),stats.norm(mean(tmp),std(tmp)).pdf(linspace(0.0,1,200)),lw=3,color='r') ``` ``` interact(slide_figure, n=(100,500),p=(0.01,1,.05),m=fixed(500)); ``` ## Maximum A-Posteriori (MAP) Estimation ``` from sympy.abc import p,n,k sympy.plot(st.density(st.Beta('p',3,3))(p),(p,0,1) ,xlabel='p') ``` ### Maximize the MAP function to get form of estimator ``` obj=sympy.expand_log(sympy.log(p**k*(1-p)**(n-k) * st.density(st.Beta('p',6,6))(p))) ``` ``` sol=sympy.solve(sympy.simplify(sympy.diff(obj,p)),p)[0] print sol ``` (k + 5)/(n + 10) $ \hat{p}_{MAP} = \frac{(5+\sum_{i=1}^n X_i )}{(n + 10)} $ with corresponding expectation $ \mathbb{E} = \frac{(5+n p )}{(n + 10)} $ which is a biased estimator. The variance of this estimator is the following: $$ \mathbb{V}(\hat{p}_{MAP}) = \frac{n (1-p) p}{(n+10)^2} $$ compare this to the variance of the maximum likelihood estimator, which is reproduced here: $$ \mathbb{V}(\hat{p}_{ML}) = \frac{p(1-p)}{n} $$ ``` n=5 def show_bias(n=30): sympy.plot(p,(5+n*p)/(n+10),(p,0,1),aspect_ratio=1,title='more samples reduce bias') interact(show_bias,n=(10,500,10)); ``` Compute the variance of the MAP estimator ``` sum(sympy.var('x1:10')) expr=((5+(sum(sympy.var('x1:10'))))/(n+10)) ``` ``` def apply_exp(expr): tmp=re.sub('x[\d]+\*\*2','p',str(expand(expr))) tmp=re.sub('x[\d]+\*x[\d]+','p**2',tmp) tmp=re.sub('x[\d]+','p',tmp) return sympy.sympify(tmp) ``` ``` ex2 = apply_exp(expr**2) print ex2 ``` 8*p**2/25 + 11*p/25 + 1/9 ``` tmp=sympy.simplify(ex2 - (apply_exp(expr))**2 ) sympy.plot(tmp,p*(1-p)/10,(p,0,1)) ``` ### General case ``` def generate_expr(num_samples=10,alpha=6): n = sympy.symbols('n') obj=sympy.expand_log(sympy.log(p**k*(1-p)**(n-k) * st.density(st.Beta('p',alpha,alpha))(p))) sol=sympy.solve(sympy.simplify(sympy.diff(obj,p)),p)[0] expr=sol.replace(k,(sum(sympy.var('x1:%d'%(num_samples))))) expr=expr.subs(n,num_samples) ex2 = apply_exp(expr**2) ex = apply_exp(expr) return (ex,sympy.simplify(ex2-ex**2)) ``` ``` num_samples=10 X_bias,X_v = generate_expr(num_samples,alpha=2) p1=sympy.plot(X_v,(p,0,1),show=False,line_color='b',ylim=(0,.03),xlabel='p') X_bias,X_v = generate_expr(num_samples,alpha=6) p2=sympy.plot(X_v,(p,0,1),show=False,line_color='r',xlabel='p') p3=sympy.plot(p*(1-p)/num_samples,(p,0,1),show=False,line_color='g',xlabel='p') p1.append(p2[0]) p1.append(p3[0]) p1.show() ``` ``` p1=sympy.plot(n*(1-p)*p/(n+10)**2,(p,0,1),show=False,line_color='b',ylim=(0,.05),xlabel='p',ylabel='variance') p2=sympy.plot((1-p)*p/n,(p,0,1),show=False,line_color='r',ylim=(0,.05),xlabel='p') p1.append(p2[0]) p1.show() ``` ``` def show_variance(n=5): p1=sympy.plot(n*(1-p)*p/(n+10)**2,(p,0,1),show=False,line_color='b',ylim=(0,.05),xlabel='p',ylabel='variance') p2=sympy.plot((1-p)*p/n,(p,0,1),show=False,line_color='r',ylim=(0,.05),xlabel='p') p1.append(p2[0]) p1.show() interact(show_variance,n=(10,120,2)); ``` The obvious question is what is the value of a biased estimator? The key fact is that the MAP estimator is biased, yes, but it is biased according to the prior probability of $\theta$. Suppose that the true parameter $p=1/2$ which is exactly at the peak of the prior probability function. In this case, what is the bias? $ \mathbb{E} = \frac{(5+n p )}{(n + 10)} -p \rightarrow 0$ and the variance of the MAP estimator at this point is the following: $$ \frac{n p (1-p)}{(n+10)^2} \rightarrow $$ ``` pv=.60 nsamp=30 fig,ax=subplots() rv = stats.bernoulli(pv) map_est=(rv.rvs((nsamp,1000)).sum(axis=0)+5)/(nsamp+10); ml_est=(rv.rvs((nsamp,1000)).sum(axis=0))/(nsamp); _,bins,_=ax.hist(map_est,bins=20,alpha=.3,normed=True,label='MAP'); ax.hist(ml_est,bins=20,alpha=.3,normed=True,label='ML'); ax.vlines(map_est.mean(),0,12,lw=3,linestyle=':',color='b') ax.vlines(pv,0,12,lw=3,color='r',linestyle=':') ax.vlines(ml_est.mean(),0,12,lw=3,color='g',linestyle=':') ax.legend() ``` ``` ```
f7c3af1794be71b7d4ee8e2c60b0fabb9e706692
149,333
ipynb
Jupyter Notebook
4-assets/BOOKS/Jupyter-Notebooks/Overflow/MAP_Estimation.ipynb
impastasyndrome/Lambda-Resource-Static-Assets
7070672038620d29844991250f2476d0f1a60b0a
[ "MIT" ]
null
null
null
4-assets/BOOKS/Jupyter-Notebooks/Overflow/MAP_Estimation.ipynb
impastasyndrome/Lambda-Resource-Static-Assets
7070672038620d29844991250f2476d0f1a60b0a
[ "MIT" ]
null
null
null
4-assets/BOOKS/Jupyter-Notebooks/Overflow/MAP_Estimation.ipynb
impastasyndrome/Lambda-Resource-Static-Assets
7070672038620d29844991250f2476d0f1a60b0a
[ "MIT" ]
1
2021-11-05T07:48:26.000Z
2021-11-05T07:48:26.000Z
290.531128
24,129
0.913027
true
1,830
Qwen/Qwen-72B
1. YES 2. YES
0.855851
0.870597
0.745102
__label__eng_Latn
0.443206
0.569453
# Raumluftqualität 2.0 ## Zeitliche Entwicklung der CO_2-Konzentration in Räumen In einem gut gelüfteten, leeren Raum wird sich zunächst genau so viel CO_2 befinden, wie in der Außenluft. Wenn sich dann Personen in den Raum begeben und CO_2 freisetzen, wird die CO_2-Konzentration langsam zunehmen. Auf welchen Wert sie sich schließlich einstellt, hängt vom Außenluftvolumenstrom ab, mit dem der Raum belüftet wird. Bei einem völlig unbelüfteten Raum wird das von den Personen produzierte CO_2 sich in der Raumluft immer stärker anreichern, wobei je Zeiteinheit die gleiche Menge an CO_2 freigesetzt wird. ### Beispiel: In einem Raum von $15 \rm m^2$ Grundfläche bei $2.5 \rm m$ Geschosshöhe befinden sich 2 Personen, die je Person $30\,{\frac{\ell}{h}}$ CO_2 ausatmen. Die CO_2-Konzentration der Außenluft ist 400 ppM. Im Raum sollen 1200 ppM CO_2 zulässig sein. Stellen Sie die zeitliche Entwicklung der CO_2-Konzentration in einem Diagramm dar. Gegeben: Raumvolumen: $V_{\rm ra} = 15 {\rm m^2}\cdot 2.5 {\rm m} = 37.5 {\rm m^3}$ CO_2-Produktion: $\dot V_{\rm sch} = 2\cdot 30 {\rm \dfrac{\ell}{h}} = 60\,000\, {\rm\dfrac{cm^3}{h}}$ Damit ergibt sich die Änderungsrate $ \dot k = \cfrac{\dot V_{\rm sch}}{V_{\rm ra}} = {\rm\dfrac{60\,000\,cm^3}{37.5\, m^3\cdot h}} = {\rm 1600 \dfrac{ppM}{h}} $ Für das Schadstoffvolumen im Raum ergibt sich: \begin{align} k(t)&= 400 {\rm ppM} + 1600\,{\rm\dfrac{ppM}{h}}\, t \end{align} Dies Ergebnis wird in den folgenden Zeilen in einem Diagramm dargestellt: ```python import matplotlib.pyplot as plt %config InlineBackend.figure_format = 'retina' import pandas as pd import numpy as np ``` ```python lt = np.linspace(0,120,13) # 10-min Schritte df = pd.DataFrame( { 't': lt, 'k': 400 + 1600*lt/60 # 60min = 1h } ) display(df.T) ax=df.plot(x='t',y='k', label='$k = k(t)$') ax.axhline(1200,c='r') ax.grid() ax.set( xlim=(0,120),xlabel='Zeit $t$ in $min$', ylabel='CO_2-Konzentration $k$ in $\mathrm{ppM}$' ); ``` Die zulässige CO_2-Konzentration wird bereits nach kurzer Zeit (etwa 30 min) erreicht. Nach etwa einer Stunde ist die Raumluftqualität inakzeptabel. ### Aufgabe In einem Gebäude ($400 \rm m^2$ Grundfläche, $3.50 \rm m$ Raumhöhe) arbeiten 120 Personen körperlich mittelschwer belastet. Berechnen Sie unter der Voraussetzung, dass das Gebäude nicht belüftet wird, wie sich die CO_2-Konzentration im Raum entwickelt. Die CO_2-Konzentration der Außenluft beträgt 400 ppM. Nach welcher Zeit wird die zulässige CO_2-Konzentration von 1200 ppM überschritten? Stellen Sie den Vorgang in einem Diagramm dar. ```python A_ra = 400 # m**2 h_ra = 3.5 # m V_ra = A_ra*h_ra V_ra ``` 1400.0 ```python n = 120 # Personen dV_co2_person = 30e-3 # 30 l/h dV_co2 = n*dV_co2_person dV_co2 ``` 3.5999999999999996 ```python k_0 = k_au = 400e-6 # 400 ppM k_zul = 1200e-6 # 1200 ppM lt = np.linspace(0,2) # Zeitintervall von vier Stunden df = pd.DataFrame( { 't': lt, 'k': (k_0 + dV_co2/V_ra*lt)*1e6 # in ppM } ) df.head().T ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> </tr> </thead> <tbody> <tr> <th>t</th> <td>0.0</td> <td>0.040816</td> <td>0.081633</td> <td>0.122449</td> <td>0.163265</td> </tr> <tr> <th>k</th> <td>400.0</td> <td>504.956268</td> <td>609.912536</td> <td>714.868805</td> <td>819.825073</td> </tr> </tbody> </table> </div> ```python ax = df.plot(x='t',y='k',label='$k=k(t)$') ax.set( xlim=(0,4),xlabel='Zeit $t$ in Stunden', ylim=(0,3500),ylabel='CO_2-Konzentration in ppM' ) ax.axhline(k_zul*1e6,c='r') ax.grid() ``` Nach einer Stunde (von Hand berechnet): ```python (k_au + dV_co2/V_ra)*1e6 ``` 2971.4285714285716
d48528ada807fca0f40a0c44d0e0ce7aab2ae48e
93,187
ipynb
Jupyter Notebook
Notebooks/Notebook_2-Lsg_a.ipynb
w-meiners/rlt-rlq
215594ebdbcc364d81d29fa620389e006864cc4d
[ "MIT" ]
null
null
null
Notebooks/Notebook_2-Lsg_a.ipynb
w-meiners/rlt-rlq
215594ebdbcc364d81d29fa620389e006864cc4d
[ "MIT" ]
null
null
null
Notebooks/Notebook_2-Lsg_a.ipynb
w-meiners/rlt-rlq
215594ebdbcc364d81d29fa620389e006864cc4d
[ "MIT" ]
null
null
null
213.242563
44,136
0.90239
true
1,558
Qwen/Qwen-72B
1. YES 2. YES
0.787931
0.828939
0.653147
__label__deu_Latn
0.91338
0.35581
<a href="https://colab.research.google.com/github/nickwotton/MQP2019/blob/master/Nick/NN_linearfunction01.ipynb" target="_parent"></a> # Attempt to Improve Solving a Linear Function using a Neural Network Given code to use a neural network to fit a linear function, try to optimize the code to get a better fit, i.e. the data points completely overlap on the plot. ```python import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import matplotlib.pyplot as plt ``` ## Define the Function Here we define our function $f(x)=ax+b$ with coefficient $a=1$ and intercept term $b=2$. Then we test the equation with a test value of 2. ```python # target function a = 1. b = 2. f = lambda x: a*x+b #test f(2.) ``` 4.0 ## Create Model Next, we create the neural network model. This is done first by setting the inner and outer dimensions with variables. Next we code the model and vary the internal dimensions to attempt to improve the model. At this level, this is essentially a simple linear algebra exercise: If we have input $x$, internal parameters $a,b$, and solution $f(x)$ then in the one-dimensional case we have: \begin{equation} \left( a_{1}x+b_{2} \right) a_{2} + b_{2} = f(x) \end{equation} However, we want to get a better estimate for the true equation. So we increase the interior dimension which corresponds to the number of neurons inside the network. For example, we raised the inner dimension to 3. In matrix form we have: \begin{equation} \left( \begin{bmatrix} x \end{bmatrix} \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} + \begin{bmatrix} b_{1} & b_{2} & b_{3} \end{bmatrix} \right) \begin{bmatrix} a_{4} \\ a_{5} \\ a_{6} \end{bmatrix} + \begin{bmatrix} b_{4} \\ \end{bmatrix} = \begin{bmatrix} f(x) \end{bmatrix} \end{equation} Graphically, we can render this second neural network as: What we discovered here is that ReLU was slowing down the process, so since our function is Linear, we can just remove it. Additionally, we discerned that the higher the inner dimension, that is, the more nodes in each layer, the smaller the error and the better the performance. ```python #model #nn.Linear in_dim = 1 out_dim = 1 model = nn.Sequential( nn.Linear(in_dim, 30), # nn.ReLU(), nn.Linear(30, out_dim) ) ``` Here we define the Loss function as the Mean Squared Error(MSE). Note that by doing so, we are essentially 'cheating' the system. In most applications, we would not know the function $f$ so we would be unable to find the MSE. ```python #loss function criterion = nn.MSELoss() ``` Next we choose a learning rate and a method for learning. The learning rate is the percent of the data that is accepted in each iteration. The Methods we tried were SGD and Adam. ```python #optimizer learning_rate = 0.001 optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) ``` ## Train the Model First we create the training data. This is a batch of random points that we pass through our function $f$. ```python #training data batch_size = 1000 x_train = torch.randn(batch_size, 1) y_train = f(x_train) ``` Once we have the training data, we pass this collection of inputs and solutions into the model. With each iteration we calculate the loss and attempt to optimize the model to further reduce the loss. In this code we print out the loss every 10 iterations. ```python # Train the model num_epochs = 500 for epoch in range(num_epochs): # Forward pass outputs = model(x_train) loss = criterion(outputs, y_train) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 10 == 0: print ('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` Epoch [10/500], Loss: 3.6593 Epoch [20/500], Loss: 2.1498 Epoch [30/500], Loss: 1.2767 Epoch [40/500], Loss: 0.7678 Epoch [50/500], Loss: 0.4685 Epoch [60/500], Loss: 0.2906 Epoch [70/500], Loss: 0.1835 Epoch [80/500], Loss: 0.1180 Epoch [90/500], Loss: 0.0773 Epoch [100/500], Loss: 0.0515 Epoch [110/500], Loss: 0.0348 Epoch [120/500], Loss: 0.0239 Epoch [130/500], Loss: 0.0166 Epoch [140/500], Loss: 0.0116 Epoch [150/500], Loss: 0.0082 Epoch [160/500], Loss: 0.0058 Epoch [170/500], Loss: 0.0041 Epoch [180/500], Loss: 0.0030 Epoch [190/500], Loss: 0.0021 Epoch [200/500], Loss: 0.0015 Epoch [210/500], Loss: 0.0011 Epoch [220/500], Loss: 0.0008 Epoch [230/500], Loss: 0.0006 Epoch [240/500], Loss: 0.0004 Epoch [250/500], Loss: 0.0003 Epoch [260/500], Loss: 0.0002 Epoch [270/500], Loss: 0.0002 Epoch [280/500], Loss: 0.0001 Epoch [290/500], Loss: 0.0001 Epoch [300/500], Loss: 0.0001 Epoch [310/500], Loss: 0.0000 Epoch [320/500], Loss: 0.0000 Epoch [330/500], Loss: 0.0000 Epoch [340/500], Loss: 0.0000 Epoch [350/500], Loss: 0.0000 Epoch [360/500], Loss: 0.0000 Epoch [370/500], Loss: 0.0000 Epoch [380/500], Loss: 0.0000 Epoch [390/500], Loss: 0.0000 Epoch [400/500], Loss: 0.0000 Epoch [410/500], Loss: 0.0000 Epoch [420/500], Loss: 0.0000 Epoch [430/500], Loss: 0.0000 Epoch [440/500], Loss: 0.0000 Epoch [450/500], Loss: 0.0000 Epoch [460/500], Loss: 0.0000 Epoch [470/500], Loss: 0.0000 Epoch [480/500], Loss: 0.0000 Epoch [490/500], Loss: 0.0000 Epoch [500/500], Loss: 0.0000 ## Testing the Model Now that we have a trained model with low Loss, we want to attempt to replicate the function. To do this we get another random sample of numbers. This sample is passed into both our fuction $f$ and the model. We then graph both sets of points on a scatter plot. Since the model is highly accurate now, the two sets of points completely overlap. ```python #test x_ = torch.randn(50,1) y_ = f(x_) plt.scatter(x_.detach().numpy(), y_.detach().numpy(), label='true') y_pred = model(x_) plt.scatter(x_.detach().numpy(), y_pred.detach().numpy(), label='pred') plt.legend() ```
368c8844a3be12957deefdd2853a917567f1779f
22,180
ipynb
Jupyter Notebook
Nick/NN_linearfunction01.ipynb
vitaltavares/MQP2019
d7bda131450907beef3c9d619acf36d6c1ced2a9
[ "MIT" ]
1
2019-09-13T16:27:14.000Z
2019-09-13T16:27:14.000Z
Nick/NN_linearfunction01.ipynb
vitaltavares/MQP2019
d7bda131450907beef3c9d619acf36d6c1ced2a9
[ "MIT" ]
40
2019-09-02T17:49:28.000Z
2020-04-06T13:03:43.000Z
Nick/NN_linearfunction01.ipynb
vitaltavares/MQP2019
d7bda131450907beef3c9d619acf36d6c1ced2a9
[ "MIT" ]
3
2019-09-11T01:51:56.000Z
2019-12-03T20:13:16.000Z
51.701632
8,682
0.659784
true
1,925
Qwen/Qwen-72B
1. YES 2. YES
0.91848
0.808067
0.742194
__label__eng_Latn
0.885838
0.562697
# Selección óptima de portafolios I En la clase pasada vimos que: - La LAC describe las posibles selecciones de riesgo-rendimiento entre un activo libre de riesgo y un activo riesgoso. - Su pendiente es igual al radio de Sharpe del activo riesgoso. - La asignación óptima de capital para cualquier inversionista es el punto tangente de la curva de indiferencia del inversionista con la LAC (depende de las preferencias particulares - aversión al riesgo). Para todo lo anterior, supusimos que ya teníamos el portafolio óptimo (activo riesgoso). En el siguiente análisis: **Objetivos:** - ¿Cuál es el portafolio óptimo de activos riesgosos? - ¿Cuál es el mejor portafolio de activos riesgosos? - Es un portafolio eficiente en media-varianza. - Problema: dado un conjunto de activos riesgosos, ¿cómo construimos la mejor combinación? *Referencia:* - Notas del curso "Portfolio Selection and Risk Management", Rice University, disponible en Coursera. ___ ## 1. Maximizando el radio de Sharpe ### ¿Qué pasa si tenemos dos activos riesgosos? Cuando tenemos dos o más activos riesgosos, tenemos disponibles diferentes LAC. ¿Qué significan sus pendientes? <font color=blue> Ver en el tablero.</font> Pregunta: - ¿Qué es lo que se quiere? **Conclusión:** - El mejor portafolio de activos no depende de las preferencias individuales, y por tanto va a ser igual para todos. - Dicho mejor portafolio maximiza el radio de Sharpe. - A este portafolio lo llamaremos el portafolio eficiente en media-varianza (EMV) **Idea principal: el portafolio óptimo de activos riesgosos es independiente de las preferencias del inversionista.** - El portafolio EMV determina el portafolio óptimo de activos riesgosos. - Todos tendremos el mismo portafolio de activos riesgosos (EMV), y lo combinaremos con el activo libre de reisgo de acuerdo con las preferencias de cada uno de nosotros (aversión al riesgo). - La LAC combinando el activo libre de riesgo y el portafolio EMV, se vuelve el conjunto de portafolios eficientes. Entonces, se deben seguir los siguientes pasos: 1. Crear la frontera media-varianza. 2. Encontrar el portafolio que maximize el radio de Sharpe (portafolio EMV). 3. Construir la frontera eficiente (LAC) del punto $(0,r_f)$ al punto $(\sigma_s,E[r_s])$ del portafolio EMV. 4. Combinar de acuerdo a sus preferencias. ___ ## 2. Solución analítica del portafolio EMV: caso con dos activos. Queremos solucionar el siguiente problema: \begin{align} \max_{w_1,w_2} &\quad \frac{E[r_p]-r_f}{\sigma_p}\\ \text{s.a.} &\quad E[r_p]=w_1E[r_1]+w_2E[r_2]\\ &\quad \sigma_p=\sqrt{w_1^2\sigma_1^2+w_2^2\sigma_2^2+2w_1w_2\rho_{12}\sigma_1\sigma_2}\\ &\quad w_1+w_2=1, \quad w_1,w_2\geq0 \end{align} el cual es equivalente a \begin{align} \max_{w_1} &\quad \frac{w_1E[r_1]+(1-w_1)E[r_2]-r_f}{\sqrt{w_1^2\sigma_1^2+(1-w_1)^2\sigma_2^2+2w_1(1-w_1)\rho_{12}\sigma_1\sigma_2}}\\ \text{s.a.} &\quad 0\leq w_1\leq1 \end{align} **Actividad.** El anterior es un problema de maximizar una función de una variable en un dominio cerrado. No debaría representar dificultad. Encontrar la solución analítica a este problema. Quien primero lo haga, y salga a explicarlo al tablero, le subo alguna tarea o quiz a 100. Deben llegar a: $$w_{1,EMV}=\frac{(E[r_1]-r_f)\sigma_2^2-(E[r_2]-r_f)\sigma_{12}}{(E[r_2]-r_f)\sigma_1^2+(E[r_1]-r_f)\sigma_2^2-((E[r_1]-r_f)+(E[r_2]-r_f))\sigma_{12}}.$$ Si nadie lo ha hecho en 30 min., procederé a hacerlo yo. **Nota:** - así como obtuvimos una expresión para el peso del portafolio de mínima varianza con dos activos, obtenemos una expresión para el peso del portafolio Eficiente en Media-Varianza. - Estas actividades son sin duda un buen ejercicio, y se pueden replicar usando técnicas de varias variables (multiplicadores de Lagrange) cuando se tengan más de dos activos. - Sin embargo, la complejidad del problema crece considerablemente con el número de variables, y la solución analítica deja de ser viable cuando mencionamos que un portafolio bien diversificado consta aproximadamente de 50-60 activos. - En esos casos, este problema se soluciona con rutinas numéricas que hagan la optimización por nosotros. - Por eso, les enseño cómo resolver este problema con optimizadores numéricos, porque son una solución viable y escalable a más variables. ## 3. Ejemplo ilustrativo. Retomamos el ejemplo de mercados de acciones en los países integrantes del $G5$: EU, RU, Francia, Alemania y Japón. ```python # Importamos pandas y numpy import pandas as pd import numpy as np ``` ```python # Resumen en base anual de rendimientos esperados y volatilidades annual_ret_summ = pd.DataFrame(columns=['EU', 'RU', 'Francia', 'Alemania', 'Japon'], index=['Media', 'Volatilidad']) annual_ret_summ.loc['Media'] = np.array([0.1355, 0.1589, 0.1519, 0.1435, 0.1497]) annual_ret_summ.loc['Volatilidad'] = np.array([0.1535, 0.2430, 0.2324, 0.2038, 0.2298]) annual_ret_summ.round(4) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>EU</th> <th>RU</th> <th>Francia</th> <th>Alemania</th> <th>Japon</th> </tr> </thead> <tbody> <tr> <th>Media</th> <td>0.1355</td> <td>0.1589</td> <td>0.1519</td> <td>0.1435</td> <td>0.1497</td> </tr> <tr> <th>Volatilidad</th> <td>0.1535</td> <td>0.243</td> <td>0.2324</td> <td>0.2038</td> <td>0.2298</td> </tr> </tbody> </table> </div> ```python # Matriz de correlación corr = pd.DataFrame(data= np.array([[1.0000, 0.5003, 0.4398, 0.3681, 0.2663], [0.5003, 1.0000, 0.5420, 0.4265, 0.3581], [0.4398, 0.5420, 1.0000, 0.6032, 0.3923], [0.3681, 0.4265, 0.6032, 1.0000, 0.3663], [0.2663, 0.3581, 0.3923, 0.3663, 1.0000]]), columns=annual_ret_summ.columns, index=annual_ret_summ.columns) corr.round(4) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>EU</th> <th>RU</th> <th>Francia</th> <th>Alemania</th> <th>Japon</th> </tr> </thead> <tbody> <tr> <th>EU</th> <td>1.0000</td> <td>0.5003</td> <td>0.4398</td> <td>0.3681</td> <td>0.2663</td> </tr> <tr> <th>RU</th> <td>0.5003</td> <td>1.0000</td> <td>0.5420</td> <td>0.4265</td> <td>0.3581</td> </tr> <tr> <th>Francia</th> <td>0.4398</td> <td>0.5420</td> <td>1.0000</td> <td>0.6032</td> <td>0.3923</td> </tr> <tr> <th>Alemania</th> <td>0.3681</td> <td>0.4265</td> <td>0.6032</td> <td>1.0000</td> <td>0.3663</td> </tr> <tr> <th>Japon</th> <td>0.2663</td> <td>0.3581</td> <td>0.3923</td> <td>0.3663</td> <td>1.0000</td> </tr> </tbody> </table> </div> Supondremos, además, que la tasa libre de riesgo es $r_f=5\%$. ```python # Tasa libre de riesgo rf = 0.05 ``` Entonces, supondremos que tenemos disponibles los activos correspondientes a los mercados de acciones de EU y Japón, y en adición el activo libre de riesgo. #### 1. Construir la frontera de mínima varianza ```python # Vector de w variando entre 0 y 1 con n pasos N = 101 w = np.linspace(0, 1, N) # Rendimientos esperados individuales # Activo1: EU, Activo2:Japon E1 = annual_ret_summ.loc['Media', 'EU'] E2 = annual_ret_summ.loc['Media', 'Japon'] # Volatilidades individuales s1 = annual_ret_summ.loc['Volatilidad', 'EU'] s2 = annual_ret_summ.loc['Volatilidad', 'Japon'] # Correlacion r12 = corr.loc['EU', 'Japon'] # Covarianza s12 = s1 * s2 * r12 ``` ```python # DataFrame de portafolios: # 1. Índice: i # 2. Columnas 1-2: w, 1-w # 3. Columnas 3-4: E[r], sigma # 4. Columna 5: Sharpe ratio portafolios = pd.DataFrame({'w': w, '1-w': 1 - w, 'Media': w * E1 + (1 - w) * E2, 'Vol': ((w * s1)**2 + ((1 - w) * s2)**2 + 2 * w * (1 - w) * s12) ** 0.5 }) portafolios['RS'] = (portafolios['Media'] - rf) / portafolios['Vol'] portafolios.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>w</th> <th>1-w</th> <th>Media</th> <th>Vol</th> <th>RS</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.00</td> <td>1.00</td> <td>0.149700</td> <td>0.229800</td> <td>0.433856</td> </tr> <tr> <th>1</th> <td>0.01</td> <td>0.99</td> <td>0.149558</td> <td>0.227916</td> <td>0.436820</td> </tr> <tr> <th>2</th> <td>0.02</td> <td>0.98</td> <td>0.149416</td> <td>0.226041</td> <td>0.439814</td> </tr> <tr> <th>3</th> <td>0.03</td> <td>0.97</td> <td>0.149274</td> <td>0.224176</td> <td>0.442839</td> </tr> <tr> <th>4</th> <td>0.04</td> <td>0.96</td> <td>0.149132</td> <td>0.222322</td> <td>0.445894</td> </tr> </tbody> </table> </div> ```python # Importar librerías de gráficos from matplotlib import pyplot as plt %matplotlib inline ``` ```python # Gráfica de dispersión de puntos coloreando # de acuerdo a RS plt.figure(figsize=(6, 4)) plt.plot(s1, E1, 'ro', ms=10, label='EU') plt.plot(s2, E2, 'bo', ms=10, label='Japón') plt.scatter(portafolios['Vol'], portafolios['Media'], c=portafolios['RS'], cmap='inferno', label='Portafolios') plt.xlabel('Volatilidad $\sigma$') plt.ylabel('Rendimiento esperado $E[r]$') plt.grid() plt.legend(loc='best') plt.colorbar() ``` #### 2. Encontrar el portafolio que maximiza el radio de Sharpe (EMV) Primero, encontramos este portafolio con la fórmula que obtuvimos: $$w_{1,EMV}=\frac{(E[r_1]-r_f)\sigma_2^2-(E[r_2]-r_f)\sigma_{12}}{(E[r_2]-r_f)\sigma_1^2+(E[r_1]-r_f)\sigma_2^2-((E[r_1]-r_f)+(E[r_2]-r_f))\sigma_{12}}.$$ ```python # Fórmula que obtuvimos w_EMV = ((E1 - rf) * s2**2 - (E2 - rf) * s12) / ((E2 - rf) * s1**2 + (E1 - rf) * s2**2 - (E1 - rf + E2 - rf) * s12) w_EMV ``` 0.6983139170512034 Ahora sí, con la función scipy.optimize.minimize ```python # Importar la función minimize del módulo optimize from scipy.optimize import minimize ``` ```python # Función objetivo (-RS) def menos_RS(w, E1, E2, s1, s2, s12, rf): Erp = w * E1 + (1 - w) * E2 sp = ((w * s1)**2 + ((1 - w) * s2)**2 + 2 * w *(1 - w) * s12)**0.5 RS = (Erp - rf) / sp return -RS ``` ```python # Dato inicial w0 = 0.5 # Cotas de las variables bnd = ((0, 1),) ``` ```python # Optimización numérica res = minimize(fun=menos_RS, x0=w0, args=(E1, E2, s1, s2, s12, rf), bounds=bnd ) # Resultado res ``` fun: array([-0.63087253]) hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64> jac: array([3.39728246e-06]) message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL' nfev: 10 nit: 4 status: 0 success: True x: array([0.69831582]) ```python w_EMV, res.x ``` (0.6983139170512034, array([0.69831582])) Con lo anterior, podemos obtener datos de rendimiento esperado y volatilidad del portafolio EMV ```python # Rendimiento esperado y volatilidad del portafolio EMV E_EMV = w_EMV * E1 + (1 - w_EMV) * E2 s_EMV = ((w_EMV * s1)**2 + ((1 - w_EMV) * s2)**2 + 2 * w_EMV * (1 - w_EMV) * s12)**0.5 E_EMV, s_EMV ``` (0.13978394237787292, 0.14231708951606933) ```python ``` ```python # Gráfica de dispersión de puntos coloreando # de acuerdo a SR, y portafolio EMV plt.figure(figsize=(6, 4)) plt.plot(s1, E1, 'ro', ms=10, label='EU') plt.plot(s2, E2, 'bo', ms=10, label='Japón') plt.scatter(portafolios['Vol'], portafolios['Media'], c=portafolios['RS'], cmap='inferno', label='Portafolios') plt.plot(s_EMV, E_EMV, 'g*', ms=10, label='Port. EMV') plt.xlabel('Volatilidad $\sigma$') plt.ylabel('Rendimiento esperado $E[r]$') plt.grid() plt.legend(loc='best') plt.colorbar() ``` #### 3. Construir LAC Ahora, dibujamos la LAC, combinando el portafolio EMV con el activo libre de riesgo: ```python # Vector de wp variando entre 0 y 1.5 con n pasos wp = np.linspace(0, 1.5) ``` ```python # DataFrame de CAL: # 1. Índice: i # 2. Columnas 1-2: wp, wrf # 3. Columnas 3-4: E[r], sigma # 4. Columna 5: Sharpe ratio LAC = pd.DataFrame({'w(EMV)': wp, 'w(rf)': 1 - wp, 'Media': wp * E_EMV + (1 - wp) * rf, 'Vol': wp * s_EMV }) LAC['RS'] = (LAC['Media'] - rf) / LAC['Vol'] LAC.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>w(EMV)</th> <th>w(rf)</th> <th>Media</th> <th>Vol</th> <th>RS</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.000000</td> <td>1.000000</td> <td>0.050000</td> <td>0.000000</td> <td>NaN</td> </tr> <tr> <th>1</th> <td>0.030612</td> <td>0.969388</td> <td>0.052748</td> <td>0.004357</td> <td>0.630873</td> </tr> <tr> <th>2</th> <td>0.061224</td> <td>0.938776</td> <td>0.055497</td> <td>0.008713</td> <td>0.630873</td> </tr> <tr> <th>3</th> <td>0.091837</td> <td>0.908163</td> <td>0.058245</td> <td>0.013070</td> <td>0.630873</td> </tr> <tr> <th>4</th> <td>0.122449</td> <td>0.877551</td> <td>0.060994</td> <td>0.017427</td> <td>0.630873</td> </tr> </tbody> </table> </div> ```python # Gráfica de dispersión de puntos coloreando # de acuerdo a SR, portafolio EMV y LAC plt.figure(figsize=(6, 4)) plt.plot(s1, E1, 'ro', ms=10, label='EU') plt.plot(s2, E2, 'bo', ms=10, label='Japón') plt.scatter(portafolios['Vol'], portafolios['Media'], c=portafolios['RS'], cmap='inferno', label='Portafolios') plt.plot(s_EMV, E_EMV, 'g*', ms=10, label='Port. EMV') plt.plot(LAC['Vol'], LAC['Media'], '--k', lw=2, label='LAC') plt.xlabel('Volatilidad $\sigma$') plt.ylabel('Rendimiento esperado $E[r]$') plt.grid() plt.legend(loc='best') plt.colorbar() plt.axis([0.13, 0.16, 0.13, 0.15]) ``` #### 4. Combinación óptima de acuerdo a preferencias Con los datos anteriores, y la caracterización de aversión al riesgo, se escoge la combinación óptima entre el portafolio EMV y el activo libre de riesgo de acuerdo a: $$w^\ast=\frac{E[r_s-r_f]}{\gamma\sigma_s^2}.$$ ```python # Para gamma=7 g = 7 w_cap = (E_EMV - rf) / (g * s_EMV**2) w_cap ``` 0.6332665142475 ```python w_cap * w_EMV, w_cap * (1 - w_EMV), 1 - w_cap ``` (0.44221882010153346, 0.1910476941459666, 0.3667334857525) <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by Esteban Jiménez Rodríguez. </footer>
ff3dace4604663ed249595cbd6ad833a8611079c
123,331
ipynb
Jupyter Notebook
Modulo3/Clase13_SeleccionOptimaPortI.ipynb
HKael/porinvv2020
f6f56a516a25786018321c4537b4680b307d28a9
[ "MIT" ]
null
null
null
Modulo3/Clase13_SeleccionOptimaPortI.ipynb
HKael/porinvv2020
f6f56a516a25786018321c4537b4680b307d28a9
[ "MIT" ]
null
null
null
Modulo3/Clase13_SeleccionOptimaPortI.ipynb
HKael/porinvv2020
f6f56a516a25786018321c4537b4680b307d28a9
[ "MIT" ]
null
null
null
119.045367
34,316
0.845902
true
5,820
Qwen/Qwen-72B
1. YES 2. YES
0.596433
0.867036
0.517129
__label__spa_Latn
0.73043
0.039793
## 1) Numpy Arrays vs Lists ```python import numpy as np ``` ```python L = [1,2,3] A = np.array([1,2,3]) L, A ``` ([1, 2, 3], array([1, 2, 3])) ```python L + [5] ``` [1, 2, 3, 5] ```python L ``` [1, 2, 3] ```python A + [5] ``` array([6, 7, 8]) O Operador + funciona de maneira diferente em listas e numpy arrays. <br> Enquanto nas listas ele faz um append, no numpy arrays é tratado como soma vetorial. ```python L * 2 ``` [1, 2, 3, 1, 2, 3] ```python A * 2 ``` array([2, 4, 6]) O operador * funciona de maneira diferente em listas e numpy arrays.<br> Enquanto ele repete uma lista, em numpy arrays é tratado como multiplicação elemento a elemento entre vetores O produto escalar é dado por: $$\begin{align} a \cdot b &= a^{T}b \\ &= \sum\limits_{i=0}^{n} a_ib_i\\ &= |a||b|\cos{\theta} \end{align} $$ ```python dot_list = 0 for e in L: dot_list += e*e dot_list ``` 14 ```python (A*A).sum(), np.dot(A,A) ``` (14, 14) ```python a = np.array([1,3,4]) b = np.array([2,4,1]) ``` $$ \cos{\theta} = \frac{a\cdot b}{|a||b|} $$ ```python cos = a.dot(b)/(np.linalg.norm(a)*np.linalg.norm(b)) cos, np.arccos(cos) ``` (0.7703288865196434, 0.6914395540229785) ### Speed Comparison: Dot Product Comparar a velocidade do cálculo do produto escalar utilizando `for loop` e a função `numpy.dot()`<br> São criados 2 vetores 1x1000 para o teste. ```python from datetime import datetime ``` ```python a = np.random.randn(100) b = np.random.randn(100) T = 1000 ``` ```python def for_dot(a,b): result = 0 for e,f in zip(a,b): result += e*f return result t0 = datetime.now() for t in range(T): for_dot(a,b) dt1 = datetime.now() - t0 t0 = datetime.now() for t in range(T): a.dot(b) dt2 = datetime.now() - t0 dt1,dt2,dt1.total_seconds()/dt2.total_seconds() ``` (datetime.timedelta(microseconds=79336), datetime.timedelta(microseconds=1879), 42.222458754656735) ### Creating Arrays ```python Z = np.zeros(10) Z ``` array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) ```python np.zeros((10,10)) ``` array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]) ```python np.ones((10,10)) ``` array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.], [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]]) ```python np.random.random((10,10)) # Números aleatórios baseado em probabilidade 0<x<1 ``` array([[0.8727353 , 0.7101418 , 0.99712466, 0.6913042 , 0.18928091, 0.3129924 , 0.8707541 , 0.76127674, 0.04484837, 0.20726868], [0.58037897, 0.85199027, 0.12931742, 0.69984037, 0.54857979, 0.19323108, 0.03747739, 0.28693611, 0.13446493, 0.92038251], [0.76115359, 0.82189855, 0.59756655, 0.59055865, 0.98912974, 0.53747975, 0.14158241, 0.48285143, 0.36049548, 0.74296014], [0.24990797, 0.54769394, 0.61527197, 0.10531474, 0.71674935, 0.00848703, 0.63823206, 0.51600374, 0.45159856, 0.12775354], [0.12094621, 0.26349439, 0.0460745 , 0.02141862, 0.83742369, 0.77048361, 0.84818114, 0.58709173, 0.03627597, 0.48886898], [0.90964074, 0.94232793, 0.66774458, 0.86564113, 0.25928235, 0.53727432, 0.50713657, 0.13698081, 0.94057636, 0.12699759], [0.85851277, 0.9387563 , 0.20228787, 0.3772616 , 0.04864407, 0.73258449, 0.06612805, 0.80031866, 0.10438979, 0.18995695], [0.80844273, 0.23237812, 0.28653701, 0.25980382, 0.13690201, 0.15392922, 0.10574834, 0.48174979, 0.47251255, 0.73375288], [0.00802248, 0.66516244, 0.53422215, 0.2853337 , 0.75394833, 0.83927944, 0.082604 , 0.2291872 , 0.68355877, 0.53528026], [0.55539544, 0.17080853, 0.61780461, 0.95634259, 0.57328085, 0.64070114, 0.44743496, 0.71544752, 0.44835268, 0.7934082 ]]) ```python G = np.random.randn(10,10) G # Número aleatórios de distribuição gaussiana ``` array([[-0.29325655, 0.6514455 , -0.59313231, 0.45996943, 1.3397887 , 0.1356255 , 1.33221726, 0.36584929, 0.40187569, 1.30479922], [ 0.69069344, 0.16975026, -0.14295021, -1.62121735, 1.43983921, -0.74673648, -0.70051634, -0.19065805, 0.99060591, 1.67003266], [-1.85002381, -0.79447583, -1.47101947, -0.77519736, 0.60512255, 1.69136405, -0.37414819, -0.41072259, 1.37359439, 0.34048061], [ 0.07398756, -0.68716856, 0.7761272 , 1.70610709, -0.09549806, -0.4563812 , 0.6250297 , 0.76567729, 0.65995112, -1.46688799], [-1.15924409, 0.91724841, -0.34138872, -2.58894929, -0.23099132, 0.3138421 , 0.49306887, -0.94478341, -0.6026703 , 0.73182024], [-0.35001544, -1.2157117 , -0.52556314, 0.14471904, 0.30952623, 0.84092323, 1.36910066, 0.95006108, 1.30409573, 1.00748436], [-0.457104 , 0.10644546, 1.2413489 , 1.57673014, 0.92612354, 1.21189605, -1.28566399, 0.46028265, 0.32939659, -0.75769981], [ 1.20889008, -0.74653187, -2.11225921, 1.06619329, 0.58199165, 1.46652055, 0.51299538, -0.22632982, -0.70686765, -0.35628585], [-0.57797704, -0.60259817, 1.3371527 , -0.70509169, 1.16501866, 0.38331481, -0.69265983, -0.27892637, -0.89107526, 0.18796167], [-1.39126114, 1.09006032, 0.36083266, 0.04547842, 0.51360868, 0.71687125, 0.26616739, 0.18450924, -0.97733634, -0.14369357]]) ```python G.mean() ## Média ``` 0.11352944229300384 ```python G.var() ## Variância ``` 0.8612373657553634 ```python np.linalg.inv(G) ## Inversa da Matriz ``` array([[-0.12888897, 0.20176253, -0.37353808, 0.0865699 , 0.40538869, 0.15471414, 0.36799712, 0.2736015 , -0.16607605, -0.28100721], [ 0.05492664, 0.15958189, -0.1694259 , 0.03874689, 0.31843647, -0.08811236, 0.33860869, 0.02826085, -0.42919972, 0.14344601], [ 0.22426181, -0.23724135, -0.2569901 , 0.03846767, 0.45572269, 0.09262413, 0.45431058, -0.13187685, 0.19296182, -0.56831628], [ 0.56757278, -0.4976866 , 0.12779579, -0.29184054, -0.31054629, -0.27194361, 0.03941485, -0.17247039, 0.13287871, -0.44301028], [ 0.08329942, 0.38087176, 0.06966686, 0.40665812, 0.01732694, -0.15537987, -0.06283071, 0.20244253, 0.17223829, 0.25016165], [-0.08987573, -0.09772335, -0.21197512, -0.11253102, 0.5388706 , 0.31441403, 0.60904867, 0.20640591, -0.12924144, -0.24885146], [ 0.34369076, -0.18141415, -0.16873184, 0.3443168 , 0.53783069, 0.07429966, 0.10817637, 0.09360505, 0.060279 , -0.36590588], [-1.0628979 , 0.78289266, -0.17901836, 0.0330127 , -0.6220006 , 0.68497583, -0.38634435, 0.10424462, -0.39669954, 1.58077643], [ 0.16104689, 0.0660416 , 0.05603093, 0.25848534, 0.41338857, -0.01003739, 0.39605931, -0.06990624, -0.254451 , -0.48900586], [ 0.43319019, -0.40228234, -0.00552417, -0.72580933, -0.32709565, 0.07877201, -0.01662383, -0.28436166, 0.18246469, -0.38697404]]) ```python ## Inversa * Matriz = I G.dot(np.linalg.inv(G)) ``` array([[ 1.00000000e+00, -1.11022302e-16, 1.73472348e-16, 0.00000000e+00, 3.33066907e-16, -3.05311332e-16, 7.97972799e-17, 5.55111512e-17, 1.11022302e-16, -3.33066907e-16], [-1.11022302e-16, 1.00000000e+00, -3.81639165e-17, 0.00000000e+00, 2.22044605e-16, 1.38777878e-16, 1.63064007e-16, 5.55111512e-17, 0.00000000e+00, -4.44089210e-16], [-2.77555756e-17, -1.11022302e-16, 1.00000000e+00, 0.00000000e+00, 2.63677968e-16, 4.85722573e-17, 3.55618313e-17, -5.55111512e-17, -4.16333634e-17, 1.38777878e-16], [-2.22044605e-16, -4.44089210e-16, 1.17961196e-16, 1.00000000e+00, 0.00000000e+00, -2.63677968e-16, 1.42247325e-16, -1.11022302e-16, 0.00000000e+00, -6.66133815e-16], [ 3.88578059e-16, -3.33066907e-16, 1.45716772e-16, -1.11022302e-16, 1.00000000e+00, -2.42861287e-16, 1.56125113e-16, -5.55111512e-17, 1.66533454e-16, -6.10622664e-16], [ 1.66533454e-16, -3.33066907e-16, 9.28077060e-17, 2.22044605e-16, 1.11022302e-16, 1.00000000e+00, -1.49186219e-16, -5.55111512e-17, 1.94289029e-16, -4.44089210e-16], [-2.22044605e-16, -3.33066907e-16, -6.41847686e-17, -1.11022302e-16, -2.22044605e-16, 1.24900090e-16, 1.00000000e+00, -8.32667268e-17, 3.05311332e-16, 1.11022302e-15], [-5.55111512e-17, 0.00000000e+00, -1.66533454e-16, 0.00000000e+00, -2.22044605e-16, 4.16333634e-17, -2.44596010e-16, 1.00000000e+00, 1.38777878e-16, 1.66533454e-16], [ 6.93889390e-17, -1.80411242e-16, -6.24500451e-17, -2.77555756e-17, 8.32667268e-17, 9.88792381e-17, 8.80372164e-17, -1.31838984e-16, 1.00000000e+00, -1.11022302e-16], [ 0.00000000e+00, -3.46944695e-17, 1.91903785e-17, 5.55111512e-17, 2.98372438e-16, -1.71737624e-16, 1.60895602e-16, -9.02056208e-17, -1.76941795e-16, 1.00000000e+00]]) Produto externo ```python a = np.array([1,3,6]) b = np.array([3,1,9]) c = np.outer(a,b) c ``` array([[ 3, 1, 9], [ 9, 3, 27], [18, 6, 54]]) ```python np.trace(G) ``` -1.8252494059901754 ```python ## Calculando covariância de um dataset fake, 3 features e 100 samples X = np.random.randn(100,3) ``` ```python cov = np.cov(X.T) ``` ```python cov ``` array([[ 0.9277445 , 0.03838728, -0.06852152], [ 0.03838728, 1.03476599, -0.02533857], [-0.06852152, -0.02533857, 1.09690852]]) ```python np.linalg.eig(cov) ``` (array([0.89761064, 1.13507008, 1.02673828]), array([[-0.93302255, 0.35190946, 0.07502439], [ 0.20672837, 0.35361487, 0.91226088], [-0.29450349, -0.86666964, 0.40268031]])) ```python a = np.array([[1,3,4],[2,2,5],[5,5,4]]) b = np.array([3,np.pi,np.e]) ``` ```python x = np.linalg.inv(a).dot(b) x ``` array([-0.20115547, 0.26145185, 0.60419998]) ```python np.linalg.solve(a,b) ``` array([-0.20115547, 0.26145185, 0.60419998]) #### Resolvendo um problema O preço do ingresso em uma feira é R\\$1,50 para crianças e R\\$4,00 para adultos. Em um certo dia 2200 pessoas passaram pela feira e a venda total de ingressos foi de R\\$5050,00. Quantas crianças e quantos adultos passaram pela feira? Seja $x_1$ a quantidade de crianças e $x_2$ a quantidade de adultos: $$ \begin{cases} x_1 + x_2 &= 2200 \\ 1.5 x_1 + 4x_2 &= 5050 \end{cases} $$ $$Ax = b$$ $$ \begin{pmatrix} 1 & 1 \\ 1.5 & 4 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2200 \\ 5050 \end{pmatrix} $$ ```python A = np.array([[1,1],[1.5,4]]) b = np.array([2200,5050]) x = np.linalg.solve(A,b) x[0],x[1] ``` (1500.0, 700.0) ```python ```
5d7b5909ba135d857ef6e538f623461433883dba
22,847
ipynb
Jupyter Notebook
numpy-stack-python/Numpy.ipynb
mirandagil/extra-courses
51858f5089b10b070de43ea3809697760aa261ec
[ "MIT" ]
null
null
null
numpy-stack-python/Numpy.ipynb
mirandagil/extra-courses
51858f5089b10b070de43ea3809697760aa261ec
[ "MIT" ]
null
null
null
numpy-stack-python/Numpy.ipynb
mirandagil/extra-courses
51858f5089b10b070de43ea3809697760aa261ec
[ "MIT" ]
null
null
null
25.903628
251
0.463299
true
5,670
Qwen/Qwen-72B
1. YES 2. YES
0.893309
0.715424
0.639095
__label__krc_Cyrl
0.370962
0.323162
# Basic Symbolic Quantum Mechanics ```python from sympy import init_printing init_printing(use_latex=True) ``` ```python from sympy import sqrt, symbols, Rational, srepr from sympy import expand, Eq, Symbol, simplify, exp, sin from sympy.physics.quantum import * from sympy.physics.quantum.qubit import * from sympy.physics.quantum.gate import * from sympy.physics.quantum.grover import * from sympy.physics.quantum.qft import QFT, IQFT, Fourier from sympy.physics.quantum.circuitplot import circuit_plot ``` /Users/bgranger/anaconda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') /Users/bgranger/anaconda/lib/python3.5/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') ## Bras and kets Symbolic kets can be created using the `Ket` class as seen here: ```python phi, psi = Ket('phi'), Ket('psi') ``` These ket instances are fully symbolic and behave exactly like the corresponding mathematical entities. For example, one can form a linear combination using addition and scalar multiplication: ```python alpha = Symbol('alpha', complex=True) beta = Symbol('beta', complex=True) state = alpha*psi + beta*phi; state ``` Bras can be created using the `Bra` class directly or by using the `Dagger` class on an expression involving kets: ```python ip = Dagger(state)*state; ip ``` Because this is a standard SymPy expression, we can use standard SymPy functions and methods for manipulating expression. Here we use expand to multiply this expression out, followed by `qapply` which identifies inner and outer products in an expression. ```python qapply(expand(ip)) ``` ## Operators SymPy also has a full set of classes for handling symbolic operators. Here we create three operators, one of which is hermitian: ```python A = Operator('A') B = Operator('B') C = HermitianOperator('C') ``` When used in arithmetic expressions SymPy knows that operators do not commute under multiplication/composition as is seen by expanding a polynomial of operators: ```python expand((A+B)**2) ``` Commutators of operators can also be created: ```python comm = Commutator(A*B,B+C); comm ``` The `expand` function has custom logic for expanding commutators using standard commutator relations: ```python comm.expand(commutator=True) ``` Any commutator can be performed ($[A,B]\rightarrow AB-BA$) using the `doit` method: ```python _.doit().expand() ``` The `Dagger` class also works with operators and is aware of the properties of unitary and hermitian operators: ```python Dagger(_) ``` ## Tensor products Symbolic tensor products of operators and states can also be created and manipulated: ```python op = TensorProduct(A,B+C) state = TensorProduct(psi,phi) op*state ``` Once a tensor product has been created, it can be simplified, ```python tensor_product_simp(_) ``` and expanded: ```python expand(_) ```
8334c14bc0c7604b2b4cf17902abbee3e67d4fd1
28,209
ipynb
Jupyter Notebook
notebooks/dirac_notation.ipynb
gvvynplaine/quantum_notebooks
58783823596465fe2d6c494c2cc3a53ae69a9752
[ "BSD-3-Clause" ]
42
2017-10-17T22:44:27.000Z
2022-03-28T06:26:46.000Z
notebooks/dirac_notation.ipynb
gvvynplaine/quantum_notebooks
58783823596465fe2d6c494c2cc3a53ae69a9752
[ "BSD-3-Clause" ]
2
2017-10-09T05:16:41.000Z
2018-09-22T03:08:29.000Z
notebooks/dirac_notation.ipynb
gvvynplaine/quantum_notebooks
58783823596465fe2d6c494c2cc3a53ae69a9752
[ "BSD-3-Clause" ]
12
2017-10-09T04:22:19.000Z
2022-03-28T06:25:21.000Z
54.881323
2,372
0.764189
true
784
Qwen/Qwen-72B
1. YES 2. YES
0.936285
0.843895
0.790126
__label__eng_Latn
0.988847
0.674061
# Imports and Simulation Parameters ```python import numpy as np import math import cmath import scipy import scipy.integrate import sys import matplotlib import matplotlib.pyplot as plt %matplotlib inline hbar = 1.0 / (2.0 * np.pi) ZERO_TOLERANCE = 10**-6 ``` /Users/joseph/anaconda/lib/python2.7/site-packages/matplotlib/font_manager.py:273: UserWarning: Matplotlib is building the font cache using fc-list. This may take a moment. warnings.warn('Matplotlib is building the font cache using fc-list. This may take a moment.') ```python MAX_VIBRATIONAL_STATES = 200 STARTING_GROUND_STATES = 5 STARTING_EXCITED_STATES = 5 time_scale_set = 10 #will divide the highest energy to give us the time step low_frequency_cycles = 25.0 #will multiply the frequency of the lowest frequency mode to get the max time ``` ```python #See if a factorial_Storage dictionary exists already and if not, create one try: a = factorial_storage except: factorial_storage = {} ``` # Defining Parameters of the System ```python energy_g = 0 energy_gamma = .1 energy_e = 0 energy_epsilon = .31 Huang_Rhys_Parameter = .80 S = Huang_Rhys_Parameter #bookkeeping overlap_storage = {} electronic_energy_gap = energy_e + .5*energy_epsilon - (energy_g + .5 * energy_gamma) min_energy = energy_g + energy_gamma * .5 ``` ```python mu_0 = 1.0 ``` If we set the central frequency of a pulse at the 0->0 transition, and we decide we care about the ratio of the 0->1 transition to the 0->0 transition and set that to be $\tau$ then the desired pulse width will be \begin{align} \sigma &= \sqrt{-\frac{2 \ln (\tau)}{\omega_{\epsilon}^2}} \end{align} ```python def blank_wavefunction(number_ground_states, number_excited_states): return np.zeros((number_ground_states + number_excited_states)) def perturbing_function(time): # stdev = 30000.0 * dt #very specific to 0->0 transition! stdev = 3000.0 * dt #clearly has a small amount of amplitude on 0->1 transition center = 6 * stdev return np.cos(electronic_energy_gap*(time - center) / hbar)*np.exp( - (time - center)**2 / (2 * stdev**2)) / stdev def time_function_handle_from_tau(tau_proportion): stdev = np.sqrt( -2.0 * np.log(tau_proportion) / (energy_epsilon/hbar)**2) center = 6 * stdev return center, stdev, lambda t: np.cos(electronic_energy_gap*(t - center) / hbar)*np.exp( - (t - center)**2 / (2 * stdev**2)) / stdev def time_function_handle_from_tau_and_kappa(tau_proportion, kappa_proportion): stdev = np.sqrt( -2.0 * np.log(tau_proportion) / (energy_epsilon/hbar)**2) center = 6 * stdev return center, stdev, lambda t: kappa_proportion * energy_gamma * np.cos(electronic_energy_gap*(t - center) / hbar)*np.exp( - (t - center)**2 / (2 * stdev**2)) / stdev def perturbing_function_define_tau(time, tau_proportion): center, stdev, f = time_function_handle_from_tau(tau_proportion) return f(time) ``` ```python ``` ```python ``` # Defining Useful functions $ O_{m}^{n} = \left(-1\right)^{n} \sqrt{\frac{e^{-S}S^{m+n}}{m!n!}} \sum_{j=0}^{\min \left( m,n \right)} \frac{m!n!}{j!(m-j)!(n-j)!}(-1)^j S^{-j} $ ```python def factorial(i): if i in factorial_storage: return factorial_storage[i] if i <= 1: return 1.0 else: out = factorial(i - 1) * i factorial_storage[i] = out return out def ndarray_factorial(i_array): return np.array([factorial(i) for i in i_array]) ``` ```python def overlap_function(ground_quantum_number, excited_quantum_number): m = ground_quantum_number n = excited_quantum_number if (m,n) in overlap_storage: return overlap_storage[(m,n)] output = (-1)**n output *= math.sqrt(math.exp(-S) * S**(m + n) /(factorial(m) * factorial(n)) ) j_indeces = np.array(range(0, min(m,n) + 1)) j_summation = factorial(m) * factorial(n) * np.power(-1.0, j_indeces) * np.power(S, -j_indeces) j_summation = j_summation / (ndarray_factorial(j_indeces) * ndarray_factorial( m - j_indeces) * ndarray_factorial(n - j_indeces) ) output *= np.sum(j_summation) overlap_storage[(m,n)] = output return output ``` # Solving the Differential Equation \begin{align*} \left(\frac{d G_a(t)}{dt} + \frac{i}{\hbar}\Omega_{(a)}\right) &=-E(t)\frac{i}{\hbar} \sum_{b} E_b(t) \mu_{a}^{b}\\ \left(\frac{d E_b(t)}{dt} + \frac{i}{\hbar} \Omega^{(b)} \right) &=-E(t)\frac{i}{\hbar} \sum_{a} G_a(t) \mu_{a}^{b} \end{align*} Or in a more compact form: \begin{align*} \frac{d}{dt}\begin{bmatrix} G_a(t) \\ E_b(t) \end{bmatrix} = -\frac{i}{\hbar} \begin{bmatrix} \Omega_{(a)} & E(t) \mu_{a}^{b} \\ E(t) \mu_{a}^{b} & \Omega^{b} \end{bmatrix} \cdot \begin{bmatrix} G_a(t) \\ E_b(t) \end{bmatrix} \end{align*} ```python def ode_diagonal_matrix(number_ground_states, number_excited_states): #Define the Matrix on the RHS of the above equation ODE_DIAGONAL_MATRIX = np.zeros((number_ground_states + number_excited_states, number_ground_states + number_excited_states), dtype=np.complex) #set the diagonals for ground_i in range(number_ground_states): ODE_DIAGONAL_MATRIX[ground_i, ground_i] = -1.0j * (energy_g + energy_gamma * (ground_i + .5)) / hbar for excited_i in range(number_excited_states): excited_index = excited_i + number_ground_states #the offset since the excited states comes later ODE_DIAGONAL_MATRIX[excited_index, excited_index] = -1.0j * (energy_e + energy_epsilon * (excited_i + .5)) / hbar return ODE_DIAGONAL_MATRIX #now for the off-diagonals def mu_matrix(c, number_ground_states, number_excited_states): MU_MATRIX = np.zeros((number_ground_states, number_excited_states), dtype = np.complex) for ground_a in range(number_ground_states): for excited_b in range(number_excited_states): new_mu_entry = overlap_function(ground_a, excited_b) if ground_a >0: new_mu_entry += c * math.sqrt(ground_a) * overlap_function(ground_a - 1, excited_b) new_mu_entry += c * math.sqrt(ground_a+1) * overlap_function(ground_a + 1, excited_b) MU_MATRIX[ground_a, excited_b] = new_mu_entry return MU_MATRIX def ode_off_diagonal_matrix(c_value, number_ground_states, number_excited_states): output = np.zeros((number_ground_states + number_excited_states, number_ground_states + number_excited_states), dtype=np.complex) MU_MATRIX = mu_matrix(c_value, number_ground_states, number_excited_states) output[0:number_ground_states, number_ground_states:] = -1.0j * mu_0 * MU_MATRIX / hbar output[number_ground_states:, 0:number_ground_states] = -1.0j * mu_0 * MU_MATRIX.T / hbar return output def IR_transition_dipoles(number_ground_states, number_excited_states): "outputs matrices to calculate ground and excited state IR emission spectra. Can be combined for total" output_g = np.zeros((number_ground_states + number_excited_states, number_ground_states + number_excited_states), dtype=np.complex) output_e = np.zeros((number_ground_states + number_excited_states, number_ground_states + number_excited_states), dtype=np.complex) for ground_a in range(number_ground_states): try: output_g[ground_a, ground_a + 1] = math.sqrt(ground_a + 1) output_g[ground_a + 1, ground_a] = math.sqrt(ground_a + 1) except: pass try: output_g[ground_a, ground_a - 1] = math.sqrt(ground_a) output_g[ground_a - 1, ground_a] = math.sqrt(ground_a) except: pass for excited_a in range(number_excited_states): matrix_index_e = number_ground_states + excited_a -1 #because of how 'number_ground_states' is defined try: output_e[matrix_index_e, matrix_index_e + 1] = math.sqrt(excited_a + 1) output_e[matrix_index_e + 1, matrix_index_e] = math.sqrt(excited_a + 1) except: pass try: output_e[matrix_index_e, matrix_index_e - 1] = math.sqrt(excited_a) output_e[matrix_index_e - 1, matrix_index_e] = math.sqrt(excited_a) except: pass return output_g, output_e ``` \begin{align*} \mu(x) &= \mu_0 \left(1 + \lambda x \right) \\ &= \mu_0 \left(1 + c\left(a + a^{\dagger} \right) \right) \\ \mu_{a}^{b} &= \mu_0\left(O_{a}^{b} + c\left(\sqrt{a}O_{a-1}^{b} + \sqrt{a+1}O_{a+1}^{b}\right) \right) \end{align*} ```python ``` ```python class VibrationalStateOverFlowException(Exception): def __init__(self): pass ``` ```python ``` ```python def propagate_amplitude_to_end_of_perturbation(c_value, ratio_01_00, kappa=1, starting_ground_states=STARTING_GROUND_STATES, starting_excited_states=STARTING_EXCITED_STATES): center_time, stdev, time_function = time_function_handle_from_tau_and_kappa(ratio_01_00, kappa) ending_time = center_time + 8.0 * stdev number_ground_states = starting_ground_states number_excited_states = starting_excited_states while number_excited_states + number_ground_states < MAX_VIBRATIONAL_STATES: #define time scales max_energy = energy_e + energy_epsilon * (.5 + number_excited_states) + kappa * energy_gamma * mu_0 dt = 1.0 / (time_scale_set * max_energy) ODE_DIAGONAL = ode_diagonal_matrix(number_ground_states, number_excited_states) ODE_OFF_DIAGONAL = ode_off_diagonal_matrix(c_value, number_ground_states, number_excited_states) def ODE_integrable_function(time, coefficient_vector): ODE_TOTAL_MATRIX = ODE_OFF_DIAGONAL * time_function(time) + ODE_DIAGONAL return np.dot(ODE_TOTAL_MATRIX, coefficient_vector) #define the starting wavefuntion initial_conditions = blank_wavefunction(number_ground_states, number_excited_states) initial_conditions[0] = 1 #create ode solver current_time = 0.0 ode_solver = scipy.integrate.complex_ode(ODE_integrable_function) ode_solver.set_initial_value(initial_conditions, current_time) #Run it results = [] try: #this block catches an overflow into the highest ground or excited vibrational state while current_time < ending_time: # print(current_time, ZERO_TOLERANCE) #update time, perform solution current_time = ode_solver.t+dt new_result = ode_solver.integrate(current_time) results.append(new_result) #make sure solver was successful if not ode_solver.successful(): raise Exception("ODE Solve Failed!") #make sure that there hasn't been substantial leakage to the highest excited states re_start_calculation = False if abs(new_result[number_ground_states - 1])**2 >= ZERO_TOLERANCE: number_ground_states +=1 # print("Increasing Number of Ground vibrational states to %i " % number_ground_states) re_start_calculation = True if abs(new_result[-1])**2 >= ZERO_TOLERANCE: number_excited_states +=1 # print("Increasing Number of excited vibrational states to %i " % number_excited_states) re_start_calculation = True if re_start_calculation: raise VibrationalStateOverFlowException() except VibrationalStateOverFlowException: #Move on and re-start the calculation continue #Finish calculating results = np.array(results) return results, number_ground_states, number_excited_states raise Exception("NEEDED TOO MANY VIBRATIONAL STATES! RE-RUN WITH DIFFERENT PARAMETERS!") ``` ```python def get_average_quantum_number_time_series(c_value, ratio_01_00, kappa=1, starting_ground_states=STARTING_GROUND_STATES, starting_excited_states=STARTING_EXCITED_STATES): results, number_ground_states, number_excited_states = propagate_amplitude_to_end_of_perturbation(c_value, ratio_01_00, kappa, starting_ground_states, starting_excited_states) probabilities = np.abs(results)**2 #calculate the average_vibrational_quantum_number series average_ground_quantum_number = probabilities[:,0:number_ground_states].dot(np.array(range(number_ground_states)) ) average_excited_quantum_number = probabilities[:,number_ground_states:].dot(np.array(range(number_excited_states))) return average_ground_quantum_number, average_excited_quantum_number, results, number_ground_states, number_excited_states ``` ```python def IR_emission_spectrum_after_excitation(c_value, ratio_01_00, kappa=1, starting_ground_states=STARTING_GROUND_STATES, starting_excited_states=STARTING_EXCITED_STATES): center_time, stdev, time_function = time_function_handle_from_tau_and_kappa(ratio_01_00, kappa) perturbation_ending_time = center_time + 8.0 * stdev simulation_ending_time = perturbation_ending_time + low_frequency_cycles * hbar/min_energy number_ground_states = starting_ground_states number_excited_states = starting_excited_states while number_excited_states + number_ground_states < MAX_VIBRATIONAL_STATES: ir_transDipole_g, ir_transDipole_e = IR_transition_dipoles(number_ground_states, number_excited_states) time_emission_g = [0] time_emission_e = [0] #define time scales e = energy_e + energy_epsilon * (.5 + number_excited_states) g = energy_g + energy_gamma* (.5 + number_ground_states) plus = e + g minus = e - g J = kappa * energy_gamma * mu_0 max_split_energy = plus + math.sqrt(minus**2 + 4 * J**2) max_energy = max_split_energy * .5 dt = 1.0 / (time_scale_set * max_energy) time_values = np.arange(0, simulation_ending_time, dt) ODE_DIAGONAL = ode_diagonal_matrix(number_ground_states, number_excited_states) ODE_OFF_DIAGONAL = ode_off_diagonal_matrix(c_value, number_ground_states, number_excited_states) def ODE_integrable_function(time, coefficient_vector): ODE_TOTAL_MATRIX = ODE_OFF_DIAGONAL * time_function(time) + ODE_DIAGONAL return np.dot(ODE_TOTAL_MATRIX, coefficient_vector) def ODE_jacobean(time, coefficient_vector): ODE_TOTAL_MATRIX = ODE_OFF_DIAGONAL * time_function(time) + ODE_DIAGONAL return ODE_TOTAL_MATRIX #define the starting wavefuntion initial_conditions = blank_wavefunction(number_ground_states, number_excited_states) initial_conditions[0] = 1 #create ode solver current_time = 0.0 try: del ode_solver except: pass # ode_solver = scipy.integrate.complex_ode(ODE_integrable_function) ode_solver = scipy.integrate.complex_ode(ODE_integrable_function, jac = ODE_jacobean) # ode_solver.set_integrator("lsoda") ode_solver.set_integrator("vode", with_jacobian=True) ode_solver.set_initial_value(initial_conditions, current_time) #Run it results = [] try: #this block catches an overflow into the highest ground or excited vibrational state while current_time < simulation_ending_time: # print(current_time, ZERO_TOLERANCE) #update time, perform solution current_time = ode_solver.t+dt new_result = ode_solver.integrate(current_time) results.append(new_result) #make sure solver was successful if not ode_solver.successful(): raise Exception("ODE Solve Failed!") if current_time < perturbation_ending_time: #make sure that there hasn't been substantial leakage to the highest excited states re_start_calculation = False if abs(new_result[number_ground_states - 1])**2 >= ZERO_TOLERANCE: number_ground_states +=1 # print("Increasing Number of Ground vibrational states to %i " % number_ground_states) re_start_calculation = True if abs(new_result[-1])**2 >= ZERO_TOLERANCE: number_excited_states +=1 # print("Increasing Number of excited vibrational states to %i " % number_excited_states) re_start_calculation = True if re_start_calculation: raise VibrationalStateOverFlowException() #calculate IR emission time_emission_g.append(np.conj(new_result).T.dot(ir_transDipole_g.dot(new_result))) time_emission_e.append(np.conj(new_result).T.dot(ir_transDipole_e.dot(new_result))) #on to next time value... except VibrationalStateOverFlowException: #Move on and re-start the calculation continue #Finish calculating results = np.array(results) n_t = len(time_emission_e) time_emission_g = np.array(time_emission_g) time_emission_e = np.array(time_emission_e) filter_x = np.array(range(n_t)) filter_center = n_t / 2.0 filter_sigma = n_t / 10.0 filter_values = np.exp(-(filter_x - filter_center)**2 / (2 * filter_sigma**2)) frequencies = np.fft.fftshift(np.fft.fftfreq(time_emission_g.shape[0], d= dt)) frequency_emission_g = dt * np.fft.fftshift(np.fft.fft(time_emission_g * filter_values)) frequency_emission_e = dt * np.fft.fftshift(np.fft.fft(time_emission_e * filter_values)) return results, frequencies, frequency_emission_g, frequency_emission_e, number_ground_states, number_excited_states raise Exception("NEEDED TOO MANY VIBRATIONAL STATES! RE-RUN WITH DIFFERENT PARAMETERS!") ``` ```python c_values = np.logspace(-2.5, np.log10(1), 15) tau_values = np.logspace(-3, np.log10(.9), 3) kappa_values = np.logspace(-1, np.log10(5), 22) number_calcs = c_values.shape[0] * tau_values.shape[0] * kappa_values.shape[0] heating_results_ground = np.zeros((kappa_values.shape[0], tau_values.shape[0], c_values.shape[0])) ir_amplitudes = np.zeros(heating_results_ground.shape) heating_results_excited = np.zeros(heating_results_ground.shape) # Keep track of the IR Spectrum n_g = STARTING_GROUND_STATES n_e = STARTING_EXCITED_STATES counter = 1 # we will use the value of c as a bellweather for how many starting states to work with. c_to_ng = {} c_to_ne = {} for i_kappa, kappa in enumerate(kappa_values): # as we increase in both tau and for i_tau, tau in enumerate(tau_values): for i_c, c in enumerate(c_values): try: n_g = c_to_ng[c] n_e = c_to_ne[c] except: n_g = STARTING_GROUND_STATES n_e = STARTING_EXCITED_STATES c_to_ng[c] = n_g c_to_ne[c] = n_e sys.stdout.flush() sys.stdout.write("\r%i / %i Calculating kappa=%f, c=%f, tau=%f at n_g = %i and n_e=%i..." %(counter, number_calcs, kappa, c, tau, n_g, n_e)) # print("\r%i / %i Calculating kappa=%f, c=%f, tau=%f at n_g = %i and n_e=%i..." %(counter, number_calcs, kappa, c, tau, n_g, n_e)) # n_bar_g, n_bar_e, results, num_g, num_e = get_average_quantum_number_time_series(c, # tau, # kappa, # starting_ground_states = n_g, # starting_excited_states = n_e) # heating_results_ground[i_kappa, i_tau, i_c] = n_bar_g[-1] # heating_results_excited[i_kappa, i_tau, i_c] = n_bar_e[-1] _, frequencies, emission_g, emission_e, num_g, num_e = IR_emission_spectrum_after_excitation(c, tau, kappa, starting_ground_states = n_g, starting_excited_states = n_e) if num_g > c_to_ng[c]: c_to_ng[c] = num_g if num_e > c_to_ne[c]: c_to_ne[c] = num_e vibrational_frequency_index = np.argmin(np.abs(energy_gamma - frequencies)) ir_power = np.abs(emission_g[vibrational_frequency_index])**2 ir_amplitudes[i_kappa, i_tau, i_c] = ir_power counter +=1 # plt.figure() # plt.title(r"$\kappa{}, \tau={}, c={}".format(kappa, tau, c)) # plt.plot(frequencies, emission_g) # plt.xlim(0, 2) ``` 990 / 990 Calculating kappa=5.000000, c=1.000000, tau=0.900000 at n_g = 75 and n_e=60... ```python print(c_to_ng) print(c_to_ne) ``` {0.056234132519034911: 11, 0.010857111194022039: 9, 0.1279802213997954: 14, 1.0: 96, 0.43939705607607904: 37, 0.004770582696143927: 9, 0.016378937069540647: 9, 0.024709112279856043: 10, 0.0031622776601683794: 9, 0.084834289824407216: 12, 0.0071968567300115215: 9, 0.29126326549087383: 24, 0.037275937203149402: 10, 0.19306977288832505: 18, 0.6628703161826448: 58} {0.056234132519034911: 9, 0.010857111194022039: 9, 0.1279802213997954: 11, 1.0: 79, 0.43939705607607904: 27, 0.004770582696143927: 9, 0.016378937069540647: 9, 0.024709112279856043: 9, 0.0031622776601683794: 9, 0.084834289824407216: 9, 0.0071968567300115215: 9, 0.29126326549087383: 18, 0.037275937203149402: 9, 0.19306977288832505: 13, 0.6628703161826448: 45} ```python # decreased dt, does that keep these parameters from failing? last one is 600 / 800 Calculating kappa=8.858668, c=0.750000, tau=0.850000 for i_kappa, kappa in enumerate(kappa_values): for i_tau, tau in enumerate(tau_values): ir_power = ir_amplitudes[i_kappa, i_tau, :] plt.loglog(c_values, ir_power, "*-") plt.xlabel(r"$c$") plt.figure() for i_kappa, kappa in enumerate(kappa_values): for i_c, c in enumerate(c_values): ir_power = ir_amplitudes[i_kappa, :, i_c] plt.loglog(tau_values, ir_power, "*-") plt.xlabel(r"$\tau$") plt.figure() for i_tau, tau in enumerate(tau_values): for i_c, c in enumerate(c_values): # for i_c in [0,-1]: ir_power = ir_amplitudes[:, i_tau, i_c] # plt.loglog(kappa_values, ir_power, ["blue", "red"][i_c]) plt.loglog(kappa_values, ir_power) plt.xlabel(r"$\kappa$") # plt.xlim(-.1, 1.1) # plt.ylim(-10, 500) ``` ```python c_log = np.log10(c_values) tau_log = np.log10(tau_values) kappa_log = np.log10(kappa_values) log_ir_amplitudes = np.log(ir_amplitudes) num_levels = 100 contours = np.linspace(np.min(log_ir_amplitudes), np.max(log_ir_amplitudes), num_levels) ``` ```python # for i_kappa, kappa in enumerate(kappa_values): # ir_power = log_ir_amplitudes[i_kappa, :, :] # plt.figure() # plt.contourf(c_log, tau_log, ir_power, contours) # plt.title(r"$\kappa = {}$".format(kappa)) # plt.ylabel(r"$c$") # plt.xlabel(r"$\tau$") # plt.colorbar() for i_tau, tau in enumerate(tau_values): ir_power = log_ir_amplitudes[:, i_tau, :] plt.figure() plt.contourf(c_log, kappa_log, ir_power, contours) plt.title(r"$\tau = {}$".format(tau)) plt.ylabel(r"$\kappa$") plt.xlabel(r"$c$") plt.colorbar() ``` ```python for i_c, c in enumerate(c_values): ir_power = log_ir_amplitudes[:, :, i_c] plt.figure() plt.contourf(tau_log, kappa_log, ir_power, contours) plt.title(r"$c = {}$".format(c)) plt.ylabel(r"$\kappa$") plt.xlabel(r"$\tau$") plt.colorbar() ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ``` ```python ```
f78e1dca400e4cd563668bc8e7ec791742f10f7c
781,223
ipynb
Jupyter Notebook
MolmerSorenson/code/.ipynb_checkpoints/HeatingCalculations-checkpoint.ipynb
jgoodknight/dissertation
012ad400e1246d2a7e63cc640be4f7b4bf56db00
[ "MIT" ]
1
2020-04-21T06:20:42.000Z
2020-04-21T06:20:42.000Z
MolmerSorenson/code/.ipynb_checkpoints/HeatingCalculations-checkpoint.ipynb
jgoodknight/dissertation
012ad400e1246d2a7e63cc640be4f7b4bf56db00
[ "MIT" ]
null
null
null
MolmerSorenson/code/.ipynb_checkpoints/HeatingCalculations-checkpoint.ipynb
jgoodknight/dissertation
012ad400e1246d2a7e63cc640be4f7b4bf56db00
[ "MIT" ]
null
null
null
675.798443
169,492
0.936834
true
6,489
Qwen/Qwen-72B
1. YES 2. YES
0.868827
0.654895
0.56899
__label__eng_Latn
0.360963
0.160284
# Phase Shifts and Virtual Z gates ```python import numpy as np from pulser import Pulse, Sequence, Register from pulser.devices import MockDevice ``` ## Introduction Under the right circumstances, phase shifts can be a great way of implementing so-called *virtual-Z gates*. Let's see how these arise and how we can use them to our advantage. Consider an arbitrary 2x2 unitary matrix (up to a global phase) and a possible decompostion in terms of rotations around the $x$ and $z$ axes ($R_X$ and $R_Z$) of the Bloch sphere: $$U(\gamma, \theta, \phi) = R_Z(\gamma)R_X(\theta)R_Z(\phi)$$ Our goal is to be able to apply this transformation on our qubit states through our pulses. A pulse that is on-resonance with its target transition (i.e. has detuning $\delta = 0$) can be described as an arbitrary rotation around an axis contained in the Bloch sphere's equator, $\hat{n}= (\cos \phi, -\sin \phi, 0)$. From the general form of such a rotation, $R_{\hat{n}}(\theta) = \exp\left(-i \frac{\theta}{2} \hat{n}\cdot \vec{\sigma}\right)$, we arrive at: $$ \begin{align} R_{\hat{n}(\phi)}(\theta) &= \exp\left(-i \frac{\theta}{2} \left[\cos(\phi)\sigma_x -\sin(\phi)\sigma_y\right]\right)\\ &= e^{i\frac{\phi}{2}\sigma_z}e^{-i\frac{\theta}{2}\sigma_x}e^{-i\frac{\phi}{2}\sigma_z}\\ &= R_Z(-\phi)R_X(\theta)R_Z(\phi) \end{align} $$ Here, we have two free parameters: the angle of rotation $\theta$, which is determined by the integral of the amplitude waveform, and $\phi$, the pulse's phase. Thus, we can see that a pulse is a particular case of the arbitrary single-qubit gate $U$, where $\gamma = -\phi$, i.e.: $$ R_{\hat{n}(\phi)}(\theta) = U(-\phi, \theta, \phi) $$ Thus, to reach the desired arbitrary single-qubit, we need an extra $R_Z$ gate, such that: $$ U(\gamma, \theta, \phi) = R_Z(\gamma + \phi) R_Z(-\phi)R_X(\theta)R_Z(\phi) = R_Z(\gamma + \phi) U(-\phi, \theta, \phi)$$ Now, how do we implement such a gate? In fact, to physically change the phase of the qubit's state in this reference frame with a single pulse, we would have to be able to apply a detuned pulse of zero amplitude, which is no pulse at all! Instead, what we can do is change the frame of rotation such that the phase gate is applied *virtually*. To understand how this can be done, we first have to realise that this last phase gate is irrelevant if it is the last one applied to the qubit before it is measured - a change of the phase between the $\sigma_z$ eigenstates will produce no change in the measurement outcome, since that occurs in the same basis. But what if it is not the last gate that we apply on this qubit? In that case, we can describe the situation as a new arbitrary gate being applied after the existent one, i.e. $$ U(\alpha, \beta, \nu)~~U(\gamma, \theta, \phi) = R_Z(\alpha + \nu) R_Z(-\nu)R_X(\beta)R_Z(\nu) ~~ R_Z(k)~ U(-\phi, \theta, \phi) $$ where we define the *carry*, $k=\gamma + \phi$, as the phase of the unrealized phase gate. Now, we can restructure the previous expression such that: $$ \begin{align} & R_Z(\alpha + \nu) R_Z(-\nu)R_X(\beta)R_Z(\nu)~~ R_Z(k) ~U(-\phi, \theta, \phi) = \\ &= R_Z(\alpha + \nu + k)~~ R_Z(-\nu - k)R_X(\beta)R_Z(\nu + k) ~~U(-\phi, \theta, \phi) \\ &= R_Z(k') ~~U(-\nu - k, \beta, \nu + k)~~U(-\phi, \theta, \phi), ~~~k' = \alpha + \nu + k \end{align} $$ As shown, the previously existent phase gate of angle $k$ can be realized as a **shift** on the phase of the second pulse, $\nu \rightarrow \nu + k$. In this way, we go back to a situation where we have a phase gate at the end (with an updated carry $k'$). We can repeat this process until the moment we measure the qubit, at which point, as we've seen, the remaining phase gate is redundant. This is the **virtual-Z gate**: the ability to perform phase gates through the adjustment of a qubit's phase reference. ## Phase shifts in Pulser As shown above, implementing virtual-Z gates requires tracking the *carry* and adapting the phase of each provided pulse accordingly. Although this could certainly be done externally, Pulser offers a convenient way to automatically update a qubit's phase reference (i.e. the *carry*) through **phase shifts**. A phase shift in Pulser is defined by three things: the *value* of the shift, the *target* qubits and the *basis*. A phase shift of *value* $\phi$ corresponds to a change in the *target*'s phase reference from $k \rightarrow k + \phi$. It is important to realise that, unlike all other aspects so far, phase shifts are associated to the a qubit's transition, not a channel. Therefore, in principle, all qubit's can keep different phase references, as a result of being subjected to different phase shifts throughout a sequence. ### Programming a Hadamard gate To exemplify the need for phase shifts, let's try to encode an Hadamard gate using only resonant pulses. In our decomposition of a unitary matrix, the Hadamard is (you can check this for yourself): $$ H = U\left(\frac{\pi}{2},\frac{\pi}{2}, \frac{\pi}{2}\right) = R_Z(\pi)~~U\left(-\frac{\pi}{2},\frac{\pi}{2}, \frac{\pi}{2}\right) $$ meaning that we have to apply a $\frac{\pi}{2}$-pulse with phase $\phi=\frac{\pi}{2}$, followed by a phase shift of $\pi$. But first, let's create a simple setup. ```python reg = Register({'q0': (0, 0)}) device = MockDevice seq = Sequence(reg, device) seq.available_channels ``` {'rydberg_global': Rydberg.Global(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Basis: 'ground-rydberg'), 'rydberg_local': Rydberg.Local(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Target time: 0 ns, Max targets: 2000, Basis: 'ground-rydberg'), 'raman_global': Raman.Global(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Basis: 'digital'), 'raman_local': Raman.Local(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Target time: 0 ns, Max targets: 2000, Basis: 'digital'), 'mw_global': Microwave.Global(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Basis: 'XY')} ```python seq.declare_channel('ch0', 'raman_local', initial_target = 'q0') ``` ```python # Defining the waveform for a pi/2 pulse from pulser.waveforms import BlackmanWaveform pi2_wf = BlackmanWaveform(1000, np.pi/2) # Duration: 1us, Area: pi/2 pi2_wf.draw() ``` ```python # 2. Create the pi/2 pulse pi_2 = Pulse.ConstantDetuning(pi2_wf, detuning=0, phase=np.pi/2) pi_2.draw() ``` ```python #3. Applying the H gate seq.add(pi_2, 'ch0') # The first pi/2-pulse # Now the phase shift of pi on 'q0', for the 'digital' basis, which is usually where phase shifts are useful seq.phase_shift(np.pi, 'q0', basis='digital') seq.draw(draw_phase_shifts=True) ``` This produced the desired effect: we have a $\frac{\pi}{2}$ pulse with $\phi=\frac{\pi}{2}$ followed by a phase shift of $\pi$. However, the need to specify the target qubit and basis is mildly incovenient. Moreover, it would be even better if the entire hadamard could be in the same pulse object. Fortunately, there's a way. The `Pulse` object has an optional argument called `post_phase_shift`, with which the user can order a phase shift to be applied immediatly after the physical pulse. In this case, the target and basis are **implicitly defined** to be the channel's current target and basis. Here's how we could define the Hadamard in a single pulse: ```python h = Pulse.ConstantDetuning(pi2_wf, detuning=0, phase=np.pi/2, post_phase_shift=np.pi) seq.add(h, 'ch0') seq.draw(draw_phase_shifts=True) ``` Notice how the two pulse shapes are naturally identical, and are both followed by the adequate $\pi$ phase shift. However, we expect to see an adjustment on the phase of the second pulse, simply because it is following a phase shift. To inspect the phase of each pulse, we can print the sequence: ```python print(seq) ``` Channel: ch0 t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->1000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 t: 1000->2000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=4.71) | Targets: q0 Here, we see that the phase of the second pulse has the appropriate adjustment of $\pi$. What happens if we apply the Hadamard yet again? ```python seq.add(h, 'ch0') print(seq) ``` Channel: ch0 t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->1000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 t: 1000->2000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=4.71) | Targets: q0 t: 2000->3000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 That's right, the phase of the third pulse is back to $\frac{\pi}{2}$ because, at the moment the third Hadamard was constructed, there had been two $\pi$ phase shifts, which means the reference is back to $\phi=0$. ### Phase shifts with multiple channels and different targets Now, let's construct a more complex example where there are multiple channels and multiple qubits. ```python reg = Register({'q0': (0, 0), 'q1': (5, 5)}) device = MockDevice seq = Sequence(reg, device) seq.declare_channel('raman', 'raman_local', initial_target = 'q0') seq.declare_channel('ryd1', 'rydberg_local', initial_target = 'q0') seq.declare_channel('ryd2', 'rydberg_local', initial_target = 'q0') seq.declared_channels ``` {'raman': Raman.Local(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Target time: 0 ns, Max targets: 2000, Basis: 'digital'), 'ryd1': Rydberg.Local(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Target time: 0 ns, Max targets: 2000, Basis: 'ground-rydberg'), 'ryd2': Rydberg.Local(Max Absolute Detuning: 1000 rad/µs, Max Amplitude: 200 rad/µs, Target time: 0 ns, Max targets: 2000, Basis: 'ground-rydberg')} We see that we have two qubits and three channels, all `Local`, with `raman` acting on the `digital` basis and the other two on the `ground-rydberg` basis. Let's use the Hadamard from before and add it to channels `raman` and `ryd1`, which are both targeting `q0` on different bases: ```python seq.add(h, 'raman') seq.add(h, 'ryd1') seq.draw(draw_phase_shifts=True) ``` We can see that the pulse in channel `ryd1` waited for the pulse in `raman` to be finished (because they are acting on the same target). We also noticed that the phase shift in `raman` does not appear in the other channels, the reason for that being the fact that they act on **different bases**. We can check this by printing the sequence: ```python print(seq) ``` Channel: raman t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->1000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 Channel: ryd1 t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->1000 | Delay t: 1000->2000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 Channel: ryd2 t: 0 | Initial targets: q0 | Phase Reference: 0.0 Here, we confirm that the phase of the pulse in `ryd1` is $\frac{\pi}{2}$, which indicates a phase reference of $\phi=0$ as expected. What about when the phase shift targets the same qubit, the same basis, but the pulses are on different channels? In that case, we expect that the channel is irrelevant, and we can already see evidence of that in how the phase shift at the end of the Hadamard on `ryd1` also appears in `ryd2`. We can confirm this by adding another pulse to `ryd2` (e.g. the `pi_2` pulse we defined before) and then priting the sequence: ```python seq.add(pi_2, 'ryd2') print(seq) ``` Channel: raman t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->1000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 Channel: ryd1 t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->1000 | Delay t: 1000->2000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=1.57) | Targets: q0 Channel: ryd2 t: 0 | Initial targets: q0 | Phase Reference: 0.0 t: 0->2000 | Delay t: 2000->3000 | Pulse(Amp=Blackman(Area: 1.57), Detuning=0 rad/µs, Phase=4.71) | Targets: q0 Notice how the `pi_2` pulse has a phase of $\frac{3\pi}{2}$: it's phase of $\frac{\pi}{2}$ plus the shift of $\pi$ accrued by the Hadamard in channel `ryd1`. Let's now shift our attention torwards what happens when the basis and the channel stay the same, but the target qubit changes. By now, you can already predict that qubit `q1` has a phase reference of $\phi=0$ on both basis, since all phase shifts so far were always targeting `q0`. We can see this if we change the target on some channels and apply pulses again: ```python seq.target('q1', 'raman') seq.add(h, 'raman') seq.target('q1', 'ryd1') seq.add(h, 'ryd1') print(seq) seq.draw(draw_phase_shifts=True) ``` We can see how the second pulse on the `raman` and `ryd1` channels are exactly identical to their first one, except for the target. Had the target not changed, they would have their phase shifted by $\pi$, just like we saw earlier. We also see how, this time, the phase shift in `ryd1` does not appear in `ryd2` like before because they have **different targets**. Notice what happens if we also make `ryd2` target `q1`: ```python seq.target('q1', 'ryd2') seq.draw(draw_phase_shifts=True) ``` As you can see, channel `ryd2` starts off with a phase of $\phi = \pi$, which it picked up from the phase shift induced by the Hadamard on `ryd1`. On the other hand, the Hadamard in the `raman` channel did not affect the phase of `ryd2`(we would have $\phi=0$ in that case) because, again, it acts on a different basis.
749326fa77f7e381f7b4f9f2fac850da53cc6703
418,304
ipynb
Jupyter Notebook
tutorials/composition/Phase Shifts and Virtual Z gates.ipynb
LaurentAjdnik/Pulser
ab0bc7e1f0712b2ecbb737f2bbd3c6ae49ac8763
[ "Apache-2.0" ]
null
null
null
tutorials/composition/Phase Shifts and Virtual Z gates.ipynb
LaurentAjdnik/Pulser
ab0bc7e1f0712b2ecbb737f2bbd3c6ae49ac8763
[ "Apache-2.0" ]
null
null
null
tutorials/composition/Phase Shifts and Virtual Z gates.ipynb
LaurentAjdnik/Pulser
ab0bc7e1f0712b2ecbb737f2bbd3c6ae49ac8763
[ "Apache-2.0" ]
null
null
null
694.857143
102,476
0.946596
true
4,165
Qwen/Qwen-72B
1. YES 2. YES
0.857768
0.815232
0.69928
__label__eng_Latn
0.99043
0.462994
# Simon algorithm(Overview) We explain Simon algorithm algorithm. In this algorithm, for a function $f_s(x)$ with $n$-bit input and output ($s$ is any $n$-bit sequence), one of the following is assumed to be true. Case1: Always return different outputs for different inputs (one-to-one correspondence) Case2: For input $x, x'$, if $x' = x\oplus s$, then $f_s(x) = f_s(x')$. That is, it returns the same output for two inputs. This algorithm determines whether Oracle is case 1 or case 2 above. The concrete quantum circuit is as follows. The contents of $U_f$ are shown for the case of case 2 above and $s=1001$. The number of qubits is $2 n$. Check the state. $$ \begin{align} \lvert \psi_1\rangle &= \frac{1}{\sqrt{2^n}} \biggl(\otimes^n H\lvert 0\rangle \biggr) \lvert 0\rangle^{\otimes n} \\ &= \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} \lvert x\rangle \lvert 0\rangle^{\otimes n} \end{align} $$ Next, consider $\lvert \psi_2 \rangle$. Here, for $f_s(x)$, we have the following oracle gate $U_f$. $$ U_f \lvert x \rangle \lvert 0 \rangle = \lvert x \rangle \lvert f_s(x) \rangle $$ Using this $U_f$, we get $$ \lvert \psi_2 \rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} \lvert x\rangle \lvert f_s(x)\rangle $$ Therefore, $\lvert \psi_3 \rangle$ is as follows $$ \lvert \psi_3 \rangle = \frac{1}{2^n} \sum_{x=0}^{2^n-1}\sum_{y=0}^{2^n-1} (-1)^{x\cdot y} \lvert y\rangle \lvert f_s(x)\rangle $$ Now, consider what the measurement result of $\lvert y \rangle$ would be if $f_s(x)$ were as follows. Case 1: Always return different outputs for different inputs (one-to-one correspondence) All measurement results are obtained with equal probability. Case 2: For input $x, x'$, if $x' = x\oplus s$, then $f_s(x) = f_s(x')$. That is, it returns the same output for two inputs. Notice the amplitude $A(y, x)$ of the state $\lvert y \rangle \lvert f_s(x) \rangle = \lvert y \rangle \lvert f_s(x\oplus s) \rangle$. $$ A(y, x) = \frac{1}{2^n} \{(-1)^{x\cdot y} + (-1)^{(x\oplus s) \cdot y}\} $$ As you can see from the equation, the amplitude of $y$ such that $y\cdot s \equiv 1 \bmod2$ is $0$ due to cancellation. Therefore, only $y$ is measured such that $y\cdot s \equiv 0 \bmod2$. In both case 1 and case 2, if such $n$ different $y$ are obtained by measurement (except for $00. .0$), we can determine $s'$ such that $y\cdot s' \equiv 0 \bmod2$ for all those $y$. In the case 1, $s'$ is completely random. However, in the case 2, $f_s(s') = f_s(0)$ is always true because $s' = 0\oplus s'$. Thus, except for the case where $s'$ such that $f_s(s') = f_s(0)$ is obtained from case 1 with probability $1 / 2^n$, we can check whether $s'$ is obtained from case 1 or case 2 using the oracle gate. The oracle can be determined from the above. Finally, we consider the implementation of the oracle gate $U_f$. In the case 1, it is enough that the output has a one-to-one correspondence with the input $x$. For simplicity, let's consider a circuit that randomly inserts an $X$ gate. The case 2 is a bit more complicated. First, the $CX$ gate creates the following state. $$ \lvert \psi_{1a} \rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} \lvert x\rangle \lvert x\rangle $$ Next, for the lowest index $i'$ where $s_i=1$, take XOR of the auxiliary register and $s$ only if $x_{i'} = 0$. As a result, we get the following $\lvert\psi_2\rangle$. $$ \begin{align} \lvert \psi_{2} \rangle &= \frac{1}{\sqrt{2^n}} \biggl(\sum_{\{x_{i'}=0\}} \lvert x\rangle \lvert x \oplus s\rangle + \sum_{\{x_{i'}=1\}} \lvert x\rangle \lvert x\rangle \biggr) \\ &= \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} \lvert x\rangle \lvert f_s(x)\rangle \end{align} $$ We can confirm that $f_s(x)$ satisfies case 2 by calculation. Let's implement this with blueqat. ```python from blueqat import Circuit import numpy as np ``` Prepare a function for two types of oracle gates $U_f$. ```python def oracle_1(c, s): _n = len(s) for i in range(_n): if np.random.rand() > 0.5: c.x[i] for i in range(_n): c.cx[i, i + _n] def oracle_2(c, s): _n = len(s) flag = 0 for i, si in enumerate(reversed(s)): c.cx[i, i + _n] if si == '1' and flag == 0: c.x[i] for j, sj in enumerate(s): if sj == '1': c.cx[i, j + _n] c.x[i] flag = 1 ``` The following is the main body of the algorithm. First, use a random number to determine the oracle (one of the two types) and the $s$ you want to find. (In the following, the values are fixed to reproduce the quantum circuit shown in the figure above.) ```python n = 4 N = np.random.randint(1, 2**n-1) s = bin(N)[2:].zfill(n) which_oracle = np.random.rand() ### to reproduce the quantum circuit shown in the figure above ### ### Erasing these two lines will randomly determine s and oracle### s = "1001" which_oracle = 0 ###### c = Circuit(n * 2) c.h[:n] if which_oracle > 0.5: oracle_1(c, s) oracle = "oracle 1" else: oracle_2(c, s) oracle = "oracle 2" c.h[:n].m[:n] res = c.run(shots = 1000) ``` ```python res ``` Counter({'10010000': 111, '00100000': 120, '10110000': 128, '11110000': 123, '01100000': 137, '01000000': 133, '00000000': 115, '11010000': 133}) Extract $n$ results other than '00...0' from the sampling result. ```python res_list = list(res.keys()) _res_list = [] for i in res_list: if i[:n] != '0'*4: _res_list.append(i[:n]) if len(_res_list) == 4: break print(_res_list) ``` ['1001', '0010', '1011', '1111'] Find $s'$ from the extracted result. (Here, we are simply looking for $s'$ that matches the condition by brute force, but it is possible to find it efficiently in linear algebra.) If the oracle in case 2 is selected, the resulting $s'$ should be equal to $s$. ```python for i in range(2**n): l = bin(i)[2:].zfill(n) flag = 1 for sampled in _res_list: mod = np.sum(np.array(list(l), dtype = np.int64) * np.array(list(sampled), dtype = np.int64)) % 2 if mod: flag = 0 break if flag: output_s = l ``` ```python print("s' =", output_s) print("s =", s) ``` s' = 1001 s = 1001 ```python ```
d465672b71771321550c89919a55ca904d30b45f
11,260
ipynb
Jupyter Notebook
tutorial/103_simon.ipynb
Blueqat/blueqat-tutorials
be863d1a6834ce6aa8a7cec0c886d7e3b4caabd1
[ "Apache-2.0" ]
7
2021-11-22T19:18:09.000Z
2022-01-30T22:38:03.000Z
tutorial/103_simon.ipynb
Blueqat/blueqat-tutorials
be863d1a6834ce6aa8a7cec0c886d7e3b4caabd1
[ "Apache-2.0" ]
20
2021-11-23T22:41:58.000Z
2022-01-30T17:46:46.000Z
tutorial/103_simon.ipynb
Blueqat/blueqat-tutorials
be863d1a6834ce6aa8a7cec0c886d7e3b4caabd1
[ "Apache-2.0" ]
3
2022-01-04T22:29:13.000Z
2022-01-30T08:38:20.000Z
28.871795
213
0.500444
true
2,101
Qwen/Qwen-72B
1. YES 2. YES
0.828939
0.831143
0.688967
__label__eng_Latn
0.976199
0.439032
# Logistic Regression (Regularised) ## Introduction In this example, we will implement regularized logistic regression to predict whether microchips from a fabrication plant passes quality assurance (QA). During QA, each microchip goes through various tests to ensure it is functioning correctly. Suppose you are the product manager of the factory and you have the test results for some microchips on two different tests. From these two tests, you would like to determine whether the microchips should be accepted or rejected. To help you make the decision, you have a dataset of test results on past microchips, from which you can build a logistic regression model. ## Visualizing the data Before starting to implement any learning algorithm, it is always good to visualize the data if possible. The file 'data/ex2data2.txt' contains the dataset for our Logistic regression problem. Here we will load the data and display it on a 2-dimensional plot, where the axes are the two exam scores, and the positive and negative examples are shown with different markers. ```python # initial imports import numpy as np from matplotlib import pyplot as plt %matplotlib notebook import seaborn as sns # setting graph properties plt.rcParams['figure.dpi'] = 300 # setting figure dpi for better quality graphs plt.rcParams['figure.figsize'] = [10,8] sns.set(context="notebook", style="white") # graph styling using seaborn %config InlineBackend.figure_format = 'pdf' ``` ```python # imports from my models designed for these examples from models.data_preprocessing import add_bias_unit, map_feature, feature_normalize from models.logistic_regression import cost_function, predict, gradient_descent, gradient_function, sigmoid from models.plotter import plot_decision_boundary ``` ```python print('Loading data ...') data = np.loadtxt('data/ex2data2.txt', delimiter=',') X = data[:, :-1] # (118, 2) y = data[:, -1, np.newaxis] # (118, 1) ``` Loading data ... ```python print('Plotting data with + indicating (y = 1) examples and o indicating (y = 0) examples.') """ Example plotting for multiple markers x = np.array([1,2,3,4,5,6]) y = np.array([1,3,4,5,6,7]) m = np.array(['o','+','+','o','x','+']) unique_markers = set(m) # or yo can use: np.unique(m) for um in unique_markers: mask = m == um # mask is now an array of booleans that van be used for indexing plt.scatter(x[mask], y[mask], marker=um) """ fig, ax = plt.subplots() y_slim = y.ravel() # plotting y=1 values ax.scatter(x=X[y_slim == 1, 0], y=X[y_slim == 1, 1], marker='+', c='black', s=50, label='Accepted') # plotting y=0 values # X[y_slim == 0, 0] is logical indexing with rows with y=0 only ax.scatter(x=X[y_slim == 0, 0], y=X[y_slim == 0, 1], marker='o', c='xkcd:light yellow', s=25, label='Regected', edgecolor='k') # labels ax.set_xlabel('Microchip Test 1') ax.set_ylabel('Microchip Test 2') # Specified in plot order ax.legend() ``` Figure shows that our dataset cannot be separated into positive and negative examples by a straight-line through the plot. Therefore, a straightforward application of logistic regression will not perform well on this dataset since logistic regression will only be able to find a linear decision boundary. ## Feature Mapping One way to fit the data better is to create more features from each data point. In the function map_features(), we will map the features into all polynomial terms of $x_{1}$ and $x_{2}$ up to the sixth power. $$ mapFeature(x, 6) = \begin{bmatrix} 1 \\ x_{1} \\ x_{2} \\ x_{1}^{2} \\ x_{1} x_{2} \\ x_{2}^{2} \\ x_{1}^{3} \\ \vdots \\ x_{1}x_{2}^{5} \\ x_{2}^{6}\\ \end{bmatrix} $$ As a result of this mapping, our vector of two features (the scores on two QA tests) has been transformed into a 28-dimensional vector. A logistic regression classifier trained on this higher-dimension feature vector will have a more complex decision boundary and will appear nonlinear when drawn in our 2-dimensional plot. While the feature mapping allows us to build a more expressive classifier, it also more susceptible to overfitting. In the next parts of the example, we will implement regularized logistic regression to fit the data and also you will be able to see how regularization can help combat the overfitting problem. ```python # Adding Polynomial Features # Note that mapFeature also adds a column of ones for us, so the intercept term is handled X = map_feature(X, degree=6) ``` ### Cost Function and Gradient The **regularized** cost function for logistic regression is: $$ J(\theta) = \frac{1}{m}\sum_{i=1}^{m}\left[ -y^{(i)} \log\left( h_{\theta} \left( x^{(i)} \right) \right) - \left( 1 - y^{(i)} \right) \log \left( 1 - h_{\theta} \left( x^{(i)} \right) \right) \right]+\frac{\lambda}{2m} \sum^{n}_{j=1}\theta_{j}^{2} $$ Note that you should not regularize the parameter θ0. In Octave/MATLAB, recall that indexing starts from 1, hence, you should not be regularizing the theta(1) parameter (which corresponds to θ0) in the code. The gradient of the cost function is a vector where the j th element is defined as follows: $$\begin{align} \frac{\delta J(\theta)}{\delta \theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta} \left( x^{(i)} \right) - y^{(i)} \right)x_{j}^{(i)} && for j=0\\ \frac{\delta J(\theta)}{\delta \theta_{j}} = \left(\frac{1}{m} \sum_{i=1}^{m} \left( h_{\theta} \left( x^{(i)} \right) - y^{(i)} \right)x_{j}^{(i)}\right)+\frac{\lambda}{m}\theta_{j} && for j >= 1 \\ \end{align} $$ Note that while this gradient looks identical to the linear regression gradient, the formula is actually different because linear and logistic regression have different definitions of h$_{θ}$(x). ```python # initial sizes m, n = X.shape # Initialize fitting parameters initial_theta = np.zeros([n, 1]) # Compute and display initial cost and gradient cost = cost_function(initial_theta, X, y, regularized=False) grad = gradient_function(initial_theta, X, y, regularized=False) print('Cost at initial theta (zeros): {}'.format(cost)) print('Expected cost (approx): 0.693') print('Gradient at initial theta (zeros) - first five values only:') print(grad[:5]) print('Expected gradients (approx) - first five values only:') print('[0.0085 0.0188 0.0001 0.0503 0.0115]') test_theta = np.ones([X.shape[1], 1]) cost = cost_function(test_theta, X, y, lamda=10, regularized=True) grad = gradient_function(test_theta, X, y, lamda=10, regularized=True) print('Cost at test theta (with lambda = 10): {}'.format(cost)) print('Expected cost (approx): 3.16') print('Gradient at test theta - first five values only: {}'.format(grad[:5])) print('Expected gradients (approx) - first five values only:') print('[0.3460 0.1614 0.1948 0.2269 0.0922]') ``` Cost at initial theta (zeros): [[0.69314718]] Expected cost (approx): 0.693 Gradient at initial theta (zeros) - first five values only: [8.47457627e-03 7.77711864e-05 3.76648474e-02 2.34764889e-02 3.93028171e-02] Expected gradients (approx) - first five values only: [0.0085 0.0188 0.0001 0.0503 0.0115] Cost at test theta (with lambda = 10): [[3.16450933]] Expected cost (approx): 3.16 Gradient at test theta - first five values only: [0.34604507 0.19479576 0.24438558 0.18346846 0.19994895] Expected gradients (approx) - first five values only: [0.3460 0.1614 0.1948 0.2269 0.0922] ## Learning parameters using scipy.minimize In earlier examples, we found the optimal parameters of a linear regression model by implementing gradent descent. I also wrote a cost function and calculated its gradient, then took a gradient descent step accordingly. This time, instead of taking gradient descent steps, we will use an function called minimize from scipy.optimize module. The scipy's minimize() function provides a common interface to unconstrained and constrained minimization algorithms for multivariate scalar functions in scipy.optimize. For logistic regression, we need to optimize the cost function J(θ) with parameters θ. Concretely, we are going to use minimize to find the best parameters θ for the logistic regression cost function, given a fixed dataset (of X and y values). You will pass to minimize() the following inputs: - Our predefined cost_function which returns cost while taking X and theta as arguments. - A gradient_function which returns the derivatives of the $\theta$ values passed to it. - The initial values of the parameters we are trying to optimize. - A function that, when given the training set and a particular θ, computes the logistic regression cost and gradient with respect to θ for the dataset (X, y) - A callbak function which is called after each iteration and the $\theta$ value obtained after each iteration is passed to it, we are using this callback function to store theta values for each iteration. The minimize() function returns a OptimizeResult object which contains final theta values, function end status, final cost etc. more info about the minimize function can be refered to the documentation <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html">here</a>. ```python X_norm, mu, sigma = feature_normalize(X[:, 1:]) X_norm = add_bias_unit(X_norm) from scipy.optimize import minimize theta_history = [] # for plotting cost vs iteration graph def theta_store(value, *args): theta_history.append(value) initial_theta = np.zeros(n) op_result = minimize(fun=cost_function, x0=initial_theta, jac=gradient_function, args=(X, y, 1, True), method='tnc', callback=theta_store) print('Cost at theta found by Gradient descent: {}'.format(op_result.fun)) print('theta: {}'.format(op_result.x)) # converting theta_history into J_history J_history = (np.array(theta_history[::-1]) @ op_result.x) # plot J_history fig1, ax1 = plt.subplots() ax1.plot(range(J_history.size), J_history) ax1.set_xlabel('Iterations') ax1.set_ylabel('Cost') fig2, ax2 = plt.subplots() X_old = data[:, :-1] # (118, 2) y_old = data[:, -1, np.newaxis] # (118, 1) y_slim = y_old.ravel() # plotting y=1 values ax2.scatter(x=X_old[y_slim == 1, 0], y=X_old[y_slim == 1, 1], marker='+', c='black', s=50, label='Accepted') # plotting y=0 values # X[y_slim == 0, 0] is logical indexing with rows with y=0 only ax2.scatter(x=X_old[y_slim == 0, 0], y=X_old[y_slim == 0, 1], marker='o', c='xkcd:light yellow', s=25, label='Regected', edgecolor='k') # labels ax2.set_xlabel('Microchip Test 1') ax2.set_ylabel('Microchip Test 2') # Specified in plot order ax2.legend() theta = op_result.x[:,np.newaxis] plot_decision_boundary(theta=theta, X=X, y=y, hypothesis=sigmoid, precision=0.1, fig=fig2, ax=ax2, feature_map=(map_feature, 6)) ``` ## Influence of labda values In this part of the example, we will get to try out different regularization parameters for the dataset to understand how regularization prevents overfitting. ### No regularization (Overfitting) ($\lambda = 0$) ```python initial_theta = np.zeros(n) op_result = minimize(fun=cost_function, x0=initial_theta, jac=gradient_function, args=(X, y, 0.0001, True), method='tnc') # lambda is zero in the args tuple fig3, ax3 = plt.subplots() # plotting y=1 values ax3.scatter(x=X_old[y_slim == 1, 0], y=X_old[y_slim == 1, 1], marker='+', c='black', s=50, label='Accepted') # plotting y=0 values # X[y_slim == 0, 0] is logical indexing with rows with y=0 only ax3.scatter(x=X_old[y_slim == 0, 0], y=X_old[y_slim == 0, 1], marker='o', c='xkcd:light yellow', s=25, label='Regected', edgecolor='k') # labels ax3.set_xlabel('Microchip Test 1') ax3.set_ylabel('Microchip Test 2') # Specified in plot order ax3.legend() theta = op_result.x[:,np.newaxis] plot_decision_boundary(theta=theta, X=X, y=y, hypothesis=sigmoid, precision=0.1, fig=fig3, ax=ax3, feature_map=(map_feature, 6)) ``` Notice the changes in the decision boundary as you vary λ. With a small λ, you should find that the classifier gets almost every training example correct, but draws a very complicated boundary, thus overfitting the data. This is not a good decision boundary: for example, it predicts that a point at x = (−0.25, 1.5) is accepted (y = 1), which seems to be an incorrect decision given the training set. ### Too much regularization (Underfitting) ($\lambda = 100$) ```python initial_theta = np.zeros(n) op_result = minimize(fun=cost_function, x0=initial_theta, jac=gradient_function, args=(X, y, 100, True), method='TNC') # lambda is zero in the args tuple fig4, ax4 = plt.subplots() # plotting y=1 values ax4.scatter(x=X_old[y_slim == 1, 0], y=X_old[y_slim == 1, 1], marker='+', c='black', s=50, label='Accepted') # plotting y=0 values # X[y_slim == 0, 0] is logical indexing with rows with y=0 only ax4.scatter(x=X_old[y_slim == 0, 0], y=X_old[y_slim == 0, 1], marker='o', c='xkcd:light yellow', s=25, label='Regected', edgecolor='k') # labels ax4.set_xlabel('Microchip Test 1') ax4.set_ylabel('Microchip Test 2') # Specified in plot order ax4.legend() theta = op_result.x[:,np.newaxis] plot_decision_boundary(theta=theta, X=X, y=y, hypothesis=sigmoid, precision=0.1, fig=fig4, ax=ax4, feature_map=(map_feature, 6)) ``` With a larger λ, you should see a plot that shows an simpler decision boundary which still separates the positives and negatives fairly well. However, if λ is set to too high a value, you will not get a good fit and the decision boundary will not follow the data so well, thus underfitting the data.
a744f44668549edf4ff86de1240e217b5c0c72e0
118,575
ipynb
Jupyter Notebook
Logistic_Regression/Logistic Regression (with regularization).ipynb
Mr-MayankThakur/Machine-learning-Implementations-with-Numpy
453bb15c9089d42b52ff0ff09d8c66def137ec4e
[ "MIT" ]
null
null
null
Logistic_Regression/Logistic Regression (with regularization).ipynb
Mr-MayankThakur/Machine-learning-Implementations-with-Numpy
453bb15c9089d42b52ff0ff09d8c66def137ec4e
[ "MIT" ]
null
null
null
Logistic_Regression/Logistic Regression (with regularization).ipynb
Mr-MayankThakur/Machine-learning-Implementations-with-Numpy
453bb15c9089d42b52ff0ff09d8c66def137ec4e
[ "MIT" ]
null
null
null
204.792746
25,776
0.899667
true
3,743
Qwen/Qwen-72B
1. YES 2. YES
0.835484
0.90053
0.752378
__label__eng_Latn
0.976412
0.586358
# Taylor Problem 16.14 version B We'll plot at various times a wave $u(x,t)$ that is defined by its initial shape at $t=0$ from $x=0$ to $x=L$, using a Fourier sine series to write the result at a general time t: $\begin{align} u(x,t) = \sum_{n=1}^{\infty} B_n \sin(k_n x)\cos(\omega_n t) \;, \end{align}$ with $k_n = n\pi/L$ and $\omega_n = k_n c$, where $c$ is the wave speed. Here the coefficients are given by $\begin{align} B_n = \frac{2}{L}\int_0^L u(x,0) \sin\frac{n\pi x}{L} \, dx \;. \end{align}$ * Created 28-Mar-2019. Last revised 04-Apr-2019 by Dick Furnstahl (furnstahl.1@osu.edu). * This version sums over all n integers, even and odd. ```python %matplotlib inline ``` ```python import numpy as np import matplotlib.pyplot as plt from matplotlib import animation, rc from IPython.display import HTML ``` First define functions for the $t=0$ wave function form (here a triangle) and for the subsequent shape at any time $t$ based on the wave speed `c_wave`. ```python class uTriangular(): """ documentation """ def __init__(self, x_pts, num_terms=20, c_wave=1., L=1.): self.x_pts = x_pts self.num_terms = num_terms self.c = c_wave self.L = L def B_coeff(self, n): """Fourier coefficient for the nth term in the expansion, which is only non-zero if n is odd, or n = 2*m + 1. """ if n % 2 == 1: # n is odd m = (n - 1)/2 return (-1)**m * 8. / (n * np.pi)**2 else: # n is even return 0. def k(self, n): """Wave number for n """ return n * np.pi / self.L def u_wave(self, t): """Returns the wave from the sum of Fourier components. """ y_pts = np.zeros(len(self.x_pts)) # define y_pts as the same size as x_pts for n in np.arange(0, self.num_terms): y_pts += self.B_coeff(n) * np.sin(self.k(n) * self.x_pts) \ * np.cos(self.k(n) * self.c * t) return y_pts ``` ```python ``` ```python ``` ```python ``` First look at the initial ($t=0$) wave form. ```python L = 1. num_n = 40 c_wave = 1 omega_1 = np.pi * c_wave / L tau = 2.*np.pi / omega_1 # Set up the array of x points (whatever looks good) x_min = 0. x_max = L delta_x = 0.01 x_pts = np.arange(x_min, x_max, delta_x) u_triangular_1 = uTriangular(x_pts, num_n, c_wave, L) u_triangular_2 = uTriangular(x_pts, num_n/8, c_wave, L) # Make a figure showing the initial wave. t_now = 0. fig = plt.figure(figsize=(6,4), num='Standing wave') ax = fig.add_subplot(1,1,1) ax.set_xlim(x_min, x_max) gap = 0.1 ax.set_ylim(-1. - gap, 1. + gap) ax.set_xlabel(r'$x$') ax.set_ylabel(r'$u(x, t=0)$') ax.set_title(rf'$t = {t_now:.1f}$') line, = ax.plot(x_pts, u_triangular_1.u_wave(t_now), color='blue', lw=2) line2, = ax.plot(x_pts, u_triangular_2.u_wave(t_now), color='red', lw=2) fig.tight_layout() ``` Next make some plots at an array of time points. ```python t_array = tau * np.arange(0., 1.125, .125) fig_array = plt.figure(figsize=(12,12), num='Standing wave') for i, t_now in enumerate(t_array): ax_array = fig_array.add_subplot(3, 3, i+1) ax_array.set_xlim(x_min, x_max) gap = 0.1 ax_array.set_ylim(-1. - gap, 1. + gap) ax_array.set_xlabel(r'$x$') ax_array.set_ylabel(r'$u(x, t)$') ax_array.set_title(rf'$t = {t_now/tau:.3f}\tau$') ax_array.plot(x_pts, u_triangular(x_pts, t_now, num_n, c_wave, L), color='blue', lw=2) fig_array.tight_layout() fig_array.savefig('Taylor_Problem_16p14.png', bbox_inches='tight') ``` Now it is time to animate! ```python # Set up the t mesh for the animation. The maximum value of t shown in # the movie will be t_min + delta_t * frame_number t_min = 0. # You can make this negative to see what happens before t=0! t_max = 2.*tau delta_t = t_max / 100. t_pts = np.arange(t_min, t_max + delta_t, delta_t) ``` We use the cell "magic" `%%capture` to keep the figure from being shown here. If we didn't the animated version below would be blank. ```python %%capture fig_anim = plt.figure(figsize=(6,3), num='Triangular wave') ax_anim = fig_anim.add_subplot(1,1,1) ax_anim.set_xlim(x_min, x_max) gap = 0.1 ax_anim.set_ylim(-1. - gap, 1. + gap) # By assigning the first return from plot to line_anim, we can later change # the values in the line. line_anim, = ax_anim.plot(x_pts, u_triangular(x_pts, t_min, num_n, c_wave, L), color='blue', lw=2) fig_anim.tight_layout() ``` ```python def animate_wave(i): """This is the function called by FuncAnimation to create each frame, numbered by i. So each i corresponds to a point in the t_pts array, with index i. """ t = t_pts[i] y_pts = u_triangular(x_pts, t, num_n, c_wave, L) line_anim.set_data(x_pts, y_pts) # overwrite line_anim with new points return (line_anim,) # this is needed for blit=True to work ``` ```python frame_interval = 80. # time between frames frame_number = 101 # number of frames to include (index of t_pts) anim = animation.FuncAnimation(fig_anim, animate_wave, init_func=None, frames=frame_number, interval=frame_interval, blit=True, repeat=False) ``` ```python HTML(anim.to_jshtml()) # animate using javascript ``` ```python ```
9b808e57a3855a492ba361edb67fa9223a3ae05b
36,023
ipynb
Jupyter Notebook
2020_week_11/Taylor_problem_16p14_B.ipynb
CLima86/Physics_5300_CDL
d9e8ee0861d408a85b4be3adfc97e98afb4a1149
[ "MIT" ]
null
null
null
2020_week_11/Taylor_problem_16p14_B.ipynb
CLima86/Physics_5300_CDL
d9e8ee0861d408a85b4be3adfc97e98afb4a1149
[ "MIT" ]
null
null
null
2020_week_11/Taylor_problem_16p14_B.ipynb
CLima86/Physics_5300_CDL
d9e8ee0861d408a85b4be3adfc97e98afb4a1149
[ "MIT" ]
null
null
null
98.155313
17,956
0.823557
true
1,682
Qwen/Qwen-72B
1. YES 2. YES
0.835484
0.798187
0.666872
__label__eng_Latn
0.879634
0.387698
```python import numpy as np import sympy as sy import matplotlib.pyplot as plt %matplotlib inline ``` ```python s = sy.symbols('s', real=False) A2 = s**2 + 3*s + 3 A4 = s**4 + 10*s**3 + 45*s**2 + 105*s + 105 A22= sy.simplify(sy.expand(A2*A2)) ``` ```python sol22 = sy.solve(A22, s) sol4 = sy.solve(A4, s) ``` ```python sol22 ``` [-3/2 - sqrt(3)*I/2, -3/2 + sqrt(3)*I/2] ```python sol4 ``` [-5/2 - sqrt(-5 + 15/(2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)) + 2*(-75/16 + 15*sqrt(35)*I/16)**(1/3))/2 - sqrt(-10 - 2*(-75/16 + 15*sqrt(35)*I/16)**(1/3) + 10/sqrt(-5 + 15/(2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)) + 2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)) - 15/(2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)))/2, -5/2 + sqrt(-10 - 2*(-75/16 + 15*sqrt(35)*I/16)**(1/3) + 10/sqrt(-5 + 15/(2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)) + 2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)) - 15/(2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)))/2 - sqrt(-5 + 15/(2*(-75/16 + 15*sqrt(35)*I/16)**(1/3)) + 2*(-75/16 + 15*sqrt(35)*I/16)**(1/3))/2] ```python for r in sol22: plt.plot(sy.N(sy.re(r)), sy.N(sy.im(r)), 'x', markersize=12) for r in sol4: plt.plot(np.real(sy.N(r)), np.imag(sy.N(r)), 'x', markersize=12) ``` ```python ```
ac42e2caac2165c9ffe52eaee16cde9b9d4d9175
19,927
ipynb
Jupyter Notebook
sampling-and-aliasing/notebooks/PS7-Bessel-filters.ipynb
kjartan-at-tec/mr2007-computerized-control
16e35f5007f53870eaf344eea1165507505ab4aa
[ "MIT" ]
2
2020-11-07T05:20:37.000Z
2020-12-22T09:46:13.000Z
sampling-and-aliasing/notebooks/PS7-Bessel-filters.ipynb
alfkjartan/control-computarizado
5b9a3ae67602d131adf0b306f3ffce7a4914bf8e
[ "MIT" ]
4
2020-06-12T20:44:41.000Z
2020-06-12T20:49:00.000Z
sampling-and-aliasing/notebooks/PS7-Bessel-filters.ipynb
kjartan-at-tec/mr2007-computerized-control
16e35f5007f53870eaf344eea1165507505ab4aa
[ "MIT" ]
1
2021-03-14T03:55:27.000Z
2021-03-14T03:55:27.000Z
119.323353
5,368
0.74246
true
589
Qwen/Qwen-72B
1. YES 2. YES
0.91118
0.828939
0.755312
__label__kor_Hang
0.09501
0.593175
<div align='center' ></div> <div align='right'></div> ```python %matplotlib inline ``` ```python import matplotlib.pyplot as plt import numpy as np import pandas as pd import sympy as sym import solowpy ``` # 4. Solving the model ## 4.1 Solow model as an initial value problem The Solow model with can be formulated as an initial value problem (IVP) as follows. $$ \dot{k}(t) = sf(k(t)) - (g + n + \delta)k(t),\ t\ge t_0,\ k(t_0) = k_0 \tag{4.1.0} $$ The solution to this IVP is a function $k(t)$ describing the time-path of capital stock (per unit effective labor). Our objective in this section will be to explore methods for approximating the function $k(t)$. The methods we will learn are completely general and can be used to solve any IVP. Those interested in learning more about these methods should start by reading Chapter 10 of [*Numerical Methods for Economists*](http://mitpress.mit.edu/books/numerical-methods-economics) by Ken Judd before proceeding to John Butcher's excellent book entitled [*Numerical Methods for solving Ordinary Differential Equations*](http://www.shivanian.com/teaching%20avtivities/Butcher.pdf). Before discussing numerical methods we should stop and consider whether or not there are any special cases (i.e., combintions of parameters) for which the the initial value problem defined in 4.2.1 might have an analytic solution. Analytic results can be very useful in building intuition about the economic mechanisms at play in a model and are invaluable for debugging code. ## 4.2 Analytic methods ### 4.2.1 Analytic solution for a model with Cobb-Douglas production The Solow model with Cobb-Douglas production happens to have a completely [general analytic solution](https://github.com/davidrpugh/numerical-methods/raw/master/labs/lab-1/solow-analytic-solution.pdf): $$ k(t) = \left[\left(\frac{s}{n+g+\delta}\right)\left(1 - e^{-(n + g + \delta) (1-\alpha) t}\right) + k_0^{1-\alpha}e^{-(n + g + \delta) (1-\alpha) t}\right]^{\frac{1}{1-\alpha}} \tag{4.2.0}$$ This analytic result is available via the `analytic_solution` method of the `solow.CobbDouglasModel` class. ```python solowpy.CobbDouglasModel.analytic_solution? ``` ### Example: Computing the analytic trajectory We can compute an analytic solution for our Solow model like so... ```python # define model parameters cobb_douglas_params = {'A0': 1.0, 'L0': 1.0, 'g': 0.02, 'n': 0.03, 's': 0.15, 'delta': 0.05, 'alpha': 0.33} # create an instance of the solow.Model class cobb_douglas_model = solowpy.CobbDouglasModel(params=cobb_douglas_params) ``` ```python # specify some initial condition k0 = 0.5 * cobb_douglas_model.steady_state # grid of t values for which we want the value of k(t) ti = np.linspace(0, 100, 10) # generate a trajectory! cobb_douglas_model.analytic_solution(ti, k0) ``` array([[ 0. , 0.91578343], [ 11.11111111, 1.37081903], [ 22.22222222, 1.60723533], [ 33.33333333, 1.72380474], [ 44.44444444, 1.78011125], [ 55.55555556, 1.80706521], [ 66.66666667, 1.81991504], [ 77.77777778, 1.8260292 ], [ 88.88888889, 1.82893579], [ 100. , 1.83031695]]) ...and we can make a plot of this solution like so... ```python fig, ax = plt.subplots(1, 1, figsize=(8,6)) # compute the solution ti = np.linspace(0, 100, 1000) analytic_traj = cobb_douglas_model.analytic_solution(ti, k0) # plot this trajectory ax.plot(ti, analytic_traj[:,1], 'r-') # equilibrium value of capital stock (per unit effective labor) ax.axhline(cobb_douglas_model.steady_state, linestyle='dashed', color='k', label='$k^*$') # axes, labels, title, etc ax.set_xlabel('Time, $t$', fontsize=20, family='serif') ax.set_ylabel('$k(t)$', rotation='horizontal', fontsize=20, family='serif') ax.set_title('Analytic solution to a Solow model\nwith Cobb-Douglas production', fontsize=25, family='serif') ax.legend(loc=0, frameon=False, bbox_to_anchor=(1.0, 1.0)) ax.grid('on') plt.show() ``` ### 4.2.2 Linearized solution to general model In general there will not be closed-form solutions for the Solow model. The standard approach to obtaining general analytical results for the Solow model is to linearize the equation of motion for capital stock (per unit effective labor). Linearizing the equation of motion of capital (per unit effective labor) amounts to taking a first-order [Taylor approximation](http://en.wikipedia.org/wiki/Taylor_series) of equation 4.1.0 around its long-run equilibrium $k^*$: $$ \dot{k}(t) \approx -\lambda (k(t) - k^*),\ t \ge t_0,\ k(t_0)=k_0 \tag{4.2.1}$$ where the *speed of convergence*, $\lambda$, is defined as $$ \lambda = -\frac{\partial \dot{k}(k(t))}{\partial k(t)}\bigg|_{k(t)=k^*} \tag{4.2.2} $$ The solution the the linear differential equation 4.2.1 is $$ k(t) = k^* + e^{-\lambda t}(k_0 - k^*). \tag{4.2.3} $$ To complete the solution it remains to find an expression for the speed of convergence $\lambda$: \begin{align} \lambda \equiv -\frac{\partial \dot{k}(k(t))}{\partial k(t)}\bigg|_{k(t)=k^*} =& -[sf'(k^*) - (g + n+ \delta)] \\ =& (g + n+ \delta) - sf'(k^*) \\ =& (g + n + \delta) - (g + n + \delta)\frac{k^*f'(k^*)}{f(k^*)} \\ =& (1 - \alpha_K(k^*))(g + n + \delta) \tag{4.2.4} \end{align} where the elasticity of output with respect to capital, $\alpha_K(k)$, is $$\alpha_K(k) = \frac{k^*f'(k^*)}{f(k^*)}. \tag{4.2.5}$$ ### Example: Computing the linearized trajectory One can compute a linear approximation of the model solution using the `linearized_solution` method of the `solow.Model` class as follows. ```python # specify some initial condition k0 = 0.5 * cobb_douglas_model.steady_state # grid of t values for which we want the value of k(t) ti = np.linspace(0, 100, 10) # generate a trajectory! cobb_douglas_model.linearized_solution(ti, k0) ``` array([[ 0. , 0.91578343], [ 11.11111111, 1.39657145], [ 22.22222222, 1.62494486], [ 33.33333333, 1.73342179], [ 44.44444444, 1.78494813], [ 55.55555556, 1.80942305], [ 66.66666667, 1.82104859], [ 77.77777778, 1.82657069], [ 88.88888889, 1.82919369], [ 100. , 1.8304396 ]]) ### 4.2.3 Accuracy of the linear approximation ```python # initial condition t0, k0 = 0.0, 0.5 * cobb_douglas_model.steady_state # grid of t values for which we want the value of k(t) ti = np.linspace(t0, 100, 1000) # generate the trajectories analytic = cobb_douglas_model.analytic_solution(ti, k0) linearized = cobb_douglas_model.linearized_solution(ti, k0) ``` ```python fig, ax = plt.subplots(1, 1, figsize=(8,6)) ax.plot(ti, analytic[:,1], 'r-', label='Analytic') ax.plot(ti, linearized[:,1], 'b-', label='Linearized') # demarcate k* ax.axhline(cobb_douglas_model.steady_state, linestyle='dashed', color='k', label='$k^*$') # axes, labels, title, etc ax.set_xlabel('Time, $t$', fontsize=20, family='serif') ax.set_ylabel('$k(t)$', rotation='horizontal', fontsize=20, family='serif') ax.set_title('Analytic vs. linearized solutions', fontsize=25, family='serif') ax.legend(loc='best', frameon=False, prop={'family':'serif'}, bbox_to_anchor=(1.0, 1.0)) ax.grid('on') fig.show() ``` ## 4.3 Finite-difference methods Four of the best, most widely used ODE integrators have been implemented in the `scipy.integrate` module (they are called `dopri5`, `dop85`, `lsoda`, and `vode`). Each of these integrators uses some type of adaptive step-size control: the integrator adaptively adjusts the step size $h$ in order to keep the approximation error below some user-specified threshold). The cells below contain code which compares the approximation error of the forward Euler with those of [`lsoda`](http://computation.llnl.gov/casc/nsde/pubs/u113855.pdf) and [`vode`](http://jeffreydk.site50.net/papers/BDFmethodpaper.pdf). Instead of simple linear interpolation (i.e., `k=`1), I set `k=5` for 5th order [B-spline](http://en.wikipedia.org/wiki/B-spline) interpolation. ...finally, we can plot trajectories for different initial conditions. Note that the analytic solutions converge to the long-run equilibrium no matter the initial condition of capital stock (per unit of effective labor) providing a nice graphical demonstration that the Solow model is globally stable. ```python fig, ax = plt.subplots(1, 1, figsize=(8,6)) # lower and upper bounds for initial conditions k_star = solow.cobb_douglas.analytic_steady_state(cobb_douglas_model) k_l = 0.5 * k_star k_u = 2.0 * k_star for k0 in np.linspace(k_l, k_u, 5): # compute the solution ti = np.linspace(0, 100, 1000) analytic_traj = solow.cobb_douglas.analytic_solution(cobb_douglas_model, ti, k0) # plot this trajectory ax.plot(ti, analytic_traj[:,1]) # equilibrium value of capital stock (per unit effective labor) ax.axhline(k_star, linestyle='dashed', color='k', label='$k^*$') # axes, labels, title, etc ax.set_xlabel('Time, $t$', fontsize=15, family='serif') ax.set_ylabel('$k(t)$', rotation='horizontal', fontsize=20, family='serif') ax.set_title('Analytic solution to a Solow model\nwith Cobb-Douglas production', fontsize=20, family='serif') ax.legend(loc=0, frameon=False, bbox_to_anchor=(1.0, 1.0)) ax.grid('on') plt.show() ``` ```python k0 = 0.5 * ces_model.steady_state numeric_trajectory = ces_model.ivp.solve(t0=0, y0=k0, h=0.5, T=100, integrator='dopri5') ti = numeric_trajectory[:,0] linearized_trajectory = ces_model.linearized_solution(ti, k0) ``` ### 4.3.2 Accuracy of finite-difference methods ```python t0, k0 = 0.0, 0.5 numeric_soln = cobb_douglas_model.ivp.solve(t0, k0, T=100, integrator='lsoda') ``` ```python fig, ax = plt.subplots(1, 1, figsize=(8,6)) # compute and plot the numeric approximation t0, k0 = 0.0, 0.5 numeric_soln = cobb_douglas_model.ivp.solve(t0, k0, T=100, integrator='lsoda') ax.plot(numeric_soln[:,0], numeric_soln[:,1], 'bo', markersize=3.0) # compute and plot the analytic solution ti = np.linspace(0, 100, 1000) analytic_soln = solow.cobb_douglas.analytic_solution(cobb_douglas_model, ti, k0) ax.plot(ti, analytic_soln[:,1], 'r-') # equilibrium value of capital stock (per unit effective labor) k_star = solow.cobb_douglas.analytic_steady_state(cobb_douglas_model) ax.axhline(k_star, linestyle='dashed', color='k', label='$k^*$') # axes, labels, title, etc ax.set_xlabel('Time, $t$', fontsize=15, family='serif') ax.set_ylabel('$k(t)$', rotation='horizontal', fontsize=20, family='serif') ax.set_title('Numerical approximation of the solution', fontsize=20, family='serif') ax.legend(loc=0, frameon=False, bbox_to_anchor=(1.0, 1.0)) ax.grid('on') plt.show() ``` ```python ti = np.linspace(0, 100, 1000) interpolated_soln = cobb_douglas_model.ivp.interpolate(numeric_soln, ti, k=3) ``` ```python fig, ax = plt.subplots(1, 1, figsize=(8,6)) # compute and plot the numeric approximation ti = np.linspace(0, 100, 1000) interpolated_soln = cobb_douglas_model.ivp.interpolate(numeric_soln, ti, k=3) ax.plot(ti, interpolated_soln[:,1], 'b-') # compute and plot the analytic solution analytic_soln = solow.cobb_douglas.analytic_solution(cobb_douglas_model, ti, k0) ax.plot(ti, analytic_soln[:,1], 'r-') # equilibrium value of capital stock (per unit effective labor) k_star = solow.cobb_douglas.analytic_steady_state(cobb_douglas_model) ax.axhline(k_star, linestyle='dashed', color='k', label='$k^*$') # axes, labels, title, etc ax.set_xlabel('Time, $t$', fontsize=15, family='serif') ax.set_ylabel('$k(t)$', rotation='horizontal', fontsize=20, family='serif') ax.set_title('Numerical approximation of the solution', fontsize=20, family='serif') ax.legend(loc=0, frameon=False, bbox_to_anchor=(1.0, 1.0)) ax.grid('on') plt.show() ``` ```python ``` ```python ti = np.linspace(0, 100, 1000) residual = cobb_douglas_model.ivp.compute_residual(numeric_soln, ti, k=3) ``` ```python # extract the raw residuals capital_residual = residual[:, 1] # typically, normalize residual by the level of the variable norm_capital_residual = np.abs(capital_residual) / interpolated_soln[:,1] # create the plot fig = plt.figure(figsize=(8, 6)) plt.plot(ti, norm_capital_residual, 'b-', label='$k(t)$') plt.axhline(np.finfo('float').eps, linestyle='dashed', color='k', label='Machine eps') plt.xlabel('Time', fontsize=15) plt.ylim(1e-16, 1) plt.ylabel('Residuals (normalized)', fontsize=15, family='serif') plt.yscale('log') plt.title('Residual', fontsize=20, family='serif') plt.grid() plt.legend(loc=0, frameon=False, bbox_to_anchor=(1.0,1.0)) plt.show() ``` ```python ```
709181e99378d3485ccebfd653564c18ca896667
189,089
ipynb
Jupyter Notebook
examples/4 Solving the model.ipynb
davidrpugh/solowPy
91577e04481cec80679ae571ec2bdaa5788151b4
[ "MIT" ]
31
2016-02-29T00:20:53.000Z
2022-01-26T17:40:38.000Z
examples/4 Solving the model.ipynb
rfonsek/solowPy
91577e04481cec80679ae571ec2bdaa5788151b4
[ "MIT" ]
11
2015-04-04T20:01:35.000Z
2017-02-20T05:42:49.000Z
examples/4 Solving the model.ipynb
rfonsek/solowPy
91577e04481cec80679ae571ec2bdaa5788151b4
[ "MIT" ]
20
2015-08-23T23:42:09.000Z
2022-02-23T08:00:53.000Z
300.618442
35,122
0.908366
true
3,922
Qwen/Qwen-72B
1. YES 2. YES
0.831143
0.849971
0.706448
__label__eng_Latn
0.816146
0.479646
<a href="https://colab.research.google.com/github/NeuromatchAcademy/course-content/blob/master/tutorials/W1D5_DimensionalityReduction/student/W1D5_Tutorial3.ipynb" target="_parent"></a> # Neuromatch Academy: Week 1, Day 5, Tutorial 3 # Dimensionality Reduction and reconstruction __Content creators:__ Alex Cayco Gajic, John Murray __Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom --- # Tutorial Objectives In this notebook we'll learn to apply PCA for dimensionality reduction, using a classic dataset that is often used to benchmark machine learning algorithms: MNIST. We'll also learn how to use PCA for reconstruction and denoising. Overview: - Perform PCA on MNIST - Calculate the variance explained - Reconstruct data with different numbers of PCs - (Bonus) Examine denoising using PCA You can learn more about MNIST dataset [here](https://en.wikipedia.org/wiki/MNIST_database). ```python # @title Video 1: PCA for dimensionality reduction from IPython.display import YouTubeVideo video = YouTubeVideo(id="oO0bbInoO_0", width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ``` Video available at https://youtube.com/watch?v=oO0bbInoO_0 --- # Setup Run these cells to get the tutorial started. ```python # Imports import numpy as np import matplotlib.pyplot as plt ``` ```python # @title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") ``` ```python # @title Helper Functions def plot_variance_explained(variance_explained): """ Plots eigenvalues. Args: variance_explained (numpy array of floats) : Vector of variance explained for each PC Returns: Nothing. """ plt.figure() plt.plot(np.arange(1, len(variance_explained) + 1), variance_explained, '--k') plt.xlabel('Number of components') plt.ylabel('Variance explained') plt.show() def plot_MNIST_reconstruction(X, X_reconstructed): """ Plots 9 images in the MNIST dataset side-by-side with the reconstructed images. Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable X_reconstructed (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: Nothing. """ plt.figure() ax = plt.subplot(121) k = 0 for k1 in range(3): for k2 in range(3): k = k + 1 plt.imshow(np.reshape(X[k, :], (28, 28)), extent=[(k1 + 1) * 28, k1 * 28, (k2 + 1) * 28, k2 * 28], vmin=0, vmax=255) plt.xlim((3 * 28, 0)) plt.ylim((3 * 28, 0)) plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False) ax.set_xticks([]) ax.set_yticks([]) plt.title('Data') plt.clim([0, 250]) ax = plt.subplot(122) k = 0 for k1 in range(3): for k2 in range(3): k = k + 1 plt.imshow(np.reshape(np.real(X_reconstructed[k, :]), (28, 28)), extent=[(k1 + 1) * 28, k1 * 28, (k2 + 1) * 28, k2 * 28], vmin=0, vmax=255) plt.xlim((3 * 28, 0)) plt.ylim((3 * 28, 0)) plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False) ax.set_xticks([]) ax.set_yticks([]) plt.clim([0, 250]) plt.title('Reconstructed') plt.tight_layout() def plot_MNIST_sample(X): """ Plots 9 images in the MNIST dataset. Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: Nothing. """ fig, ax = plt.subplots() k = 0 for k1 in range(3): for k2 in range(3): k = k + 1 plt.imshow(np.reshape(X[k, :], (28, 28)), extent=[(k1 + 1) * 28, k1 * 28, (k2+1) * 28, k2 * 28], vmin=0, vmax=255) plt.xlim((3 * 28, 0)) plt.ylim((3 * 28, 0)) plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False) plt.clim([0, 250]) ax.set_xticks([]) ax.set_yticks([]) plt.show() def plot_MNIST_weights(weights): """ Visualize PCA basis vector weights for MNIST. Red = positive weights, blue = negative weights, white = zero weight. Args: weights (numpy array of floats) : PCA basis vector Returns: Nothing. """ fig, ax = plt.subplots() cmap = plt.cm.get_cmap('seismic') plt.imshow(np.real(np.reshape(weights, (28, 28))), cmap=cmap) plt.tick_params(axis='both', which='both', bottom=False, top=False, labelbottom=False) plt.clim(-.15, .15) plt.colorbar(ticks=[-.15, -.1, -.05, 0, .05, .1, .15]) ax.set_xticks([]) ax.set_yticks([]) plt.show() def add_noise(X, frac_noisy_pixels): """ Randomly corrupts a fraction of the pixels by setting them to random values. Args: X (numpy array of floats) : Data matrix frac_noisy_pixels (scalar) : Fraction of noisy pixels Returns: (numpy array of floats) : Data matrix + noise """ X_noisy = np.reshape(X, (X.shape[0] * X.shape[1])) N_noise_ixs = int(X_noisy.shape[0] * frac_noisy_pixels) noise_ixs = np.random.choice(X_noisy.shape[0], size=N_noise_ixs, replace=False) X_noisy[noise_ixs] = np.random.uniform(0, 255, noise_ixs.shape) X_noisy = np.reshape(X_noisy, (X.shape[0], X.shape[1])) return X_noisy def change_of_basis(X, W): """ Projects data onto a new basis. Args: X (numpy array of floats) : Data matrix each column corresponding to a different random variable W (numpy array of floats) : new orthonormal basis columns correspond to basis vectors Returns: (numpy array of floats) : Data matrix expressed in new basis """ Y = np.matmul(X, W) return Y def get_sample_cov_matrix(X): """ Returns the sample covariance matrix of data X. Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: (numpy array of floats) : Covariance matrix """ X = X - np.mean(X, 0) cov_matrix = 1 / X.shape[0] * np.matmul(X.T, X) return cov_matrix def sort_evals_descending(evals, evectors): """ Sorts eigenvalues and eigenvectors in decreasing order. Also aligns first two eigenvectors to be in first two quadrants (if 2D). Args: evals (numpy array of floats) : Vector of eigenvalues evectors (numpy array of floats) : Corresponding matrix of eigenvectors each column corresponds to a different eigenvalue Returns: (numpy array of floats) : Vector of eigenvalues after sorting (numpy array of floats) : Matrix of eigenvectors after sorting """ index = np.flip(np.argsort(evals)) evals = evals[index] evectors = evectors[:, index] if evals.shape[0] == 2: if np.arccos(np.matmul(evectors[:, 0], 1 / np.sqrt(2) * np.array([1, 1]))) > np.pi / 2: evectors[:, 0] = -evectors[:, 0] if np.arccos(np.matmul(evectors[:, 1], 1 / np.sqrt(2)*np.array([-1, 1]))) > np.pi / 2: evectors[:, 1] = -evectors[:, 1] return evals, evectors def pca(X): """ Performs PCA on multivariate data. Eigenvalues are sorted in decreasing order Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: (numpy array of floats) : Data projected onto the new basis (numpy array of floats) : Vector of eigenvalues (numpy array of floats) : Corresponding matrix of eigenvectors """ X = X - np.mean(X, 0) cov_matrix = get_sample_cov_matrix(X) evals, evectors = np.linalg.eigh(cov_matrix) evals, evectors = sort_evals_descending(evals, evectors) score = change_of_basis(X, evectors) return score, evectors, evals def plot_eigenvalues(evals, limit=True): """ Plots eigenvalues. Args: (numpy array of floats) : Vector of eigenvalues Returns: Nothing. """ plt.figure() plt.plot(np.arange(1, len(evals) + 1), evals, 'o-k') plt.xlabel('Component') plt.ylabel('Eigenvalue') plt.title('Scree plot') if limit: plt.show() ``` --- # Section 1: Perform PCA on MNIST The MNIST dataset consists of a 70,000 images of individual handwritten digits. Each image is a 28x28 pixel grayscale image. For convenience, each 28x28 pixel image is often unravelled into a single 784 (=28*28) element vector, so that the whole dataset is represented as a 70,000 x 784 matrix. Each row represents a different image, and each column represents a different pixel. Enter the following cell to load the MNIST dataset and plot the first nine images. ```python from sklearn.datasets import fetch_openml mnist = fetch_openml(name='mnist_784') X = mnist.data plot_MNIST_sample(X) ``` The MNIST dataset has an extrinsic dimensionality of 784, much higher than the 2-dimensional examples used in the previous tutorials! To make sense of this data, we'll use dimensionality reduction. But first, we need to determine the intrinsic dimensionality $K$ of the data. One way to do this is to look for an "elbow" in the scree plot, to determine which eigenvalues are signficant. ## Exercise 1: Scree plot of MNIST In this exercise you will examine the scree plot in the MNIST dataset. **Steps:** - Perform PCA on the dataset and examine the scree plot. - When do the eigenvalues appear (by eye) to reach zero? (**Hint:** use `plt.xlim` to zoom into a section of the plot). ```python help(pca) help(plot_eigenvalues) ``` Help on function pca in module __main__: pca(X) Performs PCA on multivariate data. Eigenvalues are sorted in decreasing order Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: (numpy array of floats) : Data projected onto the new basis (numpy array of floats) : Vector of eigenvalues (numpy array of floats) : Corresponding matrix of eigenvectors Help on function plot_eigenvalues in module __main__: plot_eigenvalues(evals, limit=True) Plots eigenvalues. Args: (numpy array of floats) : Vector of eigenvalues Returns: Nothing. ```python ################################################# ## TO DO for students: perform PCA and plot the eigenvalues ################################################# # perform PCA score, evectors, evals = pca(X) # plot the eigenvalues plot_eigenvalues(evals, limit=False) plt.xlim((0,100)) # limit x-axis up to 100 for zooming ``` [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D5_DimensionalityReduction/solutions/W1D5_Tutorial3_Solution_a876e927.py) *Example output:* --- # Section 2: Calculate the variance explained The scree plot suggests that most of the eigenvalues are near zero, with fewer than 100 having large values. Another common way to determine the intrinsic dimensionality is by considering the variance explained. This can be examined with a cumulative plot of the fraction of the total variance explained by the top $K$ components, i.e., \begin{equation} \text{var explained} = \frac{\sum_{i=1}^K \lambda_i}{\sum_{i=1}^N \lambda_i} \end{equation} The intrinsic dimensionality is often quantified by the $K$ necessary to explain a large proportion of the total variance of the data (often a defined threshold, e.g., 90%). ## Exercise 2: Plot the explained variance In this exercise you will plot the explained variance. **Steps:** - Fill in the function below to calculate the fraction variance explained as a function of the number of principal componenets. **Hint:** use `np.cumsum`. - Plot the variance explained using `plot_variance_explained`. **Questions:** - How many principal components are required to explain 90% of the variance? - How does the intrinsic dimensionality of this dataset compare to its extrinsic dimensionality? ```python help(plot_variance_explained) ``` Help on function plot_variance_explained in module __main__: plot_variance_explained(variance_explained) Plots eigenvalues. Args: variance_explained (numpy array of floats) : Vector of variance explained for each PC Returns: Nothing. ```python def get_variance_explained(evals): """ Calculates variance explained from the eigenvalues. Args: evals (numpy array of floats) : Vector of eigenvalues Returns: (numpy array of floats) : Vector of variance explained """ ################################################# ## TO DO for students: calculate the explained variance using the equation ## from Section 2. # Comment once you've filled in the function # raise NotImplementedError("Student excercise: calculate explaine variance!") ################################################# # cumulatively sum the eigenvalues csum = np.cumsum(evals) # normalize by the sum of eigenvalues variance_explained = csum/sum(evals) return variance_explained ################################################# ## TO DO for students: call the function and plot the variance explained ################################################# # calculate the variance explained variance_explained = get_variance_explained(evals) # Uncomment to plot the variance explained plot_variance_explained(variance_explained) ``` [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D5_DimensionalityReduction/solutions/W1D5_Tutorial3_Solution_0f5f51b9.py) *Example output:* --- # Section 3: Reconstruct data with different numbers of PCs Now we have seen that the top 100 or so principal components of the data can explain most of the variance. We can use this fact to perform *dimensionality reduction*, i.e., by storing the data using only 100 components rather than the samples of all 784 pixels. Remarkably, we will be able to reconstruct much of the structure of the data using only the top 100 components. To see this, recall that to perform PCA we projected the data $\bf X$ onto the eigenvectors of the covariance matrix: \begin{equation} \bf S = X W \end{equation} Since $\bf W$ is an orthogonal matrix, ${\bf W}^{-1} = {\bf W}^T$. So by multiplying by ${\bf W}^T$ on each side we can rewrite this equation as \begin{equation} {\bf X = S W}^T. \end{equation} This now gives us a way to reconstruct the data matrix from the scores and loadings. To reconstruct the data from a low-dimensional approximation, we just have to truncate these matrices. Let's call ${\bf S}_{1:K}$ and ${\bf W}_{1:K}$ as keeping only the first $K$ columns of this matrix. Then our reconstruction is: \begin{equation} {\bf \hat X = S}_{1:K} ({\bf W}_{1:K})^T. \end{equation} ## Exercise 3: Data reconstruction Fill in the function below to reconstruct the data using different numbers of principal components. **Steps:** * Fill in the following function to reconstruct the data based on the weights and scores. Don't forget to add the mean! * Make sure your function works by reconstructing the data with all $K=784$ components. The two images should look identical. ```python help(plot_MNIST_reconstruction) ``` Help on function plot_MNIST_reconstruction in module __main__: plot_MNIST_reconstruction(X, X_reconstructed) Plots 9 images in the MNIST dataset side-by-side with the reconstructed images. Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable X_reconstructed (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: Nothing. ```python def reconstruct_data(score, evectors, X_mean, K): """ Reconstruct the data based on the top K components. Args: score (numpy array of floats) : Score matrix evectors (numpy array of floats) : Matrix of eigenvectors X_mean (numpy array of floats) : Vector corresponding to data mean K (scalar) : Number of components to include Returns: (numpy array of floats) : Matrix of reconstructed data """ ################################################# ## TO DO for students: Reconstruct the original data in X_reconstructed # Comment once you've filled in the function # raise NotImplementedError("Student excercise: reconstructing data function!") ################################################# # Reconstruct the data from the score and eigenvectors # Don't forget to add the mean!! X_reconstructed = score[:,:K]@evectors[:,:K].T+X_mean return X_reconstructed K = 784 ################################################# ## TO DO for students: Calculate the mean and call the function, then plot ## the original and the recostructed data ################################################# # Reconstruct the data based on all components X_mean = X.mean(axis=0) X_reconstructed = reconstruct_data(score,evectors,X_mean,100) # Plot the data and reconstruction plot_MNIST_reconstruction(X, X_reconstructed) ``` [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D5_DimensionalityReduction/solutions/W1D5_Tutorial3_Solution_e3395916.py) *Example output:* ## Interactive Demo: Reconstruct the data matrix using different numbers of PCs Now run the code below and experiment with the slider to reconstruct the data matrix using different numbers of principal components. **Steps** * How many principal components are necessary to reconstruct the numbers (by eye)? How does this relate to the intrinsic dimensionality of the data? * Do you see any information in the data with only a single principal component? ```python # @title # @markdown Make sure you execute this cell to enable the widget! def refresh(K=100): X_reconstructed = reconstruct_data(score, evectors, X_mean, K) plot_MNIST_reconstruction(X, X_reconstructed) plt.title('Reconstructed, K={}'.format(K)) _ = widgets.interact(refresh, K=(1, 784, 10)) ``` interactive(children=(IntSlider(value=100, description='K', max=784, min=1, step=10), Output()), _dom_classes=… ## Exercise 4: Visualization of the weights Next, let's take a closer look at the first principal component by visualizing its corresponding weights. **Steps:** * Enter `plot_MNIST_weights` to visualize the weights of the first basis vector. * What structure do you see? Which pixels have a strong positive weighting? Which have a strong negative weighting? What kinds of images would this basis vector differentiate? * Try visualizing the second and third basis vectors. Do you see any structure? What about the 100th basis vector? 500th? 700th? ```python help(plot_MNIST_weights) ``` Help on function plot_MNIST_weights in module __main__: plot_MNIST_weights(weights) Visualize PCA basis vector weights for MNIST. Red = positive weights, blue = negative weights, white = zero weight. Args: weights (numpy array of floats) : PCA basis vector Returns: Nothing. ```python ################################################# ## TO DO for students: plot the weights calling the plot_MNIST_weights function ################################################# # Plot the weights of the first principal component plot_MNIST_weights(evectors[:,3]) ``` [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D5_DimensionalityReduction/solutions/W1D5_Tutorial3_Solution_f358e413.py) *Example output:* --- # Summary * In this tutorial, we learned how to use PCA for dimensionality reduction by selecting the top principal components. This can be useful as the intrinsic dimensionality ($K$) is often less than the extrinsic dimensionality ($N$) in neural data. $K$ can be inferred by choosing the number of eigenvalues necessary to capture some fraction of the variance. * We also learned how to reconstruct an approximation of the original data using the top $K$ principal components. In fact, an alternate formulation of PCA is to find the $K$ dimensional space that minimizes the reconstruction error. * Noise tends to inflate the apparent intrinsic dimensionality, however the higher components reflect noise rather than new structure in the data. PCA can be used for denoising data by removing noisy higher components. * In MNIST, the weights corresponding to the first principal component appear to discriminate between a 0 and 1. We will discuss the implications of this for data visualization in the following tutorial. --- # Bonus: Examine denoising using PCA In this lecture, we saw that PCA finds an optimal low-dimensional basis to minimize the reconstruction error. Because of this property, PCA can be useful for denoising corrupted samples of the data. ## Exercise 5: Add noise to the data In this exercise you will add salt-and-pepper noise to the original data and see how that affects the eigenvalues. **Steps:** - Use the function `add_noise` to add noise to 20% of the pixels. - Then, perform PCA and plot the variance explained. How many principal components are required to explain 90% of the variance? How does this compare to the original data? ```python help(add_noise) ``` Help on function add_noise in module __main__: add_noise(X, frac_noisy_pixels) Randomly corrupts a fraction of the pixels by setting them to random values. Args: X (numpy array of floats) : Data matrix frac_noisy_pixels (scalar) : Fraction of noisy pixels Returns: (numpy array of floats) : Data matrix + noise ```python ################################################################### # Insert your code here to: # Add noise to the data # Plot noise-corrupted data # Perform PCA on the noisy data # Calculate and plot the variance explained ################################################################### np.random.seed(2020) # set random seed X_noisy = add_noise(X,0.1) score_noisy, evectors_noisy, evals_noisy = pca(X_noisy) variance_explained_noisy = get_variance_explained(evals_noisy) plot_MNIST_sample(X_noisy) plot_variance_explained(variance_explained_noisy) ``` [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D5_DimensionalityReduction/solutions/W1D5_Tutorial3_Solution_d4a41b8c.py) *Example output:* ## Exercise 6: Denoising Next, use PCA to perform denoising by projecting the noise-corrupted data onto the basis vectors found from the original dataset. By taking the top K components of this projection, we can reduce noise in dimensions orthogonal to the K-dimensional latent space. **Steps:** - Subtract the mean of the noise-corrupted data. - Project the data onto the basis found with the original dataset (`evectors`, not `evectors_noisy`) and take the top $K$ components. - Reconstruct the data as normal, using the top 50 components. - Play around with the amount of noise and K to build intuition. ```python ################################################################### # Insert your code here to: # Subtract the mean of the noise-corrupted data # Project onto the original basis vectors evectors # Reconstruct the data using the top 50 components # Plot the result ################################################################### X_noisy_mean = X_noisy.mean(axis=0) X_reconstructed = reconstruct_data(score_noisy,evectors_noisy,X_mean,100) plot_MNIST_reconstruction(X_noisy, X_reconstructed) ``` [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D5_DimensionalityReduction/solutions/W1D5_Tutorial3_Solution_e3ee8262.py) *Example output:*
1286954f71e1b3530f21166a4579b90b575c262f
404,195
ipynb
Jupyter Notebook
tutorials/W1D5_DimensionalityReduction/student/W1D5_Tutorial3.ipynb
neurorishika/course-content
d7fd2feabd662c8a32afc2837f45cc7f18e1f4aa
[ "CC-BY-4.0" ]
null
null
null
tutorials/W1D5_DimensionalityReduction/student/W1D5_Tutorial3.ipynb
neurorishika/course-content
d7fd2feabd662c8a32afc2837f45cc7f18e1f4aa
[ "CC-BY-4.0" ]
null
null
null
tutorials/W1D5_DimensionalityReduction/student/W1D5_Tutorial3.ipynb
neurorishika/course-content
d7fd2feabd662c8a32afc2837f45cc7f18e1f4aa
[ "CC-BY-4.0" ]
null
null
null
245.263956
58,212
0.910081
true
5,975
Qwen/Qwen-72B
1. YES 2. YES
0.819893
0.665411
0.545566
__label__eng_Latn
0.950552
0.105861
###### Content under Creative Commons Attribution license CC-BY 4.0, code under MIT license (c)2014 L.A. Barba, G.F. Forsyth. # Coding Assignment: Rocket The equations of motion for a rocket in purely vertical flight are given by \begin{align} \frac{dh}{dt} &= v\\ (m_s+m_p) \frac{dv}{dt}& = -(m_s+m_p)g + \dot{m}_pv_e - \frac{1}{2}\rho v|v|AC_D \end{align} $h$ is the altitude of the rocket $m_s = 50kg$ is the weight of the rocket shell $g = 9.81 \frac{m}{s^2}$ $\rho = 1.091 \frac{kg}{m^3}$ is the average air density (assumed constant throughout flight) $A = \pi r^2$ is the maximum cross sectional area of the rocket, where $r = 0.5 m$ $v_e = 325 \frac{m}{s}$ is the exhaust speed $C_D = 0.15 $ is the drag coefficient $m_{po} = 100 kg$ at time $t = 0$ is the initial weight of the rocket propellant The mass of the remaining propellant is given by: $$m_p = m_{po} - \int^t_0 \dot{m}_p d\tau$$ where $\dot{m}_p$ is the time-varying burn rate given by the following figure: Propellant Burn Rate Using Euler's method with a timestep of $\Delta t=0.1s$, create a Python script to calculate the altitude and velocity of the rocket from launch until crash down. ##Assessment: To check your answers, you can register for [MAE 6286: Practical Numerical Methods with Python](http://openedx.seas.gwu.edu/courses/GW/MAE6286/2014_fall/about). 1. At time $t=3.2s$, what is the mass (in kg) of rocket propellant remaining in the rocket? 2. What is the maximum speed of the rocket in $\frac{m}{s}$? At what time does this occur (in seconds)? What is the altitude at this time (in meters)? 3. What is the rocket's maximum altitude during flight (in meters)? At what time (in seconds) does this occur? 4. At what time (in seconds) does the rocket impact the ground? What is the velocity of the rocket (in $\frac{m}{s}$) at time of impact? ##Derivation of the rocket equations In case you are kind of confused about the rocket equations, here we show how to get to them. We will start from the widely used [Reynolds' transport theorem](http://en.wikipedia.org/wiki/Reynolds_transport_theorem). For an extensive property $N$ in a volume $\Omega$, with corresponding intensive property $\eta = N/m$, the Reynolds' transport theorem reads $$ \frac{DN}{Dt} = \frac{\partial}{\partial t} \int_\Omega \eta \rho {\rm dV} + \oint_{\partial \Omega} \eta \rho \mathbf{V} \cdot \mathbf{n} {\rm d} S $$ where $m$ is mass, dV is an element of volume, $\mathbf{V}$ the velocity, $\mathbf{n}$ the unit normal vector pointing out of the control volume and $\rho$ density. We will use a control volume that encloses the rocket, and moves with it. If the velocity of the control volume is $\mathbf{V}_{\rm CV}$, we can write the velocity as $\mathbf{V} = \mathbf{V}_{\rm CV} + \mathbf{V}^\prime$, and the Reynolds' transport theorem becomes $$ \frac{DN}{Dt} = \frac{\partial}{\partial t} \int_\Omega \eta \rho {\rm dV} + \oint_{\partial \Omega} \eta \rho \mathbf{V}_{\rm CV} \cdot \mathbf{n} {\rm d} S + \oint_{\partial \Omega} \eta \rho \mathbf{V}^\prime \cdot \mathbf{n} {\rm d} S. $$ The second term in the right hand side of this equation can be rewritten using the divergence theorem $$ \oint_{\partial \Omega} \eta \rho \mathbf{V}_{\rm CV} \cdot \mathbf{n} {\rm d} S = \int_{\Omega} \eta \rho \nabla \cdot \mathbf{V}_{\rm CV} {\rm dV}, $$ but for a non-deforming control volume, $\nabla \cdot \mathbf{V}_{\rm CV} = 0$, yielding $$ \frac{DN}{Dt} = \frac{\partial}{\partial t} \int_\Omega \eta \rho {\rm dV} + \oint_{\partial \Omega} \eta \rho \mathbf{V}^\prime \cdot \mathbf{n} {\rm d} S. $$ Replacing $N = m \mathbf{V}^\prime$, we get the momentum conservation equation with a moving non-deforming control volume: $$ \frac{D(m\mathbf{V}^\prime)}{Dt} = \frac{\partial}{\partial t} \int_\Omega \mathbf{V}^\prime \rho {\rm dV} + \oint_{\partial \Omega} \mathbf{V}^\prime \rho (\mathbf{V}^\prime \cdot \mathbf{n}) {\rm d} S. $$ For non-accelerating control volume, we can apply Newton's second law to compute the forces: $$ \frac{D(m\mathbf{V}^\prime)}{Dt} = \frac{D(m\mathbf{V})}{Dt} = \frac{D\mathbf{p}}{Dt} = \sum \mathbf{F}. $$ However, in this case the control volume is moving with the accelerating rocket, and we need to be a bit more careful. We can write $\frac{D(m\mathbf{V}^\prime)}{Dt} = \frac{D(m\mathbf{V})}{Dt} - \frac{D(m\mathbf{V}_{\rm CV})}{Dt}$, and considering the control volume is not deforming, $\frac{D(m\mathbf{V}_{\rm CV})}{Dt} = m\mathbf{a}_{\rm CV}$, where $\mathbf{a}_{\rm CV}$ is the acceleration of the control volume. On the other hand, $\mathbf{V}$ is taken from an inertial (non-accelerating) frame of reference, and Newton's second law is valid there, then $$ \frac{D(m\mathbf{V}^\prime)}{Dt} = \frac{D(m\mathbf{V})}{Dt} - \frac{D(m\mathbf{V}_{\rm CV})}{Dt} = \sum \mathbf{F} - m \mathbf{a}_{\rm CV}. $$ This way we get a momentum equation for an accelerating control volume: $$ \sum \mathbf{F} - m \mathbf{a}_{\rm CV} = \frac{\partial}{\partial t} \int_\Omega \mathbf{V}^\prime \rho {\rm dV} + \oint_{\partial \Omega} \mathbf{V}^\prime \rho (\mathbf{V}^\prime \cdot \mathbf{n}) {\rm d} S. $$ Let's examine this last equation to make it specific for the rocket problem. First, the rocket is subject to two forces: gravity and drag. This makes the sum of forces: $$ \sum \mathbf{F} = (m_c + m_p) \mathbf{g} - \frac{1}{2} \rho_a \mathbf{v} |\mathbf{v}| A C_D. $$ where $\mathbf{v}$ is the velocity of the rocket, equal to the velocity of the control volume $\mathbf{V}_{\rm CV}$, and $\rho_a$ is the density of air. Now, let's deal with the volume integral. Check out Figure 1: the control volume encloses the whole rocket, and the border is slightly away from the nozzle. We can make a cut on the control volume to analyze it in two parts: the top part consisting of the container only, and the bottom part from the nozzle down. The top part is a large container that moves with the control volume, and the relative velocities of the propellant inside are negligible. In the bottom part, the fluid is moving quite fast, but the amount of fluid there is constant in time. These two considerations allow us to drop the volume integral. ####Figure 1. Control volume of the rocket. Done with the volume integral, now the surface integral. If we consider that the burnt propellant is coming out of the control volume with a constant velocity profile, we can rewrite the surface integral as $$ \oint_{\partial \Omega} \mathbf{V}^\prime \rho_p (\mathbf{V}^\prime \cdot \mathbf{n}) {\rm d} S = \mathbf{V}^\prime \oint_{\partial \Omega} \rho_p (\mathbf{V}^\prime \cdot \mathbf{n}) {\rm d} S = \mathbf{V}^\prime \dot{m}_p = \mathbf{v}_e \dot{m}_p, $$ where $\mathbf{v}_e$ is the exhaust velocity of the burnt propellant coming out of the nozzle with respect to the control volume, $\rho_p$ is the density of the propellant, and $\dot{m}_p$ is the mass flow rate of propellant. By saying that $\rho = \rho_p$ we are considering that the mass of air is negligible compared to the mass of propellant coming out of the nozzle. Finally, the momentum equation for the rocket is $$ (m_c + m_p) \mathbf{g} - \frac{1}{2} \rho_a \mathbf{v} |\mathbf{v}| A C_D - (m_c + m_p)\frac{{\rm d} \mathbf{v}}{{\rm d}t} = \mathbf{v}_e \dot{m}_p. $$ In practical terms, we're only interested in the $y$ component. Vectors $\mathbf{g}$ and $\mathbf{v}_e$ are pointing down, which gives the scalar equation: $$ -(m_c + m_p) g - \frac{1}{2} \rho_a v^2 A C_D - (m_c + m_p)\frac{{\rm d} v}{{\rm d}t} = -v_e \dot{m}_p. $$ This is the equation you will work with for your assignment! --- ######The cell below loads the style of the notebook. ``` from IPython.core.display import HTML css_file = '../../styles/numericalmoocstyle.css' HTML(open(css_file, "r").read()) ```
b6afcba065807a93382757e94af2a1329293e2e1
10,670
ipynb
Jupyter Notebook
lessons/01_phugoid/Rocket_Assignment.ipynb
devinberg/numerical-mooc
f6cf018c84936fd1047fb8d207b28df9b966ec57
[ "CC-BY-3.0" ]
5
2015-04-24T14:39:43.000Z
2018-06-23T01:00:45.000Z
lessons/01_phugoid/Rocket_Assignment.ipynb
albertonogueira/numerical-mooc
dd95e650310502b5cdfe6e405ed7ab7e1496d233
[ "CC-BY-3.0" ]
1
2015-04-14T12:01:46.000Z
2018-11-09T00:57:16.000Z
lessons/01_phugoid/Rocket_Assignment.ipynb
albertonogueira/numerical-mooc
dd95e650310502b5cdfe6e405ed7ab7e1496d233
[ "CC-BY-3.0" ]
5
2015-10-02T19:20:21.000Z
2020-01-25T03:28:32.000Z
51.545894
629
0.561762
true
2,489
Qwen/Qwen-72B
1. YES 2. YES
0.887205
0.863392
0.766005
__label__eng_Latn
0.986686
0.618019
<a href="https://colab.research.google.com/github/NeuromatchAcademy/course-content/blob/master/tutorials/W3D1_RealNeurons/W3D1_Tutorial3.ipynb" target="_parent"></a> # Neuromatch Academy: Week 3, Day 1, Tutorial 3 # Real Neurons: Synaptic transmission - Models of static and dynamic synapses ## Tutorial Objectives Synapses connect neurons into neural networks or circuits. Specialized electrical synapses make direct, physical connections between neurons. In this tutorial, however, we will focus on chemical synapses, which are more common in the brain. These synapses do not physically join neurons. Instead, eliciting a spike in the presynaptic cell causes a chemical, or neurotransmitter, to be released into a small space between the neurons called the synaptic cleft. Once the chemical diffuses across that space, it causes changes in the membrane of the postsynaptic cell. In this tutorial, we will model chemical synaptic transmission and study some interesting effects produced by static synapses that do not change and dynamic ones that change their effects based on the spiking history of the presynaptic neurons. First, we will start by writing code to simulate static synapses. Next, we will extend the model to include synapses whose synaptic strength is dependent on the recent spike history: synapses can either progressively increase or decrease the size of their effects on the postsynaptic neuron, based on the recent firing rate of its pre-synaptic partners. This feature of synapses in the brain is called **Short-Term Plasticity** and causes synapses to undergo *Facilitation* or *Depression*. Our goals for this tutorial are to: - simulate static synapses and study how excitation and inhibition affect the patterns in the neurons' spiking output - define mean- or fluctuation-driven regimes - simulate short-term dynamics of synapses (facilitation and depression) - study how a change in presynaptic firing history affects the synaptic weights (i.e., PSP amplitude) # Setup ```python # Imports import matplotlib.pyplot as plt # import matplotlib import numpy as np # import numpy import time # import time import ipywidgets as widgets # interactive display from scipy.stats import pearsonr # import pearson correlation ``` ```python #@title Figure Settings %matplotlib inline fig_w, fig_h = (8, 6) my_fontsize = 18 my_params = {'axes.labelsize': my_fontsize, 'axes.titlesize': my_fontsize, 'figure.figsize': [fig_w, fig_h], 'font.size': my_fontsize, 'legend.fontsize': my_fontsize-4, 'lines.markersize': 8., 'lines.linewidth': 2., 'xtick.labelsize': my_fontsize-2, 'ytick.labelsize': my_fontsize-2} plt.rcParams.update(my_params) my_layout = widgets.Layout() ``` ```python #@title Helper functions def my_GWN(pars, mu, sig, myseed=False): """ Args: pars : parameter dictionary mu : noise baseline (mean) sig : noise amplitute (standard deviation) myseed : random seed. int or boolean the same seed will give the same random number sequence Returns: I : Gaussian White Noise (GWN) input """ # Retrieve simulation parameters dt, range_t = pars['dt'], pars['range_t'] Lt = range_t.size # set random seed # you can fix the seed of the random number generator so that the results # are reliable. However, when you want to generate multiple realizations # make sure that you change the seed for each new realization. if myseed: np.random.seed(seed=myseed) else: np.random.seed() # generate GWN # we divide here by 1000 to convert units to seconds. I = mu + sig * np.random.randn(Lt) / np.sqrt(dt/1000.) return I def Poisson_generator(pars, rate, n, myseed=False): """ Generates poisson trains Args: pars : parameter dictionary rate : noise amplitute [Hz] n : number of Poisson trains myseed : random seed. int or boolean Returns: pre_spike_train : spike train matrix, ith row represents whether there is a spike in ith spike train over time (1 if spike, 0 otherwise) """ # Retrieve simulation parameters dt, range_t = pars['dt'], pars['range_t'] Lt = range_t.size # set random seed if myseed: np.random.seed(seed=myseed) else: np.random.seed() # generate uniformly distributed random variables u_rand = np.random.rand(n, Lt) # generate Poisson train poisson_train = 1. * (u_rand<rate*dt/1000.) return poisson_train def my_illus_LIFSYN(pars, v_fmp, v): """ Illustartion of FMP and membrane voltage Args: pars : parameters dictionary v_fmp : free membrane potential, mV v : membrane voltage, mV Returns: plot of membrane voltage and FMP, alongside with the spiking threshold and the mean FMP (dashed lines) """ plt.figure(figsize=(14., 5)) plt.plot(pars['range_t'], v_fmp, 'r', lw=1., label = 'Free mem. pot.', zorder=2) plt.plot(pars['range_t'], v, 'b', lw=1., label = 'True mem. pot', zorder=1, alpha=0.7) plt.axhline(-55, 0, 1, color='k', lw=2., ls='--',label = 'Spike Threshold', zorder=1) plt.axhline(np.mean(v_fmp),0, 1, color='r', lw=2., ls='--',label = 'Mean Free Mem. Pot.', zorder=1) plt.xlabel('Time (ms)') plt.ylabel('V (mV)'); plt.legend(loc=[1.02, 0.68]) plt.show() def my_illus_STD(Poi_or_reg=False, rate=20., U0=0.5, tau_d=100., tau_f=50., plot_out=True): """ Only for one presynaptic train Args: Poi_or_reg : Poisson or regular input spiking trains rate : Rate of input spikes, Hz U0 : synaptic release probability at rest tau_d : synaptic depression time constant of x [ms] tau_f : synaptic facilitation time constantr of u [ms] plot_out : whether ot not to plot, True or False Returns: """ T_simu = 10.0 * 1000/(1.0*rate) # 10 spikes in the time window pars = default_pars(T=T_simu) dt, range_t = pars['dt'], pars['range_t'] if Poi_or_reg: # Poisson type spike train pre_spike_train = Poisson_generator(pars, rate, n=1) pre_spike_train = pre_spike_train.sum(axis=0) else: # Regular firing rate isi_num = int((1e3/rate)/dt) # number of dt pre_spike_train = np.zeros(len(pars['range_t'])) pre_spike_train[::isi_num] = 1. u, R, g = dynamic_syn(g_bar=1.2, tau_syn=5., U0=U0, tau_d=tau_d, tau_f=tau_f, pre_spike_train=pre_spike_train, dt=pars['dt']) if plot_out: plt.figure(figsize=(12, 6)) plt.subplot(2,2,1) plt.plot(pars['range_t'], R, 'b', label='R') plt.plot(pars['range_t'], u, 'r', label='u') plt.legend(loc='best') plt.xlim((0,pars['T'])) plt.ylabel(r'$R$ or $u$ (a.u)') plt.subplot(2,2,3) spT = pre_spike_train>0 t_sp = pars['range_t'][spT] #spike times plt.plot(t_sp, 0.*np.ones(len(t_sp)), 'k|', ms=18, markeredgewidth=2) plt.xlabel('Time (ms)'); plt.xlim((0,pars['T'])) plt.yticks([]) plt.title('Presynaptic spikes') plt.subplot(1,2,2) plt.plot(pars['range_t'], g, 'r', label='STP synapse') plt.xlabel('Time (ms)') plt.ylabel('g (nS)') plt.xlim((0,pars['T'])) plt.tight_layout() if not Poi_or_reg: return g[isi_num], g[9*isi_num] def plot_volt_trace(pars, v, sp): """ Plot trajetory of membrane potential for a single neuron Args: pars : parameter dictionary v : volt trajetory sp : spike train Returns: figure of the membrane potential trajetory for a single neuron """ V_th = pars['V_th'] dt, range_t = pars['dt'], pars['range_t'] if sp.size: sp_num = (sp/dt).astype(int)-1 v[sp_num] += 10 plt.plot(pars['range_t'], v, 'b') plt.axhline(V_th, 0, 1, color='k', ls='--', lw=1.) plt.xlabel('Time (ms)') plt.ylabel('V (mV)') ``` In the `Helper Function`: - Gaussian white noise generator: `my_GWN(pars, mu, sig, myseed=False)` - Poissonian spike train generator: `Poisson_generator(pars, rate, n, myseed=False)` ```python #@title Default value function: `default_pars( **kwargs)` def default_pars( **kwargs): pars = {} ### typical neuron parameters### pars['V_th'] = -55. # spike threshold [mV] pars['V_reset'] = -75. #reset potential [mV] pars['tau_m'] = 10. # membrane time constant [ms] pars['g_L'] = 10. #leak conductance [nS] pars['V_init'] = -65. # initial potential [mV] pars['E_L'] = -75. #leak reversal potential [mV] pars['tref'] = 2. # refractory time (ms) ### simulation parameters ### pars['T'] = 400. # Total duration of simulation [ms] pars['dt'] = .1 # Simulation time step [ms] ### external parameters if any ### for k in kwargs: pars[k] = kwargs[k] pars['range_t'] = np.arange(0, pars['T'], pars['dt']) # Vector of discretized time points [ms] return pars ``` ## Static synapses ```python #@title Video: Static and dynamic synapses from IPython.display import YouTubeVideo video = YouTubeVideo(id='S82kACA5P0M', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video ``` Video available at https://youtube.com/watch?v=S82kACA5P0M ## Simulate synaptic conductance dynamics The GWN input used in Tutorials 1 and 2 is quite unphysiological input compared to the inputs that a real neuron receives. Synaptic input _in vivo_ consists of a mixture of **excitatory** neurotransmitters, which depolarizes the cell and drives it towards spike threshold, and **inhibitory** neurotransmitters that hyperpolarize it, driving it away from spike threshold. Each of these chemicals cause specific ion channels on the postsynaptic neuron to open, resulting in a change in that neuron's conductance and therefore, the flow of current into or out of the cell. This process can be modelled by assuming that the presynaptic neuron's spiking activity produces transient changes in the postsynaptic neuron's conductance ($g_{\rm syn}(t)$). Typically, the conductance transient is modelled as an exponential function. Such conductance transients can be generated using a simple ordinary differential equation (ODE): \begin{eqnarray} \frac{dg_{\rm syn}(t)}{dt} &=& \bar{g}_{\rm syn} \sum_k \delta(t-t_k) -g_{\rm syn}(t)/\tau_{\rm syn} \end{eqnarray} where $\bar{g}_{\rm syn}$ is the maximum conductance elicited by each incoming spike -- this is often referred to as synaptic weight--and $\tau_{\rm syn}$ is the synaptic time constant. Note that the summation runs over all spikes received by the neuron at time $t_k$. Ohm's law allows us to convert conductance changes into current as: \begin{align} I_{\rm syn}(t) = -g_{\rm syn}(t)(V(t)-E_{\rm syn}) \\ \end{align} The reversal potential $E_{\rm syn}$ describes the direction of current flow and the excitatory or inhibitory nature of the synapse. **Thus, incoming spikes are filtered by an exponential-shaped kernel, effectively low-pass filtering the input. In other words, synaptic input is not white noise but it is in fact colored noise, where the color (spectrum) of the noise is determined by the synaptic time constants of both excitatory and inhibitory synapses.** In a neuronal network, the total synaptic input current $I_{\rm syn}$ is the sum of both excitatory and inhibitory inputs. Assuming the total excitatory and inhibitory conductances received at time $t$ are $g_E(t)$ and $g_I(t)$, and their corresponding reversal potentials are $E_E$ and $E_I$, respectively, then the total synaptic current can be described as: \begin{align} I_{\rm syn}(V(t),t) = -g_E(t) (V-E_E) - g_I(t) (V-E_I). \\ \end{align} Accordingly, the membrane potential dynamics of the LIF neuron under synaptic current drive become: \begin{align} \tau_m\frac{dV(t)}{dt} = -(V(t)-E_L) - \frac{g_E(t)}{g_L} (V(t)-E_E) - \frac{g_I(t)}{g_L} (V(t)-E_I) + \frac{I_{\rm inj}}{g_L}.\quad (2) \end{align} $I_{\rm inj}$ is an external current injected in the neuron which is under experimental control; it can be GWN, DC or anything else. We will use Eq. (2) to simulate the conductance-based LIF neuron model below. In the previous tutorials, we saw how the output of a single neuron (spike count/rate and spike time irregularity), changed when we stimulated the neuron with DC and GWN, respectively. Now, we are in a position to study how the neuron behaves when it is bombarded with both excitatory and inhibitory spikes trains -- as happens *in vivo*. What kind of input a neuron is receiving? When we do not know, we chose the simplest option. The simplest model of input spikes is given when every input spike arrives independently of other spikes, i.e., we assume that the input is Poissonian. ### Simulate LIF neuron with conductance-based synapses We are now ready to simulate a LIF neuron with conductance-based synaptic inputs! The following code defines the LIF neuron with synaptic input modelled as conductance transients. ```python #@title Conductance-based LIF: `run_LIF_cond` def run_LIF_cond(pars, I_inj, pre_spike_train_ex, pre_spike_train_in): """conductance-based LIF dynamics Rgs: pars : parameter dictionary I_inj : injected current [pA]. The injected current here can be a value or an array pre_spike_train_ex : spike train input from presynaptic excitatory neuron pre_spike_train_in : spike train input from presynaptic inhibitory neuron Returns: rec_spikes : spike times rec_v : mebrane potential gE : postsynaptic excitatory conductance gI : postsynaptic inhibitory conductance """ # Retrieve parameters V_th, V_reset = pars['V_th'], pars['V_reset'] tau_m, g_L = pars['tau_m'], pars['g_L'] V_init, E_L = pars['V_init'], pars['E_L'] gE_bar, gI_bar = pars['gE_bar'], pars['gI_bar'] VE, VI = pars['VE'], pars['VI'] tau_syn_E, tau_syn_I = pars['tau_syn_E'], pars['tau_syn_I'] tref = pars['tref'] dt, range_t = pars['dt'], pars['range_t'] Lt = range_t.size # Initialize tr = 0. v = np.zeros(Lt) v[0] = V_init gE = np.zeros(Lt) gI = np.zeros(Lt) I = I_inj * np.ones(Lt) #ensure I has length Lt if pre_spike_train_ex.max() == 0: pre_spike_train_ex_total = np.zeros(Lt) else: pre_spike_train_ex_total = pre_spike_train_ex.sum(axis=0) * np.ones(Lt) if pre_spike_train_in.max() == 0: pre_spike_train_in_total = np.zeros(Lt) else: pre_spike_train_in_total = pre_spike_train_in.sum(axis=0) * np.ones(Lt) # simulation rec_spikes = [] # recording spike times for it in range(Lt-1): if tr > 0: v[it] = V_reset tr = tr-1 elif v[it] >= V_th: #reset voltage and record spike event rec_spikes.append(it) v[it] = V_reset tr = tref/dt #update the synaptic conductance gE[it+1] = gE[it] - (dt/tau_syn_E)*gE[it] + gE_bar*pre_spike_train_ex_total[it+1] gI[it+1] = gI[it] - (dt/tau_syn_I)*gI[it] + gI_bar*pre_spike_train_in_total[it+1] #calculate the increment of the membrane potential dv = (-(v[it]-E_L) - (gE[it+1]/g_L)*(v[it]-VE) - \ (gI[it+1]/g_L)*(v[it]-VI) + I[it]/g_L) * (dt/tau_m) #update membrane potential v[it+1] = v[it] + dv rec_spikes = np.array(rec_spikes) * dt return v, rec_spikes, gE, gI ``` #### Exercise 1: Measure the Mean free membrane potential Let's simulate the conductance-based LIF neuron with presynaptic spike trains genetated by a `Poisson_generator` with rate 10 Hz for both excitatory and inhibitory inputs. Here, we choose 80 exictatory presynaptic spike trains and 20 inhibitory ones. Previously, we've already learned that CV$_{\rm ISI}$ can describe the irregularity of the output spike pattern. Now, we will introduce the **Free Membrane Potential (FMP)**, which is the membrane potential of the neuron when its spike threshold is removed. Although this is completely artificial, calculating this quantity allows us to get an idea of how strong the input is. We are mostly interested in knowing the mean and standard deviation (std.) of the FMP. ```python # Exercise 1 # To complete the exercise, uncomment the code and fill the missing parts (...) pars = default_pars(T=1000.) # Add parameters pars['gE_bar'] = 2.4 # [nS] pars['VE'] = 0. # [mV] excitatory reversal potential pars['tau_syn_E'] = 2.4 # [ms] pars['gI_bar'] = 3. # [nS] pars['VI'] = -80. # [mV] inhibitory reversal potential pars['tau_syn_I'] = 5. # [ms] # generate presynaptic spike trains pre_spike_train_ex = Poisson_generator(pars, rate=10, n=80) pre_spike_train_in = Poisson_generator(pars, rate=10, n=20) # simulate conductance-based LIF model v, rec_spikes, gE, gI = run_LIF_cond(pars, 0, pre_spike_train_ex, pre_spike_train_in) dt, range_t = pars['dt'], pars['range_t'] if rec_spikes.size: sp_num = (rec_spikes/dt).astype(int)-1 v[sp_num] = 10 # draw nicer spikes #################################################################### ## TODO for students: Try to meansure the free membrane potential # #################################################################### # In order to measure the free membrane potential, first, # you should prevent the firing of the LIF neuron # How to prevent a LIF neuron from firing? Increse the threshold pars['V_th']. # pars['V_th'] = ... # v_fmp, _, _, _ = ... # comment this out when you've filled #raise NotImplementedError("Student excercise: measure the FMP") # uncomment when you have filled the excercise # my_illus_LIFSYN(pars, v, v_fmp) ``` ```python # to_remove solutions pars = default_pars(T=1000.) #Add parameters pars['gE_bar'] = 2.4 # [nS] pars['VE'] = 0. # [mV] excitatory reversal potential pars['tau_syn_E'] = 2. # [ms] pars['gI_bar'] = 2.4 # [nS] pars['VI'] = -80. # [mV] inhibitory reversal potential pars['tau_syn_I'] = 5. # [ms] #generate presynaptic spike trains pre_spike_train_ex = Poisson_generator(pars, rate=10, n=80) pre_spike_train_in = Poisson_generator(pars, rate=10, n=20) # simulate conductance-based LIF model v, rec_spikes, gE, gI = run_LIF_cond(pars, 0, pre_spike_train_ex, pre_spike_train_in) dt, range_t = pars['dt'], pars['range_t'] if rec_spikes.size: sp_num = (rec_spikes/dt).astype(int)-1 v[sp_num] = 10 # draw nicer spikes #measure FMP pars['V_th'] = 1e3 v_fmp, _, _, _ = run_LIF_cond(pars, 0, pre_spike_train_ex, pre_spike_train_in) # plotting with plt.xkcd(): my_illus_LIFSYN(pars, v_fmp, v) ``` ### Parameter Exploration: different ratio of excitation and inhibition In the following, we can investigate how varying the ratio of excitatory to inhibitory inputs changes the firing rate and the spike time regularity (see the output text). To change the both the excitatory and inhibitory inputs we will vary their firing rates. *However, if you wish, you can vary the strength and/or the number of these connections as well.* ```python #@title Conductance-based LIF Explorer with different E/I input my_layout.width = '450px' @widgets.interact( inh_rate = widgets.FloatSlider(20., min=10., max=60., step=5., layout=my_layout), exc_rate = widgets.FloatSlider(10., min=2., max=20., step=2., layout=my_layout) ) def EI_isi_regularity(exc_rate, inh_rate): pars = default_pars(T=1000.) #Add parameters pars['gE_bar'] = 3. # [nS] pars['VE'] = 0. # [mV] excitatory reversal potential pars['tau_syn_E'] = 2. # [ms] pars['gI_bar'] = 3. # [nS] pars['VI'] = -80. # [mV] inhibitory reversal potential pars['tau_syn_I'] = 5. # [ms] pre_spike_train_ex = Poisson_generator(pars, rate=exc_rate, n=80) pre_spike_train_in = Poisson_generator(pars, rate=inh_rate, n=20) # 4:1 # Lets first simulate a neuron with identical input but with no spike threshold # by setting the threshold to a very high value # so that we can look at the free membrane potential pars['V_th'] = 1e3 v_fmp, rec_spikes, gE, gI = run_LIF_cond(pars, 0, pre_spike_train_ex, pre_spike_train_in) # Now simulate a LIP with a regular spike threshold pars['V_th'] = -55. v, rec_spikes, gE, gI = run_LIF_cond(pars, 0, pre_spike_train_ex, pre_spike_train_in) dt, range_t = pars['dt'], pars['range_t'] if rec_spikes.size: sp_num = (rec_spikes/dt).astype(int)-1 v[sp_num] = 10 #draw nicer spikes spike_rate = 1e3*len(rec_spikes)/pars['T'] #print('Spike rate = %.3f (sp/s)' % spike_rate) cv_isi = 0. if len(rec_spikes)>3: isi = np.diff(rec_spikes) cv_isi = np.std(isi)/np.mean(isi) #print('CV ISI = %.3f' % (cv_isi)) #print('Mean of Free Mem Pot = %.3f' % (np.mean(v_fmp))) #print('STD of Free Mem Pot = %.3f' % (np.std(v_fmp))) print('\n') plt.figure(figsize=(15., 10)) plt.subplot(2,1,1) plt.text(500, -35, 'Spike rate = %.3f (sp/s), Mean of Free Mem Pot = %.3f' % (spike_rate, np.mean(v_fmp)), fontsize=16, fontweight='bold', horizontalalignment='center', verticalalignment='bottom') plt.text(500, -38.5, 'CV ISI = %.3f, STD of Free Mem Pot = %.3f' % (cv_isi, np.std(v_fmp)), fontsize=16, fontweight='bold', horizontalalignment='center', verticalalignment='bottom') plt.plot(pars['range_t'], v_fmp, 'r', lw=1., label = 'Free mem. pot.', zorder=2) plt.plot(pars['range_t'], v, 'b', lw=1., label = 'mem. pot with spk thr', zorder=1, alpha=0.7) plt.axhline(pars['V_th'], 0, 1, color='k', lw=1., ls='--',label = 'Spike Threshold', zorder=1) plt.axhline(np.mean(v_fmp),0, 1, color='r', lw=1., ls='--',label = 'Mean Free Mem. Pot.', zorder=1) plt.ylim(-76, -39) plt.xlabel('Time (ms)') plt.ylabel('V (mV)') plt.legend(loc=[1.02, 0.68]) plt.subplot(2,2,3) plt.plot(pars['range_t'][::3], gE[::3], 'r', lw=1.) plt.xlabel('Time (ms)') plt.ylabel(r'$g_E$ (nS)') plt.subplot(2,2,4) plt.plot(pars['range_t'][::3], gI[::3], 'b', lw=1.) plt.xlabel('Time (ms)') plt.ylabel(r'$g_I$ (nS)') plt.tight_layout() #_ = widgets.interact(EI_isi_regularity, inh_rate = (10., 60., 5.), exc_rate = (5.,20.,2)) ``` ### Mean-driven and Fluctuation-driven regimes If we look at the figure above, we note that when the mean FMP is above spike threshold, the fluctuations in the FMP are rather small and the neuron spikes in a fairly regular fashion. This regime when the mean FMP is above the spike threshold is called **mean-driven regime**. When the mean FMP is below spike threshold, the fluctuations in the FMP are large and the neuron's spikes are driven by these fluctuations. As a consequence, the neuron spikes in more Poisson-like fashion. This regime when the mean FMP is below the spike threshold and spikes are driven by the fluctuations is called **fluctuation-driven regime**. #### Think! - How much can you increase the spike pattern variability? Under what condition(s) the neuron may also respond with Poisson-type spikes? Note that we injected Poisson-type spikes. - Link to the balance of excitation and inhibition. One of the definition of excitation and inhibition balance is that mean free membrane potential remains constant as excitatory and inhibitory input rates are increased. What do you think happens to the neuron firing rate as we change excitatory and inhibitory rates while keeping the neuron in balance? See [Kuhn, Aertsen, and Rotter (2004)](https://www.jneurosci.org/content/jneuro/24/10/2345.full.pdf) for much more on this. ## Short-term synaptic plasticity Short-term plasticity (STP) is a phenomenon in which synaptic efficacy changes over time in a way that reflects the history of presynaptic activity. Two types of STP, with opposite effects on synaptic efficacy, have been experimentally observed. They are known as Short-Term Depression (STD) and Short-Term Facilitation (STF). The mathematical model of STP is based on the concept of a limited pool of synaptic resources available for transmission ($R$), such as, for example, the overall amount of synaptic vescicles at the presynaptic terminals. The amount of presynaptic resource changes in a dynamic fashion depending on the recent history of spikes. Following a presynaptic spike, (i) the fraction $u$ (release probability) of the available pool to be utilized increases due to spike-induced calcium influx to the presynaptic terminal, after which (ii) $u$ is consumed to increase the post-synaptic conductance. Between spikes, $u$ decays back to zero with time constant $\tau_f$ and $R$ recovers to 1 with time constant $\tau_d$. In summary, the dynamics of excitatory (subscript E) STP is given by: \begin{eqnarray} && \frac{du_E}{dt} &= -\frac{u_E}{\tau_f} + U_0(1-u_E^-)\delta(t-t_{\rm sp}) \\[.5mm] && \frac{dR_E}{dt} &= \frac{1-R_E}{\tau_d} - u_E^+ R_E^- \delta(t-t_{\rm sp}) \qquad (6)\\[.5mm] && \frac{dg_E(t)}{dt} &= -\frac{g_E}{\tau_E} + \bar{g}_E u_E^+ R_E^- \sum_k \delta(t-t_{\rm k}), \end{eqnarray} where $U_0$ is a constan determining the increment of $u$ produced by a spike. $u_E^-$ and $R_E^-$ denote the corresponding values just before the spike arrives, whereas $u_E^+$ refers to the moment right after the spike. $\bar{g}_E$ denotes the maximum excitatory conductane, and the calculation of $g_E(t)$ is calculated for all spiketimes $k$. Similarly, one can obtain the dynamics of inhibitory STP. The interplay between the dynamics of $u$ and $x$ determines whether the joint effect of $ux$ is dominated by depression or facilitation. In the parameter regime of $\tau_d \gg \tau_f$ and large $U_0$, an initial spike incurs a large drop in $x$ that takes a long time to recover; therefore the synapse is STD-dominated. In the regime of $\tau_d \ll \tau_f$ and small $U_0$, the synaptic efficacy is increased gradually by spikes, and consequently, the synapse is STF-dominated. This phenomenological model successfully reproduces the kinetic dynamics of depressed and facilitated synapses observed in many cortical areas. ### Exercise 2: Compute $du$, $dR$ and $dg$ As we learned in several previous tutorials, the Euler numerical integration method involves the calculation of each derivative at step $n$: \begin{eqnarray} du_E &=& -\frac{u_E[t]}{\tau_f} dt + U_0(1-u_E[t])\cdot \text{sp_or_not[t+dt]} \\ dR_E &=& \frac{1-R_E[t]}{\tau_d} dt - u_E[t+dt]R_E[t]\cdot \text{sp_or_not[t+dt]} \\ dg_E &=& -\frac{g_E[t]}{\tau_{E}} dt + \bar{g}_Eu_E[t+dt]R_E[t]\cdot \text{sp_or_not[t+dt]} \end{eqnarray} where $\text{sp_or_not}=1$ if there's a spike in the time window $dt$, and $\text{sp_or_not}=0$ otherwise. In addition, note that any spike train generated by our `Poisson_generator` is binary. Then, the values are updated: \begin{aligned} \begin{eqnarray} u_E[t+dt] = u_E[t] + du_E\\ R_E[t+dt] = R_E[t] + dR_E\\ g_E[t+dt] = g_E[t] + dg_E \end{eqnarray} \end{aligned} Similarly, one can obtain the dynamics of inhibitory conductance. ```python # Exercise 2 def dynamic_syn(g_bar, tau_syn, U0, tau_d, tau_f, pre_spike_train, dt): """ Short-term synaptic plasticity Args: g_bar : synaptic conductance strength tau_syn : synaptic time constant [ms] U0 : synaptic release probability at rest tau_d : synaptic depression time constant of x [ms] tau_f : synaptic facilitation time constantr of u [ms] pre_spike_train : total spike train (number) input from presynaptic neuron dt : time step [ms] Returns: u : usage of releasable neurotransmitter R : fraction of synaptic neurotransmitter resources available g : postsynaptic conductance """ Lt = len(pre_spike_train) # Initialize u = np.zeros(Lt) R = np.zeros(Lt) R[0] = 1. g = np.zeros(Lt) # simulation for it in range(Lt-1): ######################################################################### ## TODO for students: compute du, dx and dg, remove NotImplementedError # ######################################################################### # Note pre_spike_train[i] is binary, which is sp_or_not in the $i$th timebin # comment this out when you've finished filling this out. raise NotImplementedError("Student excercise: compute the STP dynamics") # du = ... u[it+1] = u[it] + du # dR = ... R[it+1] = R[it] + dR # dg = ... g[it+1] = g[it] + dg return u, R, g # Uncomment this line after completing the dynamic_syn function # _ = my_illus_STD(Poi_or_reg=False, rate=20., U0=0.5, tau_d=100., tau_f=50.) # Poi_or_reg=False:regular spike train ``` ```python # to_remove solution def dynamic_syn(g_bar, tau_syn, U0, tau_d, tau_f, pre_spike_train, dt): """ Short-term synaptic plasticity Args: g_bar : synaptic conductance strength tau_syn : synaptic time constant [ms] U0 : synaptic release probability at rest tau_d : synaptic depression time constant of x [ms] tau_f : synaptic facilitation time constantr of u [ms] pre_spike_train : total spike train (number) input from presynaptic neuron dt : time step [ms] Returns: u : usage of releasable neurotransmitter R : fraction of synaptic neurotransmitter resources available g : postsynaptic conductance """ Lt = len(pre_spike_train) # Initialize u = np.zeros(Lt) R = np.zeros(Lt) R[0] = 1. g = np.zeros(Lt) # simulation for it in range(Lt-1): du = - (dt/tau_f)*u[it] + U0 * (1.0-u[it]) * pre_spike_train[it+1] u[it+1] = u[it] + du dR = (dt/tau_d)*(1.0-R[it]) - u[it+1]*R[it] * pre_spike_train[it+1] R[it+1] = R[it] + dR dg = - (dt/tau_syn)*g[it] + g_bar*R[it]*u[it+1] * pre_spike_train[it+1] g[it+1] = g[it] + dg return u, R, g with plt.xkcd(): _ = my_illus_STD(Poi_or_reg=False, rate=20., U0=0.5, tau_d=100., tau_f=50.) ``` ### Parameter Exploration Below, an interactive demo that shows how Short-term synaptic depression (STD) changes for different firing rate of the presynaptic spike train and how the amplitude synaptic conductance $g$ changes with every incoming spike until it reaches its stationary state. Does it matter if the neuron fires in a Poisson manner, rather than regularly? **Note:** `Poi_or_Reg=1`: for *Posisson type* and `Poi_or_Reg=0`: for *regular* presynaptic spikes. ```python #@title STD Explorer with input rate def my_STD_diff_rate(rate, Poi_or_Reg): _ = my_illus_STD(Poi_or_reg=Poi_or_Reg, rate=rate) _ = widgets.interact(my_STD_diff_rate, rate = (10., 100.1, 5.), Poi_or_Reg = (0, 1, 1)) ``` ### Synaptic depression and presynaptic firing rate Once, I asked an experimentalist about the experimental values of the PSP amplitude produced by a connection between two neocortical excitatory neurons. She asked: "At what frequency?" I was confused, but you will understand her question now that you know that PSP amplitude depends on the spike history, and therefore on the spike rate of presynaptic neuron. Hre, we will study how the ratio of the synaptic conductance corresponding to the first and last spike change as a function of the presynaptic firing rate. For computational effciency, we assume that the presynaptic spikes are regular. This assumption means that we do not have to run multiple trials. ```python #@title STD conductance ratio with different input rate # Regular firing rate input_rate = np.arange(5., 40.1, 5.) g_1 = np.zeros(len(input_rate)) # record the the PSP at 1st spike g_2 = np.zeros(len(input_rate)) # record the the PSP at 10th spike for ii in range(len(input_rate)): g_1[ii], g_2[ii] = my_illus_STD(Poi_or_reg=False, rate=input_rate[ii], \ plot_out=False, U0=0.5, tau_d=100., tau_f=50) plt.figure(figsize=(11, 4.5)) plt.subplot(1,2,1) plt.plot(input_rate,g_1,'m-o',label = '1st Spike') plt.plot(input_rate,g_2,'c-o',label = '10th Spike') plt.xlabel('Rate [Hz]') plt.ylabel('Conductance [nS]') plt.legend() plt.subplot(1,2,2) plt.plot(input_rate,g_2/g_1,'b-o',) plt.xlabel('Rate [Hz]') plt.ylabel(r'Conductance ratio $g_{10}/g_{1}$') plt.tight_layout() ``` ### Parameter Exploration of short-term synaptic facilitation (STF) Below, we see an illustration of a short-term facilitation example. Take note of the change in the synaptic variables: `U_0`, `tau_d`, and `tau_f`. - for STD, `U0=0.5, tau_d=100., tau_f=50.` - for STP, `U0=0.2, tau_d=100., tau_f=750.` Also notice how the input rate affects the STF. ```python #@title STF Explorer with input rate def my_STD_diff_rate(rate, Poi_or_Reg): _ = my_illus_STD(Poi_or_reg=Poi_or_Reg, rate=rate, U0=0.2, tau_d=100., tau_f=750.) _ = widgets.interact(my_STD_diff_rate, rate = (4., 40.1, 2.), Poi_or_Reg = (0, 1, 1)) ``` ### Synaptic facilitation and presynaptic firing rate Here, we will study how the ratio of the synaptic conductance corresponding to the $1^{st}$ and $10^{th}$ spike changes as a function of the presynaptic rate. ```python #@title STF conductance ratio with different input rate # Regular firing rate input_rate = np.arange(2., 40.1, 2.) g_1 = np.zeros(len(input_rate)) # record the the PSP at 1st spike g_2 = np.zeros(len(input_rate)) # record the the PSP at 10th spike for ii in range(len(input_rate)): g_1[ii], g_2[ii] = my_illus_STD(Poi_or_reg=False, rate=input_rate[ii], \ plot_out=False, U0=0.2, tau_d=100., tau_f=750.) plt.figure(figsize=(11, 4.5)) plt.subplot(1,2,1) plt.plot(input_rate,g_1,'m-o',label = '1st Spike') plt.plot(input_rate,g_2,'c-o',label = '10th Spike') plt.xlabel('Rate [Hz]') plt.ylabel('Conductance [nS]') plt.legend() plt.subplot(1,2,2) plt.plot(input_rate,g_2/g_1,'b-o',) plt.xlabel('Rate [Hz]') plt.ylabel(r'Conductance ratio $g_{10}/g_{1}$') plt.tight_layout() ``` ### Think! Why does the ratio of the first and second-to-last spike conductance changes in a non-monotonic fashion for synapses with STF, even though it decreases monotonically for synapses with STD? ### Conductance-based LIF with STP Previously, we looked only at how presynaptic firing rate affects the presynaptic resource availability and thereby the synaptic conductance. It is straightforward to imagine that, while the synaptic conductances are changing, the output of the postsynaptic neuron will change as well. So, let's put the STP on synapses impinging on an LIF neuron and see what happens. ```python #@title `run_LIF_cond_STP` def run_LIF_cond_STP(pars, I_inj, pre_spike_train_ex, pre_spike_train_in): ''' conductance-based LIF dynamics Expects: pars : parameter dictionary I_inj : injected current [pA]. The injected current here can be a value or an array pre_spike_train_ex : spike train input from presynaptic excitatory neuron (binary) pre_spike_train_in : spike train input from presynaptic inhibitory neuron (binary) Returns: rec_spikes : spike times rec_v : mebrane potential gE : postsynaptic excitatory conductance gI : postsynaptic inhibitory conductance ''' # Retrieve parameters V_th, V_reset = pars['V_th'], pars['V_reset'] tau_m, g_L = pars['tau_m'], pars['g_L'] V_init, V_L = pars['V_init'], pars['E_L'] gE_bar, gI_bar = pars['gE_bar'], pars['gI_bar'] U0E, tau_dE, tau_fE = pars['U0_E'], pars['tau_d_E'], pars['tau_f_E'] U0I, tau_dI, tau_fI = pars['U0_I'], pars['tau_d_I'], pars['tau_f_I'] VE, VI = pars['VE'], pars['VI'] tau_syn_E, tau_syn_I = pars['tau_syn_E'], pars['tau_syn_I'] tref = pars['tref'] dt, range_t = pars['dt'], pars['range_t'] Lt = range_t.size nE = pre_spike_train_ex.shape[0] nI = pre_spike_train_in.shape[0] # compute conductance Excitatory synapses uE = np.zeros((nE, Lt)) RE = np.zeros((nE, Lt)) gE = np.zeros((nE, Lt)) for ie in range(nE): u, R, g = dynamic_syn(gE_bar, tau_syn_E, U0E, tau_dE, tau_fE, pre_spike_train_ex[ie, :], dt) uE[ie, :], RE[ie, :], gE[ie, :] = u, R, g gE_total = gE.sum(axis=0) # compute conductance Inhibitory synapses uI = np.zeros((nI, Lt)) RI = np.zeros((nI, Lt)) gI = np.zeros((nI, Lt)) for ii in range(nI): u, R, g = dynamic_syn(gI_bar, tau_syn_I, U0I, tau_dI, tau_fI, pre_spike_train_in[ii, :], dt) uI[ii, :], RI[ii, :], gI[ii, :] = u, R, g gI_total = gI.sum(axis=0) # Initialize v = np.zeros(Lt) v[0] = V_init I = I_inj * np.ones(Lt) #ensure I has length Lt # simulation rec_spikes = [] # recording spike times tr = 0. for it in range(Lt-1): if tr >0: v[it] = V_reset tr = tr-1 elif v[it] >= V_th: #reset voltage and record spike event rec_spikes.append(it) v[it] = V_reset tr = tref/dt #calculate the increment of the membrane potential dv = (-(v[it]-V_L) - (gE_total[it+1]/g_L)*(v[it]-VE) - \ (gI_total[it+1]/g_L)*(v[it]-VI) + I[it]/g_L) * (dt/tau_m) #update membrane potential v[it+1] = v[it] + dv rec_spikes = np.array(rec_spikes) * dt return v, rec_spikes, uE, RE, gE, RI, RI, gI ``` ### Simulation of a postsynaptic neuron with STP synapses driven by Poisson type spike trains Here we have assumed that both excitatory and inhibitory synapses show short-term depression. Change the nature of synapses and study how spike pattern variability changes. In the interactive demo, `tau_d = 500*tau_ratio (ms)` and `tau_f = 300*tau_ratio (ms)`. You should compare the output of this neuron with what you observed in the previous turorial when synapses were assumed to be static. _Note: it will take slighly longer time to run each case_ ```python #@title LIF_STP Explorer def LIF_STP(tau_ratio): pars = default_pars(T=1000) pars['gE_bar'] = 1.2*4 #[nS] pars['VE'] = 0. #[mV] pars['tau_syn_E'] = 5. #[ms] pars['gI_bar'] = 1.6*4 #[nS] pars['VI'] = -80. #[ms] pars['tau_syn_I'] = 10. #[ms] # here we assume that both Exc and Inh synapses have synaptic depression pars['U0_E'] = 0.45 pars['tau_d_E'] = 500. * tau_ratio #[ms] pars['tau_f_E'] = 300. * tau_ratio #[ms] pars['U0_I'] = 0.45 pars['tau_d_I'] = 500. * tau_ratio #[ms] pars['tau_f_I'] = 300. * tau_ratio #[ms] pre_spike_train_ex = Poisson_generator(pars, rate=15, n=80) pre_spike_train_in = Poisson_generator(pars, rate=15, n=20) # 4:1 v, rec_spikes, uE, RE, gE, uI, RI, gI \ = run_LIF_cond_STP(pars, 0, pre_spike_train_ex, pre_spike_train_in) t_plot_range = pars['range_t']>200 plt.figure(figsize=(11., 7)) plt.subplot(2,1,1) plot_volt_trace(pars, v, rec_spikes) plt.subplot(2,2,3) plt.plot(pars['range_t'][t_plot_range], gE.sum(axis=0)[t_plot_range], 'r') plt.xlabel('Time (ms)') plt.ylabel(r'$g_E$ (nS)') plt.subplot(2,2,4) plt.plot(pars['range_t'][t_plot_range], gI.sum(axis=0)[t_plot_range], 'b') plt.xlabel('Time (ms)') plt.ylabel(r'$g_I$ (nS)') plt.tight_layout() _ = widgets.interact(LIF_STP, tau_ratio = (0.2, 1.1, 0.2)) ``` ### Optional Vary the parameters of the above simulation and observe spiking pattern of the postsynaptic neuron. Will the neuron show higher irregularity if the synapses have STP? If yes, what should be the nature of STP on static and dynamic synapses, respectively? **Task**: Calculate the CV$_{\rm ISI}$ for different `tau_ratio` after simulating the LIF neuron with STP (Hint:`run_LIF_cond_STP` help you understand the irregularity). ### Functional impliations of short-term dynamics of synapses As you have seen above, if the firing rate is stationary, the synaptic conductance quickly reaches a fixed point. On the other hand, if the firing rate transiently changes, synaptic conductance will vary -- even if the change is as short as a single inter-spike-interval. Such small changes can be observed in a single neuron when input spikes are regular and periodic. If the input spikes are Poissonian then one may have to perform an average over several neurons. _Come up with other functions that short-term dynamics of synapses can be used to implement and implement them._ ## Summary Congratulations! You have just finished the Tutorial 3 (one to go!). Here, we saw how to model conductance-based synapses and also how to incorporate their short-term dynamics. We covered the: - static synapses and how excitation and inhibition affect the neuronal output - mean- or fluctuation-driven regimes - short-term dynamics of synapses (both facilitation and depression) Finally, we incorporated all the aforementioned tools to study how a change in presynaptic firing history affects the synaptic weights! Next, you will learn about another form of synaptic plasticity based on both pre- and postsynaptic spike times.
139bc83459ab5c17fda5451de556644486d71612
837,354
ipynb
Jupyter Notebook
tutorials/W3D1_RealNeurons/W3D1_Tutorial3.ipynb
liuxiaomiao123/NeuroMathAcademy
16a7969604a300bf9fbb86f8a5b26050ebd14c65
[ "CC-BY-4.0" ]
2
2020-07-03T04:39:09.000Z
2020-07-12T02:08:31.000Z
tutorials/W3D1_RealNeurons/W3D1_Tutorial3.ipynb
NinaHKivanani/course-content
3c91dd1a669cebce892486ba4f8086b1ef2e1e49
[ "CC-BY-4.0" ]
1
2020-06-22T22:57:03.000Z
2020-06-22T22:57:03.000Z
tutorials/W3D1_RealNeurons/W3D1_Tutorial3.ipynb
NinaHKivanani/course-content
3c91dd1a669cebce892486ba4f8086b1ef2e1e49
[ "CC-BY-4.0" ]
1
2020-07-15T17:53:40.000Z
2020-07-15T17:53:40.000Z
298.415538
187,528
0.917219
true
11,872
Qwen/Qwen-72B
1. YES 2. YES
0.749087
0.721743
0.540649
__label__eng_Latn
0.941271
0.094437
# Solution for compulsary exercise 2 - TKT4196 2021 ```python import numpy as np import scipy as sp from scipy.stats import multivariate_normal as mvn import matplotlib.pyplot as plt import scipy.stats import time import sympy as sym fontsizes=18 plt.rcParams.update({'font.size': fontsizes}) plt.rcParams.update({"font.family": "serif"}) plt.rcParams.update({"mathtext.fontset" : "cm"}) plt.rcParams.update({'font.serif': 'Times New Roman'}) plt.close('all') ``` Save all basic values given, awaiting transformation to u-space ```python # ============================================================================= # INPUT mu_dt = 1.12 V_dt = 0.32 std_dt = mu_dt * V_dt mu_df = 1.1 V_df= 0.2 std_df = mu_df * V_df mu_N1 = 40 V_N1 = 0.3 std_N1 = mu_N1 * V_N1 mu_N2 = 60 V_N2 = 0.2 std_N2 = mu_N2 * V_N2 mu_G1 = 400000 #N V_G1 = 0.1 std_G1 = mu_G1 * V_G1 #N mu_Q = 500000 #N V_Q = 0.35 std_Q = mu_Q * V_Q #N l1 = 5000 #mm rho_rc = 25*1e-6 #N/mm^3 A = lambda d: np.pi/4 * d**2 # Defining function for area of the pile [mm2] C = lambda d: np.pi * d # Defining function for circumference of the pile [mm] G2 = lambda h,d: A(d) * h * rho_rc # Defining function for self weight of the pile [N] k1 = 0.01 # constant in front of N_1 in c_1 [N/mm2] k2 = 0.005 # constant in front of N_2 in c_2 [N/mm2] ``` Function calculating parameters from moments as defined in Exercise 3: ```python def addparams(X): moments = X['moments'] if X['type'] == 'Normal': theta = X['moments'] if X['type'] == 'Lognormal': sigma_ln = np.sqrt(np.log(moments[1]**2/moments[0]**2+1)) mu_ln = np.log(moments[0])-0.5*sigma_ln**2 theta = [mu_ln,sigma_ln] if X['type'] == 'Gumbel': a = np.pi/np.sqrt(6)/moments[1] b = moments[0] - 0.5772/a theta = [a,b] X['theta']=theta ``` ### Transformed input We use dictionaries here to allow type to be defined and utilised ```python #TRANSFORMED INPUT G1 = {} G1['type'] = "Gumbel" G1['moments'] = [mu_G1,std_G1] addparams(G1) Q = {} Q['type'] = "Gumbel" Q['moments'] = [mu_Q,std_Q] addparams(Q) N1 = {} N1['type'] = "Lognormal" N1['moments'] = [mu_N1,std_N1] addparams(N1) N2 = {} N2['type'] = "Lognormal" N2['moments'] = [mu_N2,std_N2] addparams(N2) dt = {} dt['type'] = "Normal" dt['moments'] = [mu_dt,std_dt] addparams(dt) df = {} df['type'] = "Normal" df['moments'] = [mu_df,std_df] addparams(df) ``` Limit state function in the X-space $$ g_X(R_t,R_s,G_1,G_2,Q) = (R_t + R_s) - (G_1 + G_2 + Q) $$ substituting in the random variables: $$ g_X(\delta_t, \delta_f, N_1, N_2, G_1, Q_1) = \delta_t \, A \cdot 10 \, k_2 \, N_2 + \delta_f \, C \cdot 0.4 \left(k_1 \, l_1 \, N_1 + k_2 \, (h-l_1) \, N_2\right) - (G_1 + A \, \rho_{rc} \, h + Q)$$ where: $A$: Cross sectional area $C$: Cross sectional circumference ```python gX = lambda x,h,d: x[0]*A(d)*10*k2*x[3]+x[1]*C(d)*0.4*(k1*x[2]*l1+(h-l1)*k2*x[3])-(x[4]+A(d)*rho_rc*h+x[5]) ``` Recall that we turn our limit state function from a function of $x$, to a function of $u$ $$g=g(x)=g(x(u)) \Rightarrow g=g(u)$$ To do this mapping, we need the to know the function $x(u)$ We recall that $$x = F_{X_i}^{-1}(\Phi(u))$$ Note that that $F_{x_i}$ depends on the distribution type of variable $X_i$, whilst $\Phi$ is always the same. The compendium covers the distribution types which we represent variables with in this course, we program their $x(u)$: ```python def x2u(X): #X is here a dictionary, which describes the type and stores its parameters if X['type'] == 'Normal': # If X is normal distributed, use Eq. (3.8) (isolated x) x = lambda u: u*X['theta'][1] + X['theta'][0] # X['theta'][1] = sigma # X['theta'][0] = mu if X['type'] == 'Lognormal': # If X is lognormal distributed, use Eq. (3.26) x = lambda u: np.exp(X['theta'][1]*u+X['theta'][0]) # X['theta'][1] = sigma_L # X['theta'][0] = mu_L if X['type'] == 'Gumbel': # If X is Gumbel distributed, use Eq. (3.27) x = lambda u: X['theta'][1]-1/X['theta'][0]*np.log(-np.log(sp.stats.norm.cdf(u))) # X['theta'][1] = b # X['theta'][0] = a return x ``` We want to differentiate the limit state with respects to $u$ in our iteration. We can do this by utilizing the chain rule: $$\frac{\partial g}{\partial u} = \frac{\partial g}{ \partial x}\frac{\partial x}{\partial u}$$ $$ \frac{\partial x}{\partial u} = \frac{\partial}{\partial u} \left( F_{x}^{-1}(\Phi(u) \right) $$ ```python def dxdufun(X): if X['type'] == "Normal": dxdu = lambda u: X['theta'][1] if X['type'] == "Lognormal": dxdu = lambda u: X['theta'][1] * np.exp(X['theta'][0]+X['theta'][1] * u) if X['type'] == "Gumbel": dxdu = lambda u: - sp.stats.norm.pdf(u)/(X['theta'][0] * sp.stats.norm.cdf(u)*np.log(sp.stats.norm.cdf(u))) return dxdu ``` We create a list of the transformed functions for each variable to make the code easier to look at. ```python U = [x2u(dt), x2u(df), x2u(N1), x2u(N2), x2u(G1), x2u(Q)] ``` We can now write our LSF as a function of u: ```python gU = lambda u,h,d: gX([U[0](u[0]), U[1](u[1]), U[2](u[2]), U[3](u[3]), U[4](u[4]), U[5](u[5])],h,d) ``` Next, we define the function that gives us the next, improved $\alpha$-vector ```python def alpha_next(u,h,d): dgdu = np.zeros(6) dgdu[0] = ( A(d)*10*k2*U[3](u[3])*dxdufun(dt)(u[0]) ) dgdu[1] = ( C(d)*0.4*(k1*U[2](u[2])*l1+(h-l1)*k2*U[3](u[3]))*dxdufun(df)(u[1]) ) dgdu[2] = ( C(d)*0.4*k1*l1*U[1](u[1])*dxdufun(N1)(u[2]) ) dgdu[3] = ( (A(d)*10*k2*U[0](u[0])+k2*C(d)*0.4*(h-l1)*U[1](u[1]))*dxdufun(N2)(u[3]) ) dgdu[4] = ( -dxdufun(G1)(u[4]) ) dgdu[5] = ( -dxdufun(Q)(u[5]) ) k = np.sqrt(sum(dgdu**2)) #Normalisation factor, makes ||alpha|| = 1 alpha = -dgdu/k return alpha ``` Recall that this does not correspond exactly to eq. (3.10) as this equation requires us to insert the previous values of $\beta$ and $\mathrm{\alpha}$, in other words, a new $\mathrm{\alpha}$ is not found until we do this. This means that we need a starting value, $\mathrm{\alpha}_0$ ```python alpha0 = np.array([-1/np.sqrt(6),-1/np.sqrt(6),-1/np.sqrt(6),1/np.sqrt(6),1/np.sqrt(6),1/np.sqrt(6)]) ``` Now we need a way to solve $g_u(\beta \cdot \mathbf{\alpha}) = 0$ with respect to $\beta$. This can be done in Python by utilizing `fsolve` ```python from scipy.optimize import fsolve ``` Since `fsolve` is a numerical solver it needs a starting guess for $\beta$. The logical guess would be the previous $\beta$ we calculated. This also means we need a starting value for $\beta$, $\beta_0$: ```python beta0=4 ``` ```python def beta_next(alpha, beta_prev,h,d): equation = lambda beta: gU(beta*alpha,h,d) beta_new = fsolve(equation, x0=beta_prev) #Finds beta that gives equtaion = 0 return beta_new ``` ```python def FORM_tol(h,d,alpha_start, beta_start, tol=1e-5, itreturn=False): alphas = [alpha_start] beta1 = beta_next(alpha_start, beta0, h, d) betas = [beta_start, beta1] #Need at least two values of beta for the next line to work, first beta is therefore calculated manually while abs((betas[-1] - betas[-2])/betas[-1]) >= tol: alpha_new = alpha_next(betas[-1]*alphas[-1],h,d) #calculates new, improved alpha, using the last calculated values (by using [-1]) alphas.append(alpha_new) #adds the new, improved alpha to the list of alphas beta_new = beta_next(alphas[-1],betas[-1],h,d) #calculates new, improved beta betas.append(beta_new) #adds the new, improved beta to the list of betas if itreturn: return alphas[-1], betas[-1], len(alphas)-1 #returns the final values, and number of iterations else: return alphas[-1], betas[-1] #returns only the final values ``` ### Monte Carlo simulation We use Monte Carlo as a way to test the quality of our results ```python def MCS(h,d,n_sim): n_sim = int(n_sim) # Defining arrays with realisations for each randomly distributed variable df_mcs = np.random.normal(loc=mu_df, scale=std_df, size=n_sim) dt_mcs = np.random.normal(loc=mu_dt, scale=std_dt, size=n_sim) N1_mcs = np.random.lognormal(N1['theta'][0], N1['theta'][1], size=n_sim) N2_mcs = np.random.lognormal(N2['theta'][0], N2['theta'][1], size=n_sim) G1_mcs = np.random.gumbel(G1['theta'][1], 1/G1['theta'][0], size=n_sim) Q_mcs = np.random.gumbel(Q['theta'][1], 1/Q['theta'][0], size=n_sim) l2 = h - l1 c1 = k1 * N1_mcs c2 = k2 * N2_mcs f1 = 0.4 * c1 f2 = 0.4 * c2 Rs1 = df_mcs * C(d) * l1 * f1 Rs2 = df_mcs * C(d) * l2 * f2 Rs = Rs1 + Rs2 # Collect all random variables that contribute to shaft resistance Rt = dt_mcs * A(d) * 10 * c2 # Collect all random variables that contribute to tip resistance g = Rt + Rs - (G1_mcs + G2(h,d) + Q_mcs) # LSF for MCS fails = 0 for el in g: if el <= 0: fails+=1 pf = fails/n_sim beta = -sp.stats.norm.ppf(pf) return beta, pf ``` ## Task 1 We test our FORM algortithm by comparing the results with Monte Carlo simulation. We choose two combinations, - $h = 6000 \text{ mm}, \phi = 800 \text{ mm}$ - $h = 8000 \text{ mm}, \phi = 700 \text{ mm}$ ```python alpha1, beta1 = FORM_tol(6000,800,alpha_start=alpha0, beta_start=beta0) beta1_mcs = MCS(6000, 800, 1e6)[0] alpha2, beta2 = FORM_tol(8000,700,alpha_start=alpha0, beta_start=beta0) beta2_mcs = MCS(8000, 700, 1e6)[0] print(u'h = 6000 mm, \u03C6 = 800 mm:') print(u'\u03B2-FORM = %.5f' % beta1) print(u'\u03B2-MCS = %.5f' % beta1_mcs) print() print(u'h = 8000 mm, \u03C6 = 700 mm:') print(u'\u03B2-FORM = %.5f' % beta2) print(u'\u03B2-MCS = %.5f' % beta2_mcs) ``` h = 6000 mm, φ = 800 mm: β-FORM = 3.91698 β-MCS = 3.87188 h = 8000 mm, φ = 700 mm: β-FORM = 4.03157 β-MCS = 3.96304 ## Task 2 ```python f1 = lambda h,d: FORM_tol(h, d, alpha_start = alpha0, beta_start = beta0)[1] #Only returns the beta-value ``` ```python beta = f1(10000,600) pf = sp.stats.norm.cdf(-beta) print('Reliability index = %.5f' % beta) print('Probability of failure = %.3e' % pf) ``` Reliability index = 3.93919 Probability of failure = 4.088e-05 ## Task 3 ```python n=20 # Resolution of the plot h_dum = np.linspace(5000, 20000,n) # Dummy arrays used for plotting d_dum = np.linspace(200, 1000,n) hh, dd = np.meshgrid(h_dum,d_dum) beta_dum = np.zeros_like(hh) for i in range(n): for j in range(n): beta_dum[i,j]=f1(hh[i,j],dd[i,j]) ``` ```python from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax1 = fig.add_subplot(111, projection='3d') ax1.plot_surface(hh/1000,dd/1000, beta_dum,cmap=plt.cm.coolwarm) # Enhance the plot ax1.set_xlim(h_dum[0]/1000,h_dum[-1]/1000) ax1.set_ylim(d_dum[0]/1000,d_dum[-1]/1000) ax1.set_xlabel(r'$h$ [m]',fontsize=15) ax1.set_ylabel(r'$\phi$ [m]',fontsize=15) ax1.set_title(r'$\beta(h,\phi)$',fontsize=20) plt.xticks(fontsize=12) plt.yticks(fontsize=12) ax1.zaxis.set_tick_params(labelsize=12) plt.tight_layout() plt.show() ``` ## Task 4 ```python # Optimization problem # Cost Inputs: ================================================= C_0 = 50e3 # Fixed construction cost [NOK] c_pile = 1e-5 # Cost of pile pr mm3 [NOK/mm3] N_F = 5 # Expected fatalities given failure i_e = 0.03 # Interest rate i_s = 0.025 # Societal interest rate T_sl = 50 # Service live [years] SWTP = 32.1e6 # NOK H = 20*C_0 # Failure cost D = 2*C_0 # Demolition cost w = 1/T_sl # Obsolence rate ``` ```python n=20 # Again, resolution of plots h_dum = np.linspace(5e3, 20e3,n) d_dum = np.linspace(0.2e3, 1e3,n) hh, dd = np.meshgrid(h_dum,d_dum) PF_1 = lambda h, d: scipy.stats.norm.cdf(-f1(h,d)) # Annual probability of failure pf_1 = np.zeros_like(hh) C_1 = np.zeros_like(hh) V = lambda h,d: A(d)*h # Volume of pile given height and diameter for i in range(n): for j in range(n): pf_1[i,j] = PF_1(hh[i,j], dd[i,j]) C_1[i,j] = V(hh[i,j], dd[i,j]) * c_pile ``` ```python C_c = C_0 + C_1 # Construction cost EC_f = (C_c + H)* pf_1/i_e # Infite renewal expected failure cost EC_obs = (C_c + D)*w/i_e # Infinte renewal expected obsolence cost EC_tot = C_c + EC_f + EC_obs # Excpected total cost ``` ```python from matplotlib import ticker def plotZ(Z,Tittel,pos): ax1 = fig.add_subplot(pos,projection='3d') ax1.plot_surface(hh/1000,dd/1000,Z,cmap=plt.cm.coolwarm) ax1.set_xlim(h_dum[0]/1000,h_dum[-1]/1000) ax1.set_ylim(d_dum[0]/1000,d_dum[-1]/1000) ax1.set_xlabel('h [m]',fontsize=15) ax1.set_ylabel('d [m]',fontsize=15) ax1.set_zlabel("NOK",rotation=90,labelpad=5,fontsize=15) ax1.set_title(Tittel,fontsize=20) formatter = ticker.ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-1,1)) ax1.zaxis.set_major_formatter(formatter) ax1.xaxis.set_tick_params(labelsize=12) ax1.yaxis.set_tick_params(labelsize=12) ax1.zaxis.set_tick_params(labelsize=12) ``` ```python fig = plt.figure(figsize=(10,10)) plotZ(C_c,'Construction costs',221) plotZ(EC_obs,"Obsolescence cost",222) plotZ(EC_f,"Expected cost of failure ",223) plotZ(EC_tot,"Total expected cost",224) plt.tight_layout() fig.subplots_adjust(wspace=.1,hspace=.2) plt.show() ``` ## Task 5 ```python n=50 d_opt = 700 h_dum = np.linspace(5e3, 10e3,n+1) C_1 = lambda h: c_pile * V(h, d_opt) C_c = lambda h: C_0 + C_1(h) EC_obs = lambda h: (C_c(h) + D)*w/i_e EC_f = lambda h: (C_c(h)+H) * PF_1(h, d_opt)*1/i_e f2 = lambda h: float(C_c(h) + EC_obs(h) + EC_f(h) ) fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(111) ax.plot(h_dum/1000,np.vectorize(f2)(h_dum),'k') ax.set_xlabel(r'$h$ [m]') ax.set_xlim(h_dum[0]/1000,h_dum[-1]/1000) ax.set_ylabel(r'E[$C_{tot}]$ [NOK]') ax.grid(which='major') ax.minorticks_on() ax.grid(which='minor', alpha=0.2) fig.tight_layout() plt.show() ``` ```python res=scipy.optimize.minimize(f2,6e3,method='nelder-mead',options={'xatol': 1e-2}) h_opt=float(res.x) ECtot_opt = float(res.fun) print(res) print('\nOptimal height: %.0f mm \nOptimal expected total costs: %.0f NOK' % (h_opt, ECtot_opt)) ``` final_simplex: (array([[5801.11083984], [5801.10168457]]), array([193676.69550286, 193676.69550306])) fun: 193676.6955028569 message: 'Optimization terminated successfully.' nfev: 34 nit: 17 status: 0 success: True x: array([5801.11083984]) Optimal height: 5801 mm Optimal expected total costs: 193677 NOK ```python def hjelpelinjer(ax, x,y, c='b',label=None): ax.plot([x,x],[0,y],(c + '--')) ax.plot([0,x],[y,y],(c + '--')) ax.plot(x,y,(c + 'o'),label=label) fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(111) ax.plot(h_dum/1000,np.vectorize(f2)(h_dum),'k') hjelpelinjer(ax, h_opt/1000,f2(h_opt)) ax.set_xlabel(r'$h$ [m]') ax.set_xlim(5,7) ax.set_ylabel(r'E[$C_{tot}]$ [NOK]',fontsize=20) ax.set_ylim(ECtot_opt*0.95, ECtot_opt*1.05) ax.grid(which='major') ax.minorticks_on() ax.grid(which='minor', alpha=0.2) fig.tight_layout() plt.show() ``` ## Task 6 ```python h_dum = np.linspace(5000,20000,50) C1 = c_pile*np.pi/4*d_opt**2 K1 = C1*(i_s + w)/(SWTP*N_F) #Numerical differentation: dh = 1 dPdh = lambda h: (PF_1(h+dh, d_opt) - PF_1(h-dh, d_opt)) / (2*dh) #Finding the height, h_min, which gives -dPdh = K1 equation = lambda h: -dPdh(h) - K1 h_min = float(fsolve(equation, 12000)) fig = plt.figure(figsize=(10,10)) ax1 = fig.add_subplot(211) ax1.plot(h_dum,-np.vectorize(dPdh)(h_dum),'k',label=r'$-\frac{\mathrm{d}P_{f,1}}{\mathrm{d}h}$') ax1.plot([h_dum[0],h_dum[-1]],[K1,K1],'r--',label='$K_1$') ax1.plot(h_min,K1,'ro') ax1.set_xlabel('$h$ [mm]') ax1.set_ylabel('[mm$^{-1}$]') ax1.set_xlim(h_dum[0],h_dum[-1]) ax1.set_ylim(K1*0.1, K1*20) ax1.minorticks_on() ax1.legend() ax2 = fig.add_subplot(212) ax2.plot(h_dum, np.vectorize(f2)(h_dum),'k') ax2.axvspan(h_min,h_dum[-1],facecolor='g',alpha=0.1,label='Acceptable region') ax2.set_xlim(h_dum[0],h_dum[-1]) ax2.set_ylim(f2(h_min)*0.8,f2(h_min)*1.2) ax2.set_xlabel('$h$ [mm]') ax2.set_ylabel(r'E[$C_{tot}]$ [NOK]') hjelpelinjer(ax2, h_opt, f2(h_opt),'b') hjelpelinjer(ax2, h_min, f2(h_min),'g') ax2.minorticks_on() ax2.legend(loc='lower right') fig.tight_layout() plt.show() if h_min <= h_opt: res = 'acceptable' else: res = 'not acceptable' print('Minimal accepted height: %.0f mm' % h_min) print('The optimal design is %s.' %res) ``` ```python ```
642beb39e05911db9177be50e9aa799b2ba99e96
804,395
ipynb
Jupyter Notebook
Solutions2021/CE2/Solution-CE2.ipynb
jochenkohler/TKT4196_material
2e3be73beaafd22387ea27cd8d49f04a776e3bce
[ "MIT" ]
null
null
null
Solutions2021/CE2/Solution-CE2.ipynb
jochenkohler/TKT4196_material
2e3be73beaafd22387ea27cd8d49f04a776e3bce
[ "MIT" ]
null
null
null
Solutions2021/CE2/Solution-CE2.ipynb
jochenkohler/TKT4196_material
2e3be73beaafd22387ea27cd8d49f04a776e3bce
[ "MIT" ]
null
null
null
821.649642
487,544
0.947741
true
5,965
Qwen/Qwen-72B
1. YES 2. YES
0.885631
0.808067
0.71565
__label__eng_Latn
0.472979
0.501026
# Start-to-Finish Example: Unit Testing `GiRaFFE_NRPy`: Boundary Conditions ## Author: Patrick Nelson ## This module Validates the Boundary Conditions routines for `GiRaFFE_NRPy`. **Notebook Status:** <font color='green'><b>Validated</b></font> **Validation Notes:** This module will validate the routines in [Tutorial-GiRaFFE_NRPy-BCs](Tutorial-GiRaFFE_NRPy-BCs.ipynb). ### NRPy+ Source Code for this module: * [GiRaFFE_NRPy/GiRaFFE_NRPy_BCs.py](../../edit/in_progress/GiRaFFE_NRPy/GiRaFFE_NRPy_BCs.py) [\[**tutorial**\]](Tutorial-GiRaFFE_NRPy-BCs.ipynb) Generates the driver to compute the magnetic field from the vector potential in arbitrary spactimes. ## Introduction: This notebook validates the code that will interpolate the metric gridfunctions on cell faces. These values, along with the reconstruction of primitive variables on the faces, are necessary for the Riemann solvers to compute the fluxes through the cell faces. It is, in general, good coding practice to unit test functions individually to verify that they produce the expected and intended output. We will generate test data with arbitrarily-chosen analytic functions and calculate gridfunctions at the cell centers on a small numeric grid. We will then compute the values on the cell faces in two ways: first, with our interpolator, then second, we will shift the grid and compute them analytically. Then, we will rerun the function at a finer resolution. Finally, we will compare the results of the two runs to show third-order convergence. When this notebook is run, the significant digits of agreement between the approximate and exact values in the ghost zones will be evaluated. If the agreement falls below a thresold, the point, quantity, and level of agreement are reported [here](#compile_run). <a id='toc'></a> # Table of Contents $$\label{toc}$$ This notebook is organized as follows 1. [Step 1](#setup): Set up core functions and parameters for unit testing the BCs algorithm 1. [Step 1.a](#expressions) Write expressions for the gridfunctions we will test 1. [Step 1.b](#ccodekernels) Generate C functions to calculate the gridfunctions 1. [Step 1.c](#free_parameters) Set free parameters in the code 1. [Step 2](#mainc): `BCs_unit_test.c`: The Main C Code 1. [Step 2.a](#compile_run): Compile and run the code 1. [Step 3](#convergence): Code validation: Verify that relative error in numerical solution converges to zero at the expected order 1. [Step 4](#latex_pdf_output): Output this notebook to $\LaTeX$-formatted PDF file <a id='setup'></a> # Step 1: Set up core functions and parameters for unit testing the BCs algorithm \[Back to [top](#toc)\] $$\label{setup}$$ We'll start by appending the relevant paths to `sys.path` so that we can access sympy modules in other places. Then, we'll import NRPy+ core functionality and set up a directory in which to carry out our test. ```python import os, sys # Standard Python modules for multiplatform OS-level functions # First, we'll add the parent directory to the list of directories Python will check for modules. nrpy_dir_path = os.path.join("..") if nrpy_dir_path not in sys.path: sys.path.append(nrpy_dir_path) nrpy_dir_path = os.path.join("..","..") if nrpy_dir_path not in sys.path: sys.path.append(nrpy_dir_path) from outputC import outCfunction, lhrh # NRPy+: Core C code output module import sympy as sp # SymPy: The Python computer algebra package upon which NRPy+ depends import finite_difference as fin # NRPy+: Finite difference C code generation module import NRPy_param_funcs as par # NRPy+: Parameter interface import grid as gri # NRPy+: Functions having to do with numerical grids import indexedexp as ixp # NRPy+: Symbolic indexed expression (e.g., tensors, vectors, etc.) support import reference_metric as rfm # NRPy+: Reference metric support import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface out_dir = "Validation/" cmd.mkdir(out_dir) thismodule = "Start_to_Finish_UnitTest-GiRaFFE_NRPy-BCs" # Set the finite-differencing order to 2 par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", 2) ``` <a id='expressions'></a> ## Step 1.a: Write expressions for the gridfunctions we will test \[Back to [top](#toc)\] $$\label{expressions}$$ Now, we'll choose some functions with arbitrary forms to generate test data. We'll need to set seven gridfunctions, so expressions are being pulled from several previously written unit tests. \begin{align} A_x &= dy + ez + f \\ A_y &= mx + nz + p \\ A_z &= sx + ty + u. \\ \bar{v}^x &= ax + by + cz \\ \bar{v}^y &= bx + cy + az \\ \bar{v}^z &= cx + ay + bz \\ [\sqrt{\gamma} \Phi] &= 1 - (x+2y+z) \\ \end{align} ```python a,b,c,d,e,f,g,h,l,m,n,o,p,q,r,s,t,u = par.Cparameters("REAL",thismodule,["a","b","c","d","e","f","g","h","l","m","n","o","p","q","r","s","t","u"],1e300) M_PI = par.Cparameters("#define",thismodule,["M_PI"], "") AD = ixp.register_gridfunctions_for_single_rank1("EVOL","AD",DIM=3) ValenciavU = ixp.register_gridfunctions_for_single_rank1("AUXEVOL","ValenciavU",DIM=3) psi6Phi = gri.register_gridfunctions("EVOL","psi6Phi") par.set_parval_from_str("reference_metric::CoordSystem","Cartesian") rfm.reference_metric() x = rfm.xxCart[0] y = rfm.xxCart[1] z = rfm.xxCart[2] AD[0] = d*y + e*z + f AD[1] = m*x + n*z + o AD[2] = s*x + t*y + u ValenciavU[0] = a#*x + b*y + c*z ValenciavU[1] = b#*x + c*y + a*z ValenciavU[2] = c#*x + a*y + b*z psi6Phi = sp.sympify(1) - (x + sp.sympify(2)*y + z) ``` <a id='ccodekernels'></a> ## Step 1.b: Generate C functions to calculate the gridfunctions \[Back to [top](#toc)\] $$\label{ccodekernels}$$ Here, we will use the NRPy+ function `outCfunction()` to generate C code that will calculate our metric gridfunctions over an entire grid; note that we call the function twice, once over just the interior points, and once over all points. This will allow us to compare against exact values in the ghostzones. We will also call the function to generate the boundary conditions function we are testing. ```python metric_gfs_to_print = [\ lhrh(lhs=gri.gfaccess("evol_gfs","AD0"),rhs=AD[0]),\ lhrh(lhs=gri.gfaccess("evol_gfs","AD1"),rhs=AD[1]),\ lhrh(lhs=gri.gfaccess("evol_gfs","AD2"),rhs=AD[2]),\ lhrh(lhs=gri.gfaccess("auxevol_gfs","ValenciavU0"),rhs=ValenciavU[0]),\ lhrh(lhs=gri.gfaccess("auxevol_gfs","ValenciavU1"),rhs=ValenciavU[1]),\ lhrh(lhs=gri.gfaccess("auxevol_gfs","ValenciavU2"),rhs=ValenciavU[2]),\ lhrh(lhs=gri.gfaccess("evol_gfs","psi6Phi"),rhs=psi6Phi),\ ] desc = "Calculate test data on the interior grid for boundary conditions" name = "calculate_test_data" outCfunction( outfile = os.path.join(out_dir,name+".h"), desc=desc, name=name, params ="const paramstruct *restrict params,REAL *restrict xx[3],REAL *restrict auxevol_gfs,REAL *restrict evol_gfs", body = fin.FD_outputC("returnstring",metric_gfs_to_print,params="outCverbose=False").replace("IDX4","IDX4S"), loopopts="InteriorPoints,Read_xxs") desc = "Calculate test data at all points for comparison" name = "calculate_test_data_exact" outCfunction( outfile = os.path.join(out_dir,name+".h"), desc=desc, name=name, params ="const paramstruct *restrict params,REAL *restrict xx[3],REAL *restrict auxevol_gfs,REAL *restrict evol_gfs", body = fin.FD_outputC("returnstring",metric_gfs_to_print,params="outCverbose=False").replace("IDX4","IDX4S"), loopopts="AllPoints,Read_xxs") import GiRaFFE_NRPy.GiRaFFE_NRPy_BCs as BC BC.GiRaFFE_NRPy_BCs(os.path.join(out_dir,"boundary_conditions")) ``` Output C function calculate_test_data() to file Validation/calculate_test_data.h Output C function calculate_test_data_exact() to file Validation/calculate_test_data_exact.h <a id='free_parameters'></a> ## Step 1.c: Set free parameters in the code \[Back to [top](#toc)\] $$\label{free_parameters}$$ We also need to create the files that interact with NRPy's C parameter interface. ```python # Step 3.d.i: Generate declare_Cparameters_struct.h, set_Cparameters_default.h, and set_Cparameters[-SIMD].h # par.generate_Cparameters_Ccodes(os.path.join(out_dir)) # Step 3.d.ii: Set free_parameters.h with open(os.path.join(out_dir,"free_parameters.h"),"w") as file: file.write(""" // Override parameter defaults with values based on command line arguments and NGHOSTS. params.Nxx0 = atoi(argv[1]); params.Nxx1 = atoi(argv[2]); params.Nxx2 = atoi(argv[3]); params.Nxx_plus_2NGHOSTS0 = params.Nxx0 + 2*NGHOSTS; params.Nxx_plus_2NGHOSTS1 = params.Nxx1 + 2*NGHOSTS; params.Nxx_plus_2NGHOSTS2 = params.Nxx2 + 2*NGHOSTS; // Step 0d: Set up space and time coordinates // Step 0d.i: Declare \Delta x^i=dxx{0,1,2} and invdxx{0,1,2}, as well as xxmin[3] and xxmax[3]: const REAL xxmin[3] = {-1.0,-1.0,-1.0}; const REAL xxmax[3] = { 1.0, 1.0, 1.0}; params.dxx0 = (xxmax[0] - xxmin[0]) / ((REAL)params.Nxx_plus_2NGHOSTS0-1.0); params.dxx1 = (xxmax[1] - xxmin[1]) / ((REAL)params.Nxx_plus_2NGHOSTS1-1.0); params.dxx2 = (xxmax[2] - xxmin[2]) / ((REAL)params.Nxx_plus_2NGHOSTS2-1.0); params.invdx0 = 1.0 / params.dxx0; params.invdx1 = 1.0 / params.dxx1; params.invdx2 = 1.0 / params.dxx2; \n""") # Generates declare_Cparameters_struct.h, set_Cparameters_default.h, and set_Cparameters[-SIMD].h par.generate_Cparameters_Ccodes(os.path.join(out_dir)) ``` <a id='mainc'></a> # Step 2: `BCs_unit_test.c`: The Main C Code \[Back to [top](#toc)\] $$\label{mainc}$$ ```python %%writefile $out_dir/BCs_unit_test.c // These are common packages that we are likely to need. #include "stdio.h" #include "stdlib.h" #include "math.h" #include "string.h" // Needed for strncmp, etc. #include "stdint.h" // Needed for Windows GCC 6.x compatibility #include <time.h> // Needed to set a random seed. #define REAL double #include "declare_Cparameters_struct.h" const int NGHOSTS = 3; REAL a,b,c,d,e,f,g,h,l,m,n,o,p,q,r,s,t,u; // Standard NRPy+ memory access: #define IDX4S(g,i,j,k) \ ( (i) + Nxx_plus_2NGHOSTS0 * ( (j) + Nxx_plus_2NGHOSTS1 * ( (k) + Nxx_plus_2NGHOSTS2 * (g) ) ) ) // Standard formula to calculate significant digits of agreement: #define SDA(a,b) 1.0-log10(2.0*fabs(a-b)/(fabs(a)+fabs(b))) // Give gridfunctions their names: #define VALENCIAVU0GF 0 #define VALENCIAVU1GF 1 #define VALENCIAVU2GF 2 #define NUM_AUXEVOL_GFS 3 #define AD0GF 0 #define AD1GF 1 #define AD2GF 2 #define STILDED0GF 3 #define STILDED1GF 4 #define STILDED2GF 5 #define PSI6PHIGF 6 #define NUM_EVOL_GFS 7 #include "calculate_test_data.h" #include "calculate_test_data_exact.h" #include "boundary_conditions/GiRaFFE_boundary_conditions.h" int main(int argc, const char *argv[]) { paramstruct params; #include "set_Cparameters_default.h" // Step 0c: Set free parameters, overwriting Cparameters defaults // by hand or with command-line input, as desired. #include "free_parameters.h" #include "set_Cparameters-nopointer.h" // We'll define our grid slightly different from how we normally would. We let our outermost // ghostzones coincide with xxmin and xxmax instead of the interior of the grid. This means // that the ghostzone points will have identical positions so we can do convergence tests of them. // Step 0e: Set up cell-centered Cartesian coordinate grids REAL *xx[3]; xx[0] = (REAL *)malloc(sizeof(REAL)*Nxx_plus_2NGHOSTS0); xx[1] = (REAL *)malloc(sizeof(REAL)*Nxx_plus_2NGHOSTS1); xx[2] = (REAL *)malloc(sizeof(REAL)*Nxx_plus_2NGHOSTS2); for(int j=0;j<Nxx_plus_2NGHOSTS0;j++) xx[0][j] = xxmin[0] + ((REAL)(j))*dxx0; for(int j=0;j<Nxx_plus_2NGHOSTS1;j++) xx[1][j] = xxmin[1] + ((REAL)(j))*dxx1; for(int j=0;j<Nxx_plus_2NGHOSTS2;j++) xx[2][j] = xxmin[2] + ((REAL)(j))*dxx2; //for(int i=0;i<Nxx_plus_2NGHOSTS0;i++) printf("xx[0][%d] = %.15e\n",i,xx[0][i]); // This is the array to which we'll write the NRPy+ variables. REAL *auxevol_gfs = (REAL *)malloc(sizeof(REAL) * NUM_AUXEVOL_GFS * Nxx_plus_2NGHOSTS2 * Nxx_plus_2NGHOSTS1 * Nxx_plus_2NGHOSTS0); REAL *evol_gfs = (REAL *)malloc(sizeof(REAL) * NUM_EVOL_GFS * Nxx_plus_2NGHOSTS2 * Nxx_plus_2NGHOSTS1 * Nxx_plus_2NGHOSTS0); // And another for exact data: REAL *auxevol_exact_gfs = (REAL *)malloc(sizeof(REAL) * NUM_AUXEVOL_GFS * Nxx_plus_2NGHOSTS2 * Nxx_plus_2NGHOSTS1 * Nxx_plus_2NGHOSTS0); REAL *evol_exact_gfs = (REAL *)malloc(sizeof(REAL) * NUM_EVOL_GFS * Nxx_plus_2NGHOSTS2 * Nxx_plus_2NGHOSTS1 * Nxx_plus_2NGHOSTS0); // Generate some random coefficients. Leave the random seed on its default for consistency between trials. a = (double)(rand()%20)/5.0; f = (double)(rand()%20)/5.0; m = (double)(rand()%20)/5.0; b = (double)(rand()%10-5)/100.0; c = (double)(rand()%10-5)/100.0; d = (double)(rand()%10-5)/100.0; g = (double)(rand()%10-5)/100.0; h = (double)(rand()%10-5)/100.0; l = (double)(rand()%10-5)/100.0; n = (double)(rand()%10-5)/100.0; o = (double)(rand()%10-5)/100.0; p = (double)(rand()%10-5)/100.0; // First, calculate the test data on our grid, along with the comparison: calculate_test_data(&params,xx,auxevol_gfs,evol_gfs); calculate_test_data_exact(&params,xx,auxevol_exact_gfs,evol_exact_gfs); // Run the BCs driver on the test data to fill in the ghost zones: apply_bcs_potential(&params,evol_gfs); apply_bcs_velocity(&params,auxevol_gfs); /*char filename[100]; sprintf(filename,"out%d-numer.txt",Nxx0); FILE *out2D = fopen(filename, "w"); for(int i2=0;i2<Nxx_plus_2NGHOSTS2;i2++) for(int i1=0;i1<Nxx_plus_2NGHOSTS1;i1++) for(int i0=0;i0<Nxx_plus_2NGHOSTS0;i0++) { // We print the difference between approximate and exact numbers. fprintf(out2D,"%.16e\t %e %e %e\n", //auxevol_gfs[IDX4S(VALENCIAVU2GF,i0,i1,i2)]-auxevol_exact_gfs[IDX4S(VALENCIAVU2GF,i0,i1,i2)], evol_gfs[IDX4S(AD2GF,i0,i1,i2)]-evol_exact_gfs[IDX4S(AD2GF,i0,i1,i2)], xx[0][i0],xx[1][i1],xx[2][i2] ); } fclose(out2D);*/ int all_agree = 1; for(int i0=0;i0<Nxx_plus_2NGHOSTS0;i0++){ for(int i1=0;i1<Nxx_plus_2NGHOSTS1;i1++){ for(int i2=0;i2<Nxx_plus_2NGHOSTS2;i2++){ if(SDA(evol_gfs[IDX4S(AD0GF, i0,i1,i2)],evol_exact_gfs[IDX4S(AD0GF, i0,i1,i2)])<10.0){ printf("Quantity AD0 only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", SDA(evol_gfs[IDX4S(AD0GF, i0,i1,i2)],evol_exact_gfs[IDX4S(AD0GF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } if(SDA(evol_gfs[IDX4S(AD1GF, i0,i1,i2)],evol_exact_gfs[IDX4S(AD1GF, i0,i1,i2)])<10.0){ printf("Quantity AD1 only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", SDA(evol_gfs[IDX4S(AD1GF, i0,i1,i2)],evol_exact_gfs[IDX4S(AD1GF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } if(SDA(evol_gfs[IDX4S(AD2GF, i0,i1,i2)],evol_exact_gfs[IDX4S(AD2GF, i0,i1,i2)])<10.0){ printf("Quantity AD2 only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", SDA(evol_gfs[IDX4S(AD2GF, i0,i1,i2)],evol_exact_gfs[IDX4S(AD2GF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } if(SDA(auxevol_gfs[IDX4S(VALENCIAVU0GF, i0,i1,i2)],auxevol_exact_gfs[IDX4S(VALENCIAVU0GF, i0,i1,i2)])<10.0){ printf("Quantity ValenciavU0 only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", SDA(auxevol_gfs[IDX4S(VALENCIAVU0GF, i0,i1,i2)],auxevol_exact_gfs[IDX4S(VALENCIAVU0GF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } if(SDA(auxevol_gfs[IDX4S(VALENCIAVU1GF, i0,i1,i2)],auxevol_exact_gfs[IDX4S(VALENCIAVU1GF, i0,i1,i2)])<10.0){ printf("Quantity ValenciavU1 only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", SDA(auxevol_gfs[IDX4S(VALENCIAVU1GF, i0,i1,i2)],auxevol_exact_gfs[IDX4S(VALENCIAVU1GF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } if(SDA(auxevol_gfs[IDX4S(VALENCIAVU2GF, i0,i1,i2)],auxevol_exact_gfs[IDX4S(VALENCIAVU2GF, i0,i1,i2)])<10.0){ printf("Quantity ValenciavU2 only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", SDA(auxevol_gfs[IDX4S(VALENCIAVU2GF, i0,i1,i2)],auxevol_exact_gfs[IDX4S(VALENCIAVU2GF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } if(SDA(evol_gfs[IDX4S(PSI6PHIGF, i0,i1,i2)],evol_exact_gfs[IDX4S(PSI6PHIGF, i0,i1,i2)])<10.0){ printf("psi6Phi = %.15e,%.15e\n",evol_gfs[IDX4S(PSI6PHIGF, i0,i1,i2)],evol_exact_gfs[IDX4S(PSI6PHIGF, i0,i1,i2)]); //printf("Quantity psi6Phi only agrees with the original GiRaFFE to %.2f digits at i0,i1,i2=%d,%d,%d!\n", // SDA(evol_gfs[IDX4S(PSI6PHIGF, i0,i1,i2)],evol_exact_gfs[IDX4S(PSI6PHIGF, i0,i1,i2)]),i0,i1,i2); all_agree=0; } } } } if(all_agree) printf("All quantities agree at all points!\n"); } ``` Writing Validation//BCs_unit_test.c <a id='compile_run'></a> ## Step 2.a: Compile and run the code \[Back to [top](#toc)\] $$\label{compile_run}$$ Now that we have our file, we can compile it and run the executable. ```python import time results_file = "out.txt" print("Now compiling, should take ~2 seconds...\n") start = time.time() cmd.C_compile(os.path.join(out_dir,"BCs_unit_test.c"), os.path.join(out_dir,"BCs_unit_test")) end = time.time() print("Finished in "+str(end-start)+" seconds.\n\n") print("Now running...\n") start = time.time() cmd.Execute(os.path.join("Validation","BCs_unit_test"),"2 2 2",file_to_redirect_stdout=os.path.join(out_dir,results_file)) # To do a convergence test, we'll also need a second grid with twice the resolution. # cmd.Execute(os.path.join("Validation","BCs_unit_test"),"9 9 9",file_to_redirect_stdout=os.path.join(out_dir,results_file)) end = time.time() print("Finished in "+str(end-start)+" seconds.\n\n") ``` Now compiling, should take ~2 seconds... Compiling executable... (EXEC): Executing `gcc -Ofast -fopenmp -march=native -funroll-loops Validation/BCs_unit_test.c -o Validation/BCs_unit_test -lm`... (BENCH): Finished executing in 0.4094369411468506 seconds. Finished compilation. Finished in 0.4185829162597656 seconds. Now running... (EXEC): Executing `taskset -c 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 ./Validation/BCs_unit_test 2 2 2`... (BENCH): Finished executing in 0.20866155624389648 seconds. Finished in 0.2214832305908203 seconds. Now, we will interpret our output and verify that we produced the correct results. ```python with open(os.path.join(out_dir,results_file),"r") as file: output = file.readline() print(output) if output!="All quantities agree at all points!\n": # If this isn't the first line of this file, something went wrong! sys.exit(1) ``` All quantities agree at all points! <a id='latex_pdf_output'></a> # Step 4: Output this notebook to $\LaTeX$-formatted PDF file \[Back to [top](#toc)\] $$\label{latex_pdf_output}$$ The following code cell converts this Jupyter notebook into a proper, clickable $\LaTeX$-formatted PDF file. After the cell is successfully run, the generated PDF may be found in the root NRPy+ tutorial directory, with filename [Tutorial-Start_to_Finish-GiRaFFE_NRPy-Metric_Face_Values.pdf](Tutorial-Start_to_Finish-GiRaFFE_NRPy-Metric_Face_Values.pdf) (Note that clicking on this link may not work; you may need to open the PDF file through another means.) ```python import cmdline_helper as cmd # NRPy+: Multi-platform Python command-line interface cmd.output_Jupyter_notebook_to_LaTeXed_PDF("Tutorial-Start_to_Finish_UnitTest-GiRaFFE_NRPy-BCs",location_of_template_file=os.path.join("..")) ``` Created Tutorial-Start_to_Finish_UnitTest-GiRaFFE_NRPy-BCs.tex, and compiled LaTeX file to PDF file Tutorial-Start_to_Finish_UnitTest- GiRaFFE_NRPy-BCs.pdf
276b45a7e10fca02b586b38adb2d32cf1f9b83bd
29,181
ipynb
Jupyter Notebook
in_progress/Tutorial-Start_to_Finish_UnitTest-GiRaFFE_NRPy-BCs.ipynb
terrencepierrej/nrpytutorial
3ea18beed99cf6b7d67c89c140ca68630452001e
[ "BSD-2-Clause" ]
null
null
null
in_progress/Tutorial-Start_to_Finish_UnitTest-GiRaFFE_NRPy-BCs.ipynb
terrencepierrej/nrpytutorial
3ea18beed99cf6b7d67c89c140ca68630452001e
[ "BSD-2-Clause" ]
null
null
null
in_progress/Tutorial-Start_to_Finish_UnitTest-GiRaFFE_NRPy-BCs.ipynb
terrencepierrej/nrpytutorial
3ea18beed99cf6b7d67c89c140ca68630452001e
[ "BSD-2-Clause" ]
null
null
null
45.312112
591
0.5824
true
6,464
Qwen/Qwen-72B
1. YES 2. YES
0.7773
0.644225
0.500756
__label__eng_Latn
0.625265
0.001753
## GeostatsPy: Bootstrap for Subsurface Data Analytics in Python ### Michael Pyrcz, Associate Professor, University of Texas at Austin #### [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1) ### PGE 383 Exercise: Bootstrap for Subsurface Data Analytics in Python Here's a simple workflow, demonstration of bootstrap for subsurface modeling workflows. This should help you get started with building subsurface models that integrate uncertainty in the sample statistics. #### Bootstrap Uncertainty in the sample statistics * one source of uncertainty is the paucity of data. * do 200 or even less wells provide a precise (and accurate estimate) of the mean? standard deviation? skew? P13? Would it be useful to know the uncertainty in these statistics due to limited sampling? * what is the impact of uncertainty in the mean porosity e.g. 20%+/-2%? **Bootstrap** is a method to assess the uncertainty in a sample statistic by repeated random sampling with replacement. Assumptions * sufficient, representative sampling, identical, idependent samples Limitations 1. assumes the samples are representative 2. assumes stationarity 3. only accounts for uncertainty due to too few samples, e.g. no uncertainty due to changes away from data 4. does not account for boundary of area of interest 5. assumes the samples are independent 6. does not account for other local information sources The Bootstrap Approach (Efron, 1982) Statistical resampling procedure to calculate uncertainty in a calculated statistic from the data itself. * Does this work? Prove it to yourself, for uncertainty in the mean solution is standard error: \begin{equation} \sigma^2_\overline{x} = \frac{\sigma^2_s}{n} \end{equation} Extremely powerful - could calculate uncertainty in any statistic! e.g. P13, skew etc. * Would not be possible access general uncertainty in any statistic without bootstrap. * Advanced forms account for spatial information and sampling strategy (game theory and Journel’s spatial bootstrap (1993). Steps: 1. assemble a sample set, must be representative, reasonable to assume independence between samples 2. optional: build a cumulative distribution function (CDF) * may account for declustering weights, tail extrapolation * could use analogous data to support 3. For $\ell = 1, \ldots, L$ realizations, do the following: * For $i = \alpha, \ldots, n$ data, do the following: * Draw a random sample with replacement from the sample set or Monte Carlo simulate from the CDF (if available). 6. Calculate a realization of the sammary statistic of interest from the $n$ samples, e.g. $m^\ell$, $\sigma^2_{\ell}$. Return to 3 for another realization. 7. Compile and summarize the $L$ realizations of the statistic of interest. This is a very powerful method. Let's try it out. #### Objective In the PGE 383: Stochastic Subsurface Modeling class I want to provide hands-on experience with building subsurface modeling workflows. Python provides an excellent vehicle to accomplish this. I have coded a package called GeostatsPy with GSLIB: Geostatistical Library (Deutsch and Journel, 1998) functionality that provides basic building blocks for building subsurface modeling workflows. The objective is to remove the hurdles of subsurface modeling workflow construction by providing building blocks and sufficient examples. This is not a coding class per se, but we need the ability to 'script' workflows working with numerical methods. #### Getting Started Here's the steps to get setup in Python with the GeostatsPy package: 1. Install Anaconda 3 on your machine (https://www.anaconda.com/download/). 2. From Anaconda Navigator (within Anaconda3 group), go to the environment tab, click on base (root) green arrow and open a terminal. 3. In the terminal type: pip install geostatspy. 4. Open Jupyter and in the top block get started by copy and pasting the code block below from this Jupyter Notebook to start using the geostatspy functionality. You will need to copy the data file to your working directory. They are available here: * Tabular data - sample_data_biased.csv at https://git.io/fh0CW There are exampled below with these functions. You can go here to see a list of the available functions, https://git.io/fh4eX, other example workflows and source code. ```python import geostatspy.GSLIB as GSLIB # GSLIB utilies, visualization and wrapper import geostatspy.geostats as geostats # GSLIB methods convert to Python ``` We will also need some standard packages. These should have been installed with Anaconda 3. ```python import numpy as np # ndarrys for gridded data import pandas as pd # DataFrames for tabular data import os # set working directory, run executables import matplotlib.pyplot as plt # for plotting from scipy import stats # summary statistics import math # trig etc. import scipy.signal as signal # kernel for moving window calculation import random ``` #### Set the working directory I always like to do this so I don't lose files and to simplify subsequent read and writes (avoid including the full address each time). ```python os.chdir("c:/PGE383") # set the working directory ``` #### Loading Tabular Data Here's the command to load our comma delimited data file in to a Pandas' DataFrame object. ```python df = pd.read_csv('sample_data_biased.csv') # load our data table (wrong name!) ``` Let's drop some samples so that we increase the variations in bootstrap samples for our demonstration below. ```python df = df.sample(frac = 0.9) # extract 50 random samples to reduce the size of the dataset print('Using ' + str(len(df)) + ' number of samples') ``` Using 260 number of samples Visualizing the DataFrame would be useful and we already learned about these methods in this demo (https://git.io/fNgRW). We can preview the DataFrame by printing a slice or by utilizing the 'head' DataFrame member function (with a nice and clean format, see below). With the slice we could look at any subset of the data table and with the head command, add parameter 'n=13' to see the first 13 rows of the dataset. ```python print(df.iloc[0:5,:]) # display first 4 samples in the table as a preview df.head(n=13) # we could also use this command for a table preview ``` X Y Facies Porosity Perm 209 530 789 1 0.154871 51.991055 146 670 49 0 0.118435 11.076648 196 500 699 1 0.121085 9.033307 57 420 874 1 0.205473 954.697202 76 840 949 1 0.141307 18.635578 <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>X</th> <th>Y</th> <th>Facies</th> <th>Porosity</th> <th>Perm</th> </tr> </thead> <tbody> <tr> <th>209</th> <td>530</td> <td>789</td> <td>1</td> <td>0.154871</td> <td>51.991055</td> </tr> <tr> <th>146</th> <td>670</td> <td>49</td> <td>0</td> <td>0.118435</td> <td>11.076648</td> </tr> <tr> <th>196</th> <td>500</td> <td>699</td> <td>1</td> <td>0.121085</td> <td>9.033307</td> </tr> <tr> <th>57</th> <td>420</td> <td>874</td> <td>1</td> <td>0.205473</td> <td>954.697202</td> </tr> <tr> <th>76</th> <td>840</td> <td>949</td> <td>1</td> <td>0.141307</td> <td>18.635578</td> </tr> <tr> <th>273</th> <td>820</td> <td>919</td> <td>1</td> <td>0.104364</td> <td>2.766127</td> </tr> <tr> <th>90</th> <td>430</td> <td>809</td> <td>1</td> <td>0.181352</td> <td>212.452297</td> </tr> <tr> <th>197</th> <td>490</td> <td>419</td> <td>1</td> <td>0.098454</td> <td>2.881800</td> </tr> <tr> <th>53</th> <td>410</td> <td>884</td> <td>1</td> <td>0.218254</td> <td>1923.286133</td> </tr> <tr> <th>256</th> <td>410</td> <td>669</td> <td>1</td> <td>0.118083</td> <td>22.382541</td> </tr> <tr> <th>101</th> <td>740</td> <td>379</td> <td>1</td> <td>0.132215</td> <td>29.031980</td> </tr> <tr> <th>181</th> <td>640</td> <td>669</td> <td>0</td> <td>0.105467</td> <td>1.389270</td> </tr> <tr> <th>252</th> <td>200</td> <td>359</td> <td>0</td> <td>0.077625</td> <td>0.540486</td> </tr> </tbody> </table> </div> #### Summary Statistics for Tabular Data The table includes X and Y coordinates (meters), Facies 1 and 0 (1 is sandstone and 0 interbedded sand and mudstone), Porosity (fraction), and permeability as Perm (mDarcy). There are a lot of efficient methods to calculate summary statistics from tabular data in DataFrames. The describe command provides count, mean, minimum, maximum, and quartiles all in a nice data table. We use transpose just to flip the table so that features are on the rows and the statistics are on the columns. ```python df.describe().transpose() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>count</th> <th>mean</th> <th>std</th> <th>min</th> <th>25%</th> <th>50%</th> <th>75%</th> <th>max</th> </tr> </thead> <tbody> <tr> <th>X</th> <td>260.0</td> <td>474.769231</td> <td>255.099997</td> <td>0.000000</td> <td>300.000000</td> <td>430.000000</td> <td>670.000000</td> <td>990.000000</td> </tr> <tr> <th>Y</th> <td>260.0</td> <td>530.242308</td> <td>304.354191</td> <td>9.000000</td> <td>269.000000</td> <td>544.000000</td> <td>839.000000</td> <td>999.000000</td> </tr> <tr> <th>Facies</th> <td>260.0</td> <td>0.807692</td> <td>0.394874</td> <td>0.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> <td>1.000000</td> </tr> <tr> <th>Porosity</th> <td>260.0</td> <td>0.134177</td> <td>0.038388</td> <td>0.058548</td> <td>0.106235</td> <td>0.124065</td> <td>0.153088</td> <td>0.228790</td> </tr> <tr> <th>Perm</th> <td>260.0</td> <td>215.012711</td> <td>576.830397</td> <td>0.075819</td> <td>3.416283</td> <td>12.826386</td> <td>62.273419</td> <td>5308.842566</td> </tr> </tbody> </table> </div> #### Visualizing Tabular Data with Location Maps It is natural to set the x and y coordinate and feature ranges manually. e.g. do you want your color bar to go from 0.05887 to 0.24230 exactly? Also, let's pick a color map for display. I heard that plasma is known to be friendly to the color blind as the color and intensity vary together (hope I got that right, it was an interesting Twitter conversation started by Matt Hall from Agile if I recall correctly). We will assume a study area of 0 to 1,000m in x and y and omit any data outside this area. ```python xmin = 0.0; xmax = 1000.0 # range of x values ymin = 0.0; ymax = 1000.0 # range of y values pormin = 0.05; pormax = 0.25; # range of porosity values nx = 100; ny = 100; csize = 10.0 cmap = plt.cm.plasma # color map ``` Let's try out locmap. This is a reimplementation of GSLIB's locmap program that uses matplotlib. I hope you find it simpler than matplotlib, if you want to get more advanced and build custom plots lock at the source. If you improve it, send me the new code. Any help is appreciated. To see the parameters, just type the command name: ```python GSLIB.locmap ``` <function geostatspy.GSLIB.locmap(df, xcol, ycol, vcol, xmin, xmax, ymin, ymax, vmin, vmax, title, xlabel, ylabel, vlabel, cmap, fig_name)> Now we can populate the plotting parameters and visualize the porosity data. ```python plt.subplot(111) GSLIB.locmap_st(df,'X','Y','Porosity',xmin,xmax,ymin,ymax,pormin,pormax,'Well Data - Porosity','X(m)','Y(m)','Porosity (fraction)',cmap) plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` #### Declustering Let's calculate some declustering weights. There is a demonstration on declustering here https://git.io/fhgJl if you need more information. ```python wts, cell_sizes, dmeans = geostats.declus(df,'X','Y','Porosity',iminmax = 1, noff= 10, ncell=100,cmin=10,cmax=2000) df['Wts'] = wts # add weights to the sample data DataFrame df.head() # preview to check the sample data DataFrame def weighted_avg_and_std(values, weights): # function to calculate weighted mean and st. dev., from Eric O Lebigot, stack overflow, average = np.average(values, weights=weights) variance = np.average((values-average)**2, weights=weights) return (average, math.sqrt(variance)) sample_avg, sample_stdev = weighted_avg_and_std(df['Porosity'],df['Wts']) print('Declustered mean = ' + str(round(sample_avg,3)) + ' and declustered standard deviation = ' + str(round(sample_stdev,3))) ``` There are 260 data with: mean of 0.13417733651923078 min and max 0.058547873 and 0.228790002 standard dev 0.03831442273384987 Declustered mean = 0.121 and declustered standard deviation = 0.032 ##### A Couple of Bootstrap Realizations We will attempt boostrap by-hand and manually loop over $L$ realizations and draw $n$ samples to calculate the summary statistics of interest, mean and variance. The choice function from the random package simplifies sampling with replacement from a set of samples with weights. This command returns a ndarray with k samples with replacment from the 'Porosity' column of our DataFrame (df) accounting for the data weights in column 'Wts'. ```p samples1 = random.choices(df['Porosity'].values, weights=df['Wts'].values, cum_weights=None, k=len(df)) ``` It is instructive to look at a couple of these realizations from the original declustered data set. ```python samples1 = random.choices(df['Porosity'].values, weights=df['Wts'].values, cum_weights=None, k=len(df)) samples2 = random.choices(df['Porosity'].values, weights=df['Wts'].values, cum_weights=None, k=len(df)) print('Bootstrap means, realization 1 = ' + str(np.average(samples1)) + ' and realization 2 = ' + str(np.average(samples2))) plt.subplot(131) GSLIB.hist_st(df['Porosity'],pormin,pormax,False,False,20,df['Wts'],'Porosity (fraction)','Declustered Porosity') plt.subplot(132) GSLIB.hist_st(samples1,pormin,pormax,False,False,20,None,'Bootstrap Sample - Realizaton 1','Bootstrap Porosity 1') plt.subplot(133) GSLIB.hist_st(samples2,pormin,pormax,False,False,20,None,'Bootstrap Sample - Realizaton 2','Bootstrap Porosity 2') plt.subplots_adjust(left=0.0, bottom=0.0, right=3.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() ``` Note that the bootstrap distributions vary quite a bit from the original. #### Summarizations Over Bootstrap Realizations Let's make a loop to conduct $L$ resamples and calculate the average and standard deviation for each ($m^\ell$, $\sigma^2_{\ell}$, for $\ell = 0,\dots,L-1$). We then summarization over these $L$ realizations. I did not find any built-in, concise functions to accomplish this, i.e. with a single line of code, so we are going to do it by hand. To understand this code there are just a couple of Python concepts that you need to add to your Python arsenal. 1. declaring arrays - NumPy has a lot of great array (ndarray) functionality. There are build in functions to make a ndarray of any length (and dimension). This includes 'zeros', 'ones' and 'rand', so when we use this code: ```p mean = np.zeros(L); stdev = np.zeros(L) ``` we're making arrays of length $L$ pre-populated with zeros. 2. For Loops - when we are using the command below, we are instructing the computer to loop over all the indented code below the command for $l = 0,1,2,\ldots,L-1$ times. For each loop the $l$ variable increments, so we can use this to save each result to a different index in the arrays mean and stdev. Note, Python arrays index starting at 0 and stop at the length - 1. ```p for l in range(0, L): ``` we are running each bootstrap resampled realization, calculating the average and standard deviation and storing them in the arrays that we already declared. ```python L = 1000 # set the number of realizations mean = np.zeros(L); stdev = np.zeros(L) # declare arrays to hold the realizations of the statistics for l in range(0, L): # loop over realizations samples = random.choices(df['Porosity'].values, weights=df['Wts'].values, cum_weights=None, k=len(df)) mean[l] = np.average(samples) stdev[l] = np.std(samples) plt.subplot(121) GSLIB.hist_st(mean,0.11,0.15,False,False,50,None,'Average Porosity (fraction)','Bootstrap Uncertainty in Porosity Average') plt.subplot(122) GSLIB.hist_st(stdev,0.015,0.045,False,False,50,None,'Standard Deviation Porosity (fraction)','Bootstrap Uncertainty in Porosity Standard Deviation') plt.subplots_adjust(left=0.0, bottom=0.0, right=3.0, top=1.2, wspace=0.2, hspace=0.2) plt.show() print('Summary Statistics for Bootstrap Porosity Mean Realizations:') print(stats.describe(mean)) print('P10 ' + str(round(np.percentile(mean,10),3)) + ', P50 ' + str(round(np.percentile(mean,50),3)) + ', P90 ' + str(round(np.percentile(mean,90),3))) print('\nSummary Statistics for Bootstrap Porosity Standard Deviation Realizations:') print(stats.describe(stdev)) print('P10 ' + str(round(np.percentile(stdev,10),3)) + ', P50 ' + str(round(np.percentile(stdev,50),3)) + ', P90 ' + str(round(np.percentile(stdev,90),3))) ``` #### Comments This was a basic demonstration of bootstrap. Much more could be done, you could replace the statistics, average and standard deviation with any other statistics, for example P90, kurtosis, P13 etc. I have other demonstrations on the basics of working with DataFrames, ndarrays, univariate statistics, plotting data, declustering, data transformations, trend modeling and many other workflows available at https://github.com/GeostatsGuy/PythonNumericalDemos and https://github.com/GeostatsGuy/GeostatsPy. I hope this was helpful, *Michael* Michael Pyrcz, Ph.D., P.Eng. Associate Professor The Hildebrand Department of Petroleum and Geosystems Engineering, Bureau of Economic Geology, The Jackson School of Geosciences, The University of Texas at Austin #### More Resources Available at: [Twitter](https://twitter.com/geostatsguy) | [GitHub](https://github.com/GeostatsGuy) | [Website](http://michaelpyrcz.com) | [GoogleScholar](https://scholar.google.com/citations?user=QVZ20eQAAAAJ&hl=en&oi=ao) | [Book](https://www.amazon.com/Geostatistical-Reservoir-Modeling-Michael-Pyrcz/dp/0199731446) | [YouTube](https://www.youtube.com/channel/UCLqEr-xV-ceHdXXXrTId5ig) | [LinkedIn](https://www.linkedin.com/in/michael-pyrcz-61a648a1)
a34b9616cbe4ff887166103eb849b84d0c366686
162,982
ipynb
Jupyter Notebook
GeostatsPy_bootstrap.ipynb
AndrewAnnex/PythonNumericalDemos
11a7dec09bf08527b358fa95119811b6f73023b5
[ "MIT" ]
403
2017-10-15T02:07:38.000Z
2022-03-30T15:27:14.000Z
GeostatsPy_bootstrap.ipynb
AndrewAnnex/PythonNumericalDemos
11a7dec09bf08527b358fa95119811b6f73023b5
[ "MIT" ]
4
2019-08-21T10:35:09.000Z
2021-02-04T04:57:13.000Z
GeostatsPy_bootstrap.ipynb
AndrewAnnex/PythonNumericalDemos
11a7dec09bf08527b358fa95119811b6f73023b5
[ "MIT" ]
276
2018-06-27T11:20:30.000Z
2022-03-25T16:04:24.000Z
198.274939
82,588
0.882533
true
5,823
Qwen/Qwen-72B
1. YES 2. YES
0.672332
0.752013
0.505602
__label__eng_Latn
0.936083
0.013012
# Electronics Worked Example This notebook starts to explore a worked example of how we can use a package like `lcapy` to support the production of technical eductional materials in a way that guarantees correctness and provides opportunities to developing self-text activities. The aim is to be able to generate a set of materials where all the equations and all the calculations are rendered mechanically from a original circuit description. This would then guarantee their correctness relative to the original circuit. From an original circuit description, we can generate: - a rendered circuit diagram; - symbolic expressions derived from simple automated analysis of the circuit; - automatically generated problem solutions for calculations based around particular component values and voltages etc. ## `lcapy` As described elsewhere, `lcapy` is a linear circuit analysis package that can be used to describe, display and analyse the behaviour of a wide range of linear analogue electrical circuits. `lcapy` use a circuit description that can be used to generate an circuit diagram as the basis for a wide range of analyses. ```python %%capture try: import lcapy except: %pip install lcapy # https://github.com/dawbarton/pdf2svg #!brew install pdf2svg ``` Circuits are defined by generating a graph that connects numbered nodes with edges representing a particular component. Layout instructions describe the orientation of the edge, and labels can be added as required. In actual use, it would make sense to build up a library of comment circuit blocks that can be visually reviewed, and then the corresponding definition copied and reused, with modification as required. ```python from lcapy import Circuit cct = Circuit(""" V1 1 0; down R1 1 2; left=2, i=I_1, v=V_{R_1} R2 1 3; right=2, i=I_2, v=V_{R_2} L1 2 0_1; down, i=I_1, v=V_{L_1} L2 3 0_3; down, i=I_1, v=V_{L_2} W 0 0_3; right W 0 0_1; left""") # Render the circuit cct.draw(scale=3) # We can also save a generated circuit diagram to an image file #cct.draw(scale=3, filename='circuit_diagram.svg') ``` ## Example Production Workflow To provide an example of how we might use `lcapy` consider the following teaching example taken from *The following section is a reworking of http://www.open.edu/openlearn/science-maths-technology/introduction-electronics/content-section-3.1 .* ### Voltage Divider Voltage dividers are widely used in electronic circuits to create a reference voltage, or to reduce the amplitude of a signal. The figure below shows a voltage divider. The value of $V_{out}$ can be calculated from the values of $V_S$, $R_1$ and $R_2$. ```python import lcapy from lcapy import Circuit #We can create a schematic for the voltage divider using lcapy #This has the advantage that circuit description is also a model #The model can be analysed and used to calculate voltages and currents, for example, # across components if component values and the source voltage are defined #Figure: A voltage divider circuit sch=''' VS 1 0 ; down W 1 2 ; right, size=2 R1 2 3 ; down R2 3 4; down W 3 5; right P1 5 6; down,v=V_{out} W 4 6; right W 4 0; left ''' #Demonstrate thate we can write the descriptioon to a file fn="voltageDivider.sch" with open(fn, "w") as text_file: text_file.write(sch) # and then create the circuit model from the (persisted) file cct = Circuit(fn) ``` The schema is also retrievable from the circuit object: ```python cct.sch ``` VS 1 0 ; down W 1 2 ; right, size=2 R1 2 3 ; down R2 3 4; down W 3 5; right P1 5 6; down,v=V_{out} W 4 6; right W 4 0; left ```python #Draw the circuit diagram that corresponds to the schematic description cct.draw(style='american', draw_nodes=False, label_nodes=False) #american, british, european #Draw function is defined in https://github.com/mph-/lcapy/blob/master/lcapy/schematic.py #The styles need tweaking to suit OU convention - this requires a minor patch to lcapy #Styles defined in https://github.com/mph-/lcapy/blob/master/lcapy/schematic.py#Schematic.tikz_draw ``` In the first instance, let’s assume that is not connected to anything (for voltage dividers it is always assumed that negligible current flows through ). This means that, according to Kirchhoff’s first law, the current flowing through is the same as the current flowing through . Ohm’s law allows you to calculate the current through $R_1$. It is the potential difference across that resistor, divided by its resistance. Since the voltage is distributed over two resistors, the potential drop over $R_1$ is $V_{R_1}=V_S - V_{out}$. The equation at the end of the last paragraph is written explicitly as LateX. But we can also analyse the circuit using `lcapy` to see what the equation *should* be by deriving it automatically: The voltage across $R_2$, $V_{out}$, is given as: ```python cct.R1.v #We can't do anything about the order of the variables in the output expression, unfortunately #It would be neater if sympy sorted fractional terms last but it doesn't... ``` We can get an expression for the output voltage, $V_{out}$, or its calculated value in a couple of ways: ```{note} The circuit's node numbers can be displayed on the schematic if required: simply set `label_nodes=True` in the `draw()` statement. ``` For example, we can find the voltage across the appropriately numbered nodes by getting the open circuit voltage across nodes 3 and 4 (that is, across R2). ```python cct.Voc(3,4)['t'] ``` The output voltage can also be obtained by direct reference to the appropriate component: ```python cct.R2.v ``` We can create a reference for our voltages as symbolic elements. For example, we can get an expression for $V_{out}$: ```python #sympy is a symbolic maths package from sympy import Symbol, Eq #If we add .expr to the voltages, we can get the sympy representation of voltage and current equations # that are automatically derived from the model. vout_expr = cct.R2.v.expr vout_expr ``` We can also reference this value via a string: ```python out_component = 'R2' cct[out_component].v.expr ``` ```python cct.R2.relname ``` 'R2' And an expression for the voltage across $R_1$: ```python v_r1_expr = cct.R1.v.expr v_r1_expr ``` Working with sympy symbols, we can perform a substitution if expressions match exactly. In this case, we can swap in $V_{out}$ for the expression returned from the analysis to give us an expression in the form we want for $R_1$: ```python vout = Symbol('V_out') v_r1_expr.subs(vout_expr, vout) ``` We can now create an equation to declare the relationship between a symbol for $R_1$ and the expression that defines its value: ```python #I don't know how to get the symbols from the circuit as sympy symbols # so create them explicitly v_r1 = Symbol("V_{R_1}") # Define the equation Eq( v_r1, v_r1_expr.subs(vout_expr, vout) ) ``` ```{note} In a traditional set of teaching materials, we might work through the derivations of various formulae describing how to calculate particulalr quantities. In order to render symbols correctly, we might author our document using LaTeX. Jupyter notebooks are quite comfortable with rendering LaTeX inline, or as part of a multiline block, so let's create an example of the sort of proof we might see in a traditionally authored text. *The following expressions are hand written using LaTeX* ``` The current through $R_1$ ($I_{R_1}$) is given by $I_{R_1}=\displaystyle\frac{(V_S-V_{out})}{R_1}$ Similarly, the current through $R_2$ is given by $I_{R_2}=\displaystyle\frac{V_{out}}{R_2}$ Kirchoff’s first law tells you that $I_{R_1}=I_{R_2}=$, and therefore $\displaystyle\frac{V_{out}}{V_{R_2}}=\frac{(V_S-V_{out})}{R_1}$ Multiplying both sides by $R_1$ and by $R_2$ gives $R_1V_{out}=R_2(V_S-V_{out})$ Then multiplying out the brackets on the right-hand side gives $R_1V_{out}=R_2V_S-R_2V_{out}$ This can be rearranged to $R_1V_{out}+R_2V_{out}=R_2V_S$ giving $(R_1+R_2)V_{out}=R_2V_S$ and therefore the fundamental result is obtained: $V_{out}=\displaystyle\frac{R_2V_S}{(R_1+R_2)}$ ```{note} One thing we might note at this point is that by authoring in the proof in the same document as the circuit diagram, we reduce the "distance" between the circuit diagram and the derivation that purports to relate to it but there is still the potential for error. The distance between the image and the derivation also means that if we change the labeling on the diagram, for example, the derivation will no longer properly describe the components as labeled in the diagram. ``` From our symbolic expressions, we can render an equation for $V_{out}$ very straightforwardly: ```python #We can find this from quantities we have derived through analysis of the presented circuit Eq(vout, vout_expr) ``` Recall that the expression `vout_expr` was calculated automatically from the original circuit representation, which was also used to render the circuit diagram. The expression is guaranteed to be correct for the circuit we have defined, although it may not be presented in the order of the form we would like it to be in. As well as accessing the voltage across a component, we can also access and expression for the current flowing through a component. For example, let's get the expression for the current flowing through $R_1$ and assign it to an appropriate symbol: ```python Eq(Symbol('I_{R_1}'), cct.R1.i.expr) # The following equation is generated by the symbolic analysis... ``` ```{note} There is still distance in each of these uses of `Eq()`, where we "casually" state the equivalence of left and right hand components. Could we derive the symbol for the left hand side automatically, somehow? ``` We can also get an expression for the current through $R_2$: ```python #We get the following from the circuit analysis, as above... cct.R2.i.expr # We note that the circuit analysis returns equal expressions for I_R_1 and I_R_2 # which gives some sort of reinforcement to the idea of Kirchoff's Law... # The following equation is generated by the symbolic analysis... ``` Being able to render expressions that describe the values of particular quantities in algebraic terms means we may be able to create derivations that are "necessarily" true. But we can do more than that, and also start to insert numbers into the expressions. Consider the following exercise: #### Exercise Suppose $V_S= 24 V$ and $R_2 = 100\Omega$. You want $V_{out} = 6 V$. What value of $R_1$ do you need? #### Answer ```{note} In a traditional set of materials, we are likely to write out the steps to the solution manually (a process which is subject to error and likely to need checking for correctness as well as sense) and then manually substitute in the required values and perform the calculation (which requires more checking). ``` Rearranging the equation for $V_{out}$ gives $V_{out}(R_1+R_2)=R_2V_S$ and therefore: $(R_1+R_2)=\displaystyle\frac{R_2V_S}{V_{out}}$ which means the equation for $R_1$ is: $R_1=\displaystyle\frac{R_2V_S}{V_{out}}-R_2$ Substituting in the values given and performing the calculation gives us the required solution: $R_1=\displaystyle\frac{100\Omega \times 24V}{6V}-100\Omega = 400\Omega-100\Omega=300\Omega$ ```{note} Once again, all the above steps are manuually derived and presented using hand crafted LaTex. ``` How might we set about creating an equivalent solution, but guaranteed to be correct? We essentially want to solve for $R_1$ in the following expression (which was automatically derived by analysis of the presented circuit representation): ```python Eq(vout, vout_expr) ``` The steps we need to take are a simplification of the expression, with value substitution: ```python from sympy import sympify #This is clunky - is there a proper way of substituting values into lcapy expressions? Eq(6, sympify(str(vout_expr)).subs([('VS', 24), ('R2', 100)])) ``` Rearranging, we need to solve the following for $R_1$, generated the output expression automatically through symbolic analysis: ```python Eq(vout_expr - vout, 0) ``` `sympy` can solve such equations for us directly, so let's see how it solves things symbolically for $R_1$: ```python from sympy import solve Eq(Symbol('R1'),solve(sympify(str(vout_expr-vout)),'R1')[0]) #The following equation is generated by the symbolic analysis... ``` To solve the equation numerically, we can substitute values into the `sympy` expression as follows: ```python solve(sympify(str(vout_expr-vout)).subs([('VS',24), ('R2',100),('V_out',6)]),'R1')[0] ``` We can craft an equation to display the solution for us: ```python VALUES = [('VS', 24), ('R2', 100), ('V_out', 6)] SOLVE_FOR = 'R1' Eq(Symbol(SOLVE_FOR), solve(sympify(str(vout_expr-vout)), SOLVE_FOR)[0].subs(VALUES)) #The following result is calculated by the symbolic analysis... ``` A key point about this is that we can script in different component values and display the correct output. We can also do partial solutions which might be useful if we want to build up the steps to a solution, with partial substitution of values along the way: ```python Vs=20; Vout=5 R1=solve(sympify(str(vout_expr-vout)),'R1')[0].subs([('VS',Vs),('V_out',Vout)]) print('For V_S={Vs}V and V_out={Vout}V, we need R1={R1}.'.format(Vs=Vs,Vout=Vout,R1=R1)) ``` For V_S=20V and V_out=5V, we need R1=3*R2. Alternatively, we can create a function to solve for any single missing value. The following will calculate the relevant solution: ```python def soln(cct, out_component=None, values=None): if values is None: values={'VS':24, 'R1':'', 'R2':100, 'V_out':6} outval=[v for v in values if not values[v]] invals=[(v, values[v]) for v in values if values[v] ] if len(outval)!=1 or len(invals)!=3: return 'oops' outval = outval[0] out_component = out_component if out_component else outval vout_expr = cct[out_component].v.expr print(vout_expr) print(invals) return 'Value of {} is {}'.format(outval, solve(sympify(str(vout_expr-vout)).subs(invals), outval)[0]) ``` For example, using the default values baked into the function: ```python soln(cct, 'R2') ``` R2*VS/(R1 + R2) [('VS', 24), ('R2', 100), ('V_out', 6)] 'Value of R1 is 300' Or using values we pass in: ```python soln(cct, 'R2', {'VS':24, 'R2':'', 'R1':300, 'V_out':6}) ``` R2*VS/(R1 + R2) [('VS', 24), ('R1', 300), ('V_out', 6)] 'Value of R2 is 100' With these pieces in place, we can also consider how we might automatically generate circuit diagrams with specified component values, and then perform, or check, calculations against them. For example, the following function wraps a specific circuit definition and allows specific component values to be passed in: ```python #We can also explore a simple thing to check the value from a circuit analysis def cct1(V='24',R1='100',R2='100'): R1 = '' if R1 and float(R1) <=0 else R1 sch=''' VS 1 0 {V}; down W 1 2 ; right, size=2 R1 2 3 {R1}; down R2 3 4 {R2}; down W 3 5; right, size=2 P1 5 6; down,v=V_{{out}} W 4 6; right, size=2 W 4 0; left '''.format(V=V,R1=R1,R2=R2) cct = Circuit() cct.add(sch) cct.draw(label_nodes=False) #The output voltage, V_out is the voltage across R2 txt='The output voltage, $V_{{out}}$ across $R_2$ is {}V.'.format(cct.R2.v if R1 else V) return cct ``` We can render the circuit simply by calling the function: ```python _ = cct1() ``` It's trivial to make an interactive widget built around the previous function that will create a diagram for us with components labeled according to values specified by input sliders. ```{note} In a live Jupyter backed UI, the following example will render several interactive widgets that allow component values to be specified; once selected, the circuit will be drawn and a missing value calculated automatically. ``` ```python from ipywidgets import interact_manual cct_w = None @interact_manual def i_cct1(V='24', R1='', R2='100'): global cct_w cct_w = cct1(V=V,R1=R1,R2=R2) #We could then select R and V values and extend the function # to calculate V_out automatically ``` interactive(children=(Text(value='24', description='V'), Text(value='', description='R1'), Text(value='100', d… ```python i_cct1() ``` ```python # We could also plot V_out vs R_1 for given V_S and R_2? ``` ```python cct_w.sch ``` VS 1 0 24; down W 1 2 ; right, size=2 R1 2 3 ; down R2 3 4 100; down W 3 5; right, size=2 P1 5 6; down,v=V_{out} W 4 6; right, size=2 W 4 0; left ```python ```
a76e91cb4814c49611a11ad287a00c23b4925677
163,084
ipynb
Jupyter Notebook
src/electronics/worked-example.ipynb
OpenComputingLab/SubjectMatterNotebooks
1a7eff65528862c6b0c38eee6416d1ed814d4499
[ "MIT" ]
3
2021-12-07T07:55:49.000Z
2022-01-12T03:02:10.000Z
src/electronics/worked-example.ipynb
OpenComputingLab/SubjectMatterNotebooks
1a7eff65528862c6b0c38eee6416d1ed814d4499
[ "MIT" ]
null
null
null
src/electronics/worked-example.ipynb
OpenComputingLab/SubjectMatterNotebooks
1a7eff65528862c6b0c38eee6416d1ed814d4499
[ "MIT" ]
null
null
null
117.326619
50,691
0.870312
true
4,587
Qwen/Qwen-72B
1. YES 2. YES
0.79053
0.831143
0.657044
__label__eng_Latn
0.997686
0.364864
Interpreting Poisson distribution ================================= The matrial in this subsection is adapted from [[1]](#references). The poisson distribution can be viewed as an approximation to a binomial distribution. Recall that a binomial distribution with parameters *n* and *p* specifies the probability of having *k* successes in *n* trials when the probability of success in each trial is *p*: \begin{equation} P(X=k) = \binom{n}{k} p^k {(1-p)}^{n-k} \end{equation} The expected value of this distribution is *np*. Sometimes, *n* is extremely large and *p* is extremely small; still *np* is within a reasonable range. For example consider the particles discharged from a radioactive material in a short period of time. ``` from IPython.display import SVG SVG('particles.svg') ``` In this example, the number of particles is very large, and the probability for each individual particle to emit is very small. Still the product of these values is a mid-range number that shows how many particles on average are discharged in that certain period. Having extreme values for *n* and *p*, we can not directly use the binomial distribution. Let $\lambda = np$. We can approximate the binomial distribution as follows: \begin{align} P(X = k) &= \frac{n!}{(n-k)!k!}p^k(1-p)^{n-k} \\ &= \frac{n!}{(n-k)!k!} (\frac{\lambda}{n})^k (1-\frac{\lambda}{n})^{n-k} \\ &= \frac{n(n-1)\ldots(n-i+1)}{n^k}.\frac{\lambda^k}{k!}\frac{(1-\lambda/n)^n}{(1-\lambda/n)^k} \end{align} For large *n* and moderate $\lambda$, \begin{align} (1-\frac{\lambda}{n})^n &\simeq e^{-\lambda} \\ \frac{n(n-1)\ldots(n-i+1)}{n^k} &\simeq 1 \\ (1-\frac{\lambda}{n})^k &\simeq 1 \end{align} Hence, for large $n$ and moderate $\lambda$, \begin{equation} P(X=k) = e^{-\lambda}\frac{\lambda^k}{k!} \end{equation} Below is an excerpt from [[1]](#references): >In other words, if *n* independent trials, each of which results in a success with probability *p*, are performed, then, when *n* is large and *p* is small enough to make *np* moderate, the number of successes occurring is approximately a Poisson random variable with parameter $\lambda = np$. This value $\lambda$ (which will later be shown to equal the expected number of successes) will usually be determined empirically. Some examples of random variables that generally obey the Poisson probability law are as follows: 1. The number of misprints on a page (or a group of pages) of a book 2. The number of people in a community who survive to age 100 3. The number of wrong telephone numbers that are dialed in a day 4. The number of packages of dog biscuits sold in a particular store each day 5. The number of customers entering a post office on a given day 6. The number of vacancies occurring during a year in the federal judicial system 7. The number of $\alpha$-particles discharged in a fixed period of time from some radioactive material Assumptions about the distribution of trips =========================================== In our work, we assume that the number of trips from source **s** to destination **d** during the time period **t** follows a Poisson distribution. The meaning of this assumption in terms of the original binomial distribution is that: **There are many individuals in area _s_. The probability for each individual to take a taxi to area _d_ during period _t_ is very small. However the product of these two values (number of individuals times the probability of trip for each individual) is a moderate number.** ``` SVG('people.svg') ``` The starting core assumption about the distribution of trips from region *s* to regoin *t* during period *t* is that $\lambda_{s,d,t} = N_{s} \times p_{s,d,t}$, where $N$ is the number of individuals residing in region $s$ in period $t$, and $p_{s,d,t}$ is the probability for each of them to take a taxi for destination $d$ in this period. The simplest approach for estimating the $\lambda$ parameters is to directly obtain them from the data. In our work, we take a different approach, that is decomposing $\lambda$'s into basic constituents and then estimating the values for these constituents. The first step in decomposition is to consider the trips as a sum of independent Poisson distributions. For example, we can decompose the morning trips from area **A** to area **B** into three sets of independent trips: - *workers*: Those who live in A and work in B - *kids*: The children living in A who have to go to their schools in B - *shoppers*: Individuals living in A who go to B to receive a service ## Some of the assumptions about the *working* trips Let us now study the *worker* group a bit closer. Travels by this group follows a Poisson distribution with parameter $\lambda_w$. Based on the binomial interpretation of Poisson distribution, we have $\lambda_w = N_A \times p^w_{B}$, where $N_A$ is the number of residents of region A and $p^w_{B}$ is the probability for a resident to *have a job in regioin B and take a taxi to their job*. A distinguishing characteristic of our approach is specification of Poisson parameters by means of logical rules. Consider the following rule that specifies a rate for working trips in the morning: ``` trips(From, To, Time) ~ poisson(50) :- morning(Time), residential(From), business(To). ``` The problem with this rule is that it treats all sources and destinations equally, as long as the source is *residential* and the destination is *business*. However, $\lambda_w$ varies for different sources and destinations. Consider our previous example ($\lambda_w = N_A \times p^w_B$). In this example, $\lambda_w$ depends on: 1. the population of region A ($N_A$). 2. the probability for a resident of A to have a job in B The following rule takes these factors into account (A detailed justification will follow [later](#details)): ``` trips(From, To, Time) ~ poisson(Param) :- morning(Time), residential(From, Density), job_ratio(From, To, Ratio), Param is Density*Ratio*200. ``` However, to exploit this rule, we need to know the distribution of workers in each source area for each target area. If we do not have sufficient data about such distributions, it is simpler to assume that the jobs in source areas are distributed according to the number of jobs in target areas: ``` trips(From, To, Time) ~ poisson(Param) :- morning(Time), residential(From, Density1), business(To, Density2), Param is Density1*Density2*150. ``` ## Some of the assumptions about the *shopping* trips Similar to the *workers*, we can have a binomial interpretation for shoppers: $\lambda_s = N_A \times p^s_{B}$, where $N_A$ is the number of residents of region A and $p^s_{B}$ is the probability for a resident to *require a service in regioin B and take a taxi to B*. Again, the simplest model does not account for depency of $N_A$ and $p^s_B$ to characteristics of A and B: ``` trips(From, To, Time) ~ poisson(10) :- morning(Time), residential(From), business(To). ``` To incorporate these characteris, we use the *gravity model* (more details in another note). Based on this model, each source and destination is viewed as a charged mass and the probability of a movement is expressed in terms of weights of bodies and their distance: ``` trips(From, To, Time) ~ poisson(Param) :- morning(Time), residential(From, Density1), shopping(To, Density2), inv_distance(From, To, Inverse_Dist), Param is Density1*Density2*Inverse_Dist*80. ``` ## Peripheral factors Recall that in our interpretation of $\lambda$, the probability $p^s_{\text{dest}}$ means the probability for each individual (residing in the source area) to take a taxi to the destination area. This probability is influenced by two factors: 1. The individual has the intention to go to the destination area 2. The individual takes a taxi to reach there In previous rules, we assumed that *densities* reflect both factors. However, sometimes peripheral factors influence one (or both) of these factors. For example, we can assume that when it rains, the probability of taking a taxi increases for a shopper increases by a constant factor: ``` trips(From, To, Time) ~ poisson(Param) :- evening(Time), shopping(From, Density1), residential(To, Density2), inv_distance(From, To, Inverse_Dist), rain_factor(From, To, Time, Rain_F), Param is Density1*Density2*Inverse_Dist*Rain_F*80. rain_factor(_,_,_, 1): not(rains_at(Time)). rain_factor(From, To, Time, 1.4) :- shopping(From, _), residential(To, _), rains_at(Time). ``` Note that by adding such rules, we have other factors to learn (e.g. the impact of rain) which might complicate our learning algorithm. The meaning of densities ======================== <a id='details'></a> In previous section, instead of directly specifying the parameter for each distribution, we expressed the parameter as a product of multiple factors (e.g. *density1 $\times$ density2 $\times$ 80*). Here I will try to justify this choice. Let variable $X$ be the number of workers taking a taxi from area **A** to area **B** in the morning. We are assuming that $X$ is a Poisson random variable and its parameter can be obtained via this rule: ``` trips(From, To, Time) ~ poisson(Param) :- morning(Time), residential(From, Density1), business(To, Density2), Param is Density1*Density2*150. ``` Denoting this Poisson parameter by $\lambda$ and the densities by $d_A$ and $d_B$, this rule says that $\lambda = d_A \times d_B \times 150$. Recalling the binomial interpretation of Poisson distribution, this rule implies that: \begin{equation} N_A \times p_{A \to B} = d_A \times d_B \times 150 \end{equation} (Once again, $N_A$ is the number of individuals residing in *A*, and $p_{A \to B}$ is the probability for each of them to take a taxi to *B* for the purpose of shopping). Now we are free in our interpretation of the densities, as long as the above equality holds. For example, if we take the density of a residential area ($d_A$) equal to its population, the formula changes into: \begin{equation} p = d_B \times 150 \end{equation} So, the probability for each resident of **A** to have a job in **B** AND take a taxi to their job is reflected by two numbers: $d_B$ which is chosen by modeler, and 150, which is learned from the data. But how do we choose $d_B$? It follows that by making simplifying assumptions, we can use the number of jobs in **B** as its density. Assume that for an individual, the chance of having a job is independent from where they live. Also assume that each individual is eqully likely to have any of the jobs in the city (regardless of where they live). Denoting the population of A by $P_A$ and number of jobs in B by $J_B$, we can write the $p_{A \to B}$ as $c_1 \times P_A \times c_2 \times J_B$, where $c_1$ is the probability of having a job, and $c_2$ is $\frac{1}{\text{#all jobs}}$. However, if we are learning the base parameter (150) from the data, we do not need to include the constants $c_1$ and $c_2$, as they will be automatically reflected in the learned parameter. Following the same kind of logic, we can further simplify the model and use areas of **A** and **B** as $d_A$ and $d_B$. <a id='references'></a> ### References - [1] Ross, S. (2012). A first course in probability. Pearson.
f51297024548b6d4e045a4b55ed71a9d4a6c0a6a
83,488
ipynb
Jupyter Notebook
Hanoi/Poisson_Assumptions.ipynb
Behrouz-Babaki/notebooks
9e84263879ba17e8581b8bdee60aaf3006fa4a73
[ "Unlicense" ]
null
null
null
Hanoi/Poisson_Assumptions.ipynb
Behrouz-Babaki/notebooks
9e84263879ba17e8581b8bdee60aaf3006fa4a73
[ "Unlicense" ]
null
null
null
Hanoi/Poisson_Assumptions.ipynb
Behrouz-Babaki/notebooks
9e84263879ba17e8581b8bdee60aaf3006fa4a73
[ "Unlicense" ]
null
null
null
152.07286
864
0.653627
true
2,922
Qwen/Qwen-72B
1. YES 2. YES
0.91848
0.874077
0.802823
__label__eng_Latn
0.999103
0.703559
```python # HIDDEN # flake8: noqa t import sys import os projroot = lambda p: p if os.path.isfile(os.path.join(p, "Pipfile")) or p == '/' else projroot(os.path.dirname(p)) sys.path.append(projroot(os.getcwd())) import pandas as pd import urllib import math import numpy as np from typing import Tuple, Any from IPython.display import display, Math, Latex, display_latex, HTML ``` # Bayes formula ```python # HIDDEN display(Latex(r""" \begin{equation} P(A \mid B) = \frac{P(B \mid A) \, P(A)}{P(B)} \end{equation}""")) ``` \begin{equation} P(A \mid B) = \frac{P(B \mid A) \, P(A)}{P(B)} \end{equation} Over the years I've encountered numerous probability puzzles. These puzzles are usually against human intuitions with surprising answers. The common thread behind these puzzles are that they can all be solved using Baye's theorem in a consistent way. Below we will go through three examples in the # Example 1 Probability of a disease in the population is 1%. A diagnose is 90% accurate on a diseased person, with a 5% mis-diagnose rate on a normal person. If a randomly selected person is positively diagnosed, what's the probability of the actual disease? - Let A: has disease - Let B: positively diagnosed - $P(B \mid A)$: probability of positively diagnosed given having disease = 0.9 - $P(A)$: has disease = 0.01 - $P(B)$: positively diagnosed = 0.01 * 0.9 + 0.99 * 0.05 =0.0585 - $P(A \mid B)$: = (0.9 * 0.01) / 0.0585 = 0.154 = 15% A position diagnose result in 15% of probability of having the actual disease. This seems slow, but makes sense intuitively: because the disease is rare, a randomly chose person is more likely to be disease free and mis diagnosed. A common sense thing to do is to get a second test. Now that we can replace $P(A)$ with 0.15 instead of 0.01, reapply the Bayes theorem again will mean a second positive diagnose results in 74% of chance of having the disease. # Example 2 Monty hall. 3 closed doors, 1 with prize behind it. Contestant randomly selects 1 door. The host, knowing what's behind the doors, pick one of the remaining two doors that is empty and reveal it to the contestant. Host then ask the contestant if he/she wants to switch. Should the contestant switch? Before we reframe the question in Bayes, lets fix the parameters: say contestant picks door1, and host reveals door3. So the question becomes 1. $P(Prize=door1 \mid Open=door3)$: probability of prize behind door1 given host opens door3 2. $P(Prize=door2 \mid Open=door3)$: probability of prize behind door2 given host opens door3 Which of above two is greater? If 2 is greater, then definitely switch! Note $P(Prize=door3 \mid Open=door3)$ is not among consideration, by the question definition this is eliminated from the probability space. Next we solve for 1 and 2 1. $P(Prize=door1 \mid Open=door3)$ = $\frac{P(Open=door3 \mid Prize=door1) P(Prize=door1)}{P(Open=door3)}$ - $P(Open=door3 \mid Prize=door1)$, probability of host open door3 given prize is behind door1, = 1/2 - $P(Prize=door1)$, probability of prize is behind door1, = 1/3 - $P(Open=door3)$, probability of host open door3 in general, = 1/2 - result = (1/2 * 1/3) / 1/2 = 1/3 - This also matches intuition: contestant picked randomly 1 out of 3 and stayed with the pick, the probability of winning should remain 1/3. 2. $P(Prize=door2 \mid Open=door3)$ = $\frac{P(Open=door3 \mid Prize=door2) P(Prize=door2)}{P(Open=door3)}$ - $P(Open=door3 \mid Prize=door2)$, probability of host open door3 given prize is behind door2, = 1. In other words, the host has no choice. - $P(Prize=door2)$, probability of prize is behind door2, = 1/3 - $P(Open=door3)$, probability of host open door3 in general, = 1/2 - result = (1 * 1/3) / 1/2 = 2/3 2/3 > 1/3, switch is a good idea! Another way to think of this problem is that when the host removed an empty door, the host removed the uncertainty: 2 doors out of three by definition has 2/3 chance of containing the prize, now that the empty door is removed, the entire 2/3 probability is assigned to the only remaining closed door. Now suppose the question is modified as such: host's toddler son wondered in and accidentally knocked over door3 which is revealed to be empty, does switching door enhances the contestant's probability of winning? 1. $P(Prize=door1 \mid Open=door3)$ = $\frac{P(Open=door3 \mid Prize=door1) P(Prize=door1)}{P(Open=door3)}$ - $P(Open=door3 \mid Prize=door1)$, probability of toddler knocks door3 given prize is behind door1, = 1/2 - $P(Prize=door1)$, probability of prize is behind door1, = 1/3 - $P(Open=door3)$, probability of toddler knocks over door3 in general, = 1/2 - result = (1/2 * 1/3) / 1/2 = 1/3 2. $P(Prize=door2 \mid Open=door3)$ = $\frac{P(Open=door3 \mid Prize=door2) P(Prize=door2)}{P(Open=door3)}$ - $P(Open=door3 \mid Prize=door2)$, probability of toddler knocks door3 given prize is behind door2, = 1/2 - $P(Prize=door2)$, probability of prize is behind door2, = 1/3 - $P(Open=door3)$, probability of toddler knocks over door3 in general, = 1/2 - result = (1/2 * 1/3) / 1/2 = 1/3 1/3 = 1/3, switching makes no difference! From contestant's perspective, both scenarios appear the same. However, the actual probability of winning the prize after switching the door varies a great deal depending on the **circumstances** behind the scenario: whether the host chose the empty door with or without the knowledge of the prize location. Contemplate on this for a moment, then proceed to the next example. # Example 3 ## Version 1 We have a random sample of parents with exactly two children. We then ask one parent if at least one of the child is a daughter. If the parent says yes, what's the probability that the other child is also a daughter? If the other child is also a daughter, then both children are daughters, we denote this as P(DD). We then denote that P(D) is at least one child is daughter. So we are seeking $P(DD | D)$. $P(DD | D)$ = $\frac{P(D \mid DD) P(DD)}{P(D)}$ - $P(D \mid DD)$, probability one is daughter given both are daughters: 1 - $P(DD)$, probability both are daughters: 1/4 - $P(D)$, probability at least one daughter = 1 - probability of both sons = 1 - 1/4 = 3/4 - result = (1/2 * 1/3) / 1/2 = 1/3 The probability of the other child is a daughter is 1/3. ## Version 2 Same as version 1, except we ask if each parent if they have a daughter named Lucy. If the parent says yes, what's the probability that the other child is also a daughter? r Now we are looking for $P(DD | Lucy)$. $P(DD | Lucy)$ = $\frac{P(Lucy \mid DD) P(DD)}{P(Lucy)}$ - $P(DD)$, probability bother are daughters: 1/4 - $P(Lucy)$, probability of a girl is named Lucy, lets assume it's L (the actual value doesn't really matter). - $P(Lucy \mid DD)$, probability of at least one girl is named Lucy given there are two daughters, this is 2 * $P(Lucy)$ = 2 * L. - result = (2 \* P(Lucy) * 1/4) / P(Lucy) = (2 * L * 1/4) / L = 1/2 So the probability of other child is a daughter is 1/2. This example also illustrates the essence of bayesian reasoning: the posterior probability is affected by the input (priors), or our knowledge of the world!
c9557b16ae35b73054f75c27a2028d6623af1f85
8,750
ipynb
Jupyter Notebook
bayes.ipynb
mhzed/dsblog
f63d80fdb50c7846d052cb2393c218fc39755d4a
[ "MIT" ]
null
null
null
bayes.ipynb
mhzed/dsblog
f63d80fdb50c7846d052cb2393c218fc39755d4a
[ "MIT" ]
null
null
null
bayes.ipynb
mhzed/dsblog
f63d80fdb50c7846d052cb2393c218fc39755d4a
[ "MIT" ]
null
null
null
8,750
8,750
0.663657
true
2,263
Qwen/Qwen-72B
1. YES 2. YES
0.835484
0.923039
0.771184
__label__eng_Latn
0.99809
0.630051
<table border="0"> <tr> <td> </td> <td> </td> </tr> </table> # Double Machine Learning: Use Cases and Examples Double Machine Learning (DML) is an algorithm that applies arbitrary machine learning methods to fit the treatment and response, then uses a linear model to predict the response residuals from the treatment residuals. The EconML SDK implements the following DML classes: * DMLCateEstimator: suitable for estimating heterogeneous treatment effects. * SparseLinearDMLCateEstimator: suitable for the case when $W$ is high dimensional vector and both the first stage and second stage estimate are linear. In ths notebook, we show the performance of the DML on both synthetic data and observational data. **Notebook contents:** 1. Example usage with single continuous treatment synthetic data 2. Example usage with multiple continuous treatment synthetic data 3. Example usage with single continuous treatment observational data 4. Example usage with multiple continuous treatment, multiple outcome observational data ```python import econml ``` ```python ## Ignore warnings import warnings warnings.filterwarnings('ignore') ``` ```python # Main imports from econml.dml import DMLCateEstimator,SparseLinearDMLCateEstimator # Helper imports import numpy as np from itertools import product from sklearn.linear_model import Lasso, LassoCV, LogisticRegression, LogisticRegressionCV,LinearRegression,MultiTaskElasticNet,MultiTaskElasticNetCV from sklearn.ensemble import RandomForestRegressor,RandomForestClassifier from sklearn.preprocessing import PolynomialFeatures import matplotlib.pyplot as plt import matplotlib %matplotlib inline ``` ## 1. Example Usage with Single Continuous Treatment Synthetic Data ### 1.1. DGP We use the data generating process (DGP) from [here](https://arxiv.org/abs/1806.03467). The DGP is described by the following equations: \begin{align} T =& \langle W, \beta\rangle + \eta, & \;\eta \sim \text{Uniform}(-1, 1)\\ Y =& T\cdot \theta(X) + \langle W, \gamma\rangle + \epsilon, &\; \epsilon \sim \text{Uniform}(-1, 1)\\ W \sim& \text{Normal}(0,\, I_{n_w})\\ X \sim& \text{Uniform}(0,1)^{n_x} \end{align} where $W$ is a matrix of high-dimensional confounders and $\beta, \gamma$ have high sparsity. For this DGP, \begin{align} \theta(x) = \exp(2\cdot x_1). \end{align} ```python # Treatment effect function def exp_te(x): return np.exp(2*x[0]) ``` ```python # DGP constants np.random.seed(123) n=1000 n_w=30 support_size=5 n_x=1 # Outcome support support_Y=np.random.choice(range(n_w),size=support_size,replace=False) coefs_Y=np.random.uniform(0,1,size=support_size) epsilon_sample=lambda n: np.random.uniform(-1,1,size=n) # Treatment support support_T=support_Y coefs_T=np.random.uniform(0,1,size=support_size) eta_sample=lambda n: np.random.uniform(-1,1,size=n) # Generate controls, covariates, treatments and outcomes W=np.random.normal(0,1,size=(n,n_w)) X=np.random.uniform(0,1,size=(n,n_x)) # Heterogeneous treatment effects TE=np.array([exp_te(x_i) for x_i in X]) T=np.dot(W[:,support_T],coefs_T)+eta_sample(n) Y=TE*T+np.dot(W[:,support_Y],coefs_Y)+epsilon_sample(n) # Generate test data X_test = np.array(list(product(np.arange(0, 1, 0.01), repeat=n_x))) ``` ### 1.2. Train Estimator We train models in three different ways, and compare their performance. #### 1.2.1. Default Setting ```python est = DMLCateEstimator(model_y=RandomForestRegressor(),model_t=RandomForestRegressor()) est.fit(Y, T, X, W) te_pred = est.const_marginal_effect(X_test) ``` #### 1.2.2. Polynomial Features for Heterogeneity ```python est = DMLCateEstimator(model_y=RandomForestRegressor(),model_t=RandomForestRegressor(),featurizer=PolynomialFeatures(degree=2)) est.fit(Y, T, X, W) te_pred1=est.const_marginal_effect(X_test) ``` #### 1.2.3. Polynomial Features with regularization ```python est = DMLCateEstimator(model_y=RandomForestRegressor(),model_t=RandomForestRegressor(),model_final=LassoCV(),featurizer=PolynomialFeatures(degree=10)) est.fit(Y, T, X, W) te_pred2=est.const_marginal_effect(X_test) ``` ### 1.3. Performance Visualization ```python plt.figure(figsize=(10,6)) plt.plot(X_test,te_pred,label='DML default') plt.plot(X_test,te_pred1,label='DML polynomial degree=2') plt.plot(X_test,te_pred2,label='DML polynomial degree=10 with Lasso') expected_te=np.array([exp_te(x_i) for x_i in X_test]) plt.plot(X_test,expected_te,'b--',label='True effect') plt.ylabel('Treatment Effect') plt.xlabel('x') plt.legend() plt.show() ``` ## 2. Example Usage with Multiple Continuous Treatment Synthetic Data ### 2.1. DGP We use the data generating process (DGP) from [here](https://arxiv.org/abs/1806.03467), and modify the treatment to generate multiple treatments. The DGP is described by the following equations: \begin{align} T =& \langle W, \beta\rangle + \eta, & \;\eta \sim \text{Uniform}(-1, 1)\\ Y =& T\cdot \theta_{1}(X) + T^{2}\cdot \theta_{2}(X) + \langle W, \gamma\rangle + \epsilon, &\; \epsilon \sim \text{Uniform}(-1, 1)\\ W \sim& \text{Normal}(0,\, I_{n_w})\\ X \sim& \text{Uniform}(0,1)^{n_x} \end{align} where $W$ is a matrix of high-dimensional confounders and $\beta, \gamma$ have high sparsity. For this DGP, \begin{align} \theta_{1}(x) = \exp(2\cdot x_1)\\ \theta_{2}(x) = x_1^{2}\\ \end{align} ```python # DGP constants np.random.seed(123) n=1000 n_w=30 support_size=5 n_x=1 # Outcome support support_Y=np.random.choice(range(n_w),size=support_size,replace=False) coefs_Y=np.random.uniform(0,1,size=support_size) epsilon_sample=lambda n: np.random.uniform(-1,1,size=n) # Treatment support support_T=support_Y coefs_T=np.random.uniform(0,1,size=support_size) eta_sample=lambda n: np.random.uniform(-1,1,size=n) # Generate controls, covariates, treatments and outcomes W=np.random.normal(0,1,size=(n,n_w)) X=np.random.uniform(0,1,size=(n,n_x)) # Heterogeneous treatment effects TE1=np.array([exp_te(x_i) for x_i in X]) TE2=np.array([x_i**2 for x_i in X]).flatten() T=np.dot(W[:,support_T],coefs_T)+eta_sample(n) Y=TE1*T+TE2*T**2+np.dot(W[:,support_Y],coefs_Y)+epsilon_sample(n) # Generate test data X_test = np.array(list(product(np.arange(0, 1, 0.01), repeat=n_x))) ``` ### 2.2. Train Estimator ```python est = DMLCateEstimator(model_y=RandomForestRegressor(),model_t=RandomForestRegressor()) ``` ```python T=T.reshape(-1,1) est.fit(Y, np.concatenate((T, T**2), axis=1), X, W) ``` ```python te_pred = est.const_marginal_effect(X_test) ``` ### 2.3. Performance Visualization ```python plt.figure(figsize=(10,6)) plt.plot(X_test, te_pred[:,0], label='DML estimate1') plt.plot(X_test, te_pred[:,1], label='DML estimate2') expected_te1 = np.array([exp_te(x_i) for x_i in X_test]) expected_te2=np.array([x_i**2 for x_i in X_test]).flatten() plt.plot(X_test, expected_te1, '--', label='True effect1') plt.plot(X_test, expected_te2, '--', label='True effect2') plt.ylabel("Treatment Effect") plt.xlabel("x") plt.legend() plt.show() ``` ## 3. Example Usage with Single Continuous Treatment Observational Data We applied our technique to Dominick’s dataset, a popular historical dataset of store-level orange juice prices and sales provided by University of Chicago Booth School of Business. The dataset is comprised of a large number of covariates $W$, but researchers might only be interested in learning the elasticity of demand as a function of a few variables $x$ such as income or education. We applied the `DMLCateEstimator` to estimate orange juice price elasticity as a function of income, and our results, unveil the natural phenomenon that lower income consumers are more price-sensitive. ### 3.1. Data ```python # A few more imports import os import pandas as pd import urllib.request from sklearn.preprocessing import StandardScaler ``` ```python # Import the data file_name = "oj_large.csv" if not os.path.isfile(file_name): print("Downloading file (this might take a few seconds)...") urllib.request.urlretrieve("https://msalicedatapublic.blob.core.windows.net/datasets/OrangeJuice/oj_large.csv", file_name) oj_data = pd.read_csv(file_name) ``` ```python oj_data.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>store</th> <th>brand</th> <th>week</th> <th>logmove</th> <th>feat</th> <th>price</th> <th>AGE60</th> <th>EDUC</th> <th>ETHNIC</th> <th>INCOME</th> <th>HHLARGE</th> <th>WORKWOM</th> <th>HVAL150</th> <th>SSTRDIST</th> <th>SSTRVOL</th> <th>CPDIST5</th> <th>CPWVOL5</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2</td> <td>tropicana</td> <td>40</td> <td>9.018695</td> <td>0</td> <td>3.87</td> <td>0.232865</td> <td>0.248935</td> <td>0.11428</td> <td>10.553205</td> <td>0.103953</td> <td>0.303585</td> <td>0.463887</td> <td>2.110122</td> <td>1.142857</td> <td>1.92728</td> <td>0.376927</td> </tr> <tr> <th>1</th> <td>2</td> <td>tropicana</td> <td>46</td> <td>8.723231</td> <td>0</td> <td>3.87</td> <td>0.232865</td> <td>0.248935</td> <td>0.11428</td> <td>10.553205</td> <td>0.103953</td> <td>0.303585</td> <td>0.463887</td> <td>2.110122</td> <td>1.142857</td> <td>1.92728</td> <td>0.376927</td> </tr> <tr> <th>2</th> <td>2</td> <td>tropicana</td> <td>47</td> <td>8.253228</td> <td>0</td> <td>3.87</td> <td>0.232865</td> <td>0.248935</td> <td>0.11428</td> <td>10.553205</td> <td>0.103953</td> <td>0.303585</td> <td>0.463887</td> <td>2.110122</td> <td>1.142857</td> <td>1.92728</td> <td>0.376927</td> </tr> <tr> <th>3</th> <td>2</td> <td>tropicana</td> <td>48</td> <td>8.987197</td> <td>0</td> <td>3.87</td> <td>0.232865</td> <td>0.248935</td> <td>0.11428</td> <td>10.553205</td> <td>0.103953</td> <td>0.303585</td> <td>0.463887</td> <td>2.110122</td> <td>1.142857</td> <td>1.92728</td> <td>0.376927</td> </tr> <tr> <th>4</th> <td>2</td> <td>tropicana</td> <td>50</td> <td>9.093357</td> <td>0</td> <td>3.87</td> <td>0.232865</td> <td>0.248935</td> <td>0.11428</td> <td>10.553205</td> <td>0.103953</td> <td>0.303585</td> <td>0.463887</td> <td>2.110122</td> <td>1.142857</td> <td>1.92728</td> <td>0.376927</td> </tr> </tbody> </table> </div> ```python # Prepare data Y = oj_data['logmove'].values T = np.log(oj_data["price"]).values scaler = StandardScaler() W1 = scaler.fit_transform(oj_data[[c for c in oj_data.columns if c not in ['price', 'logmove', 'brand', 'week', 'store','INCOME']]].values) W2 = pd.get_dummies(oj_data[['brand']]).values W = np.concatenate([W1, W2], axis=1) X=scaler.fit_transform(oj_data[['INCOME']].values) ``` ```python ## Generate test data min_income = -1 max_income = 1 delta = (1 - (-1)) / 100 X_test = np.arange(min_income, max_income + delta - 0.001, delta).reshape(-1,1) ``` ### 3.2. Train Estimator ```python est = DMLCateEstimator(model_y=RandomForestRegressor(),model_t=RandomForestRegressor()) est.fit(Y, T, X, W) te_pred=est.const_marginal_effect(X_test) ``` ### 3.3. Performance Visualization ```python # Plot Oranje Juice elasticity as a function of income plt.figure(figsize=(10,6)) plt.plot(X_test, te_pred, label="OJ Elasticity") plt.xlabel(r'Scale(Income)') plt.ylabel('Orange Juice Elasticity') plt.legend() plt.title("Orange Juice Elasticity vs Income") plt.show() ``` ### 3.4. Bootstrap Confidence Intervals ```python from econml.bootstrap import BootstrapEstimator boot_est=BootstrapEstimator(DMLCateEstimator(model_y=RandomForestRegressor(), model_t=RandomForestRegressor()),n_bootstrap_samples=20) boot_est.fit(Y, T, X, W) te_pred_interval = boot_est.const_marginal_effect_interval(X_test, lower=1, upper=99) ``` ```python # Plot Oranje Juice elasticity as a function of income plt.figure(figsize=(10,6)) plt.plot(X_test.flatten(), te_pred, label="OJ Elasticity") plt.fill_between(X_test.flatten(), te_pred_interval[0], te_pred_interval[1], alpha=.5, label="1-99% CI") plt.xlabel(r'Scale(Income)') plt.ylabel('Orange Juice Elasticity') plt.title("Orange Juice Elasticity vs Income") plt.legend() plt.show() ``` ## 4. Example Usage with Multiple Continuous Treatment, Multiple Outcome Observational Data We use the same data, but in this case, we want to fit the demand of multiple brand as a function of the price of each one of them, i.e. fit the matrix of cross price elasticities. It can be done, by simply setting as $Y$ to be the vector of demands and $T$ to be the vector of prices. Then we can obtain the matrix of cross price elasticities. \begin{align} Y=[Logmove_{tropicana},Logmove_{minute.maid},Logmove_{dominicks}] \\ T=[Logprice_{tropicana},Logprice_{minute.maid},Logprice_{dominicks}] \\ \end{align} ### 4.1. Data ```python # Import the data oj_data = pd.read_csv(file_name) ``` ```python # Prepare data oj_data['price']=np.log(oj_data["price"]) # Transform dataset. # For each store in each week, get a vector of logmove and a vector of logprice for each brand. # Other features are store specific, will be the same for all brands. groupbylist=["store","week","AGE60","EDUC","ETHNIC","INCOME","HHLARGE","WORKWOM","HVAL150", "SSTRDIST","SSTRVOL","CPDIST5","CPWVOL5"] oj_data1=pd.pivot_table(oj_data,index=groupbylist,columns=oj_data.groupby(groupbylist).cumcount(), values=['logmove','price'],aggfunc='sum').reset_index() oj_data1.columns=oj_data1.columns.map('{0[0]}{0[1]}'.format) oj_data1=oj_data1.rename(index=str,columns={"logmove0": "logmove_T", "logmove1": "logmove_M", "logmove2":"logmove_D","price0":"price_T","price1":"price_M","price2":"price_D"}) # Define Y,T,X,W Y = oj_data1[['logmove_T',"logmove_M","logmove_D"]].values T=oj_data1[['price_T',"price_M","price_D"]].values scaler = StandardScaler() W=scaler.fit_transform(oj_data1[[c for c in groupbylist if c not in ['week', 'store','INCOME']]].values) X=scaler.fit_transform(oj_data1[['INCOME']].values) ``` ```python ## Generate test data min_income = -1 max_income = 1 delta = (1 - (-1)) / 100 X_test = np.arange(min_income, max_income + delta - 0.001, delta).reshape(-1,1) ``` ### 4.2. Train Estimator ```python est = DMLCateEstimator(model_y=MultiTaskElasticNetCV(cv=3),model_t=MultiTaskElasticNetCV(cv=3)) est.fit(Y, T, X, W) te_pred=est.const_marginal_effect(X_test) ``` ### 4.3. Performance Visualization ```python # Plot Oranje Juice elasticity as a function of income plt.figure(figsize=(18,10)) dic={0:"Tropicana",1:"Minute.maid",2:"Dominicks"} for i in range(3): for j in range(3): plt.subplot(3,3, 3*i+j+1) plt.plot(X_test, te_pred[:,i,j],color="C{}".format(str(3*i+j)),label="OJ Elasticity {} to {}".format(dic[j],dic[i])) plt.xlabel(r'Scale(Income)') plt.ylabel('Orange Juice Elasticity') plt.legend() plt.suptitle("Orange Juice Elasticity vs Income",fontsize=16) plt.show() ``` **Findings**: Look at the diagonal of the matrix, the TE of OJ prices are always negative to the sales across all the brand, but people with higher income are less price-sensitive. By contrast, for the non-diagonal of the matrix, the TE of prices for other brands are always positive to the sales for that brand, the TE is affected by income in different ways for different competitors. In addition, compare to previous plot, the negative TE of OJ prices for each brand are all larger than the TE considering all brand together, which means we would have underestimated the effect of price changes on demand. ### 4.4. Bootstrap Confidence Intervals ```python from econml.bootstrap import BootstrapEstimator boot_est=BootstrapEstimator(DMLCateEstimator(model_y=MultiTaskElasticNetCV(cv=3),model_t=MultiTaskElasticNetCV(cv=3)) ,n_bootstrap_samples=20) boot_est.fit(Y,T,X,W) te_pred_interval = boot_est.const_marginal_effect_interval(X_test, lower=1, upper=99) ``` ```python # Plot Oranje Juice elasticity as a function of income plt.figure(figsize=(18,10)) dic={0:"Tropicana",1:"Minute.maid",2:"Dominicks"} for i in range(3): for j in range(3): plt.subplot(3,3, 3*i+j+1) plt.plot(X_test, te_pred[:,i,j],color="C{}".format(str(3*i+j)),label="OJ Elasticity {} to {}".format(dic[j],dic[i])) plt.fill_between(X_test.flatten(), te_pred_interval[0][:, i, j],te_pred_interval[1][:, i,j], color="C{}".format(str(3*i+j)),alpha=.5, label="1-99% CI") plt.xlabel(r'Scale(Income)') plt.ylabel('Orange Juice Elasticity') plt.legend() plt.suptitle("Orange Juice Elasticity vs Income",fontsize=16) plt.show() ``` **Note**: For expository purpose, we only run 20 samples here to get the Confidence Interval. More samples are needed for validity of the bootstrap. ```python ```
b02cac233a65124c3b3035889f8b75a54af3ecec
443,145
ipynb
Jupyter Notebook
notebooks/Double Machine Learning Examples.ipynb
bquistorff/EconML
73a21bfe3470e7f0d1702a6db71efd0892cfee9d
[ "MIT" ]
2
2019-05-03T13:11:05.000Z
2021-11-09T20:05:53.000Z
notebooks/Double Machine Learning Examples.ipynb
bquistorff/EconML
73a21bfe3470e7f0d1702a6db71efd0892cfee9d
[ "MIT" ]
null
null
null
notebooks/Double Machine Learning Examples.ipynb
bquistorff/EconML
73a21bfe3470e7f0d1702a6db71efd0892cfee9d
[ "MIT" ]
null
null
null
447.621212
144,264
0.936488
true
5,335
Qwen/Qwen-72B
1. YES 2. YES
0.803174
0.731059
0.587167
__label__eng_Latn
0.576525
0.202516
# Integrating the moment equations - Protein (c) 2017 Manuel Razo. This work is licensed under a [Creative Commons Attribution License CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/). All code contained herein is licensed under an [MIT license](https://opensource.org/licenses/MIT) --- ```python import cloudpickle # Our numerical workhorses import numpy as np import scipy as sp import pandas as pd # Import matplotlib stuff for plotting import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib as mpl # Seaborn, useful for graphics import seaborn as sns # Import the utils for this project import chann_cap_utils as chann_cap # Set PBoC plotting style chann_cap.set_plotting_style() # Magic function to make matplotlib inline; other style specs must come AFTER %matplotlib inline # This enables SVG graphics inline (only use with static plots (non-Bokeh)) %config InlineBackend.figure_format = 'svg' tmpdir = '../../tmp/' figdir = '../../fig/moment_dynamics_numeric/' ``` ### $\LaTeX$ macros $\newcommand{kpon}{k^{(p)}_{\text{on}}}$ $\newcommand{kpoff}{k^{(p)}_{\text{off}}}$ $\newcommand{kron}{k^{(r)}_{\text{on}}}$ $\newcommand{kroff}{k^{(r)}_{\text{off}}}$ $\newcommand{rm}{r _m}$ $\newcommand{gm}{\gamma _m}$ $\newcommand{mm}{\left\langle m \right\rangle}$ $\newcommand{ee}[1]{\left\langle #1 \right\rangle}$ $\newcommand{bb}[1]{\mathbf{#1}}$ ## Numerically integrating the moment equations. In this notebook we will numerically integrate the differential equations for both, the mRNA and protein distribution moments for the two- and three-state promoter. Up to this stage we wrote the chemical master equation in matrix notation and did some tricks when it came to compute the $n^{\text{th}}$ moment. Now we will use the equations we obtained for the time derivative of the mRNA distribution moments and try to solve them. ### Defining the moment equations. We will define a single function that caputes all moments that lead to computing the protein third moment $\ee{\bb{p}^3}$. That is the first three moments of the mRNA distribution, the cross correlation terms between protein and mRNA and the three moments of the protein distribution. To have it as a reference let's write down all equations. ### mRNA moments \begin{align} % zeroth moment {d \ee{\bb{m}^0} \over dt} &= \mathbf{K}_m \left\langle \mathbf{m}^0 \right\rangle.\\ % first moment {d \ee{\bb{m}^1}\over dt} &= \left( \mathbf{K}_m - \mathbf{\Gamma}_m \right)\ee{\bb{m}^1} + \mathbf{R}_m \left\langle \mathbf{m}^0 \right\rangle.\\ % second moment {d\ee{\bb{m}^2} \over dt} &= \left( \mathbf{K}_m - 2 \mathbf{\Gamma}_m \right) \left\langle \mathbf{m}^2 \right\rangle + \left( 2 \mathbf{R}_m + \mathbf{\Gamma}_m \right) \left\langle \mathbf{m}^1 \right\rangle + \mathbf{R}_m \left\langle \mathbf{m}^0 \right\rangle\\ % third moment {d\ee{\bb{m}^3} \over dt} &= \left( \mathbf{K}_m - 3 \mathbf{\Gamma}_m \right) \left\langle \mathbf{m}^3 \right\rangle + \left( 3 \mathbf{R}_m + 3 \mathbf{\Gamma}_m \right) \left\langle \mathbf{m}^2 \right\rangle + \left( 3 \mathbf{R}_m - \mathbf{\Gamma}_m \right) \left\langle \mathbf{m}^1 \right\rangle + \mathbf{R}_m \left\langle \mathbf{m}^0 \right\rangle \end{align} ### Protein moments (and cross correlations) \begin{align} % first moment {d \ee{\bb{p}^1}\over dt} &= \left( \mathbf{K} - \mathbf{\Gamma}_p \right) \ee{\bb{p}^1} + \mathbf{R}_p \left\langle \mathbf{m} \right\rangle.\\ % <mp> {d \ee{\bb{mp}}\over dt} &= \left( \mathbf{K} - \mathbf{\Gamma}_m - \mathbf{\Gamma}_p \right) \left\langle \mathbf{mp} \right\rangle + \mathbf{R}_m \left\langle \mathbf{p} \right\rangle + \mathbf{R}_p \left\langle \mathbf{m}^2 \right\rangle \\ % second moment {d \ee{\bb{p}^2}\over dt} &= \left( \mathbf{K} - 2 \mathbf{\Gamma}_p \right) \left\langle \mathbf{p}^2 \right\rangle + \mathbf{\Gamma}_p \left\langle \mathbf{p} \right\rangle + \mathbf{R}_p \mm + 2 \mathbf{R}_p \left\langle \mathbf{mp} \right\rangle \\ % <m^2p> {d \ee{\bb{m}^2\bb{p}}\over dt} &= \left( \bb{K} - 2 \bb{\Gamma}_m - \bb{\Gamma}_p \right) \ee{\bb{m}^2\bb{p}} + \bb{R}_m \ee{\bb{p}} + \left( \bb{R}_m + \bb{\Gamma}_m \right) \ee{\bb{mp}} + \bb{R}_p \ee{\bb{m}^3}.\\ % <mp^2> {d \ee{\bb{m}\bb{p}^2}\over dt} &= \left( \bb{K} - \bb{\Gamma}_m - 2 \bb{\Gamma}_p \right) \ee{\bb{mp}^2} + \bb{R}_m \ee{\bb{p}^2} + 2 \bb{R}_p \ee{\bb{m}^2\bb{p}} + \bb{R}_p \ee{\bb{m}^2} + \bb{\Gamma}_p \ee{\bb{mp}}.\\ % third moment {d \ee{\bb{p}^3}\over dt} &= \left( \bb{K} - 3 \bb{\Gamma}_p \right) \ee{\bb{p}^3} + 3 \bb{\Gamma}_p \ee{\bb{p}^2} - \bb{\Gamma}_p \ee{\bb{p}} + 3 \bb{R}_p \ee{\bb{mp}^2} + 3 \bb{R}_p \ee{\bb{mp}} + \bb{R}_p \ee{\bb{m}}. \end{align} Let's now implemenet these equations into the function ```python def dpdt(mp, t, Kmat, Rm, Gm, Rp, Gp): ''' function to integrate all mRNA and protein moment dynamics using scipy.integrate.odeint Parameters ---------- m : array-like. Array containing all moments (mRNA, protein and cross correlations) Unregulated mp[0] = m0_P (RNAP bound) mp[1] = m0_E (Empty promoter) mp[2] = m1_P (RNAP bound) mp[3] = m1_P (Empty promoter) mp[4] = m2_P (RNAP bound) mp[5] = m2_P (Empty promoter) mp[6] = m3_P (RNAP bound) mp[7] = m3_P (Empty promoter) mp[8] = p1_P (RNAP bound) mp[9] = p1_P (Empty promoter) mp[10] = mp_P (RNAP bound) mp[11] = mp_P (Empty promoter) mp[12] = p2_P (RNAP bound) mp[13] = p2_P (Empty promoter) mp[14] = m2p_P (RNAP bound) mp[15] = m2p_P (Empty promoter) mp[16] = mp2_P (RNAP bound) mp[17] = mp2_P (Empty promoter) mp[18] = p3_P (RNAP bound) mp[19] = p3_P (Empty promoter) --------- Regulated: mp[0] = m0_P (RNAP bound) mp[1] = m0_E (Empty promoter) mp[2] = m0_R (Repressor bound) mp[3] = m1_P (RNAP bound) mp[4] = m1_E (Empty promoter) mp[5] = m1_R (Repressor bound) mp[6] = m2_P (RNAP bound) mp[7] = m2_E (Empty promoter) mp[8] = m2_R (Repressor bound) mp[9] = m3_P (RNAP bound) mp[10] = m3_E (Empty promoter) mp[11] = m3_R (Repressor bound) mp[12] = p1_P (RNAP bound) mp[13] = p1_E (Empty promoter) mp[14] = p1_R (Repressor bound) mp[15] = mp_P (RNAP bound) mp[16] = mp_E (Empty promoter) mp[17] = mp_R (Repressor bound) mp[18] = p2_P (RNAP bound) mp[19] = p2_E (Empty promoter) mp[20] = p2_R (Repressor bound) mp[21] = m2p_P (RNAP bound) mp[22] = m2p_E (Empty promoter) mp[23] = m2p_R (Repressor bound) mp[24] = mp2_P (RNAP bound) mp[25] = mp2_E (Empty promoter) mp[26] = mp2_R (Repressor bound) mp[27] = p3_P (RNAP bound) mp[28] = p3_E (Empty promoter) mp[29] = p3_R (Repressor bound) t : array-like. Time array Kmat : array-like. Matrix containing the transition rates between the promoter states. Rm : array-like. Matrix containing the mRNA production rate at each of the states. Gm : array-like. Matrix containing the mRNA degradation rate at each of the states. Rp : array-like. Matrix containing the protein production rate at each of the states. Gp : array-like. Matrix containing the protein degradation rate at each of the states. Returns ------- dynamics of all mRNA and protein moments ''' # Obtain the zeroth and first moment based on the size # of the Kmat matrix if Kmat.shape[0] == 2: m0 = mp[0:2] m1 = mp[2:4] m2 = mp[4:6] m3 = mp[6:8] p1 = mp[8:10] mp1 = mp[10:12] p2 = mp[12:14] m2p = mp[14:16] mp2 = mp[16:18] p3 = mp[18::] elif Kmat.shape[0] == 3: m0 = mp[0:3] m1 = mp[3:6] m2 = mp[6:9] m3 = mp[9:12] p1 = mp[12:15] mp1 = mp[15:18] p2 = mp[18:21] m2p = mp[21:24] mp2 = mp[24:27] p3 = mp[27::] # Initialize array to save all dynamics dmpdt = np.array([]) # Compute the moment equations for the: #=== mRNA ===# # Zeroth moment dm0dt_eq = np.dot(Kmat, m0) dmpdt = np.append(dmpdt, dm0dt_eq) # <m1> dm1dt_eq = np.dot((Kmat - Gm), m1) + np.dot(Rm, m0) dmpdt = np.append(dmpdt, dm1dt_eq) # <m2> dm2dt_eq = np.dot((Kmat - 2 * Gm), m2) + np.dot((2 * Rm + Gm), m1) +\ np.dot(Rm, m0) dmpdt = np.append(dmpdt, dm2dt_eq) # <m3> dm3dt_eq = np.dot((Kmat - 3 * Gm), m3) +\ np.dot((3 * Rm + 3 * Gm), m2) +\ np.dot((3 * Rm - Gm), m1) +\ np.dot(Rm, m0) dmpdt = np.append(dmpdt, dm3dt_eq) #=== protein and correlations ===# # <p1> dp1dt_eq = np.dot((Kmat - Gp), p1) + np.dot(Rp, m1) dmpdt = np.append(dmpdt, dp1dt_eq) # <mp> dmpdt_eq = np.dot((Kmat - Gm - Gp), mp1) +\ np.dot(Rm, p1) +\ np.dot(Rp, m2) dmpdt = np.append(dmpdt, dmpdt_eq) # <p2> dp2dt_eq = np.dot((Kmat - 2 * Gp), p2) +\ np.dot(Gp, p1) +\ np.dot(Rp, m1) +\ np.dot((2 * Rp), mp1) dmpdt = np.append(dmpdt, dp2dt_eq) # <m2p> dm2pdt_eq = np.dot((Kmat - 2 * Gm - Gp), m2p) +\ np.dot(Rm, p1) +\ np.dot((Rm + Gm), mp1) +\ np.dot(Rp, m3) dmpdt = np.append(dmpdt, dm2pdt_eq) # <mp2> dmp2dt_eq = np.dot((Kmat - Gm - 2 * Gp), mp2) +\ np.dot(Rm, p2) +\ np.dot((2 * Rp), m2p) +\ np.dot(Rp, m2) +\ np.dot(Gp, mp1) dmpdt = np.append(dmpdt, dmp2dt_eq) # <p3> dp3dt_eq = np.dot((Kmat - 3 * Gp), p3) +\ np.dot((3 * Gp), p2) -\ np.dot(Gp, p1) +\ np.dot((3 * Rp), mp2) +\ np.dot((3 * Rp), mp1) +\ np.dot(Rp, m1) dmpdt = np.append(dmpdt, dp3dt_eq) return dmpdt ``` Let's define a function that will become quite handy in future implementations of these dynamics. This function will take the output of `odeint` function and transform it into a tidy `DataFrame`. ```python def dynamics_to_df(sol, t): ''' Takes the output of the dpdt function and the vector time and returns a tidy pandas DataFrame with the GLOBAL moments. Parameters ---------- sol : array-like. Array with 20 or 30 columns containing the dynamics of the mRNA and protein distribution moments. t : array-like. Time array used for integrating the differential equations Returns ------- tidy dataframe with the GLOBAL moments ''' # Define names of dataframe columns names = ['time', 'm1', 'm2', 'm3', 'p1', 'mp', 'p2', 'm2p', 'mp2', 'p3'] # Initialize matrix to save global moments mat = np.zeros([len(t), len(names)]) # Save time array in matrix mat[:, 0] = t # List index for columns depending on number of elements in matrix idx = np.arange(int(sol.shape[1]) / 10, sol.shape[1], int(sol.shape[1]) / 10) # Loop through index and compute global moments for i, index in enumerate(idx): # Compute and save global moment mat[:, i+1] = np.sum(sol[:, int(index):int(index + sol.shape[1] / 10)], axis=1) return pd.DataFrame(mat, columns=names) ``` ## Two-state promoter Having defined these functions let's first test them with the two-state unregulated promoter. Let's define the necessary parameters. ```python # List the parameters fit for the lacUV5 promoter par_UV5 = dict(kp_on=5.5, kp_off=28.9, rm=87.6, gm=1) # define protein degradation rate in units of mRNA degradation rate gp = 0.000277 / 0.00284 par_UV5['gp'] = gp # define rp based on the mean protein copy number per mRNA par_UV5['rp'] = 1000 * par_UV5['gp'] kp_on = par_UV5['kp_on'] kp_off = par_UV5['kp_off'] rm = par_UV5['rm'] gm = par_UV5['gm'] gp = par_UV5['gp'] rp = par_UV5['rp'] ``` Now we will define the state transition matrix $\mathbf{K}$, the mRNA production matrix $\mathbf{R}_m$, the mRNA degradation matrix $\mathbf{\Gamma}_m$, the protein production matrix $\mathbf{R}_p$, and the protein degradation matrix $\mathbf{\Gamma}_p$. ```python # Define the rate constant matrix Km_unreg = np.array([[-kp_off, kp_on], [kp_off, -kp_on]]) # Define the mRNA production matrix Rm_unreg = np.array([[rm, 0], [0, 0]]) # Define the mRNA degradation matrix Gm_unreg = np.array([[gm, 0], [0, gm]]) # Define the protein production matrix Rp_unreg = np.array([[rp, 0], [0, rp]]) # Define the protein degradation matrix Gp_unreg = np.array([[gp, 0], [0, gp]]) ``` Now we define initial conditions and time array to use for integrating the ODEs ```python # Define time on which to perform integration t = np.linspace(0, 60, 101) # Define initial conditions m0_init = [0.5, 0.5] m1_init = [0, 0] m2_init = [0, 0] m3_init = [0, 0] p1_init = [0, 0] mp_init = [0, 0] p2_init = [0, 0] m2p_init = [0, 0] mp2_init = [0, 0] p3_init = [0, 0] # Solve equation mp_sol = sp.integrate.odeint(dpdt, m0_init + m1_init + m2_init + m3_init + p1_init + mp_init + p2_init + m2p_init + mp2_init + p3_init, t, args=(Km_unreg, Rm_unreg, Gm_unreg, Rp_unreg, Gp_unreg)) mp_sol.shape ``` (101, 20) Let's test the function converting our ODE numerical integration to a `DataFrame`. ```python df_sol = dynamics_to_df(mp_sol, t) df_sol.head().round(1) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>time</th> <th>m1</th> <th>m2</th> <th>m3</th> <th>p1</th> <th>mp</th> <th>p2</th> <th>m2p</th> <th>mp2</th> <th>p3</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.000000e+00</td> </tr> <tr> <th>1</th> <td>0.6</td> <td>6.8</td> <td>73.7</td> <td>1021.0</td> <td>234.8</td> <td>2403.3</td> <td>91597.4</td> <td>25649.9</td> <td>972671.1</td> <td>3.926675e+07</td> </tr> <tr> <th>2</th> <td>1.2</td> <td>10.1</td> <td>137.7</td> <td>2303.1</td> <td>710.9</td> <td>9025.1</td> <td>689141.1</td> <td>106746.1</td> <td>8337666.5</td> <td>6.751009e+08</td> </tr> <tr> <th>3</th> <td>1.8</td> <td>11.8</td> <td>180.3</td> <td>3277.7</td> <td>1298.2</td> <td>18041.3</td> <td>2104606.7</td> <td>217080.1</td> <td>26566097.8</td> <td>3.262837e+09</td> </tr> <tr> <th>4</th> <td>2.4</td> <td>12.8</td> <td>206.0</td> <td>3903.1</td> <td>1928.2</td> <td>27894.1</td> <td>4417669.7</td> <td>332033.6</td> <td>56570169.8</td> <td>9.351843e+09</td> </tr> </tbody> </table> </div> For comparison let's compute the *steady-state* values of both the mRNA and the protein levels and save it as a pandas `Series`. ```python with open('./two_state_moments_lambdify.dill', 'rb') as file: mom_unreg_dict = cloudpickle.load(file) # Import regulated states with open('./three_state_moments_lambdify.dill', 'rb') as file: mom_reg_dict = cloudpickle.load(file) ``` ```python # Define names of dataframe index names = ['m1', 'm2', 'm3', 'p1', 'p2', 'p3'] # Initialize array to save steady state mp_ss = np.zeros(len(names)) # Compute mRNA steady state moments mfunc = [mom_unreg_dict[(1, 0)], mom_unreg_dict[(2, 0)], mom_unreg_dict[(3, 0)]] for i, f in enumerate(mfunc): mp_ss[i] = f(kp_on, kp_off, rm, gm, rp, gp) # Compute the protein steady state moments pfunc = [mom_unreg_dict[(0, 1)], mom_unreg_dict[(0, 2)], mom_unreg_dict[(0, 3)]] for i, f in enumerate(pfunc): mp_ss[i + 3] = f(kp_on, kp_off, rm, gm, rp, gp) df_ss = pd.Series(mp_ss, index=names) df_ss ``` m1 1.400581e+01 m2 2.392858e+02 m3 4.756025e+03 p1 1.400581e+04 p2 2.000841e+08 p3 2.914073e+12 dtype: float64 With this we can now plot the dynamics of all moments normalized by the stead-state value in order to compare the response time of mRNA and protein moments. ```python # Initialize figure fig = plt.figure(figsize=(7, 5)) # Define axis to have two on the bottom and one on the top ax = list() ax.append(plt.subplot2grid((2, 4), (0, 1), colspan=2, rowspan=1)) ax.append(plt.subplot2grid((2, 4), (1, 0), colspan=2, rowspan=1)) ax.append(plt.subplot2grid((2, 4), (1, 2), colspan=2, rowspan=1)) # Define array with names of moments to plot moments_m = ['m1', 'm2', 'm3'] moments_p = ['p1', 'p2', 'p3'] # Loop through groups for i in range(len(moments_m)): # Plot moments moment ax[i].plot(df_sol['time'], df_sol[moments_m[i]] / df_ss[moments_m[i]], label='mRNA') ax[i].plot(df_sol['time'], df_sol[moments_p[i]] / df_ss[moments_p[i]], label='protein') # Label axis ax[i].set_xlabel('time ($\gamma_m^{-1}$ units)') ax[i].set_ylabel(r'$\left\langle x(t)^{:d} \right\rangle$ / '.format(i+1) +\ r'$\left\langle x_{{ss}}^{:d} \right\rangle$'.format(i+1)) # Include legend ax[0].legend(fontsize=12) plt.tight_layout() # Save figure plt.savefig(figdir + 'mp_unreg_dynamics.pdf', bbox_inches='tight') ``` --- ## Three-state promoter Let's now test the function for the regulated promoter. We need to define the parameters for the regulated promoter. ```python # List the parameters fit for the lacUV5 regulated promoter par_UV5_reg = dict(kp_on=5.5, kp_off=28.9, rm=87.6, gm=1, Nns=4.6E6, ka=139, ki=0.53, epsilon=4.5) # Define the k0 parameters in units of the mRNA degradation time k0_norm = 2.7E-3 / 0.00284 par_UV5_reg['k0'] = k0_norm # define protein degradation rate in units of mRNA degradation rate gp = 0.000277 / 0.00284 par_UV5_reg['gp'] = gp # define rp based on the mean protein copy number per mRNA par_UV5_reg['rp'] = 1000 * par_UV5_reg['gp'] kp_on = par_UV5_reg['kp_on'] kp_off = par_UV5_reg['kp_off'] rm = par_UV5_reg['rm'] gm = par_UV5_reg['gm'] ka = par_UV5_reg['ka'] ki = par_UV5_reg['ki'] epsilon = par_UV5_reg['epsilon'] Nns = par_UV5_reg['Nns'] ``` Now we will define the mRNA production matrix $\mathbf{R}_m$, the mRNA degradation matrix $\mathbf{\Gamma}_m$, the protein production matrix $\mathbf{R}_p$, and the protein degradation matrix $\mathbf{\Gamma}_p$. ```python # Define the production matrix Rm_reg = np.array([[rm, 0, 0], [0, 0, 0], [0, 0, 0]]) # Define the degradation matrix Gm_reg = np.array([[gm, 0, 0], [0, gm, 0], [0, 0, gm]]) # Define the production matrix Rp_reg = np.array([[rp, 0, 0], [0, rp, 0], [0, 0, rp]]) # Define the production matrix Gp_reg = np.array([[gp, 0, 0], [0, gp, 0], [0, 0, gp]]) ``` Let's compute the moments for the $R = 260$ strains and all operators in the absence of inducer. ```python # Define repressors per cell rep = 260 par_UV5_reg['rep'] = rep # Calculate the repressor on rate including the MWC model kr_on = k0_norm * rep * chann_cap.p_act(0, ka, ki, epsilon) # Define energies operators = ['Oid', 'O1', 'O2', 'O3'] energies = [-17, -15.3, -13.9, -9.7] energy_dict = dict(zip(operators, energies)) ``` Having defined the parameters that do not depend on the operator let's now loop through operators and integrate the equations. We will also compute the steady-state solution to each of the moments and save it also in a tidy `DataFrame`. ```python # Define time on which to perform integration t = np.linspace(0, 60, 200) # Define initial conditions m0_init = [0.3, 0.3, 0.4] m1_init = [0, 0, 0] m2_init = [0, 0, 0] m3_init = [0, 0, 0] p1_init = [0, 0, 0] mp_init = [0, 0, 0] p2_init = [0, 0, 0] m2p_init = [0, 0, 0] mp2_init = [0, 0, 0] p3_init = [0, 0, 0] # Initialize DataFrame to save the solutions df_sol_reg = pd.DataFrame() # Dynamics df_ss_reg = pd.DataFrame() # Steady-state # Loop through operators integrating the equation at each point for op in operators: eRA = energy_dict[op] # Compute the repressor off-rate based on the on-rate and # the binding energy kr_off = chann_cap.kr_off_fun(eRA, k0_norm, kp_on, kp_off, Nns) #=== Compute dynamics ===# # Define the rate constant matrix Km_reg = np.array([[-kp_off, kp_on, 0], [kp_off, -(kp_on + kr_on), kr_off], [0, kr_on, -kr_off]]) # Solve equation sol = sp.integrate.odeint(dpdt, m0_init + m1_init + m2_init + m3_init +\ p1_init + mp_init + p2_init + m2p_init +\ mp2_init + p3_init, t, args=(Km_reg, Rm_reg, Gm_reg, Rp_reg, Gp_reg)) # Convert to pandas DataFrame and append the extra information df = dynamics_to_df(sol, t) df['operator'] = [op] * len(t) df['energy'] = [eRA] * len(t) df['repressor'] = [rep] * len(t) df['IPTG'] = [0] * len(t) # Append to global data frame df_sol_reg = pd.concat([df_sol_reg, df], ignore_index=True) #=== Compute steady-state ===# # Define names of dataframe index names = ['m1', 'm2', 'm3', 'p1', 'p2', 'p3'] # Initialize array to save steady state mp_ss = np.zeros(len(names)) # Compute mRNA steady state moments mfunc = [mom_reg_dict[(1, 0)], mom_reg_dict[(2, 0)], mom_reg_dict[(3, 0)]] for i, f in enumerate(mfunc): mp_ss[i] = f(kr_on, kr_off, kp_on, kp_off, rm, gm, rp, gp) # Compute the protein steady state moments pfunc = [mom_reg_dict[(0, 1)], mom_reg_dict[(0, 2)], mom_reg_dict[(0, 3)]] for i, f in enumerate(pfunc): mp_ss[i + 3] = f(kr_on, kr_off, kp_on, kp_off, rm, gm, rp, gp) df_ss = pd.Series(mp_ss, index=names) df_ss['operator'] = op df_ss['energy'] = eRA df_ss['repressor'] = rep df_ss['IPTG'] = 0 # Append to global data frame df_ss_reg = df_ss_reg.append(df_ss, ignore_index=True) df_sol_reg.head().round(1) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>time</th> <th>m1</th> <th>m2</th> <th>m3</th> <th>p1</th> <th>mp</th> <th>p2</th> <th>m2p</th> <th>mp2</th> <th>p3</th> <th>operator</th> <th>energy</th> <th>repressor</th> <th>IPTG</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>Oid</td> <td>-17.0</td> <td>260</td> <td>0</td> </tr> <tr> <th>1</th> <td>0.3</td> <td>0.7</td> <td>4.3</td> <td>39.0</td> <td>21.4</td> <td>115.5</td> <td>3206.7</td> <td>896.9</td> <td>22407.9</td> <td>588456.7</td> <td>Oid</td> <td>-17.0</td> <td>260</td> <td>0</td> </tr> <tr> <th>2</th> <td>0.6</td> <td>0.5</td> <td>2.6</td> <td>18.1</td> <td>39.1</td> <td>166.3</td> <td>11432.7</td> <td>1083.1</td> <td>67858.5</td> <td>4439009.7</td> <td>Oid</td> <td>-17.0</td> <td>260</td> <td>0</td> </tr> <tr> <th>3</th> <td>0.9</td> <td>0.4</td> <td>1.5</td> <td>8.7</td> <td>51.7</td> <td>169.0</td> <td>20515.4</td> <td>882.7</td> <td>96283.4</td> <td>11184808.5</td> <td>Oid</td> <td>-17.0</td> <td>260</td> <td>0</td> </tr> <tr> <th>4</th> <td>1.2</td> <td>0.3</td> <td>0.9</td> <td>4.4</td> <td>60.5</td> <td>151.7</td> <td>28562.6</td> <td>638.6</td> <td>104397.2</td> <td>18855645.2</td> <td>Oid</td> <td>-17.0</td> <td>260</td> <td>0</td> </tr> </tbody> </table> </div> ```python df_ss_reg.round(1) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>IPTG</th> <th>energy</th> <th>m1</th> <th>m2</th> <th>m3</th> <th>operator</th> <th>p1</th> <th>p2</th> <th>p3</th> <th>repressor</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0.0</td> <td>-17.0</td> <td>0.0</td> <td>0.1</td> <td>0.5</td> <td>Oid</td> <td>17.2</td> <td>6575.2</td> <td>4.683003e+06</td> <td>260.0</td> </tr> <tr> <th>1</th> <td>0.0</td> <td>-15.3</td> <td>0.1</td> <td>0.4</td> <td>2.7</td> <td>O1</td> <td>93.6</td> <td>42900.8</td> <td>3.402951e+07</td> <td>260.0</td> </tr> <tr> <th>2</th> <td>0.0</td> <td>-13.9</td> <td>0.4</td> <td>1.6</td> <td>11.7</td> <td>O2</td> <td>372.1</td> <td>273361.5</td> <td>2.948103e+08</td> <td>260.0</td> </tr> <tr> <th>3</th> <td>0.0</td> <td>-9.7</td> <td>9.0</td> <td>112.2</td> <td>1725.9</td> <td>O3</td> <td>9038.9</td> <td>84479685.7</td> <td>8.153365e+11</td> <td>260.0</td> </tr> </tbody> </table> </div> Having this let's plot all moments ```python # Initialize figure fig = plt.figure(figsize=(7, 5.5)) # Define axis to have two on the bottom and one on the top ax = list() ax.append(plt.subplot2grid((2, 4), (0, 1), colspan=2, rowspan=1)) ax.append(plt.subplot2grid((2, 4), (1, 0), colspan=2, rowspan=1)) ax.append(plt.subplot2grid((2, 4), (1, 2), colspan=2, rowspan=1)) # Define array with names of moments to plot moments_m = ['m1', 'm2', 'm3'] moments_p = ['p1', 'p2', 'p3'] # Define operator colors colors = sns.color_palette('colorblind', n_colors=len(operators)) color_dict = dict(zip(operators, colors)) # Loop through moments for i in range(len(moments_m)): # Loop through operators for op in operators: # Extract operator data data_sol = df_sol_reg[df_sol_reg['operator'] == op] data_ss = df_ss_reg[df_ss_reg['operator'] == op] # Plot moments moment ax[i].plot(data_sol['time'], data_sol[moments_m[i]] / data_ss[moments_m[i]].values, label=op, color=color_dict[op]) ax[i].plot(data_sol['time'], data_sol[moments_p[i]] / data_ss[moments_p[i]].values, label='', color=color_dict[op], linestyle='--') # Label axis ax[i].set_xlabel('time ($\gamma_m^{-1}$ units)') ax[i].set_ylabel(r'$\left\langle x(t)^{:d} \right\rangle$ / '.format(i+1) +\ r'$\left\langle x_{{ss}}^{:d} \right\rangle$'.format(i+1)) ax[i].set_ylim([0, 1.5]) # Include legend first_legend = ax[0].legend(loc=0, ncol=2, title='operator') # Add secondary label to distinguish protein vs mRNA. ax2 = ax[0].add_artist(first_legend) # "plot" a solid and a dashed line for the legend line1, = ax[0].plot([], [], color='black', label='mRNA') line2, = ax[0].plot([], [], color='black', linestyle='--', label='protein') # Create another legend. ax[0].legend(handles=[line1, line2], loc='upper right', frameon=False) plt.tight_layout() # Save figure plt.savefig(figdir + 'mp_reg_dynamics.pdf', bbox_inches='tight') ``` All dynamics seem to converge to the predicted stteady state. This tells us that the numerical integration of the moment differential equations is working as expected. ## Multi-promoter dynamics. It is known that depending on the position of a gene relative to the replication origin and the cell growth rate a gene can have multiple copies of a gene. For our specific experimental case with a doubling time of $\approx$ 60 min the *galK* locus has an average of 1.66 copies of the promoter along the cell cycle. What this means is that cells spend 2/3 of the cell cycle ($\approx$ 40 min) with one copy of the promoter and the rest ($\approx$ 20 min) with a single copy. The way we account for that in our model is that assuming both promoters have the same mRNA production rate $r_m$, during the two-copies phase cells have a production rate of $2 r_m$, with the rest of the parameters remaining the same. ```python ```
71cb06518224f43378ff3845e55004822623962c
234,584
ipynb
Jupyter Notebook
src/theory/sandbox/moment_dynamics_numeric_protein.ipynb
RPGroup-PBoC/chann_cap
f2a826166fc2d47c424951c616c46d497ed74b39
[ "MIT" ]
2
2020-08-21T04:06:12.000Z
2022-02-09T07:36:58.000Z
src/theory/sandbox/moment_dynamics_numeric_protein.ipynb
RPGroup-PBoC/chann_cap
f2a826166fc2d47c424951c616c46d497ed74b39
[ "MIT" ]
null
null
null
src/theory/sandbox/moment_dynamics_numeric_protein.ipynb
RPGroup-PBoC/chann_cap
f2a826166fc2d47c424951c616c46d497ed74b39
[ "MIT" ]
2
2020-04-29T17:43:28.000Z
2020-09-09T00:20:16.000Z
41.93493
487
0.494885
true
10,412
Qwen/Qwen-72B
1. YES 2. YES
0.831143
0.675765
0.561657
__label__eng_Latn
0.568924
0.143247
_Tugas 3 - Analisis Sumber Daya Air oleh Taruma S.M. (25017046)_ # Tugas 3 - Analisis Sumber Daya Air > Suatu saluran persegiempat mempunyai lebar $2.5\ meter$ dan mempunyai kemiringan dasar saluran sama dengan $1:400$. Jika konstanta Chezy adalah 30 dalam satuan SI, tentukan kedalaman normal jika debit aliran adalah $0.80\ m^3/detik$. Tentukan solusi dengan menggunakan **Metoda Interval Halving, Newton Rhapson, dan Secant**. > Petunjuk: $Q = AC\sqrt{RS},\ A=by_n, \text{dan}\ \large{y_{n1} = y_{n0}-\frac{f(y_{n0})}{f'(y_{n0})}}$, untuk harga awal $y_{n0}$ ditentukan dengan asumsi kecepatan aliran $v = 1 m/detik$. ```python # Ignore this block code. # Define Function for printing result def cetak(name, val, unit = ""): print('| {:>15s} = {:>10.5f} {:<{n}s}|'.format(name, val, unit, n = pad-15-10-7)) def new_line(pad = 50): print('='*pad) pad = 50 ``` *** ## Penurunan dan Penentuan Nilai Awal ### Fungsi dan Turunannya Fungsi $f(y)$ diperoleh dari: $$\begin{aligned} Q &= A C \sqrt{R S} &\leftrightarrow 0 = A C \sqrt{R S} - Q \\ f(y) &= A C \sqrt{R S} - Q = 0 & \end{aligned}$$ Turunan dari fungsi $f(y)$: $$\begin{aligned}f(y) &= C b y \sqrt{\frac{b s y}{b + 2 y}} - Q \\ f'(y) &= C b \sqrt{\frac{b s y}{b + 2 y}} + \frac{C}{s} \sqrt{\frac{b s y}{b + 2 y}} \left(b + 2 y\right) \left(- \frac{b s y}{\left(b + 2 y\right)^{2}} + \frac{b s}{2 \left(b + 2 y\right)}\right) \end{aligned}$$ Disederhanakan, $f'(y)$ menjadi: $$\begin{aligned} f'(y) &= \frac{C b \sqrt{\frac{b s y}{b + 2 y}}}{2 \left(b + 2 y\right)} \left(3 b + 4 y\right) \end{aligned}$$ > Catatan : Hasil turunan diperoleh dari kode dibawah menggunakan _sympy_. ```python # Mencari turunan fungsi menggunakan library sympy from sympy import symbols, simplify, sqrt, latex sb, sy, sC, sS, sQ = symbols('b, y, C, s, Q') sA = sb * sy sP = sb + 2* sy sR = sA/sP sfy = sA*sC*sqrt(sR*sS) - sQ # Mencari Turunan f(y) print('Persamaan Q: \n\tf(y)=', sfy, '\n==\n In Latex:', latex(sfy), '\n') sfy_d = sfy.diff(sy) print('Turunan Persamaan Q terhadap y : \n\tf\'(y)=', sfy_d, '\n==\n In Latex:', latex(sfy_d), '\n') print('Bentuk sederhana : \n\tf\'(y)=', simplify(sfy_d), '\n==\n In Latex:', latex(simplify(sfy_d)), '\n') # Mendefinisikan fungsi dalam python def f(y): return float(sfy.subs({sS: S, sC: C, sb: b, sy: y, sQ: Q})) def fd(y): return float(sfy_d.subs({sS: S, sC: C, sb: b, sy: y})) ``` Persamaan Q: f(y)= C*b*y*sqrt(b*s*y/(b + 2*y)) - Q == In Latex: C b y \sqrt{\frac{b s y}{b + 2 y}} - Q Turunan Persamaan Q terhadap y : f'(y)= C*b*sqrt(b*s*y/(b + 2*y)) + C*sqrt(b*s*y/(b + 2*y))*(b + 2*y)*(-b*s*y/(b + 2*y)**2 + b*s/(2*(b + 2*y)))/s == In Latex: C b \sqrt{\frac{b s y}{b + 2 y}} + \frac{C}{s} \sqrt{\frac{b s y}{b + 2 y}} \left(b + 2 y\right) \left(- \frac{b s y}{\left(b + 2 y\right)^{2}} + \frac{b s}{2 \left(b + 2 y\right)}\right) Bentuk sederhana : f'(y)= C*b*sqrt(b*s*y/(b + 2*y))*(3*b + 4*y)/(2*(b + 2*y)) == In Latex: \frac{C b \sqrt{\frac{b s y}{b + 2 y}}}{2 \left(b + 2 y\right)} \left(3 b + 4 y\right) *** ### Menentukan nilai awal $y_{n0}$ dan $y_{n1}$ #### Nilai $y_{n0}$ Dengan mengasumsikan kecepatan aliran $v = 1\ m/det$, $y_{n0}$ dapat dicari dari persamaan $Q = VA$: $$Q = VA \leftrightarrow Q = V\ (by_{n0})$$ Dimasukkan nilai $V = 1\ m/det$, $b = 2.5\ m$ dan $Q = 0.8\ m^3/det$, maka diperoleh nilai $y_{n0}$ sebesar: $$\begin{aligned} V = 1\ m/det, b = 2.5\ m, Q = 0.8\ m^3/det &\rightarrow& Q &= V\ (b\ y_{n0}) \\ && 0.8 &= 1\ (2.5\ y_{n0}) \\ && y_{n0} &= \frac{0.8}{2.5} = 0.32\ m \end{aligned}$$ #### Nilai $y_{n1}$ Nilai $y_{n1}$ diperoleh dari persamaan yang diberikan di petunjuk yaitu $y_{n1} = y_{n0}-\frac{f(y_{n0})}{f'(y_{n0})}$: $$\begin{aligned} y_{n0} = 0.32\ m, f(y_{n0}) = -0.1942946, f'(y_{n0}) = 2.646344 &\rightarrow& y_{n1} &= y_{n0}-\frac{f(y_{n0})}{f'(y_{n0})} \\ && y_{n1} &= 0.32 - \frac{-0.1942946}{2.646344} \\ && y_{n1} &= 0.39342\ m \end{aligned}$$ ### Nilai $y_{n0}$ dan $y_{n1}$ Disimpulkan bahwa nilai $y_{n0} = 0.32\ m$ dan $y_{n1} = 0.39342\ m$. Dengan catatan: - Untuk Metoda Interval Halving, nilai batas kiri: $x_a = y_{n0}$ dan batas kanan: $x_b = y_{n1}$. - Untuk Metoda Newton-Rhapson, nilai awal: $x_k = y_{n1}$. - Untuk Metoda Secant, nilai $x_n = y_{n1}$ dan $x_{n-1} = y_{n0}$. Catatan: Hasil diatas diperoleh dari perhitungan melalui python dibawah ini. ```python # Diketahui: b = 2.5 # (m) - Lebar Saluran S = 1/400 # (m/m) - Kemiringan dasar Saluran C = 30 # (..) - Chezy Q = 0.80 # (m3/det) - Debit Aliran # Asumsikan V = 1 # (m3/det) new_line(pad) print('|{:^{n}s}|'.format('Diketahui', n=pad-2)) new_line(pad) cetak('b', b, 'm') cetak('S', S, 'm/m') cetak('C', C) cetak('Q', Q, 'm^3/det') new_line(pad) # Menentukan harga awal # Q = V.A -> Q = V.b.y -> y = Q/(V.b) yn0 = Q/(V*b) fy, fdy = f(yn0), fd(yn0) yn1 = yn0 - fy/fdy print() new_line(pad) print('|{:^{n}s}|'.format('Mencari nilai y_{n0} dan y_{n1}', n=pad-2)) new_line(pad) cetak('y_{n0}', yn0, 'm') cetak('f(y_{n0})',fy) cetak('f\'(y_{n0})',fdy) cetak('y_{n1}', yn1, 'm') new_line(pad) ``` ================================================== | Diketahui | ================================================== | b = 2.50000 m | | S = 0.00250 m/m | | C = 30.00000 | | Q = 0.80000 m^3/det | ================================================== ================================================== | Mencari nilai y_{n0} dan y_{n1} | ================================================== | y_{n0} = 0.32000 m | | f(y_{n0}) = -0.19429 | | f'(y_{n0}) = 2.64634 | | y_{n1} = 0.39342 m | ================================================== ******* ## Penyelesaian Numerik (Interval Halving, Newton, Secant) Kode diperoleh dari Latihan Soal Notebook [Interval-Halving, Newton-Rhapson, Secant (Minggu 15)](https://github.com/taruma/belajar-tsa/blob/master/ansis/Interval-Halving%2C%20Newton-Rhapson%2C%20Secant%20(Minggu%2015).ipynb) atau dapat dilihat dengan nbviewer [Interval-Halving, Newton-Rhapson, Secant (Minggu 15)](https://nbviewer.jupyter.org/github/taruma/belajar-tsa/blob/master/ansis/Interval-Halving%2C%20Newton-Rhapson%2C%20Secant%20%28Minggu%2015%29.ipynb). Dan dimodifikasi sesuai kebutuhan. *** ### Metode Interval Halving #### Langkah Pengerjaan Solusi menggunakan metode _Interval Halving_ dengan langkah sebagai berikut: - Nilai batas kiri dan kanan yang digunakan diperoleh dari perhitungan sebelumnya untuk mendapatkan nilai $y_{n0}$ dan $y_{n1}$. $$\begin{aligned} &\text{Batas bawah/kiri: }& x_a &= y_{n0} &\text{Batas atas/kanan: }& x_b &=&\ y_{n1} \\ && x_a &= 0.32\ m && x_b &=&\ 0.39342\ m \end{aligned}$$ - Periksa nilai $f(x_a)$ dan $f(x_b)$ lebih kecil dari $0$. Langkah ini memastikan bahwa akar persamaannya berada di antara $x_a$ dan $x_b$. Dan diperoleh bahwa nilai akar-akarnya berada di antara $x_a$ dan $x_b$ $$\begin{aligned} f(x_a) &=\ -0.19429 ; f(x_b) &=\ 0.00704 \\ f(x_a)f(x_b) &< 0 &\rightarrow \text{OK} \end{aligned}$$ - Cari nilai tengah $(x_h)$ yang merupakan titik tengah dari $x_a$ dan $x_b$: $$x_h = \frac{x_a + x_b}{2}$$ - Tentukan batas atas/bawah berikutnya. Nilai $x_h$ sebagai batas atas ketika $f(x_a)f(x_h)<0$ dan sebaliknya menjadi batas bawah ketika $f(x_b)f(x_h)<0$. $$\begin{aligned} x_b \leftarrow x_h &: \text{if } f(x_a)f(x_h)<0 \text{ TRUE} \\ x_a \leftarrow x_h &: \text{if } f(x_h)f(x_b)<0 \text{ TRUE} \end{aligned}$$ ```python x1, x2 = yn0, yn1 iterasi = 20 xa, xb = x1, x2 pad = 70 new_line(pad) print('Periksa nilai akarnya berada diantara xa dan xb') if f(xa)*f(xb) < 0: print('f(x_a) x f(x_b) < 0 === OK \n\tdengan nilai f(x_a) = {fxa:12.5f} dan f(x_b) = {fxb:12.5f}'.format( fxa=f(xa), fxb=f(xb))) else: print('f(x_a) x f(x_b) < 0 === NOT OK \n\ttidak akan ditemukan akarnya diantara {xa} dan {xb}\n\tdengan nilai f(x_a) = {fxa} dan f(x_b) = {fxb}'.format( xa=xa, xb=xb, fxa=f(xa), fxb=f(xb))) new_line(pad) print('\n') lebar_text = 12*7 + 8 print('='*lebar_text) print('|{:^{n:d}s}|'.format('Solusi Numerik Metoda Interval Halving', n=lebar_text-2)) print('='*lebar_text) print('| {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} |'.format( 'n', 'x_a', 'x_b', 'f(x_a)', 'f(x_b)', 'x_h', 'f(x_h)', n=10)) print('='*lebar_text) for i in range(1, iterasi+1): fxa, fxb = f(xa), f(xb) xh = (xa+xb)/2 fxh = f(xh) print('| {:^{n:d}d} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} |'.format( i, xa, xb, f(xa), f(xb), xh, f(xh), n=10, f1=10, f2=7)) if fxa*fxh < 0: xb = xh elif fxb*fxh < 0: xa = xh print('='*lebar_text) print('Maka diperoleh nilai akar-akarnya = {:10.6f} dengan hasil f(x_h) = {:15.10f}'.format(xh, f(xh))) ``` ====================================================================== Periksa nilai akarnya berada diantara xa dan xb f(x_a) x f(x_b) < 0 === OK dengan nilai f(x_a) = -0.19429 dan f(x_b) = 0.00704 ====================================================================== ============================================================================================ | Solusi Numerik Metoda Interval Halving | ============================================================================================ | n | x_a | x_b | f(x_a) | f(x_b) | x_h | f(x_h) | ============================================================================================ | 1 | 0.3200000 | 0.3934200 | -0.1942946 | 0.0070430 | 0.3567100 | -0.0953224 | | 2 | 0.3567100 | 0.3934200 | -0.0953224 | 0.0070430 | 0.3750650 | -0.0445413 | | 3 | 0.3750650 | 0.3934200 | -0.0445413 | 0.0070430 | 0.3842425 | -0.0188469 | | 4 | 0.3842425 | 0.3934200 | -0.0188469 | 0.0070430 | 0.3888313 | -0.0059261 | | 5 | 0.3888313 | 0.3934200 | -0.0059261 | 0.0070430 | 0.3911256 | 0.0005525 | | 6 | 0.3888313 | 0.3911256 | -0.0059261 | 0.0005525 | 0.3899785 | -0.0026883 | | 7 | 0.3899785 | 0.3911256 | -0.0026883 | 0.0005525 | 0.3905521 | -0.0010683 | | 8 | 0.3905521 | 0.3911256 | -0.0010683 | 0.0005525 | 0.3908389 | -0.0002580 | | 9 | 0.3908389 | 0.3911256 | -0.0002580 | 0.0005525 | 0.3909822 | 0.0001472 | | 10 | 0.3908389 | 0.3909822 | -0.0002580 | 0.0001472 | 0.3909105 | -0.0000554 | | 11 | 0.3909105 | 0.3909822 | -0.0000554 | 0.0001472 | 0.3909464 | 0.0000459 | | 12 | 0.3909105 | 0.3909464 | -0.0000554 | 0.0000459 | 0.3909285 | -0.0000048 | | 13 | 0.3909285 | 0.3909464 | -0.0000048 | 0.0000459 | 0.3909374 | 0.0000206 | | 14 | 0.3909285 | 0.3909374 | -0.0000048 | 0.0000206 | 0.3909330 | 0.0000079 | | 15 | 0.3909285 | 0.3909330 | -0.0000048 | 0.0000079 | 0.3909307 | 0.0000016 | | 16 | 0.3909285 | 0.3909307 | -0.0000048 | 0.0000016 | 0.3909296 | -0.0000016 | | 17 | 0.3909296 | 0.3909307 | -0.0000016 | 0.0000016 | 0.3909302 | -0.0000000 | | 18 | 0.3909302 | 0.3909307 | -0.0000000 | 0.0000016 | 0.3909304 | 0.0000008 | | 19 | 0.3909302 | 0.3909304 | -0.0000000 | 0.0000008 | 0.3909303 | 0.0000004 | | 20 | 0.3909302 | 0.3909303 | -0.0000000 | 0.0000004 | 0.3909302 | 0.0000002 | ============================================================================================ Maka diperoleh nilai akar-akarnya = 0.390930 dengan hasil f(x_h) = 0.0000001907 #### Solusi Numerik Metoda Interval Halving Dengan menggunakan prosedur diatas dan dilakukan iterasi sebanyak $20$ kali, diperoleh bahwa nilai $y_n = 0.390930\ m$ dengan nilai $f(x_h) = 0.0000001907$. Dari tabel hasil perhitungan dibawah, dapat dilihat bahwa nilai akarnya sudah dapat ditemukan pada langkah ke $16$ jika error yang ditargetkan $\epsilon = 0.000001$. *** ### Metoda Newton-Rhapson #### Langkah Pengerjaan Solusi Numerik menggunakan metoda _Newton-Rhapson_ dimulai dari: - Nilai awal $x_k$ menggunakan nilai $y_{n0}$ maka $x_k = 0.32\ m$ - Dalam metoda Newton-Rhapson diperlukan turunan dari fungsi $f(y)$. Persamaan yang digunakan: $$\begin{aligned} f(y) &=& C b y \sqrt{\frac{b s y}{b + 2 y}} - Q \\ f'(y) &=& \frac{C b \sqrt{\frac{b s y}{b + 2 y}}}{2 \left(b + 2 y\right)} \left(3 b + 4 y\right) \end{aligned}$$ dengan: $C = 30, b = 2.5\ m, s = \frac{1}{400}\ m/m$ - Akar persamaan $x_{k+1}$ diperoleh dengan melakukan iterasi sebanyak $k$ dengan menggunakan persamaan: $$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$ ```python # Defining function iterasi = 10 # Iteration xk = yn0 # x_k lebar_text = 12*5 + 6 print('='*lebar_text) print('|{:^{n:d}s}|'.format('Solusi Numerik Metoda Newton Rhapson', n=lebar_text-2)) print('='*lebar_text) print('| {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} | {:^{n:d}s} |'.format( 'k', 'x_k', 'f(x_k)', 'f\'(x_k)', 'x_{k+1}', n=10)) print('='*lebar_text) for i in range(1, iterasi+1): xk_p1 = xk - f(xk)/fd(xk) print('| {:^{n:d}d} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | {:^ {f1:d}.{f2:d}f} | '.format(i, xk, f(xk), fd(xk), xk_p1, n=10, f1=10, f2=6)) xk = xk_p1 print('='*lebar_text) print('Maka diperoleh nilai akar-akarnya = {:10.6f} dengan hasil f(x_k) = {:15.10f}'.format(xk, f(xk))) ``` ================================================================== | Solusi Numerik Metoda Newton Rhapson | ================================================================== | k | x_k | f(x_k) | f'(x_k) | x_{k+1} | ================================================================== | 1 | 0.320000 | -0.194295 | 2.646344 | 0.393420 | | 2 | 0.393420 | 0.007043 | 2.831491 | 0.390933 | | 3 | 0.390933 | 0.000007 | 2.825843 | 0.390930 | | 4 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | | 5 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | | 6 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | | 7 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | | 8 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | | 9 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | | 10 | 0.390930 | 0.000000 | 2.825838 | 0.390930 | ================================================================== Maka diperoleh nilai akar-akarnya = 0.390930 dengan hasil f(x_k) = 0.0000000000 #### Solusi Numerik Metoda Newton Rhapson Dengan menggunakan prosedur diatas dan dilakukan iterasi sebanyak $10$ kali, diperoleh bahwa nilai $y_n = 0.390930\ m$ dengan nilai $f(x_k) = 0.0000000000$. Dari tabel hasil perhitungan diatas, dapat dilihat bahwa nilai akarnya sudah dapat ditemukan pada langkah ke $4$ jika error yang ditargetkan $\epsilon = 0.000001$. *** ### Metoda Secant #### Langkah Pengerjaan Solusi Numerik menggunakan metoda _Secant_ dimulai dari: - Menentukan nilai $x_0 = x_{n-1}$ dan $x_1 = x_n$ dari nilai $y_{n0}$ dan $y_{n1}$: $$\begin{aligned}x_0 &= x_{n-1} &= y_{n0} &= 0.32\ m \\ x_1 &= x_{n} &= y_{n1} &= 0.39342\ m\end{aligned}$$ - Dalam metoda _Secant_ hanya diperlukan fungsi $f(y)$. Persamaan yang digunakan: $$\begin{aligned} f(y) &=& C b y \sqrt{\frac{b s y}{b + 2 y}} - Q \\ \end{aligned}$$ dengan: $C = 30, b = 2.5\ m, s = \frac{1}{400}\ m/m$ - Akar persamaan $x_{n+1}$ diperoleh dengan melakukan iterasi sebanyak $n$ dengan menggunakan persamaan: $$x_{n+1} = x_n - f(x_n)\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$ ```python x0, x1 = yn1, yn0 lebar_text = 10*5+12+2*6+7 print('='*lebar_text) print('|{:^{n:d}s}|'.format( 'Solusi Numerik Menggunakan Metoda Secant', n=lebar_text-2)) print('='*(10*5+12+2*6+7)) print('| {:^10s} | {:^10s} | {:^10s} | {:^10s} | {:^10s} | {:^12s} |'.format( 'n', 'x_{n-1}', 'x_n', 'N_n', 'D_n', 'x_{n+1}-x_n')) print('='*(10*5+12+2*6+7)) iterasi = 6 xn = x1 xn_m1 = x0 xn_p1 = 0 for n in range(1, iterasi+1): Nn = f(xn)*(xn-xn_m1) Dn = f(xn)-f(xn_m1) xn_p1 = xn - Nn / Dn dx = xn_p1-xn print('| {:^10d} | {:^ 10.6f} | {:^ 10.6f} | {:^ 10.6f} | {:^ 10.6f} | {:^ 12.6f} |'.format(n, xn_m1, xn, Nn, Dn, dx)) xn_m1 = xn xn = xn_p1 print('='*(10*5+12+2*6+7)) print('Maka diperoleh nilai akar-akarnya = {:10.6f} dengan f(x_{{n+1}}) = {:15.10f}'.format(xn, f(xn))) ``` ================================================================================= | Solusi Numerik Menggunakan Metoda Secant | ================================================================================= | n | x_{n-1} | x_n | N_n | D_n | x_{n+1}-x_n | ================================================================================= | 1 | 0.393420 | 0.320000 | 0.014265 | -0.201338 | 0.070852 | | 2 | 0.320000 | 0.390852 | -0.000016 | 0.194073 | 0.000081 | | 3 | 0.390852 | 0.390933 | 0.000000 | 0.000229 | -0.000002 | | 4 | 0.390933 | 0.390930 | 0.000000 | -0.000007 | 0.000000 | | 5 | 0.390930 | 0.390930 | -0.000000 | 0.000000 | 0.000000 | | 6 | 0.390930 | 0.390930 | 0.000000 | 0.000000 | 0.000000 | ================================================================================= Maka diperoleh nilai akar-akarnya = 0.390930 dengan f(x_{n+1}) = 0.0000000000 #### Solusi Numerik Metoda _Secant_ Dengan menggunakan prosedur diatas dan dilakukan iterasi sebanyak $6$ kali, diperoleh bahwa nilai $y_n = 0.390930\ m$ dengan nilai $f(x_k) = 0.0000000000$. Dari tabel hasil perhitungan diatas, dapat dilihat bahwa nilai akarnya sudah dapat ditemukan pada langkah ke $4$ jika error yang ditargetkan $\epsilon = 0.000001$. *** ## Kesimpulan Ringkasan dari penyelesaian permasalahan dengan 3 metoda yaitu _Interval-Halving, Newton-Rhapson, Secant_: $$\begin{array}{|l|c|c|c|c|} \hline \text{Metoda} & \text{Jumlah Iterasi Coba} & y_{n0} & f(y_{n0}) & \text{Jumlah Iterasi jika } \epsilon = 0.000001 \\ \hline \text{Interval-Halving} & 20 & 0.390930 & 0.0000001907 & 16 \\ \text{Newton-Rhapson} & 10 & 0.390930 & 0.0000000000 & 4 \\ \text{Secant} & 6 & 0.390930 & 0.0000000000 & 4 \\\hline \end{array} $$ Dari ketiga metoda diatas, metoda _Newton-Rhapson_ dan _Secant_ memiliki iterasi yang lebih sedikit dengan $\epsilon = 1\times10^{-6}$, akan tetapi metoda _Newton-Rhapson_ memerlukan persamaan turunan $f'(y)$ yang jika persamaannya akan sulit diturunkan jika dilakukan secara manual. Sedangkan metoda _Secant_ hanya menggunakan persamaan $f(y)$.
fa1d9b549c7493cc2a4256b75bffae5dfab39619
27,087
ipynb
Jupyter Notebook
ansis/Tugas 3 - Taruma S. (25017046).ipynb
taruma/belajar-tsa
ded702846f0453993ba90738a4b6b2401abe9177
[ "MIT" ]
null
null
null
ansis/Tugas 3 - Taruma S. (25017046).ipynb
taruma/belajar-tsa
ded702846f0453993ba90738a4b6b2401abe9177
[ "MIT" ]
null
null
null
ansis/Tugas 3 - Taruma S. (25017046).ipynb
taruma/belajar-tsa
ded702846f0453993ba90738a4b6b2401abe9177
[ "MIT" ]
null
null
null
41.995349
508
0.460332
true
7,896
Qwen/Qwen-72B
1. YES 2. YES
0.879147
0.817574
0.718768
__label__ind_Latn
0.382835
0.50827
```python from __future__ import division from sympy import * init_session(quiet=True) ``` ```python T,delta,rho_r,b_m,c_m,a_m,R_u = symbols('T,delta,rho_r,b_m,c_m,a_m,R_u') W = symbols('W', cls=Function)(delta) alphar = -log(1-delta*rho_r*(b_m-c_m)) - sqrt(2)*a_m/(4*R_u*T*b_m)*log(W); display(alphar) for ndelta in range(1,5): ss = simplify(diff(alphar, delta, ndelta)) display(ss) W =(1+delta*rho_r*(b_m*(1+sqrt(2)+c_m))) / (1+delta*rho_r*(b_m*(1-sqrt(2)+c_m))) for ndelta in range(1,5): display(diff(W,delta,ndelta)) ``` ```python ```
1f7eb70f932474ed2cd1fc5f4fdbf46ec413fe9d
1,512
ipynb
Jupyter Notebook
doc/notebooks/Sympy derivatives of alphar from VTPR.ipynb
pauliacomi/CoolProp
80eb4601c67ecd04353067663db50937fd7ccdae
[ "MIT" ]
520
2015-01-14T16:49:41.000Z
2022-03-29T07:48:50.000Z
doc/notebooks/Sympy derivatives of alphar from VTPR.ipynb
pauliacomi/CoolProp
80eb4601c67ecd04353067663db50937fd7ccdae
[ "MIT" ]
1,647
2015-01-01T07:42:45.000Z
2022-03-31T23:48:56.000Z
doc/notebooks/Sympy derivatives of alphar from VTPR.ipynb
pauliacomi/CoolProp
80eb4601c67ecd04353067663db50937fd7ccdae
[ "MIT" ]
320
2015-01-02T17:24:27.000Z
2022-03-19T07:01:00.000Z
21.6
89
0.529101
true
208
Qwen/Qwen-72B
1. YES 2. YES
0.946597
0.709019
0.671155
__label__eng_Latn
0.21851
0.397649
# Hamiltonian Monte Carlo (HMC) ```python %matplotlib inline import matplotlib.pyplot as plt import numpy as np import seaborn as sns from functools import partial ``` ## Use of auxiliary variables Slice sampling is a simple MCMC algorithm that introduces the idea of auxiliary variables. The motivation for slice sampling is that if we can sample uniformly from the region under the graph of the target distribution, we will have random samples from the target distribution. In the univariate case, the algorithm is as follows - start with some $x$ where $p(x) \ne 0$ - repeat - sample $y$ (auxiliary variable) uniformly from 0 to $f(x)$ - draw a horizontal line at $y$ within $p(x)$ (this may consist of multiple intervals) - sample $x$ from the horizontal segments The auxiliary $y$ variable allows us to sample $(x, y)$ points that are in the region under the graph of the target distribution. Only the $x$ variable is used for the Monte Carlo samples - the $y$ variables are simply discarded. This works because the joint distribution is constructed so that it factors $p(x, y) = p(y \mid x) p(x)$ and so projecting leaves just $p(x)$. The slice sampler is a Markov Chain Monte Carlo method since the next $(x, y)$ position depends only on the current position. Like Gibbs sampling, there is no tuning process and all proposals are accepted. For slice sampling, you either need the inverse distribution function or some way to estimate it. Later we will see that Hamiltonian Monte Carlo also uses auxiliary variables to generate a new proposal in an analogous way. A toy example illustrates the process - Suppose we want to draw random samples from the posterior distribution $\mathcal{N}(0, 1)$ using slice sampling Start with some value $x$ - sample $y$ from $\mathcal{U}(0, f(x))$ - this is the horizontal "slice" that gives the method its name - sample the next $x$ from $f^{-1}(y)$ - this is typically done numerically - repeat Will sketch picture in class to show what is going on. ### A simple slice sampler example ```python import scipy.stats as stats ``` ```python dist = stats.norm(5, 3) w = 0.5 x = dist.rvs() niters = 1000 xs = [] while len(xs) < niters: y = np.random.uniform(0, dist.pdf(x)) lb = x rb = x while y < dist.pdf(lb): lb -= w while y < dist.pdf(rb): rb += w x = np.random.uniform(lb, rb) if y > dist.pdf(x): if np.abs(x-lb) < np.abs(x-rb): lb = x else: lb = y else: xs.append(x) ``` ```python plt.hist(xs, 20) pass ``` Notes on the slice sampler: - the slice may consist of disjoint pieces for multimodal distributions - the slice can be a rectangular hyperslab for multivariable posterior distributions - sampling from the slice (i.e. finding the boundaries at level $y$) is non-trivial and may involve iterative rejection steps - see figure below (from Wikimedia) for a typical approach - the blue bars represent disjoint pieces of the true slice through a bimodal distribution and the black lines are the proposal distribution approximating the true slice ## Hamiltonian Monte Carlo (HMC) HMC uses an auxiliary variable corresponding to the momentum of particles in a potential energy well to generate proposal distributions that can make use of gradient information in the posterior distribution. For reversibility to be maintained, the total energy of the particle has to be conserved - hence we are interested in Hamiltonian systems. The main attraction of HMC is that it works much better than other methods when variables of interest are highly correlated. Because we have to solve problems involving momentum, we need to understand how to numerically solve differential equations in a way that is both accurate (i.e. second order) and preserves total energy (necessary for a Hamiltonian system). Example adapted from [MCMC: Hamiltonian Monte Carlo (a.k.a. Hybrid Monte Carlo)](https://theclevermachine.wordpress.com/2012/11/18/mcmc-hamiltonian-monte-carlo-a-k-a-hybrid-monte-carlo/) ### Hamiltonian systems In a Hamiltonian system, we consider particles with position $x$ and momentum (or velocity if we assume unit mass) $v$. The total energy of the system $H(x, v) = K(v) + U(x)$, where $K$ is the kinetic energy and $U$ is the potential energy, is conserved. Such a system satisfies the following Hamiltonian equations $$ \begin{align} \frac{dx}{dt} &= & \frac{\delta H}{dv} \\ \frac{dv}{dt} &= & -\frac{\delta H}{dx} \end{align} $$ Since $K$ depends only on $v$ and $U$ depends only on $x$, we have $$ \begin{align} \frac{dx}{dt} &= & \frac{\delta K}{dv} \\ \frac{dv}{dt} &= & -\frac{\delta U}{dx} \end{align} $$ #### Harmonic oscillator We will consider solving a classical Hamiltonian system - that of a undamped spring governed by the second order differential equation $$ x'' + x = 0 $$ We convert this to two first order ODEs by using a dummy variable $x' = v$ to get $$ \begin{align} x' &= v \\ v' &= -x \end{align} $$ From the Hamiltonian equations above, this is equivalent to a system with kinetic energy $K(v) = \frac{1}{2}v^2$ and potential energy $U(x) = \frac{1}{2}x^2$. Writing in matrix form, $$ A = \pmatrix{ x' \\ v' } = \pmatrix{0 & 1 \\ -1 & 0} \pmatrix{x \\ v} $$ and in general, for the state vector $x$, $$ x' = Ax $$ We note that $A$ is anti- or skew-symmetric ($A^T = -A$), and hence has purely imaginary eigenvalues. Solving $|A - \lambda I = 0$, we see that the eigenvalues and eigenvectors are $i, \pmatrix{1\\i}$ and $-i, \pmatrix{1\\-i}$. Since the eigenvalues are pure imaginary, we see that the solution for the initial conditions $(x,v) = (1, 0)$ is $x(t) = e^{it}$ and the orbit just goes around a circle with a period of $2\pi$, neither growing nor decaying. Another weay of seeing this is that the Hamiltonian $H(u, v)$ or sum of potential ($U(x)) = \frac{1}{2}x^2$) and kinetic energy ($K(v) = \frac{1}{2}v^2$) is constant, i.e. in vector form, $(x^T x) = \text{constant}$. ### Finite difference methods We want to find a finite difference approximation to $u' = Au$ that is **accurate** and **preserves total energy**. If total energy is not preserved, the orbit will either spiral in towards zero or outwards away from the unit circle. If the accuracy is poor, the orbit will not be close to its starting value after $t = 2\pi$. This gives us an easy way to visualize how good our numerical scheme is. We can also compare the numerical scheme to the Taylor series to evaluate its accuracy. #### Forward Euler The simplest finite difference scheme for integrating ODEs is the forward Euler $$ \frac{u_{n+1} - u_n}{\Delta t} = A u_n $$ Rearranging terms, we get $$ u_{n+1} = u_n + \Delta t A u_n = \left( I + \Delta t A \right) u_n $$ Since the eigenvalues of $A$ are $\pm i$, we see that the eigenvalues of the forward Euler matrix are $1 \pm i$. Since the absolute value of the eigenvalues is greater than 1, we expect **growing** solutions - i.e. the solution will spiral away from the unit circle. ```python import scipy.linalg as la ``` ```python def f_euler(A, u, N): orbit = np.zeros((N,2)) dt = 2*np.pi/N for i in range(N): u = u + dt * A @ u orbit[i] = u return orbit ``` ```python A = np.array([[0,1],[-1,0]]) u = np.array([1.0,0.0]) N = 64 orbit = f_euler(A, u, N) ``` ##### Accuracy ```python la.norm(np.array([1.0,0.0]) - orbit[-1]) ``` 0.3600318484671193 ##### Conservation of energy ```python plt.plot([p @ p for p in orbit]) pass ``` ```python ax = plt.subplot(111) plt.plot(orbit[:, 0], orbit[:,1], 'o') ax.axis('square') plt.axis([-1.5, 1.5, -1.5, 1.5]) pass ``` ##### Accuracy and conservation of energy We can see that forward Euler is not very accurate and also does not preserve energy since the orbit spirals away from the unit circle. #### The trapezoidal method The trapezoidal method uses the following scheme $$ \frac{u_{n+1} - u_n}{\Delta t} = \frac{1}{2} ( A u_{n+1} + A u_{n}) $$ This is an implicit scheme (because $u_{n+1}$ appears on the RHS) whose solution is $$ u_{n+1} = \left(I - \frac{\Delta t}{2} A \right)^{-1} \left(I + \frac{\Delta t}{2} A \right) u_{n} = B u_n $$ By inspection, we see that the eigenvalues are the complex conjugates of $$ \frac{1 + \frac{\Delta t}{2} i}{1 - \frac{\Delta t}{2} i} $$ whose absolute value is 1 - hence, energy is conserved. If we expand the matrix $B$ using the geometric series and compare with the Taylor expansion, we see that the trapezoidal method has local truncation error $O(h^3)$ and hence accuracy $O(h^2)$, where $h$ is the time step. ```python def trapezoidal(A, u, N): p = len(u) orbit = np.zeros((N,p)) dt = 2*np.pi/N for i in range(N): u = la.inv(np.eye(p) - dt/2 * A) @ (np.eye(p) + dt/2 * A) @ u orbit[i] = u return orbit ``` ```python A = np.array([[0,1],[-1,0]]) u = np.array([1.0,0.0]) N = 64 orbit = trapezoidal(A, u, N) ``` ##### Accuracy ```python la.norm(np.array([1.0,0.0]) - orbit[-1]) ``` 0.005039305635733781 ##### Conservation of energy ```python plt.plot([p @ p for p in orbit]) pass ``` ```python ax = plt.subplot(111) plt.plot(orbit[:, 0], orbit[:,1], 'o') ax.axis('square') plt.axis([-1.5, 1.5, -1.5, 1.5]) pass ``` #### The leapfrog method The leapfrog method uses a second order difference to update $u_n$. The algorithm simplifies to the following explicit scheme: - First take one half-step for v - Then take a full step for u - Then take one final half step for v It performs as well as the trapezoidal method, with the advantage of being an explicit scheme and cheaper to calculate, so the leapfrog method is used in HMC. ```python def leapfrog(A, u, N): orbit = np.zeros((N,2)) dt = 2*np.pi/N for i in range(N): u[1] = u[1] + dt/2 * A[1] @ u u[0] = u[0] + dt * A[0] @ u u[1] = u[1] + dt/2 * A[1] @ u orbit[i] = u return orbit ``` ##### If we don't care about the intermediate steps, it is more efficient to just take 1/2 steps at the beginning and end ```python def leapfrog2(A, u, N): dt = 2*np.pi/N u[1] = u[1] + dt/2 * A[1] @ u for i in range(N-1): u[0] = u[0] + dt * A[0] @ u u[1] = u[1] + dt * A[1] @ u u[0] = u[0] + dt * A[0] @ u u[1] = u[1] + dt/2 * A[1] @ u return u ``` ```python A = np.array([[0,1],[-1,0]]) u = np.array([1.0,0.0]) N = 64 ``` ```python orbit = leapfrog(A, u, N) ``` ##### Accuracy ```python la.norm(np.array([1.0,0.0]) - orbit[-1]) ``` 0.0025229913808033464 ##### Conservation of energy ```python plt.plot([p @ p for p in orbit]) pass ``` ```python ax = plt.subplot(111) plt.plot(orbit[:, 0], orbit[:,1], 'o') ax.axis('square') plt.axis([-1.5, 1.5, -1.5, 1.5]) pass ``` ### From Hamiltonians to probability distributions The physical analogy considers the negative log likelihood of the target distribution $p(x)$ to correspond to a potential energy well, with a collection of particles moving on the surface of the well. The state of each particle is given only by its position and momentum (or velocity if we assume unit mass for each particle). In a Hamiltonian system, the total energy $H(x,, v) = U(x) + K(v)$ is conserved. From statistical mechanics, the probability of each state is related to the total energy of the system $$ \begin{align} p(x, v) & \propto e^{-H(x, v)} \\ &= e^{-U(x) - K(v)} \\ &= e^{-P(x)}e^{-K(v)} \\ & \propto p(x) \, p(v) \end{align} $$ Since the joint distribution factorizes $p(x, v) = p(x)\, p(v)$, we can select an initial random $v$ for a particle, numerically integrate using a finite difference method such as the leapfrog and then use the updated $x^*$ as the new proposal. The acceptance ratio for the new $x^*$ is $$ \frac{ e^{ -U(x^*)-K(v^*) }} { e^{-U(x)-K(v)} } = e^{U(x)-U(x^*)+K(x)-K(x^*)} $$ If our finite difference scheme was exact, the acceptance ration would be 1 since energy is conserved with Hamiltonian dynamics. However, as we have seen, the leapfrog method does not conserve energy perfectly and an accept/reject step is still needed. #### Example of HMC We will explore how HMC works when the target distribution is bivariate normal centered at zero $$ x \sim N(0, \Sigma) $$ In practice of course, the target distribution will be the posterior distribution and depend on both data and distributional parameters. The potential energy or negative log likelihood is proportional to $$ U(x) = \frac{x^T\Sigma^{-1} x}{2} $$ The kinetic energy is given by $$ K(v) = \frac{v^T v}{2} $$ where the initial $v_0$ is chosen at random from the unit normal at each step. To find the time updates, we use the Hamiltonian equations and find the first derivatives of total energy with respect to $x$ and $v$ $$ \begin{align} x' &= \frac{\delta K}{\delta v} &= v \\ v' &= -\frac{\delta U}{\delta x} &= -\Sigma^{-1} x \\ \end{align} $$ giving us the block matrix $$ A = \pmatrix{0 & 1 \\ -\Sigma^{-1} & 0} $$ By using the first derivatives, we are making use of the gradient information on the log posterior to guide the proposal distribution. ##### This is what the target distribution should look like ```python sigma = np.array([[1,0.8],[0.8,1]]) mu = np.zeros(2) ys = np.random.multivariate_normal(mu, sigma, 1000) sns.kdeplot(ys[:,0], ys[:,1]) plt.axis([-3.5,3.5,-3.5,3.5]) pass ``` ##### This is the HMC posterior ```python def E(A, u0, v0, u, v): """Total energy.""" return (u0 @ tau @ u0 + v0 @ v0) - (u @ tau@u + v @ v) ``` ```python def leapfrog(A, u, v, h, N): """Leapfrog finite difference scheme.""" v = v - h/2 * A @ u for i in range(N-1): u = u + h * v v = v - h * A @ u u = u + h * v v = v - h/2 * A @ u return u, v ``` ```python niter = 100 h = 0.01 N = 100 tau = la.inv(sigma) orbit = np.zeros((niter+1, 2)) u = np.array([-3,3]) orbit[0] = u for k in range(niter): v0 = np.random.normal(0,1,2) u, v = leapfrog(tau, u, v0, h, N) # accept-reject u0 = orbit[k] a = np.exp(E(A, u0, v0, u, v)) r = np.random.rand() if r < a: orbit[k+1] = u else: orbit[k+1] = u0 ``` ```python sns.kdeplot(orbit[:, 0], orbit[:, 1]) plt.plot(orbit[:,0], orbit[:,1], alpha=0.2) plt.scatter(orbit[:1,0], orbit[:1,1], c='red', s=30) plt.scatter(orbit[1:,0], orbit[1:,1], c=np.arange(niter)[::-1], cmap='Reds') plt.axis([-3.5,3.5,-3.5,3.5]) pass ``` ```python ```
e90c194b43abf48b977c5d176ec0f5c40e905115
197,176
ipynb
Jupyter Notebook
notebooks/S10E_HMC.ipynb
taotangtt/sta-663-2018
67dac909477f81d83ebe61e0753de2328af1be9c
[ "BSD-3-Clause" ]
null
null
null
notebooks/S10E_HMC.ipynb
taotangtt/sta-663-2018
67dac909477f81d83ebe61e0753de2328af1be9c
[ "BSD-3-Clause" ]
null
null
null
notebooks/S10E_HMC.ipynb
taotangtt/sta-663-2018
67dac909477f81d83ebe61e0753de2328af1be9c
[ "BSD-3-Clause" ]
null
null
null
218.356589
58,620
0.905972
true
4,356
Qwen/Qwen-72B
1. YES 2. YES
0.855851
0.874077
0.74808
__label__eng_Latn
0.990691
0.576373
<h1> Data Transformation </h1> ## Logistic Regression - on [Titanic Dataset](https://www.kaggle.com/c/titanic) - Models the probability an object belongs to a class - Values ranges from 0 to 1 - Can use threshold to classify into which classes a class belongs - An S-shaped curve $ \begin{align} \sigma(t) = \frac{1}{1 + e^{-t}} \end{align} $ #### Read the data ```python import pandas as pd df_train = pd.read_csv('../data/titanic_train.csv') ``` ```python df_train.head(8) ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>PassengerId</th> <th>Survived</th> <th>Pclass</th> <th>Name</th> <th>Sex</th> <th>Age</th> <th>SibSp</th> <th>Parch</th> <th>Ticket</th> <th>Fare</th> <th>Cabin</th> <th>Embarked</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1</td> <td>0</td> <td>3</td> <td>Braund, Mr. Owen Harris</td> <td>male</td> <td>22.0</td> <td>1</td> <td>0</td> <td>A/5 21171</td> <td>7.2500</td> <td>NaN</td> <td>S</td> </tr> <tr> <th>1</th> <td>2</td> <td>1</td> <td>1</td> <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td> <td>female</td> <td>38.0</td> <td>1</td> <td>0</td> <td>PC 17599</td> <td>71.2833</td> <td>C85</td> <td>C</td> </tr> <tr> <th>2</th> <td>3</td> <td>1</td> <td>3</td> <td>Heikkinen, Miss. Laina</td> <td>female</td> <td>26.0</td> <td>0</td> <td>0</td> <td>STON/O2. 3101282</td> <td>7.9250</td> <td>NaN</td> <td>S</td> </tr> <tr> <th>3</th> <td>4</td> <td>1</td> <td>1</td> <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td> <td>female</td> <td>35.0</td> <td>1</td> <td>0</td> <td>113803</td> <td>53.1000</td> <td>C123</td> <td>S</td> </tr> <tr> <th>4</th> <td>5</td> <td>0</td> <td>3</td> <td>Allen, Mr. William Henry</td> <td>male</td> <td>35.0</td> <td>0</td> <td>0</td> <td>373450</td> <td>8.0500</td> <td>NaN</td> <td>S</td> </tr> <tr> <th>5</th> <td>6</td> <td>0</td> <td>3</td> <td>Moran, Mr. James</td> <td>male</td> <td>NaN</td> <td>0</td> <td>0</td> <td>330877</td> <td>8.4583</td> <td>NaN</td> <td>Q</td> </tr> <tr> <th>6</th> <td>7</td> <td>0</td> <td>1</td> <td>McCarthy, Mr. Timothy J</td> <td>male</td> <td>54.0</td> <td>0</td> <td>0</td> <td>17463</td> <td>51.8625</td> <td>E46</td> <td>S</td> </tr> <tr> <th>7</th> <td>8</td> <td>0</td> <td>3</td> <td>Palsson, Master. Gosta Leonard</td> <td>male</td> <td>2.0</td> <td>3</td> <td>1</td> <td>349909</td> <td>21.0750</td> <td>NaN</td> <td>S</td> </tr> </tbody> </table> </div> ## Data Statistics #### Describing the statistics for numerical features ```python df_train.describe() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>PassengerId</th> <th>Survived</th> <th>Pclass</th> <th>Age</th> <th>SibSp</th> <th>Parch</th> <th>Fare</th> </tr> </thead> <tbody> <tr> <th>count</th> <td>891.000000</td> <td>891.000000</td> <td>891.000000</td> <td>714.000000</td> <td>891.000000</td> <td>891.000000</td> <td>891.000000</td> </tr> <tr> <th>mean</th> <td>446.000000</td> <td>0.383838</td> <td>2.308642</td> <td>29.699118</td> <td>0.523008</td> <td>0.381594</td> <td>32.204208</td> </tr> <tr> <th>std</th> <td>257.353842</td> <td>0.486592</td> <td>0.836071</td> <td>14.526497</td> <td>1.102743</td> <td>0.806057</td> <td>49.693429</td> </tr> <tr> <th>min</th> <td>1.000000</td> <td>0.000000</td> <td>1.000000</td> <td>0.420000</td> <td>0.000000</td> <td>0.000000</td> <td>0.000000</td> </tr> <tr> <th>25%</th> <td>223.500000</td> <td>0.000000</td> <td>2.000000</td> <td>20.125000</td> <td>0.000000</td> <td>0.000000</td> <td>7.910400</td> </tr> <tr> <th>50%</th> <td>446.000000</td> <td>0.000000</td> <td>3.000000</td> <td>28.000000</td> <td>0.000000</td> <td>0.000000</td> <td>14.454200</td> </tr> <tr> <th>75%</th> <td>668.500000</td> <td>1.000000</td> <td>3.000000</td> <td>38.000000</td> <td>1.000000</td> <td>0.000000</td> <td>31.000000</td> </tr> <tr> <th>max</th> <td>891.000000</td> <td>1.000000</td> <td>3.000000</td> <td>80.000000</td> <td>8.000000</td> <td>6.000000</td> <td>512.329200</td> </tr> </tbody> </table> </div> #### Find the count of the non-NaN values per feature ```python df_train.count() ``` PassengerId 891 Survived 891 Pclass 891 Name 891 Sex 891 Age 714 SibSp 891 Parch 891 Ticket 891 Fare 891 Cabin 204 Embarked 889 dtype: int64 ## What features can be removed? ### Remove features that are not related to your outcome ```python df_train.drop(['Name', 'Ticket'], axis=1, inplace=True) ``` ### Remove column with missing data ```python df_train.drop(['Cabin'], axis=1, inplace=True) ``` ## Data Imputation - Filling in missing values - Select a percentage threshold that you would want to accomodate - Around 1/5th to 1/3rd of the data (20% to 33.3%) - if more than 50% of the data is missing, you will be generating data for the majority of your dataset - Not a good thing to do ```python from matplotlib import pyplot as plt import seaborn as sns plt.figure(figsize=(7,5)) sns.boxplot(x='Pclass',y='Age',data=df_train) ``` ```python from matplotlib import pyplot as plt import seaborn as sns plt.figure(figsize=(7,5)) sns.boxplot(x='Sex',y='Age',data=df_train) ``` ```python from matplotlib import pyplot as plt import seaborn as sns plt.figure(figsize=(7,5)) sns.boxplot(x='Embarked',y='Age',data=df_train) ``` ```python def add_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): return int(df_train[df_train["Pclass"] == Pclass]["Age"].mean()) else: return Age ``` ```python df_train['Age'] = df_train[['Age', 'Pclass']].apply(add_age,axis=1) ``` ```python df_train.count() ``` PassengerId 891 Survived 891 Pclass 891 Sex 891 Age 891 SibSp 891 Parch 891 Fare 891 Embarked 889 dtype: int64 ### Drop Rows ```python df_train.dropna(inplace=True) ``` ```python df_train.count() ``` PassengerId 889 Survived 889 Pclass 889 Sex 889 Age 889 SibSp 889 Parch 889 Fare 889 Embarked 889 dtype: int64 ## Categorical to Numerical #### Convert the categorical values to numeric - Find the columns that are explicitly categorical - like male, female - Find the columns that are although numerical, represent categorical features ### One-Hot Encoding - A technique to create multiple feature for each corrsponding value ```python import numpy as np col = 'Sex' print(np.unique(df_train[col])) ``` ['female' 'male'] ```python import numpy as np col = 'Embarked' print(np.unique(df_train[col])) ``` ['C' 'Q' 'S'] ```python import numpy as np col = 'Pclass' print(np.unique(df_train[col])) ``` [1 2 3] #### pd.get_dummies() ```python # sex = pd.get_dummies(df_train["Sex"],drop_first=True) # embarked = pd.get_dummies(df_train["Embarked"],drop_first=True) # pclass = pd.get_dummies(df_train["Pclass"],drop_first=True) sex = pd.get_dummies(df_train["Sex"]) embarked = pd.get_dummies(df_train["Embarked"]) pclass = pd.get_dummies(df_train["Pclass"]) ``` ### Drop the columns that were used for transformation ```python df_train.drop(['Sex', 'Embarked', 'Pclass', 'PassengerId'], axis=1, inplace=True) ``` ```python df_train.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Survived</th> <th>Age</th> <th>SibSp</th> <th>Parch</th> <th>Fare</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>22.0</td> <td>1</td> <td>0</td> <td>7.2500</td> </tr> <tr> <th>1</th> <td>1</td> <td>38.0</td> <td>1</td> <td>0</td> <td>71.2833</td> </tr> <tr> <th>2</th> <td>1</td> <td>26.0</td> <td>0</td> <td>0</td> <td>7.9250</td> </tr> <tr> <th>3</th> <td>1</td> <td>35.0</td> <td>1</td> <td>0</td> <td>53.1000</td> </tr> <tr> <th>4</th> <td>0</td> <td>35.0</td> <td>0</td> <td>0</td> <td>8.0500</td> </tr> </tbody> </table> </div> ### Add encoded columns to the training dataset ```python df_train = pd.concat([df_train,pclass,sex,embarked],axis=1) ``` ```python df_train.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Survived</th> <th>Age</th> <th>SibSp</th> <th>Parch</th> <th>Fare</th> <th>1</th> <th>2</th> <th>3</th> <th>female</th> <th>male</th> <th>C</th> <th>Q</th> <th>S</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>0</td> <td>22.0</td> <td>1</td> <td>0</td> <td>7.2500</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>1</th> <td>1</td> <td>38.0</td> <td>1</td> <td>0</td> <td>71.2833</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <th>2</th> <td>1</td> <td>26.0</td> <td>0</td> <td>0</td> <td>7.9250</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>3</th> <td>1</td> <td>35.0</td> <td>1</td> <td>0</td> <td>53.1000</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>4</th> <td>0</td> <td>35.0</td> <td>0</td> <td>0</td> <td>8.0500</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> </div> # Save the transformed file as a pickle file ```python df_train.shape ``` (889, 13) ```python import pickle as pkl df_train.to_pickle('../data/titanic_tansformed.pkl') ``` ## Logistic Regression ```python data = df_train.drop("Survived",axis=1) label = df_train["Survived"] ``` ```python data.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Age</th> <th>SibSp</th> <th>Parch</th> <th>Fare</th> <th>1</th> <th>2</th> <th>3</th> <th>female</th> <th>male</th> <th>C</th> <th>Q</th> <th>S</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>22.0</td> <td>1</td> <td>0</td> <td>7.2500</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>1</th> <td>38.0</td> <td>1</td> <td>0</td> <td>71.2833</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> </tr> <tr> <th>2</th> <td>26.0</td> <td>0</td> <td>0</td> <td>7.9250</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>3</th> <td>35.0</td> <td>1</td> <td>0</td> <td>53.1000</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> </tr> <tr> <th>4</th> <td>35.0</td> <td>0</td> <td>0</td> <td>8.0500</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> </tr> </tbody> </table> </div> ```python from sklearn.cross_validation import train_test_split data_train, data_test, label_train, label_test = train_test_split(data, label, test_size = 0.3, random_state = 101) ``` /Users/talat/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20. "This module will be removed in 0.20.", DeprecationWarning) ```python from sklearn.linear_model import LogisticRegression # Run Logistic Regression log_regr = LogisticRegression() log_regr.fit(data_train, label_train) predictions = log_regr.predict(data_test) ``` ### Accuracy ```python print('Accuracy', log_regr.score(data_test, label_test)) print('Coefficients', log_regr.coef_) print('Intercept', log_regr.intercept_) ``` Accuracy 0.8277153558052435 Coefficients [[-0.03855005 -0.24328718 -0.10076536 0.00231142 1.18429317 0.2997331 -0.8678696 1.56887514 -0.95271847 0.39520621 0.20701836 0.0139321 ]] Intercept [0.61615666] ### Precision Recall ```python from sklearn.metrics import classification_report print(classification_report(label_test, predictions)) ``` precision recall f1-score support 0 0.82 0.92 0.87 163 1 0.85 0.68 0.76 104 avg / total 0.83 0.83 0.82 267 ## Cross Validation ```python from sklearn.model_selection import StratifiedKFold from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score # skf = StratifiedKFold(n_splits=5) log_regr = LogisticRegression() log_regr.fit(data_train, label_train) score = log_regr.score(data_train, label_train) print('Train accuracy score', score) score_cv = cross_val_score(log_regr, data_train, label_train, cv=10, scoring='accuracy') print('Cross Val Accuracy for each run', score_cv) print('CrossVal Accuracy', score_cv.mean()) ``` Train accuracy score 0.8086816720257235 Cross Val Accuracy for each run [0.76190476 0.6984127 0.79365079 0.87301587 0.80952381 0.77777778 0.78688525 0.81967213 0.91803279 0.7704918 ] CrossVal Accuracy 0.8009367681498828 ## AUC - Receiver Operating Characteristics - How much a model is capable of distinguishing between classes - Higher the AUC, better the model is $ \begin{align} True Positive Rate = \frac{TP}{TP + FN} \end{align} $ <br> $ \begin{align} \ False Positive Rate = 1 - \frac{TN}{TN + FP} = \frac{FP}{TN + FP} \end{align} $ ```python from sklearn import metrics fpr, tpr, threshold = metrics.roc_curve(label_test, log_regr.predict(data_test)) roc_auc = metrics.auc(fpr, tpr) print('AUCROC Stage1 vs Healthy: ' , roc_auc) ``` AUCROC Stage1 vs Healthy: 0.8014688532326569 ```python import matplotlib.pyplot as plt plt.title('Receiver Operating Characteristic') plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show() ``` ```python ```
cd8438a471ec419fb1ff2f5b36aacce015db6ceb
86,419
ipynb
Jupyter Notebook
classification/notebooks/04 - Data Transformation.ipynb
pshn111/Machine-Learning-Package
fbbaa44daf5f0701ea77e5b62eb57ef822e40ab2
[ "MIT" ]
null
null
null
classification/notebooks/04 - Data Transformation.ipynb
pshn111/Machine-Learning-Package
fbbaa44daf5f0701ea77e5b62eb57ef822e40ab2
[ "MIT" ]
null
null
null
classification/notebooks/04 - Data Transformation.ipynb
pshn111/Machine-Learning-Package
fbbaa44daf5f0701ea77e5b62eb57ef822e40ab2
[ "MIT" ]
null
null
null
56.96704
20,888
0.700321
true
6,430
Qwen/Qwen-72B
1. YES 2. YES
0.928409
0.810479
0.752456
__label__eng_Latn
0.238335
0.586539
# Image compression for acoustic transmissions. ```python __author__ = 'andrea munafo' ``` This notebook investigates some image compression methods using neural networks. The point is to obtain a dimentionality reduction that can be supported over very bandwidth constrained media, such as acoustics. This description of autoencoders is based on [Understanding Variational Autoencoders]( https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73), on [Autoencoding Variational Bayes](https://arxiv.org/pdf/1312.6114.pdf) and on [Tutorial on variational autoencoders](https://arxiv.org/abs/1606.05908). and is reported here to provide a description for the implementation reported below. All implementations are applied to the MNIST dataset. ## What is dimentionality reduction? Dimensionality reduction is the process of reducing the number of features that describe some data. This reduction can be done, either selecting specific features or by reducing to a new set of features created from the original ones (feature extraction). Applications range from data visualisation, data storage, heavy computation and communications. First, let’s call encoder the process that produce the “new features” representation from the “old features” representation (by selection or by extraction) and decoder the reverse process. Dimensionality reduction can then be interpreted as data compression where the encoder compress the data (from the initial space to the encoded space, also called latent space) whereas the decoder decompress them. Of course, depending on the initial data distribution, the latent space dimension and the encoder definition, this compression can be lossy, meaning that a part of the information is lost during the encoding process and cannot be recovered when decoding. The problem can be formulated as finding the optimal encoder $e$ in the set of possible encoders $E$, and the optimal decoder $d$, in the set of possible dencoders $D$, such that: $(e*,d*) = argmin f(x, d(e(x))$ where $e \in E$, $d \in D$, and $f(.)$ is the function that defines the reconstruction error measure between the input data $x$ and the encoded-decoded data $d(e(x))$. One way to solve this problem is using Principal Components Analysis (PCA). The idea of PCA is to build $n_e$ new features that are linear combinations of the $n_d$ original features. This is done so that the projections of the original data on the subspace defined by these new features are as close as possible to the initial data (in term of euclidean distance). This is shown in the figure below: For example, the encoded version of point B is obtained as the projection of B onto the line that minimises the distance from all the points. It can be shown that, the unitary eigenvectors corresponding to the $n_e$ greatest eigenvalues (in norm) of the covariance features matrix C are orthogonal (or can be chosen to be so) and define the best subspace of dimension $n_e$ to project data on with minimal error of approximation. These $n_e$ eigenvectors can then be chosen as the new features. In the PCA context, the problem of dimension reduction can be expressed as an eigenvalue/eigenvector problem. Moreover, it can also be shown that the decoder matrix is the transposed of the encoder matrix. Encoding and decoding matrices obtained with PCA define one of the solutions. However, several basis can be chosen to describe the same optimal subspace and, so, several encoder/decoder pairs can give the optimal reconstruction error. Now, let’s assume that both the encoder and the decoder are deep and non-linear. In such case, the more complex the architecture is, the more the autoencoder can proceed to a high dimensionality reduction while keeping reconstruction loss low. Intuitively, if our encoder and our decoder have enough degrees of freedom, we can reduce any initial dimensionality to 1. Indeed, an encoder with “infinite power” could theoretically takes our N initial data points and encodes them as 1, 2, 3, … up to N (or more generally, as N integer on the real axis) and the associated decoder could make the reverse transformation, with no loss during the process. Here, we should however keep two things in mind. First, an important dimensionality reduction with no reconstruction loss often comes with a price: the lack of interpretable and exploitable structures in the latent space (lack of regularity). Second, most of the time the final purpose of dimensionality reduction is not to only reduce the number of dimensions of the data but to reduce this number of dimensions while keeping the major part of the data structure information in the reduced representations. For these two reasons, the dimension of the latent space and the “depth” of autoencoders (that define degree and quality of compression) have to be carefully controlled and adjusted depending on the final purpose of the dimensionality reduction. The concept is shown in the picture below. We would like to reduce the dimentionality, while keeping some of the structure of the data. # Autoencoders ```python import os import pylab as plt import numpy as np import torch import torchvision from torch import nn from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import MNIST from torchvision.utils import save_image ``` ```python print(torch.__version__) ``` 1.3.0 ```python import pathlib pathlib.Path("../results/01-autoencoder/ae").mkdir(parents=True, exist_ok=True) pathlib.Path("../results/01-autoencoder/convae").mkdir(parents=True, exist_ok=True) pathlib.Path("../results/01-autoencoder/vae").mkdir(parents=True, exist_ok=True) pathlib.Path("../saved-mdls/01-autoencoder").mkdir(parents=True, exist_ok=True) ``` ```python num_epochs = 100 batch_size = 64 learning_rate = 1e-3 device = 'cuda' ``` ```python def toImg(x, mu=0.5, std=1): """Converts x to an image shape. It works for batches of inputs.""" x = mu * (x + std) x = x.clamp(0, 1) x = x.view(x.size(0), 1, 28, 28) return x ``` ## Get the data ### Define some transforms to normalise the images ```python ds_mean = 0.1307 ds_std = 0.3081 img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((ds_mean,), (ds_std,)) # The first tuple (0.5, 0.5, 0.5) is the mean for all three channels and the second (0.5, 0.5, 0.5) is the standard deviation for all three channels. ]) ``` ### Grab the dataset ```python train_ds = MNIST('./data', train=True, transform=img_transform, download=True) valid_ds = MNIST('./data', train=False, transform=img_transform, download=True) ``` Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to ./data/MNIST/raw/train-images-idx3-ubyte.gz 100.1% Extracting ./data/MNIST/raw/train-images-idx3-ubyte.gz to ./data/MNIST/raw Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to ./data/MNIST/raw/train-labels-idx1-ubyte.gz 113.5% Extracting ./data/MNIST/raw/train-labels-idx1-ubyte.gz to ./data/MNIST/raw Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw/t10k-images-idx3-ubyte.gz 100.4% Extracting ./data/MNIST/raw/t10k-images-idx3-ubyte.gz to ./data/MNIST/raw Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz 180.4% Extracting ./data/MNIST/raw/t10k-labels-idx1-ubyte.gz to ./data/MNIST/raw Processing... Done! ```python # plt.imshow(train_ds.data[1]) ``` ```python train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=batch_size, shuffle=True) ``` ## Define the model Defining an Autoencoder model is not difficult. The following class shows one potential option as a combination of Linear and ReLU layers. ```python class Autoencoder(nn.Module): def __init__(self): super(Autoencoder, self).__init__() self.encoder = nn.Sequential( nn.Linear(28 * 28, 128), nn.ReLU(True), nn.Linear(128, 64), nn.ReLU(True), nn.Linear(64, 12), nn.ReLU(True), nn.Linear(12, 3)) self.decoder = nn.Sequential( nn.Linear(3, 12), nn.ReLU(True), nn.Linear(12, 64), nn.ReLU(True), nn.Linear(64, 128), nn.ReLU(True), nn.Linear(128, 28 * 28), nn.Tanh()) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x def encode(self, x): x = self.encoder(x) return x def decode(self, x): x = self.decoder(x) return x ``` ## Train the model ```python model = Autoencoder() ``` ```python loss_fn = nn.MSELoss() optimizer = torch.optim.Adam( model.parameters(), lr=learning_rate, weight_decay=1e-5) ``` ```python if device == 'cuda': model.cuda() ``` ```python for epoch in range(num_epochs): for x, y in train_dl: x = x.view(x.size(0), -1).to(device) # resize to be a vector bsx28*28 # x = Variable(x).cuda() output = model(x) loss = loss_fn(output, x) optimizer.zero_grad() loss.backward() optimizer.step() print('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, num_epochs, loss.data)) if epoch % 10 == 0: ipic = toImg(x.cpu().data) opic = toImg(output.cpu().data) save_image(opic, '../results/ae/image_{}_o.png'.format(epoch)) save_image(ipic, '../results/ae/image_{}_i.png'.format(epoch)) ``` epoch [1/100], loss:0.5602 epoch [2/100], loss:0.5473 epoch [3/100], loss:0.5371 epoch [4/100], loss:0.5408 epoch [5/100], loss:0.4876 epoch [6/100], loss:0.4854 epoch [7/100], loss:0.4918 epoch [8/100], loss:0.5050 epoch [9/100], loss:0.5683 epoch [10/100], loss:0.4808 epoch [11/100], loss:0.4911 epoch [12/100], loss:0.4622 epoch [13/100], loss:0.5145 epoch [14/100], loss:0.5030 epoch [15/100], loss:0.4437 epoch [16/100], loss:0.5159 epoch [17/100], loss:0.5257 epoch [18/100], loss:0.4939 epoch [19/100], loss:0.4832 epoch [20/100], loss:0.4450 epoch [21/100], loss:0.4416 epoch [22/100], loss:0.4433 epoch [23/100], loss:0.4908 epoch [24/100], loss:0.4583 epoch [25/100], loss:0.4830 epoch [26/100], loss:0.4803 epoch [27/100], loss:0.4719 epoch [28/100], loss:0.4317 epoch [29/100], loss:0.4332 epoch [30/100], loss:0.5100 epoch [31/100], loss:0.4836 epoch [32/100], loss:0.4686 epoch [33/100], loss:0.4797 epoch [34/100], loss:0.5120 epoch [35/100], loss:0.4823 epoch [36/100], loss:0.4763 epoch [37/100], loss:0.4901 epoch [38/100], loss:0.4556 epoch [39/100], loss:0.4851 epoch [40/100], loss:0.4474 epoch [41/100], loss:0.4293 epoch [42/100], loss:0.4440 epoch [43/100], loss:0.4943 epoch [44/100], loss:0.5166 epoch [45/100], loss:0.5518 epoch [46/100], loss:0.5341 epoch [47/100], loss:0.5265 epoch [48/100], loss:0.5320 epoch [49/100], loss:0.4872 epoch [50/100], loss:0.4489 epoch [51/100], loss:0.5037 epoch [52/100], loss:0.4680 epoch [53/100], loss:0.4607 epoch [54/100], loss:0.4225 epoch [55/100], loss:0.4512 epoch [56/100], loss:0.5028 epoch [57/100], loss:0.4769 epoch [58/100], loss:0.5159 epoch [59/100], loss:0.4600 epoch [60/100], loss:0.4927 epoch [61/100], loss:0.4544 epoch [62/100], loss:0.4826 epoch [63/100], loss:0.5090 epoch [64/100], loss:0.5271 epoch [65/100], loss:0.5107 epoch [66/100], loss:0.4235 epoch [67/100], loss:0.4578 epoch [68/100], loss:0.4514 epoch [69/100], loss:0.4575 epoch [70/100], loss:0.4789 epoch [71/100], loss:0.4688 epoch [72/100], loss:0.5022 epoch [73/100], loss:0.4651 epoch [74/100], loss:0.4402 epoch [75/100], loss:0.4553 epoch [76/100], loss:0.5108 epoch [77/100], loss:0.4504 epoch [78/100], loss:0.4580 epoch [79/100], loss:0.5241 epoch [80/100], loss:0.4497 epoch [81/100], loss:0.4625 epoch [82/100], loss:0.4352 epoch [83/100], loss:0.5229 epoch [84/100], loss:0.5016 epoch [85/100], loss:0.4678 epoch [86/100], loss:0.4940 epoch [87/100], loss:0.4866 epoch [88/100], loss:0.5085 epoch [89/100], loss:0.4982 epoch [90/100], loss:0.4447 epoch [91/100], loss:0.4906 epoch [92/100], loss:0.4760 epoch [93/100], loss:0.4070 epoch [94/100], loss:0.4130 epoch [95/100], loss:0.4456 epoch [96/100], loss:0.4077 epoch [97/100], loss:0.4823 epoch [98/100], loss:0.4681 epoch [99/100], loss:0.4975 epoch [100/100], loss:0.4695 We are now done training. We can save the model so that we can use it later on. ```python # As suggested in https://pytorch.org/tutorials/beginner/saving_loading_models.html torch.save(model, '../saved-mdls/01-autoencoder/autoencoder_{}e.pt'.format(epoch+1)) ``` /opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:256: UserWarning: Couldn't retrieve source code for container of type Autoencoder. It won't be checked for correctness upon loading. "type " + obj.__name__ + ". It won't be checked " # Using and validating the simple autoencoder ```python # Model class must be defined somewhere model = torch.load('../saved-mdls/01-autoencoder/autoencoder.pt') model.eval() ``` ```python for count, (x, _) in enumerate(valid_dl): x = x.view(x.size(0), -1) encoding = model.encode(x) decoding = model.decode(encoding) # save (some) results if count % 10 == 0: ipic = to_img(x.cpu().data) opic = to_img(decoding.cpu().data) save_image(ipic, '../results/01-autoencoder/ae/val-{}-enc.png'.format(count)) save_image(opic, '../results/01-autoencoder/ae/val-{}-dec.png'.format(count)) ``` Let's see how each image was encoded. The next line prints the encodings for the last batch. ```python print('encoded output: {}'.format(encoding.detach().cpu().numpy())) ``` If we want to analyse the results inline we can grab the encoding/decoding variables and play with them. ```python idx = 0 ``` ```python plt.imshow(decoding[idx].cpu().data.view(28, 28)) ``` ```python f, axarr = plt.subplots(1,2) axarr[0].imshow(x[idx].cpu().data.view(28,28)) axarr[1].imshow(decoding[idx].cpu().data.view(28, 28)) ``` ## Encoding / Decoding single images To do this, I am going to use the validation set again, but one can do the same with any image. ```python model.eval() ``` Autoencoder( (encoder): Sequential( (0): Linear(in_features=784, out_features=128, bias=True) (1): ReLU(inplace) (2): Linear(in_features=128, out_features=64, bias=True) (3): ReLU(inplace) (4): Linear(in_features=64, out_features=12, bias=True) (5): ReLU(inplace) (6): Linear(in_features=12, out_features=3, bias=True) ) (decoder): Sequential( (0): Linear(in_features=3, out_features=12, bias=True) (1): ReLU(inplace) (2): Linear(in_features=12, out_features=64, bias=True) (3): ReLU(inplace) (4): Linear(in_features=64, out_features=128, bias=True) (5): ReLU(inplace) (6): Linear(in_features=128, out_features=784, bias=True) (7): Tanh() ) ) ```python idx = 1001 # select an index in the validation set ``` ```python # Define the transforms to normalise the image pic_tt = transforms.ToTensor() # Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] pic_n = transforms.Normalize((ds_mean,), (ds_std,)) if torch.__version__ != '1.3.0': pic_data = valid_ds.test_data[idx].numpy() pic_data = pic_data[:, :, None] # (H x W x C) print('pic_data.dtype: {}'.format(pic_data.dtype)) else: pic_data = valid_ds.data[idx].numpy() pic = pic_tt(pic_data) pic = pic_n(pic) # print stats print('pic mean: {}, std: {}'.format(pic.mean(), pic.std())) # print pic shape print('\npic shape (C x H x W): {}'.format(pic.shape)) ``` pic_data.dtype: uint8 pic mean: 0.02145381271839142, std: 1.0174704790115356 pic shape (C x H x W): torch.Size([1, 28, 28]) ```python plt.imshow(pic.view(28,28)) ``` ### Run the model to encode ```python encoding = model.encode(pic.to(device).view(1, -1)) # note that we need to reshape the pic to be: bsx28*28 # print encoding result print('encoded output: {}'.format(encoding.detach().cpu().numpy())) ``` encoded output: [[-9.222232 9.739955 -7.7938967]] ### Run the decoder and show the result ```python decoding = model.decode(encoding) ``` ```python plt.imshow(decoding.cpu().data.view(28, 28)) ``` ## Generating new images ```python encoding = torch.tensor([ [17., -10., +0.]]) decoding = model.decode(encoding) plt.imshow(decoding.cpu().data.view(28, 28)) ``` # Convolutional Autoencoders Alternatively, one can define a Convolutional Autoencoder, where the network is composed of a sequence of convolutional layers. ```python class ConvAutoencoder(nn.Module): def __init__(self): super(ConvAutoencoder, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 16, 3, stride=3, padding=1), # b, 16, 10, 10 nn.ReLU(True), nn.MaxPool2d(2, stride=2), # b, 16, 5, 5 nn.Conv2d(16, 8, 3, stride=2, padding=1), # b, 8, 3, 3 nn.ReLU(True), nn.MaxPool2d(2, stride=1) # b, 8, 2, 2 ) self.decoder = nn.Sequential( nn.ConvTranspose2d(8, 16, 3, stride=2), # b, 16, 5, 5 nn.ReLU(True), nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1), # b, 8, 15, 15 nn.ReLU(True), nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1), # b, 1, 28, 28 nn.Tanh() ) def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x def encode(self, x): x = self.encoder(x) return x def decode(self, x): x = self.decoder(x) return x ``` ```python model = ConvAutoencoder() loss_fn = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5) if device == 'cuda': model.cuda() for epoch in range(num_epochs): for x, y in train_dl: x = x.to(device) # resize to be a vector bsx28*28 output = model(x) loss = loss_fn(output, x) optimizer.zero_grad() loss.backward() optimizer.step() print('epoch [{}/{}], loss:{:.4f}'.format(epoch + 1, num_epochs, loss.data)) if epoch % 10 == 0: ipic = toImg(x.cpu().data) opic = toImg(output.cpu().data) save_image(opic, '../results/01-autoencoder/convae/image_{}_conv_o.png'.format(epoch)) save_image(ipic, '../results/01-autoencoder/convae/image_{}_conv_i.png'.format(epoch)) ``` epoch [1/100], loss:0.5109 epoch [2/100], loss:0.4628 epoch [3/100], loss:0.5199 epoch [4/100], loss:0.4988 epoch [5/100], loss:0.4752 epoch [6/100], loss:0.4783 epoch [7/100], loss:0.4565 epoch [8/100], loss:0.4774 epoch [9/100], loss:0.4367 epoch [10/100], loss:0.5051 epoch [11/100], loss:0.4323 epoch [12/100], loss:0.4938 epoch [13/100], loss:0.4625 epoch [14/100], loss:0.4442 epoch [15/100], loss:0.4359 epoch [16/100], loss:0.4216 epoch [17/100], loss:0.4128 epoch [18/100], loss:0.5216 epoch [19/100], loss:0.4163 epoch [20/100], loss:0.4229 epoch [21/100], loss:0.4854 epoch [22/100], loss:0.4435 epoch [23/100], loss:0.4405 epoch [24/100], loss:0.3971 epoch [25/100], loss:0.4503 epoch [26/100], loss:0.4532 epoch [27/100], loss:0.4384 epoch [28/100], loss:0.4189 epoch [29/100], loss:0.4507 epoch [30/100], loss:0.4159 epoch [31/100], loss:0.4487 epoch [32/100], loss:0.4177 epoch [33/100], loss:0.4478 epoch [34/100], loss:0.4493 epoch [35/100], loss:0.4836 epoch [36/100], loss:0.4739 epoch [37/100], loss:0.4223 epoch [38/100], loss:0.4179 epoch [39/100], loss:0.4717 epoch [40/100], loss:0.4035 epoch [41/100], loss:0.4273 epoch [42/100], loss:0.4396 epoch [43/100], loss:0.4240 epoch [44/100], loss:0.4513 epoch [45/100], loss:0.4021 epoch [46/100], loss:0.4341 epoch [47/100], loss:0.3915 epoch [48/100], loss:0.4056 epoch [49/100], loss:0.4917 epoch [50/100], loss:0.4463 epoch [51/100], loss:0.4041 epoch [52/100], loss:0.4991 epoch [53/100], loss:0.4324 epoch [54/100], loss:0.4214 epoch [55/100], loss:0.4178 epoch [56/100], loss:0.4286 epoch [57/100], loss:0.4134 epoch [58/100], loss:0.4234 epoch [59/100], loss:0.4489 epoch [60/100], loss:0.4033 epoch [61/100], loss:0.4821 epoch [62/100], loss:0.4093 epoch [63/100], loss:0.4131 epoch [64/100], loss:0.4737 epoch [65/100], loss:0.4279 epoch [66/100], loss:0.4410 epoch [67/100], loss:0.4481 epoch [68/100], loss:0.3976 epoch [69/100], loss:0.4504 epoch [70/100], loss:0.3888 epoch [71/100], loss:0.3833 epoch [72/100], loss:0.4279 epoch [73/100], loss:0.3964 epoch [74/100], loss:0.3978 epoch [75/100], loss:0.4131 epoch [76/100], loss:0.4012 epoch [77/100], loss:0.4147 epoch [78/100], loss:0.4499 epoch [79/100], loss:0.3835 epoch [80/100], loss:0.4146 epoch [81/100], loss:0.4270 epoch [82/100], loss:0.3776 epoch [83/100], loss:0.4476 epoch [84/100], loss:0.4090 epoch [85/100], loss:0.4182 epoch [86/100], loss:0.4433 epoch [87/100], loss:0.4532 epoch [88/100], loss:0.4058 epoch [89/100], loss:0.4659 epoch [90/100], loss:0.4265 epoch [91/100], loss:0.4224 epoch [92/100], loss:0.4296 epoch [93/100], loss:0.4599 epoch [94/100], loss:0.4055 epoch [95/100], loss:0.4219 epoch [96/100], loss:0.4640 epoch [97/100], loss:0.4497 epoch [98/100], loss:0.4238 epoch [99/100], loss:0.4529 epoch [100/100], loss:0.3765 ```python # As suggested in https://pytorch.org/tutorials/beginner/saving_loading_models.html filename = '../saved-mdls/01-autoencoder/convautoencoder_{}e.pt'.format(epoch+1) torch.save(model, filename) print('model saved as: {}'.format(filename)) ``` model saved as: ./saved-mdls/01-autoencoder/convautoencoder_100e.pt /opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:256: UserWarning: Couldn't retrieve source code for container of type ConvAutoencoder. It won't be checked for correctness upon loading. "type " + obj.__name__ + ". It won't be checked " ```python model.eval() ``` ConvAutoencoder( (encoder): Sequential( (0): Conv2d(1, 16, kernel_size=(3, 3), stride=(3, 3), padding=(1, 1)) (1): ReLU(inplace) (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (3): Conv2d(16, 8, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (4): ReLU(inplace) (5): MaxPool2d(kernel_size=2, stride=1, padding=0, dilation=1, ceil_mode=False) ) (decoder): Sequential( (0): ConvTranspose2d(8, 16, kernel_size=(3, 3), stride=(2, 2)) (1): ReLU(inplace) (2): ConvTranspose2d(16, 8, kernel_size=(5, 5), stride=(3, 3), padding=(1, 1)) (3): ReLU(inplace) (4): ConvTranspose2d(8, 1, kernel_size=(2, 2), stride=(2, 2), padding=(1, 1)) (5): Tanh() ) ) ```python idx = 1001 # select an index in the validation set ``` ```python # Define the transforms to normalise the image pic_tt = transforms.ToTensor() # Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] pic_n = transforms.Normalize((ds_mean,), (ds_std,)) if torch.__version__ != '1.3.0': pic_data = valid_ds.test_data[idx].numpy() pic_data = pic_data[:, :, None] # (H x W x C) print('pic_data.dtype: {}'.format(pic_data.dtype)) else: pic_data = valid_ds.data[idx].numpy() pic = pic_tt(pic_data) pic = pic_n(pic) # print stats print('pic mean: {}, std: {}'.format(pic.mean(), pic.std())) # print pic shape print('\npic shape (C x H x W): {}'.format(pic.shape)) ``` pic_data.dtype: uint8 pic mean: 0.02145381271839142, std: 1.0174704790115356 pic shape (C x H x W): torch.Size([1, 28, 28]) ```python plt.imshow(pic.view(28,28)) ``` ### Run the model to encode ```python print(pic.to(device)[None, :, :, :].shape) ``` torch.Size([1, 1, 28, 28]) ```python encoding = model.encode(pic.to(device)[None, :, :, :]) # note that we need to reshape the pic to be: bsx28*28 # print encoding result print('encoded output: {}'.format(encoding.detach().cpu().numpy())) ``` encoded output: [[[[10.795247 6.077096 ] [ 5.69029 0. ]] [[ 2.3519301 2.3519301 ] [ 2.3519301 2.3519301 ]] [[ 6.9652967 6.9652967 ] [ 0.5121887 0.5121887 ]] [[ 1.8640186 7.8633065 ] [ 5.015077 9.722703 ]] [[ 0.46509135 0.46509135] [ 8.607014 8.607014 ]] [[ 9.282421 5.930196 ] [ 4.88288 1.791863 ]] [[ 0. 7.888112 ] [ 1.9434392 6.8836126 ]] [[12.865752 12.865752 ] [12.865752 12.865752 ]]]] ### Run the decoder and show the result ```python decoding = model.decode(encoding) ``` ```python plt.imshow(decoding.cpu().data.view(28, 28)) ``` # Variational Autoencoders We have discussed the problem of dimentionality reduction, and used encoder-decoder architectures to address it. At this point, one question might arise: what is the link between autoencoders and content generation? we could be tempted to think that, if the latent space is regular enough (well “organized” by the encoder during the training process), we could take a point randomly from that latent space and decode it to get a new content. The decoder would then act more or less like the generator of a Generative Adversarial Network. As done before, we can generate new data by decoding points that are randomly sampled from the latent space. The quality and relevance of generated data depend on the regularity of the latent space. The problem is that the regularity of the latent space for autoencoders depends on the distribution of the data in the initial space, the dimension of the latent space and the architecture of the encoder. It is difficult to ensure that the encoder will organize the latent space in a smart way compatible with the generative process we just described. This lack of structure among the encoded data into the latent space is normal since during training we never enforced such organization of the latern space. We only trained to encode and decode so that we can minimize the loss. To use the decoder of our autoencoder for generative purpose, we have to be sure that the latent space is regular enough. One possible solution to obtain such regularity is to introduce explicit regularisation during the training process. A variational autoencoder is an autoencoder whose training is regularised to avoid overfitting and ensure that the latent space has good properties that enable generative process. Just as a standard autoencoder, a variational autoencoder is an architecture composed of both an encoder and a decoder and that is trained to minimise the reconstruction error between the encoded-decoded data and the initial data. However, in order to introduce some regularisation of the latent space, we proceed to a slight modification of the encoding-decoding process: instead of encoding an input as a single point, we encode it as a distribution over the latent space. To do this, the loss function that is minimised when training a VAE is composed of a “reconstruction term” (on the final layer), that tends to make the encoding-decoding scheme as performant as possible, and a “regularisation term” (on the latent layer), that tends to regularise the organisation of the latent space by making the distributions returned by the encoder close to a standard normal distribution. One way to measure the difference between probability distribution is using the Kullback-Leibler divergence. In practice, the encoded distributions are chosen to be normal so that the encoder can be trained to return the mean and the covariance matrix that describe these Gaussians. The reason why an input is encoded as a distribution with some variance instead of a single point is that it makes possible to express very naturally the latent space regularisation: the distributions returned by the encoder are enforced to be close to a standard normal distribution. Moreover, the Kullback-Leibler divergence between two Gaussian distributions has a closed form that can be directly expressed in terms of the means and the covariance matrices of the two distributions. ## Intuition The regularity that is expected from the latent space in order to make generative process possible can be expressed through two main properties: - continuity (two close points in the latent space should not give two completely different contents once decoded) - completeness (for a chosen distribution, a point sampled from the latent space should give “meaningful” content once decoded) A point of the latent space that would be halfway between the means of two encoded distributions coming from different training data should be decoded in something that is somewhere between the data that gave the first distribution and the data that gave the second distribution as it may be sampled by the autoencoder in both cases. ## Probabilistic framework Variational autoencoders encode inputs as distributions (e.g. mean and std) and not as simple points (or vectors). The regularisation of the latent space is obtained constraining the distribution to be as close as possible to a Gaussian. $x$ : data $z$ : encoded rapresentation of $x$ We also assume that $z$ cannot be directly observed. Hewover, the latent representation $z$ can be sampled from the prior distribution $p(z)$ The data $x$ can be sampled from the conditional likelihood distribution: $p(x|z)$. Within this framework, we can consider the probabilistic versions of encoders and decoders (instead of the deterministic ones that we described before). - The “probabilistic decoder” is defined by $p(x|z)$, that describes the distribution of the decoded variable given the encoded one. - The “probabilistic encoder” is defined by $p(z|x)$, that describes the distribution of the encoded variable given the decoded one. Where of course, the link between the two is obtained through the Bayes' theorem: $p(z|x) = p(x|z)p(z)/p(x)$. The previous equation also means that the encoder $p(z|x)$ depends on the prior $p(z)$, or on the encoded representation of $z$ in the latent space. Let's assume: $p(z) = \mathcal{N}(0, I)$ $p(x|z) = \mathcal{N}(f(z), cI)$, where $f \in F$ (family of functions), and $I$ is the identity matrix, $c$ constant > 0 If we consider $f$ to be well defined, fixed (and known), and if we know $p(x)$, can have all the elements to solve this problem and calculate $p(z|x)$. However calculating $p(x)$ is often intractable as $p(x)=\int p(x|u)p(u)du$ ### Variational inference Variational inference (VI) can be used to approximate complex distributions and hence we can use it to approximate $p(z|x)$. The idea is to set a parametrised family of distribution (for example the family of Gaussians, whose parameters are the mean and the covariance) and to look for the best approximation of the target distribution among this family. The best element in the family is one that minimise a given approximation error measurement (most of the time the Kullback-Leibler divergence between approximation and target). This can be done using gradient descent over the parameters that describe the family [REF]. To do so, we assume $p(z|x)$, our target distribution as a Gaussian: $p(z|x) = \mathcal{N}(g(x), h(x))$, This means that we have chosen a Gaussian to approximate $p(z|x)$, whose mean and covariance are defined by two functions, $g$ and $h$, of the parameter $x$ (the data). The problem than become that of finding the best approximation among this family by optimising the functions g and h (or better, their parameters) to minimise the Kullback-Leibler (KL) divergence between the approximation $\mathcal{N}(g(x), h(x))$ and the target $p(z|x)$, or: \begin{equation*} (g^*, h^*) = arg \min_{g,h} KL(\mathcal{N}(g(x), h(x)), p(z|x)). \label{eq:optimal-encoder} \tag{1} \end{equation*} This would give us the optimal encoder $p^*(z|x) = \mathcal{N}(g^*(x), h^*(x))$. Eq. (1), with a little bit of work (see [Understanding Variational Autoencoders]( https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73)) can be written as: \begin{equation*} (g^*, h^*) = \underset{g,h\in (GxH)}{\operatorname{argmax}} \{ \mathbb{E}_{z \sim \mathcal{N}(g(x), h(x))} [ log(p(x|z) ] - KL( \mathcal{N}(g(x), h(x)), p(z)) \} \label{eq:optimal-encoder-2} \tag{2} \end{equation*} ### Comment All this reasoning was based on the assumption that we know $f(z)$. In fact, given that we know $f(z)$, we can calculate $p(x|z)$ (the decoder) and then we calculate the encoder $p(z|x)$ approximating it via variational inference. However, in practise, $f(z)$ is not known and need to be chosen. In fact, the objective is to find a couple encoder-decoder with a regularised latent space, and the decoder $p(x|z)$ is a function of the function $f(z)$. We have also realised that the encoder $p(z|x)$ depends on the prior $p(z)$ (Bayes' theorem). As $p(z|x)$ can be approximated (by variational inference) from $p(z)$, and given that $p(x|z)$ and $p(z)$ have been set to be simple standard Gaussian, we only have two parameters in our model: $c$ (that defines the variance of the posterior, $p(x|z)$) and the function $f$ (that defines the mean of the posterior). In short: - the encoder-decoder performance depends on the function $f(z)$ - the regularity of the latent space depends on the prior $p(z)$ This makes sense intuitively, as $f(z)$ defines the encoder, and $p(z)$ defines the latent space distribution. ## The encoder Different functions $f(z)$ define different encoders. We would like to find the best $f$ that maximise the encoding/decoding performance, or: We want to choose the function $f$ that maximises the expected log-likelihood of $x$ (the data) given $z$ (its latent representation or encoding) when $z$ is sampled from $p^*(z|x)$. Where $p^*(z|x)$ is the optimal encoder, calculated as before. For a given input $x$, we want to: - maximise the probability to have $\hat x = x$ - when we sample $z$ from the distribution $p^*(z|x)$ (encoding) - and then sample $\hat x$ from the distribution $p(x|z)$ (decoding). We can write this as: \begin{equation} f^* = \underset{f\in F}{\operatorname{argmax}} \mathbb{E}_{z \sim p^*(z|x)} [ \log p(x|z) ] \label{eq:optimal-decoder} \tag{3} \end{equation} Note that, if $p(x|z) = \mathcal{N}(f(z), cI)$, then $\log p(x|z) = - \frac{||x-f(z)||^2}{2c}$ ## Encoder/Decoder If we now put everything together (Eq.(1), (2), (3)): \begin{equation*} (f^*, g^*, h^*) = \underset{f,g,h\in (FxGxH)}{\operatorname{argmax}} \{ \mathbb{E}_{z \sim \mathcal{N}(g(x), h(x))} [ log(p(x|z) ] - KL( \mathcal{N}(g(x), h(x)), p(z)) \} \label{eq:optimal-encoder-2} \end{equation*} $\tag{4}$ with $\log p(x|z) = - \frac{||x-f(z)||^2}{2c}$ *Comments:* The previous Eq (4), includes: - the reconstruction error between $x$ and $f(z)$ (objective 1) - the regularisation term given by the $KL$ divergence between $\mathcal{N}(g(x), h(x))$ and $p(z)$ (which is a standard Gaussian) (objective 2). The constant $c$ acts as the balance between these two objectives: The higher $c$ is, the more we assume a high variance around $f(z)$ for the probabilistic decoder in our model and, the more we favour the regularisation term over the reconstruction term. The opposite stands if $c$ is small. ## Implementing a variational encoder with neural nets We can’t easily optimise over the entire space of functions. One way to solve this problem is to constrain the optimisation domain and decide to express $f$, $g$ and $h$ as neural networks. In this case, $F$, $G$ and $H$ correspond respectively to the families of functions defined by the networks architectures and the optimisation is done over the parameters of these networks. In practise, $g$ and $h$, which together define the encoder $p(z|x)$ are defined to share the initial part of their network architecture. **Figure: Encoder part of the VAE (from [Understanding Variational Autoencoders]( https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73))** Moreover, to simplify the problem, $\mathcal{N}(g(x), h(x))$ is assumed as a multidimensional Gaussian distribution with diagonal covariance matrix. Under this assumption, the function $h(x)$ which defines the covariance matrix, is the vector of the diagonal elements. To summarise, the output of the encoder part is a Gaussian with both mean $g$ and covariance $h$ that are functions of $x$. The decoder network $f$ needs instead to model $p(x|z)$ that we defined as a Gaussian with unit variance. As usual, the overall architecture is then obtained by concatenating the encoder and the decoder parts. ## Reparametrisation The last element that remains is related to the fact that we need to sample from the encoded distribution $p(z|x)$ in a way that we can backpropagate the error through the network. The reparametrisation allows us to do exactly that: makes the gradient descent possible despite the random sampling that occurs halfw aythrough the architecture. The real trick is to understand that $z$ is a random variable sampled from a Gaussian distribution with mean $g(x)$ and variance $h(x)$. This means that we can express $z$ as: $z=h(x) \eta + g(x)$, with $\eta \sim \mathcal{N}(0, I)$ In this way, we have sandboxed the sampling to only happen on the variable $\eta$, while we can do gradient descent over $h(x)$ and $g(x)$. ## Objective function Finally, the _objective function_ of the variational autoencoder is defined by Eq. (4), where the expectation operator is replaced, most of the time by a Monte-Carlo approximation (sometimes obtained as a single draw). The final architecture is sketched out in the next figure (from [Understanding Variational Autoencoders]( https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73)): **Figure: architecture of a variational autoencoder (C = $\frac{1}{2c}$)** # Implementing a variational autoencoder ## Grab the data ```python num_epochs = 100 batch_size = 128 learning_rate = 1e-3 ds_mean = 0.1307 ds_std = 0.3081 img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((ds_mean,), (ds_std,)) # The first tuple (0.5, 0.5, 0.5) is the mean for all three channels and the second (0.5, 0.5, 0.5) is the standard deviation for all three channels. ]) ### Grab the dataset train_ds = MNIST('./data', train=True, transform=img_transform, download=True) valid_ds = MNIST('./data', train=False, transform=img_transform, download=True) # plt.imshow(train_ds.data[1]) train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True) valid_dl = DataLoader(valid_ds, batch_size=batch_size, shuffle=True) ``` ## Define the model ```python class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() self.base_encoder = nn.Sequential( nn.Linear(28 * 28, 400), nn.ReLU(True) ) self.mean_encoder = nn.Sequential( self.base_encoder, nn.Linear(400, 20) ) self.var_encoder = nn.Sequential( self.base_encoder, nn.Linear(400, 20) ) self.decoder = nn.Sequential( nn.Linear(20, 400), nn.ReLU(True), nn.Linear(400, 784), nn.Sigmoid() ) def forward(self, x): mu, logvar = self.mean_encoder(x), self.var_encoder(x) z = self.reparametrize(mu, logvar) return self.decoder(z), mu, logvar def encode(self, x): return self.mean_encoder(x), self.var_encoder(x) def decode(self, x): mu, logvar = x[0], x[1] z = self.reparametrize(mu, logvar) return self.decoder(z), mu, logvar def reparametrize(self, mu, logvar): """This function implements the reparametrisation trick: z = h(x)*eta+g(x), eta is Gaussian """ std = logvar.mul(0.5).exp_() # sample the normal distribution if torch.cuda.is_available(): eta = torch.cuda.FloatTensor(std.size()).normal_() else: eta = torch.FloatTensor(std.size()).normal_() return eta.mul(std).add_(mu) ``` ```python model = VAE() optimizer = torch.optim.Adam( model.parameters(), lr=learning_rate, weight_decay=1e-5) if torch.cuda.is_available(): model.cuda() model.train() ``` VAE( (base_encoder): Sequential( (0): Linear(in_features=784, out_features=400, bias=True) (1): ReLU(inplace) ) (mean_encoder): Sequential( (0): Sequential( (0): Linear(in_features=784, out_features=400, bias=True) (1): ReLU(inplace) ) (1): Linear(in_features=400, out_features=20, bias=True) ) (var_encoder): Sequential( (0): Sequential( (0): Linear(in_features=784, out_features=400, bias=True) (1): ReLU(inplace) ) (1): Linear(in_features=400, out_features=20, bias=True) ) (decoder): Sequential( (0): Linear(in_features=20, out_features=400, bias=True) (1): ReLU(inplace) (2): Linear(in_features=400, out_features=784, bias=True) (3): Sigmoid() ) ) ```python mse = nn.MSELoss(size_average=False) bce = nn.BCELoss(size_average=False) def loss_f(x_hat, x, mu, logvar): """ x_hat: generated img. x: origin img. mu: latent mean logvar: latent log variance (log(sigma^2)) """ # E[log P(x|z)] approx_err = bce(x_hat, x) # (-||x-f(z)||^2/(2c)) # The divergence between two Gaussians can be calculated in closed form. # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) _kl = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KL = torch.sum(_kl).mul_(-0.5) return approx_err + KL ``` ## Train ```python model.train() num_epochs = 100 for epoch in range(num_epochs): train_loss = 0 for batch_idx, (x, y) in enumerate(train_dl): x = x.view(x.size(0), -1) # batchsize x 128 if torch.cuda.is_available(): x = x.cuda() y_hat, mu, logvar = model(x) loss = loss_f(y_hat, x, mu, logvar) optimizer.zero_grad() loss.backward() optimizer.step() train_loss += loss.data.item() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(x), len(train_dl.dataset), 100. * batch_idx / len(train_dl), loss.data.item() / len(x))) print('>> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_dl.dataset))) if epoch % 10 == 0: save_image(toImg(x.cpu().data), '../results/01-autoencoder/vae/image_{}_i.png'.format(epoch)) save_image(toImg(y_hat.cpu().data), '../results/01-autoencoder/vae/image_{}_o.png'.format(epoch)) ``` Train Epoch: 0 [0/60000 (0%)] Loss: 548.798096 Train Epoch: 0 [12800/60000 (21%)] Loss: -10400.995117 Train Epoch: 0 [25600/60000 (43%)] Loss: -13520.972656 Train Epoch: 0 [38400/60000 (64%)] Loss: -15273.527344 Train Epoch: 0 [51200/60000 (85%)] Loss: -15952.123047 >> Epoch: 0 Average loss: -12749.0210 Train Epoch: 1 [0/60000 (0%)] Loss: -16029.354492 Train Epoch: 1 [12800/60000 (21%)] Loss: -16067.035156 Train Epoch: 1 [25600/60000 (43%)] Loss: -16273.087891 Train Epoch: 1 [38400/60000 (64%)] Loss: -16572.113281 Train Epoch: 1 [51200/60000 (85%)] Loss: -16374.041016 >> Epoch: 1 Average loss: -16285.1504 Train Epoch: 2 [0/60000 (0%)] Loss: -16515.455078 Train Epoch: 2 [12800/60000 (21%)] Loss: -16544.494141 Train Epoch: 2 [25600/60000 (43%)] Loss: -16339.613281 Train Epoch: 2 [38400/60000 (64%)] Loss: -16133.729492 Train Epoch: 2 [51200/60000 (85%)] Loss: -16039.532227 >> Epoch: 2 Average loss: -16280.5579 Train Epoch: 3 [0/60000 (0%)] Loss: -16026.655273 Train Epoch: 3 [12800/60000 (21%)] Loss: -16169.336914 Train Epoch: 3 [25600/60000 (43%)] Loss: -16350.911133 Train Epoch: 3 [38400/60000 (64%)] Loss: -16016.779297 Train Epoch: 3 [51200/60000 (85%)] Loss: -16301.458008 >> Epoch: 3 Average loss: -16044.4319 Train Epoch: 4 [0/60000 (0%)] Loss: -16284.871094 Train Epoch: 4 [12800/60000 (21%)] Loss: -16331.748047 Train Epoch: 4 [25600/60000 (43%)] Loss: -15999.494141 Train Epoch: 4 [38400/60000 (64%)] Loss: -15769.664062 Train Epoch: 4 [51200/60000 (85%)] Loss: -15759.160156 >> Epoch: 4 Average loss: -15910.8688 Train Epoch: 5 [0/60000 (0%)] Loss: -16160.987305 Train Epoch: 5 [12800/60000 (21%)] Loss: -16652.466797 Train Epoch: 5 [25600/60000 (43%)] Loss: -15019.367188 Train Epoch: 5 [38400/60000 (64%)] Loss: -15418.454102 Train Epoch: 5 [51200/60000 (85%)] Loss: -15785.478516 >> Epoch: 5 Average loss: -15739.4408 Train Epoch: 6 [0/60000 (0%)] Loss: -15510.125977 Train Epoch: 6 [12800/60000 (21%)] Loss: -15574.984375 Train Epoch: 6 [25600/60000 (43%)] Loss: -15398.647461 Train Epoch: 6 [38400/60000 (64%)] Loss: -15153.815430 Train Epoch: 6 [51200/60000 (85%)] Loss: -15735.817383 >> Epoch: 6 Average loss: -15629.2851 Train Epoch: 7 [0/60000 (0%)] Loss: -15564.513672 Train Epoch: 7 [12800/60000 (21%)] Loss: -15361.147461 Train Epoch: 7 [25600/60000 (43%)] Loss: -15257.525391 Train Epoch: 7 [38400/60000 (64%)] Loss: -15549.546875 Train Epoch: 7 [51200/60000 (85%)] Loss: -15512.875977 >> Epoch: 7 Average loss: -15618.3374 Train Epoch: 8 [0/60000 (0%)] Loss: -15687.753906 Train Epoch: 8 [12800/60000 (21%)] Loss: -15689.877930 Train Epoch: 8 [25600/60000 (43%)] Loss: -15374.916016 Train Epoch: 8 [38400/60000 (64%)] Loss: -15942.115234 Train Epoch: 8 [51200/60000 (85%)] Loss: -14915.119141 >> Epoch: 8 Average loss: -15655.1822 Train Epoch: 9 [0/60000 (0%)] Loss: -14978.934570 Train Epoch: 9 [12800/60000 (21%)] Loss: -15950.153320 Train Epoch: 9 [25600/60000 (43%)] Loss: -16483.396484 Train Epoch: 9 [38400/60000 (64%)] Loss: -15933.653320 Train Epoch: 9 [51200/60000 (85%)] Loss: -16408.232422 >> Epoch: 9 Average loss: -15699.3873 Train Epoch: 10 [0/60000 (0%)] Loss: -15647.618164 Train Epoch: 10 [12800/60000 (21%)] Loss: -16330.379883 Train Epoch: 10 [25600/60000 (43%)] Loss: -15949.466797 Train Epoch: 10 [38400/60000 (64%)] Loss: -16028.821289 Train Epoch: 10 [51200/60000 (85%)] Loss: -15954.647461 >> Epoch: 10 Average loss: -15707.1465 Train Epoch: 11 [0/60000 (0%)] Loss: -15906.910156 Train Epoch: 11 [12800/60000 (21%)] Loss: -16228.386719 Train Epoch: 11 [25600/60000 (43%)] Loss: -15131.728516 Train Epoch: 11 [38400/60000 (64%)] Loss: -15891.877930 Train Epoch: 11 [51200/60000 (85%)] Loss: -16029.520508 >> Epoch: 11 Average loss: -15761.8662 Train Epoch: 12 [0/60000 (0%)] Loss: -15814.916016 Train Epoch: 12 [12800/60000 (21%)] Loss: -15640.537109 Train Epoch: 12 [25600/60000 (43%)] Loss: -15681.725586 Train Epoch: 12 [38400/60000 (64%)] Loss: -15612.296875 Train Epoch: 12 [51200/60000 (85%)] Loss: -15969.593750 >> Epoch: 12 Average loss: -15755.1473 Train Epoch: 13 [0/60000 (0%)] Loss: -15734.547852 Train Epoch: 13 [12800/60000 (21%)] Loss: -15912.906250 Train Epoch: 13 [25600/60000 (43%)] Loss: -15386.783203 Train Epoch: 13 [38400/60000 (64%)] Loss: -15979.217773 Train Epoch: 13 [51200/60000 (85%)] Loss: -15417.867188 >> Epoch: 13 Average loss: -15720.0671 Train Epoch: 14 [0/60000 (0%)] Loss: -15656.513672 Train Epoch: 14 [12800/60000 (21%)] Loss: -16088.073242 Train Epoch: 14 [25600/60000 (43%)] Loss: -15439.639648 Train Epoch: 14 [38400/60000 (64%)] Loss: -15694.291992 Train Epoch: 14 [51200/60000 (85%)] Loss: -15735.992188 >> Epoch: 14 Average loss: -15731.8497 Train Epoch: 15 [0/60000 (0%)] Loss: -16031.658203 Train Epoch: 15 [12800/60000 (21%)] Loss: -15363.505859 Train Epoch: 15 [25600/60000 (43%)] Loss: -15335.965820 Train Epoch: 15 [38400/60000 (64%)] Loss: -15611.947266 Train Epoch: 15 [51200/60000 (85%)] Loss: -15649.885742 >> Epoch: 15 Average loss: -15741.5805 Train Epoch: 16 [0/60000 (0%)] Loss: -15287.258789 Train Epoch: 16 [12800/60000 (21%)] Loss: -15810.520508 Train Epoch: 16 [25600/60000 (43%)] Loss: -15941.052734 Train Epoch: 16 [38400/60000 (64%)] Loss: -15806.700195 Train Epoch: 16 [51200/60000 (85%)] Loss: -16056.616211 >> Epoch: 16 Average loss: -15741.6051 Train Epoch: 17 [0/60000 (0%)] Loss: -15775.357422 Train Epoch: 17 [12800/60000 (21%)] Loss: -15751.205078 Train Epoch: 17 [25600/60000 (43%)] Loss: -16333.038086 Train Epoch: 17 [38400/60000 (64%)] Loss: -16151.360352 Train Epoch: 17 [51200/60000 (85%)] Loss: -16332.794922 >> Epoch: 17 Average loss: -15736.9253 Train Epoch: 18 [0/60000 (0%)] Loss: -15776.823242 Train Epoch: 18 [12800/60000 (21%)] Loss: -15912.367188 Train Epoch: 18 [25600/60000 (43%)] Loss: -15632.143555 Train Epoch: 18 [38400/60000 (64%)] Loss: -15429.823242 Train Epoch: 18 [51200/60000 (85%)] Loss: -16084.385742 >> Epoch: 18 Average loss: -15756.3129 Train Epoch: 19 [0/60000 (0%)] Loss: -15728.345703 Train Epoch: 19 [12800/60000 (21%)] Loss: -15664.066406 Train Epoch: 19 [25600/60000 (43%)] Loss: -15685.458984 Train Epoch: 19 [38400/60000 (64%)] Loss: -15815.618164 Train Epoch: 19 [51200/60000 (85%)] Loss: -14626.311523 >> Epoch: 19 Average loss: -15748.6681 Train Epoch: 20 [0/60000 (0%)] Loss: -15371.667969 Train Epoch: 20 [12800/60000 (21%)] Loss: -15351.987305 Train Epoch: 20 [25600/60000 (43%)] Loss: -15516.359375 Train Epoch: 20 [38400/60000 (64%)] Loss: -15894.355469 Train Epoch: 20 [51200/60000 (85%)] Loss: -15774.041016 >> Epoch: 20 Average loss: -15764.9767 Train Epoch: 21 [0/60000 (0%)] Loss: -16372.184570 Train Epoch: 21 [12800/60000 (21%)] Loss: -15606.973633 Train Epoch: 21 [25600/60000 (43%)] Loss: -15101.914062 Train Epoch: 21 [38400/60000 (64%)] Loss: -15878.699219 Train Epoch: 21 [51200/60000 (85%)] Loss: -15291.368164 >> Epoch: 21 Average loss: -15746.8408 Train Epoch: 22 [0/60000 (0%)] Loss: -15855.291992 Train Epoch: 22 [12800/60000 (21%)] Loss: -16354.753906 Train Epoch: 22 [25600/60000 (43%)] Loss: -16244.956055 Train Epoch: 22 [38400/60000 (64%)] Loss: -16145.729492 Train Epoch: 22 [51200/60000 (85%)] Loss: -15999.291992 >> Epoch: 22 Average loss: -15754.9529 Train Epoch: 23 [0/60000 (0%)] Loss: -15501.169922 Train Epoch: 23 [12800/60000 (21%)] Loss: -15767.891602 Train Epoch: 23 [25600/60000 (43%)] Loss: -15450.406250 Train Epoch: 23 [38400/60000 (64%)] Loss: -16731.027344 Train Epoch: 23 [51200/60000 (85%)] Loss: -15620.701172 >> Epoch: 23 Average loss: -15784.9061 Train Epoch: 24 [0/60000 (0%)] Loss: -15639.106445 Train Epoch: 24 [12800/60000 (21%)] Loss: -16171.797852 Train Epoch: 24 [25600/60000 (43%)] Loss: -16093.580078 Train Epoch: 24 [38400/60000 (64%)] Loss: -15425.541992 Train Epoch: 24 [51200/60000 (85%)] Loss: -15944.828125 >> Epoch: 24 Average loss: -15775.7069 Train Epoch: 25 [0/60000 (0%)] Loss: -15554.327148 Train Epoch: 25 [12800/60000 (21%)] Loss: -15968.566406 Train Epoch: 25 [25600/60000 (43%)] Loss: -15659.537109 Train Epoch: 25 [38400/60000 (64%)] Loss: -15878.447266 Train Epoch: 25 [51200/60000 (85%)] Loss: -16219.924805 >> Epoch: 25 Average loss: -15797.3291 Train Epoch: 26 [0/60000 (0%)] Loss: -15969.476562 Train Epoch: 26 [12800/60000 (21%)] Loss: -15485.171875 Train Epoch: 26 [25600/60000 (43%)] Loss: -15726.582031 Train Epoch: 26 [38400/60000 (64%)] Loss: -15938.704102 Train Epoch: 26 [51200/60000 (85%)] Loss: -15694.555664 >> Epoch: 26 Average loss: -15808.7790 Train Epoch: 27 [0/60000 (0%)] Loss: -15663.542969 Train Epoch: 27 [12800/60000 (21%)] Loss: -15626.659180 Train Epoch: 27 [25600/60000 (43%)] Loss: -16402.958984 Train Epoch: 27 [38400/60000 (64%)] Loss: -15684.948242 Train Epoch: 27 [51200/60000 (85%)] Loss: -15679.839844 >> Epoch: 27 Average loss: -15828.3127 Train Epoch: 28 [0/60000 (0%)] Loss: -15980.693359 Train Epoch: 28 [12800/60000 (21%)] Loss: -15336.357422 Train Epoch: 28 [25600/60000 (43%)] Loss: -15683.900391 Train Epoch: 28 [38400/60000 (64%)] Loss: -15997.925781 Train Epoch: 28 [51200/60000 (85%)] Loss: -16086.597656 >> Epoch: 28 Average loss: -15855.4075 Train Epoch: 29 [0/60000 (0%)] Loss: -15888.863281 Train Epoch: 29 [12800/60000 (21%)] Loss: -15684.571289 Train Epoch: 29 [25600/60000 (43%)] Loss: -15961.804688 Train Epoch: 29 [38400/60000 (64%)] Loss: -15849.370117 Train Epoch: 29 [51200/60000 (85%)] Loss: -15698.311523 >> Epoch: 29 Average loss: -15878.0026 Train Epoch: 30 [0/60000 (0%)] Loss: -16085.376953 Train Epoch: 30 [12800/60000 (21%)] Loss: -16326.175781 Train Epoch: 30 [25600/60000 (43%)] Loss: -15949.460938 Train Epoch: 30 [38400/60000 (64%)] Loss: -16597.437500 Train Epoch: 30 [51200/60000 (85%)] Loss: -16148.072266 >> Epoch: 30 Average loss: -15926.7902 Train Epoch: 31 [0/60000 (0%)] Loss: -15720.159180 Train Epoch: 31 [12800/60000 (21%)] Loss: -15995.453125 Train Epoch: 31 [25600/60000 (43%)] Loss: -16108.129883 Train Epoch: 31 [38400/60000 (64%)] Loss: -16219.212891 Train Epoch: 31 [51200/60000 (85%)] Loss: -15874.607422 >> Epoch: 31 Average loss: -15964.4744 Train Epoch: 32 [0/60000 (0%)] Loss: -15681.047852 Train Epoch: 32 [12800/60000 (21%)] Loss: -15873.328125 Train Epoch: 32 [25600/60000 (43%)] Loss: -15883.899414 Train Epoch: 32 [38400/60000 (64%)] Loss: -16537.060547 Train Epoch: 32 [51200/60000 (85%)] Loss: -15421.623047 >> Epoch: 32 Average loss: -16004.1485 Train Epoch: 33 [0/60000 (0%)] Loss: -16307.760742 Train Epoch: 33 [12800/60000 (21%)] Loss: -16323.730469 Train Epoch: 33 [25600/60000 (43%)] Loss: -15635.327148 Train Epoch: 33 [38400/60000 (64%)] Loss: -15912.753906 Train Epoch: 33 [51200/60000 (85%)] Loss: -16238.466797 >> Epoch: 33 Average loss: -16063.7850 Train Epoch: 34 [0/60000 (0%)] Loss: -16172.517578 Train Epoch: 34 [12800/60000 (21%)] Loss: -15760.675781 Train Epoch: 34 [25600/60000 (43%)] Loss: -16394.808594 Train Epoch: 34 [38400/60000 (64%)] Loss: -16498.275391 Train Epoch: 34 [51200/60000 (85%)] Loss: -15712.812500 >> Epoch: 34 Average loss: -16138.8057 Train Epoch: 35 [0/60000 (0%)] Loss: -16025.337891 Train Epoch: 35 [12800/60000 (21%)] Loss: -16540.029297 Train Epoch: 35 [25600/60000 (43%)] Loss: -15970.066406 Train Epoch: 35 [38400/60000 (64%)] Loss: -15916.967773 Train Epoch: 35 [51200/60000 (85%)] Loss: -16363.433594 >> Epoch: 35 Average loss: -16232.1018 Train Epoch: 36 [0/60000 (0%)] Loss: -15838.261719 Train Epoch: 36 [12800/60000 (21%)] Loss: -15826.887695 Train Epoch: 36 [25600/60000 (43%)] Loss: -16310.962891 Train Epoch: 36 [38400/60000 (64%)] Loss: -16837.082031 Train Epoch: 36 [51200/60000 (85%)] Loss: -16399.076172 >> Epoch: 36 Average loss: -16367.7808 Train Epoch: 37 [0/60000 (0%)] Loss: -15912.750000 Train Epoch: 37 [12800/60000 (21%)] Loss: -16463.654297 Train Epoch: 37 [25600/60000 (43%)] Loss: -16507.283203 Train Epoch: 37 [38400/60000 (64%)] Loss: -16087.551758 Train Epoch: 37 [51200/60000 (85%)] Loss: -16615.046875 >> Epoch: 37 Average loss: -16458.7341 Train Epoch: 38 [0/60000 (0%)] Loss: -17020.490234 Train Epoch: 38 [12800/60000 (21%)] Loss: -16587.585938 Train Epoch: 38 [25600/60000 (43%)] Loss: -16319.344727 Train Epoch: 38 [38400/60000 (64%)] Loss: -16382.368164 Train Epoch: 38 [51200/60000 (85%)] Loss: -16504.347656 >> Epoch: 38 Average loss: -16632.4627 Train Epoch: 39 [0/60000 (0%)] Loss: -16381.448242 Train Epoch: 39 [12800/60000 (21%)] Loss: -16697.320312 Train Epoch: 39 [25600/60000 (43%)] Loss: -16804.128906 Train Epoch: 39 [38400/60000 (64%)] Loss: -16615.097656 Train Epoch: 39 [51200/60000 (85%)] Loss: -16981.410156 >> Epoch: 39 Average loss: -16810.5873 Train Epoch: 40 [0/60000 (0%)] Loss: -16861.273438 Train Epoch: 40 [12800/60000 (21%)] Loss: -17466.968750 Train Epoch: 40 [25600/60000 (43%)] Loss: -17402.136719 Train Epoch: 40 [38400/60000 (64%)] Loss: -16999.201172 Train Epoch: 40 [51200/60000 (85%)] Loss: -17495.255859 >> Epoch: 40 Average loss: -17060.1137 Train Epoch: 41 [0/60000 (0%)] Loss: -17004.109375 Train Epoch: 41 [12800/60000 (21%)] Loss: -17359.103516 Train Epoch: 41 [25600/60000 (43%)] Loss: -17511.921875 Train Epoch: 41 [38400/60000 (64%)] Loss: -17389.585938 Train Epoch: 41 [51200/60000 (85%)] Loss: -17074.890625 >> Epoch: 41 Average loss: -17282.8759 Train Epoch: 42 [0/60000 (0%)] Loss: -17634.613281 Train Epoch: 42 [12800/60000 (21%)] Loss: -17447.382812 Train Epoch: 42 [25600/60000 (43%)] Loss: -17465.964844 Train Epoch: 42 [38400/60000 (64%)] Loss: -17410.089844 Train Epoch: 42 [51200/60000 (85%)] Loss: -17276.812500 >> Epoch: 42 Average loss: -17441.8183 Train Epoch: 43 [0/60000 (0%)] Loss: -17767.224609 Train Epoch: 43 [12800/60000 (21%)] Loss: -17329.523438 Train Epoch: 43 [25600/60000 (43%)] Loss: -17272.613281 Train Epoch: 43 [38400/60000 (64%)] Loss: -17227.455078 Train Epoch: 43 [51200/60000 (85%)] Loss: -17635.570312 >> Epoch: 43 Average loss: -17500.9153 Train Epoch: 44 [0/60000 (0%)] Loss: -17490.695312 Train Epoch: 44 [12800/60000 (21%)] Loss: -17791.738281 Train Epoch: 44 [25600/60000 (43%)] Loss: -17543.478516 Train Epoch: 44 [38400/60000 (64%)] Loss: -17350.167969 Train Epoch: 44 [51200/60000 (85%)] Loss: -17349.462891 >> Epoch: 44 Average loss: -17593.8134 Train Epoch: 45 [0/60000 (0%)] Loss: -17580.316406 Train Epoch: 45 [12800/60000 (21%)] Loss: -17385.085938 Train Epoch: 45 [25600/60000 (43%)] Loss: -17382.095703 Train Epoch: 45 [38400/60000 (64%)] Loss: -17429.287109 Train Epoch: 45 [51200/60000 (85%)] Loss: -17536.187500 >> Epoch: 45 Average loss: -17564.7666 Train Epoch: 46 [0/60000 (0%)] Loss: -17598.343750 Train Epoch: 46 [12800/60000 (21%)] Loss: -17388.191406 Train Epoch: 46 [25600/60000 (43%)] Loss: -17293.800781 Train Epoch: 46 [38400/60000 (64%)] Loss: -17492.017578 Train Epoch: 46 [51200/60000 (85%)] Loss: -17604.408203 >> Epoch: 46 Average loss: -17465.0792 Train Epoch: 47 [0/60000 (0%)] Loss: -17610.906250 Train Epoch: 47 [12800/60000 (21%)] Loss: -17191.480469 Train Epoch: 47 [25600/60000 (43%)] Loss: -17691.476562 Train Epoch: 47 [38400/60000 (64%)] Loss: -17332.033203 Train Epoch: 47 [51200/60000 (85%)] Loss: -17568.968750 >> Epoch: 47 Average loss: -17531.3173 Train Epoch: 48 [0/60000 (0%)] Loss: -17307.283203 Train Epoch: 48 [12800/60000 (21%)] Loss: -17492.416016 Train Epoch: 48 [25600/60000 (43%)] Loss: -17337.798828 Train Epoch: 48 [38400/60000 (64%)] Loss: -17336.730469 Train Epoch: 48 [51200/60000 (85%)] Loss: -17419.738281 >> Epoch: 48 Average loss: -17327.9903 Train Epoch: 49 [0/60000 (0%)] Loss: -17431.869141 Train Epoch: 49 [12800/60000 (21%)] Loss: -17365.650391 Train Epoch: 49 [25600/60000 (43%)] Loss: -17182.134766 Train Epoch: 49 [38400/60000 (64%)] Loss: -16896.330078 Train Epoch: 49 [51200/60000 (85%)] Loss: -17013.939453 >> Epoch: 49 Average loss: -17136.9201 Train Epoch: 50 [0/60000 (0%)] Loss: -17015.525391 Train Epoch: 50 [12800/60000 (21%)] Loss: -16782.992188 Train Epoch: 50 [25600/60000 (43%)] Loss: -17026.062500 Train Epoch: 50 [38400/60000 (64%)] Loss: -17217.783203 Train Epoch: 50 [51200/60000 (85%)] Loss: -17103.363281 >> Epoch: 50 Average loss: -17111.1771 Train Epoch: 51 [0/60000 (0%)] Loss: -17389.720703 Train Epoch: 51 [12800/60000 (21%)] Loss: -17199.408203 Train Epoch: 51 [25600/60000 (43%)] Loss: -17102.441406 Train Epoch: 51 [38400/60000 (64%)] Loss: -17427.525391 Train Epoch: 51 [51200/60000 (85%)] Loss: -16863.777344 >> Epoch: 51 Average loss: -17124.5835 Train Epoch: 52 [0/60000 (0%)] Loss: -16963.330078 Train Epoch: 52 [12800/60000 (21%)] Loss: -16904.535156 Train Epoch: 52 [25600/60000 (43%)] Loss: -17380.410156 Train Epoch: 52 [38400/60000 (64%)] Loss: -16948.828125 Train Epoch: 52 [51200/60000 (85%)] Loss: -17177.294922 >> Epoch: 52 Average loss: -17001.3476 Train Epoch: 53 [0/60000 (0%)] Loss: -16871.671875 Train Epoch: 53 [12800/60000 (21%)] Loss: -16856.982422 Train Epoch: 53 [25600/60000 (43%)] Loss: -16822.964844 Train Epoch: 53 [38400/60000 (64%)] Loss: -16449.992188 Train Epoch: 53 [51200/60000 (85%)] Loss: -17396.875000 >> Epoch: 53 Average loss: -16953.9299 Train Epoch: 54 [0/60000 (0%)] Loss: -17157.412109 Train Epoch: 54 [12800/60000 (21%)] Loss: -16841.775391 Train Epoch: 54 [25600/60000 (43%)] Loss: -16886.615234 Train Epoch: 54 [38400/60000 (64%)] Loss: -16942.320312 Train Epoch: 54 [51200/60000 (85%)] Loss: -16818.152344 >> Epoch: 54 Average loss: -16996.4448 Train Epoch: 55 [0/60000 (0%)] Loss: -16912.093750 Train Epoch: 55 [12800/60000 (21%)] Loss: -16525.378906 Train Epoch: 55 [25600/60000 (43%)] Loss: -17093.421875 Train Epoch: 55 [38400/60000 (64%)] Loss: -17006.072266 Train Epoch: 55 [51200/60000 (85%)] Loss: -16766.722656 >> Epoch: 55 Average loss: -16809.1004 Train Epoch: 56 [0/60000 (0%)] Loss: -16664.152344 Train Epoch: 56 [12800/60000 (21%)] Loss: -16771.865234 Train Epoch: 56 [25600/60000 (43%)] Loss: -16739.525391 Train Epoch: 56 [38400/60000 (64%)] Loss: -16652.421875 Train Epoch: 56 [51200/60000 (85%)] Loss: -17241.503906 >> Epoch: 56 Average loss: -16875.5294 Train Epoch: 57 [0/60000 (0%)] Loss: -16731.355469 Train Epoch: 57 [12800/60000 (21%)] Loss: -16529.789062 Train Epoch: 57 [25600/60000 (43%)] Loss: -16789.970703 Train Epoch: 57 [38400/60000 (64%)] Loss: -16686.048828 Train Epoch: 57 [51200/60000 (85%)] Loss: -17631.421875 >> Epoch: 57 Average loss: -16833.4013 Train Epoch: 58 [0/60000 (0%)] Loss: -16920.191406 Train Epoch: 58 [12800/60000 (21%)] Loss: -17039.376953 Train Epoch: 58 [25600/60000 (43%)] Loss: -16618.492188 Train Epoch: 58 [38400/60000 (64%)] Loss: -16558.892578 Train Epoch: 58 [51200/60000 (85%)] Loss: -16741.796875 >> Epoch: 58 Average loss: -16736.3788 Train Epoch: 59 [0/60000 (0%)] Loss: -16661.085938 Train Epoch: 59 [12800/60000 (21%)] Loss: -16362.338867 Train Epoch: 59 [25600/60000 (43%)] Loss: -16555.357422 Train Epoch: 59 [38400/60000 (64%)] Loss: -16383.298828 Train Epoch: 59 [51200/60000 (85%)] Loss: -16890.437500 >> Epoch: 59 Average loss: -16539.4592 Train Epoch: 60 [0/60000 (0%)] Loss: -16634.007812 Train Epoch: 60 [12800/60000 (21%)] Loss: -16557.408203 Train Epoch: 60 [25600/60000 (43%)] Loss: -16968.511719 Train Epoch: 60 [38400/60000 (64%)] Loss: -16812.199219 Train Epoch: 60 [51200/60000 (85%)] Loss: -16647.976562 >> Epoch: 60 Average loss: -16661.2688 Train Epoch: 61 [0/60000 (0%)] Loss: -17091.906250 Train Epoch: 61 [12800/60000 (21%)] Loss: -16241.574219 Train Epoch: 61 [25600/60000 (43%)] Loss: -16217.345703 Train Epoch: 61 [38400/60000 (64%)] Loss: -16891.384766 Train Epoch: 61 [51200/60000 (85%)] Loss: -16775.207031 >> Epoch: 61 Average loss: -16609.7100 Train Epoch: 62 [0/60000 (0%)] Loss: -17134.527344 Train Epoch: 62 [12800/60000 (21%)] Loss: -16760.613281 Train Epoch: 62 [25600/60000 (43%)] Loss: -16567.193359 Train Epoch: 62 [38400/60000 (64%)] Loss: -16474.320312 Train Epoch: 62 [51200/60000 (85%)] Loss: -16455.552734 >> Epoch: 62 Average loss: -16746.5140 Train Epoch: 63 [0/60000 (0%)] Loss: -17373.203125 Train Epoch: 63 [12800/60000 (21%)] Loss: -16973.087891 Train Epoch: 63 [25600/60000 (43%)] Loss: -16784.939453 Train Epoch: 63 [38400/60000 (64%)] Loss: -17112.052734 Train Epoch: 63 [51200/60000 (85%)] Loss: -16774.017578 >> Epoch: 63 Average loss: -16980.7624 Train Epoch: 64 [0/60000 (0%)] Loss: -17215.111328 Train Epoch: 64 [12800/60000 (21%)] Loss: -16998.052734 Train Epoch: 64 [25600/60000 (43%)] Loss: -16724.621094 Train Epoch: 64 [38400/60000 (64%)] Loss: -16849.472656 Train Epoch: 64 [51200/60000 (85%)] Loss: -16990.341797 >> Epoch: 64 Average loss: -16977.7651 Train Epoch: 65 [0/60000 (0%)] Loss: -16878.310547 Train Epoch: 65 [12800/60000 (21%)] Loss: -16966.154297 Train Epoch: 65 [25600/60000 (43%)] Loss: -16739.839844 Train Epoch: 65 [38400/60000 (64%)] Loss: -16463.107422 Train Epoch: 65 [51200/60000 (85%)] Loss: -17488.527344 >> Epoch: 65 Average loss: -16794.3002 Train Epoch: 66 [0/60000 (0%)] Loss: -16805.675781 Train Epoch: 66 [12800/60000 (21%)] Loss: -16661.839844 Train Epoch: 66 [25600/60000 (43%)] Loss: -16651.310547 Train Epoch: 66 [38400/60000 (64%)] Loss: -17002.986328 Train Epoch: 66 [51200/60000 (85%)] Loss: -17010.789062 >> Epoch: 66 Average loss: -16781.7397 Train Epoch: 67 [0/60000 (0%)] Loss: -17037.335938 Train Epoch: 67 [12800/60000 (21%)] Loss: -16572.474609 Train Epoch: 67 [25600/60000 (43%)] Loss: -16418.179688 Train Epoch: 67 [38400/60000 (64%)] Loss: -17102.197266 Train Epoch: 67 [51200/60000 (85%)] Loss: -16854.257812 >> Epoch: 67 Average loss: -16788.2711 Train Epoch: 68 [0/60000 (0%)] Loss: -16557.568359 Train Epoch: 68 [12800/60000 (21%)] Loss: -16540.048828 Train Epoch: 68 [25600/60000 (43%)] Loss: -16928.925781 Train Epoch: 68 [38400/60000 (64%)] Loss: -16511.935547 Train Epoch: 68 [51200/60000 (85%)] Loss: -16502.919922 >> Epoch: 68 Average loss: -16653.5732 Train Epoch: 69 [0/60000 (0%)] Loss: -17173.617188 Train Epoch: 69 [12800/60000 (21%)] Loss: -16657.203125 Train Epoch: 69 [25600/60000 (43%)] Loss: -16737.843750 Train Epoch: 69 [38400/60000 (64%)] Loss: -16758.394531 Train Epoch: 69 [51200/60000 (85%)] Loss: -16613.031250 >> Epoch: 69 Average loss: -16693.8696 Train Epoch: 70 [0/60000 (0%)] Loss: -16670.583984 Train Epoch: 70 [12800/60000 (21%)] Loss: -16123.583984 Train Epoch: 70 [25600/60000 (43%)] Loss: -17051.111328 Train Epoch: 70 [38400/60000 (64%)] Loss: -16375.357422 Train Epoch: 70 [51200/60000 (85%)] Loss: -16055.228516 >> Epoch: 70 Average loss: -16574.8070 Train Epoch: 71 [0/60000 (0%)] Loss: -17300.732422 Train Epoch: 71 [12800/60000 (21%)] Loss: -16737.800781 Train Epoch: 71 [25600/60000 (43%)] Loss: -16490.570312 Train Epoch: 71 [38400/60000 (64%)] Loss: -16617.035156 Train Epoch: 71 [51200/60000 (85%)] Loss: -17057.218750 >> Epoch: 71 Average loss: -16812.1958 Train Epoch: 72 [0/60000 (0%)] Loss: -16844.027344 Train Epoch: 72 [12800/60000 (21%)] Loss: -17196.638672 Train Epoch: 72 [25600/60000 (43%)] Loss: -17155.652344 Train Epoch: 72 [38400/60000 (64%)] Loss: -16815.871094 Train Epoch: 72 [51200/60000 (85%)] Loss: -16868.396484 >> Epoch: 72 Average loss: -17024.8841 Train Epoch: 73 [0/60000 (0%)] Loss: -16993.830078 Train Epoch: 73 [12800/60000 (21%)] Loss: -16626.347656 Train Epoch: 73 [25600/60000 (43%)] Loss: -16572.027344 Train Epoch: 73 [38400/60000 (64%)] Loss: -16964.886719 Train Epoch: 73 [51200/60000 (85%)] Loss: -16832.048828 >> Epoch: 73 Average loss: -16820.0449 Train Epoch: 74 [0/60000 (0%)] Loss: -16726.564453 Train Epoch: 74 [12800/60000 (21%)] Loss: -17005.005859 Train Epoch: 74 [25600/60000 (43%)] Loss: -16827.363281 Train Epoch: 74 [38400/60000 (64%)] Loss: -16812.699219 Train Epoch: 74 [51200/60000 (85%)] Loss: -17007.255859 >> Epoch: 74 Average loss: -16855.9665 Train Epoch: 75 [0/60000 (0%)] Loss: -17013.611328 Train Epoch: 75 [12800/60000 (21%)] Loss: -16890.156250 Train Epoch: 75 [25600/60000 (43%)] Loss: -16731.054688 Train Epoch: 75 [38400/60000 (64%)] Loss: -16648.509766 Train Epoch: 75 [51200/60000 (85%)] Loss: -16863.269531 >> Epoch: 75 Average loss: -16755.0141 Train Epoch: 76 [0/60000 (0%)] Loss: -16395.185547 Train Epoch: 76 [12800/60000 (21%)] Loss: -16981.302734 Train Epoch: 76 [25600/60000 (43%)] Loss: -16936.773438 Train Epoch: 76 [38400/60000 (64%)] Loss: -16885.177734 Train Epoch: 76 [51200/60000 (85%)] Loss: -16895.365234 >> Epoch: 76 Average loss: -16824.4441 Train Epoch: 77 [0/60000 (0%)] Loss: -16717.771484 Train Epoch: 77 [12800/60000 (21%)] Loss: -16638.263672 Train Epoch: 77 [25600/60000 (43%)] Loss: -16863.125000 Train Epoch: 77 [38400/60000 (64%)] Loss: -16758.496094 Train Epoch: 77 [51200/60000 (85%)] Loss: -16392.998047 >> Epoch: 77 Average loss: -16704.3087 Train Epoch: 78 [0/60000 (0%)] Loss: -16794.507812 Train Epoch: 78 [12800/60000 (21%)] Loss: -16618.425781 Train Epoch: 78 [25600/60000 (43%)] Loss: -16530.740234 Train Epoch: 78 [38400/60000 (64%)] Loss: -16447.982422 Train Epoch: 78 [51200/60000 (85%)] Loss: -16567.976562 >> Epoch: 78 Average loss: -16514.9580 Train Epoch: 79 [0/60000 (0%)] Loss: -16274.107422 Train Epoch: 79 [12800/60000 (21%)] Loss: -15965.790039 Train Epoch: 79 [25600/60000 (43%)] Loss: -16976.404297 Train Epoch: 79 [38400/60000 (64%)] Loss: -16533.996094 Train Epoch: 79 [51200/60000 (85%)] Loss: -16301.074219 >> Epoch: 79 Average loss: -16574.6297 Train Epoch: 80 [0/60000 (0%)] Loss: -16861.246094 Train Epoch: 80 [12800/60000 (21%)] Loss: -16715.041016 Train Epoch: 80 [25600/60000 (43%)] Loss: -16621.761719 Train Epoch: 80 [38400/60000 (64%)] Loss: -16638.947266 Train Epoch: 80 [51200/60000 (85%)] Loss: -16915.890625 >> Epoch: 80 Average loss: -16756.9602 Train Epoch: 81 [0/60000 (0%)] Loss: -17538.429688 Train Epoch: 81 [12800/60000 (21%)] Loss: -17190.730469 Train Epoch: 81 [25600/60000 (43%)] Loss: -17047.847656 Train Epoch: 81 [38400/60000 (64%)] Loss: -16756.128906 Train Epoch: 81 [51200/60000 (85%)] Loss: -16829.742188 >> Epoch: 81 Average loss: -16969.9282 Train Epoch: 82 [0/60000 (0%)] Loss: -17068.365234 Train Epoch: 82 [12800/60000 (21%)] Loss: -16725.025391 Train Epoch: 82 [25600/60000 (43%)] Loss: -16801.292969 Train Epoch: 82 [38400/60000 (64%)] Loss: -16457.238281 Train Epoch: 82 [51200/60000 (85%)] Loss: -16701.607422 >> Epoch: 82 Average loss: -16702.8252 Train Epoch: 83 [0/60000 (0%)] Loss: -17212.253906 Train Epoch: 83 [12800/60000 (21%)] Loss: -16595.898438 Train Epoch: 83 [25600/60000 (43%)] Loss: -16469.062500 Train Epoch: 83 [38400/60000 (64%)] Loss: -16930.515625 Train Epoch: 83 [51200/60000 (85%)] Loss: -16346.410156 >> Epoch: 83 Average loss: -16681.1220 Train Epoch: 84 [0/60000 (0%)] Loss: -16859.251953 Train Epoch: 84 [12800/60000 (21%)] Loss: -16471.759766 Train Epoch: 84 [25600/60000 (43%)] Loss: -16511.751953 Train Epoch: 84 [38400/60000 (64%)] Loss: -16661.656250 Train Epoch: 84 [51200/60000 (85%)] Loss: -16598.855469 >> Epoch: 84 Average loss: -16600.5367 Train Epoch: 85 [0/60000 (0%)] Loss: -16690.406250 Train Epoch: 85 [12800/60000 (21%)] Loss: -16376.686523 Train Epoch: 85 [25600/60000 (43%)] Loss: -17155.906250 Train Epoch: 85 [38400/60000 (64%)] Loss: -16336.201172 Train Epoch: 85 [51200/60000 (85%)] Loss: -16828.732422 >> Epoch: 85 Average loss: -16589.3381 Train Epoch: 86 [0/60000 (0%)] Loss: -16457.542969 Train Epoch: 86 [12800/60000 (21%)] Loss: -16272.050781 Train Epoch: 86 [25600/60000 (43%)] Loss: -16127.432617 Train Epoch: 86 [38400/60000 (64%)] Loss: -16412.441406 Train Epoch: 86 [51200/60000 (85%)] Loss: -15926.803711 >> Epoch: 86 Average loss: -16343.3976 Train Epoch: 87 [0/60000 (0%)] Loss: -16248.798828 Train Epoch: 87 [12800/60000 (21%)] Loss: -16318.914062 Train Epoch: 87 [25600/60000 (43%)] Loss: -16081.777344 Train Epoch: 87 [38400/60000 (64%)] Loss: -17063.484375 Train Epoch: 87 [51200/60000 (85%)] Loss: -16452.720703 >> Epoch: 87 Average loss: -16501.6742 Train Epoch: 88 [0/60000 (0%)] Loss: -16617.968750 Train Epoch: 88 [12800/60000 (21%)] Loss: -16762.095703 Train Epoch: 88 [25600/60000 (43%)] Loss: -16962.550781 Train Epoch: 88 [38400/60000 (64%)] Loss: -17069.365234 Train Epoch: 88 [51200/60000 (85%)] Loss: -17031.849609 >> Epoch: 88 Average loss: -16713.8787 Train Epoch: 89 [0/60000 (0%)] Loss: -16634.357422 Train Epoch: 89 [12800/60000 (21%)] Loss: -16780.300781 Train Epoch: 89 [25600/60000 (43%)] Loss: -17194.730469 Train Epoch: 89 [38400/60000 (64%)] Loss: -16642.835938 Train Epoch: 89 [51200/60000 (85%)] Loss: -16811.687500 >> Epoch: 89 Average loss: -16672.3675 Train Epoch: 90 [0/60000 (0%)] Loss: -16412.855469 Train Epoch: 90 [12800/60000 (21%)] Loss: -16578.832031 Train Epoch: 90 [25600/60000 (43%)] Loss: -16710.269531 Train Epoch: 90 [38400/60000 (64%)] Loss: -16771.345703 Train Epoch: 90 [51200/60000 (85%)] Loss: -16795.388672 >> Epoch: 90 Average loss: -16634.6537 Train Epoch: 91 [0/60000 (0%)] Loss: -16775.830078 Train Epoch: 91 [12800/60000 (21%)] Loss: -16958.330078 Train Epoch: 91 [25600/60000 (43%)] Loss: -16458.888672 Train Epoch: 91 [38400/60000 (64%)] Loss: -16233.967773 Train Epoch: 91 [51200/60000 (85%)] Loss: -16599.865234 >> Epoch: 91 Average loss: -16741.0825 Train Epoch: 92 [0/60000 (0%)] Loss: -17074.335938 Train Epoch: 92 [12800/60000 (21%)] Loss: -16677.009766 Train Epoch: 92 [25600/60000 (43%)] Loss: -16861.306641 Train Epoch: 92 [38400/60000 (64%)] Loss: -16204.630859 Train Epoch: 92 [51200/60000 (85%)] Loss: -16753.148438 >> Epoch: 92 Average loss: -16639.2805 Train Epoch: 93 [0/60000 (0%)] Loss: -16560.656250 Train Epoch: 93 [12800/60000 (21%)] Loss: -17046.308594 Train Epoch: 93 [25600/60000 (43%)] Loss: -16815.138672 Train Epoch: 93 [38400/60000 (64%)] Loss: -16509.044922 Train Epoch: 93 [51200/60000 (85%)] Loss: -16683.046875 >> Epoch: 93 Average loss: -16743.7790 Train Epoch: 94 [0/60000 (0%)] Loss: -16674.994141 Train Epoch: 94 [12800/60000 (21%)] Loss: -16944.917969 Train Epoch: 94 [25600/60000 (43%)] Loss: -16855.167969 Train Epoch: 94 [38400/60000 (64%)] Loss: -16546.781250 Train Epoch: 94 [51200/60000 (85%)] Loss: -16807.929688 >> Epoch: 94 Average loss: -16767.7904 Train Epoch: 95 [0/60000 (0%)] Loss: -17421.816406 Train Epoch: 95 [12800/60000 (21%)] Loss: -16699.886719 Train Epoch: 95 [25600/60000 (43%)] Loss: -16530.775391 Train Epoch: 95 [38400/60000 (64%)] Loss: -16462.689453 Train Epoch: 95 [51200/60000 (85%)] Loss: -16422.068359 >> Epoch: 95 Average loss: -16710.3526 Train Epoch: 96 [0/60000 (0%)] Loss: -17130.708984 Train Epoch: 96 [12800/60000 (21%)] Loss: -16741.439453 Train Epoch: 96 [25600/60000 (43%)] Loss: -16863.515625 Train Epoch: 96 [38400/60000 (64%)] Loss: -16242.845703 Train Epoch: 96 [51200/60000 (85%)] Loss: -16575.855469 >> Epoch: 96 Average loss: -16707.6568 Train Epoch: 97 [0/60000 (0%)] Loss: -16601.457031 Train Epoch: 97 [12800/60000 (21%)] Loss: -16559.931641 Train Epoch: 97 [25600/60000 (43%)] Loss: -16509.224609 Train Epoch: 97 [38400/60000 (64%)] Loss: -16780.644531 Train Epoch: 97 [51200/60000 (85%)] Loss: -16513.462891 >> Epoch: 97 Average loss: -16538.1087 Train Epoch: 98 [0/60000 (0%)] Loss: -17080.683594 Train Epoch: 98 [12800/60000 (21%)] Loss: -16576.988281 Train Epoch: 98 [25600/60000 (43%)] Loss: -16717.597656 Train Epoch: 98 [38400/60000 (64%)] Loss: -16582.261719 Train Epoch: 98 [51200/60000 (85%)] Loss: -16598.505859 >> Epoch: 98 Average loss: -16717.3681 Train Epoch: 99 [0/60000 (0%)] Loss: -16601.992188 Train Epoch: 99 [12800/60000 (21%)] Loss: -16578.425781 Train Epoch: 99 [25600/60000 (43%)] Loss: -16143.469727 Train Epoch: 99 [38400/60000 (64%)] Loss: -16556.958984 Train Epoch: 99 [51200/60000 (85%)] Loss: -16283.593750 >> Epoch: 99 Average loss: -16547.9954 ```python # As suggested in https://pytorch.org/tutorials/beginner/saving_loading_models.html filename = '../saved-mdls/01-autoencoder/vae_{}e.pt'.format(epoch+1) torch.save(model, filename) print('model saved as: {}'.format(filename)) ``` model saved as: ./saved-mdls/01-autoencoder/vae_100e.pt /opt/anaconda3/lib/python3.7/site-packages/torch/serialization.py:256: UserWarning: Couldn't retrieve source code for container of type VAE. It won't be checked for correctness upon loading. "type " + obj.__name__ + ". It won't be checked " ## Using the Variational autoencoder ```python # Model class must be defined somewhere model = torch.load('./saved-mdls/01-autoencoder/vae_100e.pt', map_location=torch.device('cpu')) model.eval() ``` /Users/andreamunafo/opt/anaconda3/envs/compiling-ai/lib/python3.6/site-packages/torch/serialization.py:493: SourceChangeWarning: source code of class 'torch.nn.modules.activation.ReLU' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) /Users/andreamunafo/opt/anaconda3/envs/compiling-ai/lib/python3.6/site-packages/torch/serialization.py:493: SourceChangeWarning: source code of class 'torch.nn.modules.activation.Sigmoid' has changed. you can retrieve the original source code by accessing the object's source attribute or set `torch.nn.Module.dump_patches = True` and use the patch tool to revert the changes. warnings.warn(msg, SourceChangeWarning) VAE( (base_encoder): Sequential( (0): Linear(in_features=784, out_features=400, bias=True) (1): ReLU(inplace=True) ) (mean_encoder): Sequential( (0): Sequential( (0): Linear(in_features=784, out_features=400, bias=True) (1): ReLU(inplace=True) ) (1): Linear(in_features=400, out_features=20, bias=True) ) (var_encoder): Sequential( (0): Sequential( (0): Linear(in_features=784, out_features=400, bias=True) (1): ReLU(inplace=True) ) (1): Linear(in_features=400, out_features=20, bias=True) ) (decoder): Sequential( (0): Linear(in_features=20, out_features=400, bias=True) (1): ReLU(inplace=True) (2): Linear(in_features=400, out_features=784, bias=True) (3): Sigmoid() ) ) Choose an image ```python idx = 1010 ``` Define the transforms to normalise the image (as done during training) ```python # Define the transforms to normalise the image pic_tt = transforms.ToTensor() # Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] pic_n = transforms.Normalize((ds_mean,), (ds_std,)) if torch.__version__ != '1.3.0': pic_data = valid_ds.test_data[idx].numpy() pic_data = pic_data[:, :, None] # (H x W x C) print('pic_data.dtype: {}'.format(pic_data.dtype)) else: pic_data = valid_ds.data[idx].numpy() pic = pic_tt(pic_data) pic = pic_n(pic) # print stats print('pic mean: {}, std: {}'.format(pic.mean(), pic.std())) # print pic shape print('\npic shape (C x H x W): {}'.format(pic.shape)) ``` pic mean: 0.0921572670340538, std: 1.0990101099014282 pic shape (C x H x W): torch.Size([1, 28, 28]) ```python plt.imshow(pic.view(28,28)) ``` ```python # check size print(pic.to(device)[None, :, :, :].shape) print(pic.to(device).view(1, -1).shape) ``` torch.Size([1, 1, 28, 28]) torch.Size([1, 784]) ### Encode ```python device = 'cpu' mean_encoding, var_encoding = model.encode(pic.to(device).view(1, -1)) # note that we need to reshape the pic to be: bsx28*28 # print encoding result print('encoded mean: {}'.format(mean_encoding.detach().cpu().numpy())) print('encoded var: {}'.format(var_encoding.detach().cpu().numpy())) ``` encoded mean: [[-0.5592429 1.4444453 1.1667817 -0.18782139 1.0589974 -0.55701214 -0.07533638 0.1629481 0.64944714 5.653008 0.3813714 -0.9495977 1.085453 -1.5471504 -3.5718756 1.2370685 -0.7264838 0.53405297 1.5231957 -1.6848253 ]] encoded var: [[-5.571127 -6.57798 -6.2529154 -5.8869295 -5.8825827 -5.62205 -5.6434155 -6.084442 -6.771547 -5.3372474 -5.7165003 -6.550778 -5.552048 -6.1818843 -5.855712 -5.3861585 -6.335955 -6.6406946 -6.5768113 -6.869463 ]] ### Decode ```python decoding, _, _ = model.decode((mean_encoding, var_encoding)) ``` ```python plt.imshow(decoding.cpu().data.view(28, 28)) ``` ## fin. ```python ```
6980ff37d9502fc7b5cf901f7e249e353394d8e0
147,769
ipynb
Jupyter Notebook
notebooks/01-autoencoder.ipynb
andreamunafo/friendly-robot
fe3e5b9a33a3312389350f3387a4290dc5bf3148
[ "MIT" ]
null
null
null
notebooks/01-autoencoder.ipynb
andreamunafo/friendly-robot
fe3e5b9a33a3312389350f3387a4290dc5bf3148
[ "MIT" ]
null
null
null
notebooks/01-autoencoder.ipynb
andreamunafo/friendly-robot
fe3e5b9a33a3312389350f3387a4290dc5bf3148
[ "MIT" ]
null
null
null
49.092691
7,328
0.65149
true
28,770
Qwen/Qwen-72B
1. YES 2. YES
0.877477
0.857768
0.752672
__label__eng_Latn
0.438541
0.58704
# Distance Metrics by: Team Old Nation ```python import matplotlib.pyplot as plt import pandas as pd from sklearn.metrics import pairwise_distances import sympy as sym import seaborn as sns import numpy as np %matplotlib inline ``` ```python # Reading in csv df = pd.read_csv("2022_Project_distance_Matrix.csv") df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ARFL</th> <th>Argonne</th> <th>Boeing</th> <th>Delta Dental</th> <th>Ford</th> <th>Hope Village</th> <th>Kellogg's</th> <th>Neogen</th> <th>Old Nation</th> <th>Qside</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>7</td> <td>4</td> <td>9</td> <td>8</td> <td>3</td> <td>0</td> <td>6</td> <td>2</td> <td>5</td> <td>1</td> </tr> <tr> <th>1</th> <td>0</td> <td>1</td> <td>3</td> <td>2</td> <td>4</td> <td>8</td> <td>6</td> <td>5</td> <td>7</td> <td>9</td> </tr> <tr> <th>2</th> <td>3</td> <td>2</td> <td>1</td> <td>6</td> <td>0</td> <td>8</td> <td>5</td> <td>4</td> <td>7</td> <td>9</td> </tr> <tr> <th>3</th> <td>8</td> <td>7</td> <td>3</td> <td>9</td> <td>4</td> <td>5</td> <td>0</td> <td>6</td> <td>1</td> <td>2</td> </tr> <tr> <th>4</th> <td>0</td> <td>2</td> <td>1</td> <td>8</td> <td>7</td> <td>3</td> <td>9</td> <td>6</td> <td>4</td> <td>5</td> </tr> <tr> <th>5</th> <td>3</td> <td>2</td> <td>0</td> <td>6</td> <td>9</td> <td>7</td> <td>8</td> <td>4</td> <td>1</td> <td>5</td> </tr> <tr> <th>6</th> <td>3</td> <td>4</td> <td>2</td> <td>9</td> <td>8</td> <td>6</td> <td>0</td> <td>5</td> <td>7</td> <td>1</td> </tr> <tr> <th>7</th> <td>1</td> <td>2</td> <td>5</td> <td>3</td> <td>0</td> <td>6</td> <td>9</td> <td>7</td> <td>8</td> <td>4</td> </tr> <tr> <th>8</th> <td>6</td> <td>1</td> <td>0</td> <td>5</td> <td>2</td> <td>9</td> <td>4</td> <td>3</td> <td>7</td> <td>8</td> </tr> <tr> <th>9</th> <td>3</td> <td>1</td> <td>2</td> <td>6</td> <td>0</td> <td>8</td> <td>9</td> <td>4</td> <td>5</td> <td>7</td> </tr> <tr> <th>10</th> <td>1</td> <td>7</td> <td>8</td> <td>0</td> <td>9</td> <td>6</td> <td>5</td> <td>4</td> <td>3</td> <td>2</td> </tr> <tr> <th>11</th> <td>5</td> <td>4</td> <td>3</td> <td>6</td> <td>0</td> <td>7</td> <td>2</td> <td>1</td> <td>9</td> <td>8</td> </tr> <tr> <th>12</th> <td>3</td> <td>4</td> <td>6</td> <td>9</td> <td>7</td> <td>2</td> <td>5</td> <td>8</td> <td>1</td> <td>0</td> </tr> <tr> <th>13</th> <td>8</td> <td>9</td> <td>7</td> <td>5</td> <td>4</td> <td>1</td> <td>6</td> <td>3</td> <td>0</td> <td>2</td> </tr> <tr> <th>14</th> <td>0</td> <td>4</td> <td>1</td> <td>7</td> <td>2</td> <td>8</td> <td>5</td> <td>3</td> <td>6</td> <td>9</td> </tr> <tr> <th>15</th> <td>4</td> <td>3</td> <td>6</td> <td>5</td> <td>9</td> <td>1</td> <td>7</td> <td>8</td> <td>2</td> <td>0</td> </tr> <tr> <th>16</th> <td>2</td> <td>4</td> <td>1</td> <td>7</td> <td>0</td> <td>8</td> <td>9</td> <td>3</td> <td>5</td> <td>6</td> </tr> <tr> <th>17</th> <td>1</td> <td>2</td> <td>5</td> <td>6</td> <td>0</td> <td>9</td> <td>3</td> <td>4</td> <td>7</td> <td>8</td> </tr> <tr> <th>18</th> <td>0</td> <td>5</td> <td>9</td> <td>2</td> <td>1</td> <td>3</td> <td>8</td> <td>4</td> <td>7</td> <td>6</td> </tr> <tr> <th>19</th> <td>2</td> <td>3</td> <td>1</td> <td>7</td> <td>4</td> <td>6</td> <td>9</td> <td>0</td> <td>5</td> <td>8</td> </tr> <tr> <th>20</th> <td>3</td> <td>8</td> <td>7</td> <td>0</td> <td>2</td> <td>4</td> <td>9</td> <td>6</td> <td>1</td> <td>5</td> </tr> <tr> <th>21</th> <td>3</td> <td>2</td> <td>1</td> <td>5</td> <td>8</td> <td>7</td> <td>9</td> <td>0</td> <td>4</td> <td>6</td> </tr> <tr> <th>22</th> <td>0</td> <td>3</td> <td>1</td> <td>7</td> <td>6</td> <td>9</td> <td>5</td> <td>2</td> <td>4</td> <td>8</td> </tr> <tr> <th>23</th> <td>1</td> <td>0</td> <td>3</td> <td>2</td> <td>9</td> <td>8</td> <td>7</td> <td>6</td> <td>5</td> <td>4</td> </tr> <tr> <th>24</th> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>5</td> <td>3</td> <td>4</td> <td>0</td> <td>2</td> <td>1</td> </tr> <tr> <th>25</th> <td>2</td> <td>4</td> <td>0</td> <td>9</td> <td>7</td> <td>8</td> <td>3</td> <td>1</td> <td>5</td> <td>6</td> </tr> <tr> <th>26</th> <td>2</td> <td>6</td> <td>8</td> <td>7</td> <td>9</td> <td>5</td> <td>0</td> <td>3</td> <td>4</td> <td>1</td> </tr> <tr> <th>27</th> <td>2</td> <td>0</td> <td>1</td> <td>5</td> <td>9</td> <td>4</td> <td>8</td> <td>6</td> <td>3</td> <td>7</td> </tr> <tr> <th>28</th> <td>3</td> <td>5</td> <td>0</td> <td>6</td> <td>1</td> <td>8</td> <td>7</td> <td>2</td> <td>9</td> <td>4</td> </tr> <tr> <th>29</th> <td>7</td> <td>3</td> <td>9</td> <td>5</td> <td>8</td> <td>0</td> <td>6</td> <td>4</td> <td>1</td> <td>2</td> </tr> <tr> <th>30</th> <td>5</td> <td>4</td> <td>6</td> <td>7</td> <td>8</td> <td>1</td> <td>9</td> <td>3</td> <td>0</td> <td>2</td> </tr> <tr> <th>31</th> <td>6</td> <td>8</td> <td>3</td> <td>7</td> <td>9</td> <td>0</td> <td>4</td> <td>5</td> <td>2</td> <td>1</td> </tr> <tr> <th>32</th> <td>4</td> <td>7</td> <td>6</td> <td>9</td> <td>8</td> <td>0</td> <td>3</td> <td>5</td> <td>1</td> <td>2</td> </tr> <tr> <th>33</th> <td>7</td> <td>3</td> <td>8</td> <td>5</td> <td>6</td> <td>2</td> <td>9</td> <td>4</td> <td>0</td> <td>1</td> </tr> <tr> <th>34</th> <td>4</td> <td>5</td> <td>9</td> <td>8</td> <td>7</td> <td>1</td> <td>6</td> <td>3</td> <td>0</td> <td>2</td> </tr> <tr> <th>35</th> <td>7</td> <td>5</td> <td>9</td> <td>3</td> <td>8</td> <td>0</td> <td>4</td> <td>6</td> <td>1</td> <td>2</td> </tr> <tr> <th>36</th> <td>2</td> <td>1</td> <td>0</td> <td>5</td> <td>4</td> <td>8</td> <td>6</td> <td>3</td> <td>7</td> <td>9</td> </tr> <tr> <th>37</th> <td>1</td> <td>7</td> <td>3</td> <td>0</td> <td>9</td> <td>6</td> <td>8</td> <td>2</td> <td>5</td> <td>4</td> </tr> <tr> <th>38</th> <td>5</td> <td>0</td> <td>1</td> <td>3</td> <td>2</td> <td>4</td> <td>9</td> <td>6</td> <td>7</td> <td>8</td> </tr> </tbody> </table> </div> ```python temp = np.zeros([10,10]) for i in range(len(df.columns)): col1 = df.columns[i] for j in range(len(df.columns)): col2 = df.columns[j] temp[i][j] = np.sum(df[df[col1]==0][col2])/len(df[df[col1]==0][col2]) data = pd.DataFrame(temp, columns=df.columns) data = data.set_index(data.columns) data.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>ARFL</th> <th>Argonne</th> <th>Boeing</th> <th>Delta Dental</th> <th>Ford</th> <th>Hope Village</th> <th>Kellogg's</th> <th>Neogen</th> <th>Old Nation</th> <th>Qside</th> </tr> </thead> <tbody> <tr> <th>ARFL</th> <td>0.000000</td> <td>3.000000</td> <td>3.000000</td> <td>5.200000</td> <td>4.000000</td> <td>6.200000</td> <td>6.600000</td> <td>4.000000</td> <td>5.600000</td> <td>7.400000</td> </tr> <tr> <th>Argonne</th> <td>2.666667</td> <td>0.000000</td> <td>1.666667</td> <td>3.333333</td> <td>6.666667</td> <td>5.333333</td> <td>8.000000</td> <td>6.000000</td> <td>5.000000</td> <td>6.333333</td> </tr> <tr> <th>Boeing</th> <td>3.200000</td> <td>2.600000</td> <td>0.000000</td> <td>6.200000</td> <td>4.600000</td> <td>8.000000</td> <td>5.600000</td> <td>2.600000</td> <td>5.800000</td> <td>6.400000</td> </tr> <tr> <th>Delta Dental</th> <td>1.666667</td> <td>7.333333</td> <td>6.000000</td> <td>0.000000</td> <td>6.666667</td> <td>5.333333</td> <td>7.333333</td> <td>4.000000</td> <td>3.000000</td> <td>3.666667</td> </tr> <tr> <th>Ford</th> <td>2.500000</td> <td>2.500000</td> <td>2.833333</td> <td>5.666667</td> <td>0.000000</td> <td>7.666667</td> <td>6.166667</td> <td>3.833333</td> <td>6.833333</td> <td>7.000000</td> </tr> </tbody> </table> </div> ```python data_dist = sym.Matrix(pairwise_distances(data)) data_dist[3,3] = 0.0 #this was essentially 0 but rounding errors made it larger data_dist ``` $\displaystyle \left[\begin{matrix}2.38418579101563 \cdot 10^{-7} & 6.05750223552029 & 5.29150262212918 & 9.31092548210614 & 5.17622771266232 & 12.7561749752816 & 11.4282301536347 & 6.8818602136341 & 12.5153905252693 & 12.2784363825367\\6.05750223552029 & 0.0 & 6.88379740162846 & 10.0111049451208 & 8.65062618157399 & 12.4867930230304 & 12.6051136007927 & 8.61523198888006 & 12.3237575438662 & 11.0453610171873\\5.29150262212918 & 6.88379740162846 & 2.38418579101563 \cdot 10^{-7} & 11.4391141848193 & 5.77523448297412 & 13.4610549363711 & 10.5560935535411 & 6.2010751755912 & 13.3676849154968 & 13.4208792558461\\9.31092548210614 & 10.0111049451208 & 11.4391141848193 & 0.0 & 11.9698695806503 & 10.4076894650062 & 11.9536140513607 & 9.5102284117914 & 9.72325391351407 & 10.816653826392\\5.17622771266232 & 8.65062618157399 & 5.77523448297412 & 11.9698695806503 & 0.0 & 14.4090249496626 & 12.4922198009623 & 8.56024402559751 & 14.0904814206849 & 14.5143607047182\\12.7561749752816 & 12.4867930230304 & 13.4610549363711 & 10.4076894650062 & 14.4090249496626 & 3.37174788087152 \cdot 10^{-7} & 8.32452868202025 & 9.7802522121535 & 4.04907396820557 & 5.77234787586473\\11.4282301536347 & 12.6051136007927 & 10.5560935535411 & 11.9536140513607 & 12.4922198009623 & 8.32452868202025 & 0.0 & 9.84321537348893 & 10.4396413305779 & 8.9876458418085\\6.8818602136341 & 8.61523198888006 & 6.2010751755912 & 9.5102284117914 & 8.56024402559751 & 9.7802522121535 & 9.84321537348893 & 0.0 & 8.74880944281373 & 11.0905365064094\\12.5153905252693 & 12.3237575438662 & 13.3676849154968 & 9.72325391351407 & 14.0904814206849 & 4.04907396820557 & 10.4396413305779 & 8.74880944281373 & 0.0 & 6.73609679265374\\12.2784363825367 & 11.0453610171873 & 13.4208792558461 & 10.816653826392 & 14.5143607047182 & 5.77234787586473 & 8.9876458418085 & 11.0905365064094 & 6.73609679265374 & 0.0\end{matrix}\right]$ ```python plt.figure(figsize=(10,10)) sns.heatmap(np.corrcoef(pairwise_distances(data)), annot=True, xticklabels=list(data.columns), yticklabels=list(data.columns)) ``` Based on the distance matrix and correlation plot our project is most similar to Hope Village. Our project is most different from Ford and Boeing. Ford and Boeing are doing Image analysis of some sort, along with heavy machine learning. We, on the other hand, are using census data to learn more about the demographics of Old Nations Customer Base. Hope Village has a very similar project, as they are also working with census data along with housing data. ```python ```
b948618b1e6967064e112570e72ff248f8efece2
112,659
ipynb
Jupyter Notebook
TeamOldNation_DistanceMetrics.ipynb
bowerm37/cmse495-SS22
75d63b3aab43cc997a9099939862f7980b4e7f98
[ "MIT" ]
null
null
null
TeamOldNation_DistanceMetrics.ipynb
bowerm37/cmse495-SS22
75d63b3aab43cc997a9099939862f7980b4e7f98
[ "MIT" ]
null
null
null
TeamOldNation_DistanceMetrics.ipynb
bowerm37/cmse495-SS22
75d63b3aab43cc997a9099939862f7980b4e7f98
[ "MIT" ]
null
null
null
121.661987
79,836
0.775766
true
6,036
Qwen/Qwen-72B
1. YES 2. YES
0.727975
0.727975
0.529948
__label__cym_Latn
0.140761
0.069577
<div> </div> <center><h1>Mathematical Optimization for Engineers</h1></center> <center><h2>Lab 2</h2></center> <center><h2>Basic math</h2></center> $$\newcommand{\mr}[1]{\mathrm{#1}} \newcommand{\D}{\displaystyle} \newcommand{\bm}[1]{\text{\mathbf $#1$}} \newcommand{\bx}{\mathbf{ x}} \newcommand{\f}{\mathbf{{f}}} \newcommand{\g}{\mathbf{ g}} \newcommand{\h}{\mathbf{ h}} \newcommand{\R}{\mathbb R} \newcommand{\A}{\mathbf{ A}} \newcommand{\br}{\boldsymbol{r}} \newcommand{\bp}{\boldsymbol{p}} \newcommand{\bnabla}{\mathbf{\nabla}} $$ In this lab, we will learn about Jacobians, gradients and Hessian matrices. <u>Notation</u>: Please note that throughout the course, we will denote matrices and vectors with boldface letters. Their components will be denoted by normal letters with subscripts. For example, $$ \bx = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) $$ ## Jacobian Let $\ \mathbf \f:\R^n \rightarrow \R^m,\,\bx \mapsto \f(\bx)$ be a continuously differentiable function, where $$ \bx = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right) , \qquad \f(\bx) = \left(\begin{array}{c} f_1(\bx) \\ \vdots \\ f_m(\bx) \end{array} \right). $$ The Jacobian $\f'(\bx)$ is defined by the matrix $$ \f'(\bx) = \left( \begin{array}{ccc} \frac{\partial f_1(\bx)}{\partial x_1} & \cdots & \frac{\partial f_1(\bx)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(\bx)}{\partial x_1} & \cdots & \frac{\partial f_m(\bx)}{\partial x_n} \end{array} \right). $$ ## Gradient Now, let $f:\R^n \rightarrow \R,\,\bx \mapsto f(\bx)$ be a scalar-valued continuously differentiable function with vector-valued arguments. The gradient $\bnabla f(\bx)$ and Jacobian $f'(\bx)$ are defined as the column vector and row vector, respectively, $$ \bnabla f(\bx) = \left(\begin{array}{c} \frac{\partial f(\bx)}{\partial x_1} \\ \vdots \\ \frac{\partial f(\bx)}{\partial x_n} \end{array} \right), \qquad f'(\bx) = \left(\begin{array}{ccc} \frac{\partial f(\bx)}{\partial x_1} & \cdots & \frac{\partial f(\bx)}{\partial x_n} \end{array}\right). $$ Note that $\bnabla f(\bx)^T=f'(\bx)$.<br> <br> This is also valid for any general $\ \mathbf \f:\R^n \rightarrow \R^m,\,\bx \mapsto \f(\bx)$ ### Gradient of the scalar product of two functions Let $\g,\h:\R^n\rightarrow\R^n$ be two continuously differentiable functions. We want to compute the gradient of $f:\R^n\rightarrow \R,\;\bx \mapsto f(\bx) = \g(\bx)^T\h(\bx)$, where $\bx\in\R^n$. We have $$ f(\bx) = \g(\bx)^T\h(\bx) = \sum_{i=1}^{n} g_i(\bx)h_i(\bx). $$ The derivative with respect to $x_j$ ($1 \le j \le n$) is computed by the application of the product rule \begin{equation}\label{eq:1} \frac{\partial f(\bx)}{\partial x_j} = \sum_{i=1}^{n} \left(\frac{\partial g_i(\bx)}{\partial x_j}h_i(\bx) +g_i(\bx)\frac{\partial h_i(\bx)}{\partial x_j}\right). \end{equation} With the notations $$ \frac{\partial \g(\bx)}{\partial x_j} = \left(\begin{array}{c} \frac{\partial g_1(\bx)}{\partial x_j} \\ \vdots \\ \frac{\partial g_n(\bx)}{\partial x_j} \end{array} \right) \quad \text{and} \quad \frac{\partial \h(\bx)}{\partial x_j} = \left(\begin{array}{c} \frac{\partial h_1(\bx)}{\partial x_j} \\ \vdots \\ \frac{\partial h_n(\bx)}{\partial x_j} \end{array} \right), \text{ respectively}, $$ we can rewrite the equation as $$ \frac{\partial f(\bx)}{\partial x_j} = \frac{\partial \g(\bx)}{\partial x_j} ^T \h(\bx) + \g(\bx)^T \frac{\partial \h(\bx)}{\partial x_j} = \h(\bx)^T\frac{\partial \g(\bx)}{\partial x_j} +\g(\bx)^T \frac{\partial \h(\bx)}{\partial x_j} $$ Finally, $$ \bnabla f(\bx)^T = f'(\bx) = \h(\bx)^T \g'(\bx) + \g(\bx)^T\h'(\bx). $$ $$ \implies \bnabla f(\bx) = \bnabla g(\bx) \ \h(\bx) + \bnabla h(\bx) \ \g(\bx). $$ ### Derivative of quadratic form If $\A\in\R^{n\times n}$ is a symmetric matrix, the function $$ f:\R^n\rightarrow \R,\quad\bx\mapsto f(\bx) = \bx^T\,\A\,\bx $$ is called a quadratic form. <br> <br> With the definitions, $$ \g(\bx) := \bx \ \text{and } \ \h(\bx):= \A\,\bx, $$ we have $f(\bx) = \g(\bx)^T\h(\bx)$, i.e., exactly the situation as above. With $\g'(\bx) = \mathbf{ I}$, where $\mathbf{ I}$ denotes the unity matrix, and $\h'(\bx) = \A$, it is more or less easy to see that the gradient of $f$ is given by $$ \bnabla f(\bx) = 2\,\A\,\bx. $$ ### Example 1 Let the function $f:\R^2 \rightarrow \R$ be defined as $ f(x,y) = \frac{1}{2} (x^2 + \alpha y^2), \alpha \in \R $ <u>Task 1</u>: Find all stationary points of the function $f$. <u>Task 2</u>: Calculate the Hessian of the function $f$ for arbitrary $x$ and $y$. <u>Task 3</u>: What are the eigenvalues of the Hessian of the function $f$ with respect to $x$ and $y$? <u>Task 4</u>: Characterize the stationary points for positive and negative $\alpha$. <u>Task 5</u>: Characterize the convexity of the function for every $\alpha$. ### Example 2: Rosenbrock function The Rosenbrock function is a famous test function used in optimization. <br> <br> It is defined by: $f:\R^2 \rightarrow \R$, $ f(x,y) = (a-x)^2 + b(y-x^2)^2 $ with $a=1, b=100$ <u>Task 1</u>: Find all stationary points of the function $f$. <u>Task 2</u>: Calculate the Hessian of the function $f$ for the stationary points found. (Hint: use Python) <u>Task 3</u>: What are the eigenvalues of the Hessian of the function $f$? (Hint: use Python) ```python def rosenbrock(x): return ((x[0]-1)**2 + 100*(x[1]-x[0]**2)**2) ``` ```python # compute hessian using autograd import autograd x0 = # stationary point hessian_rosenbrock = # add your code here ``` ```python # compute the eigenvalues using numpy import numpy as np # add your code here ```
37d331bfbdefc7788c7f86b2a8769c83c9bd16ad
9,071
ipynb
Jupyter Notebook
EngineeringOptimization/GitLab/Lab02.ipynb
dalexa10/EngineeringDesignOptimization
eb5b5e4edd773aef629f59aea8a9771af41bd224
[ "MIT" ]
null
null
null
EngineeringOptimization/GitLab/Lab02.ipynb
dalexa10/EngineeringDesignOptimization
eb5b5e4edd773aef629f59aea8a9771af41bd224
[ "MIT" ]
null
null
null
EngineeringOptimization/GitLab/Lab02.ipynb
dalexa10/EngineeringDesignOptimization
eb5b5e4edd773aef629f59aea8a9771af41bd224
[ "MIT" ]
null
null
null
32.512545
205
0.490464
true
2,060
Qwen/Qwen-72B
1. YES 2. YES
0.91611
0.882428
0.808401
__label__eng_Latn
0.922555
0.716518
# Chap2: An Asset Selling Problem The chapter to answer basic question: **When to sell an asset** In this case, we use a simple class of policies known as: *policy function approximations*. **Mathematical Model** * **State Variable**: $S_t$ that captures all the information we need ...($R_t$, $I_t$, $B_t$) * **Decsion Variable** : $x_t$ where $x_0$ is the design decision, while $x_t$ for t>0 represents control varilables. * **Exogenous Information**: The variable $W_t$ captures information that first becomes available between $t-1$ and $t$ from outside of our system. * **Transition Fucntion**: $$ S_{t+1} = S^M(S_t, x_t,W_{t+1}) $$ * **Objective Function**: When there are elements of the *problem* that depend on the state variables, we represent costs/contribution as: $$ C(S_{t},x_{t}) \ or \ C(S_t,x_t, W_{t+1}) $$ **Set of learning problems** : where we are trying to learn about a function which is not itself a function of state variable, it means: This means the state variable consists purely of belief state $B_t$. ## Narrative We are holding a block of shares of stock, looking for oppurtunity to sell.If we sell at time t, we receive a price that varies according to some random process over time. Once we sell the stock, the process stops. ## Basic Model ### State Variable: Two state variables: * The **Physical State** which says whether or not we are still holding the assest * The **Information State** the price of stock * The physical State: $$ R_t=\left\{ \begin{array}{@{}ll@{}} 1, & \text{if we are holding the stock at time t}\ \\ 0, & \text{if we are not longer holding the stock at time t} \end{array}\right. $$ If we sell the stock, we receive the price per share $p_t$. This means our state variable is: $$ S_t=(R_t, p_t) $$ ### Decision Variable: $$ \begin{equation} x_t=\left\{ \begin{array}{@{}ll@{}} 1, & \text{if we sell the stock at time t}\ \\ 0, & \text{if we do not sell the stock at time t} \end{array}\right. \end{equation} $$ we only can sell stock if we hold it, $$ x_t < R_t $$ #### Policy: What is the policy: <br> **which is going to define how we make decision** $$ X^{\pi}(S_t) $$ Example policy is we might be to sell if the price drops the below some limit point, thus we could write: $$ \begin{equation} X^{sell-low}(S_t|\theta^{low})=\left\{ \begin{array}{@{}ll@{}} 1, & \text{if}\ p_t<\theta^{low} \ \text{and}\ R_t=1 \\ 1, & \text{if}\ t= T\ \text{and} \ R_t = 1 \\ 0, & \text{otherwise} \end{array}\right. \end{equation} $$ ### Exogenous Function The only random process in our basic model is the change in price. Alternatively, naturally we simply write $W_t$ be the new price, in which we would write: $$ W_{t+1} = (p_{t+1}) $$ ### Transition Function Is the equation that describe how the states evolves. The transition equation is: $$ R_{t+1} = R_{t} - x_{t} $$ How the price evolves over time. $$p_{t+1} = p_t + \hat{p}_{t+1}$$ **Transition Function** $$ S_{t+1} = S^M(S_t, X^{\pi}(S_t), W_{t+1}) $$ If we use our policy $X^{\pi}(S_t)$, and if we choose sample path $\omega$, that determine the sequence $W_1,W_2,W_3,...,W_T$...than the simulation of process can be written as: $$ (S_0,x_0 = X^{\pi}(S_0)), W_1(\omega), S_1, x_1 = X^{\pi}(S_1), W_(\omega),..., x_{T-1}, W_T(\omega),S_T) $$ ### Objective Function The performance metric is how much we earn from selling our stock. $$ C(S_t,x_t) = p_tx_t $$ We now can formulate the optimizatio problem: $$ max \ \sum_{t=0}^{T-1} p_tx_t \\ x_0,x_1,...,x_{T-1} $$ Constraints of the Optimization: $$ \sum_{t=0}^{T-1} x_t = 1, \\ x_t \leq 1, \\ x_t \geq 0, $$ **Including Uncertainty**: We are simulating a policy following a sample path $\omega$ of price $p_1(\omega), p_2(\omega),...$ $$ S_{t+1}(\omega) = S^{M}(S_t(\omega), X^{\pi}(S_t(\omega)), W_{t+1}(\omega)) $$ If we follow policy $\pi$ along this sample path, we can compute the performance: $$ \hat{F}^{\pi}(\omega) = \sum_{t=0}^{T-1} p_t(\omega)X^{\pi}(S_t(\omega)) $$ This is for one sample path . We can simulate over sample of $N$ sampels ($\omega^{1},...,\omega^n,...\omega^N$), and take average: $$ \overline{F}^{\pi} = \frac{1}{N} \sum_{n=1}^{N}\hat{F}^{\pi}(\omega^n) $$ Finally, we write out optimization problem in terms of finding the best policy, which we can write: $$ max \ \ \overline{F}^{\pi} \\ x \in \Pi $$ ## Designing Policy ### Sell_low Policy: In this policy we *sell* at that the price lower than, $\theta^{sell-low}$. $$ X^{sell-low}(S_t|\theta^{low}) =\left\{ \begin{array}{@{}ll@{}} 1 & if \ p_t < \theta^{low} \ and \ R_t=1 \\ 1, & t=T \ R_t=1 \\ 0, & otherwise \end{array}\right. $$ ### High_Low policy: In this policy , we will sell the asset if the price jumps *too high** or ** too low**: $$ X^{high-low}(S_t|\theta^{high-low}) =\left\{ \begin{array}{@{}ll@{}} 1 & if \ p_t < \theta^{low} \ or \ p_t > \theta^{high} \\ 1, & t=T \ and \ R_t=1 \\ 0, & otherwise \end{array}\right. $$ ### Track Policy: Perhaps we just want to sell when the stock rises above a tracking signal. Tod this, first create a smoothed estimate of price: $$\overline{p}_t = (1- \alpha)\overline{p}_{t-1} + \alpha \hat{p}_t$$ Now consider a tracking policy that we might write: $$ X^{track}(S_t | \theta^{track}) =\left\{ \begin{array}{@{}ll@{}} 1 & if \ p_t > \overline{p}_t + \theta^{track} \ \\ 1, & t=T \ and \ R_t=1 \\ 0, & otherwise \end{array}\right. $$ For this policy, we are going to need to tweak our model, because we now $\overline{p}_{t}$ in order to make decision. This means we would now write our state as: $$ S_t = (R_t, p_t, \overline{p}_t) $$ **Classes of Policies**: $F = \{"sell-low","high-low","track"\}$ **Parameter for each policy**: $\theta^f \in F$ **Search over policies**: $\pi \in \Pi$ ## Coding Part: ### Import libraries ```python import pandas as pd import numpy as np from collections import namedtuple import matplotlib.pyplot as plt from copy import copy import math import seaborn as sns sns.set_theme(style="darkgrid") sns.set(rc={'figure.figsize':(12,8)}) ``` ### Change the directory to to get module ```python import os os.chdir("/home/peyman/Documents/PhD_UiS/seqdec_powell_repo/Chap2_Assett_Selling/function") os.getcwd() ``` '/home/peyman/Documents/PhD_UiS/seqdec_powell_repo/Chap2_Assett_Selling/function' ### Import modules from function ```python from AssetSellingModel import AssetSellingModel from AssetSellingPolicy import AssetSellingPolicy ``` ### Change the directory to to get parameters ```python import os os.chdir("/home/peyman/Documents/PhD_UiS/seqdec_powell_repo/Chap2_Assett_Selling/data") os.getcwd() ``` '/home/peyman/Documents/PhD_UiS/seqdec_powell_repo/Chap2_Assett_Selling/data' ### Policy Parameters: ```python sheet1= pd.read_excel("asset_selling_policy_parameters_edit.xlsx", sheet_name="Sheet1", usecols=["policy", "param1","param2"]) ``` ```python sheet1 ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>policy</th> <th>param1</th> <th>param2</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>sell_low</td> <td>2</td> <td>NaN</td> </tr> <tr> <th>1</th> <td>high_low</td> <td>4</td> <td>10.0</td> </tr> <tr> <th>2</th> <td>track</td> <td>0</td> <td>4.0</td> </tr> </tbody> </table> </div> ```python params = zip(sheet1["param1"], sheet1["param2"]) param_list = list(params) param_list ``` [(2, nan), (4, 10.0), (0, 4.0)] ### Full grid Policy Parameters: ```python sheet2 = pd.read_excel("asset_selling_policy_parameters_edit.xlsx", sheet_name="Sheet2") ``` ```python sheet2.dtypes ``` low_min int64 low_max int64 high_min int64 high_max int64 increment_size float64 dtype: object ```python dtype(sheet2) ``` ### Parameters of the Dynamic Model: ```python sheet3 = pd.read_excel("asset_selling_policy_parameters_edit.xlsx", sheet_name="Sheet3") sheet3 ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Policy</th> <th>TimeHorizon</th> <th>DiscountFactor</th> <th>InitialPrice</th> <th>InitialBias</th> <th>UpStep</th> <th>DownStep</th> <th>Variance</th> <th>Iterations</th> <th>PrintStep</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>track</td> <td>40</td> <td>0.99</td> <td>16</td> <td>Up</td> <td>1</td> <td>-1</td> <td>2</td> <td>10</td> <td>40</td> </tr> </tbody> </table> </div> ### Bias Term: ```python biasdf = pd.read_excel("asset_selling_policy_parameters_edit.xlsx", sheet_name="Sheet4") biasdf_edit=biasdf.set_index('additional') biasdf_edit ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Up</th> <th>Neutral</th> <th>Down</th> </tr> <tr> <th>additional</th> <th></th> <th></th> <th></th> </tr> </thead> <tbody> <tr> <th>Up</th> <td>0.9</td> <td>0.1</td> <td>0.0</td> </tr> <tr> <th>Neutral</th> <td>0.2</td> <td>0.6</td> <td>0.2</td> </tr> <tr> <th>Down</th> <td>0.0</td> <td>0.1</td> <td>0.9</td> </tr> </tbody> </table> </div> ### Track Policy: ```python policy_selected = sheet3['Policy'][0] print("The selected policy is: {}".format(policy_selected)) T = sheet3['TimeHorizon'][0] print("The T value is: {}".format(T)) initPrice = sheet3['InitialPrice'][0] print("The initial price is: {}".format(initPrice)) initBias = sheet3['InitialBias'][0] print("The initial Bias is: {}".format(initBias)) exog_params = {'UpStep':sheet3['UpStep'][0],'DownStep':sheet3['DownStep'][0],'Variance':sheet3['Variance'][0],'biasdf' :biasdf_edit} print("The exog_params is: {}".format(exog_params)) nIterations = sheet3['Iterations'][0] print("The nIteration is: {}".format(nIterations)) printStep = sheet3['PrintStep'][0] print("The printStep is: {}".format(printStep)) printIterations = [0] print("The printIterations is: {}".format(printIterations)) printIterations.extend(list(reversed(range(nIterations-1,0,-printStep)))) ``` The selected policy is: track The T value is: 40 The initial price is: 16 The initial Bias is: Up The exog_params is: {'UpStep': 1, 'DownStep': -1, 'Variance': 2, 'biasdf': Up Neutral Down additional Up 0.9 0.1 0.0 Neutral 0.2 0.6 0.2 Down 0.0 0.1 0.9} The nIteration is: 10 The printStep is: 40 The printIterations is: [0] ```python policy_names = ['sell_low', 'high_low', 'track'] print("policy_names are: {}".format(policy_names)) state_names = ['price', 'resource','bias'] print("state_names are: {}".format(state_names)) init_state = {'price': initPrice, 'resource': 1,'bias':initBias} print("init_state are: {}".format(init_state)) decision_names = ['sell', 'hold'] print("decision_names are: {}".format(decision_names)) ``` policy_names are: ['sell_low', 'high_low', 'track'] state_names are: ['price', 'resource', 'bias'] init_state are: {'price': 16, 'resource': 1, 'bias': 'Up'} decision_names are: ['sell', 'hold'] ```python biasdf = exog_params["biasdf"] print("the biasdf_edit is \n .{}".format(biasdf)) print(type(biasdf)) biasdf= biasdf.cumsum(axis =1) print("the biasdf_edit is \n .{}".format(biasdf)) ``` the biasdf_edit is . Up Neutral Down additional Up 0.9 0.1 0.0 Neutral 0.2 0.6 0.2 Down 0.0 0.1 0.9 <class 'pandas.core.frame.DataFrame'> the biasdf_edit is . Up Neutral Down additional Up 0.9 1.0 1.0 Neutral 0.2 0.8 1.0 Down 0.0 0.1 1.0 ```python M = AssetSellingModel(state_names, decision_names, init_state,exog_params,T) ``` ```python P = AssetSellingPolicy(M, policy_names) ``` ### Policy Evaluation ```python t = 0 prev_price = init_state['price'] ``` ```python policy_info = {'sell_low': param_list[0], 'high_low': param_list[1], 'track': param_list[2] + (prev_price,)} ``` ```python policy_info ``` {'sell_low': (2, nan), 'high_low': (4, 10.0), 'track': (0, 4.0, 16)} ```python policy_selected ``` 'track' ```python #if (not policy_selected =='full_grid'): print("Selected policy {}, time horizon {}, initial price {} and number of iterations {}".format(policy_selected,T,initPrice,nIterations)) contribution_iterations=[P.run_policy(param_list, policy_info, policy_selected, t) for ite in list(range(nIterations))] contribution_iterations = pd.Series(contribution_iterations) print("Contribution per iteration: ") print(contribution_iterations) cum_avg_contrib = contribution_iterations.expanding().mean() print("Cumulative average contribution per iteration: ") print(cum_avg_contrib) #plotting the results #fig, axsubs = plt.subplots(1,2,sharex=True,sharey=True) #fig.suptitle("Asset selling using policy {} with parameters {} and T {}".format(policy_selected,policy_info[policy_selected],T) ) #i = np.arange(0, nIterations, 1) #axsubs[0].plot(i, cum_avg_contrib, 'g') #axsubs[0].set_title('Cumulative average contribution') #axsubs[1].plot(i, contribution_iterations, 'g') #axsubs[1].set_title('Contribution per iteration') # Create a big subplot #ax = fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axes #plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) #ax.set_ylabel('USD', labelpad=0) # Use argument `labelpad` to move label downwards. #ax.set_xlabel('Iterations', labelpad=10) #plt.show() ``` Selected policy track, time horizon 40, initial price 16 and number of iterations 10 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.4139840589481404 curr_bias Up new_bias Up smoothed_price = 19.275851851363697 time=1, obj=0.0, s.resource=1, s.price=16.818962962840924, x=Decision(sell=0, hold=1) coin 0.8487800961190239 curr_bias Up new_bias Up smoothed_price = 12.919965111987779 time=2, obj=0.0, s.resource=1, s.price=15.844213500127637, x=Decision(sell=1, hold=0) coin 0.45203620488154816 curr_bias Up new_bias Up obj=15.844213500127637, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.2720800519673423 curr_bias Up new_bias Up smoothed_price = 29.300677434463253 time=1, obj=0.0, s.resource=1, s.price=19.325169358615813, x=Decision(sell=0, hold=1) coin 0.905534061916374 curr_bias Up new_bias Neutral smoothed_price = 11.678950072957633 time=2, obj=0.0, s.resource=1, s.price=17.41361453720127, x=Decision(sell=1, hold=0) coin 0.3755268704762992 curr_bias Neutral new_bias Neutral obj=17.41361453720127, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.09168318648059992 curr_bias Up new_bias Up smoothed_price = 30.17968207409804 time=1, obj=0.0, s.resource=1, s.price=19.54492051852451, x=Decision(sell=0, hold=1) coin 0.9746533545172668 curr_bias Up new_bias Neutral smoothed_price = 9.10715798582386 time=2, obj=0.0, s.resource=1, s.price=16.93547988534935, x=Decision(sell=1, hold=0) coin 0.845463715621411 curr_bias Neutral new_bias Down obj=16.93547988534935, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.7718855570743978 curr_bias Up new_bias Up smoothed_price = 13.590645854568095 time=1, obj=0.0, s.resource=1, s.price=15.397661463642024, x=Decision(sell=1, hold=0) coin 0.058599417274914245 curr_bias Up new_bias Up obj=15.397661463642024, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.5630457710972723 curr_bias Up new_bias Up smoothed_price = 14.404641398215574 time=1, obj=0.0, s.resource=1, s.price=15.601160349553894, x=Decision(sell=1, hold=0) coin 0.6337684851009756 curr_bias Up new_bias Up obj=15.601160349553894, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.32637382885748367 curr_bias Up new_bias Up smoothed_price = 29.23727426734112 time=1, obj=0.0, s.resource=1, s.price=19.30931856683528, x=Decision(sell=0, hold=1) coin 0.010789716774533442 curr_bias Up new_bias Up smoothed_price = 24.356969142318995 time=2, obj=0.0, s.resource=1, s.price=20.57123121070621, x=Decision(sell=0, hold=1) coin 0.10655404328873319 curr_bias Up new_bias Up smoothed_price = 32.917325150498336 time=3, obj=0.0, s.resource=1, s.price=23.65775469565424, x=Decision(sell=0, hold=1) coin 0.2744609047476718 curr_bias Up new_bias Up smoothed_price = 20.209678891873452 time=4, obj=0.0, s.resource=1, s.price=22.795735744709045, x=Decision(sell=1, hold=0) coin 0.7876352836985036 curr_bias Up new_bias Up obj=22.795735744709045, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.5732916894272274 curr_bias Up new_bias Up smoothed_price = 27.318028871373315 time=1, obj=0.0, s.resource=1, s.price=18.82950721784333, x=Decision(sell=0, hold=1) coin 0.25230738226248894 curr_bias Up new_bias Up smoothed_price = 32.205300235020715 time=2, obj=0.0, s.resource=1, s.price=22.173455472137675, x=Decision(sell=0, hold=1) coin 0.34703831077049807 curr_bias Up new_bias Up smoothed_price = 22.184929865392462 time=3, obj=0.0, s.resource=1, s.price=22.176324070451372, x=Decision(sell=0, hold=1) coin 0.020311694923608736 curr_bias Up new_bias Up smoothed_price = 36.75498055259952 time=4, obj=0.0, s.resource=1, s.price=25.82098819098841, x=Decision(sell=0, hold=1) coin 0.5773741485181105 curr_bias Up new_bias Up smoothed_price = 19.512647218984497 time=5, obj=0.0, s.resource=1, s.price=24.243902947987433, x=Decision(sell=1, hold=0) coin 0.9296106478220897 curr_bias Up new_bias Neutral obj=24.243902947987433, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.4326408307147147 curr_bias Up new_bias Up smoothed_price = 29.78638009471284 time=1, obj=0.0, s.resource=1, s.price=19.44659502367821, x=Decision(sell=0, hold=1) coin 0.9844689697230611 curr_bias Up new_bias Neutral smoothed_price = 9.047636235056132 time=2, obj=0.0, s.resource=1, s.price=16.84685532652269, x=Decision(sell=1, hold=0) coin 0.8262653217404742 curr_bias Neutral new_bias Down obj=16.84685532652269, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.4433318705856356 curr_bias Up new_bias Up smoothed_price = 4.415644002958089 time=1, obj=0.0, s.resource=1, s.price=13.103911000739522, x=Decision(sell=1, hold=0) coin 0.6753561026946597 curr_bias Up new_bias Up obj=13.103911000739522, state.resource=0 time=0, obj=0.0, s.resource=1, s.price=16, x=Decision(sell=0, hold=1) coin 0.8662383958568906 curr_bias Up new_bias Up smoothed_price = 41.35203449737756 time=1, obj=0.0, s.resource=1, s.price=22.33800862434439, x=Decision(sell=0, hold=1) coin 0.9282091767826981 curr_bias Up new_bias Neutral smoothed_price = 24.822358317891954 time=2, obj=0.0, s.resource=1, s.price=22.959096047731283, x=Decision(sell=0, hold=1) coin 0.3886605993398763 curr_bias Neutral new_bias Neutral smoothed_price = 28.44497845663615 time=3, obj=0.0, s.resource=1, s.price=24.3305666499575, x=Decision(sell=0, hold=1) coin 0.7922183625790814 curr_bias Neutral new_bias Neutral smoothed_price = 8.076789104517587 time=4, obj=0.0, s.resource=1, s.price=20.26712226359752, x=Decision(sell=1, hold=0) coin 0.7101424377623707 curr_bias Neutral new_bias Neutral obj=20.26712226359752, state.resource=0 Contribution per iteration: 0 15.844214 1 17.413615 2 16.935480 3 15.397661 4 15.601160 5 22.795736 6 24.243903 7 16.846855 8 13.103911 9 20.267122 dtype: float64 Cumulative average contribution per iteration: 0 15.844214 1 16.628914 2 16.731103 3 16.397742 4 16.238426 5 17.331311 6 18.318824 7 18.134828 8 17.575837 9 17.844966 dtype: float64 ## Plot Results ```python df_cont_per_ite = pd.DataFrame({"iteration_number": list(range(nIterations)), "contribution_iterations":contribution_iterations}) sns.lineplot(data=df_cont_per_ite, x= "iteration_number", y="contribution_iterations") ``` ## Full grid Search ```python policy_selected =='full_grid' # obtain the theta values to carry out a full grid search grid_search_theta_values = P.grid_search_theta_values(sheet2['low_min'], sheet2['low_max'], sheet2['high_min'], sheet2['high_max'], sheet2['increment_size']) # use those theta values to calculate corresponding contribution values ``` ```python len(grid_search_theta_values[0]) ``` 25 ```python %%capture policy_selected =='full_grid' # obtain the theta values to carry out a full grid search grid_search_theta_values = P.grid_search_theta_values(sheet2['low_min'], sheet2['low_max'], sheet2['high_min'], sheet2['high_max'], sheet2['increment_size']) # use those theta values to calculate corresponding contribution values contribution_iterations = [P.vary_theta(param_list, policy_info, "high_low", t, grid_search_theta_values[0]) for ite in list(range(nIterations))] contribution_iterations_arr = np.array(contribution_iterations) cum_sum_contrib = contribution_iterations_arr.cumsum(axis=0) nElem = np.arange(1,cum_sum_contrib.shape[0]+1).reshape((cum_sum_contrib.shape[0],1)) cum_avg_contrib=cum_sum_contrib/nElem #print("cum_avg_contrib") #print(cum_avg_contrib) # plot those contribution values on a heat map P.plot_heat_map_many(cum_avg_contrib, grid_search_theta_values[1], grid_search_theta_values[2], printIterations) ``` ```python print("cum_avg_contrib") print(cum_avg_contrib) ``` cum_avg_contrib [[18.47367058 20.02044278 23.71558344 24.04911983 25.64664546 18.46354228 19.9971443 23.4944788 8.82900535 27.39145963 18.41058556 20.46051754 21.80163486 25.30872441 24.51162131 18.97575447 13.24130896 13.83837746 14.65914641 24.51858946 22.05931859 19.54746608 23.29884974 13.64768737 26.03581103] [19.69100318 20.37305553 23.23858313 23.76467669 25.84529101 18.23380197 16.47730129 17.92318102 10.78275225 26.04158751 15.6912722 20.2448214 17.87449738 19.47026892 24.74667952 16.78197067 16.76903764 14.10385934 18.63771033 24.42103201 22.06444139 17.12797049 23.73444868 14.77986095 20.09595631] [20.69994569 16.83950464 22.74294447 19.56126436 20.52459656 18.47919587 15.11744387 16.20921065 15.00940661 25.51281981 13.80659895 20.25218014 19.14019475 17.30568466 21.05307615 17.63382212 18.0583466 13.60198246 20.07523909 21.21275022 20.9849638 16.32976729 20.95614325 15.05129774 17.81028782] [20.18013059 17.80921563 22.83681797 20.66946341 21.67762855 18.64562133 16.51153134 15.06668557 13.78071309 25.56287196 13.84389485 20.76422187 19.73595235 18.96932916 21.87421549 18.05258783 18.52434386 15.50891778 18.55859893 22.63139844 19.56249686 16.15022656 19.50527058 15.13432515 17.22395803] [20.20517103 18.45097802 22.52135779 18.84335523 19.48817699 18.84645425 17.12043862 16.58986652 15.60289554 25.29226768 14.71355315 19.09216357 20.18432852 17.72401005 20.26431727 18.53066645 18.82637145 15.34413496 19.59040908 21.06536502 19.48544474 16.04541057 20.42913257 14.70689882 16.94170926] [19.9262659 18.67286269 20.75302403 19.71022848 18.21367716 19.19238006 17.51795722 17.68624384 16.78180395 22.78350727 15.48395009 19.30591146 19.01314863 17.08034736 20.95328276 18.66106818 18.10879285 14.98659596 20.39322653 20.0443103 19.9037171 16.94296788 19.57782471 14.52283041 18.59472501] [19.8137429 18.9086271 20.84268636 18.39076378 17.23701861 19.36730219 18.20099241 18.23276394 17.66079438 21.17920167 16.1442936 18.43430402 19.43508475 17.9552651 21.50933229 18.57660873 18.42222031 16.25785103 21.01294484 19.29514058 19.22370624 16.51033466 18.79126479 14.48088114 17.95088124] [19.62653733 17.82007762 20.94883455 17.34353318 18.63876886 19.81500259 17.46284492 18.58482107 16.70445351 20.04914113 16.41550734 18.8476955 19.63813038 17.28721213 20.53508951 18.99281685 17.86891367 17.53757442 20.159934 20.00713271 18.72468824 16.88411792 18.1474659 14.48123896 18.91527785] [19.63648073 18.1478174 21.24734214 16.45992462 19.69289125 19.82953391 16.79495559 19.30543893 16.28062686 19.00743174 16.61822087 18.12487532 19.85294926 16.80365162 19.69257256 19.14099563 18.57933051 18.03082425 20.63793609 19.24262662 18.34680726 16.33745161 17.85696122 14.5706945 18.48843037] [19.63661504 18.36680492 21.42992756 17.12582509 20.30051109 19.84620636 17.08335876 19.55338491 15.79131993 18.31310674 17.06211989 18.52285707 20.03049054 17.48311031 20.27369434 19.18396337 18.20648271 18.56249637 19.88403096 18.75795701 18.08166846 16.30207016 18.1781855 14.65780872 19.2417764 ]] ```python P.plot_heat_map_many(cum_avg_contrib, grid_search_theta_values[1], grid_search_theta_values[2], printIterations) ``` ```python type(cum_avg_contrib) ``` numpy.ndarray ```python grid_search_theta_values[1] ``` array([[12.], [13.], [14.], [15.], [16.]]) ```python ax = sns.heatmap(cum_avg_contrib) ``` ```python len(cum_avg_contrib) ``` 10
ed422414ceefaf6f7a4d1b5ec4fa26a44789c7b1
134,764
ipynb
Jupyter Notebook
Chap2_Assett_Selling/An_Asset_Selling_Problem.ipynb
Peymankor/seqdec_powell_repo
d3a03399ca7762821e80988d112f98bad5adefd8
[ "MIT" ]
1
2021-04-21T19:21:53.000Z
2021-04-21T19:21:53.000Z
Chap2_Assett_Selling/An_Asset_Selling_Problem.ipynb
Efsilvaa/seqdec_powell_repo
d3a03399ca7762821e80988d112f98bad5adefd8
[ "MIT" ]
null
null
null
Chap2_Assett_Selling/An_Asset_Selling_Problem.ipynb
Efsilvaa/seqdec_powell_repo
d3a03399ca7762821e80988d112f98bad5adefd8
[ "MIT" ]
2
2021-04-21T19:21:45.000Z
2021-06-24T18:19:17.000Z
77.272936
35,852
0.796006
true
9,577
Qwen/Qwen-72B
1. YES 2. YES
0.833325
0.857768
0.714799
__label__eng_Latn
0.402081
0.49905
```python from sympy import symbols, cos, sin, pi, simplify, pprint, tan, expand_trig, sqrt, trigsimp, atan2 from sympy.matrices import Matrix ``` ```python q1, q2, q3, q4, q5, q6= symbols('q1:7') alpha, beta, gamma = symbols('alpha beta gamma', real = True) px, py, pz = symbols('px py pz', real = True) ``` ```python R03 = Matrix([ [sin(q2 + q3)*cos(q1), cos(q1)*cos(q2 + q3), -sin(q1)], [sin(q1)*sin(q2 + q3), sin(q1)*cos(q2 + q3), cos(q1)], [ cos(q2 + q3), -sin(q2 + q3), 0]]) R03T = Matrix([ [sin(q2 + q3)*cos(q1), sin(q1)*sin(q2 + q3), cos(q2 + q3)], [cos(q1)*cos(q2 + q3), sin(q1)*cos(q2 + q3), -sin(q2 + q3)], [ -sin(q1), cos(q1), 0]]) ``` ```python R36 = Matrix([ [-sin(q4)*sin(q6) + cos(q4)*cos(q5)*cos(q6), -sin(q4)*cos(q6) - sin(q6)*cos(q4)*cos(q5), -sin(q5)*cos(q4)], [ sin(q5)*cos(q6), -sin(q5)*sin(q6), cos(q5)], [-sin(q4)*cos(q5)*cos(q6) - sin(q6)*cos(q4), sin(q4)*sin(q6)*cos(q5) - cos(q4)*cos(q6), sin(q4)*sin(q5)]]) ``` ```python R0u = Matrix([ [1.0*cos(alpha)*cos(beta), -1.0*sin(alpha)*cos(gamma) + sin(beta)*sin(gamma)*cos(alpha), 1.0*sin(alpha)*sin(gamma) + sin(beta)*cos(alpha)*cos(gamma)], [1.0*sin(alpha)*cos(beta), sin(alpha)*sin(beta)*sin(gamma) + 1.0*cos(alpha)*cos(gamma), sin(alpha)*sin(beta)*cos(gamma) - 1.0*sin(gamma)*cos(alpha)], [ -1.0*sin(beta), 1.0*sin(gamma)*cos(beta), 1.0*cos(beta)*cos(gamma)]]) ``` ```python Rgu_eval = Matrix([[0, 0, 1], [0, -1.00000000000000, 0], [1.00000000000000, 0, 0]]) RguT_eval = Matrix([[0, 0, 1], [0, -1.00000000000000, 0], [1.00000000000000, 0, 0]]) ``` ```python # Total transform wrt gripper given # yaw (alpha), pitch (beta), roll (beta) # position px, py, pz T0g_b = Matrix([ [1.0*sin(alpha)*sin(gamma) + sin(beta)*cos(alpha)*cos(gamma), 1.0*sin(alpha)*cos(gamma) - 1.0*sin(beta)*sin(gamma)*cos(alpha), 1.0*cos(alpha)*cos(beta), px], [sin(alpha)*sin(beta)*cos(gamma) - 1.0*sin(gamma)*cos(alpha), -1.0*sin(alpha)*sin(beta)*sin(gamma) - 1.0*cos(alpha)*cos(gamma), 1.0*sin(alpha)*cos(beta), py], [ 1.0*cos(beta)*cos(gamma), -1.0*sin(gamma)*cos(beta), -1.0*sin(beta), pz], [ 0, 0, 0, 1]]) ``` ```python # Total transform wrt gripper given # angles q1, q2, q3, q4, q5, q6 T0g_a = Matrix([ [((sin(q1)*sin(q4) + sin(q2 + q3)*cos(q1)*cos(q4))*cos(q5) + sin(q5)*cos(q1)*cos(q2 + q3))*cos(q6) - (-sin(q1)*cos(q4) + sin(q4)*sin(q2 + q3)*cos(q1))*sin(q6), -((sin(q1)*sin(q4) + sin(q2 + q3)*cos(q1)*cos(q4))*cos(q5) + sin(q5)*cos(q1)*cos(q2 + q3))*sin(q6) + (sin(q1)*cos(q4) - sin(q4)*sin(q2 + q3)*cos(q1))*cos(q6), -(sin(q1)*sin(q4) + sin(q2 + q3)*cos(q1)*cos(q4))*sin(q5) + cos(q1)*cos(q5)*cos(q2 + q3), -0.303*sin(q1)*sin(q4)*sin(q5) + 1.25*sin(q2)*cos(q1) - 0.303*sin(q5)*sin(q2 + q3)*cos(q1)*cos(q4) - 0.054*sin(q2 + q3)*cos(q1) + 0.303*cos(q1)*cos(q5)*cos(q2 + q3) + 1.5*cos(q1)*cos(q2 + q3) + 0.35*cos(q1)], [ ((sin(q1)*sin(q2 + q3)*cos(q4) - sin(q4)*cos(q1))*cos(q5) + sin(q1)*sin(q5)*cos(q2 + q3))*cos(q6) - (sin(q1)*sin(q4)*sin(q2 + q3) + cos(q1)*cos(q4))*sin(q6), -((sin(q1)*sin(q2 + q3)*cos(q4) - sin(q4)*cos(q1))*cos(q5) + sin(q1)*sin(q5)*cos(q2 + q3))*sin(q6) - (sin(q1)*sin(q4)*sin(q2 + q3) + cos(q1)*cos(q4))*cos(q6), -(sin(q1)*sin(q2 + q3)*cos(q4) - sin(q4)*cos(q1))*sin(q5) + sin(q1)*cos(q5)*cos(q2 + q3), 1.25*sin(q1)*sin(q2) - 0.303*sin(q1)*sin(q5)*sin(q2 + q3)*cos(q4) - 0.054*sin(q1)*sin(q2 + q3) + 0.303*sin(q1)*cos(q5)*cos(q2 + q3) + 1.5*sin(q1)*cos(q2 + q3) + 0.35*sin(q1) + 0.303*sin(q4)*sin(q5)*cos(q1)], [ -(sin(q5)*sin(q2 + q3) - cos(q4)*cos(q5)*cos(q2 + q3))*cos(q6) - sin(q4)*sin(q6)*cos(q2 + q3), (sin(q5)*sin(q2 + q3) - cos(q4)*cos(q5)*cos(q2 + q3))*sin(q6) - sin(q4)*cos(q6)*cos(q2 + q3), -sin(q5)*cos(q4)*cos(q2 + q3) - sin(q2 + q3)*cos(q5), -0.303*sin(q5)*cos(q4)*cos(q2 + q3) - 0.303*sin(q2 + q3)*cos(q5) - 1.5*sin(q2 + q3) + 1.25*cos(q2) - 0.054*cos(q2 + q3) + 0.75], [ 0, 0, 0, 1]]) ``` ```python def get_hypotenuse(a, b): return sqrt(a*a + b*b) def get_cosine_law_angle(a, b, c): cos_gamma = (a*a + b*b - c*c) / (2*a*b) sin_gamma = sqrt(1 - cos_gamma * cos_gamma) gamma = atan2(sin_gamma, cos_gamma) return gamma def get_wrist_center(gripper_point, R0g, dg = 0.303): xu, yu, zu = gripper_point nx, ny, nz = R0g[0, 2], R0g[1, 2], R0g[2, 2] xw = xu - dg * nx yw = yu - dg * ny zw = zu - dg * nz return xw, yw, zw def get_first_three_angles(wrist_center): x, y, z = wrist_center a1, a2, a3 = 0.35, 1.25, -0.054 d1, d4 = 0.75, 1.5 l = 1.50097168527591 phi = 1.53481186671284 x_prime = get_hypotenuse(x, y) mx = x_prime - a1 my = z - d1 m = get_hypotenuse(mx, my) alpha = atan2(my, mx) gamma = get_cosine_law_angle(l, a2, m) beta = get_cosine_law_angle(m, a2, l) q1 = atan2(y, x) q2 = pi/2 - beta - alpha q3 = -(gamma - phi) return q1, q2, q3 def get_last_three_angles(R): sin_q4 = R[2, 2] cos_q4 = -R[0, 2] sin_q5 = sqrt(R[0, 2]**2 + R[2, 2]**2) cos_q5 = R[1, 2] sin_q6 = -R[1, 1] cos_q6 = R[1, 0] q4 = atan2(sin_q4, cos_q4) q5 = atan2(sin_q5, cos_q5) q6 = atan2(sin_q6, cos_q6) return q4, q5, q6 ``` ```python def ik(x, y, z, roll, pitch, yaw, debug = False): # input: given position and orientation of the gripper wrt to URDFrame # output: angles q1, q2, q3, q4, q5, q6 gripper_point = x, y, z R0u_eval = R0u.evalf(subs = {alpha: yaw, beta: pitch, gamma: roll}) R0g_eval = R0u_eval * RguT_eval wrist_center = get_wrist_center(gripper_point, R0g_eval, dg = 0.303) j1, j2, j3 = get_first_three_angles(wrist_center) R03T_eval = R03T.evalf(subs = {q1: j1.evalf(), q2: j2.evalf(), q3: j3.evalf()}) R36_eval = R03T_eval * R0g_eval j4, j5, j6 = get_last_three_angles(R36_eval) j1 = j1.evalf() j2 = j2.evalf() j3 = j3.evalf() j4 = j4.evalf() j5 = j5.evalf() j6 = j6.evalf() if debug: print() print("\n x:", x, "\n y:", y, "\n z:", z) print("\n roll:", roll, "\n pitch:", pitch, "\n yaw:", yaw) print() print(" j1:", j1, "\n j2:", j2, "\n j3:", j3) print(" j4:", j4, "\n j5:", j5, "\n j6:", j6) print() print("wrist_center", wrist_center) print() print("evaluated R0g:") pprint(R0g_eval) print() print("Total transform wrt gripper: given yaw (alpha), pitch (beta), roll (beta), px, py, pz") pprint(T0g_b.evalf(subs = { gamma: roll, beta: pitch, alpha: yaw, px: x, py: y, pz: z })) print() print("Total transform wrt gripper: given angles q1, q2, q3, q4, q5, q6") pprint(T0g_a.evalf(subs = { q1: j1, q2: j2, q3: j3, q4: j4, q5: j5, q6: j6 })) return j1, j2, j3, j4, j5, j6 ``` ```python qs = ik(x = 0.49792, y = 1.3673, z = 2.4988, roll = 0.366, pitch = -0.078, yaw = 2.561, debug = True) ``` x: 0.49792 y: 1.3673 z: 2.4988 roll: 0.366 pitch: -0.078 yaw: 2.561 j1: 1.01249809363771 j2: -0.275800363737724 j3: -0.115686651053751 j4: 1.63446527240323 j5: 1.52050002599430 j6: -0.815781306199679 wrist_center (0.750499428337951, 1.20160389781975, 2.47518995758694) evaluated R0g: ⎡0.257143295038827 0.48887208255965 -0.833595473062543⎤ ⎢ ⎥ ⎢0.259329420712765 0.796053601157403 0.54685182237706 ⎥ ⎢ ⎥ ⎣0.93092726749696 -0.356795110642117 0.0779209320563015⎦ Total transform wrt gripper: given yaw (alpha), pitch (beta), roll (beta), px, py, pz ⎡0.257143295038827 0.48887208255965 -0.833595473062543 0.49792⎤ ⎢ ⎥ ⎢0.259329420712765 0.796053601157403 0.54685182237706 1.3673 ⎥ ⎢ ⎥ ⎢0.93092726749696 -0.356795110642117 0.0779209320563015 2.4988 ⎥ ⎢ ⎥ ⎣ 0 0 0 1.0 ⎦ Total transform wrt gripper: given angles q1, q2, q3, q4, q5, q6 ⎡0.257143295038827 0.48887208255965 -0.833595473062543 0.497919999999998⎤ ⎢ ⎥ ⎢0.259329420712765 0.796053601157403 0.54685182237706 1.3673 ⎥ ⎢ ⎥ ⎢0.93092726749696 -0.356795110642117 0.0779209320563016 2.49880000000001 ⎥ ⎢ ⎥ ⎣ 0 0 0 1.0 ⎦ ```python qs = ik(x = 2.3537, y = -0.1255546, z = 2.841452, roll = 0.131008, pitch = -0.10541, yaw = 0.0491503, debug = True) # -0.07, 0.41, -1.07, 0.32, 0.46, 0 ``` x: 2.3537 y: -0.1255546 z: 2.841452 roll: 0.131008 pitch: -0.10541 yaw: 0.0491503 j1: -0.0682697289101386 j2: 0.434273483083027 j3: -1.13476160607020 j4: 0.206486955261342 j5: 0.604353673052791 j6: -0.0272724984420472 wrist_center (2.05274568076731, -0.140358517861560, 2.80957188470638) evaluated R0g: ⎡-0.0977692193362551 0.0624374999845176 0.993248578325719 ⎤ ⎢ ⎥ ⎢-0.135600778861087 -0.989558155295888 0.0488578147246194⎥ ⎢ ⎥ ⎣ 0.985927790724374 -0.129908490419534 0.105214901959143 ⎦ Total transform wrt gripper: given yaw (alpha), pitch (beta), roll (beta), px, py, pz ⎡-0.0977692193362551 0.0624374999845176 0.993248578325719 2.3537 ⎤ ⎢ ⎥ ⎢-0.135600778861087 -0.989558155295888 0.0488578147246194 -0.1255546⎥ ⎢ ⎥ ⎢ 0.985927790724374 -0.129908490419534 0.105214901959143 2.841452 ⎥ ⎢ ⎥ ⎣ 0 0 0 1.0 ⎦ Total transform wrt gripper: given angles q1, q2, q3, q4, q5, q6 ⎡-0.0977692193362551 0.0624374999845176 0.993248578325719 2.35369999999999 ⎢ ⎢-0.135600778861087 -0.989558155295888 0.0488578147246194 -0.1255546 ⎢ ⎢ 0.985927790724374 -0.129908490419534 0.105214901959143 2.841452 ⎢ ⎣ 0 0 0 1.0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ ```python qs = ik(x = 2.3537, y = -0.1255546, z = 2.841452, yaw = 0.131008, pitch = -0.10541, roll = 0.0491503, debug = True) # -0.07, 0.41, -1.07, 0.32, 0.46, 0 ``` x: 2.3537 y: -0.1255546 z: 2.841452 roll: 0.0491503 pitch: -0.10541 yaw: 0.131008 j1: -0.0800813023075095 j2: 0.439897727669121 j3: -1.14290690404898 j4: 0.363106480125535 j5: 0.626901765463759 j6: -0.226818468786107 wrist_center (2.05496387941051, -0.164916872597119, 2.80957188470638) evaluated R0g: ⎡-0.0977692193362551 0.135600778861087 0.985927790724374⎤ ⎢ ⎥ ⎢-0.0624374999845176 -0.989558155295888 0.129908490419534⎥ ⎢ ⎥ ⎣ 0.993248578325719 -0.0488578147246194 0.105214901959143⎦ Total transform wrt gripper: given yaw (alpha), pitch (beta), roll (beta), px, py, pz ⎡-0.0977692193362551 0.135600778861087 0.985927790724374 2.3537 ⎤ ⎢ ⎥ ⎢-0.0624374999845176 -0.989558155295888 0.129908490419534 -0.1255546⎥ ⎢ ⎥ ⎢ 0.993248578325719 -0.0488578147246194 0.105214901959143 2.841452 ⎥ ⎢ ⎥ ⎣ 0 0 0 1.0 ⎦ Total transform wrt gripper: given angles q1, q2, q3, q4, q5, q6 ⎡-0.0977692193362552 0.135600778861087 0.985927790724374 2.3536999999999 ⎢ ⎢-0.0624374999845176 -0.989558155295888 0.129908490419534 -0.1255545999999 ⎢ ⎢ 0.993248578325719 -0.0488578147246194 0.105214901959143 2.8414520000000 ⎢ ⎣ 0 0 0 1.0 9 ⎤ ⎥ 99⎥ ⎥ 1 ⎥ ⎥ ⎦ ```python ```
725f15ba5198348403be819ff74cf76573674377
19,444
ipynb
Jupyter Notebook
notebooks/joint_angles_ik_optimized.ipynb
mithi/arm-ik
e7e87ef0e43b04278d2300f67d863c3f7eafb77e
[ "MIT" ]
39
2017-07-29T11:40:03.000Z
2022-02-28T14:49:48.000Z
notebooks/joint_angles_ik_optimized.ipynb
mithi/arm-ik
e7e87ef0e43b04278d2300f67d863c3f7eafb77e
[ "MIT" ]
null
null
null
notebooks/joint_angles_ik_optimized.ipynb
mithi/arm-ik
e7e87ef0e43b04278d2300f67d863c3f7eafb77e
[ "MIT" ]
16
2017-10-27T13:30:21.000Z
2022-02-10T10:08:42.000Z
39.520325
626
0.408044
true
5,330
Qwen/Qwen-72B
1. YES 2. YES
0.923039
0.771843
0.712442
__label__yue_Hant
0.042001
0.493573
# Lecture 24 - Adaptive Learning Rates # Backpropagation in a Nutshell Suppose you have the data $\{x_i\}_{i=1}^N \in \mathbb{R}^D$ with labels $\{d_i\}_{i=1}^N \in \mathbb{R}^K$. You want to find a mapper that learns the input samples $x_i$ and maps it to a label response $d_i$, i.e. *classification*. Consider the following objective function: $$J(w) = \frac{1}{2} \sum_{j=1}^p e_p^2 = \frac{1}{2} \sum_{j=1}^p \left(d_p-y_p\right)^2$$ where $p$ is the dimensionality of your desired values. 1. **Forward Pass:** For any neuron $i$ receiving input signals from neurons $j$: $$y_i = \phi\left(\sum_{j=1}^M w_{ij}x_j\right)$$ where $\phi(\bullet)$ is a pre-defined activation function. (The weights and biases of the network have been initialized to some random value.) 2. **Backward Pass:** Compute the gradient by defining local errors at every layer and neuron $$\delta_i = \phi'(v_i)\sum_j \delta_j w_{ij}$$ $$\Delta w_{ij} = - \eta \delta_j y_i$$ and update the parameters: $$w_{ij}^{(n+1)} = w_{ij}^{(n)} + \Delta w_{ij}$$ where $\eta$ is the learning rate. # Adaptive Linear Systems In regression, we found an analytic solution for the *optimal* weights of our regressor. For some data $\{x_i\}_{i=1}^N$ and labels $\{d_i\}_{i=1}^N$, we found that the optimal weights are: $$w^* = (X^TX)^{-1} X^Td$$ using the mean squared error function $J = \frac{1}{2N} \sum_{i=1}^N (d_i - wx_i)^2$ Note that if we were operating in the feature space of $X$, $\phi(X)$, the optimal weights are: $$w^* = (\phi(X)^T\phi(X))^{-1} \phi(X)^Td$$ Assuming, the data $X$ is demeaned, $R = X^TX$ is called the *covariance* of the input data and $P = X^Td$ is called the *cross-covariance* of the input data with the desired signal. Such analytic solution only exists if the model is a *linear function on the parameters*, i.e., $y = Xw$ or $y = \phi(X) w$, which is not the case for an MLP output! * We can find a solution by performing a *search* of the performance surface (governed by the error function $J$). # The Error Surface for a Linear Neuron * The mean squared error function $J = \frac{1}{2N} \sum_{i=1}^N e_i^2$ is a *convex* function and therefore we can apply convex optimization techniques to search for the *minima* of this function. * The most common method to optimize the least squares error is the *steepest descent*. * The error surface lies in a space with a horizontal axis for each weight and one vertical axis for the error. * For a linear neuron with a squared error, it is a quadratic bowl. * Vertical cross-sections are parabolas. * Horizontal cross-sections are ellipses. * For multi-layer, non-linear nets the error surface is much more complicated. * But locally, a piece of a quadratic bowl is usually a very good apparoximation. ## Convergence Speed of Full-Batch Learning * Going "downhill" reduces the error, but the direction of steepest descent does not point at the minimum unless the ellipse is a circle. * The gradient is big in the direction in which only want to travel a small distance. * The gradient is small in the direction in which we want to travel a large distance * Even for non-linear multi-layer nets, the error surface is locally quadratic, so the same speed issues apply. ## Learning Rate $$w^{(t+1)} = w^{(t)} - \eta \nabla J(w^{(t)})$$ * If the learning rate is big, the weights slosh to and from the ravine. * If the learning rate is too big, this oscillation diverges. * What we would like to achieve: * Move quickly in direction with small but consistent gradients. * Move slowly in directions with big but inconsistent gradients. ## Stochastic Gradient Descent - Online Learning * If the dataset is redundant, the gradient on the first half is almost identical to the gradient on the second half. * So instead of computing the ful gradient, update the weights using the gradient on the first half and then get a gradient for the new weights on the second half. * The extreme version of this approach updates weights after each point. It's called **online learning**. * Mini-batches are usually better than online. * Less computation is used for updating the weights. * Computing the gradient for many cases simultaneously uses matrix-matrix multiplications which are very efficient, especially with GPUs. * Mini-batches need to be balanced for classes. ## Full-Batch vs Mini-Batch Learning * If we use the full gradient computed from all the training cases, **batch learning**, there are many clever ways to speed up (e.g. non-linear conjugate gradient). * The optimization community has studied the general problem of optimizing smooth non-linear functions for many years. * Multilayer neural nets are not typical of the problems they study so their methods may need a lot of modifications. * For large neural networks with very large and highly redundant training sets, it is nearly always best to use **mini-batch learning**. * The mini-batches may need to be quite big when adapting fancy methods. * Big mini-batches are more computationaly efficient. # Mini-Batch Gradient Descent * We start by guessing a learning rate. * If the error keeps getting worse or oscillates wildly, reduce the learning rate. * If the error is falling fairly consistently but slowly, increase the learning rate. * We can write a simple routine to automate this way of adjusting the learning rate. * Towards the end of mini-batch learning it nearly always helps to turn down the learning rate. * This removes fluctuations in the final weights caused by the variations between mini-batches. * Turn down the learning rate when the error stops decreasing. * Use the error on a separate validation set. # A Bag of Tricks for Mini-Batch Gradient Descent <span style="color:blue">**Initializing the Weights**</span> * If two hidden units have exactly the same bias and exactly the same incoming and outgoing weights, they will always get exactly the same gradient. * So they can never learn to be different features. * We break symmetry by initializing the weights to have small random values. * If a hidden unit has a big *fan-in*, small changes on many of its incoming weights can cause the learning to overshoot. * We generally want smaller incoming weights when the fan-in is big, so initialize the weights to be proportional to $\sqrt{\text{fan-in}}$. <span style="color:blue">**Shifting the Input (Demeaning)**</span> * When using the steepest descent, shifting the input values makes a big difference! * It usually helps to transform each component of the input vector so that it has zero mean over the whole training set. * The hyperbolic tangent produces hidden activations that are roughly zero mean. * In this repect it's better than the logistic <span style="color:blue">**Scalling the Input (Unit Variance)**</span> * When using steepest descent, scaling then input values makes a big difference. * It usually helps to transform each component of the input vector over the whole training set. <span style="color:blue">**Decorrelate the Input components**</span> * For a linear neuron, we get a big win by decorrelating each component of the input from the other input components. * There are several different ways to decorrelate inputs. A reasonable method is to use *Principal Component Analysis (PCA)*. * Drop the principal components with the smallest eigenvalues. * This achieves some dimensionality reduction. * Divide the remaining principal components by the square roots of their eigenvalues. For a linear neuron, this converts an axis aligned elliptical error surface into a circular one. * For a circular error surface, the gradient points straight towards the minimum. <span style="color:orange">**Common Problems**</span> **Plateau** * If we start with a very big learning rate, the weights of each hidden unit will all bcome very big and positive or very big and negative. * The error derivatives for the hidden units will all become tiny and the error will not decrease. * This is usualy a *plateau*, but can be misunderstood as a local minimum. **Turning Down Learning Rate** * Turning down the learning rate reduces the random fluctuations in the error due to the different gradients on different mini-batches. * So we get a quick win. * But then we get slower learning. * So, don't turn down the learning rate too soon! # Optimization for Training Networks Here are a few ways to speed up mini-batch learning: **Momentum** * Instead of using the gradient to change *position* of the weight *particle*, use it to change the *velocity*. **Adaptive Learning Rate** * Use separate adaptive learning rates for each parameter. * Slowly adjust the rate using the consistency of the gradient for that parameter. **RMSProp (Root Mean Square Propagation)** * Use separate adaptive learning rates for each parameter. * Divide the learning rate for a weight by a running average of the magnitudes of recent gradients for that weight. * This is the mini-batch version of just using the sign of the gradient (method called **RProp** designed for full-batch learning). **ADAM (Adaptive Moment Estimation)** * Use separate adaptive learning rates for each parameter. * Adaptation of RMSProp, running averages of both gradient and second moments are used # The Momentum Learning * The momentum learning can be applied to full-batch learning or mini-batch learning. * Probably the commonest recipe to learn deep neural nets is to use stochastic gradient descent with mini-batches combined with momentum. * Imagine a ball on the error surface. The location of the ball in the horizontal plane represents the weight vector. * The ball starts off by following the gradient, but once it has velocity, it no longer does steepest descent. * Its momentum makes it keep going in the previous direction. * We need to introduce *viscosity* so that the velocity dies off when are getting closer to the solution. * It damps oscillations in directions of high curvature by combining gradients with opposite signs. * It builds up speed in directions with a gentle but consistent gradient. \begin{align} \Delta w_{ji}^{(t)} &= \alpha \Delta w_{ji}^{(t-1)} + \eta \nabla J(w_{ji}^{(t)})\\ &= \alpha \Delta w_{ji}^{(t-1)} + \eta \delta_j^{(t)} y_i^{(t)} \end{align} The effect of the gradient is to increment the previous velocity. The velocity also decays by $\alpha$ which is slightly less than 1 (generally, $\alpha=0.9$). * At the beginning of learning there may be very large gradients. * So it pays off to use a small momentum (e.g. $\alpha=0.5$). * Once the large gradients have disappeared and the weights are stuck in a ravine the momentum can be smoothly raised to its final value (e.g. $\alpha=0.9$ or even $0.99$). * This allows us to learn at a rate that would have caused divergent oscillations without momentum (case of increased learning rate only). ## Nesterov's Accelerated Gradient Descent * The standard momentum *first* computes the gradient at the current location and *then* takes a big jump in the direction of the updated accumulated gradient. * Ilya Sutskever (2012 unpublished) suggested a new form of momentum that often works better. * Inspired by the Nesterov method for optimizing convex functions. * *First* make a big jump in the direction of the previous accumulated gradient. * *Then* measure the gradient where you end up and make a correction. $$\Delta w_{ji}^{(t)} = \alpha \Delta w_{ji}^{(t-1)} + \eta \nabla J(w_{ji}^{(t-1)} + \eta \Delta w_{ji}^{(t-1)})$$ # (General) Adaptive Learning Rate * In multilayer neural networks, the appropriate learning rates can vary widely between weights: * The magnitude of the gradient are often very different for different layers, especially if the initial weights are small. * The fan-in of a unit determines the size of the "overshoot" effects caused by simultaneously changing many of the incoming weights of a unit to correct the same error. * So use a global learning rate multiplied by an appropriate local gain that is determined empirically for each weight. * Start with a local gain of 1 for every weight. * Increase the local gain if the gradient for that weight does not change sign. * Use small additive increases and multiplicative decreases. * This ensures that big gains decay rapidly when oscillations start. * If the gradient is totally random the gain will hover around 1 when we increase by plus $\delta$ half the time and decrease by times $1-\delta$ half the time. $$\Delta w_{ji} = -\eta g_{ji} \nabla J(w_{ji})$$ \begin{align} \text{If } &\left(\nabla J(w_{ji}^{(t)}) \times \nabla J(w_{ji}^{(t-1)})\right) \geq 0 \\ &\text{then } g_{ji}(t) = g_{ji}(t-1) + \delta \\ &\text{else } g_{ji}(t) = g_{ji}(t-1) \times \delta \\ \end{align} * Need to limit the gains to lie in some reasonable range, e.g. $[0.1,10]$ or $[0.01,100]$. * Use full batch learning or very large mini-batches. * This ensures that changes in the sign of the gradient are not mainly due to the sampling error of a mini-batch. * Adaptive learning rates can be combined with momentum (Jacobs, 1989). # RProp * RProp stands for *Resilient BackPropagation*. * The magnitude of the gradient can be very different for different weights and can change during learning. * This make it hard to choose a single glocal learning rate. * For full-batch learning, we can deal with this variation by only using the sign of the gradient. * The weight updates are all of the same magnitude. * This escapes from plateaus with tiny gradients quickly. $$\Delta w_{ji} = -\eta g_{ji}\text{sign}\left( \nabla J(w_{ji})\right)$$ \begin{align} \text{If } &\left(\nabla J(w_{ji}^{(t)}) \times \nabla J(w_{ji}^{(t-1)})\right) \geq 0 \\ & \text{then } g_{ji}(t) = g_{ji}(t-1) \times \delta_1 \\ & \text{else } g_{ji}(t) = g_{ji}(t-1) \times \delta_2 \end{align} * RProp combines the idea of only using the sign of the gradient with the idea of adapting the learning rate separately for each weight. * Increase the learning rate for a weight multiplicatively if the signs of its last two gradients agree. * Otherwise decrease the step size multiplicatively. * Use full batch learning or very big mini-batches. * This ensures that changes in the sign of the gradient are not mainly due to the sampling error of a mini-batch. # RMSProp * RProp is equivalent to using the gradient but also dividing by the size of the gradient. * The problem with mini-batch RProp is that we divide by a different number for each mini-batch. * RMSProp keeps a moving average of the squared gradient for each weight. $$\Delta w_{ji}^{(t)} = \gamma \Delta w_{ji}^{(t-1)} + (1-\gamma) \left(\nabla J(w_{ji}^{(t)})\right)^2$$ $$w_{ji}^{(t+1)} = w_{ji}^{(t)} - \frac{\eta}{\sqrt{\Delta w_{ji}^{(t)}}} \nabla J(w_{ji}^{(t)}) $$ # ADAM * ADAM is a combination of RMSProp and momentum. * ADAM keeps both moving average of the gradient and the squared gradient. * Adam includes bias corrections to the estimates of both the first-order moments (the momentum term) and the (uncentered) second-order moments to account for their initializationat the origin. * Thus, unlike in ADAM, the RMSProp second-order moment estimate may have high biasearly in training. $$m_w^{(t+1)} = \beta_1 m_w^{(t)} + (1-\beta_1)\nabla J(w^{(t)})$$ $$v_w^{(t+1)} = \beta_2 v_w^{(t)} + (1-\beta_2)\left(\nabla J(w^{(t)})\right)^2$$ $$\hat{m}_w = \frac{m_w^{(t+1)}}{1 - \beta_1^{t+1}}\text{ (bias correction)}$$ $$\hat{v}_w = \frac{v_w^{(t+1)}}{1 - \beta_2^{t+1}}\text{ (bias correction)}$$ $$w^{(t+1)} = w^{(t)} - \eta \frac{\hat{m}_w}{\sqrt{\hat{v}_m} + \epsilon}$$ * Often used $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. # Summary of Learning Methods for Neural Networks * For small datasets (e.g. 10,000 samples) or bigger datasets without much redundacy, use a full-batch method. * AdaGrad, RProp, ... * For big, redundant datasets use mini-batches. * Try gradient descent with momentum. * Try RMSProp. * Try ADAM. *Why there is no simple recipe?* * There are lots of different network architectures * Tasks differ a lot * Some require very accurate weights, some don't. * Some have many very rare cases (e.g. words). # Recommended Reading Chapter 8 "Optimization for Training Deep Models" from Deep Learning by Ian Goodfellow * http://www.deeplearningbook.org/ ```python ```
dc3aac5602f15eb47a3a6e5c3e5dc80171d05bf7
22,170
ipynb
Jupyter Notebook
22_LearningRate/22_LearningRate.ipynb
zhengyul9/lecture
905b93ba713f8467887fe8de5a44a3d8a7cae45c
[ "CC-BY-4.0", "MIT" ]
null
null
null
22_LearningRate/22_LearningRate.ipynb
zhengyul9/lecture
905b93ba713f8467887fe8de5a44a3d8a7cae45c
[ "CC-BY-4.0", "MIT" ]
null
null
null
22_LearningRate/22_LearningRate.ipynb
zhengyul9/lecture
905b93ba713f8467887fe8de5a44a3d8a7cae45c
[ "CC-BY-4.0", "MIT" ]
null
null
null
44.969574
250
0.612855
true
4,275
Qwen/Qwen-72B
1. YES 2. YES
0.865224
0.824462
0.713344
__label__eng_Latn
0.99827
0.495669
# Spectral Analysis of Deterministic Signals *This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).* ## Zero-Padding ### Concept Let's assume a signal $x_N[k]$ of finite length $N$, for instance a windowed signal $x_N[k] = x[k] \cdot \text{rect}_N[k]$. The discrete Fourier transformation (DFT) of $x_N[k]$ reads \begin{equation} X_N[\mu] = \sum_{k=0}^{N-1} x_N[k] \; w_N^{\mu k} \end{equation} where $w_N = \mathrm{e}^{-\mathrm{j} \frac{2 \pi}{N}}$ denotes the kernel of the DFT. For a sampled time-domain signal, the distance in frequency between two neighboring coefficients is given as $\Delta f = \frac{f_s}{N}$, where $f_s = \frac{1}{T}$ denotes the sampling frequency. Hence, if $N$ is increased the distance between neighboring frequencies is decreased. This leads to the concept of zero-padding in spectral analysis. Here the signal $x_N[k]$ of finite length is filled up with (M-N) zero values to a total length $M \geq N$ \begin{equation} x_M[k] = \begin{cases} x_N[k] & \mathrm{for} \; k=0,1,\dots,N-1 \\ 0 & \mathrm{for} \; k=N,N+1,\dots,M-1 \end{cases} \end{equation} Appending zeros does not change the contents of the signal itself. However, the DFT $X_M[\mu]$ of $x_M[k]$ has now a decreased distance between neighboring frequencies $\Delta f = \frac{f_s}{M}$. The question arises what influence zero-padding has on the spectrum and if it can enhance spectral analysis. On first sight it seems that the frequency resolution is higher, however do we get more information on the signal? In order to discuss this, a short numerical example is evaluated followed by a derivation of the mathematical relations between the spectrum $X_M[k]$ with zero-padding and $X_N[k]$ without zero-padding. #### Example The following example computes and plots the magnitude spectra $|X[\mu]|$ of a truncated complex exponential signal $x_N[k] = \mathrm{e}^{\,\mathrm{j}\,\Omega_0\,k} \cdot \text{rect}_N[k]$ and its zero-padded version $x_M[k]$. ```python %matplotlib inline import numpy as np import matplotlib.pyplot as plt N = 16 # length of the signal M = 32 # length of zero-padded signal Om0 = 5.33*(2*np.pi/N) # frequency of exponential signal # DFT of the exponential signal xN = np.exp(1j*Om0*np.arange(N)) XN = np.fft.fft(xN) # DFT of the zero-padded exponential signal xM = np.concatenate((xN, np.zeros(M-N))) XM = np.fft.fft(xM) # plot spectra plt.figure(figsize = (10, 6)) plt.subplot(121) plt.stem(np.arange(N),np.abs(XN)) plt.title(r'DFT$_{%d}$ of $e^{j \Omega_0 k}$ without zero-padding' %N) plt.xlabel(r'$\mu$') plt.ylabel(r'$|X_N[\mu]|$') plt.axis([0, N, 0, 18]) plt.grid() plt.subplot(122) plt.stem(np.arange(M),np.abs(XM)) plt.title(r'DFT$_{%d}$ of $e^{j \Omega_0 k}$ with zero-padding' %M) plt.xlabel(r'$\mu$') plt.ylabel(r'$|X_M[\mu]|$') plt.axis([0, M, 0, 18]) plt.grid() ``` **Exercise** * Check the two spectra carefully for relations. Are there common coefficients for the case $M = 2 N$? * Increase the length `M` of the zero-padded signal $x_M[k]$. Can you gain additional information from the spectrum? Every second (because the DFT length has been doubled) coefficient has been added, the other coefficients stay the same. With longer zero-padding, the maximum of the main lobe of the window gets closer to its true maximum. ### Interpolation of the Discrete Fourier Transformation Lets step back to the discrete-time Fourier transformation (DTFT) of the finite-length signal $x_N[k]$ without zero-padding \begin{equation} X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \sum_{k = -\infty}^{\infty} x_N[k] \, \mathrm{e}^{\,-\mathrm{j}\,\Omega\,k} = \sum_{k=0}^{N-1} x_N[k] \,\mathrm{e}^{-\,\mathrm{j}\,\Omega\,k} \end{equation} The discrete Fourier transformation (DFT) is derived by sampling $X_N(\mathrm{e}^{\mathrm{j}\,\Omega})$ at $\Omega = \mu \frac{2 \pi}{N}$ \begin{equation} X_N[\mu] = X_N(\mathrm{e}^{\,\mathrm{j}\, \Omega}) \big\vert_{\Omega = \mu \frac{2 \pi}{N}} = \sum_{k=0}^{N-1} x_N[k] \, \mathrm{e}^{\,-\mathrm{j}\, \mu \frac{2\pi}{N}\,k} \end{equation} Since the DFT coefficients $X_N[\mu]$ are sampled equidistantly from the DTFT $X_N(\mathrm{e}^{\,\mathrm{j}\, \Omega})$, we can reconstruct the DTFT of $x_N[k]$ from the DFT coefficients by interpolation. Introduce the inverse DFT of $X_N[\mu]$ \begin{equation} x_N[k] = \frac{1}{N} \sum_{\mu = 0}^{N-1} X_N[\mu] \; \mathrm{e}^{\,\mathrm{j}\,\frac{2 \pi}{N} \mu \,k} \end{equation} into the DTFT \begin{equation} X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \sum_{k=0}^{N-1} x_N[k] \; \mathrm{e}^{-\,\mathrm{j}\, \Omega\, k} = \sum_{\mu=0}^{N-1} X_N[\mu] \cdot \frac{1}{N} \sum_{k=0}^{N-1} \mathrm{e}^{-\mathrm{j}\, k \,(\Omega - \frac{2 \pi}{N} \mu)} \end{equation} reveals the relation between $X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ and $X_N[\mu]$. The last sum over $k$ constitutes a [geometric series](https://en.wikipedia.org/wiki/Geometric_series) and can be rearranged to \begin{equation} X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \sum_{\mu=0}^{N-1} X_N[\mu] \cdot \frac{1}{N} \cdot \frac{1-\mathrm{e}^{-\mathrm{j}(\Omega-\frac{2\pi}{N}\mu)N}}{1-\mathrm{e}^{-\mathrm{j}(\Omega-\frac{2\pi}{N}\mu)}} \end{equation} By factorizing the last fraction to \begin{equation} X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \sum_{\mu=0}^{N-1} X_N[\mu] \cdot \frac{1}{N} \cdot \frac{\mathrm{e}^{-\mathrm{j}\frac{(\Omega-\frac{2\pi}{N}\mu)N}{2}}}{\mathrm{e}^{-\mathrm{j}\frac{\Omega-\frac{2\pi}{N}\mu}{2}}} \cdot \frac{\mathrm{e}^{\mathrm{j}\frac{(\Omega-\frac{2\pi}{N}\mu)N}{2}}-\mathrm{e}^{-\mathrm{j}\frac{(\Omega-\frac{2\pi}{N}\mu)N}{2}}}{\mathrm{e}^{\mathrm{j}\frac{\Omega-\frac{2\pi}{N}\mu}{2}}-\mathrm{e}^{-\mathrm{j}\frac{\Omega-\frac{2\pi}{N}\mu}{2}}} \end{equation} and making use of [Euler's identity](https://en.wikipedia.org/wiki/Euler%27s_identity) $2\mathrm{j}\cdot\sin(x)=\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}$ this can be simplified to \begin{equation} X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \sum_{\mu=0}^{N-1} X_N[\mu] \cdot \mathrm{e}^{-\mathrm{j}\frac{(\Omega-\frac{2\pi}{N}\mu)(N-1)}{2}} \cdot \frac{1}{N} \cdot \frac{\sin(N\frac{\Omega-\frac{2\pi}{N}\mu}{2})}{\sin(\frac{\Omega-\frac{2\pi}{N}\mu}{2})} \end{equation} The last fraction can be written in terms of the $N$-th order periodic sinc function (aliased sinc function, [Dirichlet kernel](https://en.wikipedia.org/wiki/Dirichlet_kernel)), which is defined as \begin{equation} \text{psinc}_N (\Omega) = \frac{1}{N} \frac{\sin(\frac{N}{2} \Omega)}{ \sin(\frac{1}{2} \Omega)} \end{equation} According to this definition, the periodic sinc function is not defined at $\Omega = 2 \pi \,n$ for $n \in \mathbb{Z}$. This is resolved by applying [L'Hôpital's rule](https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule) which results in $\text{psinc}_N (2 \pi \,n) = 1$ for $n \in \mathbb{Z}$. Using the periodic sinc function, the DTFT $X_N(\mathrm{e}^{\,\mathrm{j}\, \Omega})$ of a finite-length signal $x_N[k]$ can be derived from its DFT $X_N[\mu]$ by \begin{equation} X_N(\mathrm{e}^{\,\mathrm{j}\, \Omega}) = \sum_{\mu=0}^{N-1} X_N[\mu] \cdot \mathrm{e}^{-\,\mathrm{j}\, \frac{( \Omega - \frac{2 \pi}{N} \mu ) (N-1)}{2}} \cdot \text{psinc}_N ( \Omega - \frac{2 \pi}{N} \mu ) \end{equation} #### Example This example illustrates the 1. periodic sinc function, and 2. interpolation of $X_N(\mathrm{e}^{\,\mathrm{j}\, \Omega})$ from $X_N[\mu]$ for an exponential signal using above relation. ```python N = 16 # order of periodic sinc function M = 1024 # number of frequency points Om = np.linspace(-np.pi, np.pi, M) # definition of periodic sinc function def psinc(x, N): x = np.asanyarray(x) y = np.where(x == 0, 1.0e-20, x) return 1/N * np.sin(N/2*y)/np.sin(1/2*y) # plot psinc plt.figure(figsize = (10, 8)) plt.plot(Om, psinc(Om, 16)) plt.xlabel(r'$\Omega$') plt.ylabel(r'$\mathrm{psinc}_N (\Omega)$') plt.grid() ``` ```python N = 16 # length of the signal M = 1024 # number of frequency points for DTFT Om0 = 5.33*(2*np.pi/N) # frequency of exponential signal # DFT of the exponential signal xN = np.exp(1j*Om0*np.arange(N)) XN = np.fft.fft(xN) # interpolation of DTFT from DFT coefficients Xi = np.asarray(np.zeros(M), dtype=complex) for mu in np.arange(M): Omd = 2*np.pi/M*mu-2*np.pi*np.arange(N)/N interpolator = psinc(Omd, N) * np.exp(-1j*Omd*(N-1)/2) Xi[mu] = np.sum(XN * interpolator) # plot spectra plt.figure(figsize = (10, 8)) ax1 = plt.gca() plt.plot(np.arange(M)*2*np.pi/M, abs(Xi), 'r', label=r'$|X_N(e^{j \Omega})|$') plt.stem(np.arange(N)*2*np.pi/N, abs(XN), basefmt = ' ', label=r'$|X_N[\mu]|$') plt.title(r'DFT $X_N[\mu]$ and interpolated DTFT $X_N(e^{j \Omega})$', y=1.08) plt.ylim([-0.5, N+2]); plt.legend() ax1.set_xlabel(r'$\Omega$') ax1.set_xlim([0, 2*np.pi]) ax1.grid() ax2 = ax1.twiny() ax2.set_xlim([0, N]) ax2.set_xlabel(r'$\mu$', color='C0') ax2.tick_params('x', colors='C0') ``` ### Relation between Discrete Fourier Transformations with and without Zero-Padding It was already outlined above that the DFT is related to the DTFT by sampling. Hence, the DFT $X_M[\mu]$ is given by sampling the DTFT $X_M(\mathrm{e}^{\mathrm{j}\, \Omega})$ at $\Omega = \frac{2 \pi}{M} \mu$. Since the zero-padded signal $x_M[k]$ differs from $x_N[k]$ only with respect to the additional zeros, the DTFTs of both are equal \begin{equation} X_M(\mathrm{e}^{\mathrm{j}\, \Omega}) = X_N(\mathrm{e}^{\mathrm{j}\, \Omega}) \end{equation} The desired relation between the DFTs $X_N[\mu]$ and $X_M[\mu]$ of the signal $x_N[k]$ and its zero-padded version $x_M[k]$ can be found by sampling the interpolated DTFT $X_N(\mathrm{e}^{\mathrm{j}\, \Omega})$ at $\Omega = \frac{2 \pi}{M} \mu$ \begin{equation} X_M[\mu] = \sum_{\eta=0}^{N-1} X_N[\eta] \cdot \mathrm{e}^{\,-\mathrm{j}\, \frac{( \frac{2 \pi}{M} \mu - \frac{2 \pi}{N} \eta ) (N-1)}{2}} \cdot \text{psinc}_N \left( \frac{2 \pi}{M} \mu - \frac{2 \pi}{N} \eta \right) \end{equation} for $\mu = 0, 1, \dots, M-1$. Above equation relates the spectrum $X_N[\mu]$ of the original signal $x_N[k]$ to the spectrum $X_M[\mu]$ of the zero-padded signal $x_M[k]$. It essentially constitutes a bandlimited interpolation of the coefficients $X_N[\mu]$. All spectral information of a signal of finite length $N$ is already contained in its spectrum derived from a DFT of length $N$. By applying zero-padding and a longer DFT, the frequency resolution is only virtually increased. The additional coefficients are related to the original ones by bandlimited interpolation. In general, zero-padding does not bring additional insights in spectral analysis. It may bring a benefit in special applications, for instance when estimating the frequency of an isolated harmonic signal from its spectrum. This is illustrated in the following example. Zero-padding is also used to make a circular convolution equivalent to a linear convolution. However, there is a different reasoning behind this. Details are discussed in a [later section](../nonrecursive_filters/fast_convolution.ipynb#Linear-Convolution-by-Periodic-Convolution). #### Example The following example shows that the coefficients $X_M[\mu]$ of the spectrum of the zero-padded signal $x_M[k]$ can be derived by interpolation from the spectrum $X_N[\mu]$. ```python N = 16 # length of the signal M = 32 # number of points for interpolated DFT Om0 = 5.33*(2*np.pi/N) # frequency of exponential signal # periodic sinc function def psinc(x, N): x = np.asanyarray(x) y = np.where(x == 0, 1.0e-20, x) return 1/N * np.sin(N/2*y)/np.sin(1/2*y) # DFT of the exponential signal xN = np.exp(1j*Om0*np.arange(N)) XN = np.fft.fft(xN) # interpolation of DFT coefficients XM = np.asarray(np.zeros(M), dtype=complex) for mu in np.arange(M): Omd = 2*np.pi/M*mu-2*np.pi*np.arange(N)/N interpolator = psinc(Omd, N) * np.exp(-1j*Omd*(N-1)/2) XM[mu] = np.sum(XN * interpolator) # plot spectra plt.figure(figsize = (10, 6)) plt.subplot(121) plt.stem(np.arange(N),np.abs(XN)) plt.title(r'DFT of $e^{j \Omega_0 k}$ without zero-padding') plt.xlabel(r'$\mu$') plt.ylabel(r'$|X_N[\mu]|$') plt.axis([0, N, 0, 18]) plt.grid() plt.subplot(122) plt.stem(np.arange(M),np.abs(XM)) plt.title(r'Interpolated spectrum') plt.xlabel(r'$\mu$') plt.ylabel(r'$|X_M[\mu]|$') plt.axis([0, M, 0, 18]) plt.grid() ``` **Exercise** * Compare the interpolated spectrum to the spectrum with zero padding from the first example. * Estimate the frequency $\Omega_0$ of the exponential signal from the interpolated spectrum. How could you further increase the accuracy of your estimate? The interpolated spectrum is the same as the spectrum with zero padding from the first example. The estimated frequency from the interpolated spectrum is $\Omega_0=\frac{2\pi}{M}\mu=\frac{2\pi}{32}\cdot11$. A better estimate can be obtained by increasing the number of points for the interpolated DFT or by further zero-padding of the time domain signal. **Copyright** This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Digital Signal Processing - Lecture notes featuring computational examples, 2016-2017*.
48595d9c4d0ab8da46c81d8d60af077571a0b669
128,980
ipynb
Jupyter Notebook
spectral_analysis_deterministic_signals/zero_padding.ipynb
ganlubbq/digital-signal-processing-lecture
f9ac5b2f5500aa612b48d1d920c7cba366c44dba
[ "MIT" ]
2
2017-11-14T16:14:37.000Z
2021-05-16T21:01:41.000Z
spectral_analysis_deterministic_signals/zero_padding.ipynb
ganlubbq/digital-signal-processing-lecture
f9ac5b2f5500aa612b48d1d920c7cba366c44dba
[ "MIT" ]
null
null
null
spectral_analysis_deterministic_signals/zero_padding.ipynb
ganlubbq/digital-signal-processing-lecture
f9ac5b2f5500aa612b48d1d920c7cba366c44dba
[ "MIT" ]
2
2020-06-26T14:19:29.000Z
2020-12-11T08:31:29.000Z
287.260579
38,448
0.897852
true
4,420
Qwen/Qwen-72B
1. YES 2. YES
0.880797
0.901921
0.794409
__label__eng_Latn
0.895081
0.684011
# Homework 5 ## Due Date: Tuesday, October 3rd at 11:59 PM # Problem 1 We discussed documentation and testing in lecture and also briefly touched on code coverage. You must write tests for your code for your final project (and in life). There is a nice way to automate the testing process called continuous integration (CI). This problem will walk you through the basics of CI and show you how to get up and running with some CI software. ### Continuous Integration The idea behind continuous integration is to automate away the testing of your code. We will be using it for our projects. The basic workflow goes something like this: 1. You work on your part of the code in your own branch or fork 2. On every commit you make and push to GitHub, your code is automatically tested on a fresh machine on Travis CI. This ensures that there are no specific dependencies on the structure of your machine that your code needs to run and also ensures that your changes are sane 3. Now you submit a pull request to `master` in the main repo (the one you're hoping to contribute to). The repo manager creates a branch off `master`. 4. This branch is also set to run tests on Travis. If all tests pass, then the pull request is accepted and your code becomes part of master. We use GitHub to integrate our roots library with Travis CI and Coveralls. Note that this is not the only workflow people use. Google git..github..workflow and feel free to choose another one for your group. ### Part 1: Create a repo Create a public GitHub repo called `cs207test` and clone it to your local machine. **Note:** No need to do this in Jupyter. ### Part 2: Create a roots library Use the example from lecture 7 to create a file called `roots.py`, which contains the `quad_roots` and `linear_roots` functions (along with their documentation). Also create a file called `test_roots.py`, which contains the tests from lecture. All of these files should be in your newly created `cs207test` repo. **Don't push yet!!!** ```python %%file cs207test/roots.py def linear_roots(a=1.0, b=0.0): """Returns the roots of a linear equation: ax+ b = 0. INPUTS ======= a: float, optional, default value is 1 Coefficient of linear term b: float, optional, default value is 0 Coefficient of constant term RETURNS ======== roots: 1-tuple of real floats Has the form (root) unless a = 0 in which case a ValueError exception is raised EXAMPLES ========= >>> linear_roots(1.0, 2.0) -2.0 """ if a == 0: raise ValueError("The linear coefficient is zero. This is not a linear equation.") else: return ((-b / a)) def quad_roots(a=1.0, b=2.0, c=0.0): """Returns the roots of a quadratic equation: ax^2 + bx + c = 0. INPUTS ======= a: float, optional, default value is 1 Coefficient of quadratic term b: float, optional, default value is 2 Coefficient of linear term c: float, optional, default value is 0 Constant term RETURNS ======== roots: 2-tuple of complex floats Has the form (root1, root2) unless a = 0 in which case a ValueError exception is raised EXAMPLES ========= >>> quad_roots(1.0, 1.0, -12.0) ((3+0j), (-4+0j)) """ import cmath # Can return complex numbers from square roots if a == 0: raise ValueError("The quadratic coefficient is zero. This is not a quadratic equation.") else: sqrtdisc = cmath.sqrt(b * b - 4.0 * a * c) r1 = -b + sqrtdisc r2 = -b - sqrtdisc return (r1 / 2.0 / a, r2 / 2.0 / a) ``` ```python %%file cs207test/test_roots.py import roots def test_quadroots_result(): assert roots.quad_roots(1.0, 1.0, -12.0) == ((3+0j), (-4+0j)) def test_quadroots_types(): try: roots.quad_roots("", "green", "hi") except TypeError as err: assert(type(err) == TypeError) def test_quadroots_zerocoeff(): try: roots.quad_roots(a=0.0) except ValueError as err: assert(type(err) == ValueError) def test_linearoots_result(): assert roots.linear_roots(2.0, -3.0) == 1.5 def test_linearroots_types(): try: roots.linear_roots("ocean", 6.0) except TypeError as err: assert(type(err) == TypeError) def test_linearroots_zerocoeff(): try: roots.linear_roots(a=0.0) except ValueError as err: assert(type(err) == ValueError) ``` ### Part 3: Create an account on Travis CI and Start Building #### Part A: Create an account on Travis CI and set your `cs207test` repo up for continuous integration once this repo can be seen on Travis. #### Part B: Create an instruction to Travis to make sure that 1. python is installed 2. its python 3.5 3. pytest is installed The file should be called `.travis.yml` and should have the contents: ```yml language: python python: - "3.5" before_install: - pip install pytest pytest-cov script: - pytest ``` You should also create a configuration file called `setup.cfg`: ```cfg [tool:pytest] addopts = --doctest-modules --cov-report term-missing --cov roots ``` #### Part C: Push the new changes to your `cs207test` repo. At this point you should be able to see your build on Travis and if and how your tests pass. ```python %%file cs207test/.travis.yml language: python python: - "3.5" before_install: - pip install pytest pytest-cov script: - pytest ``` ```python %%file cs207test/setup.cfg [tool:pytest] addopts = --doctest-modules --cov-report term-missing --cov roots ``` ### Part 4: Coveralls Integration In class, we also discussed code coverage. Just like Travis CI runs tests automatically for you, Coveralls automatically checks your code coverage. One minor drawback of Coveralls is that it can only work with public GitHub accounts. However, this isn't too big of a problem since your projects will be public. #### Part A: Create an account on [`Coveralls`](https://coveralls.zendesk.com/hc/en-us), connect your GitHub, and turn Coveralls integration on. #### Part B: Update your the `.travis.yml` file as follows: ```yml language: python python: - "3.5" before_install: - pip install pytest pytest-cov - pip install coveralls script: - py.test after_success: - coveralls ``` Be sure to push the latest changes to your new repo. ```python %%file cs207test/.travis.yml language: python python: - "3.5" before_install: - pip install pytest pytest-cov - pip install coveralls script: - py.test after_success: - coveralls ``` ### Part 5: Update README.md in repo You can have your GitHub repo reflect the build status on Travis CI and the code coverage status from Coveralls. To do this, you should modify the `README.md` file in your repo to include some badges. Put the following at the top of your `README.md` file: ``` [](https://travis-ci.org/dsondak/cs207testing.svg?branch=master) [](https://coveralls.io/github/dsondak/cs207testing?branch=master) ``` Of course, you need to make sure that the links are to your repo and not mine. You can find embed code on the Coveralls and Travis CI sites. ```python ``` --- # Problem 2 Write a Python module for reaction rate coefficients. Your module should include functions for constant reaction rate coefficients, Arrhenius reaction rate coefficients, and modified Arrhenius reaction rate coefficients. Here are their mathematical forms: \begin{align} &k_{\textrm{const}} = k \tag{constant} \\ &k_{\textrm{arr}} = A \exp\left(-\frac{E}{RT}\right) \tag{Arrhenius} \\ &k_{\textrm{mod arr}} = A T^{b} \exp\left(-\frac{E}{RT}\right) \tag{Modified Arrhenius} \end{align} Test your functions with the following paramters: $A = 10^7$, $b=0.5$, $E=10^3$. Use $T=10^2$. A few additional comments / suggestions: * The Arrhenius prefactor $A$ is strictly positive * The modified Arrhenius parameter $b$ must be real * $R = 8.314$ is the ideal gas constant. It should never be changed (except to convert units) * The temperature $T$ must be positive (assuming a Kelvin scale) * You may assume that units are consistent * Document each function! * You might want to check for overflows and underflows **Recall:** A Python module is a `.py` file which is not part of the main execution script. The module contains several functions which may be related to each other (like in this problem). Your module will be importable via the execution script. For example, suppose you have called your module `reaction_coeffs.py` and your execution script `kinetics.py`. Inside of `kinetics.py` you will write something like: ```python import reaction_coeffs # Some code to do some things # : # : # : # Time to use a reaction rate coefficient: reaction_coeffs.const() # Need appropriate arguments, etc # Continue on... # : # : # : ``` Be sure to include your module in the same directory as your execution script. ```python ``` ```python %%file reaction_coeffs.py def const(k=1.0): """Returns the constant coefficient k. INPUTS ======= a: float, optional, default value is 1.0 Constant reaction coefficient RETURNS ======== Constant k unless k is not an int or float in which case a TypeError exception is raised EXAMPLES ========= >>> const(1.0) 1.0 """ if type(k) != int and type(k) != float: raise TypeError("Input needs to be a number!") else: return k def arr(A=10^7,T=10^2,E=10^3,R=8.314): """Returns the constant coefficient k. INPUTS ======= A: float, optional, default value is 10^7 Arhenieus constant, needs to be positive T: float, optional, default value is 10^2 temperature, must be positive R: float, fixed value 8.314, should not change RETURNS ======== Constant k unless any of A,T, and E are not numbers in which case a TypeError exception is raised EXAMPLES ========= >>> arr(10^7,10^2,10^2) 11.526748719357375 """ if A < 0: raise ValueError("The Arrhenius constant must be strictly positive") elif T < 0: raise ValueError("Temperature must be positive") elif R != 8.314: raise ValueError("Unless in a stargate, the universal gas constant is 8.314") elif type(A) != int and type(A) != float: raise TypeError("parameters need to be either type int or type float") elif type(T) !=int and type(T) != int: raise TypeError("parameters need to be either type int or type float") elif type(E) != int and type(E) != float: raise TypeError("parameters need to be either type int or type float") else: import numpy as np k=(A)*np.exp(-E/(R*T)) return k def mod_arr(A=10^7,b=0.5,T=10^2,E=10^3,R=8.314): """Returns the constant coefficient k. INPUTS ======= A: float, optional, default value is 10^7 Arhenieus constant, needs to be positive T: float, optional, default value is 10^2 temperature, must be positive R: float, fixed value 8.314, should not change b: float, optional, default value is 0.5, must be a real number RETURNS ======== Constant k unless any of A,T,b and E are not numbers in which case a TypeError exception is raised EXAMPLES ========= >>> mod_arr() 32.116059468138779 """ if A < 0: raise ValueError("The Arrhenius constant must be strictly positive") elif T < 0: raise ValueError("Temperature must be positive") elif isinstance(b,complex): raise ValueError("b must be a real number") elif R != 8.314: raise ValueError("Unless in a stargate, the universal gas constant is 8.314") elif type(A) != int and type(A) != float: raise TypeError("parameters need to be either type int or type float") elif type(T) !=int and type(T) != int: raise TypeError("parameters need to be either type int or type float") elif type(E) != int and type(E) != float: raise TypeError("parameters need to be either type int or type float") else: import numpy as np k=(A)*(T**b)*np.exp(-E/(R*T)) return k ``` Overwriting reaction_coeffs.py ```python import reaction_coeffs print(reaction_coeffs.const()) print(reaction_coeffs.arr()) print(reaction_coeffs.mod_arr()) ``` 1.0 11.3547417175 32.1160594681 ```python !pytest ``` ============================= test session starts ============================== platform darwin -- Python 3.6.1, pytest-3.0.7, py-1.4.33, pluggy-0.4.0 rootdir: /Users/filipmichalsky/cs207_filip_michalsky/homeworks/HW5, inifile: collected 13 items   test_multi_progress_r.py .. test_multi_reaction_r.py ... test_single_progress_r.py .. cs207test/test_roots.py ...... ========================== 13 passed in 0.24 seconds =========================== --- # Problem 3 Write a function that returns the **progress rate** for a reaction of the following form: \begin{align} \nu_{A} A + \nu_{B} B \longrightarrow \nu_{C} C. \end{align} Order your concentration vector so that \begin{align} \mathbf{x} = \begin{bmatrix} \left[A\right] \\ \left[B\right] \\ \left[C\right] \end{bmatrix} \end{align} Test your function with \begin{align} \nu_{i} = \begin{bmatrix} 2.0 \\ 1.0 \\ 0.0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1.0 \\ 2.0 \\ 3.0 \end{bmatrix} \qquad k = 10. \end{align} You must document your function and write some tests in addition to the one suggested. You choose the additional tests, but you must have at least one doctest in addition to a suite of unit tests. ```python import numpy as np ``` ```python %%file single_progress_r.py def progress_rate(v_i,x,k): """Returns the progress rate of a reaction INPUTS ======= v_i: vector of stochiometric coefficients x: vector of concentrations (first dimension needs to match v_i),second dimension is 1 k: float, fixed value 8.314, should not change RETURNS ======== Progress rate of the reaction k*[A]^v_i[a]*[B]*v_i[b]*[C]^v_i[c] unless first dimension of x does not match first dimension of v_i in which case a ValueError exception is raised EXAMPLES ========= >>> import numpy as np >>> progress_rate(np.array([2,1,0]),np.array([1,2,3]),10) 20 """ #v_i=np.array([2,1,0]) #x=np.array([1,2,3]) #k=10 import numpy as np #check that the first dimension matches if x.shape[0] != v_i.shape[0]: raise ValueError("First dimension of x and v_i need to match") else: product_X_to_vi=1 #loop through the rows to multiply each x by its stochiometric coeffs for i,j in zip(v_i,x): product_X_to_vi=product_X_to_vi*(j**i) progress_rate=k*product_X_to_vi return progress_rate if __name__ == "__main__": import doctest doctest.testmod() ``` Overwriting single_progress_r.py ```python import single_progress_r import numpy as np single_progress_r.progress_rate(np.array([2,1,0]),np.array([1,2,3]),10) ``` 20 ```python import single_progress_r import numpy as np single_progress_r.progress_rate(np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) ``` ```python %%file test_single_progress_r.py import single_progress_r import numpy as np #!pytest --doctest-modules def test_progress_rate_result(): assert single_progress_r.progress_rate(np.array([2,1,0]),np.array([1,2,3]),10) == 20 def test_progress_rate_shapes(): try: single_progress_r.progress_rate(np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) except ValueError as err: assert(type(err) == ValueError) #def test_arr_result(): # assert reaction_coeffs.arr(A=10^7,E=10^3,T=10^2) == XX ``` Overwriting test_single_progress_r.py ```bash %%bash python -m pytest -v test_single_progress_r.py ``` ============================= test session starts ============================== platform darwin -- Python 3.6.1, pytest-3.0.7, py-1.4.33, pluggy-0.4.0 -- /Users/filipmichalsky/anaconda/bin/python cachedir: .cache rootdir: /Users/filipmichalsky/cs207_filip_michalsky/homeworks/HW5, inifile: collecting ... collected 2 items test_single_progress_r.py::test_progress_rate_result PASSED test_single_progress_r.py::test_progress_rate_shapes PASSED =========================== 2 passed in 0.19 seconds =========================== ```bash %%bash python multi_progress_r.py -v #doctest of created file ``` Trying: import numpy as np Expecting nothing ok Trying: progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10)[0] Expecting: 40.0 ok Trying: progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10)[1] Expecting: 10.0 ok 1 items had no tests: __main__ 1 items passed all tests: 3 tests in __main__.progress_rate_multi 3 tests in 2 items. 3 passed and 0 failed. Test passed. --- # Problem 4 Write a function that returns the **progress rate** for a system of reactions of the following form: \begin{align} \nu_{11}^{\prime} A + \nu_{21}^{\prime} B \longrightarrow \nu_{31}^{\prime\prime} C \\ \nu_{12}^{\prime} A + \nu_{32}^{\prime} C \longrightarrow \nu_{22}^{\prime\prime} B + \nu_{32}^{\prime\prime} C \end{align} Note that $\nu_{ij}^{\prime}$ represents the stoichiometric coefficient of reactant $i$ in reaction $j$ and $\nu_{ij}^{\prime\prime}$ represents the stoichiometric coefficient of product $i$ in reaction $j$. Therefore, in this convention, I have ordered my vector of concentrations as \begin{align} \mathbf{x} = \begin{bmatrix} \left[A\right] \\ \left[B\right] \\ \left[C\right] \end{bmatrix}. \end{align} Test your function with \begin{align} \nu_{ij}^{\prime} = \begin{bmatrix} 1.0 & 2.0 \\ 2.0 & 0.0 \\ 0.0 & 2.0 \end{bmatrix} \qquad \nu_{ij}^{\prime\prime} = \begin{bmatrix} 0.0 & 0.0 \\ 0.0 & 1.0 \\ 2.0 & 1.0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1.0 \\ 2.0 \\ 1.0 \end{bmatrix} \qquad k = 10. \end{align} You must document your function and write some tests in addition to the one suggested. You choose the additional tests, but you must have at least one doctest in addition to a suite of unit tests. Please note I have already generalized the progress rate formula, I only need to subtract now the v_ij product from v_ij reactants to get the correct v_ij's ```python %%file multi_progress_r.py import numpy as np def progress_rate_multi(v_ij_reac,v_ij_proc,x,k): """Returns the progress rate of a set of reactions INPUTS ======= v_ij_reac: vector of stochiometric coefficients of reactants v_ij_proc: vector of stochiometric coefficients of products x: vector of concentrations (first dimension needs to match v_i),second dimension is 1 k: float RETURNS ======== Progress rates of the reactions (a string based on number of reactions) according to the formula k*[A]^v_i[a]*[B]*v_i[b]*[C]^v_i[c] unless v_ij = v_ij_proc-v_ij_reac has the first dimension not matching the first dimension of x which returns a ValueError unless shape of v_ij_proc does not match the shape of x, which will return ValueError as well EXAMPLES ========= >>> import numpy as np >>> progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10)[0] 40.0 >>> progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10)[1] 10.0 """ import numpy as np #calculate the effective stochiometric coefficients on the reactants side #check length of product coeffs and reac coeffs is the same if v_ij_proc.shape != v_ij_reac.shape: raise ValueError("Dimensions of stochiometric coeffs need to match") #check that the first dimension matches elif x.shape[0] != v_ij_proc.shape[0]: raise ValueError("First dimension of x and v_i need to match") else: v_ij = v_ij_reac product_X_to_vij = 1 #loop through the rows to multiply each x by its stochiometric coeffs for i,j in zip(v_ij,x): #print("i,j") #print(i,j) #print("j**i") #print(j**i) product_X_to_vij=product_X_to_vij*(j**i) #print("product") #print(product_X_to_vij) progress_rate_multi=k*product_X_to_vij return progress_rate_multi if __name__ == "__main__": import doctest doctest.testmod() ``` Overwriting multi_progress_r.py ```python import multi_progress_r multi_progress_r.progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10) ``` array([ 40., 10.]) ```python a=np.array([0.25,2.0]) b=np.array([1.,1.]) a*b ``` array([ 0.25, 2. ]) ```python import multi_progress_r v_ij_reac = np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]) v_ij_proc = np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]) x = np.array([1.0,2.0,1.0]) k = 10 assert multi_progress_r.progress_rate_multi(v_ij_reac , v_ij_proc, x , k )[0] == 40 assert multi_progress_r.progress_rate_multi(v_ij_reac , v_ij_proc, x , k )[1] == 10 ``` ```python ``` ```python #sample fail of the function based on wrong input import multi_progress_r multi_progress_r.progress_rate_multi(np.array([2,1,1]),np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) ``` ```python %%file test_multi_progress_r.py import multi_progress_r import numpy as np import doctest doctest.testmod(verbose=True) def progress_rate_result(): #test the result og the function v_ij_reac = np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]) v_ij_proc = np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]) x = np.array([1.0,2.0,1.0]) k = 10 assert multi_progress_r.progress_rate_multi(v_ij_reac , v_ij_proc, x , k )[0] == 40.0 assert progress_rate_multi(v_ij_reac , v_ij_proc, x , k )[1] == 10.0 def test_progress_rate_shapes_with_x(): #test whether shape of coeffs v_i matches shape of concentrations x try: multi_progress_r.progress_rate_multi(np.array([2,1]),np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) except ValueError as err: assert(type(err) == ValueError) def test_progress_rate_shapes_coeffs(): #test whether the shape of v_ij's matches try: multi_progress_r.progress_rate_multi(np.array([2,1,1]),np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) except ValueError as err: assert(type(err) == ValueError) ``` Overwriting test_multi_progress_r.py ```bash %%bash python multi_progress_r.py -v ``` Trying: import numpy as np Expecting nothing ok Trying: progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10)[0] Expecting: 40.0 ok Trying: progress_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,0.0],[0.0,1.0],[2.0,1.0]]),np.array([1.0,2.0,1.0]),10)[1] Expecting: 10.0 ok 1 items had no tests: __main__ 1 items passed all tests: 3 tests in __main__.progress_rate_multi 3 tests in 2 items. 3 passed and 0 failed. Test passed. ```python !pytest ``` ============================= test session starts ============================== platform darwin -- Python 3.6.1, pytest-3.0.7, py-1.4.33, pluggy-0.4.0 rootdir: /Users/filipmichalsky/cs207_filip_michalsky/homeworks/HW5, inifile: collected 13 items   test_multi_progress_r.py .. test_multi_reaction_r.py ... test_single_progress_r.py .. cs207test/test_roots.py ...... ========================== 13 passed in 0.23 seconds =========================== --- # Problem 5 Write a function that returns the **reaction rate** of a system of irreversible reactions of the form: \begin{align} \nu_{11}^{\prime} A + \nu_{21}^{\prime} B &\longrightarrow \nu_{31}^{\prime\prime} C \\ \nu_{32}^{\prime} C &\longrightarrow \nu_{12}^{\prime\prime} A + \nu_{22}^{\prime\prime} B \end{align} Once again $\nu_{ij}^{\prime}$ represents the stoichiometric coefficient of reactant $i$ in reaction $j$ and $\nu_{ij}^{\prime\prime}$ represents the stoichiometric coefficient of product $i$ in reaction $j$. In this convention, I have ordered my vector of concentrations as \begin{align} \mathbf{x} = \begin{bmatrix} \left[A\right] \\ \left[B\right] \\ \left[C\right] \end{bmatrix} \end{align} Test your function with \begin{align} \nu_{ij}^{\prime} = \begin{bmatrix} 1.0 & 0.0 \\ 2.0 & 0.0 \\ 0.0 & 2.0 \end{bmatrix} \qquad \nu_{ij}^{\prime\prime} = \begin{bmatrix} 0.0 & 1.0 \\ 0.0 & 2.0 \\ 1.0 & 0.0 \end{bmatrix} \qquad \mathbf{x} = \begin{bmatrix} 1.0 \\ 2.0 \\ 1.0 \end{bmatrix} \qquad k = 10. \end{align} You must document your function and write some tests in addition to the one suggested. You choose the additional tests, but you must have at least one doctest in addition to a suite of unit tests. ```python #%%file multi_reaction_r.py import numpy as np def reaction_rate_multi(v_ij_reac,v_ij_proc,x,k): """Returns the rection rate for a set of species INPUTS ======= v_ij_reac: vector of stochiometric coefficients of reactants v_ij_proc: vector of stochiometric coefficients of products x: vector of concentrations (first dimension needs to match v_i),second dimension is 1 k: float RETURNS ======== Reaction rates of the species (a string based on number of species) according to the formula k*[A]^v_i[a]*[B]*v_i[b]*[C]^v_i[c] for progress rate and dXi/dt = sum(v_ij_proc-v_ij_reac)*progress rate unless v_ij = v_ij_proc-v_ij_reac has the first dimension not matching the first dimension of x which returns a ValueError unless shape of v_ij_proc does not match the shape of x, which will return ValueError as well EXAMPLES ========= >>> import numpy as np >>> reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[0][0] -50.0 >>> reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[1][0] -60.0 >>> reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[2][0] 20.0 """ import numpy as np #calculate the effective stochiometric coefficients on the reactants side #check length of product coeffs and reac coeffs is the same if v_ij_proc.shape != v_ij_reac.shape: raise ValueError("Dimensions of stochiometric coeffs need to match") #check that the first dimension matches elif x.shape[0] != v_ij_proc.shape[0]: raise ValueError("First dimension of x and v_i need to match") else: v_ij = v_ij_reac product_X_to_vij = 1 #loop through the rows to multiply each x by its stochiometric coeffs for i,j in zip(v_ij,x): product_X_to_vij=product_X_to_vij*(j**i) product_X_to_vij=product_X_to_vij.reshape(len(product_X_to_vij),1) progress_rate_multi=k*product_X_to_vij reaction_rates=np.dot((v_ij_proc-v_ij_reac),progress_rate_multi) return reaction_rates if __name__ == "__main__": import doctest doctest.testmod() ``` ```python k=np.array([[10],[10],[10]]) w_ij=np.array([[1],[2],[3]]) print(k.shape,w_ij.shape) ``` (3, 1) (3, 1) ```python #from multi_reaction_r import reaction_rate_multi import multi_reaction_r multi_reaction_r.reaction_rate_multi(np.array([[1.0,0.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),np.array([[10],[10]])) ``` array([[-30.], [-60.], [ 20.]]) ```bash %%bash python multi_reaction_r.py -v ``` Trying: import numpy as np Expecting nothing ok Trying: reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[0][0] Expecting: -50.0 ok Trying: reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[1][0] Expecting: -60.0 ok Trying: reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[2][0] Expecting: 20.0 ok 1 items had no tests: __main__ 1 items passed all tests: 4 tests in __main__.reaction_rate_multi 4 tests in 2 items. 4 passed and 0 failed. Test passed. ```python %%file test_multi_reaction_r.py import multi_reaction_r as mr import numpy as np #import doctest #doctest.testmod(verbose=True) def test_reaction_rate_result(): #test the result og the function v_ij_reac = np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]) v_ij_proc = np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]) x = np.array([1.0,2.0,1.0]) k = 10 assert mr.reaction_rate_multi(v_ij_reac , v_ij_proc, x , k )[0][0] == -50.0 assert mr.reaction_rate_multi(v_ij_reac , v_ij_proc, x , k )[1][0] == -60.0 assert mr.reaction_rate_multi(v_ij_reac , v_ij_proc, x , k )[2][0] == 20.0 def test_progress_rate_shapes_with_x(): #test whether shape of coeffs v_i matches shape of concentrations x try: mr.reaction_rate_multi(np.array([2,1]),np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) except ValueError as err: assert(type(err) == ValueError) def test_progress_rate_shapes_coeffs(): #test whether the shape of v_ij's matches try: mr.reaction_rate_multi(np.array([2,1,1]),np.array([2,1]),np.array([[2,1],[2,1],[2,1]]),10) except ValueError as err: assert(type(err) == ValueError) ``` Overwriting test_multi_reaction_r.py ```bash %%bash python -m pytest -v test_multi_reaction_r.py ``` ============================= test session starts ============================== platform darwin -- Python 3.6.1, pytest-3.0.7, py-1.4.33, pluggy-0.4.0 -- /Users/filipmichalsky/anaconda/bin/python cachedir: .cache rootdir: /Users/filipmichalsky/cs207_filip_michalsky/homeworks/HW5, inifile: collecting ... collected 3 items test_multi_reaction_r.py::test_reaction_rate_result PASSED test_multi_reaction_r.py::test_progress_rate_shapes_with_x PASSED test_multi_reaction_r.py::test_progress_rate_shapes_coeffs PASSED =========================== 3 passed in 0.22 seconds =========================== --- # Problem 6 Put parts 3, 4, and 5 in a module called `chemkin`. Next, pretend you're a client who needs to compute the reaction rates at three different temperatures ($T = \left\{750, 1500, 2500\right\}$) of the following system of irreversible reactions: \begin{align} 2H_{2} + O_{2} \longrightarrow 2OH + H_{2} \\ OH + HO_{2} \longrightarrow H_{2}O + O_{2} \\ H_{2}O + O_{2} \longrightarrow HO_{2} + OH \end{align} The client also happens to know that reaction 1 is a modified Arrhenius reaction with $A_{1} = 10^{8}$, $b_{1} = 0.5$, $E_{1} = 5\times 10^{4}$, reaction 2 has a constant reaction rate parameter $k = 10^{4}$, and reaction 3 is an Arrhenius reaction with $A_{3} = 10^{7}$ and $E_{3} = 10^{4}$. You should write a script that imports your `chemkin` module and returns the reaction rates of the species at each temperature of interest given the following species concentrations: \begin{align} \mathbf{x} = \begin{bmatrix} H_{2} \\ O_{2} \\ OH \\ HO_{2} \\ H_{2}O \end{bmatrix} = \begin{bmatrix} 2.0 \\ 1.0 \\ 0.5 \\ 1.0 \\ 1.0 \end{bmatrix} \end{align} You may assume that these are elementary reactions. ```python %%file chemkin1.py import numpy as np def const(k=1.0): """Returns the constant coefficient k. INPUTS ======= a: float, optional, default value is 1.0 Constant reaction coefficient RETURNS ======== Constant k unless k is not an int or float in which case a TypeError exception is raised EXAMPLES ========= >>> const(1.0) 1.0 """ if type(k) != int and type(k) != float: raise TypeError("Input needs to be a number!") else: return k def arr(A=10^7,T=10^2,E=10^3,R=8.314): """Returns the constant coefficient k. INPUTS ======= A: float, optional, default value is 10^7 Arhenieus constant, needs to be positive T: float, optional, default value is 10^2 temperature, must be positive R: float, fixed value 8.314, should not change RETURNS ======== Constant k unless any of A,T, and E are not numbers in which case a TypeError exception is raised EXAMPLES ========= >>> arr(10^7,10^2,10^2) 11.526748719357375 """ if A < 0: raise ValueError("The Arrhenius constant must be strictly positive") elif T < 0: raise ValueError("Temperature must be positive") elif R != 8.314: raise ValueError("Unless in a stargate, the universal gas constant is 8.314") elif type(A) != int and type(A) != float: raise TypeError("parameters need to be either type int or type float") elif type(T) !=int and type(T) != int: raise TypeError("parameters need to be either type int or type float") elif type(E) != int and type(E) != float: raise TypeError("parameters need to be either type int or type float") else: import numpy as np k=(A)*np.exp(-E/(R*T)) return k def mod_arr(A=10^7,b=0.5,T=10^2,E=10^3,R=8.314): """Returns the constant coefficient k. INPUTS ======= A: float, optional, default value is 10^7 Arhenieus constant, needs to be positive T: float, optional, default value is 10^2 temperature, must be positive R: float, fixed value 8.314, should not change b: float, optional, default value is 0.5, must be a real number RETURNS ======== Constant k unless any of A,T,b and E are not numbers in which case a TypeError exception is raised EXAMPLES ========= >>> mod_arr() 32.116059468138779 """ if A < 0: raise ValueError("The Arrhenius constant must be strictly positive") elif T < 0: raise ValueError("Temperature must be positive") elif isinstance(b,complex): raise ValueError("b must be a real number") elif R != 8.314: raise ValueError("Unless in a stargate, the universal gas constant is 8.314") elif type(A) != int and type(A) != float: raise TypeError("parameters need to be either type int or type float") elif type(T) !=int and type(T) != int: raise TypeError("parameters need to be either type int or type float") elif type(E) != int and type(E) != float: raise TypeError("parameters need to be either type int or type float") else: import numpy as np k=(A)*(T**b)*np.exp(-E/(R*T)) return k def reaction_rate_multi(v_ij_reac,v_ij_proc,x,k): """Returns the rection rate for a set of species INPUTS ======= v_ij_reac: vector of stochiometric coefficients of reactants v_ij_proc: vector of stochiometric coefficients of products x: vector of concentrations (first dimension needs to match v_i),second dimension is 1 k: float RETURNS ======== Reaction rates of the species (a string based on number of species) according to the formula k*[A]^v_i[a]*[B]*v_i[b]*[C]^v_i[c] for progress rate and dXi/dt = sum(v_ij_proc-v_ij_reac)*progress rate unless v_ij = v_ij_proc-v_ij_reac has the first dimension not matching the first dimension of x which returns a ValueError unless shape of v_ij_proc does not match the shape of x, which will return ValueError as well EXAMPLES ========= >>> import numpy as np >>> reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[0][0] -50.0 >>> reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[1][0] -60.0 >>> reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[2][0] 20.0 """ import numpy as np #calculate the effective stochiometric coefficients on the reactants side #check length of product coeffs and reac coeffs is the same if v_ij_proc.shape != v_ij_reac.shape: raise ValueError("Dimensions of stochiometric coeffs need to match") #check that the first dimension matches elif x.shape[0] != v_ij_proc.shape[0]: raise ValueError("First dimension of x and v_i need to match") else: v_ij = v_ij_reac product_X_to_vij = 1 #loop through the rows to multiply each x by its stochiometric coeffs for i,j in zip(v_ij,x): product_X_to_vij=product_X_to_vij*(j**i) product_X_to_vij=product_X_to_vij.reshape(len(product_X_to_vij),1) progress_rate_multi=k*product_X_to_vij reaction_rates=np.dot((v_ij_proc-v_ij_reac),progress_rate_multi) return reaction_rates if __name__ == "__main__": import doctest doctest.testmod() ``` Overwriting chemkin1.py ```bash %%bash python chemkin1.py -v ``` Trying: arr(10^7,10^2,10^2) Expecting: 11.526748719357375 ok Trying: const(1.0) Expecting: 1.0 ok Trying: mod_arr() Expecting: 32.116059468138779 ok Trying: import numpy as np Expecting nothing ok Trying: reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[0][0] Expecting: -50.0 ok Trying: reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[1][0] Expecting: -60.0 ok Trying: reaction_rate_multi(np.array([[1.0,2.0],[2.0,0.0],[0.0,2.0]]),np.array([[0.0,1.0],[0.0,2.0],[1.0,0.0]]),np.array([1.0,2.0,1.0]),10)[2][0] Expecting: 20.0 ok 1 items had no tests: __main__ 4 items passed all tests: 1 tests in __main__.arr 1 tests in __main__.const 1 tests in __main__.mod_arr 4 tests in __main__.reaction_rate_multi 7 tests in 5 items. 7 passed and 0 failed. Test passed. ```python import chemkin1 import numpy as np vij_reac = np.array([[2.0,0.0,0.0],[1.0,0.0,1.0],[0.0,1.0,0.0],[0.0,1.0,0.0],[0.0,0.0,1.0]]) vij_proc = np.array([[1.0,0.0,0.0],[0.0,1.0,0.0],[2.0,0.0,1.0],[0.0,0.0,1.0],[0.0,1.0,0.0]]) x = np.array([2.0,1.0,0.5,1.0,1.0]) species = np.array([['H2'],['O2'],['OH'],['OH2'],['H20']]) reaction_rate =[] T = [750,1500,2500] for temp in T: k1= chemkin1.mod_arr(A=10**7,b=0.5,T=temp,E=(5*(10**4)),R=8.314) k2= chemkin1.const(10**4) k3= chemkin1.arr(A=10**8,T=temp,E=5*(10**4),R=8.314) k=np.array([[k1],[k2],[k3]]) this_reaction_rate = chemkin1.reaction_rate_multi(vij_reac,vij_proc,x,k) reaction_rate.append(this_reaction_rate) print("Temperature ",temp) print("Reaction rates of species") for i,j in zip(species,this_reaction_rate): print(i[0],': ',j[0]) ``` Temperature 750 Reaction rates of species H2 : -360707.78728 O2 : -388635.752574 OH : 749343.539854 OH2 : 27927.9652935 H20 : -27927.9652935 Temperature 1500 Reaction rates of species H2 : -28111762.0765 O2 : -29921368.5157 OH : 58033130.5922 OH2 : 1809606.43925 H20 : -1809606.43925 Temperature 2500 Reaction rates of species H2 : -180426142.596 O2 : -189442449.726 OH : 369868592.322 OH2 : 9016307.12982 H20 : -9016307.12982 --- # Problem 7 Get together with your project team, form a GitHub organization (with a descriptive team name), and give the teaching staff access. You can have has many repositories as you like within your organization. However, we will grade the repository called **`cs207-FinalProject`**. Within the `cs207-FinalProject` repo, you must set up Travis CI and Coveralls. Make sure your `README.md` file includes badges indicating how many tests are passing and the coverage of your code.
01d9ccfe356768cdf19c80482c39e8d1b22b8203
66,835
ipynb
Jupyter Notebook
HW5/HW5-Final.ipynb
filip-michalsky/CS207_Systems_Development
4790c3101e3037d7741565198e814637e34eaff9
[ "MIT" ]
null
null
null
HW5/HW5-Final.ipynb
filip-michalsky/CS207_Systems_Development
4790c3101e3037d7741565198e814637e34eaff9
[ "MIT" ]
null
null
null
HW5/HW5-Final.ipynb
filip-michalsky/CS207_Systems_Development
4790c3101e3037d7741565198e814637e34eaff9
[ "MIT" ]
null
null
null
36.146566
1,541
0.526625
true
12,827
Qwen/Qwen-72B
1. YES 2. YES
0.795658
0.867036
0.689864
__label__eng_Latn
0.892912
0.441117
<a href="https://colab.research.google.com/github/tbeucler/2022_ML_Earth_Env_Sci/blob/main/Lab_Notebooks/S2_2_Training_Models.ipynb" target="_parent"></a> #**Chapter 4 – Training Models** <table align="left"> <td align=middle> <a target="_blank" href="https://github.com/ageron/handson-ml2/blob/master/04_training_linear_models.ipynb"> Open the original notebook <br></a> </td> </table> Let's begin like in the last notebook: importing a few common modules, ensuring MatplotLib plots figures inline and preparing a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so once again we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20. You don't need to worry about understanding everything that is written in this section. ```python # Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) # Is this notebook running on Colab or Kaggle? IS_COLAB = "google.colab" in sys.modules # Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" # Common imports import numpy as np import os # To make this notebook's output stable across runs rnd_seed = 42 rnd_gen = np.random.default_rng(rnd_seed) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "classification" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) ``` In this notebook we will be working with the [*Iris Flower Dataset*](https://en.wikipedia.org/wiki/Iris_flower_data_set), in which the length and width of both the sepals and petals of three types of Iris flowes were recorded. For reference, these are pictures of the three flowers: <br> <center> In order: Iris Setosa, Iris Versicolor, and Iris Virginica </center> </img> </img> Photo Credits:[Kosaciec szczecinkowaty Iris setosa](https://en.wikipedia.org/wiki/File:Kosaciec_szczecinkowaty_Iris_setosa.jpg) by [Radomil Binek](https://commons.wikimedia.org/wiki/User:Radomil) licensed under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/deed.en); [Blue flag flower close-up (Iris versicolor)](https://en.wikipedia.org/wiki/File:Iris_versicolor_3.jpg)by Danielle Langlois licensed under [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/deed.en); [image of Iris virginica shrevei](https://en.wikipedia.org/wiki/File:Iris_virginica.jpg) by [Frank Mayfield](https://www.flickr.com/photos/33397993@N05) licensed under [CC BY-SA 2.0](https://creativecommons.org/licenses/by-sa/2.0/deed.en). <br><br> As you can imagine, this dataset is normally used to train *multiclass*/*multinomial* classification algorithms and not *binary* classification algorithms, since there *are* more than 2 classes. "*Three classes, even!*" - an observant TA For this exercise, however, we will be implemented the binary classification algorithm referred to as the *logistic regression* algorithm (also called logit regression). ```python # Let's load the Iris Dataset from sklearn import datasets iris = datasets.load_iris() # Print out some information about the data print(f'Keys in Iris dictionary: \n{list(iris.keys())}\n\n') print(iris.DESCR) # And load the petal lengths and widths as our input data X = iris["data"][:, (2, 3)] # petal length, petal width y = iris["target"] print(iris['data_module']) # The target data labels Setosa as 0, Versicolor as 1, and Virginica as 2. For # this exercise we will be using only the Versicolor and Virgina sets. bin_indices = np.logical_or(y==1,y==2) bin_X = X[bin_indices] bin_y = (y[bin_indices]==2).astype(np.uint8) # convert to binary ``` We now have a set of binary classification data we can use to train an algorithm. As we saw during our reading, we need to define three things in order to train our algorithm: the type of algorithm we will train, the cost function (which will tell us how close our prediction is to the truth), and a method for updating the parameters in our model according to the value of the cost function (e.g., the gradient descent method). Let's begin by defining the type of algorithm we will use. We will train a logistic regression model to differentiate between two classes. A reminder of how the logistic regression algorithm works is given below. <br><br><br> The logistic regression algorithm will thus take an input $t$ that is a linear combination of the features: <a name="logit"></a> <center> $t_{\small{n}} = \beta_{\small{0}} + \beta_{\small{1}} \cdot X_{1,n} + \beta_{\small{2}} \cdot X_{2,n}$ </center> where * $n$ is the ID of the sample * $X_{\small{0}}$ represents the petal length * $X_{\small{1}}$ represents the petal width This input is then fed into the logistic function, $\sigma$: \begin{align} \sigma: t\mapsto \dfrac{1}{1+e^ {-t}} \end{align} Let's plot it below to remember the shape of the function ```python t = np.arange(-4,4,.1) def logistic(in_val): # Return the value of the logistic function return 1/(1 + np.exp(- in_val)) fig, ax = plt.subplots() ax.axvline(0, c='black', alpha=1) ax.axhline(0, c='black', alpha=1) [ax.axhline(y_val, c='black', alpha=0.5, linestyle='dotted') for y_val in (0.5,1)] plt.autoscale(axis='x', tight=True) ax.plot(t, logistic(t)); ax.set_xlabel('$t$') ax.set_ylabel('$\\sigma\\ \\left(t\\right)$') fig.tight_layout() ``` With the logistic function, we define inputs resulting in $\sigma\geq.5$ as belonging to the ***one*** class, and any value below that is considered to belong to the ***zero*** class. We now have a function which lets us map the value of the petal length and width to the class to which the observation belongs (i.e., whether the length and width correspond to Iris Versicolor or Iris Virginica). However, there is a parameter vector **$\theta$** with a number of parameters that we do not have a value for: <br> $\theta = [ \beta_{\small{0}}, \beta_{\small{1}}$, $\beta_{\small{2}} ]$ **Q1) Set up an array of random numbers between 0 and 1 representing the $\theta$ vector.** Hint: Use `rnd_gen`! If you're not sure how to use it, consult the `default_rng` documentation [at this link](https://numpy.org/doc/stable/reference/random/generator.html). For instance, you may use the `random` method of `rnd_gen`. ```python # Write your code here ``` In order to determine whether a set of $\beta$ values is better than the other, we need to quantify well the values are able to predict the class. This is where the cost function comes in. The cost function, $c$, will return a value close to zero when the prediction, $\hat{p}$, is correct and a large value when it is wrong. In a binary classification problem, we can use the log loss function. For a single prediction and truth value, it is given by: \begin{align} \text{c}(\hat{p},y) = \left\{ \begin{array}{cl} -\log(\hat{p})& \text{if}\; y=1\\ -\log(1-\hat{p}) & \text{if}\; y=0 \end{array} \right. \end{align} However, we want to apply the cost function to an n-dimensional set of predictions and truth values. Thankfully, we can find the average value of the log loss function $J$ for an an-dimensional set of $\hat{y}$ & $y$ as follows: \begin{align} \text{J}(\mathbf{\hat{p}},y) = - \dfrac{1}{n} \sum_{i=1}^{n} \left[ y_i\cdot \log\left( \hat{p}_i \right) \right] + \left[ \left( 1 - y_i \right) \cdot \log\left( 1-\hat{p}_i \right) \right] \end{align} We now have a formula that can be used to calculate the average cost over the training set of data. **Q2) Define a log_loss function that takes in an arbitrarily large set of prediction and truths** Hint 1: You need to encode the function $J$ above, for which Numpy's functions may be quite convenient (e.g., [`log`](https://numpy.org/doc/stable/reference/generated/numpy.log.html), [`mean`](https://numpy.org/doc/stable/reference/generated/numpy.mean.html), etc.) Hint 2: Asserting the dimensions of the vector is a good way to check that your function is working correctly. [Here's a tutorial on how to use `assert`](https://swcarpentry.github.io/python-novice-inflammation/10-defensive/index.html#assertions). For instance, to assert that two vectors `X` and `Y` have the same dimension, you may use: ``` assert X.shape==Y.shape ``` Now let's code 💻 ```python def log_loss(p_hat, y, epsilon=1e-7): # Write your code here. # We can also run into problems if p_hat = 0, so add an _epsilon_ term # when evaluating log(p_hat). log_p_hat = epsilon + ___________ J = _____________________________ # After calculating J, assert that J has the same shape as p_hat and y assert __________ assert __________ return ``` We now have a way of quantifying how good our predictions are. The final thing needed for us to train our algorithm is figuring out a way to update the parameters in a way that improves the average quality of our predictions. <br><br>**Warning**: we'll go into a bit of math below <br><br> Let's look at the change in a single parameter within $\theta$: $\beta_1$ (given $X_{1,i} = X_1$, $\;\hat{p}_{i} = \hat{p}$, $\;y_{i} = y$). If we want to know what the effect of changing the value of $\beta_1$ will have on the log loss function we can find this with the partial derivative: <center>$ \dfrac{\partial J}{\partial \beta_1} $</center> This may not seem very helpful by itself - after all, $\beta_1$ isn't even in the expression of $J$. But if we use the chain rule, we can rewrite the expression as: <center> $\dfrac{\partial J}{\partial \hat{p}} \cdot \dfrac{\partial \hat{p}}{\partial \theta} \cdot \dfrac{\partial \theta}{\partial \beta_1}$ </center> We'll spare you the math (feel free to verify it youself, however!): <center>$\dfrac{\partial J}{\partial \hat{p}} = \dfrac{\hat{p} - y}{\hat{p}(1-\hat{p})}, \quad \dfrac{\partial \hat{p}}{\partial \theta} = \hat{p} (1-\hat{p}), \quad \dfrac{\partial \theta}{\partial \beta_1} = X_1 $ </center> and thus <center>$ \dfrac{\partial J}{\partial \beta_1} = (\hat{p} - y) \cdot X_1 $</center> We can calculate the partial derivative for each parameter in $\theta$ which, as you may have realized, is simply the $\theta$ gradient of $J$: $\nabla_{\theta}(J)$ With all of this information, we can now write $\nabla_{\theta} J$ in terms of the error, the feature vector, and the number of samples we're training on! <a name="grad_eq"></a> <center>$\nabla_{\mathbf{\theta}^{(k)}} \, J(\mathbf{\theta^{(k)}}) = \dfrac{1}{n} \sum\limits_{i=1}^{n}{ \left ( \hat{p}^{(k)}_{i} - y_{i} \right ) \mathbf{X}_{i}}$</center> Note that here $k$ represents the iteration of the parameters we are currently on. We now have a gradient we can calculate and use in the batch gradient descent method! The updated parameters will thus be: <a name="grad_descent"></a> \begin{align} {\mathbf{\theta}^{(k+1)}} = {\mathbf{\theta}^{(k)}} - \eta\,\nabla_{\theta^{(k)}}J(\theta^{(k)}) \end{align} Where $\eta$ is the learning rate parameter. It's also worth pointing out that $\;\hat{p}^{(k)}_i = \sigma\left(\theta^{(k)}, X_i\right) $ In order to easily calculate the input to the logistic regression, we'll multiply the $\theta$ vector with the X data, and as we have a non-zero bias $\beta_0$ we'd like to have an X matrix whose first column is filled with ones. \begin{align} X_{\small{with\ bias}} = \begin{pmatrix} 1 & X_{1,0} & X_{2,0}\\ 1 & X_{1,1} & X_{2,1}\\ &...&\\ 1 & X_{1,n} & X_{2,n} \end{pmatrix} \end{align} <br> **Q3) Prepare the `X_with_bias` matrix (remember to use the `bin_X` data and not just `X`). Write a function called `predict` that takes in the parameter vector $\theta$ and the `X_with_bias` matrix and evaluates the logistic function for each of the samples.** Hint 1: You recently learned how to initialize arrays in the `Numpy` notebook [at this link](https://nbviewer.org/github/tbeucler/2022_ML_Earth_Env_Sci/blob/main/Lab_Notebooks/S1_2_Numpy.ipynb). There are many ways to add a columns of 1 to `bin_X`, for instance using [`np.concatenate`](https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html) or [`np.append`](https://numpy.org/doc/stable/reference/generated/numpy.append.html). Hint 2: To clarify, the function `predict` calculates $\hat{p}$ from $\beta$ and $\boldsymbol{X}$. Hint 3: In practice, to calculate the logistic function for each sample, you may follow the equations [higher up in the notebook](#logit) and (1) calculate $t$ from $\beta$ and $\boldsymbol{X_{\mathrm{with\ bias}}}$ before (2) applying the logistic function $\sigma$ to $t$. ```python # Prepare the X_with_bias matrix ``` ```python # Write your function predict here ``` **Q4) Now that you have a `predict` function, write a `gradient_calc` function that calculates the gradient for the logistic function.** Hint 1: You'll have to feed `theta`, `X`, and `y` to the `gradient_calc` function. Hint 2: You can use [this equation](#grad_eq) to calculate the gradient of the cost function. ```python # Write your code here ``` We can now write a function that will train a logistic regression algorithm! Your `logistic_regression` function needs to: * Take in a set of training input/output data, validation input/output data, a number of iterations to train for, a set of initial parameters $\theta$, and a learning rate $\eta$ * At each iteration: * Generate a set of predictions on the training data. Hint: You may use your function `predict` on inputs `X_train` from the training set. * Calculate and store the loss function for the training data at each iteration. Hint: You may use your function `log_loss` on inputs `X_train` and outputs `y_train` from the training set. * Calculate the gradient. Hint: You may use your function `grad_calc`. * Update the $\theta$ parameters. Hint: You need to implement [this equation](#grad_descent). * Generate a set of predictions on the validation data using the updated parameters. Hint: You may use your function `predict` on inputs `X_valid` from the validation set. * Calculate and store the loss function for the validation data. Hint: You may use your function `log_loss` on inputs `X_valid` and outputs `y_valid` from the validation set. * Bonus: Calculate and store the accuracy of the model on the training and validation data as a metric! * Return the final set of parameters $\theta$ & the stored training/validation loss function values (and the accuracy, if you did the bonus) **Q5) Write the `logistic_regression` function** ```python # Write your code here ``` **¡¡¡Important Note!!!** The notebook assumes that you will return 1. a Losses list, where Losses[0] is the training loss and Losses[1] is the validation loss 2. a tuple with the 3 final coefficients ($\beta_0$, $\beta_1$, $\beta_2$) The code for visualizing the bonus accuracy is not included - but it should be simple enough to do in a way similar to that which is done with the losses. --------------------- Now that we have our logistic regression function, we're all set to train our algorithm! Or are we? There's an important data step that we've neglected up to this point - we need to split the data into the train, validation, and test datasets. ```python test_ratio = 0.2 validation_ratio = 0.2 total_size = len(X_with_bias) test_size = int(total_size * test_ratio) validation_size = int(total_size * validation_ratio) train_size = total_size - test_size - validation_size rnd_indices = rnd_gen.permutation(total_size) X_train = X_with_bias[rnd_indices[:train_size]] y_train = bin_y[rnd_indices[:train_size]] X_valid = X_with_bias[rnd_indices[train_size:-test_size]] y_valid = bin_y[rnd_indices[train_size:-test_size]] X_test = X_with_bias[rnd_indices[-test_size:]] y_test = bin_y[rnd_indices[-test_size:]] ``` Now we're ready! **Q6) Train your logistic regression algorithm. Use 5000 iterations, $\eta$=0.1** Hint: It's time to use the `logistic_regression` function you defined in Q5. ```python # Complete the code losses, coeffs = ``` Let's see how our model did while learning! ```python # Produce the Loss Function Visualization Graphs fig, ax = plt.subplots(figsize=(18,8)) ax.plot(losses[0], color='blue', label='Training', linewidth=3); ax.plot(losses[1], color='orange', label='Validation', linewidth=3); ax.legend(); ax.set_ylabel('Log Loss') ax.set_xlabel('Iterations') ax.set_title('Loss Function Graph') ax.autoscale(axis='x', tight=True) fig.tight_layout(); # Let's get predictions from our model for the training, validation, and testing # datasets y_hat_train = (predict(X_train, coeffs)>=.5).astype(int) y_hat_valid = (predict(X_valid, coeffs)>=.5).astype(int) y_hat_test = (predict(X_test, coeffs)>=.5).astype(int) y_sets = [ [y_hat_train, y_train], [y_hat_valid, y_valid], [y_hat_test, y_test] ] def accuracy_score(y_hat, y): assert(y_hat.size==y.size) return (y_hat == y).sum()/y.size [accuracies.append(accuracy_score(y_set[0],y_set[1])) for y_set in y_sets] printout= (f'Training Accuracy:{accuracies[0]:.1%} \n' f'Validation Accuracy:{accuracies[1]:.1%} \n') # Add the testing accuracy only once you're sure that your model works! print(printout) ``` Congratulations on training a logistic regression algorithm from scratch! Once you're done with the upcoming environmental science applications notebook, feel free to come back to take a look at the challenges 😀 ## Challenges * **C1)** Add L2 Regularization to training function * **C2)** Add early stopping to the training algorithm! Stop training when the accuracy is >=90% * **C3)** Implement a softmax regression model (It's multiclass logistic regression 🙂)
ead37fc16174c0312b44dcfd6242954419929e80
28,128
ipynb
Jupyter Notebook
Lab_Notebooks/S2_2_Training_Models.ipynb
Raphbub/2022_ML_Earth_Env_Sci
5ab5aeab073b5fe4626ba94e1a3e5d1af5caaadf
[ "MIT" ]
null
null
null
Lab_Notebooks/S2_2_Training_Models.ipynb
Raphbub/2022_ML_Earth_Env_Sci
5ab5aeab073b5fe4626ba94e1a3e5d1af5caaadf
[ "MIT" ]
null
null
null
Lab_Notebooks/S2_2_Training_Models.ipynb
Raphbub/2022_ML_Earth_Env_Sci
5ab5aeab073b5fe4626ba94e1a3e5d1af5caaadf
[ "MIT" ]
null
null
null
44.506329
746
0.557132
true
4,970
Qwen/Qwen-72B
1. YES 2. YES
0.685949
0.76908
0.52755
__label__eng_Latn
0.975801
0.064005
Dynamics of offset diff drive vehicle Equations are from the paper written by Masayoshi Wada etal. https://www.jstage.jst.go.jp/article/jrsj1983/18/8/18_8_1166/_pdf This notebook is written by Yosuke Matsusaka # Preparation We use sympy to transform the equation: ```python !sudo pip install -U sympy ``` DEPRECATION: Python 2.7 reached the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 is no longer maintained. pip 21.0 will drop support for Python 2.7 in January 2021. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support WARNING: The directory '/home/developer/.cache/pip' or its parent directory is not owned or is not writable by the current user. The cache has been disabled. Check the permissions and owner of that directory. If executing pip with sudo, you may want sudo's -H flag. Requirement already up-to-date: sympy in /usr/local/lib/python2.7/dist-packages (1.5.1) Requirement already satisfied, skipping upgrade: mpmath>=0.19 in /usr/local/lib/python2.7/dist-packages (from sympy) (1.1.0) ```python from sympy import * ``` ```python init_printing() ``` # Symbols Following symbols are used to describe internal state of the vehicle: ```python (r, s, W, theta) = symbols(r"r s W \theta_s") ``` $r$ : radius of each wheels $W$: wheel separation $s$ : wheel offset $\theta_s$ : current angle of the steering joint (described later) Joint space parameters: ```python (wr, wl, ws) = symbols('w_r w_l w_s') uv = Matrix([wr, wl, ws]) ``` $w_r$ : angular velocity of the right wheel joint $w_l$ : angular velocity of the left wheel joint $w_s$: angular velocity of the steering joint Cartesian space parameters: ```python (vx, vy, vz) = symbols('v_x v_y v_z') xv = Matrix([vx, vy, vz]) ``` $v_x$ : x axes velocity $v_y$ : y axes velocity $v_z$ : z axes velocity # Dynamics of diff drive vehicle ```python diff_drive = Matrix([ [r/2, r/2], [0, 0], [r/W, -r/W] ]) Eq(xv, MatMul(diff_drive, Matrix(uv[0:2]), evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}v_{x}\\v_{y}\\v_{z}\end{matrix}\right] = \left[\begin{matrix}\frac{r}{2} & \frac{r}{2}\\0 & 0\\\frac{r}{W} & - \frac{r}{W}\end{matrix}\right] \left[\begin{matrix}w_{r}\\w_{l}\end{matrix}\right]$ x axes velocity is generated from the combination of left and right wheel velocities. z axes velocity is generated from the difference of left and right wheel velocities. We can natually understand that we cannot directly obtain y axes velocity from the mechanism. # Dynamics of offset diff drive vehicle Here, we apply offset to the diff drive vehicle described above. We first, create offset transformation matrix: ```python offset = Matrix([ [1, 0, 0], [0, 1, s], [0, 0, 1] ]) offset ``` $\displaystyle \left[\begin{matrix}1 & 0 & 0\\0 & 1 & s\\0 & 0 & 1\end{matrix}\right]$ Apply offset to the jacobian matrix: ```python offset_diff_drive = offset * diff_drive Eq(offset_diff_drive, MatMul(offset, diff_drive, evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}\frac{r}{2} & \frac{r}{2}\\\frac{r s}{W} & - \frac{r s}{W}\\\frac{r}{W} & - \frac{r}{W}\end{matrix}\right] = \left[\begin{matrix}1 & 0 & 0\\0 & 1 & s\\0 & 0 & 1\end{matrix}\right] \left[\begin{matrix}\frac{r}{2} & \frac{r}{2}\\0 & 0\\\frac{r}{W} & - \frac{r}{W}\end{matrix}\right]$ Now, the equation will be as below: ```python Eq(xv, MatMul(offset_diff_drive, Matrix(uv[0:2]), evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}v_{x}\\v_{y}\\v_{z}\end{matrix}\right] = \left[\begin{matrix}\frac{r}{2} & \frac{r}{2}\\\frac{r s}{W} & - \frac{r s}{W}\\\frac{r}{W} & - \frac{r}{W}\end{matrix}\right] \left[\begin{matrix}w_{r}\\w_{l}\end{matrix}\right]$ What is interesting here, is we get y axes velocity by just adding the offset! By calculating the inverse matrix, we can realize omnidirectional movement from this mechanism: ```python inv_offset_diff_drive = Matrix(offset_diff_drive[0:2, :]).inv() Eq(Matrix(uv[0:2]), MatMul(inv_offset_diff_drive, Matrix(xv[0:2]), evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}w_{r}\\w_{l}\end{matrix}\right] = \left[\begin{matrix}\frac{1}{r} & \frac{W}{2 r s}\\\frac{1}{r} & - \frac{W}{2 r s}\end{matrix}\right] \left[\begin{matrix}v_{x}\\v_{y}\end{matrix}\right]$ Unfortunately z axes velocity is defined by holonomic constraints and not controllable by us. But we will add a steering joint to our vehicle to realize complete omnidirectional movement. # Dynamics of offset diff drive vehicle with a steering joint Here, we will add a steering joint to our vehicle to get controllable z axes velocity: ```python rotate = Matrix([ [cos(theta), -sin(theta), 0], [sin(theta), cos(theta), 0], [0, 0, 1] ]) rotate ``` $\displaystyle \left[\begin{matrix}\cos{\left(\theta_s \right)} & - \sin{\left(\theta_s \right)} & 0\\\sin{\left(\theta_s \right)} & \cos{\left(\theta_s \right)} & 0\\0 & 0 & 1\end{matrix}\right]$ By applying the rotation, jacobian matrix will be as follows: ```python abs_offset_diff_drive = rotate * offset_diff_drive Eq(abs_offset_diff_drive, MatMul(rotate, offset_diff_drive, evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}\frac{r \cos{\left(\theta_s \right)}}{2} - \frac{r s \sin{\left(\theta_s \right)}}{W} & \frac{r \cos{\left(\theta_s \right)}}{2} + \frac{r s \sin{\left(\theta_s \right)}}{W}\\\frac{r \sin{\left(\theta_s \right)}}{2} + \frac{r s \cos{\left(\theta_s \right)}}{W} & \frac{r \sin{\left(\theta_s \right)}}{2} - \frac{r s \cos{\left(\theta_s \right)}}{W}\\\frac{r}{W} & - \frac{r}{W}\end{matrix}\right] = \left[\begin{matrix}\cos{\left(\theta_s \right)} & - \sin{\left(\theta_s \right)} & 0\\\sin{\left(\theta_s \right)} & \cos{\left(\theta_s \right)} & 0\\0 & 0 & 1\end{matrix}\right] \left[\begin{matrix}\frac{r}{2} & \frac{r}{2}\\\frac{r s}{W} & - \frac{r s}{W}\\\frac{r}{W} & - \frac{r}{W}\end{matrix}\right]$ Final jacobian matrix is as follows: ```python fwd_dynamics = BlockMatrix([abs_offset_diff_drive, Matrix([0, 0, -1])]).as_explicit() Eq(xv,MatMul(fwd_dynamics, uv, evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}v_{x}\\v_{y}\\v_{z}\end{matrix}\right] = \left[\begin{matrix}\frac{r \cos{\left(\theta_s \right)}}{2} - \frac{r s \sin{\left(\theta_s \right)}}{W} & \frac{r \cos{\left(\theta_s \right)}}{2} + \frac{r s \sin{\left(\theta_s \right)}}{W} & 0\\\frac{r \sin{\left(\theta_s \right)}}{2} + \frac{r s \cos{\left(\theta_s \right)}}{W} & \frac{r \sin{\left(\theta_s \right)}}{2} - \frac{r s \cos{\left(\theta_s \right)}}{W} & 0\\\frac{r}{W} & - \frac{r}{W} & -1\end{matrix}\right] \left[\begin{matrix}w_{r}\\w_{l}\\w_{s}\end{matrix}\right]$ Inverse jacobian matrix will let us know how to calculate each joint velocity to realize omnidirectional movement: ```python inv_dynamics = fwd_dynamics.inv().simplify() Eq(uv, MatMul(inv_dynamics, xv, evaluate=False), evaluate=False) ``` $\displaystyle \left[\begin{matrix}w_{r}\\w_{l}\\w_{s}\end{matrix}\right] = \left[\begin{matrix}\frac{- \frac{W \sin{\left(\theta_s \right)}}{2} + s \cos{\left(\theta_s \right)}}{r s} & \frac{\frac{W \cos{\left(\theta_s \right)}}{2} + s \sin{\left(\theta_s \right)}}{r s} & 0\\\frac{\frac{W \sin{\left(\theta_s \right)}}{2} + s \cos{\left(\theta_s \right)}}{r s} & \frac{- \frac{W \cos{\left(\theta_s \right)}}{2} + s \sin{\left(\theta_s \right)}}{r s} & 0\\- \frac{\sin{\left(\theta_s \right)}}{s} & \frac{\cos{\left(\theta_s \right)}}{s} & -1\end{matrix}\right] \left[\begin{matrix}v_{x}\\v_{y}\\v_{z}\end{matrix}\right]$ ```python ```
211e90cc46b4271b86f9aa0d861ccbecaa6abd17
21,104
ipynb
Jupyter Notebook
offset-diff-drive-dynamics.ipynb
devrt/offset-diff-drive-controller
70eab6eee6ca6f4d5f3e0938ee0b088fc4ce8ba9
[ "BSD-3-Clause" ]
null
null
null
offset-diff-drive-dynamics.ipynb
devrt/offset-diff-drive-controller
70eab6eee6ca6f4d5f3e0938ee0b088fc4ce8ba9
[ "BSD-3-Clause" ]
1
2020-07-10T04:58:12.000Z
2020-07-10T04:59:01.000Z
offset-diff-drive-dynamics.ipynb
devrt/offset-diff-drive-controller
70eab6eee6ca6f4d5f3e0938ee0b088fc4ce8ba9
[ "BSD-3-Clause" ]
null
null
null
33.7664
840
0.396607
true
2,555
Qwen/Qwen-72B
1. YES 2. YES
0.795658
0.658418
0.523875
__label__eng_Latn
0.708965
0.055467
<a href="https://colab.research.google.com/github/rovle/prirucnik-za-prezivljavanje/blob/main/LUMEN_Evaluation_radionica.ipynb" target="_parent"></a> # LUMEN Data Science Evaluation radionica U ovoj radionici ćemo kratko demonstrirati kauzalnu inferenciju koristeći paket DoWhy. Prvo instaliramo i importiramo potrebne pakete. ```python !pip install dowhy from numpy.random import beta, uniform, binomial from collections import defaultdict import matplotlib.pyplot as plt from dowhy import CausalModel import pandas as pd import numpy as np import warnings pd.set_option('display.float_format', lambda x: '%.2f' % x) warnings.filterwarnings("ignore") plt.style.use('ggplot') np.random.seed(42) ``` Requirement already satisfied: dowhy in /usr/local/lib/python3.7/dist-packages (0.6) Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.7/dist-packages (from dowhy) (1.1.5) Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages (from dowhy) (0.22.2.post1) Requirement already satisfied: pydot>=1.4 in /usr/local/lib/python3.7/dist-packages (from dowhy) (1.4.2) Requirement already satisfied: statsmodels in /usr/local/lib/python3.7/dist-packages (from dowhy) (0.10.2) Requirement already satisfied: sympy>=1.4 in /usr/local/lib/python3.7/dist-packages (from dowhy) (1.7.1) Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from dowhy) (1.4.1) Requirement already satisfied: networkx>=2.0 in /usr/local/lib/python3.7/dist-packages (from dowhy) (2.5.1) Requirement already satisfied: numpy>=1.15 in /usr/local/lib/python3.7/dist-packages (from dowhy) (1.19.5) Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24->dowhy) (2.8.1) Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.24->dowhy) (2018.9) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn->dowhy) (1.0.1) Requirement already satisfied: pyparsing>=2.1.4 in /usr/local/lib/python3.7/dist-packages (from pydot>=1.4->dowhy) (2.4.7) Requirement already satisfied: patsy>=0.4.0 in /usr/local/lib/python3.7/dist-packages (from statsmodels->dowhy) (0.5.1) Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.7/dist-packages (from sympy>=1.4->dowhy) (1.2.1) Requirement already satisfied: decorator<5,>=4.3 in /usr/local/lib/python3.7/dist-packages (from networkx>=2.0->dowhy) (4.4.2) Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas>=0.24->dowhy) (1.15.0) Definiramo naš dataset. Radi se o (izmaštanom) datasetu prodaje određenih proizvoda. Značajke su - je li taj proizvod **šefov favorit**, binarno obilježje, - je li taj proizvod **reklamiran**, binarno obilježje, - **cijena** proizvoda, float od 10 do 1000, - proporcija tih proizvoda koji su **oštećeni**, float od 0 do 1. - je li taj proizvod **rasprodan**, binarno obilježje. ```python def generate_dataset_prodaje(koliko_utjece=0): sefov_favorit = binomial(1, 0.3, size=2000) reklamiran = beta(3, 5, size=2000) + sefov_favorit*0.2 reklamiran = np.vectorize(round)(reklamiran) cijena = ( uniform(10, 800, size=2000) + 100*reklamiran + 100*sefov_favorit ) osteceni = beta(2, 20, size=2000) + 0.1*(1 - cijena/1000) rasprodani = ( beta(2, 2, size=2000) + reklamiran*koliko_utjece - (cijena/1000)**3 - osteceni*0.3 ) rasprodani = np.vectorize(round)(rasprodani) rasprodani = np.clip(rasprodani, 0, 1) return reklamiran, cijena, osteceni, rasprodani, sefov_favorit ``` ```python df = pd.DataFrame(np.transpose(generate_dataset_prodaje(0)), columns=["Reklamiran", "Cijena", "Osteceni", "Rasprodani", "Sefov_favorit"]) ``` Kratko samo pregledavamo dataset: ```python df.describe() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Reklamiran</th> <th>Cijena</th> <th>Osteceni</th> <th>Rasprodani</th> <th>Sefov_favorit</th> </tr> </thead> <tbody> <tr> <th>count</th> <td>2000.00</td> <td>2000.00</td> <td>2000.00</td> <td>2000.00</td> <td>2000.00</td> </tr> <tr> <th>mean</th> <td>0.36</td> <td>470.25</td> <td>0.14</td> <td>0.24</td> <td>0.30</td> </tr> <tr> <th>std</th> <td>0.48</td> <td>245.84</td> <td>0.06</td> <td>0.43</td> <td>0.46</td> </tr> <tr> <th>min</th> <td>0.00</td> <td>10.12</td> <td>0.02</td> <td>0.00</td> <td>0.00</td> </tr> <tr> <th>25%</th> <td>0.00</td> <td>266.03</td> <td>0.10</td> <td>0.00</td> <td>0.00</td> </tr> <tr> <th>50%</th> <td>0.00</td> <td>468.51</td> <td>0.13</td> <td>0.00</td> <td>0.00</td> </tr> <tr> <th>75%</th> <td>1.00</td> <td>670.93</td> <td>0.18</td> <td>0.00</td> <td>1.00</td> </tr> <tr> <th>max</th> <td>1.00</td> <td>998.90</td> <td>0.43</td> <td>1.00</td> <td>1.00</td> </tr> </tbody> </table> </div> ```python df[['Cijena', 'Osteceni']].hist(figsize=(16, 5), bins=35, xlabelsize=8, ylabelsize=8) ``` ```python fig, axes = plt.subplots(1, 3) fig.set_size_inches(20, 5) binarne_znacajke = ['Sefov_favorit', 'Reklamiran', 'Rasprodani'] for it, ix in enumerate(binarne_znacajke): df[[ix]].value_counts().plot.bar(ax=axes[it]) axes[it].set_xticklabels(['Nije', 'Jest']) ``` Definiramo kauzalni graf: ```python causal_graph = """ digraph { Reklamiran; Cijena; Osteceni; Rasprodani; Sefov_favorit; Reklamiran -> Cijena; Cijena -> Osteceni; Osteceni -> Rasprodani; Cijena -> Rasprodani; Reklamiran->Rasprodani; Sefov_favorit -> Cijena; Sefov_favorit -> Reklamiran; } """ ``` Definiramo kauzalni model i crtamo kauzalni graf: ```python df[['Reklamiran', 'Rasprodani']] = df[['Reklamiran', 'Rasprodani']].applymap(bool) model= CausalModel( data = df, graph=causal_graph.replace("\n", " "), treatment='Reklamiran', outcome='Rasprodani') ``` ```python model.view_model() ``` Estimiramo kauzalni efekt: ```python estimands = model.identify_effect(proceed_when_unidentifiable=True) estimate = model.estimate_effect(estimands,method_name = "backdoor.linear_regression") print(estimate.value) ``` -0.07123667677450779 ## Refutacija Ključan korak kauzalne inferencije su pokušaji refutacije onoga što smo dobili. Za to koristimo više tehnika: ### Random common cause Dodajemo nezavisnu značajku kao zajednički uzrok značajkama dataseta; ako je kauzalna inferencija točna, estimacija se ne bi trebala značajno promijeniti. ```python refutel = model.refute_estimate(estimands,estimate, "random_common_cause") print(refutel) ``` Refute: Add a Random Common Cause Estimated effect:-0.07305299634183735 New effect:-0.01952386024522915 ### Placebo treatment Zamijenimo treatment značajku (Reklamirani) s nekom slučajno značajkom; ako je kauzalna inferencija točna, estimacija bi trebala biti blizu nule. ```python refutel = model.refute_estimate(estimands,estimate, "placebo_treatment_refuter") print(refutel) ``` Refute: Use a Placebo Treatment Estimated effect:-0.07305299634183735 New effect:-0.00200747857073064 p value:0.49 ## Alexa play "All Together Now" ```python metode = ["backdoor.linear_regression", "backdoor.propensity_score_stratification"] rezultati = defaultdict(list) for znacajnost in np.arange(-0.1, 0.5, 0.01): for metoda in metode: df = pd.DataFrame(np.transpose(generate_dataset_prodaje(znacajnost)), columns=["Reklamiran", "Cijena", "Osteceni", "Rasprodani", "Sefov_favorit"]) df[['Reklamiran', 'Rasprodani']] = df[['Reklamiran', 'Rasprodani']].applymap(bool) model= CausalModel( data = df, graph=causal_graph.replace("\n", " "), treatment='Reklamiran', outcome='Rasprodani') estimands = model.identify_effect(proceed_when_unidentifiable=True) estimate = model.estimate_effect(estimands, method_name = metoda) rezultati[metoda].append((znacajnost, estimate.value)) ``` ```python fig, axes = plt.subplots(1, 2) fig.set_size_inches(20, 5) for ix, metoda in enumerate(metode): tocke = rezultati[metoda] axes[ix].scatter(x = [p[0] for p in tocke], y = [p[1] for p in tocke]) axes[ix].plot(np.arange(-0.1, 0.6, 0.1), np.arange(-0.1, 0.6, 0.1), linestyle='--', color='blue') axes[ix].set_title(metoda) axes[ix].set_xlabel('Faktor značajnosti') axes[ix].set_ylabel('Estimacija kauzalnosti') ``` ```python ```
2a56d1cf1397f841bed247529890fa0755649957
117,564
ipynb
Jupyter Notebook
LUMEN_Evaluation_radionica.ipynb
rovle/prirucnik-za-prezivljavanje
bf79a84b9479eab97c78fa0ecc47c3a77b32f689
[ "MIT" ]
null
null
null
LUMEN_Evaluation_radionica.ipynb
rovle/prirucnik-za-prezivljavanje
bf79a84b9479eab97c78fa0ecc47c3a77b32f689
[ "MIT" ]
null
null
null
LUMEN_Evaluation_radionica.ipynb
rovle/prirucnik-za-prezivljavanje
bf79a84b9479eab97c78fa0ecc47c3a77b32f689
[ "MIT" ]
null
null
null
172.381232
50,646
0.869008
true
3,194
Qwen/Qwen-72B
1. YES 2. YES
0.721743
0.705785
0.509396
__label__eng_Latn
0.117188
0.021826
# ¿Cómo funciona la suspensión de un auto? <div> </div> > Una primer aproximación al modelo de la suspensión de un automovil es considerar el *oscilador armónico amortiguado*. Referencia: - https://es.wikipedia.org/wiki/Oscilador_arm%C3%B3nico#Oscilador_arm.C3.B3nico_amortiguado Un **modelo** que describe el comportamiento del sistema mecánico anterior es \begin{equation} m\frac{d^2 x}{dt^2}=-c\frac{dx}{dt}-kx \end{equation} donde $c$ es la constante de amortiguamiento y $k$ es la constante de elasticidad. <font color=red> Revisar modelado </font> Documentación de los paquetes que utilizaremos hoy. - https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html - https://docs.scipy.org/doc/scipy/reference/index.html ___ En `python` existe una función llamada <font color = blue>_odeint_</font> del paquete <font color = blue>_integrate_</font> de la libreria <font color = blue>_scipy_</font>, que permite integrar sistemas vectoriales de primer orden, del tipo \begin{equation} \frac{d\boldsymbol{y}}{dt} = \boldsymbol{f}(t,\boldsymbol{y}); \qquad \text{ con }\quad \boldsymbol{y}\in\mathbb{R}^n,\quad \boldsymbol{f}:\mathbb{R}_{+}\times\mathbb{R}^n\to\mathbb{R}^n \end{equation} con condiciones iniciales $\boldsymbol{y}(0) = \boldsymbol{y}_{0}$. Notar que <font color=red> $\boldsymbol{y}$ representa un vector de $n$ componentes</font>. Ahora, si nos fijamos bien, el modelo del *oscilador armónico amortiguado* que obtuvimos es una ecuación diferencial ordinaria (EDO) de segundo orden. No hay problema. La podemos convertir en un sistema de ecuaciones de primer orden de la siguiente manera: 1. Seleccionamos el vector $\boldsymbol{y}=\left[y_1\quad y_2\right]^T$, con $y_1=x$ y $y_2=\frac{dx}{dt}$. 2. Notamos que $\frac{dy_1}{dt}=\frac{dx}{dt}=y_2$ y $\frac{dy_2}{dt}=\frac{d^2x}{dt^2}=-\frac{c}{m}\frac{dx}{dt}-\frac{k}{m}x=-\frac{c}{m}y_2-\frac{k}{m}y_1$. 3. Entonces, el modelo de segundo orden lo podemos representar como el siguiente sistema vectorial de primer orden: \begin{equation} \frac{d\boldsymbol{y}}{dt}=\left[\begin{array}{c}\frac{dy_1}{dt} \\ \frac{dy_2}{dt}\end{array}\right]=\left[\begin{array}{c}y_2 \\ -\frac{k}{m}y_1-\frac{c}{m}y_2\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\-\frac{k}{m} & -\frac{c}{m}\end{array}\right]\boldsymbol{y}. \end{equation} ```python # Primero importamos todas las librerias, paquetes y/o funciones que vamos a utlizar import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint ``` ```python # Definimos los parámetros k, m y c k, m, c = 3, 1, 0.5 # Función f(y,t) que vamos a integrar def amortiguado(y,t,k,m,c): y1 = y[0] y2 = y[1] return np.array([y2, -(k/m)*y1-(c/m)*y2]) # Condiciones iniciales y0 = np.array([1,1]) # Especificamos los puntos de tiempo donde queremos la solución t = np.linspace(0, 30, 300) # Solución numérica y = odeint(amortiguado, y0, t, args=(k,m,c)) ``` ¿Cómo entrega odeint las soluciones? ```python # Averiguar la forma de solución y.shape ``` (300, 2) ```python # Mostrar la solución y ``` array([[ 1.00000000e+00, 1.00000000e+00], [ 1.08255354e+00, 6.44400045e-01], [ 1.12926028e+00, 2.87265734e-01], [ 1.14050185e+00, -6.08345277e-02], [ 1.11768327e+00, -3.90114960e-01], [ 1.06314152e+00, -6.91821494e-01], [ 9.80031347e-01, -9.58438604e-01], [ 8.72192532e-01, -1.18384948e+00], [ 7.44003548e-01, -1.36344733e+00], [ 6.00226559e-01, -1.49419684e+00], [ 4.45848722e-01, -1.57464647e+00], [ 2.85924657e-01, -1.60489362e+00], [ 1.25424603e-01, -1.58650595e+00], [-3.09074594e-02, -1.52240341e+00], [-1.78682133e-01, -1.41670627e+00], [-3.13976227e-01, -1.27455532e+00], [-4.33425216e-01, -1.10191089e+00], [-5.34294753e-01, -9.05337619e-01], [-6.14530179e-01, -6.91782064e-01], [-6.72783643e-01, -4.68349828e-01], [-7.08419119e-01, -2.42089037e-01], [-7.21496257e-01, -1.97860630e-02], [-7.12734597e-01, 1.92221059e-01], [-6.83460139e-01, 3.88206930e-01], [-6.35536705e-01, 5.63197023e-01], [-5.71284864e-01, 7.13077112e-01], [-4.93391403e-01, 8.34672057e-01], [-4.04812458e-01, 9.25793147e-01], [-3.08673486e-01, 9.85254145e-01], [-2.08169142e-01, 1.01285709e+00], [-1.06466032e-01, 1.00934976e+00], [-6.61104632e-03, 9.76357430e-01], [ 8.85523259e-02, 9.16292147e-01], [ 1.76457556e-01, 8.32243416e-01], [ 2.54876953e-01, 7.27854260e-01], [ 3.21970545e-01, 6.07187080e-01], [ 3.76321163e-01, 4.74583783e-01], [ 4.16955391e-01, 3.34524538e-01], [ 4.43350454e-01, 1.91489371e-01], [ 4.55427534e-01, 4.98265382e-02], [ 4.53532357e-01, -8.63687837e-02], [ 4.38404262e-01, -2.13362439e-01], [ 4.11135226e-01, -3.27873347e-01], [ 3.73120515e-01, -4.27147733e-01], [ 3.26002856e-01, -5.09014244e-01], [ 2.71612061e-01, -5.71919246e-01], [ 2.11902105e-01, -6.14942256e-01], [ 1.48887646e-01, -6.37791984e-01], [ 8.45818567e-02, -6.40784133e-01], [ 2.09373508e-02, -6.24802410e-01], [-4.02082314e-02, -5.91244778e-01], [-9.71805876e-02, -5.41957213e-01], [-1.48509956e-01, -4.79157531e-01], [-1.92964291e-01, -4.05352053e-01], [-2.29573832e-01, -3.23247831e-01], [-2.57646763e-01, -2.35663301e-01], [-2.76775942e-01, -1.45440011e-01], [-2.86836931e-01, -5.53580104e-02], [-2.87977823e-01, 3.19428361e-02], [-2.80601553e-01, 1.14033541e-01], [-2.65341593e-01, 1.88757055e-01], [-2.43032054e-01, 2.54278333e-01], [-2.14673367e-01, 3.09122495e-01], [-1.81394746e-01, 3.52200544e-01], [-1.44414712e-01, 3.82822476e-01], [-1.05000916e-01, 4.00698037e-01], [-6.44304938e-02, 4.05925681e-01], [-2.39520746e-02, 3.98970667e-01], [ 1.52495098e-02, 3.80633436e-01], [ 5.20849165e-02, 3.52009701e-01], [ 8.55876270e-02, 3.14443793e-01], [ 1.14936335e-01, 2.69477011e-01], [ 1.39471973e-01, 2.18792684e-01], [ 1.58709138e-01, 1.64159774e-01], [ 1.72341858e-01, 1.07376701e-01], [ 1.80243801e-01, 5.02170689e-02], [ 1.82463197e-01, -5.62123894e-03], [ 1.79212881e-01, -5.85622380e-02], [ 1.70855985e-01, -1.07192185e-01], [ 1.57887912e-01, -1.50293175e-01], [ 1.40915311e-01, -1.86869344e-01], [ 1.20632813e-01, -2.16165278e-01], [ 9.77983079e-02, -2.37676424e-01], [ 7.32075851e-02, -2.51151649e-01], [ 4.76690987e-02, -2.56588223e-01], [ 2.19795918e-02, -2.54219734e-01], [-3.09873955e-03, -2.44497674e-01], [-2.68589505e-02, -2.28067501e-01], [-4.86674160e-02, -2.05740192e-01], [-6.79788598e-02, -1.78460311e-01], [-8.43480530e-02, -1.47271718e-01], [-9.74380008e-02, -1.13282048e-01], [-1.07024548e-01, -7.76270369e-02], [-1.12997443e-01, -4.14357813e-02], [-1.15358006e-01, -5.79788809e-03], [-1.14213629e-01, 2.82666093e-02], [-1.09769431e-01, 5.98338166e-02], [-1.02317451e-01, 8.80984204e-02], [-9.22238117e-02, 1.12391550e-01], [-7.99143379e-02, 1.32193748e-01], [-6.58591253e-02, 1.47142925e-01], [-5.05565614e-02, 1.57037300e-01], [-3.45172979e-02, 1.61833489e-01], [-1.82486470e-02, 1.61640028e-01], [-2.23983493e-03, 1.56706740e-01], [ 1.30514820e-02, 1.47410493e-01], [ 2.72111227e-02, 1.34237906e-01], [ 3.98784229e-02, 1.17765682e-01], [ 5.07542116e-02, 9.86392579e-02], [ 5.96065967e-02, 7.75504737e-02], [ 6.62744819e-02, 5.52149751e-02], [ 7.06688393e-02, 3.23500227e-02], [ 7.27717970e-02, 9.65333856e-03], [ 7.26336834e-02, -1.22164388e-02], [ 7.03682113e-02, -3.26571938e-02], [ 6.61460356e-02, -5.11382596e-02], [ 6.01869530e-02, -6.72125140e-02], [ 5.27510391e-02, -8.05254290e-02], [ 4.41290354e-02, -9.08209578e-02], [ 3.46323078e-02, -9.79442377e-02], [ 2.45826886e-02, -1.01841190e-01], [ 1.43025071e-02, -1.02555178e-01], [ 4.10509572e-03, -1.00220965e-01], [-5.71397588e-03, -9.50562807e-02], [-1.48847166e-02, -8.73513683e-02], [-2.31693954e-02, -7.74569047e-02], [-3.03679467e-02, -6.57707453e-02], [-3.63220085e-02, -5.27239153e-02], [-4.09175312e-02, -3.87663328e-02], [-4.40859626e-02, -2.43526600e-02], [-4.58040350e-02, -9.92871470e-03], [-4.60922337e-02, 4.08119800e-03], [-4.50120538e-02, 1.72856986e-02], [-4.26621872e-02, 2.93362230e-02], [-3.91737998e-02, 3.99351709e-02], [-3.47050959e-02, 4.88421445e-02], [-2.94353420e-02, 5.58782266e-02], [-2.35585689e-02, 6.09282254e-02], [-1.72771482e-02, 6.39409421e-02], [-1.07954393e-02, 6.49275402e-02], [-4.31368716e-03, 6.39581692e-02], [ 1.97765943e-03, 6.11570151e-02], [ 7.90306528e-03, 5.66960110e-02], [ 1.33063359e-02, 5.07874454e-02], [ 1.80542610e-02, 4.36757518e-02], [ 2.20394035e-02, 3.56287536e-02], [ 2.51819948e-02, 2.69286518e-02], [ 2.74309256e-02, 1.78630283e-02], [ 2.87638445e-02, 8.71613240e-03], [ 2.91864079e-02, -2.39306389e-04], [ 2.87307434e-02, -8.74952811e-03], [ 2.74532105e-02, -1.65862707e-02], [ 2.54315592e-02, -2.35522285e-02], [ 2.27615988e-02, -2.94853359e-02], [ 1.95534995e-02, -3.42618035e-02], [ 1.59278522e-02, -3.77978836e-02], [ 1.20116157e-02, -4.00503712e-02], [ 7.93407486e-03, -4.10158893e-02], [ 3.82292821e-03, -4.07290402e-02], [-1.99386584e-04, -3.92595299e-02], [-4.01903279e-03, -3.67084026e-02], [-7.53369787e-03, -3.32035400e-02], [-1.06550374e-02, -2.88945878e-02], [-1.33105865e-02, -2.39474939e-02], [-1.54451110e-02, -1.85388367e-02], [-1.70213884e-02, -1.28501164e-02], [-1.80204191e-02, -7.06218181e-03], [-1.84410945e-02, -1.34994748e-03], [-1.82993527e-02, 4.12245437e-03], [-1.76268770e-02, 9.20596955e-03], [-1.64693946e-02, 1.37702627e-02], [-1.48846455e-02, 1.77066315e-02], [-1.29400987e-02, 2.09301420e-02], [-1.07104931e-02, 2.33809612e-02], [-8.27528669e-03, 2.50248869e-02], [-5.71609021e-03, 2.58530983e-02], [-3.11416444e-03, 2.58811736e-02], [-5.48049501e-04, 2.51474380e-02], [ 1.90860958e-03, 2.37107251e-02], [ 4.18898848e-03, 2.16476415e-02], [ 6.23470843e-03, 1.90494555e-02], [ 7.99714491e-03, 1.60186882e-02], [ 9.43837476e-03, 1.26655558e-02], [ 1.05317686e-02, 9.10435258e-03], [ 1.12622197e-02, 5.44989437e-03], [ 1.16260257e-02, 1.81412182e-03], [ 1.16304384e-02, -1.69705203e-03], [ 1.12929114e-02, -4.98657608e-03], [ 1.06400909e-02, -7.96862948e-03], [ 9.70658499e-03, -1.05706460e-02], [ 8.53355543e-03, -1.27347635e-02], [ 7.16718837e-03, -1.44188132e-02], [ 5.65709128e-03, -1.55968093e-02], [ 4.05466582e-03, -1.62589055e-02], [ 2.41151165e-03, -1.64108831e-02], [ 7.77900648e-04, -1.60732421e-02], [-7.98635319e-04, -1.52798610e-02], [-2.27456622e-03, -1.40763419e-02], [-3.61144889e-03, -1.25181215e-02], [-4.77680726e-03, -1.06683391e-02], [-5.74479375e-03, -8.59560656e-03], [-6.49662364e-03, -6.37173957e-03], [-7.02078378e-03, -4.06946867e-03], [-7.31301267e-03, -1.76027952e-03], [-7.37607266e-03, 4.87642282e-04], [-7.21932418e-03, 2.61124781e-03], [-6.85812738e-03, 4.55422110e-03], [-6.31309922e-03, 6.26831530e-03], [-5.60924821e-03, 7.71436370e-03], [-4.77502635e-03, 8.86299514e-03], [-3.84132387e-03, 9.69501328e-03], [-2.84044197e-03, 1.02014636e-02], [-1.80507533e-03, 1.03833963e-02], [-7.67331710e-04, 1.02513437e-02], [ 2.42181483e-04, 9.82454909e-03], [ 1.19518410e-03, 9.12997398e-03], [ 2.06644020e-03, 8.20112874e-03], [ 2.83435051e-03, 7.07676734e-03], [ 3.48140918e-03, 5.79949187e-03], [ 3.99451765e-03, 4.41431307e-03], [ 4.36515405e-03, 2.96720883e-03], [ 4.58940006e-03, 1.50372425e-03], [ 4.66782792e-03, 6.76642050e-05], [ 4.60526827e-03, -1.30011880e-03], [ 4.41045781e-03, -2.56277695e-03], [ 4.09559101e-03, -3.68835291e-03], [ 3.67579419e-03, -4.65048450e-03], [ 3.16853576e-03, -5.42889919e-03], [ 2.59299920e-03, -6.00971481e-03], [ 1.96943622e-03, -6.38553482e-03], [ 1.31851777e-03, -6.55534650e-03], [ 6.60707493e-04, -6.52424133e-03], [ 1.56706421e-05, -6.30296331e-03], [-5.98265584e-04, -5.90731860e-03], [-1.16458455e-03, -5.35746407e-03], [-1.66897588e-03, -4.67710064e-03], [-2.09965002e-03, -3.89260437e-03], [-2.44756023e-03, -3.03212050e-03], [-2.70653293e-03, -2.12464979e-03], [-2.87331116e-03, -1.19915451e-03], [-2.94750598e-03, -2.83709131e-04], [-2.93146652e-03, 5.95279962e-04], [-2.83007955e-03, 1.41377000e-03], [-2.65049987e-03, 2.15067188e-03], [-2.40183020e-03, 2.78832655e-03], [-2.09475750e-03, 3.31285466e-03], [-1.74116178e-03, 3.71437984e-03], [-1.35370872e-03, 3.98712298e-03], [-9.45439348e-04, 4.12937155e-03], [-5.29367996e-04, 4.14332975e-03], [-1.18101593e-04, 4.03486555e-03], [ 2.76511191e-04, 3.81315686e-03], [ 6.43690822e-04, 3.49025933e-03], [ 9.73991278e-04, 3.08061156e-03], [ 1.25951079e-03, 2.60049377e-03], [ 1.49405297e-03, 2.06746256e-03], [ 1.67322061e-03, 1.49976805e-03], [ 1.79445903e-03, 9.15786421e-04], [ 1.85704068e-03, 3.33473308e-04], [ 1.86199702e-03, -2.30143606e-04], [ 1.81200277e-03, -7.59419712e-04], [ 1.71121630e-03, -1.24048634e-03], [ 1.56508289e-03, -1.66156660e-03], [ 1.38011504e-03, -2.01322342e-03], [ 1.16364754e-03, -2.28852126e-03], [ 9.23581944e-04, -2.48310780e-03], [ 6.68126447e-04, -2.59521496e-03], [ 4.05540031e-04, -2.62558383e-03], [ 1.43887408e-04, -2.57732093e-03], [-1.09190231e-04, -2.45570220e-03], [-3.46677662e-04, -2.26787852e-03], [-5.62359431e-04, -2.02261209e-03], [-7.50965013e-04, -1.72991853e-03], [-9.08277890e-04, -1.40071545e-03], [-1.03120674e-03, -1.04646479e-03], [-1.11782219e-03, -6.78801085e-04], [-1.16735638e-03, -3.09181726e-04], [-1.18016783e-03, 5.14368857e-05], [-1.15767707e-03, 3.92899575e-04], [-1.10227236e-03, 7.06110899e-04], [-1.01719178e-03, 9.83250186e-04], [-9.06387198e-04, 1.21793999e-03], [-7.74373028e-04, 1.40536142e-03], [-6.26065857e-04, 1.54232050e-03], [-4.66620193e-04, 1.62726244e-03], [-3.01265866e-04, 1.66023638e-03], [-1.35150539e-04, 1.64281632e-03], [ 2.68080687e-05, 1.57797952e-03], [ 1.80054177e-04, 1.46995057e-03], [ 3.20511446e-04, 1.32401743e-03], [ 4.44678792e-04, 1.14632296e-03], [ 5.49705086e-04, 9.43642342e-04], [ 6.33441051e-04, 7.23153279e-04], [ 6.94468231e-04, 4.92205466e-04], [ 7.32104638e-04, 2.58096254e-04], [ 7.46388941e-04, 2.78588802e-05], [ 7.38044078e-04, -1.91931321e-04], [ 7.08422500e-04, -3.95327716e-04], [ 6.59435631e-04, -5.77156322e-04], [ 5.93470317e-04, -7.33129892e-04]]) - $y$ es una matriz de n filas y 2 columnas. - La primer columna de $y$ corresponde a $y_1$. - La segunda columna de $y$ corresponde a $y_2$. ¿Cómo extraemos los resultados $y_1$ y $y_2$ independientemente? ```python # Extraer y1 y y2 y1 = y[:,0] y2 = y[:,1] ``` ### Para hacer participativamente... - Graficar en una misma ventana $y_1$ vs. $t$ y $y_2$ vs. $t$... ¿qué pueden observar? ```python # Gráfica plt.figure(figsize=(8,6)) plt.plot(t, y1, 'b', lw=3, label='Posición [m]: $y_1(t)$') plt.plot(t, y2, 'r', lw=3, label='Velocidad [m/s]: $y_2(t)$') plt.xlabel("Tiempo [s] $t$") plt.legend(loc="best") plt.grid() plt.show() ``` - Graficar $y_2/\omega_0$ vs. $y_1$... ¿cómo se complementan estos gráficos? ¿conclusiones? ```python # Gráfica omega0=(k/m)**0.5 plt.figure(figsize=(8,6)) plt.plot(y1, y2/omega0, 'b', lw=3) plt.xlabel("Posición $y_1$") plt.ylabel("Velocidad normalizada $y_2/\omega_0$") plt.grid() plt.show() ``` ## Dependiendo de los parámetros, 3 tipos de soluciones Teníamos \begin{equation} m\frac{d^2 x}{dt^2} + c\frac{dx}{dt} + kx = 0 \end{equation} si recordamos que $\omega_0 ^2 = \frac{k}{m}$ y definimos $\frac{c}{m}\equiv 2\Gamma$, tendremos \begin{equation} \frac{d^2 x}{dt^2} + 2\Gamma \frac{dx}{dt}+ \omega_0^2 x = 0 \end{equation} <font color=blue>El comportamiento viene determinado por las raices de la ecuación característica. Ver en el tablero...</font> ### Subamortiguado Si $\omega_0^2 > \Gamma^2$ se tiene movimiento oscilatorio *subamortiguado*. ```python omega0 = (k/m)**0.5 Gamma = c/(2*m) ``` ```python omega0**2, Gamma**2 ``` (2.9999999999999996, 0.0625) ```python omega0**2 > Gamma**2 ``` True Entonces, el primer caso que ya habíamos presentado corresponde a movimiento amortiguado. ```python # Gráfica, de nuevo plt.figure(figsize=(8,6)) plt.plot(t, y1, 'b', lw=3, label='Posición [m]: $y_1(t)$') plt.plot(t, y2, 'r', lw=3, label='Velocidad [m/s]: $y_2(t)$') plt.xlabel("Tiempo [s] $t$") plt.legend(loc="best") plt.grid() plt.show() ``` ### Sobreamortiguado Si $\omega_0^2 < \Gamma^2$ se tiene movimiento oscilatorio *sobreamortiguado*. ```python # Nuevas constantes k = .1 # Constante del muelle m = 1.0 # Masa c = 1 # Constante de amortiguación ``` Simular y graficar... ```python omega0 = np.sqrt(k/m) Gamma = c/(2*m) ``` ```python omega0**2, Gamma**2 ``` (0.1, 0.25) ```python omega0**2<Gamma**2 ``` True ```python # Simular y = odeint(amortiguado, y0, t, args=(k,m,c)) y1s = y[:,0] y2s = y[:,1] ``` ```python # Graficar plt.figure(figsize=(8,6)) plt.plot(t, y1s, 'b', lw=3, label='Posición [m]: $y_1(t)$') plt.plot(t, y2s, 'r', lw=3, label='Velocidad [m/s]: $y_2(t)$') plt.xlabel("Tiempo [s] $t$") plt.legend(loc="best") plt.grid() plt.show() ``` ### Amortiguamiento crítico Si $\omega_0^2 = \Gamma^2$ se tiene movimiento *críticamente amortiguado*. ```python # Nuevas constantes k = .0625 # Constante del muelle m = 1.0 # Masa c = .5 # Constante de amortiguación ``` Simular y graficar... ```python omega0 = np.sqrt(k/m) Gamma = c/(2*m) ``` ```python omega0**2, Gamma**2 ``` (0.0625, 0.0625) ```python omega0**2 == Gamma**2 ``` True ```python # Simular y = odeint(amortiguado, y0, t, args=(k,m,c)) y1c = y[:,0] y2c = y[:,1] ``` ```python # Graficar plt.figure(figsize=(8,6)) plt.plot(t, y1c, 'b', lw=3, label='Posición [m]: $y_1(t)$') plt.plot(t, y2c, 'r', lw=3, label='Velocidad [m/s]: $y_2(t)$') plt.xlabel("Tiempo [s] $t$") plt.legend(loc="best") plt.grid() plt.show() ``` En resumen, se tiene entonces: ```python tt = t fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row',figsize =(10,6)) ax1.plot(tt, y1, c = 'k') ax1.set_title('Amortiguado', fontsize = 14) ax1.set_ylabel('Posición', fontsize = 14) ax2.plot(tt, y1s, c = 'b') ax2.set_title('Sobreamortiguado', fontsize = 14) ax3.plot(tt, y1c, c = 'r') ax3.set_title('Crítico', fontsize = 16) ax4.plot(tt, y2, c = 'k') ax4.set_ylabel('Velocidad', fontsize = 14) ax4.set_xlabel('tiempo', fontsize = 14) ax5.plot(tt, y2s, c = 'b') ax5.set_xlabel('tiempo', fontsize = 14) ax6.plot(tt, y2c, c = 'r') ax6.set_xlabel('tiempo', fontsize = 14) plt.show() ``` > **Tarea**. ¿Cómo se ve el espacio fase para los diferentes casos así como para diferentes condiciones iniciales? > En un gráfico como el anterior, realizar gráficas del plano fase para los distintos movimientos y para cuatro conjuntos de condiciones iniciales distintas - y0 = [1, 1] - y0 = [1, -1] - y0 = [-1, 1] - y0 = [-1, -1] Hacer lo anterior en un nuevo notebook de jupyter llamado Tarea7_ApellidoNombre.ipynb y subir en el espacio habilitado. <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by Lázaro Alonso. Modified by Esteban Jiménez Rodríguez. </footer>
17f823ead7fec64d7d56e65954465bd84f202c0a
221,771
ipynb
Jupyter Notebook
Modulo2/Clase13_OsciladorAmortiguado.ipynb
lilianaavila/SimMat2018-2
85ef5d977c536276902c917ac5cd3f1820627fa7
[ "MIT" ]
1
2022-01-29T04:16:12.000Z
2022-01-29T04:16:12.000Z
Modulo2/Clase13_OsciladorAmortiguado.ipynb
lilianaavila/SimMat2018-2
85ef5d977c536276902c917ac5cd3f1820627fa7
[ "MIT" ]
1
2020-08-14T17:44:49.000Z
2020-08-14T17:48:39.000Z
Modulo2/Clase13_OsciladorAmortiguado.ipynb
lilianaavila/SimMat2018-2
85ef5d977c536276902c917ac5cd3f1820627fa7
[ "MIT" ]
3
2019-01-31T18:08:31.000Z
2019-01-31T18:13:26.000Z
215.520894
36,724
0.889891
true
9,491
Qwen/Qwen-72B
1. YES 2. YES
0.822189
0.737158
0.606083
__label__krc_Cyrl
0.106802
0.246465
# Обучение без учителя - В задачах машинного обучения без учителя нет целевой переменной (правильных ответов), есть только признаковое описание объектов. Необходимо выявить некоторые скрытые закономерности данных, понять, как объекты устроены, есть ли в данных какая-то структура. - **Кластеризация**: k-means, DBSCAN, ... - **Визуализация**: PCA, t-SNE, ... - Задача кластеризации состоит в том, чтобы разбить объекты, которые даны в выборке, на несколько кластеров, так чтобы объекты в одном кластере были похожи друг на друга, а объекты в разных кластерах были не похожи друг на друга. # 1. k-means Кластеры представляют собой центроиды, то есть каждый кластер задаётся координатами центра, а точки относятся к тому кластеру, чей центр к ним ближе. **Минимизируем полную сумму квадратов расстояний от каждой точки до среднего значения назначенного ей кластера** Итерационный алгоритм: 1. берём k случайных центров (*k средних*) 2. присоединяем все объекты к ближайшему к ним кластеру 3. пересчитываем координаты кластеров, чтобы они оказались в центре масс точек, которые относятся к ним. То есть для каждой центроиды берём все точки, которые к ней относятся, считаем среднее. 4. снова ищем для каждой точки ближайший центроид - Если ни у одной точки её назначение не изменилось, то останавливаемся и сохраняем кластеры. ### Достоинства: + Очень простой алгоритм + Работает даже на больших данных ### Недостатки: - Надо задавать число k руками - Не всегда находит кластеры правильно (ищет только кластеры выпуклой формы) - сильно зависит от начальной инициализации центров кластеров (разный результат от запуска к запуску) ```python import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn import datasets from sklearn.metrics import accuracy_score ``` ```python np.random.seed(42) ``` ```python X1 = np.random.normal(loc=[0,-10], size=(100,2)) X2 = np.random.normal(loc=[-10, 0], size=(100,2)) X3 = np.random.normal(loc=[0, 0], size=(100,2)) X = np.vstack((X1,X2,X3)) y = np.array([1]*100 + [2]*100 + [3]*100) ``` ```python k_means = KMeans(n_clusters=3) ``` ```python clusters = k_means.fit_predict(X) ``` ```python plt.scatter(X[:, 0], X[:, 1], c=clusters) plt.title('K-Means') plt.show() ``` Попробуем разное количество кластеров: ```python plt.figure(figsize=(12, 12)) for n_c in range(2, 8): k_means = KMeans(n_clusters=n_c) clusters = k_means.fit_predict(X) plt.subplot(3, 2, n_c-1) plt.scatter(X[:, 0], X[:, 1], c=clusters) plt.title('n_clusters = {}'.format(n_c)) plt.show() ``` ### Оценка качества разбиения, выбор числа кластеров, SSE, elbow method Дана матрица данных $X$ и дано число $k$ предполагаемых кластеров. Цель кластеризации представить данные в виде групп кластеров $C=\{C_1, C_2, \ldots, C_k\}$. Каждый кластер имеет свой центр: \begin{equation} \mu_i = \frac{1}{n_i} \sum \limits_{x_j \in C_i} x_j \end{equation} где $n_i = |C_i|$ - это количество точек в кластере $C_i$. Таким образом, мы имеем некоторые кластеры $C=\{C_1, C_2, \ldots, C_k\}$ и необходимо оценить качество разбиения. Для этого будем вычислять сумму квадратических ошибок (**SSE, sum of squared error**): \begin{equation} SSE(C) = \sum \limits_{i=1}^{k} \sum \limits_{x_j \in C_i} ||x_j - \mu_i||^2 \end{equation} Сумма квадратов расстояний между центроидом и каждым объектом кластера. Цель найти \begin{equation} C^* = arg\min\limits_C \{SSE(C)\} \end{equation} Выбирается число кластеров в месте "преломления" графика # 2. DBSCAN Идея: хотим найти скопления точек, не зная заранее количество кластеров Нужно задать два параметра: - размер окрестности точки $\epsilon$ - minPts - минимальное количество точек в $\epsilon$ - окрестности Тогда все точки можно разделить на три типа: - Core (ядровые) точки - у которых в $\epsilon$ - окрестности от minPts соседей - Border (граничные) точки - не Core точки, но достижимы из Core точек - Noise (шумовые) точки - все остальные, меньше minPts соседей в $\epsilon$ - окрестности - minPts = 4 - вокруг каждой точки есть своя $\epsilon$ - окрестность - точка А и все красные точки - core (ядровые), так как $\epsilon$ окрестность вокруг них содержит по 4 и более точек (включая себя). - точки B и С -border points, они не core points (ядровые), но они достижимы из A через другие ядровые точки, поэтому они тоже принадлежат кластеру - точка N - шум ### Алгоритм: 1. берём следующую точку, ищем соседей в $\epsilon$ окрестности 2. если их как минимум minPts, то начинаем поиск связной компоненты из этой core-точки (обход в ширину) 3. иначе помечаем точку как noise, она может быть позднее к какой-то Core-точке как Border-точка Начинаем с точки P2. minPts=2. Нашли ближайших соседей P2 - P1 и P3, они внутри окрестности. Всего в окрестности находится 3 точки, это больше minPts, поэтому P2 - это core-точка. Из неё нужно запустить поиск связной компоненты. Для этого проверим соседей P1 и P3. В окрестности P1 находится две точки, она тоже core. Но никаких новых точек из неё не было найдено. Проверим теперь P3 точку. У неё в окрестности три точки (core), причем P4 - новая точка. То есть из начальной точки P2 можно достичь точки P4 по цепочке из core точек. Core. Достигаем новой точки P5. Проверяем P5, больше не находим непосещенных точек. Это значит, что кластер найден. Берём следующую непомеченную точку P6. Ищем соседей в окрестности. Их нет. Noise. ### Достоинства: + Не нужно задавать количество кластеров + Кластеры могут быть любой формы + Может работать с шумными данными ### Недостатки: - Долго работает на больших данных - Чувствителен к выбору гиперпараметров (лучше использовать иерархический HDBSCAN) ```python from sklearn.cluster import DBSCAN ``` ```python from sklearn.cluster import DBSCAN plt.figure(figsize=(12, 36)) i = 1 for sample in [2, 5, 10]: for e in [0.2, 1, 3, 5, 10]: dbscan = DBSCAN(eps=e, min_samples=sample) clusters = dbscan.fit_predict(X) plt.subplot(9, 2, i) plt.scatter(X[:, 0], X[:, 1], c=clusters) plt.title('eps = {}, min_samples = {}'.format(e, sample)) i += 1 i += 1 plt.show() ``` - Если маленький радиус е и мало объектов, то DBSCAN находит много выбросов - Если увеличить радиус и не менять количество объектов, то часть из них остается выбросами - Если еще увеличить радиус, то выбросы пропадают - Если еще сильнее увеличить радиус, то выделяется только один кластер и т.д. ### Kmeans и DBSCAN на более сложных данных ```python n_samples = 1500 X = datasets.make_circles(n_samples=n_samples, factor = 0.5, noise = 0.05) X = X[0] X.shape ``` (1500, 2) ```python dbscan = DBSCAN(eps=0.1, min_samples=5) clusters = dbscan.fit_predict(X) ``` ```python plt.scatter(X[:, 0], X[:, 1], c=clusters) plt.title('DBSCAN'); ``` ```python k_means = KMeans(n_clusters=2) clusters = k_means.fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c = clusters); ``` # Пример ```python from sklearn.datasets import load_digits ``` ```python digits = load_digits() X, y = digits['data'], digits['target'] ``` ```python plt.imshow(X[1].reshape(8, 8), cmap='gray') ``` ```python km = KMeans(n_clusters=10) ``` ```python clusters = km.fit_predict(X) ``` ```python pred = np.zeros(X.shape[0]) ``` ```python for i in range(10): bc = np.bincount(y[clusters == i]) pred[clusters == i] = bc.argmax() # преобладающая метка в кластере ``` ```python from sklearn.metrics import accuracy_score ``` ```python accuracy_score(y, pred) ``` 0.7924318308291597 Ошибки кластеризации для нуля: ```python incorrect_indices = np.where(np.logical_and(pred == 0, y!=0))[0] ``` ```python for i in range(2): plt.imshow(X[incorrect_indices[i]].reshape(8, 8), cmap='gray') plt.title('Real digit is {}'.format(y[incorrect_indices[i]])) plt.show() ``` ```python correct_indices = np.where(np.logical_and(pred == 0, y == 0))[0] ``` ```python for i in range(2): plt.imshow(X[correct_indices[i]].reshape(8, 8), cmap='gray') ``` ## Другие алгоритмы кластеризации # Домашнее задание 2 ## Задание 1 1. Реализовать kmeans 2. Визуализировать сходимость центров кластеров 3. Оценить $SSE$ для значений $k = 1, \ldots, 10$ и построить график зависимости $SSE$ от количества кластеров. ### Алгоритм к-средних На вход алгоритм получает матрицу данных $D$, количество кластеров $k$, и критерий остановки $\epsilon$: 1. t = 0 2. случайным образом инициализируем $k$ центров кластеров: $\mu_1^t, \mu_2^t, \ldots, \mu_k^t \in R^d$; 3. повторять 4. $t = t + 1$; 5. $C_j = 0$ для всех $j = 1, \ldots, k$ 6. для каждого $x_j \in D$ 7. $j^* = arg\min\limits_C \{||X_j - \mu_i^{t-1}||^2\}$ \\\ присваиваем $x_j$ к ближайшему центру 8. $C_{j^*} = C_{j^*} \cup {x_j}$ 9. для каждого i=1 до k 10. $\mu_i = \frac{1}{|C_i|} \sum_{x_j \in C_i} x_j$ 11. пока $\sum_{i=1}^k ||\mu_i^{t} - \mu_i^{t-1}||^2 \leq \epsilon$ ```python import matplotlib.pyplot as plt from sklearn.datasets import make_blobs X, Y = make_blobs(n_samples = 1000, n_features=2, centers=5, cluster_std = 1.2, random_state=17) plt.scatter(X[:,0], X[:,1]) ``` ## Задание 2 1. Исследуйте данные с помощью pandas. Посмотрите на признаки и их распределения. (Например, постройте график распределения автомобилей по годам, типу топлива и т.д.) 2. Кластеризуйте данные с помощью KMeans из sklearn.clustering. Найдите оптимальное число кластеров 3. Произведите анализ получившихся кластеров: Пример: первый кластер содержит полноприводные автомобили немецкого производства с АКПП, небольшим пробегом и высокой стоимостью, второй - японцы с правым рулём ... ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('data/2.csv', encoding='cp1251') df = df.drop(columns=['Модель', 'Цвет']) df.head() ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>Марка</th> <th>Год</th> <th>Состояние</th> <th>Пробег</th> <th>Объем</th> <th>Топливо</th> <th>Мощность</th> <th>Кузов</th> <th>Привод</th> <th>КПП</th> <th>Руль</th> <th>Хозяев в ПТС</th> <th>Цена</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>Volkswagen</td> <td>2013.0</td> <td>БУ</td> <td>42000.0</td> <td>1200.0</td> <td>бензин</td> <td>105.0</td> <td>хэтчбек</td> <td>передний</td> <td>автомат</td> <td>левый</td> <td>1 владелец</td> <td>689196.0</td> </tr> <tr> <td>1</td> <td>Skoda</td> <td>2012.0</td> <td>БУ</td> <td>62000.0</td> <td>1800.0</td> <td>бензин</td> <td>152.0</td> <td>кроссовер</td> <td>полный</td> <td>механика</td> <td>левый</td> <td>1 владелец</td> <td>639196.0</td> </tr> <tr> <td>2</td> <td>Renault</td> <td>2015.0</td> <td>БУ</td> <td>4700.0</td> <td>1600.0</td> <td>бензин</td> <td>106.0</td> <td>хэтчбек</td> <td>передний</td> <td>механика</td> <td>левый</td> <td>1 владелец</td> <td>629196.0</td> </tr> <tr> <td>3</td> <td>Nissan</td> <td>2012.0</td> <td>БУ</td> <td>70000.0</td> <td>1600.0</td> <td>бензин</td> <td>110.0</td> <td>хэтчбек</td> <td>передний</td> <td>автомат</td> <td>левый</td> <td>1 владелец</td> <td>479196.0</td> </tr> <tr> <td>4</td> <td>УАЗ</td> <td>2014.0</td> <td>БУ</td> <td>50000.0</td> <td>2700.0</td> <td>бензин</td> <td>128.0</td> <td>внедорожник</td> <td>полный</td> <td>механика</td> <td>левый</td> <td>1 владелец</td> <td>599196.0</td> </tr> </tbody> </table> </div>
f50d398c08132d17bce9a38f3837c1e5721f7469
692,619
ipynb
Jupyter Notebook
02_kmeans_dbscan.ipynb
aicherepanov/ml-course-2021
90502f715b7424ead555d3ab75697cdbc79b142e
[ "MIT" ]
null
null
null
02_kmeans_dbscan.ipynb
aicherepanov/ml-course-2021
90502f715b7424ead555d3ab75697cdbc79b142e
[ "MIT" ]
null
null
null
02_kmeans_dbscan.ipynb
aicherepanov/ml-course-2021
90502f715b7424ead555d3ab75697cdbc79b142e
[ "MIT" ]
2
2021-09-10T11:10:24.000Z
2021-11-04T08:31:10.000Z
774.741611
365,636
0.948871
true
4,894
Qwen/Qwen-72B
1. YES 2. YES
0.885631
0.815232
0.721996
__label__rus_Cyrl
0.785019
0.515769
# <span style="color:#2c061f"> Problem Set 3: Loading and Structuring data</span> <br> ## <span style="color:#374045"> Introduction to Programming and Numerical Analysis </span> *Oluf Kelkjær* ### **Today's Plan** 1. Introduction to Pandas 2. Monte Carlo integration briefly ### Introduction to Pandas `Pandas` is a powerful library when dealing with data. `Pandas` is built on top of `Numpy` which means that alot of `Numpy` structure is used or replicated in `Pandas`. The core element of Pandas is the `DataFrame`. Looks like a 'classic' dataset and can store heterogeneous tabular data. The `DataFrame` is a `Class` with many methods! ```python import pandas as pd import numpy as np data = {"A": 1.0, "B": pd.Timestamp("20130102"), "C": pd.Series(1, index=list(range(4)), dtype="float32"), "D": np.array([3] * 4, dtype="int32"), "E": pd.Categorical(["test", "train", "test", "train"]), "F": "foo"} df = pd.DataFrame(data) df.head() # df.tail(x) last x rows, df.sample(x) x random rows ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> <th>E</th> <th>F</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>test</td> <td>foo</td> </tr> <tr> <th>1</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>train</td> <td>foo</td> </tr> <tr> <th>2</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>test</td> <td>foo</td> </tr> <tr> <th>3</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>train</td> <td>foo</td> </tr> </tbody> </table> </div> Almost every datawrangling action you can do in `SQL`, `Excel` and `R (data.table)`, you can also do in `pandas`. ### Accessing data in DataFrame Multiple ways to go about: ```python df["A"] df.A df.loc[:,"A"] # .loc needs names. First input is rows, second i column. : means take all df.iloc[:,0] # .iloc needs index df["A"].all() == df.A.all() == df.loc[:,"A"].all() == df.iloc[:,0].all() ``` True ### Creating new columns You can add new columns to the DataFrame and math operations is allowed: ```python df["C/D"] = df['C'] / df['D'] df['I'] = [1,2,3,4] df ``` <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>A</th> <th>B</th> <th>C</th> <th>D</th> <th>E</th> <th>F</th> <th>C/D</th> <th>I</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>test</td> <td>foo</td> <td>0.333333</td> <td>1</td> </tr> <tr> <th>1</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>train</td> <td>foo</td> <td>0.333333</td> <td>2</td> </tr> <tr> <th>2</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>test</td> <td>foo</td> <td>0.333333</td> <td>3</td> </tr> <tr> <th>3</th> <td>1.0</td> <td>2013-01-02</td> <td>1.0</td> <td>3</td> <td>train</td> <td>foo</td> <td>0.333333</td> <td>4</td> </tr> </tbody> </table> </div> ### Subsetting DataFrame Sometimes you only need specific parts of a DataFrame. To subset often the `.loc` method is used: ```python # Subset DataFrames boolean_array = df['E'] == 'test' print(boolean_array) df_new = df.loc[boolean_array,['B','E','C/D']] # only want rows where boolean array is True + specified columns df_new ``` 0 True 1 False 2 True 3 False Name: E, dtype: bool <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>B</th> <th>E</th> <th>C/D</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2013-01-02</td> <td>test</td> <td>0.333333</td> </tr> <tr> <th>2</th> <td>2013-01-02</td> <td>test</td> <td>0.333333</td> </tr> </tbody> </table> </div> ### Pandas wrapped up These functions will get you far. **Remember** the answers to the PS is suggested answers - what matters is the right result. However, don't overcomplicate things. For your next project (**Data Project**) - you will be using `pandas`. If you're spending time on the **Inaugural Project** today, fear not. You will also be dealing with `pandas` in the next Problem Set ## Numerical Integration **General** problem: \begin{equation} \mathbb{E}[g(x)]=\int_{x \in X}^{} g(x)f(x)dx \end{equation} where $g:\mathbb{R}\rightarrow \mathbb{R}$ is some function and $f(x)$ is the PDF for $x$. **General** solution: Relying on the **LLN** we can **approximate** the true integral with a finite sample, i.e. turn into discrete sum: \begin{equation} \mathbb{E}[g(x)]\approx \sum_{i=1}^{N} g(x_i) w_{i} \end{equation} In **Monte Carlo integration** we draw $N$ (pseudo-)random $x_i$ from $f(x)$, where weights $\sum w_i=\frac{1}{N}$. This means the integral can be approximated by \begin{equation} \mathbb{E}[g(x)]\approx \frac{1}{N} \sum_{i=1}^{N} g(x_i) \end{equation} **In conclusion:** the most likely values of $x$ will weight the most as they are sampled the most often - thus gaining the appropriate weight in MC integration. Taking the mean is thereby sufficient. **Question 3** of Inaugural project is presented as integral - you should use previous logic. Cookbook: 1. Draw `x` from beta distribution 2. evalute `u( )` as seen in the question 3. Return its mean
2ca525e93592a2af8ac9b49077eb32a3e5132166
14,015
ipynb
Jupyter Notebook
Slides/exc_7/7.class.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
Slides/exc_7/7.class.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
Slides/exc_7/7.class.ipynb
OlufKelk/IPNA
27abbcd0de9d2da33169f1caf9604ebb58682c61
[ "MIT" ]
null
null
null
27.642998
206
0.424759
true
2,261
Qwen/Qwen-72B
1. YES 2. YES
0.754915
0.766294
0.578487
__label__eng_Latn
0.795085
0.182348
# The Black-Scholes-Merton model The stock price $\DeclareMathOperator*{\argmin}{argmin} \DeclareMathOperator*{\argmax}{argmax} \DeclareMathOperator*{\plim}{plim} \newcommand{\ffrac}{\displaystyle \frac} \newcommand{\d}[1]{\displaystyle{#1}} \newcommand{\space}{\text{ }} \newcommand{\bspace}{\;\;\;\;} \newcommand{\bbspace}{\;\;\;\;\;\;\;\;} \newcommand{\QQQ}{\boxed{?\:}} \newcommand{\void}{\left.\right.} \newcommand{\Tran}[1]{{#1}^{\mathrm{T}}} \newcommand{\CB}[1]{\left\{ #1 \right\}} \newcommand{\SB}[1]{\left[ #1 \right]} \newcommand{\P}[1]{\left( #1 \right)} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\norm}[1]{\left\| #1 \right\|} \newcommand{\given}[1]{\left. #1 \right|} \newcommand{\using}[1]{\stackrel{\mathrm{#1}}{=}} \newcommand{\asim}{\overset{\text{a}}{\sim}} \newcommand{\RR}{\mathbb{R}} \newcommand{\EE}{\mathbb{E}} \newcommand{\II}{\mathbb{I}} \newcommand{\NN}{\mathbb{N}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\PP}{\mathbb{P}} \newcommand{\AcA}{\mathcal{A}} \newcommand{\FcF}{\mathcal{F}} \newcommand{\AsA}{\mathscr{A}} \newcommand{\FsF}{\mathscr{F}} \newcommand{\dd}{\mathrm{d}} \newcommand{\I}[1]{\mathrm{I}\left( #1 \right)} \newcommand{\N}[1]{\mathcal{N}\left( #1 \right)} \newcommand{\Exp}[1]{\mathrm{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Avar}[1]{\mathrm{Avar}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left( #1 \right)} \newcommand{\Corr}[1]{\mathrm{Corr}\left( #1 \right)} \newcommand{\ExpH}{\mathrm{E}} \newcommand{\VarH}{\mathrm{Var}} \newcommand{\AVarH}{\mathrm{Avar}} \newcommand{\CovH}{\mathrm{Cov}} \newcommand{\CorrH}{\mathrm{Corr}} \newcommand{\ow}{\text{otherwise}} \newcommand{\FSD}{\text{FSD}} \newcommand{\SSD}{\text{SSD}}S_t$ satisfies the ***Black-Scholes-Merton model***, $\dd S_t = \mu S_t \dd t + \sigma S_t \dd W_t$. And from the preceding result, we have $$S_t = S_0 \cdot \exp\CB{\P{\mu - \ffrac{\sigma^2}{2}}t +\sigma W_t},\bspace \Exp{S_t} = S_0 e^{\mu t}$$ Here, $\mu$ represents the **expected return** of the stock, $\sigma$ measures the riskness of the stock, and we call it the ***volatility***. Normally, the higher the *risk*, the higher the *expected return*. ## Estimating Volatility from Historical Data Usually the time interval is fixed. So for $i=1,2,\dots,n$, define $\Delta_t = t_i - t_{i-1}$. Then let $$X_i = \log\P{\ffrac{S_{t_{\void_i}}}{S_{t_{\void_{i-1}}}}} \Longrightarrow \bar X = \ffrac{1}{n} \sum_{i=1}^n X_i,\bspace s = \sqrt{\ffrac{1}{\mathbf{n-1}} \sum\nolimits_{i=1}^n \P{X_i - \bar X}^2}$$ From the expression of $S_t$, we find the distribution of $X_i$, and the *unbiased estimate* of $\sigma$, ($ \Exp{s^2} = \sigma^2 \Delta_t$) $$X_i = \log\P{\ffrac{S_{t_{\void_i}}}{S_{t_{\void_{i-1}}}}} \sim \N{\P{\mu - \ffrac{\sigma^2}{2}}\Delta_t,\sigma^2 \Delta_t},\bspace \hat\sigma = \ffrac{s}{\sqrt{\Delta_t}}$$ $Assumptions$ 1. NO transaction costs or taxes. 2. All securities are *perfectly divisible*. 3. *Short selling* of stocks is permitted. 4. The assets pay NO dividends. 5. NO riskless arbitrage opportunies. 6. Trading takes place *continuously*. 7. The stock price $S_t$ satisfies the Black-Scholes-Merton model, where the parameters $\mu$, $\sigma$, and risk-free interest rate $r$ are *constant*. ## Derivation of the Black-Scholes-Merton Differential Equation ### Method 1: Dynamic Replication (No arbitrage) The model is assumed to be $\dd S_t = \mu S_t \dd t + \sigma S_t \dd W_t$ and let $\pi_t$ denote the amount of money (not shares) held in the stock at time $t$. Borned to be an *adapted process* to $\FcF_t$. Let $V_t^\pi \equiv V_t$ denote the ***wealth process*** corresponding to the portfolio strategy $\pi$. Besides, this portfolio strategy is required to be **self-financing**, meaning that the amount held in the bank at time $t$ is equal to $V_t - \pi_t$. If we let $B_t = e^{rt}$ denote the bond price at time $t$, using no-arbitrage, $$\dd V_t = \ffrac{\pi_t}{S_t} \dd S_t + \ffrac{V_t - \pi_t}{B_t}\dd B_t$$ With this we can determine the value of the investor's wealth by combine the two differential equation together: $$\dd V_t = \SB{rV_t + \P{\mu-r} \pi_t}\dd t + \sigma\pi_t \dd W_t$$ Using the portfolio strategy $\pi$ to replicate the European call: $$\begin{align} V_T &= c\P{T,S_T} = \max\P{S_T-K,0}\Longrightarrow V_t = c\P{t,S_t}, \bspace \forall \; t\leq T\\[0.8em] \dd c\P{t,S_t} &\using{\text{Itô}} \P{\ffrac{\partial c}{\partial t} + \mu S_t \ffrac{\partial c}{\partial S_t} + \ffrac{1}{2}\sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2}}\dd t + \sigma S_t\ffrac{\partial c}{\partial S_t}\;\dd W_t\\ \dd V_t &= \SB{rV_t + \P{\mu-r} \pi_t}\dd t + \sigma\pi_t \dd W_t \end{align}$$ Compare the $\dd W_t$ term of the last two equations, we have the **number of shares needs** to be **delta** of the option, and this is known as the ***dynamic replication***. $$\ffrac{\pi_t}{S_t} = \ffrac{\partial c}{\partial S_t}$$ And then we compare the $\dd t$ term, and this leads to the ***Black-Scholes-Merton equation***. $$ \ffrac{\partial c}{\partial t} + \mu S_t \ffrac{\partial c}{\partial S_t} + \ffrac{1}{2}\sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2} = rc + \P{\mu-r} \pi_t $$ with terminal condition $c\P{T,S_T} = \max\P{S_T -K,0}$. Then plugin the equity $\ffrac{\pi_t}{S_t} = \ffrac{\partial c}{\partial S_t}$ to this, we have the equivalent equation (with the same terminal condition): $$\ffrac{\partial c}{\partial t} + r S_t \ffrac{\partial c}{\partial S_t} + \ffrac{1}{2}\sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2} - rc = 0$$ $Remark$ >$\mu$ is not in the final equation. ### Method 2: Riskless Hedging Principle Portfolio: short selling of $1$ unit of a *European call option* and long holding of $\Delta$ units of the asset. The portfolio value at time $t$ is now $$\Pi\P{t,S_t} = -c\P{t,S_t}+\Delta S_t$$ $Remark$ >Here the $\Delta$ is the stock portion, the same as the dynamic replication, $\Delta = \ffrac{\pi_t}{S_t} = \ffrac{\partial c}{\partial S_t}$. The differential financial gain over is $\dd\Pi\P{t,S_t} = -\dd c + \Delta \dd S_t$, or more specifically using Itô, $$\begin{align} \dd\Pi\P{t,S_t}&=-\P{\ffrac{\partial c}{\partial t} + \mu S_t \ffrac{\partial c}{\partial S_t} + \ffrac{1}{2}\sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2}}\dd t - \sigma S_t\ffrac{\partial c}{\partial S_t}\;\dd W_t + \Delta \P{\mu S_t\dd t + \sigma S_t \dd W_t}\\ &= \P{ - \ffrac{\partial c}{\partial t} + \mu S_t\P{\Delta - \ffrac{\partial c}{\partial S_t}} - \ffrac{1}{2}\sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2}}\dd t + \sigma S_t\P{\Delta - \ffrac{\partial c}{\partial S_t}}\dd W_t \end{align}$$ Then from the **riskless hedging principle**, we have $\dd\Pi\P{t,S_t} = r\cdot\Pi\P{t,S_t}\dd t$ and thus $$\P{ - \ffrac{\partial c}{\partial t} + \mu S_t\P{\Delta - \ffrac{\partial c}{\partial S_t}} - \ffrac{1}{2}\sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2}}\dd t + \sigma S_t\P{\Delta - \ffrac{\partial c}{\partial S_t}}\dd W_t = r\cdot\Pi\P{t,S_t}\dd t = r\cdot\P{-c+\Delta S_t}\dd t$$ Match the $\dd W_t$ terms on both sides, we have $\Delta = \ffrac{\partial c}{\partial S_t}$. Match the $\dd t$ terms on both sides, again, we have the **Black-Scholes-Merton equation**, by replacing $\Delta$ with $\ffrac{\partial c}{\partial S_t}$: $$\ffrac{\partial c}{\partial t} + \ffrac{1}{2} \sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2} + rS_t \ffrac{\partial c}{\partial S_t} - rc = 0$$ ### Method 3: Risk-Neutral Valuation Following the **Gisanov's Thoerem**, to find the measure $\QQ$ under which the discounted stock price $\CB{ \tilde S_t}_{t\geq 0}$ is a martingale, our conclusion is - $\given{\ffrac{\dd\QQ}{\dd\PP}}_{\FcF_t} = \exp\CB{-\theta W_t - \ffrac{1}{2}\theta^2 t}$, where $\theta = \ffrac{\mu - r}{\sigma}$ - Under $\QQ$ measure, $\dd S_t = rS_t\dd t + \sigma S_t \dd \widetilde W_t$, $\dd \tilde S_t = \sigma \tilde S_t \dd \widetilde W_t$ And then we obtain the risk-neutral valuation formula: $$\begin{align} c\P{t,S_t} &= \ExpH_t^\QQ\SB{e^{-r\P{T-t}}c\P{T,S_T}}\\ &= \ExpH_t^\QQ\SB{e^{-r\P{T-t}} %\max \P{S_T - K}^+}\\ &= \ExpH^\QQ\SB{e^{-r\P{T-t}} %\max \P{S_T - K}^+ \mid S_t} \end{align}$$ With this we apply the **Feynman-Kac theorem** and obtain (meaning these methods are actually equivalent!) $$\ffrac{\partial c}{\partial t} + \ffrac{1}{2} \sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2} + rS_t \ffrac{\partial c}{\partial S_t} - rc = 0$$ ## Black-Scholes Formula For *european call* option, we solve the equation derived from each method and obtain: $$c\P{t,S_t} = S_t\Phi^{-1}\P{d_1} - Ke^{-r\P{T-t}} \Phi^{-1}\P{d_2}\equiv S_t\N{d_1} - Ke^{-r\P{T-t}} \N{d_2}\\ \begin{align} \N{x} &\equiv \Phi^{-1}\P{x} = P\CB{X\leq x} = \ffrac{1}{\sqrt{2\pi}} \int_{-\infty}^x \exp\CB{-\ffrac{u^2}{2}} \; \dd u,\bspace X\sim \N{0,1}\\ d_1 &= \ffrac{1}{\sigma\sqrt{T-t}} \P{\log\ffrac{S_t}{K} + \P{r\,\mathbf+\,\ffrac{1}{2}\sigma^2}\P{T-t}}\\ d_2 &= \ffrac{1}{\sigma\sqrt{T-t}} \P{\log\ffrac{S_t}{K} + \P{r\,\mathbf-\,\ffrac{1}{2}\sigma^2}\P{T-t}} = d_1 - \sigma \sqrt{T-t} \end{align}$$ $Proof$ >We can solve the **PDE**, and to see the essays in ref folder. Or, use the probabilistic approach. In method 3, European call option price can expressed as expectation under risk neutral measure $\QQ$ > >$$\begin{align} c\P{t,S_t} &= \ExpH^\QQ\SB{e^{-r\P{T-t}} %\max \P{S_T-K}^+\mid S_t}\\ &= \ExpH^\QQ_t\SB{e^{-r\P{T-t}} %\max \P{S_T-K}^+}\\ &=e^{-r\P{T-t}}\P{\ExpH^\QQ_t\SB{S_T \cdot \mathbf{1}_{S_{\void_T}>K}}-K\cdot\ExpH^\QQ_t\SB{ \mathbf{1}_{S_{ \void_T} >K}}} \end{align}$$ > >Note that $S_T = S_t \exp\CB{\P{r- \ffrac{1}{2}\sigma^2}\P{T-t} + \sigma\P{\widetilde W_T -\widetilde W_t}}$, then >$$S_T\mid \FcF_t \sim S_t \exp\CB{\P{r- \ffrac{1}{2}\sigma^2}\P{T-t} + \sigma\sqrt{T-t}\cdot Z},\bspace Z\sim \N{0,1}$$ > >$$\begin{align} \ExpH^\QQ_t\SB{\mathbf{1}_{S_{\void_T}>K}} &= \QQ\P{S_t \exp\CB{\P{r- \ffrac{1}{2}\sigma^2}\P{T-t} + \sigma\sqrt{T-t}\cdot Z} >K}\\ &= \QQ\P{Z>\ffrac{1}{\sigma\sqrt{T-t}} \P{\log\ffrac{K}{S_t} - \P{r-\ffrac{1}{2}\sigma^2}\P{T-t}}}\\ &= \QQ\P{Z>-d_2} = \QQ\P{Z<d_2} = \N{d_2} \end{align}$$ > >$$\begin{align} \ExpH^\QQ_t\SB{S_T \cdot \mathbf{1}_{S_{\void_T}>K}} &= \ExpH^\QQ_t\SB{S_T \cdot \mathbf{1}_{Z>-d_{\void_2}}}\\ &= S_t\int_{-d_{\void_2}}^{+\infty} \exp\CB{\P{r-\ffrac{1}{2}\sigma^2}\P{T-t} + \sigma \sqrt{T-t}\cdot z} \ffrac{1}{\sqrt{2\pi}} \exp\CB{-\ffrac{z^2}{2}}\;\dd z\\ &= S_t e^{r\P{T-t}}\int_{-d_{\void_2}}^{+\infty}\ffrac{1}{\sqrt{2\pi}}\exp\CB{-\ffrac{ \P{z - \sigma\sqrt{T-t}}^2 }{2}}\;\dd z\\ &\bspace\text{let } u = z-\sigma\sqrt{T-t},\text{ and the lower bond or the integral:}\\ &\bspace-d_2 \to -\P{d_2 - \sigma\sqrt{T-t}} = -d_1,\text{ so that}\\ &= S_t e^{r\P{T-t}}\int_{-d_{\void_1}}^{+\infty}\ffrac{1}{\sqrt{2\pi}}\exp\CB{-\ffrac{u^2 }{2}}\;\dd u\\ &= S_t e^{r\P{T-t}} \N{d_1} \end{align}$$ > >So finally the formula: $c\P{t,S_t} = S_t\N{d_1} - Ke^{-r\P{T-t}} \N{d_2}$ $Remark$ >- the Delta Hedging, $\Delta = \ffrac{\partial c}{\partial S_t} = \N{d_1}$. >- the probability that the European call option will be exercised in a risk-neutral world. $\ExpH^\QQ_t\SB{\mathbf{1}_{S_{\void_T}>K}} = \N{d_2}$ >- drift $\mu$ is not contained in the formula, meaning that the price of a European option does not depend on $\mu$, where $\mu$ is hard to estimate in pratice. >- From $\dd S_t = \mu S_t + \sigma S_t \dd W_t$ to $\dd S_t = r S_t + \sigma S_t \dd \widetilde W_t$, we need to assume $\widetilde W_t = W_t + \ffrac{\mu-r}{\sigma}t$. We call $\ffrac{\mu-r}{\sigma}$, denoted as $\theta$, the ***sharpe ratio***, or ***market price of risk***, ***risk premium*** or ***relative risk***. *** For a european put option, the **Black-Scholes-Merton equation** is: $$\ffrac{\partial p}{\partial t} + \ffrac{1}{2} \sigma^2 S_t^2 \ffrac{\partial^2 p}{\partial S_t^2} + rS_t \ffrac{\partial p}{\partial S_t} - rp = 0$$ with **terminal condition** $p\P{T,S_T} = \max\P{K-S_T,0}$. Similarly, we drive the formula for $p$: $$p\P{t,S_t} = Ke^{-r\P{T-t}} \N{-d_2} - S_t\N{-d_1}$$ We can also derive this by the put-call parity: $$\begin{align} p\P{t,S_t} &= c\P{t,S_t} + Ke^{-r\P{T-t}} - S_t \\ &= S_t\N{d_1} - Ke^{-r\P{T-t}} \N{d_2} + Ke^{-r\P{T-t}} - S_t\\ &= -S_t\P{1-\N{d_1}} + Ke^{-r\P{T-t}}\P{1-\N{d_2}}\\ &= Ke^{-r\P{T-t}} \N{-d_2} - S_t\N{-d_1} \end{align}$$ ## Volatility In BS model, the input data consists of the parameters $S_t$, $r$, $T$, $t$, and $\sigma$. To apply the model, we need to estimate the parameter $\sigma$. We could use ***historic volatility***, or ***implied volatility***. ### [Historic Volatility](#Estimating-Volatility-from-Historical-Data) The standard approach is to use historical data for a period of the *same length as the time to maturity*. Like we we are evaluating a European call with $6$ months left to maturity, we'll retrive the data of the last $6$ months. ### Implied Volatility Implied volatility is the value of $σ$ that matches the theoretical BS price of the option with the observed market price of the option. We first let the benchmark option price be $\tilde n$ and write the BS pricing formula for European call options by $c\P{t,S_t, T,r,\sigma, K}$. Then the implied volatility can be found by solving $$\tilde c = c\P{t,S_t, T,r,\sigma, K}$$ Newton method is a practical way to find the root. And there's only one solution due to the fact that $\ffrac{\partial c}{\partial \sigma} > 0$. In later Chapter, we'll see that there's a smile pattern for **implied volatility** on the **strike price** $S_t$. ## Variations on Black-Scholes-Merton ### Dividends Paid Continuously Assume the stock pays a dividend at a continuous rate $q$. In the infinitesimal time interval $[t,t+\dd t)$, the holder of the stock receives a dividend payment of $qS_t\dd t$. Thus, the cumulative dividend to time $t$ ends up with $\d{\int_0^t qS_u\;\dd u}$ #### Method 1: Combination of dynamic replication and risk-neutral valuation We first write the total value of holding $1$ share of stock, $$G_t := S_t + \int_0^t qS_u\;\dd u$$ Therefore, the wealth process of investing in this stock and the bond is $$\begin{align} \dd V_t &= \ffrac{\pi_t}{S_t}\dd G_t + \ffrac{V_t - \pi_t}{B_t}\dd B_t\neq \ffrac{\pi_t}{S_t}\dd S_t + \ffrac{V_t - \pi_t}{B_t}\dd B_t\\ &= \P{r V_t + \P{\mu+q-r}\pi_t}\dd t + \sigma \pi_t \dd W_t \end{align}$$ To get the **discounted wealth process** to be a martingale, that is $\dd V_t = rV_t \dd t + \sigma\pi_t \dd \widetilde W_t$, we now need to have $\widetilde W_t = W_t + \ffrac{\mu+q-r}{\sigma}t$. This makes the stock dynamics $$\dd S_t = \P{r-q} S_t \dd t + \sigma S_t \dd \widetilde W_t = \mu S_t \dd t + \sigma S_t \dd \widetilde W_t$$ Then the price of the European call option with continuous dividends paid is $\ExpH_t^\QQ \SB{e^{-r\P{T-t}}\P{S_T - K}^+}$. By **Feynman-Kac theorem**, the pricing PDE becomes $$\ffrac{\partial c}{\partial t} + \ffrac{1}{2} \sigma^2 S_t^2 \ffrac{\partial^2 c}{\partial S_t^2} + \P{r-q}S_t \ffrac{\partial c}{\partial S_t} - rc = 0$$ Solve the equation we have $$c_{\text{dividend}}\P{t,S_t} = S_t e^{-q\P{T-t}}\N{d_1} -Ke^{-r\P{T-t}}\N{d_2}$$ where $$\begin{align} d_1 &= \ffrac{1}{\sigma\sqrt{T-t}} \P{\log\P{\ffrac{S_t}{K}} + \P{r-q\,\mathbf+\,\ffrac{\sigma^2}{2}} \P{T-t}}\\ d_2 &= \ffrac{1}{\sigma\sqrt{T-t}} \P{\log\P{\ffrac{S_t}{K}} + \P{r-q\,\mathbf-\,\ffrac{\sigma^2}{2}} \P{T-t}}\\ &= d_1 - \sigma\sqrt{T-t} \end{align}$$ #### Method 2: Risk-nuetral valuation First recall that $\dd S_t = \mu S_t \dd t + \sigma S_t \dd W_t$ and $S_t = S_0 \cdot \exp\CB{\P{\mu - \ffrac{\sigma^2}{2}}t +\sigma W_t}$. Now given extra dividends, $\CB{S_t}_{t\geq 0}$ doesn't represent the true value of the stock at time $t$. In other words, if we buy the stock at time $0$ for $S_0$, $S_t$ is not *tradalble* at time $t$, since the value of holding is the sum of $S_t-S_0$ and the cumulative dividends. However this situation can be solved using the strategy that immediately reinvest the dividend in the stock. The infinitesimal payout $qS_t \dd t$ will buy $q\dd t$ units of stock. Thus, at time $t$, we now hold $$Y_t = e^{qt} S_t = S_0 \exp\CB{\P{\mu - \ffrac{\sigma^2}{2} + q}t + \sigma W_t}$$ To value, we need to find the measure $\QQ$ under which the discounted stock price $\CB{\tilde Y_t}_{t\geq }$ is a martingale. First we write $$\dd Y_t = \P{\mu + q}Y_t\dd t + \sigma Y_t \dd W_t \Rightarrow \dd \tilde Y_t = \P{\mu +q -r}\tilde Y_t\dd t + \sigma \tilde Y_t \dd W_t \equiv \sigma \tilde Y_t \dd \widetilde W_t $$ Since under $\QQ$ measure $\dd Y_t = rY_t\dd t + \sigma Y_t \dd\widetilde W_t$, we define $\QQ$ $$\given{\ffrac{\dd \QQ}{\dd \PP}}_{\FcF_t} = \exp\CB{-\theta W_t - \ffrac{1}{2}\theta^2 t}, \bspace \theta = \ffrac{\mu + q - r}{\sigma}$$ Under this, we have $$\begin{align} c\P{t,S_t} &= \ExpH^\QQ\SB{e^{-r\P{T-t}}c\P{T,S_T}\mid \FcF_t}\\ &= \ExpH^\QQ_t \SB{e^{-r\P{T-t}}\P{S_T-K}^+}\\ &= \ExpH^\QQ_t \SB{e^{-r\P{T-t}-qT}\P{Y_T-Ke^{qT}}^+} \end{align}$$ $Remark$ >Let $S_t$ denote the stock price with dividend and $S_t^0$ represent the stock price without dividend. Then > >$$\begin{align} \dd S_t &= \P{r-q} S_t \dd t + \sigma S_t \dd \widetilde W_t\\ \dd S_t^0 &= r S_t^0 \dd t + \sigma S_t^0 \dd \widetilde W_t\\ \end{align}$$ > >Note that $\dd\P{S_t^0 e^{q\P{T-t}}} = S_t^0 e^{q\P{T-t}} \P{\P{r-q}\dd t + \sigma\dd\widetilde W_t }$. So if we let $S_t = S_t^0 e^{q\P{T-t}}$, such that $S_T^0 = S_T$, the option price with dividend would be > >$$\begin{align} c_{\text{dividend}} &= \ExpH^\QQ_t\SB{e^{-r\P{T-t}} \P{S_T-K}^+ }\\ &= \ExpH^\QQ_t\SB{e^{-r\P{T-t}} \P{S_T^0-K}^+ }\\ &= c\P{t,S_t^0} = c\P{t,S_t e^{-q\P{T-t}}} \end{align}$$ > >Thus, $c_{\text{dividend}} = c\P{t,S_t e^{-q\P{T-t}}}$. The *price of call option with dividend* is **equal** to the *price of call option without dividend, but with the stock price $S_t$ replaced by $S_t e^{-q\P{T-t}}$*. ### Currency Options in the B-S-M Model Consider a currency option that give its owner the right to buy $1$ unit of a foreign currency for $K$ units of the domestic currency at maturity $T$. Thus the payoff would be, as evaluated in the domestic currency, is euqal to $\P{R_T - K}^+$, where $R_T$ is the exchange rate at time $T$, $i.e.$, the domestic value of one unit of foreign currency at time $T$. We now assume the **exchange rate process** $\CB{R_t}_{t\geq 0}$ satisfies the **Black-Scholes model**, $$\dd R_t = R_t \SB{\mu_R \dd t + \sigma_R \dd W_t} = \mu_R R_t \dd t + \sigma_R R_t \dd W_t$$ Let the foreign risk-free rate be $r_f$, then the price of the European call currency option is the same as in the case of a dividend-paying underlying, but with $q$ replaced by $r_f$, and with the *dividend* replaced by *interest*. Thus, the domestic value of the one unit of the foreign account is $$\dd R_t^{\,f} := \dd\P{R_t^{\,f} e^{r_{\void_f} \cdot t}} = \P{\mu_R + r_f}R_t^{\,f}\dd t + \sigma_R R_t^{\,f} \dd W_t $$ To replicate, we consider the wealth dynamic (in domestic currency) of a portfolio with $\pi_t$ in the foreign account and the rest in the domestic account, that is $$\dd V_t = \ffrac{\pi_t}{R_t^{\,f}} \dd R_t^{\,f} + \ffrac{V_t - \pi_t}{B_t} \dd B_t= \P{r_d V_t + \pi_t \P{\mu_R + r_f - r_d}}\dd t + \pi_t \sigma_R \dd W_t$$ where $r_d$ is the domestic risk-free rate. And this dynamics is the the same as the case of a dividend-paying with $q$ replaced by $r_f$. Thus we have the solution of the option price, by applying the risk-neutral method then, $$\begin{align} c\P{t,R_t} &= R_t \exp\CB{-r_f\P{T-t}}\N{d_1} - K\exp\CB{-r_d\P{T-t}}\N{d_2}\\ d_1 &= \ffrac{1}{\sigma_R\sqrt{T-t}} \P{\log\P{\ffrac{R_t}{K}} + \P{r_d - r_f + \ffrac{\sigma^2}{2}}\P{T-t}}\\ d_2 &= \ffrac{1}{\sigma_R\sqrt{T-t}} \P{\log\P{\ffrac{R_t}{K}} + \P{r_d - r_f - \ffrac{\sigma^2}{2}}\P{T-t}} \end{align}$$
031a28bcc6f1e869b10b289cce0ae96e79e79eaa
25,810
ipynb
Jupyter Notebook
FinMath/Models and Pricing of Financial Derivatives/Chap_04_The_Black-Scholes-Merton_model.ipynb
XavierOwen/Notes
d262a9103b29ee043aa198b475654aabd7a2818d
[ "MIT" ]
2
2018-11-27T10:31:08.000Z
2019-01-20T03:11:58.000Z
FinMath/Models and Pricing of Financial Derivatives/Chap_04_The_Black-Scholes-Merton_model.ipynb
XavierOwen/Notes
d262a9103b29ee043aa198b475654aabd7a2818d
[ "MIT" ]
null
null
null
FinMath/Models and Pricing of Financial Derivatives/Chap_04_The_Black-Scholes-Merton_model.ipynb
XavierOwen/Notes
d262a9103b29ee043aa198b475654aabd7a2818d
[ "MIT" ]
1
2020-07-14T19:57:23.000Z
2020-07-14T19:57:23.000Z
58.261851
448
0.539558
true
7,642
Qwen/Qwen-72B
1. YES 2. YES
0.727975
0.872347
0.635047
__label__eng_Latn
0.812415
0.313759
<a href="https://colab.research.google.com/github/SergeiSa/Computational-Intelligence-Slides-Fall-2020/blob/master/Google%20Colab%20notebooks/practice%2001/practice_01_fss_jacobian_2.ipynb" target="_parent"></a> # **Practice 1 Q&A: Fundamental Subspaces and Jacobian Mapping** ## **Goals for today** --- During today practice we will: * Exploit a structure of linear mapping between Joint and Task spaces velocities. * Understand what is physical interpretation of fundamental subspaces of the manipulator Jacobian. * Obtain null space motion of 3 DoF plane manipulator with fixed end effector ## **Four Fundamental Subspaces. Recall** --- >As we have studied on the lectures there are four fundamental subspaces accompanying any linear operator (matrix) $\mathbf{A}^{m \times n}$, namely: >* **Column** space (range, image): $\mathcal{C}(\mathbf{A}) \in \mathbb{R}^m$ >* **Null** space (kernel): $\mathcal{N}(\mathbf{A}) \in \mathbb{R}^n$ >* **Row** space: $\mathcal{R}(\mathbf{A}) = \mathcal{C}(\mathbf{A}^T) \in \mathbb{R}^n$ >* **Left null** space: $\mathcal{N}(\mathbf{A}^T) \in \mathbb{R}^m$ --- ## **Jacobian Force Mapping** >* In yout homework you was trying to the physical interpretation of remaining fundamental subspaces: \begin{equation} \boldsymbol{\tau} = \mathbf{J}(\mathbf{q})^T\mathbf{F} \end{equation} where: * $\mathbf{F} \in \mathbb{R}^m$ task space force imposed on the end-effector * $\boldsymbol{\tau} \in \mathbb{R}^n$ joint space torques (control effort in the actuators) > Similarly to what we did for velocities one can deduce that: * The row space of $\mathbf{J}$ is the subspace $\mathcal{R}(\mathbf{J}) \in \mathbb{R}^n$ of the joint torques $\boldsymbol{\tau}$ that can balance forces applied to end-effector $\mathbf{F}$, in the given manipulator posture $\mathbf{q}$ * The left null space of $\mathbf{J}$ is the subspace $\mathcal{N}(\mathbf{J}^T) \in \mathbb{R}^m$ of the end-effector forces $\mathbf{F}$ that do not require any balancing joint torques $\boldsymbol{\tau}$, in the given manipulator posture $\mathbf{q}$. <p></p> Let us consider the following examples. ## **Examples: Zero Torques** Consider the 1-DoF planar manipulator (pendulum): <p></p> The question is: Which force vector do not require any balancing torque? It is obvious that force along pendulum linkage will not produce any torque, however let us check this fact by analyzing left null space of the Jacobian matrix. Solution of forward kinematics: \begin{equation} \boldsymbol{x} = \ell \begin{bmatrix} \cos q\\ \sin q \end{bmatrix} \end{equation} Thus the Jacobian calculated as: \begin{equation} \mathbf{J} = \frac{\partial \boldsymbol{x}}{\partial q} = \ell \begin{bmatrix} -\sin q\\ \cos q \end{bmatrix} \end{equation} ``` from numpy import cos, sin, zeros, sum, pi, dot, array from scipy.linalg import null_space q = 0 l = 1 # jacobian jac = l*array([-sin(q), cos(q)]) F_0 = null_space([jac.transpose()]) print(F_0) ``` [[1.] [0.]] As we expected force is along the link. Let us add the linear joint in to base: <p></p> Jacobian become: \begin{equation} \mathbf{J} = \frac{\partial \boldsymbol{x}}{\partial \mathbf{q}} = \begin{bmatrix} 1 & -\ell_1\sin q_2\\ 0 & \ell_1\cos q_2 \end{bmatrix} \end{equation} Let's implement Jacobian matrix: ``` def jacobian(q): return l*array([[1,-sin(q[1])], [0,cos(q[1])]]) q = [1,pi/2] F_0 = null_space(jacobian(q).transpose()) print(F_0) ``` [[3.061617e-17] [1.000000e+00]] If link is in the vertical posture we don't need any balancing torques $\mathbf{\boldsymbol{\tau}}$ to overcome vertical force $\mathbf{F} = \mathbf{e}_y\lambda, \forall \lambda$. Let's check other postures: ``` q = [1,pi/4] F_0 = null_space(jacobian(q).transpose()) print(F_0) ``` [] >**QUESTION**: As you can see null space is empty, what does that phisicly mean? >**HW EXERCISE**: > Consider cable driven manipulator: > <p></p> > > with relationships between cable tensions $\boldsymbol{\tau}$ and force acting on end effector $\mathbf{F}$ given by: > >\begin{equation} \mathbf{F} = \mathbf{W}\boldsymbol{\tau} \end{equation} > >where: $\mathbf{W} \in \mathbb{R}^{m \times n}$ is so called wire matrix that play role of the Jacobian. > > Taking in to account that tension must remain positive $\tau_i >0,\forall i$ ,Do the following: > >* Answer what is the minimal number of actuators that supports arbitary end effector force? >* Formulate criteria that alow you to find cable tension do not producing any force on end effector, do it for the minimal number of cables. ( slack is not allowed), Tip: use null space $\mathcal{N}(\mathbf{W})$ >* Come up with the geometrical representation of the proposed criteria.
ce354c743bdf11c64ba393e0a5597b1639bdc64a
10,922
ipynb
Jupyter Notebook
Google Colab notebooks/Practice Fundumental Subspaces 2020 part 1/practice_01_fss_jacobian_2.ipynb
kahlflekzy/Computational-Intelligence-Slides-Spring-2022
9401fe1258efa91a6c9886501d02909420a94add
[ "MIT" ]
6
2022-01-19T15:40:01.000Z
2022-03-23T22:27:44.000Z
Google Colab notebooks/Practice Fundumental Subspaces 2020 part 1/practice_01_fss_jacobian_2.ipynb
kahlflekzy/Computational-Intelligence-Slides-Spring-2022
9401fe1258efa91a6c9886501d02909420a94add
[ "MIT" ]
2
2021-05-27T09:02:55.000Z
2021-10-13T09:36:55.000Z
Google Colab notebooks/Practice Fundumental Subspaces 2020 part 1/practice_01_fss_jacobian_2.ipynb
kahlflekzy/Computational-Intelligence-Slides-Spring-2022
9401fe1258efa91a6c9886501d02909420a94add
[ "MIT" ]
8
2021-01-20T07:58:57.000Z
2021-10-12T08:28:08.000Z
33.503067
318
0.492767
true
1,478
Qwen/Qwen-72B
1. YES 2. YES
0.822189
0.679179
0.558413
__label__eng_Latn
0.946753
0.135711
<center> <h1> INF285 - Computación Científica </h1> <h2> ODE </h2> <h2> <a href="#acknowledgements"> [S]cientific [C]omputing [T]eam </a> </h2> <h2> Version: 1.18</h2> </center> ## Some algorithms in this jupyter notebook have been obtained from the textbook "Lloyd N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000" and translated to Python. <div id='toc' /> ## Table of Contents * [Introduction](#intro) * [Initial Value Problemsl](#IVP) * [Three solvers](#solver) * [Stability Regions](#stab) * [Convergence](#conver) * [High order, higher dimensions and dynamical systems](#high) * [Boundary Value Problems](#BVP) * [Shooting Method](#MD) * [Finite Differences](#DD) * [Acknowledgements](#acknowledgements) ```python %matplotlib inline import matplotlib.pyplot as plt from matplotlib import pyplot # import numpy as np from scipy.integrate import odeint from pylab import * # from numpy import linalg as LA from matplotlib.legend_handler import HandlerLine2D from scipy.linalg import toeplitz from scipy.optimize import root from ipywidgets import interact, RadioButtons, Checkbox import sympy as sym import matplotlib as mpl mpl.rcParams['font.size'] = 14 mpl.rcParams['axes.labelsize'] = 20 mpl.rcParams['xtick.labelsize'] = 14 mpl.rcParams['ytick.labelsize'] = 14 from mpl_toolkits.axes_grid1 import make_axes_locatable sym.init_printing() # Global parameter that controls the figure's size L = 15 # Source: https://github.com/tclaudioe/Scientific-Computing/blob/master/SC5/02%20Differentiation%20matrices.ipynb def plot_matrices_with_values(ax,M,FLAG_test=True): N=M.shape[0] cmap = plt.get_cmap('GnBu') im = ax.matshow(M, cmap=cmap) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) if FLAG_test: for i in np.arange(0, N): for j in np.arange(0, N): ax.text(i, j, '{:.2f}'.format(M[i,j]), va='center', ha='center', color='r') return ``` <div id='intro' /> # Introduction [Back to TOC](#toc) In this jupyter noteboon we will study several numerical methods for solving ordinary differential equations (ODEs). In particular we will study Initial Value Problems (IVP) and Boundary Value Problems (BVP), their principal numerical methods of numerical resolution, and their stability and convergence. <div id='IVP' /> # Initial Value Problems [Back to TOC](#toc) An IVP corresponds to an ordinary differential equation of the form: $$ \dot{y}(t) = f(t,y(t)), \quad t\in]t_0,T]$$ subject to an initial condition, $$ y(t_0) = y_0. $$ <div id='solver' /> # Three solvers [Back to TOC](#toc) Here we list a few solvers, just notice that we are only hightliting their one-time-step version: * <b>Euler's Method: </b> \begin{align*} y_{i+1} &= y_i + h\,f(t_i,y_i) \end{align*} * <b>Runge-Kutta of second order (RK2) </b> \begin{align*} k_{1} &= f(t_i,y_i) \\ y_{i+1} &= y_i + h\,f\left(t_i + \dfrac{h}{2}, y_i + \dfrac{h}{2}\,k_1\right) \end{align*} * <b>Runge-Kutta of 4th order (RK4) </b> \begin{align*} k_{1} &= h \, f(t_i,y_i) \\ k_{2} &= h \, f(t_i + \dfrac{h}{2}, y_i + \dfrac{1}{2}k_1) \\ k_{3} &= h \, f(t_i + \dfrac{h}{2}, y_i + \dfrac{1}{2}k_2) \\ k_{4} &= h \, f(t_i + h, y + k_3) \\ y_{i+1} &= y_i + \dfrac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{align*} For all this methods $h$ is the time-step it will advance the solution. The previous algorithms only advance one time step the solution, so it should be applied the corresponding time steps expected such that it goes from the initial time $t_0$ until the final time $T$. ```python # Forward Euler Method def eulerMethod_one_step(yi,ti,f,h): return yi+h*f(ti,yi) # Runge-Kutta of Second order def RK2_one_step(yi,ti,f,h): k1=f(ti,yi) return yi+h*f(ti+h/2.0,yi+h/2.0*k1) # Runge-Kutta def RK4_one_step(yi,ti,f,h): k1=f(ti,yi) k2=f(ti+h/2.0,yi+(h/2.0)*k1) k3=f(ti+h/2.0,yi+(h/2.0)*k2) k4=f(ti+h,yi+h*k3) return yi+(h/6.0)*(k1+2.0*k2+2.0*k3+k4) ``` Here we define the several steps solvers. These are the version that will be used later on in the code. ```python # This implemantions have been upgraded respect to the ones included in the classnotes to handle def eulerMethod(t0,T,N,y0,f): t = np.linspace(t0,T,N+1) h = (T-t0)/N if isinstance(y0,(int,float)): y = np.zeros(N+1) else: y = np.zeros((N+1,len(y0))) y[0] = y0 for i in np.arange(N): y[i+1] = y[i]+f(t[i],y[i])*h return t, y # Challenge: Make backwardEulerMethod work! '''def backwardEulerMethod(t0,T,N,y0,f): t = np.linspace(t0,T,N+1) h = (T-t0)/N y = np.zeros(N+1) y[0] = y0 for i in np.arange(N): f_hat= lambda x: x - y[i]-f(t[i+1],x)*h # You must select a solver, "find_root" is just a generic name. The input used are the anonymous function "f_hat" and the initial guess y_i. x = find_root(f_hat,y[i]) y[i+1] = x return t, y''' def RK2(t0,T,N,y0,f): t = np.linspace(t0,T,N+1) h = (T-t0)/N if isinstance(y0,(int,float)): y = np.zeros(N+1) else: y = np.zeros((N+1,len(y0))) y[0] = y0 for i in np.arange(N): k1 = f(t[i],y[i]) y[i+1] = y[i]+f(t[i]+h/2,y[i]+k1*h/2)*h return t, y def RK4(t0,T,N,y0,f): t = np.linspace(t0,T,N+1) h = (T-t0)/N if isinstance(y0,(int,float)): y = np.zeros(N+1) else: y = np.zeros((N+1,len(y0))) y[0] = y0 for i in np.arange(N): k1 = f(t[i],y[i]) k2 = f(t[i]+h/2,y[i]+k1*h/2) k3 = f(t[i]+h/2,y[i]+k2*h/2) k4 = f(t[i]+h,y[i]+k3*h) y[i+1] = y[i]+(k1+2*k2+2*k3+k4)*h/6 return t, y ``` ### 1D Example In this example we will solve the logistic equation $\dot{y}(t) = y(t)(1-y(t))$ for several inital conditions $y_0$. ```python # Logistic Equation def f(t,y): return np.array(y*(1-y)) # First Example def change_N_and_y0_1st_Example(N=20,y0=0.1, ODEsolver=eulerMethod): t0 = 0 T = 4 t, y = ODEsolver(t0,T,N,y0,f) fig = plt.figure() ax = fig.gca() ax.axis([0, 4, -1, 2]) # Plotting stationary states for this problem. t = np.linspace(t0,T,N+1) plt.plot(t,t*0+1,'b-',lw=5, alpha=0.5, label='Stationary state y=1') plt.plot(t,t*0,'r-',lw=5, alpha=0.5, label='Stationary state y=0') # Plotting numerical solution. plt.plot(t,y,'.',label=r'$y_i$') plt.grid(True) ax.legend(loc='lower left', ncol=1, fancybox=True, shadow=True, numpoints=1, bbox_to_anchor=(1,0)) plt.show() radio_button_ODEsolvers=RadioButtons( options=[('Euler\'s Method',eulerMethod),('RK2',RK2),('RK4',RK4)], value=eulerMethod, description='ODE solver:', disabled=False ) interact(change_N_and_y0_1st_Example,N=(3,100,1),y0=(-0.5,2,0.1), ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(IntSlider(value=20, description='N', min=3), FloatSlider(value=0.1, description='y0', ma… <function __main__.change_N_and_y0_1st_Example(N=20, y0=0.1, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> Now, solve several initial conditions at the same time. ```python def plot_log_eq(N=30,ODEsolver=eulerMethod): t0 = 0 T = 4 fig = plt.figure(figsize=(L/2,L/2)) fig.clf() ax = fig.gca() ax.axis("equal") ax.grid(True) ax.set_title("Numerical Approximations and Direction Field") ax.axis([0, 4, -2, 2]) # Plotting the stationary states t = np.linspace(t0,T,N+1) plt.plot(t,t*0+1,'b-',lw=5, alpha=0.5, label='Stationary state y=1') plt.plot(t,t*0,'r-',lw=5, alpha=0.5, label='Stationary state y=0') plt.legend(loc='best') # Solving over time for each method. for y0 in np.linspace(-0.5,5,40): t_times, y_output = ODEsolver(t0,T,N,y0,f) if y0>=1: plt.plot(t_times,y_output,'k-',alpha=0.2) else: plt.plot(t_times,y_output,'k-',alpha=0.8) plt.plot(t_times,y_output,'.') X,Y = np.meshgrid(np.arange(0,4,.2), np.arange(-2,2,.2)) theta = np.arctan(f(0,Y)) U = np.cos(theta) V = np.sin(theta) plt.quiver(X,Y,U,V,alpha=0.5) interact(plot_log_eq,N=(5,100,1),ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(IntSlider(value=30, description='N', min=5), RadioButtons(description='ODE solver:', opt… <function __main__.plot_log_eq(N=30, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> <div id='stab' /> ## Stability Regions [Back to TOC](#toc) To perform a linear stability analysis, we will consider the following ODE $\dot{y} = \lambda y$, with $y(0)=1$ and $\lambda\in\mathbb{C}$, for which we know its exact solution $y(t)=\exp(\lambda\,t)$. Thus, solving the previos ODE with the Euler method, we have, \begin{align*} y_{i+1} &= y_i + \lambda h y_i \\ y_{i+1} &= (1 + \lambda h ) y_i \\ y_{i+1} &= (1 + \lambda h )^{i+1} y_0 \end{align*} Given that the real part of $\lambda$ is negative and $h$ is positive, we require then that $\left|1+\lambda h \right| <1$. We denote this range of values for $h$ the stability region for the Euler Method. Following a similar approach, we the the following constraints for RK2 and RK4: - RK2: $$ \left|1+\lambda h + \dfrac{(\lambda h)^2}{2!} \right| <1 $$ - RK4: $$ \left| 1+\lambda h + \dfrac{(\lambda h)^2}{2!} + \dfrac{(\lambda h)^3}{3!} + \dfrac{(\lambda h)^4}{4!} \right| <1 $$ ```python def zplot2(z, ax=plt.gca(), lw=1.5, line_color='k', label=''): ax.plot(np.real(z), np.imag(z), line_color, lw=lw, label=label) def runge_kutta_stability_regions(): z = np.exp(1j * np.pi * np.arange(201)/100.) r = z-1 d = 1-1./z; # Order 1 W1, W2, W4 = [0], [0], [0] for zi in z[1:]: W1.append( W1[-1]-(1.+W1[-1]-zi) ) for zi in z[1:]: W2.append( W2[-1]-(1+W2[-1]+.5*W2[-1]**2-zi**2)/(1+W2[-1]) ) for zi in z[1:]: num = (1+W4[-1]+.5*W4[-1]**2+W4[-1]**3/6+W4[-1]**4/24-zi**4) den = (1+W4[-1]+W4[-1]**2/2+W4[-1]**3/6.) W4.append( W4[-1] - num/den ) return W1, W2, W4 W1,W2,W4=runge_kutta_stability_regions() ``` ```python fig = plt.figure(figsize=(L/2,L/2)) ax=fig.gca() zplot2(W1,ax,line_color='r',label='Euler') zplot2(W2,ax,line_color='g',label='RK2') zplot2(W4,ax,line_color='b',label='RK4') ax.axis("equal") ax.axis([-5, 2, -3.5, 3.5]) ax.grid("on") ax.legend(loc='best') ax.set_title("Stability Regions of some Runge-Kutta ODE solvers") ``` ### So, how do we use the stability region for each method? The key point here is that we can't define $h$ a priori since we may not know the corresponding $\lambda$, thus, in principle, we can estimate $\lambda$ or just try the solver for different $h$. ```python def plot_log_eq_stability_region(y0=1.2, N=20, T=10, ODEsolver=eulerMethod): # How did w get this? Why do I need it? def f_1D_prime(y): return np.array(1-2*y) t0=0 if ODEsolver==eulerMethod: c1,c2,c3='b','k','k' elif ODEsolver==RK2: c1,c2,c3='k','b','k' else: c1,c2,c3='k','k','b' t_times, y_output = ODEsolver(t0,T,N,y0,f) fig = plt.figure(figsize=(L,L/3)) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) ax1.axis('equal') ax1.grid(True) ax1.set_title('Numerical Approximation') ax1.axis([0, T, -0.5, 2]) ax1.plot(t_times,y_output,'k-') ax1.plot(t_times,y_output,'b.') # The next code is to plot in logscale unstable numerical simulations h = (T-t0)/N y_all=h*f_1D_prime(y_output) y_pos=y_all>0 y_neg=np.logical_not(y_pos) ax3.semilogy(t_times[y_pos],y_all[y_pos],'.r',ms=20) ax3.semilogy(t_times[y_neg],-y_all[y_neg],'.b',ms=20) ax3.grid(True) ax3.set_title(r'$\log10(|y_i|)$') zplot2(W1,ax2,line_color=c1) zplot2(W2,ax2,line_color=c2) zplot2(W4,ax2,line_color=c3) k_lambdah=h*f_1D_prime(y_output) ax2.plot(np.real(k_lambdah),np.imag(k_lambdah),'.r',ms=20) ax2.axis('equal') ax2.axis([-5, 2, -3.5, 3.5]) ax2.grid(True) ax2.set_title('Stability Region and $k=\lambda\,h$') interact(plot_log_eq_stability_region,y0=(-2,5,0.1),N=(2,100,1), T=(1,20,1), ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(FloatSlider(value=1.2, description='y0', max=5.0, min=-2.0), IntSlider(value=20, descrip… <function __main__.plot_log_eq_stability_region(y0=1.2, N=20, T=10, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> <div id='conver' /> ## Convergence [Back to TOC](#toc) This is very important! Let's study it! To talk about the convergence, we need to have in mind the order of each method. In particular, we will consider that $y(T)$ denotes the exact solution at the final time $T$ that need to solve the ODE, and $y_N$ be the approximation of the solution at the final time $T=t_N$. In simple words, we can say the following: - Euler's method is a first order method since $y(T)=y_N+\mathcal{O}(h)$. This means that if $h$ is reduce by half, then the error is reduced by half. - RK2 is a second order method since $y(T)=y_N+\mathcal{O}(h^2)$. This means that if $h$ is reduce by half, then the error is reduced by 4. - RK4 is a forth order method since $y(T)=y_N+\mathcal{O}(h^4)$. This means that if $h$ is reduce by half, then the error is reduced by 16. To validate this, we will solve numerically the following problem, \begin{align*} \dot{y}(t)&=-3\,y(t)+6\,t+5, \quad t\in]0,0.5]\\ y(0)&=3, \end{align*} for which we know the solution $y(t)=2\exp(-3t)+2t+1$. ```python t0 = 0 T = 0.5 y0 = 3.0 def f(t,y): return np.array(-3*y+6*t+5) y_sol = lambda t: 2.*np.exp(-3.*t)+2.*t+1 ``` ```python fig = plt.figure(figsize=(L/2,L/2)) fig.clf() ax = fig.gca() ax.axis('equal') ax.grid(True) ax.set_title('Convergence Analysis') N_list = np.logspace(1,5,5,dtype=int) for N in N_list: h = (T-t0)/N t_times, y_output = eulerMethod(t0,T,N,y0,f) plt.loglog(h,abs(y_output[-1]-y_sol(t_times[-1])),'b.',ms=20,label='Euler',alpha=.5) t_times, y_output = RK2(t0,T,N,y0,f) plt.loglog(h,abs(y_output[-1]-y_sol(t_times[-1])),'rs',ms=20,label='RK2',alpha=.5) t_times, y_output = RK4(t0,T,N,y0,f) plt.loglog(h,abs(y_output[-1]-y_sol(t_times[-1])),'gd',ms=20,label='RK4',alpha=.5) if N==N_list[0]: plt.legend(numpoints=1, loc='lower right') h_list=T/N_list plt.loglog(h_list,h_list,'k-') plt.text(10**(-6),10**(-3),r'$\mathcal{O}(h)$', fontsize=25, horizontalalignment='center', color='b') plt.loglog(h_list,np.power(h_list,2.),'k-') plt.text(10**(-7),10**(-8),r'$\mathcal{O}(h^2)$', fontsize=25, horizontalalignment='center', color='r') plt.loglog(h_list[:-2],np.power(h_list[:-2],4.),'k-') plt.text(10**(0),10**(-11),r'$\mathcal{O}(h^4)$', fontsize=25, horizontalalignment='center', color='g') plt.xlabel(r'$h$') plt.ylabel(r'Error$=|y(T)-y_{N}|$') ``` <div id='high' /> # High order, higher dimensions and dynamical systems [Back to TOC](#toc) Why do we study higher order problems? Because they are so cool! ### The Van der Pol oscillator The equation that model de Van der Pol oscillator is the following: $$\ddot{y}-\mu\,(1-y^2)\,\dot{y} + y = 0,$$ with $y(0)=2$ and $\dot{y}(0)=0$, where $\mu$ is a scalar parameter that regulates the non-linearity of the problem and the strength of the damping. See https://en.wikipedia.org/wiki/Van_der_Pol_oscillator. So, since it has second derivatives respecto to time, we need to translate it to a dynamical system with the following change of variables: \begin{align*} y_1(t) &= y(t),\\ y_2(t) &= \dot{y}(t). \end{align*} Thus, \begin{align*} \dot{y}_1 &= \dot{y} = y_2,\\ \dot{y}_2 &= \ddot{y} = \mu (1-y^2) \dot{y} - y = \mu (1-y_1^2) y_2 - y_1, \end{align*} with $y_1(0)=2$ and $y_2(0)=0$. ```python def f_vdp(t,y,mu=10): y1 = y[0] y2 = y[1] return np.array([y2, mu*(1-y1**2)*y2-y1]) def f_vdp_eig_jacobian(t,y,mu=10): J=[[0,1],[-(2*mu*y[0]*y[1]+1), mu*(1-y[0]**2)]] lambs,vs= LA.eig(J) return lambs ``` ```python def plotting_vdp(y01=2, y02=0, N=20000, T=200, mu=10, ODEsolver=eulerMethod): y0=np.array([y01, y02]) f= lambda t,y: f_vdp(t,y,mu) t0=0 t_times, y_output = ODEsolver(t0,T,N,y0,f) fig = plt.figure(figsize=(L,L/2)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) ax1.grid(True) ax1.set_title("Numerical Approximation") ax1.plot(t_times,y_output[:,0],'-', label=r'$y_1(t)$', alpha=0.5) ax1.set(xlabel='t') ax1.plot(t_times,y_output[:,1],'-r', label=r'$y_2(t)$', alpha=0.5) ax1.legend(loc='best') ax2.grid(True) ax2.set_title("Phase Portrait") ax2.plot(y_output[:,0],y_output[:,1],'-') ax2.set(xlabel='$y=y_1$', ylabel='$\dot{y}=y_2$') interact(plotting_vdp,y01=(-3,3,0.1), y02=(-3,3,0.1), N=(10,10000,10),T=(10,200,10), mu=(1,50,0.1),ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(FloatSlider(value=2.0, description='y01', max=3.0, min=-3.0), FloatSlider(value=0.0, des… <function __main__.plotting_vdp(y01=2, y02=0, N=20000, T=200, mu=10, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> ```python def plot_sol_eig_phase_portrait_2eq(t_times,y_output,f_jacobian,h,c1,c2,c3): fig = plt.figure(figsize=(L,L/3)) ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax3 = fig.add_subplot(133) ax1.grid(True) ax1.set_title('Numerical Approximation') ax1.plot(t_times,y_output[:,0],'-') ax1.plot(t_times,y_output[:,1],'r-') zplot2(W1,ax2,line_color=c1) zplot2(W2,ax2,line_color=c2) zplot2(W4,ax2,line_color=c3) for i in range(1,t_times.size): k_lambdah=h*f_jacobian(t_times[i],y_output[i,:]) ax2.plot(np.real(k_lambdah[0]),np.imag(k_lambdah[0]),'.r',ms=10,alpha=.4) ax2.plot(np.real(k_lambdah[1]),np.imag(k_lambdah[1]),'sm',ms=10,alpha=.4) ax2.axis('equal') ax2.axis([-5, 2, -3.5, 3.5]) ax2.grid('on') ax3.grid(True) ax3.set_title('Phase Portrait') ax3.plot(y_output[:,0],y_output[:,1],'-') ax3.set(xlabel='$y_1$', ylabel='$y_2$') ``` ### What about the stability region for dynamical systems? In this case we need to compute the eigenvalues of the Jacobian matrix of $\mathbf{F}(\mathbf{y})$. So the eigenvalues $\lambda_i$ multiplied by $h$ have to be inside of the stability region of the real part of $\lambda_i$ is negative, for $i\in\{1,2,\dots,\text{Dimension of Dynamical System}\}$. ```python def plotting_vpd_as_system(y01=2, y02=0, N=1000, T=40, mu=10, ODEsolver=eulerMethod): y0=np.array([y01, y02]) f= lambda t,y: f_vdp(t,y,mu) t0 = 0 t_times, y_output = ODEsolver(t0,T,N,y0,f) h = (T-t0)/N if ODEsolver==eulerMethod: c1,c2,c3='b','k','k' elif ODEsolver==RK2: c1,c2,c3='k','b','k' else: c1,c2,c3='k','k','b' plot_sol_eig_phase_portrait_2eq(t_times,y_output,f_vdp_eig_jacobian,h,c1,c2,c3) interact(plotting_vpd_as_system, y01=(-3,3,0.1), y02=(-3,-3,0.1), N=(10,4000,10),T=(10,200,10), mu=(1,50,0.1),ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(FloatSlider(value=2.0, description='y01', max=3.0, min=-3.0), FloatSlider(value=-3.0, de… <function __main__.plotting_vpd_as_system(y01=2, y02=0, N=1000, T=40, mu=10, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> ### Lotka-Volterra model This instance models the evolution of the average population of two species living in a closed system. The species number 1 is considered that feeds itself with an unlimited amount of food and the species number 2 feeds itself with species number 1. We will denote the average population of species number 1 as $y_1(t)$ and the average population of species number 2 as $y_2(t)$. So, if we consider that there is no presence of species number 2 in the system, then species number 1 will grow exponentially, this means $\dot{y}_1=y_1$. On the other case, if no presence of species number 1 in the system, then species number 2 will decay exponentially as follows $\dot{y}_2=-y_2$. However, we are not interested in the extreme cases, how can we understand the dynamics when there exists these two species together interacting? This is modeled by the Lotka-Volterra dynamical system: \begin{align*} \dot{y}_1(t)&=(1-y_2(t)/\mu_2)\,y_1(t),\\ \dot{y}_2(t)&=-(1-y_1(t)/\mu_1)\,y_2(t),\\ y_1(0)&=400,\\ y_2(0)&=100, \end{align*} where $\mu_1$ and $\mu_2$ are normalization constants. ```python mu1=300 mu2=200 def f_predprey(t,y,mu1=mu1,mu2=mu2): y1 = y[0] y2 = y[1] return np.array([(1-y2/mu2)*y1, -(1-y1/mu1)*y2]) def f_predprey_jacobian(t,y,mu1=mu1,mu2=mu2): J=[[1-y[1]/mu2,-y[0]/mu2],[y[1]/mu1, -(1-y[0]/mu1)]] lambs,vs= LA.eig(J) return lambs ``` ```python def plotting_predprey(y01=70, y02=100, N=1000, T=30, ODEsolver=eulerMethod): y0=np.array([y01, y02]) f= lambda t,y: f_predprey(t,y) t0 = 0 t_times, y_output = ODEsolver(t0,T,N,y0,f) h = (T-t0)/N if ODEsolver==eulerMethod: c1,c2,c3='b','k','k' elif ODEsolver==RK2: c1,c2,c3='k','b','k' else: c1,c2,c3='k','k','b' plot_sol_eig_phase_portrait_2eq(t_times,y_output,f_predprey_jacobian,h,c1,c2,c3) interact(plotting_predprey,y01=(0,1000,10),y02=(0,1000,10), N=(10,1000,10),T=(10,200,10), ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(IntSlider(value=70, description='y01', max=1000, step=10), IntSlider(value=100, descript… <function __main__.plotting_predprey(y01=70, y02=100, N=1000, T=30, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> ## Now solving the following equation \begin{align*} \dot{y}_1(t) &= y_2(t),\\ \dot{y}_2(t) &= -y_1(t), \end{align*} with $y_1(0)=1$ and $y_2(0)=0$. What functions are these? Do you recognize them? ```python def f_trig(t,y): y1 = y[0] y2 = y[1] return np.array([y2, -y1]) def f_trig_jacobian(t,y): return np.array([0.+1.j, 0.-1.j]) def plotting_f_trig(y01=1, y02=0, N=100, T=2*np.pi, ODEsolver=eulerMethod): y0=np.array([y01, y02]) f= lambda t,y: f_trig(t,y) t0 = 0 t_times, y_output = ODEsolver(t0,T,N,y0,f) h = (T-t0)/N if ODEsolver==eulerMethod: c1,c2,c3='b','k','k' elif ODEsolver==RK2: c1,c2,c3='k','b','k' else: c1,c2,c3='k','k','b' plot_sol_eig_phase_portrait_2eq(t_times,y_output,f_trig_jacobian,h,c1,c2,c3) interact(plotting_f_trig,y01=(-2,2,0.1),y02=(-2,2,0.1), N=(10,1000,10),T=(1,10*np.pi,0.1), ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(FloatSlider(value=1.0, description='y01', max=2.0, min=-2.0), FloatSlider(value=0.0, des… <function __main__.plotting_f_trig(y01=1, y02=0, N=100, T=6.283185307179586, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> ## Last but not least, solving: \begin{align*} \dot{y}(t) &= \lambda\,y(t),\\ \end{align*} with $y(0)=1$. What function is this? Do you recognize it? ```python def f_exp(t,y,lam=-1): return lam*y def f_exp_jac(t,y,lam=-1): return lam def plotting_f_exp(y0=1, N=100, T=10, lam=-1, ODEsolver=eulerMethod): f= lambda t,y: f_exp(t,y, lam) t0 = 0 t_times, y_output = ODEsolver(t0,T,N,y0,f) h = (T-t0)/N if ODEsolver==eulerMethod: c1,c2,c3='b','k','k' elif ODEsolver==RK2: c1,c2,c3='k','b','k' else: c1,c2,c3='k','k','b' # Plotting fig = plt.figure(figsize=(L*2/3,L/3)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) ax1.grid(True) ax1.set_title('Numerical Approximation') ax1.plot(t_times,y_output[:],'.b') ax1.plot(t_times,y_output[:],'k-',alpha=0.5) #ax1.axis([0, T, -2, 2]) zplot2(W1,ax2,line_color=c1) zplot2(W2,ax2,line_color=c2) zplot2(W4,ax2,line_color=c3) for i in range(1,t_times.size): k_lambdah=h*f_exp_jac(t_times[i],y_output[i],lam) ax2.plot(np.real(k_lambdah),np.imag(k_lambdah),'.r',ms=10,alpha=.4) ax2.axis('equal') ax2.axis([-5, 2, -3.5, 3.5]) ax2.grid('on') interact(plotting_f_exp,y0=(-2,2,0.1), N=(5,1000,10),T=(1,20,1), lam=(-2,2,0.1), ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(FloatSlider(value=1.0, description='y0', max=2.0, min=-2.0), IntSlider(value=100, descri… <function __main__.plotting_f_exp(y0=1, N=100, T=10, lam=-1, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> <div id='BVP' /> # Boundary Value Problems [Back to TOC](#toc) An instance of a BVP corresponds to a ordinary differential equation of the following form: $$ y''(x) = f(x,y(x),y'(x)),$$ with the following boundary conditions, \begin{align*} y(a) &= y_a,\\ y(b) &= y_b. \end{align*} To undertand them better, let's find a numerical approximation of the following problem: \begin{align*} y''(x) &= 4\,y(x),\\ y(0) &= y_0,\\ y(1) &= y_n. \end{align*} <div id='MD' /> ## Shooting Method [Back to TOC](#toc) This method takes advantage that we already know how to handle IVP and uses that knowledge to find a numerical approximation of an BVP. The main steps are the followings: - We have a BVP on the form: \begin{align*} y''(x) &= f(x,y(x),y'(x)),\\ y(a) &= y_a,\\ y(b) &= y_b. \end{align*} - Let's considerer the following steps to translate the BVP to an IVP: 1. $x \rightarrow t$, this implies that $t_0=a$ and $T=b$. 2. \begin{align*} \ddot{y}(t) &= f(t,y(t),\dot{y}(t)),\\ y(t_0) &= y_a,\\ \dot{y}(t_0) &= \alpha. \end{align*} **Warning**: We actually don't know $\alpha$ but we do need it since we treating the previous problem as a IVP. What we do have is $y(b)=y(T)=y_b$. 3. So, since we don't have $\alpha$, we need to find it by solving the following 1D root: $F(\alpha) = y_N^{(\alpha)} - y_b$, where $y_N^{(\alpha)}$ denotes the IVP approximation at time $t=T$ considering $\alpha$ for the initial condition of $\dot{y}(t_0)$. 4. After we find the root for $F(\alpha)$, we can say we have found a numerical approximation of $y(x)$ since we have a numerical approximation that satisfies the ODE and also the boundary condition defined on the interval $[a,b]$. This is wonderful! Notice however that the function $F(\alpha)$ is the output of the execution of an algorithm, so we only expect it to be continuous. For instance it will be interesting to apply the Bisection method here! The main disadvantage of this algorithm is that we need to solve several IVPs to actually find the right one, the good news is that we are re-using previous knowledge in a new type of problems! ```python # BVP: y''(x)= 4*y(x), y(0)=1, and y(1)=3, x \in [0,1]. # Dynamical system: # y1=y -> y1'=y'=y2 # y2=y' -> y2'=y''=4*y=4*y1. # y1(0) = 1, (and we know y(1)=3) # y1(1) = 3. # y2(0) = alpha, we don't know it. def f(t,y): return np.array([y[1],4*y[0]]) ``` ```python def shooting_method_101(alpha=-1, N=50, ya=1, yb=3, ODEsolver=eulerMethod): t0 = 0 T = 1 y0 = np.array([ya,alpha]) t_times, y_output = ODEsolver(t0,T,N,y0,f) h = (T-t0)/N fig = plt.figure(figsize=(L/2,L/2)) ax = fig.gca() plt.grid(True) plt.title("Numerical Approximation") plt.plot(t_times,y_output[:,0],'r.',ms=12,alpha=0.5,label=r'$y1_i$') plt.plot(t_times,y_output[:,1],'m.',ms=12,alpha=0.5,label=r'$y2_i$') plt.plot(0,1,'*k',ms=16,label='Left BC') plt.plot(1,3,'*g',ms=16,label='Right BC') plt.plot(0,alpha,'darkorange',ms=16,label=r'$\alpha$', marker=r'$\alpha$') plt.legend(loc='best') interact(shooting_method_101, alpha=(-2,2,0.1), N=(5,100,1), ya=(-5,5,0.1), yb=(-5,5,0.1), ODEsolver=radio_button_ODEsolvers) ``` interactive(children=(FloatSlider(value=-1.0, description='alpha', max=2.0, min=-2.0), IntSlider(value=50, des… <function __main__.shooting_method_101(alpha=-1, N=50, ya=1, yb=3, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>)> ### Now, let's find $\alpha$ automatically ```python y0 = np.array([1, 1.1]) ``` ```python def F(alpha, ya=1, yb=3, N=100, ODEsolver=eulerMethod): t0 = 0 T = 1 y0 = np.zeros(2) y0[0] = ya y0[1] = alpha t_times, y_output = ODEsolver(t0,T,N,y0,f) # Notice that we don use absolute value for the error since # we want to look at this problem as a rootfinding problem # and not as a minimization, that could be another approach. return y_output[-1,0]-yb ``` ```python t0 = 0 T = 1 ya = 1 yb = 3 N = 100 ODEsolver = RK4 F_root = lambda alpha: F(alpha, ya=ya, yb=yb, N=N, ODEsolver=ODEsolver) alpha = root(F_root, 0.).x[0] y0 = np.array([ya,alpha]) t_times, y_output = ODEsolver(t0,T,N,y0,f) fig = plt.figure(figsize=(L/2,L/2)) plt.grid(True) plt.title("Numerical Approximation") plt.plot(t_times,y_output[:,0],'r.',ms=12,alpha=0.5,label=r'$y1_i$') plt.plot(t_times,y_output[:,1],'m.',ms=12,alpha=0.5,label=r'$y2_i$') plt.plot(0,ya,'*k',ms=16,label='Left BC') plt.plot(1,yb,'*g',ms=16,label='Right BC') plt.plot(0,alpha,'darkorange',ms=16,label=r'$\alpha$', marker=r'$\alpha$') plt.legend(loc='best') print(alpha) ``` ### Let's take a look to $F(\alpha, \dots)$, find the 'BUG'! ```python ODEsolver = eulerMethod several_alphas = np.linspace(-1,0,100) Fv = np.vectorize(lambda x: F(x,ODEsolver=ODEsolver)) F_alphas = Fv(several_alphas) plt.figure(figsize=(10,10)) plt.plot(several_alphas,F_alphas,'.b',label=r'$F(\alpha)$') plt.plot(several_alphas,F_alphas*0,'-g',alpha=0.8,linewidth=3,label=r'$0$') plt.grid(True) plt.plot(alpha,F(alpha,ODEsolver=ODEsolver),'.r',ms=20,label=r'Root: $\alpha$='+str(alpha)) plt.xlabel(r'$\alpha$') plt.ylabel(r'$F(\alpha)=y_N^{(\alpha)} - y_b$') plt.legend(loc='best') plt.show() ``` <div id='DD' /> ## Finite Differences [Back to TOC](#toc) This method opens a new door of algorithms for solving BVP. The main idea is to approximate each derivative of $y(x)$ by a finite difference approximation and then solve the linear or possible non-linear system of equations associated. Here we list a few finite difference approximation for the first and one for the second derivative: - Forward Difference: $$ y'(x) = \dfrac{y(x+h) - y(x)}{h} + O(h)$$ - Backward Difference: $$ y'(x) = \dfrac{y(x) - y(x-h)}{h} + O(h)$$ - Central Difference: $$ y'(x) = \dfrac{y(x+h) - y(x-h)}{2h} + O(h^2)$$ And for the second derivative: \begin{align*} y''(x) &= \dfrac{\text{Forward Difference } - \text{ Backward Difference}}{h} + O(h^2) \\ y''(x) &= \dfrac{\dfrac{y(x+h) - y(x)}{h} - \dfrac{y(x) - y(x-h)}{h}}{h} + O(h^2) \\ y''(x) &= \dfrac{y(x+h) - 2\,y(x) + y(x-h)}{h^2} + O(h^2) \\ \end{align*} Notice that in all the previous cases we first need to define the function on a grid, it does not have to be regular, but for simplicity we will consider it regular. Recall that the BVP will be defined on $[a,b]$, thus the regular grid will be defined as follows: $x_i=i\,h$, where $h=\dfrac{b-a}{N}$. This also help us to define the approximation of the function over the grid, this means the following, - Traditionally we say $y(x)$ is the function defined on $x\in[a,b]$. - Now, we will have a grid function $y_i\approx y(x_i)$ for $i\in\{0,1,2,\dots,N\}$. In particular we would like to point out that the vector $\mathbf{y}$ will be the representation of all the scalar values $y_i$ and the vector $\mathbf{x}$ will store the grid values $x_i$. Thus in this discrete world $\mathbf{y}$ will apporximate the continuous function $y(x)$ on $[a,b]$. On the other hand, the finite difference operator over the finite grid will be then defined as follows: - Forward Difference: $ y'(x_i)=\dfrac{y_{i+1} - y_i}{h} + O(h) $. - Backward Difference: $ y'(x_i) = \dfrac{y_i - y_{i-1}}{h} + O(h) $. - Central Difference: $ y'(x_i) = \dfrac{y_{i+1} - y_{i-1}}{2h} + O(h^2)$. - Second derivative finite difference: $y''(x_i) = \dfrac{y_{i+1} - 2\,y_i + y_{i-1}}{h^2} + O(h^2)$. Now, let's apply them! ```python def solve_finite_difference_eq(M=4,ya=1,yb=3): # Spatial discretization, # 'M' represents the number of intervals to be used. h=(1.-0.)/M # Building Finite Difference Discretization deltas=-(2.+4.*(h**2.)) A=toeplitz(np.append(np.array([deltas, 1.]), np.zeros(M-3))) # Building RHS b=np.append(-ya, np.zeros(M-3)) b=np.append(b,-yb) # Solving the linear system of equations y=np.linalg.solve(A, b) # Adding back the boundary conditions into the solution y=np.append([ya], y) y=np.append(y,[yb]) x_FD = np.linspace(0,1,M+1) # xi, i.e. the spatial grid. y_FD = y # yi, i.e. the approximation of y(x_i). return x_FD, y_FD, A, b def plot_solution_finite_difference_eq(M=4,ya=1,yb=3, FLAG_test=True): # Solving with Finite Difference x_FD, y_FD, A, b = solve_finite_difference_eq(M,ya,yb) # Plotting fig = plt.figure(figsize=(L,L/2)) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) # Plotting the discrete solution ax1.grid(True) ax1.set_title("FD") ax1.plot(x_FD,y_FD,'.',ms=20) ax1.grid("on") # Plotting the pattern and coefficients of the tri-diagonal matrix plot_matrices_with_values(ax2,A,FLAG_test) interact(plot_solution_finite_difference_eq, M=(3,25,1), ya=(-5,5,0.1), yb=(-5,5,0.1), FLAG_test=Checkbox(value=True, description='Show numerical values')) ``` interactive(children=(IntSlider(value=4, description='M', max=25, min=3), FloatSlider(value=1.0, description='… <function __main__.plot_solution_finite_difference_eq(M=4, ya=1, yb=3, FLAG_test=True)> ## Comparing the Shooting Method with Finite Differences ```python def shooting_method_vs_FD(alpha=-0.420306048726636, N=50, ya=1, yb=3, ODEsolver=eulerMethod, M=4): # Shooting Method t0 = 0 T = 1 y0 = np.array([ya,alpha]) t_times, y_output = ODEsolver(t0,T,N,y0,f) h = (T-t0)/N # Finite Differences x_FD, y_FD, A, b = solve_finite_difference_eq(M,ya,yb) fig = plt.figure(figsize=(L/2,L/2)) ax = fig.gca() plt.grid(True) plt.title("Numerical Approximations") plt.plot(t_times,y_output[:,0],'r.',ms=12,alpha=0.5,label=r'SM: $y1_i$') plt.plot(t_times,y_output[:,1],'m.',ms=12,alpha=0.5,label=r'SM: $y2_i$') plt.plot(x_FD,y_FD,'b.',ms=20,label=r'FD: $y_i$') plt.plot(0,1,'*k',ms=16,label='Left BC') plt.plot(1,3,'*g',ms=16,label='Right BC') plt.plot(0,alpha,'r',ms=16,label=r'$\alpha$', marker=r'$\alpha$') plt.legend(loc='best') interact(shooting_method_vs_FD, alpha=(-2,2,0.01), N=(5,100,1), ya=(-5,5,0.1), yb=(-5,5,0.1), ODEsolver=radio_button_ODEsolvers, M=(3,25,1)) ``` interactive(children=(FloatSlider(value=-0.420306048726636, description='alpha', max=2.0, min=-2.0, step=0.01)… <function __main__.shooting_method_vs_FD(alpha=-0.420306048726636, N=50, ya=1, yb=3, ODEsolver=<function eulerMethod at 0x7fd920c4fd30>, M=4)> In summary, - Both methods find a reasonable approximation. - The Shooting Method requires to solve several IVP until it find the missing slope $\alpha$, but it uses previous knowledge. - Finite Different requieres to solve a linear (or possible non-linear) system of equations but we requires few points to get a reasonable approximation. - Therefore, depending on the numerical problem that needs to be solve, one or the other would be better choice! <div id='acknowledgements' /> # Acknowledgements [Back to TOC](#toc) - _Material creado por profesor Claudio Torres_ (`ctorres@inf.utfsm.cl`) _y ayudantes: Alvaro Salinas y Martín Villanueva. DI UTFSM. Abril 2016._ - **DISCLAIMER**: El presente notebook ha sido creado para el curso **ILI286 - Computación Científica 2**, del [Departamento de Informática](http://www.inf.utfsm.cl/), [Universidad Técnica Federico Santa María](http://www.utfsm.cl/). El material ha sido creado por Claudio Torres <ctorres@inf.utfsm.cl> y Sebastian Flores <sebastian.flores@usm.cl>, y es distribuido sin restricciones. En caso de encontrar un error, por favor no dude en contactarnos. - [Update 2015] Se ha actualizado los notebooks a Python 3 e includio el "magic" "%matplotlib inline" antes de cargar matplotlib para que los gráficos se generen en el notebook. - [Update 2016] (Álvaro) Modificaciones mayores al formato original. Agregado contexto: Introducción, Tabla de Contenidos, Explicaciones de cada método. - [Update 2019] (C. Torres) Small changes. Fixing issue with title of sections and identation. Adding 'interact' to the logistic equation! Adding interact to everything, work in progress. All done, Enjoy! - _Update July 2021 - v1.16 - C.Torres_ : Updating format and translating to English. Several updates in several functions! Major update! - _Update July 2021 - v1.17 - C.Torres_ : Minor update, removing commented code. - _Update July 2021 - v1.18 - C.Torres_ : Removing warning and changing the name of some variables. ```python ```
b55dd5b91a479193fda51a875775401fc938d57f
195,825
ipynb
Jupyter Notebook
SC1v2/11_ODE.ipynb
luciofondon98/Scientific-Computing
c9da76ee6aa7d165c26814875e3d1c109719ff37
[ "BSD-3-Clause" ]
null
null
null
SC1v2/11_ODE.ipynb
luciofondon98/Scientific-Computing
c9da76ee6aa7d165c26814875e3d1c109719ff37
[ "BSD-3-Clause" ]
null
null
null
SC1v2/11_ODE.ipynb
luciofondon98/Scientific-Computing
c9da76ee6aa7d165c26814875e3d1c109719ff37
[ "BSD-3-Clause" ]
null
null
null
114.383762
39,924
0.83376
true
12,925
Qwen/Qwen-72B
1. YES 2. YES
0.737158
0.795658
0.586526
__label__eng_Latn
0.663814
0.201026
```python import numpy as np import sympy as sy sy.init_printing() ``` # <font face="gotham" color="red"> Similarity </font> If $A = PBP^{-1}$, we say $A$ is <font face="gotham" color="red">similar</font> to $B$, decomposing $A$ into $PBP^{-1}$ is also called a <font face="gotham" color="red">similarity transformation</font>. <font face="gotham" color="red">If $n\times n$ matrices $A$ and $B$ are similar, they have the same eigenvalues</font>. The <font face="gotham" color="red">diagnoalization</font>, which we will explain, is a process of finding similar matrices. # <font face="gotham" color="purple"> Diagonalizable Matrix</font> Let $A$ be an $n\times n$ matrix. If there exists an $n\times n$ invertible matrix $P$ and a diagonal matrix $D$, such that $$ A=PDP^{-1} $$ then matrix $A$ is called a diagonalizable matrix. And futher, <font face="gotham" color="red">the columns of $P$ are linearly independent eigenvectors of $A$, and its corresponding eigenvalues are on the diagonal of $D$. In other words, $A$ is diagonalizable if and only if the dimension of eigenspace basis is $n$</font>. It's easy to show why this equation holds. Let $$ P = \left[\begin{array}{llll} {v}_{1} & {v}_{2} & \cdots & {v}_{n} \end{array}\right]\\ $$ $$ D = \left[\begin{array}{cccc} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{array}\right] $$ where $v_i, i \in (1, 2, ...n)$ is an eigenvector of $A$, $\lambda_i, i \in (1, 2, ...n)$ is an eigenvalue of $A$. $$ AP = A\left[\begin{array}{llll} {v}_{1} & {v}_{2} & \cdots & {v}_{n} \end{array}\right]=\left[\begin{array}{llll} A {v}_{1} & A {v}_{2} & \cdots & A {v}_{n} \end{array}\right] $$ $$P D=P\left[\begin{array}{cccc} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{array}\right]=\left[\begin{array}{lllll} \lambda_{1} {v}_{1} & \lambda_{2} {v}_{2} & \cdots & \lambda_{n} {v}_{n} \end{array}\right]$$ We know that $A{v}_i = \lambda_i{v}_i$, i.e. $$ AP = PD $$ Since $P$ has all independent eigenvectors, then $$ A = PDP^{-1} $$ # <font face="gotham" color="purple"> Diagonalizing a Matrix</font> Consider a matrix $$A=\left[\begin{array}{rrr} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{array}\right]$$ diagonalize the matrix $A$. Following these steps: 1. Find the eigenvalues of $A$ 2. Find the eigenvectors of $A$ 3. Construct $P$. 4. Construct $D$ from the corresponding columns of $P$. ```python A = sy.Matrix([[1,3,3], [-3, -5, -3], [3,3,1]]) eig = sy.matrices.MatrixEigen.eigenvects(A) eig ``` Construct $P$ ```python P = sy.zeros(3, 3) P[:, 0] = eig[0][2][0] P[:, 1] = eig[0][2][1] P[:, 2] = eig[1][2][0] P ``` Construct $D$ ```python D = sy.diag(eig[0][0], eig[0][0], eig[1][0]) D ``` We can verify if $PDP^{-1}=A$ holds: ```python P * D * P.inv() == A ``` Of course we don't need to go through this process seperately. There is ```diagonalize``` method in SymPy. ```python P, D = A.diagonalize() ``` ```python P ``` ```python D ``` Sometimes we just want to test if a matrix is diagonalizable, then use ```is_diagonalizable``` in SymPy. ```python A.is_diagonalizable() ```
4b1c5fe5effbae2e00ec1a1c3fcd1e0cf30a94b6
9,173
ipynb
Jupyter Notebook
Mathematics/Linear Algebra/0.0 MIT-18.06 - Jupyter/Strang-Book-Linear_Algebra_With_Python-Jupyter-Notebooks/Chapter 13 - Diagonalization.ipynb
okara83/Becoming-a-Data-Scientist
f09a15f7f239b96b77a2f080c403b2f3e95c9650
[ "MIT" ]
null
null
null
Mathematics/Linear Algebra/0.0 MIT-18.06 - Jupyter/Strang-Book-Linear_Algebra_With_Python-Jupyter-Notebooks/Chapter 13 - Diagonalization.ipynb
okara83/Becoming-a-Data-Scientist
f09a15f7f239b96b77a2f080c403b2f3e95c9650
[ "MIT" ]
null
null
null
Mathematics/Linear Algebra/0.0 MIT-18.06 - Jupyter/Strang-Book-Linear_Algebra_With_Python-Jupyter-Notebooks/Chapter 13 - Diagonalization.ipynb
okara83/Becoming-a-Data-Scientist
f09a15f7f239b96b77a2f080c403b2f3e95c9650
[ "MIT" ]
2
2022-02-09T15:41:33.000Z
2022-02-11T07:47:40.000Z
27.79697
1,483
0.527635
true
1,195
Qwen/Qwen-72B
1. YES 2. YES
0.91611
0.868827
0.795941
__label__eng_Latn
0.868255
0.687569
```python from IPython.core.display import HTML, Image css_file = 'style.css' HTML(open(css_file, 'r').read()) ``` <link href='http://fonts.googleapis.com/css?family=Alegreya+Sans:100,300,400,500,700,800,900,100italic,300italic,400italic,500italic,700italic,800italic,900italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Arvo:400,700,400italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=PT+Mono' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Shadows+Into+Light' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Philosopher:400,700,400italic,700italic' rel='stylesheet' type='text/css'> <style> @font-face { font-family: "Computer Modern"; src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf'); } /* Formatting for header cells */ .text_cell_render h1 { font-family: 'Philosopher', sans-serif; font-weight: 400; font-size: 2.2em; line-height: 100%; color: rgb(0, 80, 120); margin-bottom: 0.1em; margin-top: 0.1em; display: block; } .text_cell_render h2 { font-family: 'Philosopher', serif; font-weight: 400; font-size: 1.9em; line-height: 100%; color: rgb(245,179,64); margin-bottom: 0.1em; margin-top: 0.1em; display: block; } .text_cell_render h3 { font-family: 'Philosopher', serif; margin-top:12px; margin-bottom: 3px; font-style: italic; color: rgb(94,127,192); } .text_cell_render h4 { font-family: 'Philosopher', serif; } .text_cell_render h5 { font-family: 'Alegreya Sans', sans-serif; font-weight: 300; font-size: 16pt; color: grey; font-style: italic; margin-bottom: .1em; margin-top: 0.1em; display: block; } .text_cell_render h6 { font-family: 'PT Mono', sans-serif; font-weight: 300; font-size: 10pt; color: grey; margin-bottom: 1px; margin-top: 1px; } .CodeMirror{ font-family: "PT Mono"; font-size: 100%; } </style> ## Library import ```python from sympy import init_printing, Matrix, symbols, eye, Rational init_printing() ``` # LU decomposition of a matrix A In this notebook, we will decompose the matrix $A$ into and upper and lower triangular matrix, such that multiplying these will return $A$. this is shown in (1) where $L$ is the lower triangular matrix and $U$ is the upper triangular matrix. $$ A = LU \tag{1}$$ ## Turning a matrix of coefficients into _U_pper triangular form Consider the following matrix of coefficients shown in (2). $$ \begin{bmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 6 & -1 & -1 \end{bmatrix} \tag{2}$$ We need to convert this into upper triangular form. A generic $ 3 \times 3$ upper triangular matrix is shown in (3). $$ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{3,3} \end{bmatrix} \tag{3} $$ Note that all entries _below_ the main diagonal are $0$. This is an _upper triangular matrix_. To get our matrix in (2) into upper triangular form, successive elementary row operation follow, which remember, is nothing other than matrix multiplication of the elementary matrices. An elementary matrix is an identity matrix on which one elementary row operation was performed. below, we create the $3 \times 3$ matrix in (2) and save it as `sympy` matrix object named `A`. ```python A = Matrix([[1, -2, 1], [3, 2, -2], [6, -1, -1]]) A ``` The `eye()` function returns an identity matrix. ```python eye(3) # Identity matrix of size 3 x 3 ``` We have to get a $-3$ in the first _pivot_ (the $1$ in row $1$, column $1$) to get rid of the $3$ in row $2$, column $1$ (we call the resulting elementary matrix `E21`, referring to the row $2$, column $1$). Then we add the new row $1$ to row $2$. Row $1$ of the identity matrix is then $\left( -3,0,0 \right) $ (but we leave it as $\left( 1,0,0 \right)$ in `E21`). Adding this to row $2$ leaves $ \left( -3,1,0 \right) $. To see why this is so, if we multiply row $1$ by $-3$ we have $ \left( -3, 0, 0 \right) $. Adding this to row $2$, which is $ \left( 0,1,0 \right) $, results in $ \left( -3,1,0 \right) $ and hence `E21` being what we see below. ```python E21 = Matrix([[1, 0, 0], [-3, 1, 0], [0, 0, 1]]) E21 ``` Now we left-multiply $A$ by the elementary matrix `E21`. In matrix notation, we would write $E_{21} A$. ```python E21 * A # The resulting matrix after multiplication by E21 ``` Good, we now have a leading $0$ in row $2$. We follow the same steps to get rid of the leading $6$ in row $3$, column $1$. Multiplying row $1$ (of the identity matrix) by $-6$ and adding this new row to row $3$ yields elementary matrix `E31`. ```python E31 = Matrix([[1, 0, 0], [0, 1, 0], [-6, 0, 1]]) E31 ``` Now for the left-multiplication of $E_{21} A$ by `E31` so that we have $E_{31} E_{21} A$. ```python E31 * E21 * A # This got rid of the leading 6 in row 3 ``` Now the $11$ in row $3$, column $2$ is the _pivot_ and we also need to get rid of the $8$ in row $2$, column $2$. Unfortunately, we have an $8$ and an $11$ to deal with. We will have to do two elementary row operations. First $-11$ times row $2$ of the identity matrix $ \therefore \left( 0,-11,0 \right) $, added to $8$ times row $3$ $ \therefore \left( 0,0,8 \right) $) such that we have $ \left( 0,-11,8 \right) $. Below it is save as `E32`. ```python E32 = Matrix([[1, 0 , 0], [0, 1, 0], [0, -11, 8]]) E32 ``` ```python U = E32 * E31 * E21 * A U # We call is U for upper triangular ``` The matrix is now in upper triangular form, achived by the elementary matrixes shown in (4). $$ { E }_{ 32 } { E }_{ 31 } { E }_{ 21 } A=U \tag{4} $$ ## Calculating the _L_ower triangular from Note, to reverse the process above, we would have to do the multiplication shown in (5). $$ { \left( { E }_{ 21 } \right) }^{ -1 }{ \left( { E }_{ 31 } \right) }^{ -1 }{ \left( { E }_{ 32 } \right) }^{ -1 }\left( { E }_{ 32 } \right) \left( { E }_{ 31 } \right) \left( { E }_{ 21 } \right) A=A \tag{5} $$ The inverse of a matrix can be calculated using the `sympy` method `.inv()`. We can check this with a Boolean logic, using the `==` symbol, which checks if the left- and right-hand sides re equal. ```python E21.inv() * E31.inv() * E32.inv() * E32 * E31 * E21 * A == A # The Boolean double equal signs asks: Is the # left-hand side equal to the right-hand side? ``` True We will be back with the identity matrix just multiplying the inverse elementary matrices and the elementary matrices. ```python E21.inv() * E31.inv() * E32.inv() * E32 * E31 * E21 ``` We left-multiply both sides of (4) by these inverse elementary matrices as shown in (6). $$ { \left( { E }_{ 21 } \right) }^{ -1 }{ \left( { E }_{ 31 } \right) }^{ -1 }{ \left( { E }_{ 32 } \right) }^{ -1 }\left( { E }_{ 32 } \right) \left( { E }_{ 31 } \right) \left( { E }_{ 21 } \right) A={ \left( { E }_{ 21 } \right) }^{ -1 }{ \left( { E }_{ 31 } \right) }^{ -1 }{ \left( { E }_{ 32 } \right) }^{ -1 }U \tag{6} $$ The multiplication of these inverse elementary matrices results in a _l_ower triangular matrix, $L$, such that we have (1). ```python L = E21.inv() * E31.inv() * E32.inv() L ``` Let's check if this is so. ```python A == L * U # Checking this with a Boolean question ``` True ```python A, L * U # They are identical ``` ## Doing this in one go using sympy The `sympy` library provides the `.LUdecomposition()` method for rectangular matrices. It returns three values. ```python L, U, _ = A.LUdecomposition() ``` ```python L ``` ```python U # Note the difference from the U above ``` $$\left[\begin{matrix}1 & -2 & 1\\0 & 8 & -5\\0 & 0 & - \frac{1}{8}\end{matrix}\right]$$ Note the subtle difference between this $U$ and the one calculated above. It simply has row $3$ divided by $8$. It makes no difference as shown below. ```python L * U # Back to A ``` ### What's special about L? Our methods only works when no row interchange happens. It also actually only works when doing the conventional subtracting the scalar multiplication of a row from another row, leaving the positive scalar. (This is opposed to the negatives I often use in my head, allowing me to add the two rows). Note the $3$ (in row $2$, column $1$) and the $6$ (in row $3$, column $1$). They are the row multiplications we have to do for `E21` and `E31`. The $\frac{11}{8}$ is what we did for `E32` (we just did it in two steps so as not to use fractions). ## Row exchanges Sometimes, we have to allow row exchanges, i.e. if the pivot contains a $0$. As an example, from a $ 3 \times 3 $ identity matrix we could have the following. ```python eye(3) ``` Exchanging rows $1$ and $2$. ```python Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) ``` ```python A, Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) * A # Showing row exchange ``` By the way, how many permutations of row exchanges are there? This answer is $n!$, where $n$ is the number of rows. ## Example problems ### Example problem 01 1. Perform LU decomposition of: $$ \begin{bmatrix} 1 & 0 & 1 \\ a & a & a \\ b & b & a \end{bmatrix} $$ 2. For which values of $a$ and $b$ does $L$ and $U$ exist? #### Solution ```python a, b = symbols('a b') ``` ```python A = Matrix([[1, 0, 1], [a, a, a], [b, b, a]]) A ``` ```python L,U, _ = A.LUdecomposition() ``` ```python L, U ``` Checking. ```python L * U == A ``` True For existence it is clear that $ a \ne 0 $. Not only for the division by $0$, but because we will have a row of $0$'s and a $0$ in the pivot position, row $2$, column $2$. Furthermore, $a \ne b$, for the same reasons. ## Hints and tips ```python E21, E21.inv() ``` To take the inverse of an elementary matrix, simply change the sign of the off-diagonal elements and multiply each element by 1 over the determinant (more about the determinant later). The determinant is easy to do for these $ n=3 $ square matrices, since the top row is $ \left( 1,0,0 \right) $. ```python E32, E32.inv() ``` $$\begin{pmatrix}\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & -11 & 8\end{matrix}\right], & \left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & \frac{11}{8} & \frac{1}{8}\end{matrix}\right]\end{pmatrix}$$ By keeping track of the elementary matrices it is easy to get $L$ and $U$. It is also easy to get the inverses of $L$ and $U$. This means it is easy to calculate the values of a column vector $ \underline{x} $ when we have $ A \underline{x} = \underline{b} $ as shown in (7). $$ \begin{align} Ax &= LUx=b\\ Ux &= { L }^{ -1 }b\\ x &= { U }^{ -1 }{ L }^{ -1 }b \end{align} \tag{7} $$ ```python ```
b0c6728f50c396bd2b02c55730bdccf14b3f6de8
58,910
ipynb
Jupyter Notebook
Mathematics/Linear Algebra/0.0 MIT-18.06 - Jupyter/Lecture_4_LU_decomposition_of_A.ipynb
okara83/Becoming-a-Data-Scientist
f09a15f7f239b96b77a2f080c403b2f3e95c9650
[ "MIT" ]
null
null
null
Mathematics/Linear Algebra/0.0 MIT-18.06 - Jupyter/Lecture_4_LU_decomposition_of_A.ipynb
okara83/Becoming-a-Data-Scientist
f09a15f7f239b96b77a2f080c403b2f3e95c9650
[ "MIT" ]
null
null
null
Mathematics/Linear Algebra/0.0 MIT-18.06 - Jupyter/Lecture_4_LU_decomposition_of_A.ipynb
okara83/Becoming-a-Data-Scientist
f09a15f7f239b96b77a2f080c403b2f3e95c9650
[ "MIT" ]
2
2022-02-09T15:41:33.000Z
2022-02-11T07:47:40.000Z
49.629318
3,412
0.705449
true
3,504
Qwen/Qwen-72B
1. YES 2. YES
0.600188
0.855851
0.513672
__label__eng_Latn
0.980474
0.031761
# Axion-electron coupling limits vs axion mass Axion mass-PQ scale relation: \begin{equation} m_{a}=5.70(7) \mu \mathrm{eV}\left(\frac{10^{12} \,\mathrm{GeV}}{f_{a}}\right) \end{equation} Axion-electron coupling \begin{equation} g_{ae} \equiv \frac{C_{ae} m_{e}}{f_{a}}=8.943 \times 10^{-11} C_{ae}\frac{m_a}{\mathrm{eV}} \end{equation} Model dependent constant: \begin{equation} C_{ae} = \begin{cases} 2\times 10^{-4} & {\rm KSVZ} \\ [0.024,\frac{1}{3}] & {\rm DFSZ\,I} \\ [-\frac{1}{3},0] & {\rm DFSZ\,II} \end{cases} \end{equation} In DFSZ the lepton mass can come from either coupling to $H_u$ or $H_d$, so $C_{ae} = -C_{au}$ or $C_{ad}$. The range of values for DFSZ I and II come from the perturbativity of the Yukawa couplings with sets the range $0.28<v_{u} / v_{d}<140$ for the Higgs vevs. ```python %matplotlib inline from numpy import loadtxt import matplotlib.pyplot as plt from PlotFuncs import FigSetup,BlackHoleSpins,AxionElectron, MySaveFig fig,ax = FigSetup(Shape='Rectangular',ylab=r'$|g_{ae}|$',mathpazo=True,\ g_min=1e-15,g_max=1e-10,m_min=1e-9,m_max=1e5,xtick_rotation=0) AxionElectron.QCDAxion(ax) AxionElectron.LUX(ax) AxionElectron.PandaX(ax) AxionElectron.XENON1T(ax) AxionElectron.SolarBasin(ax) AxionElectron.SuperCDMS(ax) AxionElectron.EDELWEISS(ax) AxionElectron.RedGiants(ax) AxionElectron.SolarNu(ax) AxionElectron.QUAX(ax) MySaveFig(fig,'AxionElectron') ``` ```python fig,ax = FigSetup(Shape='Rectangular',ylab=r'$|g_{ae}|$',mathpazo=True,\ g_min=1e-15,g_max=1e-10,m_min=1e-9,m_max=1e5,xtick_rotation=0) AxionElectron.QCDAxion(ax) AxionElectron.LUX(ax) AxionElectron.PandaX(ax) AxionElectron.XENON1T(ax) AxionElectron.SolarBasin(ax) AxionElectron.SuperCDMS(ax) AxionElectron.EDELWEISS(ax,text_on=False) AxionElectron.RedGiants(ax) AxionElectron.SolarNu(ax) AxionElectron.QUAX(ax) AxionElectron.DARWIN(ax) AxionElectron.LZ(ax) AxionElectron.Semiconductors(ax) AxionElectron.Magnon(ax) AxionElectron.MagnonScan(ax) MySaveFig(fig,'AxionElectron_with_Projections') ``` ```python fig,ax = FigSetup(Shape='Rectangular',ylab=r'$|g_{ae}|$',mathpazo=True,\ g_min=1e-15,g_max=1e-10,m_min=1e0,m_max=5e5,xtick_rotation=0) AxionElectron.QCDAxion(ax,DFSZ_on=True,KSVZ_on=False,Hadronic_on=False) plt.gcf().text(0.16,0.23,r'{\bf DFSZ axions}',fontsize=30,rotation=37,alpha=1) AxionElectron.LUX(ax,text_pos=[1.2e0,7e-12]) AxionElectron.PandaX(ax,fs=25,text_pos=[1.1e3,2.8e-13],rotation=0,alpha=0.8,rotation_mode='anchor') AxionElectron.XENON1T(ax,text_shift=[2,1.4],fs=22) AxionElectron.SolarBasin(ax) AxionElectron.SuperCDMS(ax,text_pos=[5e1,2.5e-11],rotation=-72) AxionElectron.EDELWEISS(ax,text_pos=[3.5e4,2.2e-11],fs=20,rotation=42,text_col='w') AxionElectron.RedGiants(ax,text_pos=[1.2e0,2e-13]) AxionElectron.SolarNu(ax,text_pos=[1.2e0,4e-11]) AxionElectron.GERDA(ax,rotation=25) AxionElectron.DARWIN(ax,text_pos=[1.2e3,2.5e-14],rotation=10,rotation_mode='anchor') AxionElectron.LZ(ax,fs=25,rotation=30,rotation_mode='anchor') MySaveFig(fig,'AxionElectron_UndergroundDetectorsCloseup') ``` ```python ```
14817a17b75c5e943a39278ad07c7eae0444a81b
551,869
ipynb
Jupyter Notebook
AxionElectron.ipynb
cajohare/AxionLimits
0f230025c2fb87ed3e054347d844f182ac62811c
[ "MIT" ]
42
2019-07-09T18:05:09.000Z
2022-03-13T02:54:14.000Z
AxionElectron.ipynb
cajohare/AxionLimits
0f230025c2fb87ed3e054347d844f182ac62811c
[ "MIT" ]
1
2021-07-02T13:12:07.000Z
2021-07-23T00:32:13.000Z
AxionElectron.ipynb
cajohare/AxionLimits
0f230025c2fb87ed3e054347d844f182ac62811c
[ "MIT" ]
12
2020-04-07T17:28:07.000Z
2022-03-16T10:42:36.000Z
2,904.573684
211,804
0.963165
true
1,179
Qwen/Qwen-72B
1. YES 2. YES
0.779993
0.682574
0.532403
__label__yue_Hant
0.57368
0.075279
<a href="https://colab.research.google.com/github/NeuromatchAcademy/course-content/blob/master/tutorials/W1D5_DimensionalityReduction/W1D5_Tutorial1.ipynb" target="_parent"></a> # Tutorial 1: Geometric view of data **Week 1, Day 5: Dimensionality Reduction** **By Neuromatch Academy** __Content creators:__ Alex Cayco Gajic, John Murray __Content reviewers:__ Roozbeh Farhoudi, Matt Krause, Spiros Chavlis, Richard Gao, Michael Waskom, Siddharth Suresh, Natalie Schaworonkow, Ella Batty **Our 2021 Sponsors, including Presenting Sponsor Facebook Reality Labs** <p align='center'></p> --- # Tutorial Objectives *Estimated timing of tutorial: 50 minutes* In this notebook we'll explore how multivariate data can be represented in different orthonormal bases. This will help us build intuition that will be helpful in understanding PCA in the following tutorial. Overview: - Generate correlated multivariate data. - Define an arbitrary orthonormal basis. - Project the data onto the new basis. ```python # @title Tutorial slides # @markdown These are the slides for the videos in all tutorials today from IPython.display import IFrame IFrame(src=f"https://mfr.ca-1.osf.io/render?url=https://osf.io/kaq2x/?direct%26mode=render%26action=download%26mode=render", width=854, height=480) ``` ```python # @title Video 1: Geometric view of data from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1Af4y1R78w", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="THu9yHnpq9I", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ``` Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'}) --- # Setup ```python # Imports import numpy as np import matplotlib.pyplot as plt ``` ```python # @title Figure Settings import ipywidgets as widgets # interactive display %config InlineBackend.figure_format = 'retina' plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") ``` ```python # @title Plotting Functions def plot_data(X): """ Plots bivariate data. Includes a plot of each random variable, and a scatter plot of their joint activity. The title indicates the sample correlation calculated from the data. Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable Returns: Nothing. """ fig = plt.figure(figsize=[8, 4]) gs = fig.add_gridspec(2, 2) ax1 = fig.add_subplot(gs[0, 0]) ax1.plot(X[:, 0], color='k') plt.ylabel('Neuron 1') plt.title('Sample var 1: {:.1f}'.format(np.var(X[:, 0]))) ax1.set_xticklabels([]) ax2 = fig.add_subplot(gs[1, 0]) ax2.plot(X[:, 1], color='k') plt.xlabel('Sample Number') plt.ylabel('Neuron 2') plt.title('Sample var 2: {:.1f}'.format(np.var(X[:, 1]))) ax3 = fig.add_subplot(gs[:, 1]) ax3.plot(X[:, 0], X[:, 1], '.', markerfacecolor=[.5, .5, .5], markeredgewidth=0) ax3.axis('equal') plt.xlabel('Neuron 1 activity') plt.ylabel('Neuron 2 activity') plt.title('Sample corr: {:.1f}'.format(np.corrcoef(X[:, 0], X[:, 1])[0, 1])) plt.show() def plot_basis_vectors(X, W): """ Plots bivariate data as well as new basis vectors. Args: X (numpy array of floats) : Data matrix each column corresponds to a different random variable W (numpy array of floats) : Square matrix representing new orthonormal basis each column represents a basis vector Returns: Nothing. """ plt.figure(figsize=[4, 4]) plt.plot(X[:, 0], X[:, 1], '.', color=[.5, .5, .5], label='Data') plt.axis('equal') plt.xlabel('Neuron 1 activity') plt.ylabel('Neuron 2 activity') plt.plot([0, W[0, 0]], [0, W[1, 0]], color='r', linewidth=3, label='Basis vector 1') plt.plot([0, W[0, 1]], [0, W[1, 1]], color='b', linewidth=3, label='Basis vector 2') plt.legend() plt.show() def plot_data_new_basis(Y): """ Plots bivariate data after transformation to new bases. Similar to plot_data but with colors corresponding to projections onto basis 1 (red) and basis 2 (blue). The title indicates the sample correlation calculated from the data. Note that samples are re-sorted in ascending order for the first random variable. Args: Y (numpy array of floats): Data matrix in new basis each column corresponds to a different random variable Returns: Nothing. """ fig = plt.figure(figsize=[8, 4]) gs = fig.add_gridspec(2, 2) ax1 = fig.add_subplot(gs[0, 0]) ax1.plot(Y[:, 0], 'r') plt.xlabel plt.ylabel('Projection \n basis vector 1') plt.title('Sample var 1: {:.1f}'.format(np.var(Y[:, 0]))) ax1.set_xticklabels([]) ax2 = fig.add_subplot(gs[1, 0]) ax2.plot(Y[:, 1], 'b') plt.xlabel('Sample number') plt.ylabel('Projection \n basis vector 2') plt.title('Sample var 2: {:.1f}'.format(np.var(Y[:, 1]))) ax3 = fig.add_subplot(gs[:, 1]) ax3.plot(Y[:, 0], Y[:, 1], '.', color=[.5, .5, .5]) ax3.axis('equal') plt.xlabel('Projection basis vector 1') plt.ylabel('Projection basis vector 2') plt.title('Sample corr: {:.1f}'.format(np.corrcoef(Y[:, 0], Y[:, 1])[0, 1])) plt.show() ``` --- # Section 1: Generate correlated multivariate data ```python # @title Video 2: Multivariate data from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1xz4y1D7ES", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="jcTq2PgU5Vw", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ``` Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'}) This video describes the covariance matrix and the multivariate normal distribution. <details> <summary> <font color='blue'>Click here for text recap of video </font></summary> To gain intuition, we will first use a simple model to generate multivariate data. Specifically, we will draw random samples from a *bivariate normal distribution*. This is an extension of the one-dimensional normal distribution to two dimensions, in which each $x_i$ is marginally normal with mean $\mu_i$ and variance $\sigma_i^2$: \begin{align} x_i \sim \mathcal{N}(\mu_i,\sigma_i^2). \end{align} Additionally, the joint distribution for $x_1$ and $x_2$ has a specified correlation coefficient $\rho$. Recall that the correlation coefficient is a normalized version of the covariance, and ranges between -1 and +1: \begin{align} \rho = \frac{\text{cov}(x_1,x_2)}{\sqrt{\sigma_1^2 \sigma_2^2}}. \end{align} For simplicity, we will assume that the mean of each variable has already been subtracted, so that $\mu_i=0$ for both $i=1$ and $i=2$. The remaining parameters can be summarized in the covariance matrix, which for two dimensions has the following form: \begin{align} {\bf \Sigma} = \begin{pmatrix} \text{var}(x_1) & \text{cov}(x_1,x_2) \\ \text{cov}(x_1,x_2) &\text{var}(x_2) \end{pmatrix}. \end{align} In general, $\bf \Sigma$ is a symmetric matrix with the variances $\text{var}(x_i) = \sigma_i^2$ on the diagonal, and the covariances on the off-diagonal. Later, we will see that the covariance matrix plays a key role in PCA. </details> ## Coding Exercise 1: Draw samples from a distribution We have provided code to draw random samples from a zero-mean bivariate normal distribution with a specified covariance matrix (`get_data`). Throughout this tutorial, we'll imagine these samples represent the activity (firing rates) of two recorded neurons on different trials. Fill in the function below to calculate the covariance matrix given the desired variances and correlation coefficient. The covariance can be found by rearranging the equation above: \begin{align} \text{cov}(x_1,x_2) = \rho \sqrt{\sigma_1^2 \sigma_2^2}. \end{align} ```python # @markdown Execute this cell to get helper function `get_data` def get_data(cov_matrix): """ Returns a matrix of 1000 samples from a bivariate, zero-mean Gaussian. Note that samples are sorted in ascending order for the first random variable Args: cov_matrix (numpy array of floats): desired covariance matrix Returns: (numpy array of floats) : samples from the bivariate Gaussian, with each column corresponding to a different random variable """ mean = np.array([0, 0]) X = np.random.multivariate_normal(mean, cov_matrix, size=1000) indices_for_sorting = np.argsort(X[:, 0]) X = X[indices_for_sorting, :] return X help(get_data) ``` Help on function get_data in module __main__: get_data(cov_matrix) Returns a matrix of 1000 samples from a bivariate, zero-mean Gaussian. Note that samples are sorted in ascending order for the first random variable Args: cov_matrix (numpy array of floats): desired covariance matrix Returns: (numpy array of floats) : samples from the bivariate Gaussian, with each column corresponding to a different random variable ```python def calculate_cov_matrix(var_1, var_2, corr_coef): """ Calculates the covariance matrix based on the variances and correlation coefficient. Args: var_1 (scalar) : variance of the first random variable var_2 (scalar) : variance of the second random variable corr_coef (scalar) : correlation coefficient Returns: (numpy array of floats) : covariance matrix """ ################################################# ## TODO for students: calculate the covariance matrix # Fill out function and remove #raise NotImplementedError("Student excercise: calculate the covariance matrix!") ################################################# # Calculate the covariance from the variances and correlation cov = corr_coef * np.sqrt(var_1 * var_2) cov_matrix = np.array([[var_1, cov], [cov, var_2]]) return cov_matrix # Set parameters np.random.seed(2020) # set random seed variance_1 = 1 variance_2 = 1 corr_coef = 0.8 # Compute covariance matrix cov_matrix = calculate_cov_matrix(variance_1, variance_2, corr_coef) # Generate data with this covariance matrix X = get_data(cov_matrix) # Visualize plot_data(X) ``` ```python # to_remove solution def calculate_cov_matrix(var_1, var_2, corr_coef): """ Calculates the covariance matrix based on the variances and correlation coefficient. Args: var_1 (scalar) : variance of the first random variable var_2 (scalar) : variance of the second random variable corr_coef (scalar) : correlation coefficient Returns: (numpy array of floats) : covariance matrix """ # Calculate the covariance from the variances and correlation cov = corr_coef * np.sqrt(var_1 * var_2) cov_matrix = np.array([[var_1, cov], [cov, var_2]]) return cov_matrix # Set parameters np.random.seed(2020) # set random seed variance_1 = 1 variance_2 = 1 corr_coef = 0.8 # Compute covariance matrix cov_matrix = calculate_cov_matrix(variance_1, variance_2, corr_coef) # Generate data with this covariance matrix X = get_data(cov_matrix) # Visualize with plt.xkcd(): plot_data(X) ``` ## Interactive Demo 1: Correlation effect on data We'll use the function you just completed but now we can change the correlation coefficient via slider. You should get a feel for how changing the correlation coefficient affects the geometry of the simulated data. 1. What effect do negative correlation coefficient values have? 2. What correlation coefficient results in a circular data cloud? Note that we sort the samples according to neuron 1's firing rate, meaning the plot of neuron 1 firing rate over sample number looks clean and pretty unchanging when compared to neuron 2. ```python # @markdown Execute this cell to enable widget def _calculate_cov_matrix(var_1, var_2, corr_coef): # Calculate the covariance from the variances and correlation cov = corr_coef * np.sqrt(var_1 * var_2) cov_matrix = np.array([[var_1, cov], [cov, var_2]]) return cov_matrix @widgets.interact(corr_coef = widgets.FloatSlider(value=.2, min=-1, max=1, step=0.1)) def visualize_correlated_data(corr_coef=0): variance_1 = 1 variance_2 = 1 # Compute covariance matrix cov_matrix = _calculate_cov_matrix(variance_1, variance_2, corr_coef) # Generate data with this covariance matrix X = get_data(cov_matrix) # Visualize plot_data(X) ``` interactive(children=(FloatSlider(value=0.2, description='corr_coef', max=1.0, min=-1.0), Output()), _dom_clas… ```python # to_remove explanation """ 1) Negative correlation coefficients reverse the direction of the relationship: now higher neuron 1 activities are associated with lower neuron 2 activities. 2) A correlation coefficient of 0 (no correlation) results in a circular looking data cloud. """ ``` '\n\n1) Negative correlation coefficients reverse the direction of the relationship: now higher neuron 1\nactivities are associated with lower neuron 2 activities.\n\n2) A correlation coefficient of 0 (no correlation) results in a circular looking data cloud.\n\n' --- # Section 2: Define a new orthonormal basis *Estimated timing to here from start of tutorial: 20 min* ```python # @title Video 3: Orthonormal bases from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1wT4y1E71g", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="PC1RZELnrIg", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ``` Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'}) This video shows that data can be represented in many ways using different bases. It also explains how to check if your favorite basis is orthonormal. <details> <summary> <font color='blue'>Click here for text recap of video </font></summary> Next, we will define a new orthonormal basis of vectors ${\bf u} = [u_1,u_2]$ and ${\bf w} = [w_1,w_2]$. As we learned in the video, two vectors are orthonormal if: 1. They are orthogonal (i.e., their dot product is zero): \begin{align} {\bf u\cdot w} = u_1 w_1 + u_2 w_2 = 0 \end{align} 2. They have unit length: \begin{align} ||{\bf u} || = ||{\bf w} || = 1 \end{align} </details> In two dimensions, it is easy to make an arbitrary orthonormal basis. All we need is a random vector ${\bf u}$, which we have normalized. If we now define the second basis vector to be ${\bf w} = [-u_2,u_1]$, we can check that both conditions are satisfied: \begin{align} {\bf u\cdot w} = - u_1 u_2 + u_2 u_1 = 0 \end{align} and \begin{align} {|| {\bf w} ||} = \sqrt{(-u_2)^2 + u_1^2} = \sqrt{u_1^2 + u_2^2} = 1, \end{align} where we used the fact that ${\bf u}$ is normalized. So, with an arbitrary input vector, we can define an orthonormal basis, which we will write in matrix by stacking the basis vectors horizontally: \begin{align} {{\bf W} } = \begin{pmatrix} u_1 & w_1 \\ u_2 & w_2 \end{pmatrix}. \end{align} ## Coding Exercise 2: Find an orthonormal basis In this exercise you will fill in the function below to define an orthonormal basis, given a single arbitrary 2-dimensional vector as an input. **Steps** * Modify the function `define_orthonormal_basis` to first normalize the first basis vector $\bf u$. * Then complete the function by finding a basis vector $\bf w$ that is orthogonal to $\bf u$. * Test the function using initial basis vector ${\bf u} = [3,1]$. Plot the resulting basis vectors on top of the data scatter plot using the function `plot_basis_vectors`. (For the data, use $\sigma_1^2 =1$, $\sigma_2^2 =1$, and $\rho = .8$). ```python def define_orthonormal_basis(u): """ Calculates an orthonormal basis given an arbitrary vector u. Args: u (numpy array of floats) : arbitrary 2-dimensional vector used for new basis Returns: (numpy array of floats) : new orthonormal basis columns correspond to basis vectors """ ################################################# ## TODO for students: calculate the orthonormal basis # Fill out function and remove #raise NotImplementedError("Student excercise: implement the orthonormal basis function") ################################################# # Normalize vector u u = u / np.linalg.norm(u) # Calculate vector w that is orthogonal to w w = np.array([-u[1], u[0]]) # Put in matrix form W = np.column_stack([u, w]) return W # Set up parameters np.random.seed(2020) # set random seed variance_1 = 1 variance_2 = 1 corr_coef = 0.8 u = np.array([3, 1]) # Compute covariance matrix cov_matrix = calculate_cov_matrix(variance_1, variance_2, corr_coef) # Generate data X = get_data(cov_matrix) # Get orthonomal basis W = define_orthonormal_basis(u) # Visualize plot_basis_vectors(X, W) ``` ```python # to_remove solution def define_orthonormal_basis(u): """ Calculates an orthonormal basis given an arbitrary vector u. Args: u (numpy array of floats) : arbitrary 2-dimensional vector used for new basis Returns: (numpy array of floats) : new orthonormal basis columns correspond to basis vectors """ # Normalize vector u u = u / np.sqrt(u[0] ** 2 + u[1] ** 2) # Calculate vector w that is orthogonal to w w = np.array([-u[1], u[0]]) # Put in matrix form W = np.column_stack([u, w]) return W # Set up parameters np.random.seed(2020) # set random seed variance_1 = 1 variance_2 = 1 corr_coef = 0.8 u = np.array([3, 1]) # Compute covariance matrix cov_matrix = calculate_cov_matrix(variance_1, variance_2, corr_coef) # Generate data X = get_data(cov_matrix) # Get orthonomal basis W = define_orthonormal_basis(u) # Visualize with plt.xkcd(): plot_basis_vectors(X, W) ``` --- # Section 3: Project data onto new basis *Estimated timing to here from start of tutorial: 35 min* ```python # @title Video 4: Change of basis from ipywidgets import widgets out2 = widgets.Output() with out2: from IPython.display import IFrame class BiliVideo(IFrame): def __init__(self, id, page=1, width=400, height=300, **kwargs): self.id=id src = 'https://player.bilibili.com/player.html?bvid={0}&page={1}'.format(id, page) super(BiliVideo, self).__init__(src, width, height, **kwargs) video = BiliVideo(id="BV1LK411J7NQ", width=854, height=480, fs=1) print('Video available at https://www.bilibili.com/video/{0}'.format(video.id)) display(video) out1 = widgets.Output() with out1: from IPython.display import YouTubeVideo video = YouTubeVideo(id="Mj6BRQPKKUc", width=854, height=480, fs=1, rel=0) print('Video available at https://youtube.com/watch?v=' + video.id) display(video) out = widgets.Tab([out1, out2]) out.set_title(0, 'Youtube') out.set_title(1, 'Bilibili') display(out) ``` Tab(children=(Output(), Output()), _titles={'0': 'Youtube', '1': 'Bilibili'}) Finally, we will express our data in the new basis that we have just found. Since $\bf W$ is orthonormal, we can project the data into our new basis using simple matrix multiplication : \begin{align} {\bf Y = X W}. \end{align} We will explore the geometry of the transformed data $\bf Y$ as we vary the choice of basis. ## Coding Exercise 3: Change to orthonormal basis In this exercise you will fill in the function below to change data to a orthonormal basis. **Steps** * Complete the function `change_of_basis` to project the data onto the new basis. * Plot the projected data using the function `plot_data_new_basis`. * What happens to the correlation coefficient in the new basis? Does it increase or decrease? * What happens to variance? ```python def change_of_basis(X, W): """ Projects data onto new basis W. Args: X (numpy array of floats) : Data matrix each column corresponding to a different random variable W (numpy array of floats) : new orthonormal basis columns correspond to basis vectors Returns: (numpy array of floats) : Data matrix expressed in new basis """ ################################################# ## TODO for students: project the data onto o new basis W # Fill out function and remove #raise NotImplementedError("Student excercise: implement change of basis") ################################################# # Project data onto new basis described by W Y = X @ W return Y # Project data to new basis Y = change_of_basis(X, W) # Visualize plot_data_new_basis(Y) ``` ```python # to_remove solution def change_of_basis(X, W): """ Projects data onto new basis W. Args: X (numpy array of floats) : Data matrix each column corresponding to a different random variable W (numpy array of floats) : new orthonormal basis columns correspond to basis vectors Returns: (numpy array of floats) : Data matrix expressed in new basis """ # Project data onto new basis described by W Y = X @ W return Y # Project data to new basis Y = change_of_basis(X, W) # Visualize with plt.xkcd(): plot_data_new_basis(Y) ``` ## Interactive Demo 3: Play with the basis vectors To see what happens to the correlation as we change the basis vectors, run the cell below. The parameter $\theta$ controls the angle of $\bf u$ in degrees. Use the slider to rotate the basis vectors. 1. What happens to the projected data as you rotate the basis? 2. How does the correlation coefficient change? How does the variance of the projection onto each basis vector change? 3. Are you able to find a basis in which the projected data is **uncorrelated**? ```python # @markdown Make sure you execute this cell to enable the widget! def refresh(theta=0): u = [1, np.tan(theta * np.pi / 180)] W = define_orthonormal_basis(u) Y = change_of_basis(X, W) plot_basis_vectors(X, W) plot_data_new_basis(Y) _ = widgets.interact(refresh, theta=(0, 90, 5)) ``` interactive(children=(IntSlider(value=0, description='theta', max=90, step=5), Output()), _dom_classes=('widge… ```python # to_remove explanation """ 1) As you rotate the basis vectors, the look of the cloud of projected data changes. Specifically, the correlations and variances of the projected data change. 2) As the angle increases, the correlation coefficient decreases, goes to 0, then starts to become negative. It changes from 0.8 to -.8 when the angle is changed by 90 degrees. With theta of 0, the data projected onto the two basis vectors has equal variances of 1. As theta increases, these variances become unequal: the projected data has larger and larger variance for basis vector 1 and smaller variance for basis vector 2. Past theta of 45, the trend reverses and the variances start becoming more similar. 3) If theta is 45 degrees, the projected data is uncorrelated. """ ``` --- # Summary *Estimated timing of tutorial: 50 minutes* - In this tutorial, we learned that multivariate data can be visualized as a cloud of points in a high-dimensional vector space. The geometry of this cloud is shaped by the covariance matrix. - Multivariate data can be represented in a new orthonormal basis using the dot product. These new basis vectors correspond to specific mixtures of the original variables - for example, in neuroscience, they could represent different ratios of activation across a population of neurons. - The projected data (after transforming into the new basis) will generally have a different geometry from the original data. In particular, taking basis vectors that are aligned with the spread of cloud of points decorrelates the data. * These concepts - covariance, projections, and orthonormal bases - are key for understanding PCA, which we be our focus in the next tutorial. --- # Notation \begin{align} x_i &\quad \text{data point for dimension } i\\ \mu_i &\quad \text{mean along dimension } i\\ \sigma_i^2 &\quad \text{variance along dimension } i \\ \bf u, \bf w &\quad \text{orthonormal basis vectors}\\ \rho &\quad \text{correlation coefficient}\\ \bf \Sigma &\quad \text{covariance matrix}\\ \bf X &\quad \text{original data matrix}\\ \bf W &\quad \text{projection matrix}\\ \bf Y &\quad \text{transformed data}\\ \end{align} ```python ```
f2d19328e81927a4b6a2712e60b70cffc195be91
788,488
ipynb
Jupyter Notebook
tutorials/W1D5_DimensionalityReduction/ED_W1D5_Tutorial1.ipynb
eduardojdiniz/CompNeuro
20269e66540dc4e802273735c97323020ee37406
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
tutorials/W1D5_DimensionalityReduction/ED_W1D5_Tutorial1.ipynb
eduardojdiniz/CompNeuro
20269e66540dc4e802273735c97323020ee37406
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
tutorials/W1D5_DimensionalityReduction/ED_W1D5_Tutorial1.ipynb
eduardojdiniz/CompNeuro
20269e66540dc4e802273735c97323020ee37406
[ "CC-BY-4.0", "BSD-3-Clause" ]
null
null
null
575.118891
184,336
0.943909
true
7,026
Qwen/Qwen-72B
1. YES 2. YES
0.746139
0.70253
0.524185
__label__eng_Latn
0.939933
0.056187
# Beispielprogramm: Matrixwertige Exponentialfuntion Zu einer reellwertigen Matrix betrachten wir ein Anfangswertproblem für die lineare DGL \begin{align} \dot {\vec u}(t) &:= A {\vec u(t)},\quad t>0\\ \vec u(0)&= \vec u_0 \end{align} Dessen Lösung ist durch $\vec u(t) = \exp(A t) \vec u_0$ explizit gegeben. In der Vorlesung wurde behandelt, dass das Verhalten der Lösung durch die **Eigenwerte von A** bestimmt ist. Wir konzentrieren uns im folgenden auf den Spezialfall $$A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb R^{2\times 2}$$ Aus diesen Fall kann bereits vieles abgeleitet werden. Zunächst definieren wir die Matrix (**TODO:** Bitte ggf. ändern!): ```octave A = [3 1.0; -1.0 -3] ``` A = 3 1 -1 -3 Die Eigenwerte ergeben sich über die Nullstellen des charakteristischen Polynoms: $$ 0= det(A - \lambda I) = \begin{vmatrix} a-\lambda & b \\ c & d-\lambda \end{vmatrix} = (a-\lambda )(d-\lambda )-bc = \lambda^2 - \lambda (a+b) + (ad - bc)$$ Über die $pq$-Formel sieht man, dass sich entweder (i) zwei reellwertige Eigenwerte $\lambda_1, \lambda_2 \in\mathbb R$ oder (ii) zwei komplex-konjugiert Eigenwerte $$\lambda_{1/2} = \alpha \pm i \beta \in \mathbb C,$$ mit Real- und Imaginärteil $\alpha, \beta \in \mathbb R$ ergeben. Wir berechnen diese mit Octave: ```octave [V,Lambda]=eig(A); Lambda V alpha = real(Lambda(1,1)) alpha2 = real(Lambda(2,2)) beta = abs(imag(Lambda(1,1))) ``` Lambda = Diagonal Matrix 2.8284 0 0 -2.8284 V = 0.98560 -0.16910 -0.16910 0.98560 alpha = 2.8284 alpha2 = -2.8284 beta = 0 Für den Eigenwert $\lambda = \alpha + i \beta$ folgt mit der Eulerschen Formel die Gleichung $$ \exp(\lambda t) = \exp(\alpha t) \cdot \exp(i \beta t) = \exp(\alpha t) \cdot \left( \cos (\beta t) + i \sin (\beta t) \right) $$ Somit bestimmt der Realteil $\alpha$ das Wachstumsverhalten $\exp(\alpha t)$, während der Imaginärteil $\beta$ zu Oszillationen $\sin (\beta t)$ bzw. $\cos (\beta t)$ führt. Entsprechend definieren wir nachfolgend charakteristische **Zeitkonstanten**. Diese sind für Wachstum und Oszillationen durch $1/|Re \lambda|$ bzw. $2 \pi/|Im \lambda|$ gegeben. Um jeweils den schnellsten Prozess auflösen zu können, betrachten wir insgesamt das Minimum. ```octave tGrowth = abs(1.0/real(Lambda(1,1))) tGrowth2 = abs(1.0/real(Lambda(2,2))) if (beta > 0) # Ein Wachstums-/Zerfallprozess mit Oszillation tOscillation = 2.0*pi/beta tChar = min(tGrowth,tOscillation) else # Zwei Wachstums-/Zerfallprozesse tChar=min(tGrowth, tGrowth2) endif ``` tGrowth = 0.35355 tGrowth2 = 0.35355 tChar = 0.35355 Obwohl die Lösung explizite Lösung der DGL bekannt ist, lösen wir numerisch ;-): ```octave function udot=f_rhs(u,t, A) udot = A*u; endfunction u0 = [10,40]; tdiskret = linspace(0, 3.0*tChar, 500); uDiskret = lsode(@(u,t) f_rhs(u,t,A), u0, tdiskret); ``` Wir wollen nun die Lösung auch graphisch darstellen: ```octave # Funktion zur Ausgabe des Vektorfelds function plot_field_2D(myrhs, spaceX1, spaceX2, name) for j=1:length(spaceX2) for i=1:length(spaceX1) vec = myrhs([spaceX1(i);spaceX2(j)], 0.0); dX1(j,i) = vec(1); dX2(j,i) = vec(2); end end quiver(spaceX1,spaceX2,dX1,dX2); endfunction ``` ```octave # Plot um Ursprung min1 = min(uDiskret(:,1)); max1 = max(uDiskret(:,1)); abs1 = max(abs(min1), abs(max1)); min2 = min(uDiskret(:,2)); max2 = max(uDiskret(:,2)); abs2 = max(abs(min2), abs(max2)); spaceX1=linspace(-abs1, abs1, 20); spaceX2=linspace(-abs2, abs2, 20); hold on xlabel("Komponente u_1") ylabel("Komponente u_2") plot_field_2D(@(u,t) f_rhs(u,t,A), spaceX1, spaceX2, "Zeitliche Entwicklung") plot(uDiskret(:,1), uDiskret(:,2), "Color", "black") plot (u0(1), u0(2), "Color", "black") legend("Richtungsfeld", "Loesung", "Anfangswert") ``` Das Vorzeichen von $Re \lambda$ entscheidet darüber, ob ein Wachstums- oder Zerfallsprozess vorliegt. Für komplexe $\lambda$ erhalten wir, je nach Vorzeigen des Realteils, eine gedämpfte ($Re \lambda<0$) oder angefachte ($Re \lambda>0$) Schwingung. ```octave xlabel("Zeit t") ylabel("Komponente u_1, u_2") hold on plot(tdiskret, uDiskret(:,1), "Color", "blue") plot(tdiskret, uDiskret(:,2), "Color", "red") # Fuer komplexe Eigenwerte plotten wir die einhuellende Exponentialfunktion if (beta > 0) uGrowth = abs(norm(u0))*exp(tdiskret/tGrowth); plot(tdiskret, uGrowth, "Color", "Black") plot(tdiskret, -uGrowth, "Color", "Black") legend("Komponente u_1", "Komponente u_2", "Einhuellende") else legend("Komponente u_1", "Komponente u_2") endif ``` ```octave ```
d999a1bf94ff4db2647b92e7023c96c59e6c792e
48,728
ipynb
Jupyter Notebook
jupyter/beispiel05-Matrixexponential2x2.ipynb
anaegel/modsim-sommer2020
26906435115447718ee081dbce59e16bcce03513
[ "BSD-3-Clause" ]
null
null
null
jupyter/beispiel05-Matrixexponential2x2.ipynb
anaegel/modsim-sommer2020
26906435115447718ee081dbce59e16bcce03513
[ "BSD-3-Clause" ]
null
null
null
jupyter/beispiel05-Matrixexponential2x2.ipynb
anaegel/modsim-sommer2020
26906435115447718ee081dbce59e16bcce03513
[ "BSD-3-Clause" ]
1
2020-08-07T23:11:26.000Z
2020-08-07T23:11:26.000Z
158.723127
26,498
0.877504
true
1,733
Qwen/Qwen-72B
1. YES 2. YES
0.885631
0.857768
0.759666
__label__deu_Latn
0.830156
0.603292
# CFL and Nyquist conditions **Nicolás Guarín-Zapata** This notebook shows interactively the CFL and Nyquist-Shanon conditions This document is based on a Notebook from ["Practical Numerical Methods with Python"](http://openedx.seas.gwu.edu/courses/GW/MAE6286/2014_fall/about) written by L.A. Barba, G.F. Forsyth, C. Cooper (2014). ``` import numpy as np import matplotlib.pyplot as plt %matplotlib inline from matplotlib import rcParams rcParams['font.family'] = 'serif' rcParams['font.size'] = 16 ``` ## CFL Condition The *one-dimensional linear convection equation* is the simplest case for study the CFL condition. Here it is: \begin{equation}\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0\end{equation} The equation represents a *wave* propagating with speed $c$ in the $x$ direction, without change of shape. For that reason, it's sometimes called the *one-way wave equation* (sometimes also the *advection equation*). With an initial condition $u(x,0)=u_0(x)$, the equation has an exact solution given by: \begin{equation}u(x,t)=u_0(x-ct). \end{equation} ``` def linearconv(nx): """Solve the linear convection equation. Solves the equation d_t u + c d_x u = 0 where * the wavespeed c is set to 1 * the domain is x \in [0, 2] * 20 timesteps are taken, with \Delta t = 0.025 * the initial data is the hat function Produces a plot of the results Parameters ---------- nx : integer number of internal grid points Returns ------- None : none """ dx = 2./(nx-1) nt = 20 dt = .025 c = 1 u = np.ones(nx) u[.5/dx : 1/dx+1]=2 un = np.ones(nx) for n in range(nt): un = u.copy() u[1:] = un[1:] -c*dt/dx*(un[1:] -un[0:-1]) u[0] = 1.0 plt.plot(np.linspace(0,2,nx), u, color='#003366', ls='-', lw=3) plt.ylim(0,2.5); ``` ### Different spatial discretizations ``` linearconv(11) ``` ``` linearconv(21) ``` ``` linearconv(41) ``` ``` linearconv(81) ``` ``` linearconv(91) ``` ``` linearconv(201) ``` ### Nyquist-Shanon condition ``` from scipy import interpolate n = 120 x = np.linspace(-np.pi, np.pi, n) y = np.sin(5*x) plt.plot(x,y, lw=2); plt.xlim(-np.pi, np.pi); f = interpolate.interp1d(x, y, kind='quadratic') ``` ``` def plot_smooth(x, y, n): f = interpolate.interp1d(x, y, kind='quadratic') xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, 'ro', xnew, f(xnew) , '--r', lw=2); ``` Now we are going to play a little bit with the sampling rate ``` ``` ``` n = 5 xnew = np.linspace(-np.pi, np.pi, n) ynew = f(xnew) plt.plot(x,y, lw=2); plot_smooth(xnew, ynew, 100) plt.ylim(-1.5,1.5) ``` ``` n = 8 xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, lw=2); plot_smooth(xnew, f(xnew), 100) plt.ylim(-1.5,1.5) ``` ``` n = 10 xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, lw=2); plot_smooth(xnew, f(xnew), 100) plt.ylim(-1.5,1.5) ``` ``` n = 15 xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, lw=2); plot_smooth(xnew, f(xnew), 100) plt.ylim(-1.5,1.5) ``` ``` n = 20 xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, lw=2); plot_smooth(xnew, f(xnew), 100) plt.ylim(-1.5,1.5) ``` ``` n = 30 xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, lw=2); plot_smooth(xnew, f(xnew), 100) plt.ylim(-1.5,1.5) ``` ``` n = 50 xnew = np.linspace(-np.pi, np.pi, n) plt.plot(x,y, lw=2); plot_smooth(xnew, f(xnew), 100) plt.ylim(-1.5,1.5) ``` --- ######The cell below loads the style of the notebook. ``` from IPython.core.display import HTML css_file = 'styles/numericalmoocstyle.css' HTML(open(css_file, "r").read()) ``` <link href='http://fonts.googleapis.com/css?family=Alegreya+Sans:100,300,400,500,700,800,900,100italic,300italic,400italic,500italic,700italic,800italic,900italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Arvo:400,700,400italic' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=PT+Mono' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Shadows+Into+Light' rel='stylesheet' type='text/css'> <link href='http://fonts.googleapis.com/css?family=Nixie+One' rel='stylesheet' type='text/css'> <style> @font-face { font-family: "Computer Modern"; src: url('http://mirrors.ctan.org/fonts/cm-unicode/fonts/otf/cmunss.otf'); } #notebook_panel { /* main background */ background: rgb(245,245,245); } div.cell { /* set cell width */ width: 750px; } div #notebook { /* centre the content */ background: #fff; /* white background for content */ width: 1000px; margin: auto; padding-left: 0em; } #notebook li { /* More space between bullet points */ margin-top:0.8em; } /* draw border around running cells */ div.cell.border-box-sizing.code_cell.running { border: 1px solid #111; } /* Put a solid color box around each cell and its output, visually linking them*/ div.cell.code_cell { background-color: rgb(256,256,256); border-radius: 0px; padding: 0.5em; margin-left:1em; margin-top: 1em; } div.text_cell_render{ font-family: 'Alegreya Sans' sans-serif; line-height: 140%; font-size: 125%; font-weight: 400; width:600px; margin-left:auto; margin-right:auto; } /* Formatting for header cells */ .text_cell_render h1 { font-family: 'Nixie One', serif; font-style:regular; font-weight: 400; font-size: 45pt; line-height: 100%; color: rgb(0,51,102); margin-bottom: 0.5em; margin-top: 0.5em; display: block; } .text_cell_render h2 { font-family: 'Nixie One', serif; font-weight: 400; font-size: 30pt; line-height: 100%; color: rgb(0,51,102); margin-bottom: 0.1em; margin-top: 0.3em; display: block; } .text_cell_render h3 { font-family: 'Nixie One', serif; margin-top:16px; font-size: 22pt; font-weight: 600; margin-bottom: 3px; font-style: regular; color: rgb(102,102,0); } .text_cell_render h4 { /*Use this for captions*/ font-family: 'Nixie One', serif; font-size: 14pt; text-align: center; margin-top: 0em; margin-bottom: 2em; font-style: regular; } .text_cell_render h5 { /*Use this for small titles*/ font-family: 'Nixie One', sans-serif; font-weight: 400; font-size: 16pt; color: rgb(163,0,0); font-style: italic; margin-bottom: .1em; margin-top: 0.8em; display: block; } .text_cell_render h6 { /*use this for copyright note*/ font-family: 'PT Mono', sans-serif; font-weight: 300; font-size: 9pt; line-height: 100%; color: grey; margin-bottom: 1px; margin-top: 1px; } .CodeMirror{ font-family: "PT Mono"; font-size: 90%; } </style>
f2ef90e5a9d1febb284d8435a66acc25d89b9ba7
303,586
ipynb
Jupyter Notebook
2014/ce795/CFL_Nyquist_conditions.ipynb
nicoguaro/talks
01e9ddc4a44952a1ea8b1d8acf3cbc17ddbc31e2
[ "MIT" ]
null
null
null
2014/ce795/CFL_Nyquist_conditions.ipynb
nicoguaro/talks
01e9ddc4a44952a1ea8b1d8acf3cbc17ddbc31e2
[ "MIT" ]
null
null
null
2014/ce795/CFL_Nyquist_conditions.ipynb
nicoguaro/talks
01e9ddc4a44952a1ea8b1d8acf3cbc17ddbc31e2
[ "MIT" ]
null
null
null
421.647222
32,319
0.923867
true
2,182
Qwen/Qwen-72B
1. YES 2. YES
0.859664
0.845942
0.727226
__label__eng_Latn
0.463387
0.527922