sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A382015
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
|
[
"1",
"1",
"3",
"31",
"589",
"16121",
"574621",
"25206595",
"1312188249",
"79030103185",
"5404390242841",
"413597889825011",
"35018686148243029",
"3249772250267517001",
"327996955065621786309",
"35769289851588288786211",
"4191277822883571632163121",
"525144087149768803822788257",
"70060367710090279786176259633"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A001764",
"A161629",
"A161630",
"A251569",
"A382015",
"A382016"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-12T09:38:56 |
oeisdata/seq/A382/A382015.seq
|
6b0e51a73917ea9f4d7ac6006dbe09b6
|
A382016
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
|
[
"1",
"1",
"3",
"37",
"901",
"32141",
"1502701",
"86737645",
"5952271977",
"473117681881",
"42731313784921",
"4321503662185601",
"483709266378568429",
"59360036142346311685",
"7924411424305558028757",
"1143251381667547987358581",
"177245340974472998607370321",
"29386977237154379581209716657"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A002293",
"A161629",
"A161630",
"A380513",
"A382015",
"A382016"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-12T09:39:04 |
oeisdata/seq/A382/A382016.seq
|
68b6181712abb9aacca5f48e0521c59e
|
A382017
|
Record positions in A277847.
|
[
"1",
"2",
"6",
"11",
"14",
"19",
"22",
"31",
"38",
"43",
"46",
"59",
"62",
"67",
"71",
"79",
"83",
"86",
"94",
"103",
"107",
"118",
"127",
"131",
"134",
"139",
"142",
"151",
"158",
"163",
"166",
"179",
"191",
"199",
"206",
"211",
"214",
"223",
"227",
"239",
"251",
"254",
"262",
"271",
"278",
"283",
"302",
"307",
"311",
"326",
"331",
"334",
"347",
"358",
"367",
"379",
"382",
"398",
"419",
"422",
"431",
"439",
"443",
"446"
] |
[
"nonn"
] | 19 | 1 | 2 |
[
"A277847",
"A382017"
] | null |
Aloe Poliszuk, Mar 11 2025
| 2025-04-02T21:09:45 |
oeisdata/seq/A382/A382017.seq
|
367e8beb9a5d6d749458f957c7f81ce5
|
A382018
|
Number of orbits under the action of the permutation group S(n) on the nonsingular n X n matrices over GF(2).
|
[
"1",
"1",
"4",
"33",
"908",
"85411",
"28227922",
"32597166327"
] |
[
"nonn",
"hard",
"more"
] | 8 | 0 | 3 |
[
"A000595",
"A002884",
"A382018"
] | null |
Søren Fuglede Jørgensen, Mar 12 2025
| 2025-03-18T18:58:59 |
oeisdata/seq/A382/A382018.seq
|
54f41b71911f03a43b8cf2462293aaea
|
A382019
|
Number of zeros (counted with multiplicity) inside and on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"5",
"6",
"7",
"8",
"9",
"10",
"9",
"10",
"11",
"12",
"13",
"14",
"13",
"14",
"15",
"16",
"17",
"18",
"17",
"18",
"19",
"20",
"21",
"22",
"21",
"22",
"23",
"24",
"25",
"26",
"25",
"26",
"27",
"28",
"29",
"30",
"29",
"30",
"31",
"32",
"33",
"34",
"33",
"34",
"35",
"36",
"37",
"38",
"37",
"38",
"39",
"40",
"41",
"42",
"41",
"42",
"43",
"44",
"45",
"46",
"45",
"46",
"47"
] |
[
"nonn"
] | 26 | 0 | 3 |
[
"A007318",
"A214292",
"A382019"
] | null |
Michel Lagneau, Mar 12 2025
| 2025-03-25T14:02:23 |
oeisdata/seq/A382/A382019.seq
|
a4a2b107977540deb37ca9d2e7dbf4b2
|
A382020
|
Decimal expansion of (5040*e^8 - 35280*e^7 + 90720*e^6 - 105000*e^5 + 53760*e^4 - 10206*e^3 + 448*e^2 - e) / 5040.
|
[
"1",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"0",
"4",
"2",
"6",
"8",
"8",
"7",
"8",
"2",
"3",
"6",
"6",
"2",
"3",
"4",
"7",
"0",
"0",
"4",
"3",
"3",
"2",
"5",
"8",
"0",
"4",
"4",
"9",
"3",
"6",
"4",
"9",
"5",
"7",
"7",
"5",
"8",
"9",
"7",
"0",
"2",
"0",
"7",
"0",
"7",
"8",
"7",
"1",
"2",
"8",
"4",
"1",
"5",
"7",
"6",
"3",
"7",
"6",
"1",
"8",
"5",
"7",
"5",
"9",
"4",
"9",
"7",
"2",
"1",
"4",
"6",
"2",
"7",
"6",
"4",
"6",
"6",
"0"
] |
[
"nonn",
"cons",
"easy"
] | 18 | 2 | 2 |
[
"A001113",
"A089087",
"A089139",
"A090142",
"A090143",
"A090611",
"A379601",
"A381673",
"A381843",
"A382020",
"A382026"
] | null |
Daniel Mondot, Mar 12 2025
| 2025-03-23T05:31:40 |
oeisdata/seq/A382/A382020.seq
|
5a57406250bbab0671344e2b40dc4c49
|
A382021
|
Number of distinct degree sequences among all simple graphs with n vertices whose degrees are consecutive integers.
|
[
"1",
"1",
"2",
"4",
"9",
"21",
"50",
"118",
"272",
"614",
"1368",
"3014"
] |
[
"nonn",
"more"
] | 9 | 0 | 3 |
[
"A000088",
"A004251",
"A005176",
"A381586",
"A382021"
] | null |
John P. McSorley, Mar 12 2025
| 2025-03-18T21:14:02 |
oeisdata/seq/A382/A382021.seq
|
c61bca0ea508ee7cf0c3f79add199e3f
|
A382022
|
Composite integers k = p*q*r where p < q < r are distinct primes such that p*r < q^2.
|
[
"70",
"105",
"110",
"154",
"182",
"231",
"238",
"266",
"273",
"286",
"322",
"374",
"418",
"429",
"442",
"494",
"506",
"561",
"598",
"627",
"638",
"646",
"663",
"682",
"715",
"741",
"754",
"759",
"782",
"806",
"814",
"874",
"897",
"902",
"935",
"946",
"957",
"962",
"969",
"986",
"1001",
"1023",
"1034",
"1045",
"1054",
"1066",
"1102",
"1105",
"1118"
] |
[
"nonn"
] | 43 | 1 | 1 |
[
"A007304",
"A375008",
"A381736",
"A382022"
] | null |
Matthew Goers, Mar 12 2025
| 2025-04-22T06:32:28 |
oeisdata/seq/A382/A382022.seq
|
ed7630481feaeed55ece882658fa0b2c
|
A382023
|
Number of distinct half sets in Q_n containing only pairs of antipodal vertices with the property that they form an equitable partition with their complement and are interchangable under a group automorphism of the hypercube graph.
|
[
"0",
"1",
"3",
"19",
"75",
"391"
] |
[
"nonn",
"more"
] | 47 | 1 | 3 | null | null |
Constantinos Kourouzides, Mar 12 2025
| 2025-04-29T23:31:35 |
oeisdata/seq/A382/A382023.seq
|
e9913dc5ed6bff3e12ab7c381dc4a96c
|
A382024
|
Maximum number of transversals in a Brown's diagonal Latin square of order 2n.
|
[
"0",
"8",
"32",
"384",
"5504"
] |
[
"nonn",
"more",
"hard"
] | 8 | 1 | 2 |
[
"A287644",
"A339641",
"A382024"
] | null |
Eduard I. Vatutin, Mar 12 2025
| 2025-03-18T21:40:24 |
oeisdata/seq/A382/A382024.seq
|
a671064cd5c794f2c03cb21d48bb4f3d
|
A382025
|
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of three kinds.
|
[
"1",
"0",
"3",
"0",
"3",
"9",
"0",
"3",
"12",
"22",
"0",
"3",
"18",
"36",
"51",
"0",
"3",
"21",
"57",
"87",
"108",
"0",
"3",
"27",
"82",
"148",
"193",
"221",
"0",
"3",
"30",
"111",
"225",
"330",
"393",
"429",
"0",
"3",
"36",
"144",
"333",
"528",
"681",
"765",
"810",
"0",
"3",
"39",
"184",
"460",
"808",
"1106",
"1316",
"1424",
"1479",
"0",
"3",
"45",
"225",
"630",
"1182",
"1740",
"2163",
"2439",
"2574",
"2640"
] |
[
"nonn",
"tabl"
] | 5 | 0 | 3 |
[
"A000716",
"A026820",
"A381895",
"A382025"
] | null |
Peter Dolland, Mar 12 2025
| 2025-03-19T10:39:45 |
oeisdata/seq/A382/A382025.seq
|
984593de457079400e65296e20f0a54f
|
A382026
|
Decimal expansion of (362880*e^10 - 3265920*e^9 + 11612160*e^8 - 20744640*e^7 + 19595520*e^6 - 9450000*e^5 + 2064384*e^4 - 157464*e^3 + 2304*e^2 - e) / 362880.
|
[
"2",
"0",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"4",
"7",
"6",
"3",
"1",
"8",
"8",
"0",
"0",
"6",
"1",
"4",
"1",
"6",
"3",
"0",
"9",
"1",
"0",
"5",
"9",
"7",
"6",
"6",
"4",
"6",
"8",
"6",
"5",
"6",
"8",
"6",
"0",
"8",
"2",
"1",
"5",
"4",
"4",
"7",
"4",
"2",
"3",
"8",
"4",
"1",
"9",
"2",
"0",
"9",
"0",
"6",
"0",
"0",
"0",
"7",
"3",
"8",
"5",
"3",
"6",
"8",
"8",
"3",
"6",
"1",
"5",
"8",
"9",
"8",
"2",
"5",
"8",
"2",
"3",
"4",
"5"
] |
[
"nonn",
"cons",
"easy"
] | 13 | 2 | 1 |
[
"A001113",
"A089087",
"A089139",
"A090142",
"A090143",
"A090611",
"A379601",
"A381673",
"A381843",
"A382020",
"A382026"
] | null |
Daniel Mondot, Mar 12 2025
| 2025-03-23T05:28:26 |
oeisdata/seq/A382/A382026.seq
|
5d55458e6a76d1ea1b494b9aec4a8ddc
|
A382027
|
Primes whose decimal digits are in ascending order and also parity alternating.
|
[
"2",
"3",
"5",
"7",
"23",
"29",
"47",
"67",
"89",
"127",
"149",
"167",
"347",
"349",
"367",
"389",
"569",
"2347",
"2389",
"2789",
"4567",
"4789",
"12347",
"12569",
"12589",
"34589",
"234589",
"1234789",
"1456789",
"23456789"
] |
[
"nonn",
"base",
"fini",
"full"
] | 18 | 1 | 1 |
[
"A030141",
"A030144",
"A052015",
"A381158",
"A382027"
] | null |
Alois P. Heinz, Mar 12 2025
| 2025-03-20T10:31:36 |
oeisdata/seq/A382/A382027.seq
|
702783e2c44b9d606468aa698780951f
|
A382028
|
Lexicographically earliest sequence of positive integers such that a(n) is the length of the n-th run of consecutive, equal terms and no two runs have the same product.
|
[
"1",
"2",
"2",
"3",
"3",
"2",
"2",
"2",
"3",
"3",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"4",
"4",
"4",
"5",
"5",
"5",
"6",
"6",
"6",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"4",
"3",
"3",
"3",
"3",
"3",
"3",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"5",
"5",
"5",
"5",
"5",
"5"
] |
[
"nonn"
] | 15 | 1 | 2 |
[
"A000002",
"A331910",
"A381894",
"A382028"
] | null |
Neal Gersh Tolunsky, Mar 12 2025
| 2025-03-29T10:45:50 |
oeisdata/seq/A382/A382028.seq
|
c0570a37218e7c8a70c5d95679ee988c
|
A382029
|
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^2)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
|
[
"1",
"1",
"3",
"31",
"529",
"12601",
"385891",
"14440567",
"638576065",
"32580927505",
"1883889232291",
"121742057314351",
"8695278706372369",
"680187946863332233",
"57833833258995140803",
"5310742450917819399751",
"523793286672328763358721",
"55223769332070053104438945",
"6197871354601209094032190147"
] |
[
"nonn"
] | 18 | 0 | 3 |
[
"A000108",
"A161629",
"A212722",
"A214688",
"A214689",
"A379690",
"A382029",
"A382030",
"A382031",
"A382042"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-14T04:45:18 |
oeisdata/seq/A382/A382029.seq
|
228ca3f097198703e340c509a4e1821c
|
A382030
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
|
[
"1",
"1",
"3",
"37",
"817",
"25741",
"1053211",
"52957297",
"3157457185",
"217695187801",
"17036331544531",
"1491702434847901",
"144479729938558609",
"15335923797225215653",
"1770255543485671432555",
"220776904683577075549801",
"29582947262972619472787521",
"4238424613351537181204589745",
"646565304924896452410832170787"
] |
[
"nonn"
] | 19 | 0 | 3 |
[
"A001764",
"A212722",
"A382029",
"A382030",
"A382031",
"A382043"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-14T04:45:15 |
oeisdata/seq/A382/A382030.seq
|
ec500d5d0079cc6841d62cc66635d69d
|
A382031
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
|
[
"1",
"1",
"3",
"43",
"1177",
"46681",
"2419291",
"154587427",
"11735209585",
"1031418915121",
"102979800567091",
"11510663862332251",
"1423811747933017609",
"193073662118499898633",
"28479005472094048953355",
"4539456019668776334683731",
"777538096585429376795405281",
"142419954152382631361835929185"
] |
[
"nonn"
] | 20 | 0 | 3 |
[
"A002293",
"A212722",
"A380513",
"A382016",
"A382029",
"A382030",
"A382031",
"A382044"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-14T04:45:11 |
oeisdata/seq/A382/A382031.seq
|
6b34012203c231820853039ecd7c8b6f
|
A382032
|
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x))^2), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
|
[
"1",
"1",
"5",
"55",
"937",
"21741",
"639841",
"22839139",
"958882289",
"46304377849",
"2528571710881",
"154076164781991",
"10364272238514217",
"762867688235619877",
"60989719558159065857",
"5263030218009265964011",
"487578723768665716788961",
"48266847740986728218648433",
"5084697384633390178057209793"
] |
[
"nonn"
] | 17 | 0 | 3 |
[
"A000108",
"A161630",
"A377553",
"A382032",
"A382033",
"A382034",
"A382036"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-14T08:59:13 |
oeisdata/seq/A382/A382032.seq
|
d5d0c0a49606b32c88d0dd7fa7032ef9
|
A382033
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
|
[
"1",
"1",
"7",
"109",
"2653",
"88261",
"3731581",
"191571493",
"11576241769",
"804996352873",
"63324553740121",
"5559962513556001",
"539015912053933645",
"57188111522488589293",
"6591136171961660099509",
"820029701725988751533341",
"109537705061927547203868241",
"15635869913619342121140932689"
] |
[
"nonn"
] | 18 | 0 | 3 |
[
"A001764",
"A161630",
"A377554",
"A382032",
"A382033",
"A382034"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-14T09:00:17 |
oeisdata/seq/A382/A382033.seq
|
27951bccbcafc62e08635f32f83149b7
|
A382034
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
|
[
"1",
"1",
"9",
"181",
"5713",
"246881",
"13570081",
"906180997",
"71250724833",
"6448375469665",
"660286026034561",
"75472025139452261",
"9525947428687403473",
"1315935073971181422721",
"197485196722573989608289",
"31993978774204625549549221",
"5565216938342017912128576961",
"1034506012356981473110554574145"
] |
[
"nonn"
] | 16 | 0 | 3 |
[
"A002293",
"A161630",
"A377630",
"A382032",
"A382033",
"A382034"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-14T09:00:21 |
oeisdata/seq/A382/A382034.seq
|
5b8b4bad367350ee9f120fcdb841f077
|
A382035
|
a(n) is the smallest prime q such that q + prime(n) is of form 10^k or 2*10^k, or 0 if no such prime exists.
|
[
"0",
"7",
"5",
"3",
"89",
"7",
"3",
"181",
"977",
"71",
"1999969",
"163",
"59",
"157",
"53",
"47",
"41",
"139",
"1933",
"29",
"127",
"199921",
"17",
"11",
"3",
"999999999899",
"97",
"999999893",
"19891",
"887",
"73",
"9999999999999999999869",
"863",
"61",
"9851",
"1999999999849",
"43",
"37",
"9833",
"827",
"821",
"19",
"809",
"7",
"3",
"1801",
"1789"
] |
[
"nonn"
] | 16 | 1 | 2 |
[
"A191474",
"A382035"
] | null |
Steven Lu, Mar 12 2025
| 2025-03-28T23:01:16 |
oeisdata/seq/A382/A382035.seq
|
14bbb6aae89eb9a50b0c232fbe942a7e
|
A382036
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)^2) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
|
[
"1",
"1",
"7",
"94",
"1901",
"51696",
"1771267",
"73317616",
"3560476761",
"198531343360",
"12502959204671",
"877829600807424",
"67991178144166213",
"5759309535250776064",
"529665762441463234875",
"52560256640090731902976",
"5597859153748148214250673",
"636915477940535101583130624",
"77102760978489789146276986231"
] |
[
"nonn"
] | 20 | 0 | 3 |
[
"A000108",
"A052873",
"A377829",
"A382032",
"A382036",
"A382037",
"A382038"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-15T09:42:05 |
oeisdata/seq/A382/A382036.seq
|
0dea8d42929c08d05b465fe51d9c32e8
|
A382037
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
|
[
"1",
"1",
"9",
"160",
"4325",
"157896",
"7280077",
"406085632",
"26599741065",
"2001864880000",
"170236619802161",
"16144762562002944",
"1689534516295056301",
"193403842876754728960",
"24040636567791329323125",
"3224829927677539092791296",
"464325325579881390473331473",
"71428455280041816247241637888"
] |
[
"nonn"
] | 19 | 0 | 3 |
[
"A001764",
"A052873",
"A377830",
"A382033",
"A382036",
"A382037",
"A382038"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-15T09:42:27 |
oeisdata/seq/A382/A382037.seq
|
c6304112ec5dcc120ac407bfd7887fe3
|
A382038
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
|
[
"1",
"1",
"11",
"244",
"8285",
"381096",
"22175167",
"1562582848",
"129381990201",
"12313784396800",
"1324663415429651",
"158957183013686784",
"21051725357219126869",
"3050121640032545419264",
"479928476696367747954375",
"81499293517054315684642816",
"14856515462975583258374526833",
"2893604521320117995839047401472"
] |
[
"nonn"
] | 17 | 0 | 3 |
[
"A002293",
"A052873",
"A382034",
"A382036",
"A382037",
"A382038"
] | null |
Seiichi Manyama, Mar 12 2025
| 2025-03-15T09:42:34 |
oeisdata/seq/A382/A382038.seq
|
0df0ba1cbc7d4d9babd7d25d7ce7b2c5
|
A382039
|
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(3*x)) ).
|
[
"1",
"1",
"10",
"147",
"3252",
"96165",
"3569778",
"159771717",
"8378589096",
"504057519945",
"34227869887710",
"2589957885708369",
"216121694333055228",
"19717935804239270013",
"1952741002119283320714",
"208629930642065967641805",
"23919711023929511941080912",
"2929406351866509691077727761"
] |
[
"nonn"
] | 14 | 0 | 3 |
[
"A213644",
"A366233",
"A379690",
"A382039",
"A382040"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-13T09:52:02 |
oeisdata/seq/A382/A382039.seq
|
f50bc37892f95e2e0b0f364388bbd474
|
A382040
|
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(4*x)) ).
|
[
"1",
"1",
"12",
"198",
"4912",
"163120",
"6796224",
"341366704",
"20088997632",
"1356164492544",
"103333898644480",
"8773563043734016",
"821474949840482304",
"84093840447771701248",
"9344359942839980900352",
"1120159940123276849141760",
"144096985208727744665288704",
"19800296439825918648654561280"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A213644",
"A366234",
"A379690",
"A382031",
"A382039",
"A382040"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-13T09:51:59 |
oeisdata/seq/A382/A382040.seq
|
adfc6ecc2de3f52cdeb287b3622d00e2
|
A382041
|
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of four kinds.
|
[
"1",
"0",
"4",
"0",
"4",
"14",
"0",
"4",
"20",
"40",
"0",
"4",
"30",
"70",
"105",
"0",
"4",
"36",
"116",
"196",
"252",
"0",
"4",
"46",
"170",
"350",
"490",
"574",
"0",
"4",
"52",
"236",
"556",
"896",
"1120",
"1240",
"0",
"4",
"62",
"310",
"845",
"1505",
"2079",
"2415",
"2580",
"0",
"4",
"68",
"400",
"1200",
"2400",
"3584",
"4480",
"4960",
"5180",
"0",
"4",
"78",
"494",
"1670",
"3626",
"5910",
"7842",
"9162",
"9822",
"10108"
] |
[
"nonn",
"tabl"
] | 12 | 0 | 3 |
[
"A023003",
"A026820",
"A381895",
"A382025",
"A382041"
] | null |
Peter Dolland, Mar 12 2025
| 2025-03-19T10:39:55 |
oeisdata/seq/A382/A382041.seq
|
3f10c23776c6baa1ae1305047040c1c7
|
A382042
|
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^3)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
|
[
"1",
"1",
"3",
"37",
"733",
"20181",
"714541",
"30903769",
"1579206441",
"93099946249",
"6219777779641",
"464382363698661",
"38319628830696973",
"3463058939163189133",
"340172205752538636933",
"36087128101110502864561",
"4111807211977470782285521",
"500807663307856030823859729",
"64931674940413564774656214513"
] |
[
"nonn"
] | 19 | 0 | 3 |
[
"A000108",
"A161629",
"A212917",
"A382029",
"A382039",
"A382042"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-14T08:58:57 |
oeisdata/seq/A382/A382042.seq
|
e6e57583b84e07c7c06d2c579797431a
|
A382043
|
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^3*exp(2*x*A(x)).
|
[
"1",
"1",
"10",
"168",
"4280",
"146840",
"6354432",
"332467072",
"20419261312",
"1440559380096",
"114820434103040",
"10205253450850304",
"1000815286620229632",
"107355373421379825664",
"12504295470535952613376",
"1571670041412254073323520",
"212035122185327799251468288",
"30561822671438790519426154496"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A364984",
"A366232",
"A379690",
"A382030",
"A382043",
"A382044"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-13T09:52:11 |
oeisdata/seq/A382/A382043.seq
|
ed9f98c5e89182f6fb4845acb4512d30
|
A382044
|
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^4*exp(2*x*A(x)).
|
[
"1",
"1",
"12",
"252",
"8096",
"352120",
"19372512",
"1290832480",
"101078857728",
"9098805892608",
"925857411706880",
"105098610198360064",
"13167689873652178944",
"1804954814456584081408",
"268702350796640969736192",
"43172786067215188056023040",
"7446421094705349321120677888",
"1372319952106065844255081037824"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A365175",
"A366232",
"A379690",
"A382031",
"A382043",
"A382044"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-13T09:52:07 |
oeisdata/seq/A382/A382044.seq
|
1a16412d54d4fe0741222a45d1834055
|
A382045
|
Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into at most k parts with 0 <= k <= n.
|
[
"1",
"0",
"3",
"0",
"6",
"12",
"0",
"10",
"28",
"38",
"0",
"15",
"66",
"102",
"117",
"0",
"21",
"126",
"249",
"309",
"330",
"0",
"28",
"236",
"562",
"788",
"878",
"906",
"0",
"36",
"396",
"1167",
"1845",
"2205",
"2331",
"2367",
"0",
"45",
"651",
"2292",
"4128",
"5289",
"5814",
"5982",
"6027",
"0",
"55",
"1001",
"4272",
"8703",
"12106",
"13881",
"14602",
"14818",
"14873",
"0",
"66",
"1512",
"7608",
"17634",
"26616",
"32088",
"34608",
"35556",
"35826",
"35892"
] |
[
"nonn",
"tabl"
] | 18 | 0 | 3 |
[
"A000217",
"A026820",
"A217093",
"A381891",
"A382045"
] | null |
Peter Dolland, Mar 13 2025
| 2025-04-01T19:58:03 |
oeisdata/seq/A382/A382045.seq
|
35711d75a443905710a929aa586361df
|
A382046
|
Connected domination number of the n-Lucas cube graph.
|
[
"1",
"1",
"1",
"3",
"4",
"7",
"10",
"14",
"20"
] |
[
"nonn",
"more"
] | 4 | 1 | 4 | null | null |
Eric W. Weisstein, Mar 13 2025
| 2025-03-13T09:52:23 |
oeisdata/seq/A382/A382046.seq
|
80aa3971cb7fac62e70c82c6dc74a8b2
|
A382047
|
Connected domination number of the n X n knight graph.
|
[
"7",
"7",
"8",
"11",
"15",
"19",
"23",
"26"
] |
[
"nonn",
"more"
] | 13 | 4 | 1 |
[
"A382047",
"A382207"
] | null |
Eric W. Weisstein, Mar 13 2025
| 2025-03-21T07:00:24 |
oeisdata/seq/A382/A382047.seq
|
be50eb44fbce29e6686d482ce0bd278f
|
A382048
|
Starting from n and decrement, d = 1 we repeatedly subtract d until we reach a multiple of d+1. Whereupon we set d := d+1 and continue the process. a(n) is the total number of subtractions required to reduce n to 0.
|
[
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"6",
"6",
"7",
"6",
"7",
"7",
"8",
"8",
"9",
"7",
"8",
"8",
"9",
"9",
"10",
"9",
"10",
"10",
"11",
"11",
"12",
"9",
"10",
"10",
"11",
"11",
"12",
"11",
"12",
"12",
"13",
"13",
"14",
"12",
"13",
"13",
"14",
"14",
"15",
"14",
"15",
"15",
"16",
"16",
"17",
"13",
"14",
"14",
"15",
"15",
"16",
"15",
"16",
"16",
"17",
"17",
"18",
"16",
"17",
"17",
"18",
"18",
"19",
"18",
"19",
"19",
"20",
"20",
"21",
"18",
"19",
"19"
] |
[
"nonn"
] | 29 | 1 | 2 | null | null |
Howard J. Bradley, Mar 13 2025
| 2025-03-30T00:16:59 |
oeisdata/seq/A382/A382048.seq
|
d0f55d4b586820594f5addc0f61b87d9
|
A382049
|
Numbers k such that k +- 2 and k +- 3 are all semiprimes.
|
[
"12",
"36",
"216",
"540",
"1044",
"4284",
"6336",
"11304",
"17640",
"30276",
"31284",
"34056",
"35496",
"35820",
"37836",
"41796",
"46080",
"47664",
"50940",
"57240",
"62244",
"71064",
"75096",
"80856",
"84924",
"98820",
"100044",
"103536",
"106344",
"143100",
"143424",
"144936",
"149220",
"159264",
"159804",
"162036",
"168120",
"172584",
"175176",
"177624",
"194760",
"195300"
] |
[
"nonn"
] | 7 | 1 | 1 |
[
"A001358",
"A105571",
"A382049"
] | null |
Zak Seidov and Robert Israel, Mar 13 2025
| 2025-03-14T20:23:19 |
oeisdata/seq/A382/A382049.seq
|
6083ec80381b8acf7b3ff4f896840c6a
|
A382050
|
a(n) = least positive integer m such that when m*(m+1) is written in base n, it is zeroless and contains every single nonzero digit exactly once, or 0 if no such number exists.
|
[
"0",
"0",
"5",
"0",
"79",
"0",
"650",
"2716",
"17846",
"0",
"277166",
"1472993",
"8233003",
"0",
"286485314",
"1797613432",
"11675780880",
"0",
"538954048563",
"3821844010905",
"27824692448867",
"0",
"1587841473665581",
"12417635018180828",
"99246128296767625",
"0",
"6742930364132819544",
"57228575814672196977",
"494789896551823383745",
"0",
"38997607084561562847324"
] |
[
"nonn",
"base"
] | 16 | 2 | 3 |
[
"A381266",
"A382050"
] | null |
Chai Wah Wu, Mar 13 2025
| 2025-03-17T22:15:44 |
oeisdata/seq/A382/A382050.seq
|
c248c727586953e7fb6e05587f923a02
|
A382051
|
Primes prime(k) such that k*log(k)/prime(k) < (k-1)*log(k-1)/prime(k-1).
|
[
"11",
"17",
"23",
"29",
"37",
"53",
"59",
"67",
"79",
"89",
"97",
"127",
"137",
"149",
"157",
"163",
"173",
"179",
"191",
"211",
"223",
"239",
"251",
"257",
"263",
"269",
"277",
"293",
"307",
"331",
"347",
"367",
"397",
"409",
"419",
"431",
"457",
"479",
"487",
"499",
"521",
"541",
"557",
"587",
"631",
"641",
"673",
"691",
"701",
"709",
"719",
"727",
"751",
"769",
"787",
"797"
] |
[
"nonn"
] | 23 | 1 | 1 |
[
"A001113",
"A060769",
"A068985",
"A382051",
"A382052"
] | null |
Alain Rocchelli, Mar 13 2025
| 2025-04-08T10:20:03 |
oeisdata/seq/A382/A382051.seq
|
ff0b03569294479d8b2af9109b5f5d1e
|
A382052
|
Primes prime(k) such that k*log(k)/prime(k) > (k-1)*log(k-1)/prime(k-1).
|
[
"3",
"5",
"7",
"13",
"19",
"31",
"41",
"43",
"47",
"61",
"71",
"73",
"83",
"101",
"103",
"107",
"109",
"113",
"131",
"139",
"151",
"167",
"181",
"193",
"197",
"199",
"227",
"229",
"233",
"241",
"271",
"281",
"283",
"311",
"313",
"317",
"337",
"349",
"353",
"359",
"373",
"379",
"383",
"389",
"401",
"421",
"433",
"439",
"443",
"449",
"461",
"463",
"467",
"491",
"503",
"509",
"523",
"547",
"563",
"569",
"571",
"577",
"593",
"599"
] |
[
"nonn"
] | 27 | 1 | 1 |
[
"A060770",
"A068996",
"A185393",
"A382051",
"A382052"
] | null |
Alain Rocchelli, Mar 13 2025
| 2025-04-16T09:02:51 |
oeisdata/seq/A382/A382052.seq
|
3dccc22cd24257c1e46b2cda5b7e33c0
|
A382053
|
Numbers k such that Fibonacci(k) has a Fibonacci number of 1's in its binary representation.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"12",
"13",
"16",
"19",
"20",
"22",
"30",
"33",
"46",
"47",
"56",
"85",
"105",
"109",
"150",
"173",
"254",
"266",
"279",
"413",
"416",
"444",
"624",
"651",
"690",
"713",
"746",
"1031",
"1110",
"2841",
"2864",
"2867",
"2892",
"2895",
"2994",
"4516",
"4523",
"4543",
"4559",
"7452",
"7491",
"7532",
"11840",
"11852",
"11863",
"19297",
"19311",
"19442",
"19462"
] |
[
"nonn",
"base"
] | 14 | 1 | 3 |
[
"A000045",
"A381704",
"A382053"
] | null |
Robert Israel, Mar 13 2025
| 2025-03-15T11:31:04 |
oeisdata/seq/A382/A382053.seq
|
96ba84f87a475e83224ac29ffa628e30
|
A382054
|
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digit n-1 and contains every single digit from 0 to n-2 exactly once, or 0 if no such number exists.
|
[
"0",
"0",
"14",
"54",
"0",
"616",
"2251",
"12069",
"0",
"251085",
"1348305",
"7619403",
"0",
"269717049",
"1698727527",
"11061795398",
"0",
"513383208454",
"3648738866370",
"26618719297968",
"0",
"1524495582671125",
"11941193897016731",
"95578593301936475",
"0",
"6510865478836888683",
"55324396705324796861",
"478855818873249715068",
"0",
"37817609915967014967822"
] |
[
"nonn",
"base"
] | 19 | 3 | 3 |
[
"A381266",
"A382050",
"A382054"
] | null |
Chai Wah Wu, Mar 13 2025
| 2025-03-17T22:15:38 |
oeisdata/seq/A382/A382054.seq
|
3393d247a710b3260e40b786f94fa8e3
|
A382055
|
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digits 0 or n-1 and contains every single digit from 1 to n-2 exactly once, or 0 if no such number exists.
|
[
"0",
"2",
"6",
"19",
"0",
"420",
"924",
"3672",
"0",
"78880",
"431493",
"2173950",
"0",
"71583429",
"436726936",
"2750336517",
"0",
"120521201887",
"833996387274",
"5932255141224",
"0",
"324116744376715",
"2483526997445916",
"19463766853506024",
"0",
"1274294107710603710",
"10627079743009611713",
"90335862784009245081",
"0"
] |
[
"nonn",
"base"
] | 17 | 3 | 2 |
[
"A381266",
"A382050",
"A382054",
"A382055"
] | null |
Chai Wah Wu, Mar 13 2025
| 2025-03-17T22:15:22 |
oeisdata/seq/A382/A382055.seq
|
32db728bbc88a404e5aff5fbc94380ff
|
A382056
|
Remove every copy of the largest digit of n; if any digits remain, return the number formed by arranging the remaining digits in nondecreasing order. If no digits remain, return 0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"1",
"2",
"0",
"3",
"3",
"3",
"3",
"3",
"3",
"0",
"1",
"2",
"3",
"0",
"4",
"4",
"4",
"4",
"4",
"0",
"1",
"2",
"3",
"4",
"0",
"5",
"5",
"5",
"5",
"0",
"1",
"2",
"3",
"4",
"5",
"0",
"6",
"6",
"6",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"0",
"7",
"7",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"0"
] |
[
"nonn",
"look",
"base"
] | 24 | 1 | 23 |
[
"A054055",
"A125289",
"A382056",
"A382401"
] | null |
Ali Sada, Mar 13 2025
| 2025-03-23T23:20:02 |
oeisdata/seq/A382/A382056.seq
|
39cc60650f816a27ef24a79325a9a292
|
A382057
|
Z-sequence for the Riordan triangle A125166.
|
[
"8",
"-37",
"181",
"-865",
"4105",
"-19441",
"92017",
"-435457",
"2060641",
"-9751105",
"46142785",
"-218350081",
"1033243777",
"-4889362177",
"23136710401",
"-109484089345",
"518084273665",
"-2451601105921",
"11601100993537",
"-54896999325697",
"259775389992961",
"-1229270344003585",
"5816969724063745",
"-27526196280360961"
] |
[
"sign",
"easy"
] | 12 | 0 | 1 |
[
"A006232",
"A125166",
"A382057"
] | null |
Wolfdieter Lang, Mar 25 2025
| 2025-04-01T22:38:20 |
oeisdata/seq/A382/A382057.seq
|
0e630c378c1fbf67902b0b287f058d3f
|
A382058
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
|
[
"1",
"1",
"5",
"67",
"1465",
"44541",
"1735681",
"82527439",
"4632741905",
"299875704697",
"21989097804961",
"1801520077445331",
"163092373817762137",
"16168084561101716725",
"1741946677697976052577",
"202668693570279026375671",
"25324088113475137179021601",
"3382305512670022948599733233",
"480858973986045019386825360577"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A001764",
"A161629",
"A161635",
"A377546",
"A382032",
"A382033",
"A382058",
"A382059"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-14T09:00:26 |
oeisdata/seq/A382/A382058.seq
|
83b283bdae3416c0a347b467a48b04d3
|
A382059
|
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
|
[
"1",
"1",
"7",
"127",
"3733",
"152161",
"7939261",
"505087843",
"37920697753",
"3281899787137",
"321700411900441",
"35227497466867531",
"4262151791317099285",
"564639582580738851265",
"81290104199287214904037",
"12637400195063381931755731",
"2109868901338065949399370161",
"376504852688521502050554789889"
] |
[
"nonn"
] | 15 | 0 | 3 |
[
"A002293",
"A161629",
"A364938",
"A377548",
"A382033",
"A382034",
"A382058",
"A382059"
] | null |
Seiichi Manyama, Mar 13 2025
| 2025-03-14T09:00:31 |
oeisdata/seq/A382/A382059.seq
|
1de6de6ba667c57ab36bd4c4ff046bd3
|
A382060
|
Number of rooted ordered trees with n nodes such that the degree of each node is less than or equal to its depth plus one.
|
[
"1",
"1",
"1",
"1",
"2",
"4",
"10",
"27",
"77",
"231",
"719",
"2302",
"7541",
"25177",
"85405",
"293635",
"1021272",
"3587674",
"12713796",
"45402113",
"163244197",
"590529759",
"2147915920",
"7851127319",
"28826079193",
"106268313333",
"393218951710",
"1459969448090",
"5437679646441",
"20311366912839",
"76072367645347",
"285623120079865",
"1074888308119285"
] |
[
"nonn"
] | 28 | 0 | 5 |
[
"A000081",
"A000108",
"A000957",
"A036765",
"A288942",
"A358586",
"A358590",
"A380761",
"A382060"
] | null |
John Tyler Rascoe, Mar 14 2025
| 2025-03-20T06:01:29 |
oeisdata/seq/A382/A382060.seq
|
87fc8a20e77b5fa9bc55887a0c1b11b3
|
A382061
|
Numbers whose number of divisors is divisible by their number of unitary divisors.
|
[
"1",
"2",
"3",
"5",
"6",
"7",
"8",
"10",
"11",
"13",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"24",
"26",
"27",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"46",
"47",
"51",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"65",
"66",
"67",
"69",
"70",
"71",
"72",
"73",
"74",
"77",
"78",
"79",
"82",
"83",
"85",
"86",
"87",
"88",
"89",
"91",
"93",
"94",
"95",
"96",
"97"
] |
[
"nonn",
"easy"
] | 9 | 1 | 2 |
[
"A000005",
"A005117",
"A013661",
"A034444",
"A057521",
"A065463",
"A268335",
"A382061",
"A382062",
"A382063"
] | null |
Amiram Eldar, Mar 14 2025
| 2025-03-14T21:16:44 |
oeisdata/seq/A382/A382061.seq
|
13e6bb1fa72bf8583cb76e764acffff0
|
A382062
|
Powerful numbers whose number of divisors is divisible by their number of unitary divisors.
|
[
"1",
"8",
"27",
"32",
"72",
"108",
"125",
"128",
"200",
"216",
"243",
"343",
"392",
"432",
"500",
"512",
"648",
"675",
"864",
"968",
"1000",
"1125",
"1152",
"1323",
"1331",
"1352",
"1372",
"1728",
"1944",
"2000",
"2048",
"2187",
"2197",
"2312",
"2744",
"2888",
"3087",
"3125",
"3200",
"3267",
"3375",
"3456",
"4000",
"4232",
"4563",
"4913",
"5000",
"5324",
"5400"
] |
[
"nonn",
"easy"
] | 9 | 1 | 2 |
[
"A000005",
"A001694",
"A034444",
"A382061",
"A382062",
"A382064"
] | null |
Amiram Eldar, Mar 14 2025
| 2025-03-14T21:16:50 |
oeisdata/seq/A382/A382062.seq
|
5bb09ab800a82cbe9672b55b26ec9832
|
A382063
|
Numbers whose number of coreful divisors is divisible by their number of exponential divisors.
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79"
] |
[
"nonn",
"easy"
] | 9 | 1 | 2 |
[
"A000005",
"A002117",
"A004709",
"A005361",
"A036966",
"A049419",
"A344742",
"A360540",
"A377019",
"A382061",
"A382063",
"A382064",
"A382065"
] | null |
Amiram Eldar, Mar 14 2025
| 2025-03-14T21:16:56 |
oeisdata/seq/A382/A382063.seq
|
fbef558b8b1191b4d901f87f30b130b2
|
A382064
|
Cubefull numbers whose number of coreful divisors is divisible by their number of exponential divisors.
|
[
"1",
"256",
"432",
"512",
"648",
"2000",
"4096",
"5000",
"5184",
"5488",
"6561",
"6912",
"10125",
"11664",
"16875",
"19208",
"19683",
"21296",
"27783",
"32000",
"35152",
"40000",
"41472",
"52488",
"54000",
"62208",
"64827",
"78608",
"81000",
"87808",
"107811",
"109744",
"110592",
"117128",
"135000",
"148176",
"153664",
"177957",
"186624"
] |
[
"nonn"
] | 11 | 1 | 2 |
[
"A004709",
"A005361",
"A036966",
"A049419",
"A382062",
"A382063",
"A382064"
] | null |
Amiram Eldar, Mar 14 2025
| 2025-03-14T21:17:04 |
oeisdata/seq/A382/A382064.seq
|
6c9245238d60dd058d201c6160ffbce0
|
A382065
|
Exponentially refactorable numbers: numbers whose exponents in their canonical prime factorization are all refactorable numbers (A033950).
|
[
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79"
] |
[
"nonn",
"easy"
] | 8 | 1 | 2 |
[
"A004709",
"A033950",
"A138302",
"A197680",
"A209061",
"A268335",
"A344742",
"A361177",
"A377019",
"A382063",
"A382065"
] | null |
Amiram Eldar, Mar 14 2025
| 2025-03-14T21:17:12 |
oeisdata/seq/A382/A382065.seq
|
a8344ef96acb8e63ad8b97e664ba920f
|
A382066
|
a(n) = Sum_{k=1..prime(n)-1} (-k/prime(n)) * 3^(k-1) / 2, where (p/q) is the Legendre symbol of p and q.
|
[
"1",
"8",
"151",
"8083",
"70568",
"8910416",
"39392803",
"7701058213",
"2325990648824",
"43563061207573",
"19999898090377928",
"2566793589644124992",
"10627327735475477203",
"2179055220073884519235",
"630486036620986837882904",
"646895254841829205782412249",
"5802709167332592724735012664"
] |
[
"nonn"
] | 19 | 2 | 2 | null | null |
Steven Lu, Mar 14 2025
| 2025-03-31T21:19:51 |
oeisdata/seq/A382/A382066.seq
|
ec89e8639d9038a7c04f4d5f369ecfd7
|
A382067
|
Lexicographically earliest sequence of distinct positive integers such that the product of two consecutive terms is always a factorial number.
|
[
"1",
"2",
"3",
"8",
"15",
"48",
"105",
"384",
"945",
"3840",
"10395",
"46080",
"135135",
"645120",
"2027025",
"3072",
"155925",
"256",
"14175",
"2816",
"170100",
"36608",
"2381400",
"549120",
"11340",
"32",
"1260",
"4",
"6",
"20",
"36",
"140",
"288",
"12600",
"3168",
"151200",
"24",
"5",
"144",
"35",
"1152",
"315",
"16",
"45",
"112",
"360",
"14",
"2880"
] |
[
"nonn"
] | 12 | 1 | 2 |
[
"A000142",
"A375579",
"A382067",
"A382072",
"A382083",
"A382085"
] | null |
Rémy Sigrist, Mar 14 2025
| 2025-03-17T22:19:57 |
oeisdata/seq/A382/A382067.seq
|
1e9ead9b29c5559db606ffe13b51200f
|
A382068
|
Array read by ascending antidiagonals: A(n,m) is obtained by concatenating the digits of floor(n/m) with those of its fractional part up to the digits of the first period, where the leading and trailing 0's are omitted.
|
[
"1",
"2",
"5",
"3",
"1",
"3",
"4",
"15",
"6",
"25",
"5",
"2",
"1",
"5",
"2",
"6",
"25",
"13",
"75",
"4",
"16",
"7",
"3",
"16",
"1",
"6",
"3",
"142857",
"8",
"35",
"2",
"125",
"8",
"5",
"285714",
"125",
"9",
"4",
"23",
"15",
"1",
"6",
"428571",
"25",
"1",
"10",
"45",
"26",
"175",
"12",
"83",
"571428",
"375",
"2",
"1",
"11",
"5",
"3",
"2",
"14",
"1",
"714285",
"5",
"3",
"2",
"9"
] |
[
"nonn",
"base",
"tabl"
] | 13 | 1 | 2 |
[
"A000012",
"A000027",
"A266385",
"A382068"
] | null |
Stefano Spezia, Mar 14 2025
| 2025-03-14T21:06:17 |
oeisdata/seq/A382/A382068.seq
|
4a64f7cd896420442f1f6289cd087d51
|
A382069
|
Row sums of the triangular array in A199408.
|
[
"1",
"4",
"10",
"18",
"31",
"42",
"64",
"80",
"105",
"128",
"166",
"182",
"235",
"262",
"300",
"344",
"409",
"432",
"514",
"538",
"607",
"674",
"760",
"776",
"885",
"952",
"1026",
"1086",
"1219",
"1230",
"1396",
"1440",
"1545",
"1652",
"1738",
"1794",
"1999",
"2074",
"2176",
"2240",
"2461",
"2472",
"2710",
"2758",
"2871",
"3062",
"3244",
"3240",
"3493"
] |
[
"nonn"
] | 15 | 1 | 2 |
[
"A000040",
"A000217",
"A000290",
"A001248",
"A006093",
"A018804",
"A040976",
"A087397",
"A199408",
"A382069"
] | null |
Ctibor O. Zizka, Mar 14 2025
| 2025-03-14T21:16:05 |
oeisdata/seq/A382/A382069.seq
|
4f0db93c0211043e25acdc27342c659f
|
A382070
|
Semiperimeter of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
|
[
"15",
"28",
"66",
"120",
"276",
"378",
"630",
"780",
"1128",
"1770",
"2016",
"2850",
"3486",
"3828",
"4560",
"5778",
"7140",
"7626",
"9180",
"10296",
"10878",
"12720",
"14028",
"16110",
"19110",
"20706",
"21528",
"23220",
"24090",
"25878",
"32640",
"34716",
"37950",
"39060",
"44850",
"46056",
"49770",
"53628",
"56280",
"60378"
] |
[
"nonn",
"easy"
] | 36 | 1 | 1 |
[
"A034953",
"A098996",
"A367573",
"A382070",
"A382097"
] | null |
Miguel-Ángel Pérez García-Ortega, Mar 15 2025
| 2025-03-24T02:03:57 |
oeisdata/seq/A382/A382070.seq
|
70c539175b5fb6fa261bca20353ece97
|
A382071
|
Connected domination number of the n X n zebra graph.
|
[
"21",
"20",
"19",
"20",
"21",
"25",
"31",
"37"
] |
[
"nonn",
"more"
] | 6 | 6 | 1 | null | null |
Eric W. Weisstein, Mar 14 2025
| 2025-03-14T15:06:16 |
oeisdata/seq/A382/A382071.seq
|
acb7f573c94b430ae6912dcf717e7ea6
|
A382072
|
Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n*a(n) is a factorial number.
|
[
"1",
"3",
"2",
"6",
"24",
"4",
"720",
"15",
"80",
"12",
"3628800",
"10",
"479001600",
"360",
"8",
"45",
"20922789888000",
"40",
"6402373705728000",
"36",
"240",
"1814400",
"1124000727777607680000",
"5",
"145152",
"239500800",
"13440",
"180",
"304888344611713860501504000000",
"168",
"265252859812191058636308480000000"
] |
[
"nonn"
] | 6 | 1 | 2 |
[
"A000142",
"A007672",
"A382067",
"A382072"
] | null |
Rémy Sigrist, Mar 14 2025
| 2025-03-17T22:19:30 |
oeisdata/seq/A382/A382072.seq
|
4f5049ec1c72eab9d2cd9c137f628bf5
|
A382073
|
Semiprimes with sum of digits 4.
|
[
"4",
"22",
"121",
"202",
"301",
"1003",
"1111",
"2101",
"10003",
"10021",
"10102",
"10201",
"11002",
"11101",
"12001",
"30001",
"100021",
"100102",
"100201",
"101011",
"110002",
"110101",
"111001",
"200011",
"200101",
"1000021",
"1000111",
"1000201",
"1001002",
"1001101",
"1110001",
"2001001",
"3000001",
"10000003",
"10000021",
"10000201",
"10010002",
"10020001"
] |
[
"nonn",
"base"
] | 8 | 1 | 1 |
[
"A001358",
"A052218",
"A062339",
"A382073"
] | null |
Zak Seidov and Robert Israel, Mar 14 2025
| 2025-03-14T20:23:29 |
oeisdata/seq/A382/A382073.seq
|
2a193f5e3b1022e62fe553e7dd37a13f
|
A382074
|
a(n) is the number of solutions to phi(x) + phi(n-x) = phi(n) where 1 <= x <= floor(n/2).
|
[
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"1",
"0",
"1",
"0",
"3",
"2",
"2",
"0",
"2",
"2",
"2",
"2",
"4",
"0",
"0",
"0",
"1",
"3",
"1",
"1",
"2",
"0",
"3",
"1",
"4",
"0",
"1",
"0",
"5",
"3",
"2",
"0",
"2",
"0",
"2",
"3",
"5",
"0",
"2",
"1",
"5",
"2",
"1",
"0",
"1",
"0",
"2",
"2",
"1",
"2",
"2",
"0",
"5",
"2",
"2",
"0",
"3",
"0",
"2",
"4",
"5",
"1",
"3",
"0",
"4",
"0",
"1",
"0",
"2",
"2",
"2",
"4",
"5"
] |
[
"nonn"
] | 13 | 1 | 14 |
[
"A000010",
"A065381",
"A211225",
"A381747",
"A382074"
] | null |
Felix Huber, Mar 22 2025
| 2025-04-26T03:32:51 |
oeisdata/seq/A382/A382074.seq
|
b6ee0ffed842977824e6e8dd106c1458
|
A382075
|
Numbers whose prime indices can be partitioned into a set of sets with distinct sums.
|
[
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"82",
"83",
"84"
] |
[
"nonn"
] | 9 | 1 | 2 |
[
"A000720",
"A001055",
"A001222",
"A005117",
"A045778",
"A050320",
"A050326",
"A050345",
"A055396",
"A056239",
"A061395",
"A089259",
"A112798",
"A270995",
"A279785",
"A292432",
"A293243",
"A293511",
"A300383",
"A302494",
"A317141",
"A318360",
"A321469",
"A358914",
"A381078",
"A381441",
"A381633",
"A381634",
"A381635",
"A381636",
"A381716",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382214",
"A382216"
] | null |
Gus Wiseman, Mar 19 2025
| 2025-03-20T22:35:20 |
oeisdata/seq/A382/A382075.seq
|
966ac18ef642372f816b3f78958c54b2
|
A382076
|
Number of integer partitions of n whose run-sums are not all equal.
|
[
"0",
"0",
"0",
"1",
"1",
"5",
"6",
"13",
"15",
"27",
"37",
"54",
"64",
"99",
"130",
"172",
"220",
"295",
"372",
"488",
"615",
"788",
"997",
"1253",
"1547",
"1955",
"2431",
"3005",
"3706",
"4563",
"5586",
"6840",
"8332",
"10139",
"12305",
"14879",
"17933",
"21635",
"26010",
"31181",
"37314",
"44581",
"53156",
"63259",
"75163",
"89124",
"105553",
"124752",
"147210"
] |
[
"nonn"
] | 21 | 0 | 6 |
[
"A000688",
"A005117",
"A006171",
"A047966",
"A050361",
"A279784",
"A300383",
"A304405",
"A304406",
"A304428",
"A304430",
"A304442",
"A317141",
"A326534",
"A353833",
"A353837",
"A354584",
"A355743",
"A357861",
"A357862",
"A357864",
"A357875",
"A381453",
"A381455",
"A381635",
"A381636",
"A381715",
"A381717",
"A381871",
"A381993",
"A381994",
"A381995",
"A382076",
"A382204"
] | null |
Gus Wiseman, Apr 02 2025
| 2025-06-24T13:22:39 |
oeisdata/seq/A382/A382076.seq
|
c0b605eac5fabfac55e6869536e8eb26
|
A382077
|
Number of integer partitions of n that can be partitioned into a set of sets.
|
[
"1",
"1",
"1",
"2",
"3",
"5",
"6",
"9",
"13",
"17",
"25",
"33",
"44",
"59",
"77",
"100",
"134",
"171",
"217",
"283",
"361",
"449",
"574",
"721",
"900",
"1126",
"1397",
"1731",
"2143",
"2632",
"3223",
"3961",
"4825",
"5874",
"7131",
"8646",
"10452",
"12604",
"15155",
"18216",
"21826",
"26108",
"31169",
"37156",
"44202",
"52492",
"62233",
"73676",
"87089",
"102756",
"121074"
] |
[
"nonn"
] | 12 | 0 | 4 |
[
"A000009",
"A000041",
"A050320",
"A050326",
"A050345",
"A089259",
"A116539",
"A116540",
"A265947",
"A270995",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A299202",
"A302494",
"A317142",
"A318360",
"A358914",
"A381441",
"A381454",
"A381717",
"A381718",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382214"
] | null |
Gus Wiseman, Mar 18 2025
| 2025-03-29T13:49:13 |
oeisdata/seq/A382/A382077.seq
|
8b7e20bf14e03ed4b373f9862240d5cd
|
A382078
|
Number of integer partitions of n that cannot be partitioned into a set of sets.
|
[
"0",
"0",
"1",
"1",
"2",
"2",
"5",
"6",
"9",
"13",
"17",
"23",
"33",
"42",
"58",
"76",
"97",
"126",
"168",
"207",
"266",
"343",
"428",
"534",
"675",
"832",
"1039",
"1279",
"1575",
"1933",
"2381",
"2881",
"3524",
"4269",
"5179",
"6237",
"7525",
"9033",
"10860",
"12969",
"15512",
"18475",
"22005",
"26105",
"30973",
"36642",
"43325",
"51078",
"60184",
"70769",
"83152"
] |
[
"nonn"
] | 11 | 0 | 5 |
[
"A000009",
"A000041",
"A050320",
"A050326",
"A050345",
"A089259",
"A116539",
"A116540",
"A265947",
"A270995",
"A292432",
"A292444",
"A293243",
"A293511",
"A296119",
"A299202",
"A302494",
"A317142",
"A318360",
"A358914",
"A381441",
"A381454",
"A381717",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200"
] | null |
Gus Wiseman, Mar 18 2025
| 2025-03-29T13:40:24 |
oeisdata/seq/A382/A382078.seq
|
a97ec1497ed59d4ba71bb5f9b5f12204
|
A382079
|
Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.
|
[
"1",
"1",
"1",
"1",
"2",
"3",
"3",
"4",
"6",
"5",
"10",
"9",
"13",
"14",
"21",
"20",
"32",
"31",
"42",
"47",
"63",
"62",
"90",
"94",
"117",
"138",
"170",
"186",
"235",
"260",
"315",
"363",
"429",
"493",
"588",
"674",
"795",
"901",
"1060",
"1209",
"1431",
"1608",
"1896",
"2152",
"2515",
"2854",
"3310",
"3734",
"4368",
"4905",
"5686"
] |
[
"nonn",
"more"
] | 14 | 0 | 5 |
[
"A000009",
"A000041",
"A002846",
"A050320",
"A050326",
"A089259",
"A116539",
"A116540",
"A213427",
"A265947",
"A270995",
"A279785",
"A293243",
"A293511",
"A296119",
"A299202",
"A302478",
"A302494",
"A317142",
"A318360",
"A358914",
"A381078",
"A381441",
"A381454",
"A381633",
"A381636",
"A381718",
"A381806",
"A381870",
"A381990",
"A381992",
"A382075",
"A382077",
"A382078",
"A382079",
"A382200",
"A382201",
"A382460"
] | null |
Gus Wiseman, Mar 20 2025
| 2025-03-29T17:25:18 |
oeisdata/seq/A382/A382079.seq
|
7e6077b71254357cfe9de02e226432d7
|
A382080
|
Number of ways to partition the prime indices of n into sets with a common sum.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1"
] |
[
"nonn"
] | 6 | 1 | 30 |
[
"A000688",
"A000720",
"A000961",
"A001055",
"A001222",
"A006171",
"A045778",
"A050320",
"A050326",
"A050361",
"A055396",
"A056239",
"A061395",
"A112798",
"A279784",
"A279788",
"A300383",
"A302478",
"A317141",
"A321455",
"A326534",
"A353866",
"A381633",
"A381635",
"A381719",
"A381871",
"A381994",
"A381995",
"A382080"
] | null |
Gus Wiseman, Mar 20 2025
| 2025-03-22T08:38:53 |
oeisdata/seq/A382/A382080.seq
|
31db704db164b3d227eb209ab75ba15a
|
A382081
|
a(n) = binomial(n,3) + 6*binomial(n,4) + 15*binomial(n,5) + 15*binomial(n,6).
|
[
"0",
"0",
"0",
"1",
"10",
"55",
"215",
"665",
"1736",
"3990",
"8310",
"16005",
"28930",
"49621",
"81445",
"128765",
"197120",
"293420",
"426156",
"605625",
"844170",
"1156435",
"1559635",
"2073841",
"2722280",
"3531650",
"4532450",
"5759325",
"7251426",
"9052785",
"11212705",
"13786165",
"16834240",
"20424536",
"24631640",
"29537585"
] |
[
"nonn",
"easy"
] | 15 | 0 | 5 |
[
"A382081",
"A382084"
] | null |
Enrique Navarrete, Mar 15 2025
| 2025-03-24T05:21:25 |
oeisdata/seq/A382/A382081.seq
|
217c2cb923c4bd723094bf3fc0c330cb
|
A382082
|
F(k) such that F(k) + (F(k) reversed) is a palindrome, where F(k) is a Fibonacci number.
|
[
"0",
"1",
"2",
"3",
"13",
"21",
"34",
"144",
"233",
"610",
"4181",
"832040",
"102334155",
"1134903170",
"20365011074",
"12200160415121876738"
] |
[
"nonn",
"base"
] | 39 | 1 | 3 |
[
"A000045",
"A002113",
"A004086",
"A004091",
"A015976",
"A352124",
"A382082"
] | null |
Vincenzo Librandi, Mar 21 2025
| 2025-03-24T13:01:57 |
oeisdata/seq/A382/A382082.seq
|
a750eaaec6b39ff6ef25a22c0c3e4722
|
A382083
|
a(n) is the ratio between A382067(n) and A382067(n+2).
|
[
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"210",
"13",
"12",
"11",
"11",
"12",
"13",
"14",
"15",
"210",
"17160",
"9",
"8",
"210",
"5",
"6",
"7",
"8",
"90",
"11",
"12",
"132",
"30240",
"6",
"7",
"8",
"9",
"72",
"7",
"7",
"8",
"8",
"8",
"9",
"72",
"7",
"7",
"72",
"10",
"11",
"12",
"132",
"10",
"9",
"336",
"6",
"7",
"8",
"9",
"9",
"9",
"10",
"90",
"8",
"7",
"7",
"72",
"10"
] |
[
"nonn"
] | 6 | 1 | 1 |
[
"A382067",
"A382083"
] | null |
Rémy Sigrist, Mar 15 2025
| 2025-03-17T22:19:23 |
oeisdata/seq/A382/A382083.seq
|
16bd289f33c8732852399f5ab542ddec
|
A382084
|
a(n) = 90*binomial(n,6) + 18*binomial(n,4) + 3*binomial(n,2) + 1.
|
[
"1",
"1",
"4",
"10",
"37",
"121",
"406",
"1324",
"3865",
"9937",
"22816",
"47686",
"92269",
"167545",
"288562",
"475336",
"753841",
"1157089",
"1726300",
"2512162",
"3576181",
"4992121",
"6847534",
"9245380",
"12305737",
"16167601",
"20990776",
"26957854",
"34276285",
"43180537",
"53934346",
"66833056",
"82206049",
"100419265"
] |
[
"nonn",
"easy"
] | 15 | 0 | 3 |
[
"A382081",
"A382084"
] | null |
Enrique Navarrete, Mar 15 2025
| 2025-04-25T21:11:45 |
oeisdata/seq/A382/A382084.seq
|
70c7580a563ab5fea67473f9c5e76314
|
A382085
|
a(n) is the unique k such that A382067(n) * A382067(n+1) = k!.
|
[
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"13",
"12",
"11",
"10",
"11",
"12",
"13",
"14",
"15",
"13",
"9",
"8",
"7",
"4",
"5",
"6",
"7",
"8",
"10",
"11",
"12",
"10",
"5",
"6",
"7",
"8",
"9",
"7",
"6",
"7",
"8",
"7",
"8",
"9",
"7",
"6",
"7",
"9",
"10",
"11",
"12",
"10",
"9",
"8",
"5",
"6",
"7",
"8",
"9",
"8",
"9",
"10",
"8",
"7",
"6",
"7",
"9",
"10",
"11",
"12",
"10",
"9",
"10"
] |
[
"nonn"
] | 7 | 1 | 1 |
[
"A084558",
"A382067",
"A382085"
] | null |
Rémy Sigrist, Mar 15 2025
| 2025-03-17T22:19:18 |
oeisdata/seq/A382/A382085.seq
|
1483b9a3ff4fff1ae9c5d6efa6fa96d3
|
A382086
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
|
[
"1",
"1",
"5",
"52",
"845",
"18816",
"533617",
"18404800",
"748039833",
"35016198400",
"1855389108221",
"109781344134144",
"7174844881882405",
"513331696318615552",
"39905830821183755625",
"3349445733955326754816",
"301886246619209909215793",
"29080090017105458412257280",
"2981488457660004727761477493"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A000108",
"A377831",
"A382036",
"A382086",
"A382087",
"A382088",
"A382089"
] | null |
Seiichi Manyama, Mar 15 2025
| 2025-03-15T10:11:19 |
oeisdata/seq/A382/A382086.seq
|
2aa35e4a678b5326920c1d899b43517a
|
A382087
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^2) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
|
[
"1",
"1",
"7",
"106",
"2525",
"82536",
"3436867",
"174045376",
"10385025849",
"713599868800",
"55498397386751",
"4819444051348224",
"462246012357060373",
"48531686994029295616",
"5536163290789601602875",
"681824639839489261060096",
"90168540044259473683829873",
"12744019609725371553920876544"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A001764",
"A377832",
"A382037",
"A382086",
"A382087",
"A382088",
"A382089"
] | null |
Seiichi Manyama, Mar 15 2025
| 2025-03-15T10:12:34 |
oeisdata/seq/A382/A382087.seq
|
9ae82b19d46dd81eb74f8ec56aa4d4af
|
A382088
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
|
[
"1",
"1",
"9",
"178",
"5549",
"237456",
"12945037",
"858203872",
"67035559257",
"6029839290880",
"613862192499281",
"69777500840918784",
"8760124051527691141",
"1203852634738613966848",
"179746834136205848167125",
"28975042890917781500747776",
"5015346425440407318539964593",
"927775677566572703009955053568"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A002293",
"A377833",
"A382038",
"A382086",
"A382087",
"A382088",
"A382089"
] | null |
Seiichi Manyama, Mar 15 2025
| 2025-03-15T10:13:27 |
oeisdata/seq/A382/A382088.seq
|
451bd0db5a7cde1927d45daaa209e35c
|
A382089
|
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^5 is the g.f. of A002294.
|
[
"1",
"1",
"11",
"268",
"10301",
"543576",
"36542527",
"2987431168",
"287751180537",
"31916479461760",
"4006558784401811",
"561568192339405824",
"86932015931716588789",
"14730649112418719484928",
"2711977587454133506904775",
"539042371050858695696121856",
"115046065096051639979478349553"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A002294",
"A382086",
"A382087",
"A382088",
"A382089"
] | null |
Seiichi Manyama, Mar 15 2025
| 2025-03-15T10:14:27 |
oeisdata/seq/A382/A382089.seq
|
3e56f582d674cdb5848000139757546f
|
A382090
|
Connected domination number of the n-triangular honeycomb obtuse knight graph.
|
[
"10",
"9",
"9",
"10",
"13",
"15",
"18",
"20"
] |
[
"nonn",
"more"
] | 8 | 6 | 1 | null | null |
Eric W. Weisstein, Mar 15 2025
| 2025-03-15T11:29:35 |
oeisdata/seq/A382/A382090.seq
|
836fa5675a3bbf4543c2e87dd655dad4
|
A382091
|
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number such that a(n) shares a factor with a(n-1) while the total number of prime terms of the form 4*k + 1 is never less than those of the form 4*k + 3.
|
[
"1",
"2",
"4",
"6",
"8",
"10",
"5",
"15",
"3",
"9",
"12",
"14",
"16",
"18",
"20",
"22",
"24",
"21",
"27",
"30",
"25",
"35",
"28",
"26",
"13",
"39",
"33",
"11",
"44",
"32",
"34",
"17",
"51",
"36",
"38",
"19",
"57",
"42",
"40",
"45",
"48",
"46",
"50",
"52",
"54",
"56",
"49",
"63",
"60",
"55",
"65",
"70",
"58",
"29",
"87",
"66",
"62",
"31",
"93",
"69",
"72",
"64",
"68",
"74",
"37",
"111"
] |
[
"nonn"
] | 10 | 1 | 2 |
[
"A007350",
"A027748",
"A038698",
"A064413",
"A382091"
] | null |
Scott R. Shannon, Mar 15 2025
| 2025-03-15T11:29:29 |
oeisdata/seq/A382/A382091.seq
|
e453e88afda621acd92c56871029e5c7
|
A382092
|
Values taken by gcd(a^2 + b^2 + c^2, a*b*c), where a, b, c are positive integers.
|
[
"1",
"2",
"4",
"5",
"8",
"9",
"10",
"13",
"16",
"17",
"18",
"20",
"25",
"26",
"27",
"29",
"32",
"34",
"36",
"37",
"40",
"41",
"45",
"49",
"50",
"52",
"53",
"54",
"58",
"61",
"64",
"65",
"68",
"72",
"73",
"74",
"80",
"81",
"82",
"85",
"89",
"90",
"97",
"98",
"100",
"101",
"104",
"106",
"108",
"109",
"113",
"116",
"117",
"121",
"122",
"125",
"128",
"130",
"135",
"136",
"137"
] |
[
"nonn",
"easy"
] | 26 | 1 | 2 |
[
"A001481",
"A002145",
"A072437",
"A382092"
] | null |
Yifan Xie, Mar 29 2025
| 2025-04-02T15:04:50 |
oeisdata/seq/A382/A382092.seq
|
b9d7c13ad93884ab6f189226c8e9c153
|
A382093
|
Sequence where k is appended after every (k-1)! occurrences of 1, with multiple values following a 1 listed in order.
|
[
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"5",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"1",
"2"
] |
[
"nonn"
] | 29 | 1 | 2 |
[
"A381522",
"A381900",
"A382093",
"A382095"
] | null |
Jwalin Bhatt, Mar 25 2025
| 2025-05-24T16:21:35 |
oeisdata/seq/A382/A382093.seq
|
e3d09c4ba0c07a3cdc38459802754827
|
A382094
|
Integers k such that k*2^k + 3 is prime.
|
[
"0",
"1",
"2",
"4",
"5",
"10",
"11",
"28",
"40",
"110",
"124",
"826",
"871",
"1355",
"1540",
"2285",
"8908",
"20824",
"31715",
"61655",
"75920",
"96274",
"195871",
"233125",
"242594",
"252760",
"259825",
"349315"
] |
[
"nonn",
"more",
"hard"
] | 26 | 1 | 3 |
[
"A182373",
"A182375",
"A265121",
"A382094"
] | null |
Juri-Stepan Gerasimov, Mar 15 2025
| 2025-05-14T10:50:48 |
oeisdata/seq/A382/A382094.seq
|
9b0095b811bcbaa177c10579a2a9e8ed
|
A382095
|
Decimal expansion of exp((Sum_{k>=2} log(k)/(k-1)!)/e).
|
[
"1",
"7",
"7",
"4",
"2",
"9",
"4",
"3",
"7",
"5",
"7",
"8",
"8",
"8",
"1",
"3",
"0",
"6",
"3",
"4",
"0",
"6",
"2",
"8",
"6",
"5",
"7",
"3",
"1",
"9",
"7",
"1",
"0",
"8",
"9",
"4",
"2",
"9",
"2",
"4",
"2",
"2",
"2",
"9",
"1",
"4",
"2",
"9",
"7",
"5",
"4",
"2",
"1",
"8",
"0",
"1",
"4",
"8",
"0",
"8",
"5",
"1",
"7",
"2",
"5",
"1",
"0",
"0",
"4",
"1",
"3",
"1",
"8",
"2",
"1",
"1",
"5",
"7",
"6",
"3",
"9",
"1",
"0",
"6",
"3",
"8",
"7",
"2",
"7",
"4",
"9",
"6",
"0",
"8",
"5",
"1",
"4",
"2",
"6",
"7",
"7",
"5",
"3",
"8",
"9",
"4",
"3",
"3",
"0",
"3",
"6",
"2",
"7",
"5",
"3",
"0",
"0",
"6",
"8",
"2"
] |
[
"nonn",
"cons"
] | 31 | 1 | 2 |
[
"A193424",
"A381456",
"A381898",
"A382093",
"A382095"
] | null |
Jwalin Bhatt, Mar 25 2025
| 2025-04-01T23:11:23 |
oeisdata/seq/A382/A382095.seq
|
91ea4ca8a6410d5d2969097c38233cf3
|
A382096
|
Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,2,3}, and no nodes have the same weight as their parent node.
|
[
"1",
"1",
"2",
"6",
"15",
"39",
"110",
"308",
"869",
"2499",
"7238",
"21086",
"61871",
"182523",
"540830",
"1609238",
"4805871",
"14398559",
"43264896",
"130347450",
"393650751",
"1191441349",
"3613345360",
"10978726634",
"33414836743",
"101863289331",
"310984519412",
"950734751040",
"2910319385881",
"8919643999157",
"27368321239074"
] |
[
"nonn"
] | 55 | 0 | 3 |
[
"A000108",
"A002212",
"A143330",
"A382096",
"A384613",
"A384685",
"A384747"
] | null |
John Tyler Rascoe, Jun 08 2025
| 2025-06-11T03:59:32 |
oeisdata/seq/A382/A382096.seq
|
9b8ca21c1f7ede9dc9971fe1642264cd
|
A382097
|
Sum of the legs of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
|
[
"17",
"31",
"71",
"127",
"287",
"391",
"647",
"799",
"1151",
"1799",
"2047",
"2887",
"3527",
"3871",
"4607",
"5831",
"7199",
"7687",
"9247",
"10367",
"10951",
"12799",
"14111",
"16199",
"19207",
"20807",
"21631",
"23327",
"24199",
"25991",
"32767",
"34847",
"38087",
"39199",
"44999",
"46207",
"49927",
"53791",
"56447",
"60551"
] |
[
"nonn",
"easy"
] | 37 | 1 | 1 |
[
"A034953",
"A098996",
"A367573",
"A382070",
"A382097"
] | null |
Miguel-Ángel Pérez García-Ortega, Mar 15 2025
| 2025-03-24T02:02:53 |
oeisdata/seq/A382/A382097.seq
|
b7cbbaf052bfd21b6dd02faee7b2d18d
|
A382098
|
a(n) is the numerator of the square of the n-th Lagrange number.
|
[
"5",
"8",
"221",
"1517",
"7565",
"2600",
"71285",
"257045",
"84680",
"488597",
"1687397",
"837224",
"8732021",
"15800621",
"22953677",
"75533477",
"157326845",
"296631725",
"94070600",
"514518485",
"741527357",
"269583560",
"1945074605",
"7391012837",
"10076746685",
"3192137000",
"16843627085",
"24001135925",
"8707689224"
] |
[
"nonn",
"frac"
] | 7 | 1 | 1 |
[
"A002163",
"A002559",
"A010466",
"A200991",
"A305308",
"A382098",
"A382099"
] | null |
Stefano Spezia, Mar 15 2025
| 2025-03-19T10:03:06 |
oeisdata/seq/A382/A382098.seq
|
5d780e7a57bb458a1da680ef5f7f4736
|
A382099
|
a(n) is the denominator of the square of the n-th Lagrange number.
|
[
"1",
"1",
"25",
"169",
"841",
"289",
"7921",
"28561",
"9409",
"54289",
"187489",
"93025",
"970225",
"1755625",
"2550409",
"8392609",
"17480761",
"32959081",
"10452289",
"57168721",
"82391929",
"29953729",
"216119401",
"821223649",
"1119638521",
"354681889",
"1871514121",
"2666792881",
"967521025",
"5628750625",
"9323254249"
] |
[
"nonn",
"frac"
] | 6 | 1 | 3 |
[
"A002163",
"A002559",
"A010466",
"A200991",
"A305308",
"A382098",
"A382099"
] | null |
Stefano Spezia, Mar 15 2025
| 2025-03-19T10:03:14 |
oeisdata/seq/A382/A382099.seq
|
dabf0688a7b43510f56a44975a4af7c8
|
A382100
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"4",
"1",
"1",
"1",
"4",
"10",
"8",
"1",
"1",
"1",
"5",
"19",
"35",
"16",
"1",
"1",
"1",
"6",
"31",
"98",
"126",
"32",
"1",
"1",
"1",
"7",
"46",
"213",
"531",
"462",
"64",
"1",
"1",
"1",
"8",
"64",
"396",
"1556",
"2974",
"1716",
"128",
"1",
"1",
"1",
"9",
"85",
"663",
"3651",
"11843",
"17060",
"6435",
"256",
"1"
] |
[
"nonn",
"tabl"
] | 24 | 0 | 9 |
[
"A000012",
"A011782",
"A047099",
"A088218",
"A107026",
"A107027",
"A107030",
"A304979",
"A355262",
"A382100",
"A382101"
] | null |
Seiichi Manyama, Mar 15 2025
| 2025-03-16T12:20:09 |
oeisdata/seq/A382/A382100.seq
|
a9eed280b4ca18691e011d3a8c9b3382
|
A382101
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(B_k(x) - 1), where B_k(x) = 1 + x*B_k(x)^k.
|
[
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"5",
"13",
"1",
"1",
"1",
"7",
"43",
"73",
"1",
"1",
"1",
"9",
"91",
"529",
"501",
"1",
"1",
"1",
"11",
"157",
"1753",
"8501",
"4051",
"1",
"1",
"1",
"13",
"241",
"4129",
"45001",
"169021",
"37633",
"1",
"1",
"1",
"15",
"343",
"8041",
"146001",
"1447471",
"4010455",
"394353",
"1",
"1",
"1",
"17",
"463",
"13873",
"362501",
"6502681",
"56041987",
"110676833",
"4596553",
"1"
] |
[
"nonn",
"tabl"
] | 19 | 0 | 9 |
[
"A000012",
"A000262",
"A251568",
"A355262",
"A380512",
"A380516",
"A382100",
"A382101"
] | null |
Seiichi Manyama, Mar 15 2025
| 2025-03-16T12:42:09 |
oeisdata/seq/A382/A382101.seq
|
46e92172ec74d57d088153683c69cc2d
|
A382102
|
Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as small as possible. If no digits remain, a(n)=0.
|
[
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"0",
"1",
"2",
"0",
"3",
"3",
"3",
"3",
"3",
"3",
"0",
"1",
"2",
"3",
"0",
"4",
"4",
"4",
"4",
"4",
"0",
"1",
"2",
"3",
"4",
"0",
"5",
"5",
"5",
"5",
"0",
"1",
"2",
"3",
"4",
"5",
"0",
"6",
"6",
"6",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"0",
"7",
"7",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7"
] |
[
"nonn",
"base",
"look",
"nice"
] | 26 | 1 | 23 |
[
"A382056",
"A382102"
] | null |
Ali Sada, Mar 15 2025
| 2025-03-23T23:21:18 |
oeisdata/seq/A382/A382102.seq
|
ca6fafa360c1c48c257fff45197e0a7b
|
A382103
|
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372267.
|
[
"3",
"4",
"7",
"8",
"5",
"4",
"8",
"4",
"5",
"1",
"3",
"7",
"4",
"5",
"3",
"8",
"5",
"7",
"3",
"7",
"3",
"0",
"6",
"3",
"9",
"4",
"9",
"2",
"2",
"1",
"9",
"9",
"9",
"4",
"0",
"7",
"2",
"3",
"5",
"3",
"4",
"8",
"6",
"9",
"5",
"8",
"3",
"3",
"8",
"9",
"3",
"5",
"4",
"0",
"4",
"9",
"2",
"5",
"2",
"9",
"3",
"1",
"9",
"5",
"1",
"8",
"7",
"5",
"1",
"8",
"6",
"7",
"4",
"6",
"5",
"9",
"1",
"0",
"3",
"5",
"1",
"7",
"2",
"1",
"9",
"8",
"3"
] |
[
"nonn",
"cons"
] | 29 | 0 | 1 |
[
"A372267",
"A382103"
] | null |
A.H.M. Smeets, Mar 15 2025
| 2025-04-12T12:19:00 |
oeisdata/seq/A382/A382103.seq
|
16ea76b962ad0d528ec12095337f8928
|
A382104
|
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.
|
[
"6",
"5",
"2",
"1",
"4",
"5",
"1",
"5",
"4",
"8",
"6",
"2",
"5",
"4",
"6",
"1",
"4",
"2",
"6",
"2",
"6",
"9",
"3",
"6",
"0",
"5",
"0",
"7",
"7",
"8",
"0",
"0",
"0",
"5",
"9",
"2",
"7",
"6",
"4",
"6",
"5",
"1",
"3",
"0",
"4",
"1",
"6",
"6",
"1",
"0",
"6",
"4",
"5",
"9",
"5",
"0",
"7",
"4",
"7",
"0",
"6",
"8",
"0",
"4",
"8",
"1",
"2",
"4",
"8",
"1",
"3",
"2",
"5",
"3",
"4",
"0",
"8",
"9",
"6",
"4",
"8",
"2",
"7",
"8",
"0",
"1",
"6"
] |
[
"nonn",
"cons"
] | 27 | 0 | 1 |
[
"A372268",
"A382104"
] | null |
A.H.M. Smeets, Mar 15 2025
| 2025-05-23T01:14:16 |
oeisdata/seq/A382/A382104.seq
|
28a5624e331bcae7b67248b235e1a837
|
A382105
|
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372269.
|
[
"4",
"7",
"8",
"6",
"2",
"8",
"6",
"7",
"0",
"4",
"9",
"9",
"3",
"6",
"6",
"4",
"6",
"8",
"0",
"4",
"1",
"2",
"9",
"1",
"5",
"1",
"4",
"8",
"3",
"5",
"6",
"3",
"8",
"1",
"9",
"2",
"9",
"1",
"2",
"2",
"9",
"5",
"5",
"5",
"3",
"3",
"4",
"3",
"1",
"4",
"1",
"5",
"3",
"9",
"9",
"7",
"2",
"7",
"2",
"7",
"6",
"6",
"7",
"3",
"3",
"3",
"8",
"3",
"8",
"2",
"6",
"7",
"1",
"5",
"2",
"5",
"1",
"2",
"4",
"5",
"6",
"9",
"7",
"5",
"5",
"6",
"2"
] |
[
"nonn",
"cons"
] | 18 | 0 | 1 |
[
"A372269",
"A382105"
] | null |
A.H.M. Smeets, Mar 27 2025
| 2025-04-12T09:50:13 |
oeisdata/seq/A382/A382105.seq
|
4423d0d2add3f190fd9deee5d491b6c2
|
A382106
|
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372270.
|
[
"2",
"3",
"6",
"9",
"2",
"6",
"8",
"8",
"5",
"0",
"5",
"6",
"1",
"8",
"9",
"0",
"8",
"7",
"5",
"1",
"4",
"2",
"6",
"4",
"0",
"4",
"0",
"7",
"1",
"9",
"9",
"1",
"7",
"3",
"6",
"2",
"6",
"4",
"3",
"2",
"6",
"0",
"0",
"0",
"2",
"2",
"1",
"2",
"4",
"1",
"4",
"0",
"1",
"5",
"5",
"8",
"2",
"8",
"2",
"7",
"8",
"8",
"8",
"2",
"2",
"1",
"7",
"1",
"7",
"2",
"8",
"8",
"4",
"0",
"3",
"0",
"4",
"3",
"0",
"9",
"8",
"5",
"7",
"9",
"9",
"9",
"3"
] |
[
"nonn",
"cons"
] | 13 | 0 | 1 |
[
"A372270",
"A382106"
] | null |
A.H.M. Smeets, Mar 27 2025
| 2025-04-12T09:50:17 |
oeisdata/seq/A382/A382106.seq
|
0daf619572ef9e5ec00f27e0cb2fa54a
|
A382107
|
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372271.
|
[
"4",
"6",
"7",
"9",
"1",
"3",
"9",
"3",
"4",
"5",
"7",
"2",
"6",
"9",
"1",
"0",
"4",
"7",
"3",
"8",
"9",
"8",
"7",
"0",
"3",
"4",
"3",
"9",
"8",
"9",
"5",
"5",
"0",
"9",
"9",
"4",
"8",
"1",
"1",
"6",
"5",
"5",
"6",
"0",
"5",
"7",
"6",
"9",
"2",
"1",
"0",
"5",
"3",
"5",
"3",
"1",
"1",
"6",
"2",
"5",
"3",
"1",
"9",
"9",
"6",
"3",
"9",
"1",
"4",
"2",
"0",
"1",
"6",
"2",
"0",
"3",
"9",
"8",
"1",
"2",
"7",
"0",
"3",
"1",
"1",
"1",
"0"
] |
[
"nonn",
"cons"
] | 11 | 0 | 1 |
[
"A372271",
"A382107"
] | null |
A.H.M. Smeets, Mar 27 2025
| 2025-04-24T17:43:28 |
oeisdata/seq/A382/A382107.seq
|
ffa8521ec9919dc3052f32d1662a9b67
|
A382108
|
Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
|
[
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"3",
"4",
"3",
"6",
"5",
"6",
"5",
"6",
"7",
"8",
"9",
"10",
"3",
"8",
"7",
"10",
"9",
"10",
"7",
"10",
"11",
"8",
"11",
"12",
"9",
"10",
"11",
"14",
"11",
"14",
"11",
"12",
"13",
"12",
"13",
"12",
"15",
"12",
"7",
"18",
"19",
"16",
"11",
"14",
"11",
"14",
"11",
"18",
"11",
"18",
"15",
"18",
"19",
"22",
"7",
"16",
"21",
"20",
"17",
"22",
"15",
"18",
"21",
"20",
"25",
"20"
] |
[
"nonn"
] | 7 | 0 | 3 |
[
"A007318",
"A214292",
"A382019",
"A382108"
] | null |
Michel Lagneau, Mar 15 2025
| 2025-03-25T14:03:04 |
oeisdata/seq/A382/A382108.seq
|
4557e3f0493bc28ddf6eda42b1a67cee
|
A382109
|
a(n) is the index of the first Issai Schur additive sequence that will accept n.
|
[
"1",
"1",
"2",
"1",
"2",
"2",
"1",
"3",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"4",
"3",
"1",
"4",
"2",
"1",
"2",
"4",
"1",
"4",
"4",
"1",
"4",
"2",
"1",
"2",
"4",
"1",
"3",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"5",
"4",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"5",
"4",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"3",
"3",
"1",
"3",
"2",
"1",
"2",
"3",
"1",
"5",
"5",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"5",
"5",
"1",
"5",
"2",
"1",
"2",
"5",
"1",
"3",
"3"
] |
[
"nonn"
] | 48 | 1 | 3 |
[
"A033627",
"A382109"
] | null |
Gordon Hamilton, Mar 24 2025
| 2025-03-31T01:59:41 |
oeisdata/seq/A382/A382109.seq
|
b5be8a1e7e27de7ff74c2b0d13eddde8
|
A382110
|
Smallest number k such that k-n and k+n are consecutive primes and k has exactly n distinct prime factors.
|
[
"4",
"15",
"154",
"3045",
"22386",
"2467465",
"3015870",
"368961285",
"6326289970",
"2313524242029",
"1568018377380",
"5808562826801735",
"1575649493651310",
"6177821212870783905",
"171718219950879367766",
"2039004035049368722335",
"13156579658122684173390",
"112733682549950000276753015"
] |
[
"nonn"
] | 27 | 1 | 1 |
[
"A001221",
"A087378",
"A382110"
] | null |
Jean-Marc Rebert, Mar 16 2025
| 2025-03-25T16:39:08 |
oeisdata/seq/A382/A382110.seq
|
34ed81569fa2ef882ad556be2e41ef36
|
A382111
|
Maximum number of moves required to transition from the initial configuration (all disks on the first peg) to any possible configuration in the Towers of Hanoi puzzle with 4 pegs and n disks.
|
[
"0",
"1",
"3",
"5",
"9",
"13",
"17",
"25",
"33",
"41",
"49",
"65",
"81",
"97",
"113",
"130",
"161",
"193",
"225",
"257",
"294"
] |
[
"nonn",
"more"
] | 16 | 0 | 3 |
[
"A007664",
"A382111"
] | null |
Geethan Pfeifer, Mar 16 2025
| 2025-03-31T02:02:38 |
oeisdata/seq/A382/A382111.seq
|
75d186cf9d3a81d55d4e98dcb571dbb2
|
A382112
|
Distinct elements of A105774.
|
[
"0",
"1",
"2",
"4",
"7",
"6",
"12",
"11",
"9",
"20",
"19",
"17",
"14",
"15",
"33",
"32",
"30",
"27",
"28",
"22",
"23",
"25",
"54",
"53",
"51",
"48",
"49",
"43",
"44",
"46",
"35",
"36",
"38",
"41",
"40",
"88",
"87",
"85",
"82",
"83",
"77",
"78",
"80",
"69",
"70",
"72",
"75",
"74",
"56",
"57",
"59",
"62",
"61",
"67",
"66",
"64",
"143",
"142",
"140",
"137",
"138",
"132",
"133",
"135",
"124"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A105774",
"A382112",
"A382113"
] | null |
Jeffrey Shallit, Mar 16 2025
| 2025-03-16T12:42:38 |
oeisdata/seq/A382/A382112.seq
|
48646720ab70abe75c88f43ad178499f
|
A382113
|
Gray code transformation of the Zeckendorf representation of n.
|
[
"0",
"1",
"3",
"6",
"5",
"11",
"10",
"8",
"19",
"18",
"16",
"13",
"14",
"32",
"31",
"29",
"26",
"27",
"21",
"22",
"24",
"53",
"52",
"50",
"47",
"48",
"42",
"43",
"45",
"34",
"35",
"37",
"40",
"39",
"87",
"86",
"84",
"81",
"82",
"76",
"77",
"79",
"68",
"69",
"71",
"74",
"73",
"55",
"56",
"58",
"61",
"60",
"66",
"65",
"63",
"142",
"141",
"139",
"136",
"137",
"131",
"132",
"134",
"123",
"124"
] |
[
"nonn",
"easy"
] | 19 | 0 | 3 |
[
"A003714",
"A006068",
"A022290",
"A382112",
"A382113",
"A382116"
] | null |
Jeffrey Shallit, Mar 16 2025
| 2025-03-18T07:22:10 |
oeisdata/seq/A382/A382113.seq
|
75b41bc181e481cc5846136e83b3a2b6
|
A382114
|
Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
|
[
"6",
"6",
"15",
"66",
"435",
"3655",
"35245",
"369370",
"4094091",
"47292675",
"564261621",
"6911763951",
"86538608325",
"1103803048701",
"14305266650521",
"187980068232586",
"2500329761730811",
"33615543537222571",
"456277456908296101",
"6246438370759741771",
"86175353796214314061",
"1197196443861278161861",
"16738118900567747790121",
"235379797036403711485951"
] |
[
"nonn",
"easy"
] | 27 | 0 | 1 |
[
"A000108",
"A381483",
"A382114",
"A383251"
] | null |
Miguel-Ángel Pérez García-Ortega, Apr 22 2025
| 2025-05-05T22:35:12 |
oeisdata/seq/A382/A382114.seq
|
53c4ceec42da1be461aec4663a2ae2e9
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.