sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-19 00:40:46
filename
stringlengths
29
29
hash
stringlengths
32
32
A382015
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "3", "31", "589", "16121", "574621", "25206595", "1312188249", "79030103185", "5404390242841", "413597889825011", "35018686148243029", "3249772250267517001", "327996955065621786309", "35769289851588288786211", "4191277822883571632163121", "525144087149768803822788257", "70060367710090279786176259633" ]
[ "nonn" ]
11
0
3
[ "A001764", "A161629", "A161630", "A251569", "A382015", "A382016" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-12T09:38:56
oeisdata/seq/A382/A382015.seq
6b0e51a73917ea9f4d7ac6006dbe09b6
A382016
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "3", "37", "901", "32141", "1502701", "86737645", "5952271977", "473117681881", "42731313784921", "4321503662185601", "483709266378568429", "59360036142346311685", "7924411424305558028757", "1143251381667547987358581", "177245340974472998607370321", "29386977237154379581209716657" ]
[ "nonn" ]
11
0
3
[ "A002293", "A161629", "A161630", "A380513", "A382015", "A382016" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-12T09:39:04
oeisdata/seq/A382/A382016.seq
68b6181712abb9aacca5f48e0521c59e
A382017
Record positions in A277847.
[ "1", "2", "6", "11", "14", "19", "22", "31", "38", "43", "46", "59", "62", "67", "71", "79", "83", "86", "94", "103", "107", "118", "127", "131", "134", "139", "142", "151", "158", "163", "166", "179", "191", "199", "206", "211", "214", "223", "227", "239", "251", "254", "262", "271", "278", "283", "302", "307", "311", "326", "331", "334", "347", "358", "367", "379", "382", "398", "419", "422", "431", "439", "443", "446" ]
[ "nonn" ]
19
1
2
[ "A277847", "A382017" ]
null
Aloe Poliszuk, Mar 11 2025
2025-04-02T21:09:45
oeisdata/seq/A382/A382017.seq
367e8beb9a5d6d749458f957c7f81ce5
A382018
Number of orbits under the action of the permutation group S(n) on the nonsingular n X n matrices over GF(2).
[ "1", "1", "4", "33", "908", "85411", "28227922", "32597166327" ]
[ "nonn", "hard", "more" ]
8
0
3
[ "A000595", "A002884", "A382018" ]
null
Søren Fuglede Jørgensen, Mar 12 2025
2025-03-18T18:58:59
oeisdata/seq/A382/A382018.seq
54f41b71911f03a43b8cf2462293aaea
A382019
Number of zeros (counted with multiplicity) inside and on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
[ "0", "1", "2", "3", "4", "5", "6", "5", "6", "7", "8", "9", "10", "9", "10", "11", "12", "13", "14", "13", "14", "15", "16", "17", "18", "17", "18", "19", "20", "21", "22", "21", "22", "23", "24", "25", "26", "25", "26", "27", "28", "29", "30", "29", "30", "31", "32", "33", "34", "33", "34", "35", "36", "37", "38", "37", "38", "39", "40", "41", "42", "41", "42", "43", "44", "45", "46", "45", "46", "47" ]
[ "nonn" ]
26
0
3
[ "A007318", "A214292", "A382019" ]
null
Michel Lagneau, Mar 12 2025
2025-03-25T14:02:23
oeisdata/seq/A382/A382019.seq
a4a2b107977540deb37ca9d2e7dbf4b2
A382020
Decimal expansion of (5040*e^8 - 35280*e^7 + 90720*e^6 - 105000*e^5 + 53760*e^4 - 10206*e^3 + 448*e^2 - e) / 5040.
[ "1", "6", "6", "6", "6", "6", "6", "6", "6", "7", "0", "4", "2", "6", "8", "8", "7", "8", "2", "3", "6", "6", "2", "3", "4", "7", "0", "0", "4", "3", "3", "2", "5", "8", "0", "4", "4", "9", "3", "6", "4", "9", "5", "7", "7", "5", "8", "9", "7", "0", "2", "0", "7", "0", "7", "8", "7", "1", "2", "8", "4", "1", "5", "7", "6", "3", "7", "6", "1", "8", "5", "7", "5", "9", "4", "9", "7", "2", "1", "4", "6", "2", "7", "6", "4", "6", "6", "0" ]
[ "nonn", "cons", "easy" ]
18
2
2
[ "A001113", "A089087", "A089139", "A090142", "A090143", "A090611", "A379601", "A381673", "A381843", "A382020", "A382026" ]
null
Daniel Mondot, Mar 12 2025
2025-03-23T05:31:40
oeisdata/seq/A382/A382020.seq
5a57406250bbab0671344e2b40dc4c49
A382021
Number of distinct degree sequences among all simple graphs with n vertices whose degrees are consecutive integers.
[ "1", "1", "2", "4", "9", "21", "50", "118", "272", "614", "1368", "3014" ]
[ "nonn", "more" ]
9
0
3
[ "A000088", "A004251", "A005176", "A381586", "A382021" ]
null
John P. McSorley, Mar 12 2025
2025-03-18T21:14:02
oeisdata/seq/A382/A382021.seq
c61bca0ea508ee7cf0c3f79add199e3f
A382022
Composite integers k = p*q*r where p < q < r are distinct primes such that p*r < q^2.
[ "70", "105", "110", "154", "182", "231", "238", "266", "273", "286", "322", "374", "418", "429", "442", "494", "506", "561", "598", "627", "638", "646", "663", "682", "715", "741", "754", "759", "782", "806", "814", "874", "897", "902", "935", "946", "957", "962", "969", "986", "1001", "1023", "1034", "1045", "1054", "1066", "1102", "1105", "1118" ]
[ "nonn" ]
43
1
1
[ "A007304", "A375008", "A381736", "A382022" ]
null
Matthew Goers, Mar 12 2025
2025-04-22T06:32:28
oeisdata/seq/A382/A382022.seq
ed7630481feaeed55ece882658fa0b2c
A382023
Number of distinct half sets in Q_n containing only pairs of antipodal vertices with the property that they form an equitable partition with their complement and are interchangable under a group automorphism of the hypercube graph.
[ "0", "1", "3", "19", "75", "391" ]
[ "nonn", "more" ]
47
1
3
null
null
Constantinos Kourouzides, Mar 12 2025
2025-04-29T23:31:35
oeisdata/seq/A382/A382023.seq
e9913dc5ed6bff3e12ab7c381dc4a96c
A382024
Maximum number of transversals in a Brown's diagonal Latin square of order 2n.
[ "0", "8", "32", "384", "5504" ]
[ "nonn", "more", "hard" ]
8
1
2
[ "A287644", "A339641", "A382024" ]
null
Eduard I. Vatutin, Mar 12 2025
2025-03-18T21:40:24
oeisdata/seq/A382/A382024.seq
a671064cd5c794f2c03cb21d48bb4f3d
A382025
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of three kinds.
[ "1", "0", "3", "0", "3", "9", "0", "3", "12", "22", "0", "3", "18", "36", "51", "0", "3", "21", "57", "87", "108", "0", "3", "27", "82", "148", "193", "221", "0", "3", "30", "111", "225", "330", "393", "429", "0", "3", "36", "144", "333", "528", "681", "765", "810", "0", "3", "39", "184", "460", "808", "1106", "1316", "1424", "1479", "0", "3", "45", "225", "630", "1182", "1740", "2163", "2439", "2574", "2640" ]
[ "nonn", "tabl" ]
5
0
3
[ "A000716", "A026820", "A381895", "A382025" ]
null
Peter Dolland, Mar 12 2025
2025-03-19T10:39:45
oeisdata/seq/A382/A382025.seq
984593de457079400e65296e20f0a54f
A382026
Decimal expansion of (362880*e^10 - 3265920*e^9 + 11612160*e^8 - 20744640*e^7 + 19595520*e^6 - 9450000*e^5 + 2064384*e^4 - 157464*e^3 + 2304*e^2 - e) / 362880.
[ "2", "0", "6", "6", "6", "6", "6", "6", "6", "6", "6", "4", "7", "6", "3", "1", "8", "8", "0", "0", "6", "1", "4", "1", "6", "3", "0", "9", "1", "0", "5", "9", "7", "6", "6", "4", "6", "8", "6", "5", "6", "8", "6", "0", "8", "2", "1", "5", "4", "4", "7", "4", "2", "3", "8", "4", "1", "9", "2", "0", "9", "0", "6", "0", "0", "0", "7", "3", "8", "5", "3", "6", "8", "8", "3", "6", "1", "5", "8", "9", "8", "2", "5", "8", "2", "3", "4", "5" ]
[ "nonn", "cons", "easy" ]
13
2
1
[ "A001113", "A089087", "A089139", "A090142", "A090143", "A090611", "A379601", "A381673", "A381843", "A382020", "A382026" ]
null
Daniel Mondot, Mar 12 2025
2025-03-23T05:28:26
oeisdata/seq/A382/A382026.seq
5d55458e6a76d1ea1b494b9aec4a8ddc
A382027
Primes whose decimal digits are in ascending order and also parity alternating.
[ "2", "3", "5", "7", "23", "29", "47", "67", "89", "127", "149", "167", "347", "349", "367", "389", "569", "2347", "2389", "2789", "4567", "4789", "12347", "12569", "12589", "34589", "234589", "1234789", "1456789", "23456789" ]
[ "nonn", "base", "fini", "full" ]
18
1
1
[ "A030141", "A030144", "A052015", "A381158", "A382027" ]
null
Alois P. Heinz, Mar 12 2025
2025-03-20T10:31:36
oeisdata/seq/A382/A382027.seq
702783e2c44b9d606468aa698780951f
A382028
Lexicographically earliest sequence of positive integers such that a(n) is the length of the n-th run of consecutive, equal terms and no two runs have the same product.
[ "1", "2", "2", "3", "3", "2", "2", "2", "3", "3", "3", "4", "4", "5", "5", "6", "6", "4", "4", "4", "5", "5", "5", "6", "6", "6", "3", "3", "3", "3", "4", "4", "4", "4", "2", "2", "2", "2", "2", "3", "3", "3", "3", "3", "4", "4", "4", "4", "4", "4", "3", "3", "3", "3", "3", "3", "5", "5", "5", "5", "6", "6", "6", "6", "7", "7", "7", "7", "4", "4", "4", "4", "4", "5", "5", "5", "5", "5", "6", "6", "6", "6", "6", "5", "5", "5", "5", "5", "5" ]
[ "nonn" ]
15
1
2
[ "A000002", "A331910", "A381894", "A382028" ]
null
Neal Gersh Tolunsky, Mar 12 2025
2025-03-29T10:45:50
oeisdata/seq/A382/A382028.seq
c0570a37218e7c8a70c5d95679ee988c
A382029
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^2)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "3", "31", "529", "12601", "385891", "14440567", "638576065", "32580927505", "1883889232291", "121742057314351", "8695278706372369", "680187946863332233", "57833833258995140803", "5310742450917819399751", "523793286672328763358721", "55223769332070053104438945", "6197871354601209094032190147" ]
[ "nonn" ]
18
0
3
[ "A000108", "A161629", "A212722", "A214688", "A214689", "A379690", "A382029", "A382030", "A382031", "A382042" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T04:45:18
oeisdata/seq/A382/A382029.seq
228ca3f097198703e340c509a4e1821c
A382030
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "3", "37", "817", "25741", "1053211", "52957297", "3157457185", "217695187801", "17036331544531", "1491702434847901", "144479729938558609", "15335923797225215653", "1770255543485671432555", "220776904683577075549801", "29582947262972619472787521", "4238424613351537181204589745", "646565304924896452410832170787" ]
[ "nonn" ]
19
0
3
[ "A001764", "A212722", "A382029", "A382030", "A382031", "A382043" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T04:45:15
oeisdata/seq/A382/A382030.seq
ec500d5d0079cc6841d62cc66635d69d
A382031
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "3", "43", "1177", "46681", "2419291", "154587427", "11735209585", "1031418915121", "102979800567091", "11510663862332251", "1423811747933017609", "193073662118499898633", "28479005472094048953355", "4539456019668776334683731", "777538096585429376795405281", "142419954152382631361835929185" ]
[ "nonn" ]
20
0
3
[ "A002293", "A212722", "A380513", "A382016", "A382029", "A382030", "A382031", "A382044" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T04:45:11
oeisdata/seq/A382/A382031.seq
6b34012203c231820853039ecd7c8b6f
A382032
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x))^2), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "5", "55", "937", "21741", "639841", "22839139", "958882289", "46304377849", "2528571710881", "154076164781991", "10364272238514217", "762867688235619877", "60989719558159065857", "5263030218009265964011", "487578723768665716788961", "48266847740986728218648433", "5084697384633390178057209793" ]
[ "nonn" ]
17
0
3
[ "A000108", "A161630", "A377553", "A382032", "A382033", "A382034", "A382036" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T08:59:13
oeisdata/seq/A382/A382032.seq
d5d0c0a49606b32c88d0dd7fa7032ef9
A382033
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "7", "109", "2653", "88261", "3731581", "191571493", "11576241769", "804996352873", "63324553740121", "5559962513556001", "539015912053933645", "57188111522488589293", "6591136171961660099509", "820029701725988751533341", "109537705061927547203868241", "15635869913619342121140932689" ]
[ "nonn" ]
18
0
3
[ "A001764", "A161630", "A377554", "A382032", "A382033", "A382034" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:17
oeisdata/seq/A382/A382033.seq
27951bccbcafc62e08635f32f83149b7
A382034
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "9", "181", "5713", "246881", "13570081", "906180997", "71250724833", "6448375469665", "660286026034561", "75472025139452261", "9525947428687403473", "1315935073971181422721", "197485196722573989608289", "31993978774204625549549221", "5565216938342017912128576961", "1034506012356981473110554574145" ]
[ "nonn" ]
16
0
3
[ "A002293", "A161630", "A377630", "A382032", "A382033", "A382034" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-14T09:00:21
oeisdata/seq/A382/A382034.seq
5b8b4bad367350ee9f120fcdb841f077
A382035
a(n) is the smallest prime q such that q + prime(n) is of form 10^k or 2*10^k, or 0 if no such prime exists.
[ "0", "7", "5", "3", "89", "7", "3", "181", "977", "71", "1999969", "163", "59", "157", "53", "47", "41", "139", "1933", "29", "127", "199921", "17", "11", "3", "999999999899", "97", "999999893", "19891", "887", "73", "9999999999999999999869", "863", "61", "9851", "1999999999849", "43", "37", "9833", "827", "821", "19", "809", "7", "3", "1801", "1789" ]
[ "nonn" ]
16
1
2
[ "A191474", "A382035" ]
null
Steven Lu, Mar 12 2025
2025-03-28T23:01:16
oeisdata/seq/A382/A382035.seq
14bbb6aae89eb9a50b0c232fbe942a7e
A382036
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)^2) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "7", "94", "1901", "51696", "1771267", "73317616", "3560476761", "198531343360", "12502959204671", "877829600807424", "67991178144166213", "5759309535250776064", "529665762441463234875", "52560256640090731902976", "5597859153748148214250673", "636915477940535101583130624", "77102760978489789146276986231" ]
[ "nonn" ]
20
0
3
[ "A000108", "A052873", "A377829", "A382032", "A382036", "A382037", "A382038" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-15T09:42:05
oeisdata/seq/A382/A382036.seq
0dea8d42929c08d05b465fe51d9c32e8
A382037
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "9", "160", "4325", "157896", "7280077", "406085632", "26599741065", "2001864880000", "170236619802161", "16144762562002944", "1689534516295056301", "193403842876754728960", "24040636567791329323125", "3224829927677539092791296", "464325325579881390473331473", "71428455280041816247241637888" ]
[ "nonn" ]
19
0
3
[ "A001764", "A052873", "A377830", "A382033", "A382036", "A382037", "A382038" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-15T09:42:27
oeisdata/seq/A382/A382037.seq
c6304112ec5dcc120ac407bfd7887fe3
A382038
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "11", "244", "8285", "381096", "22175167", "1562582848", "129381990201", "12313784396800", "1324663415429651", "158957183013686784", "21051725357219126869", "3050121640032545419264", "479928476696367747954375", "81499293517054315684642816", "14856515462975583258374526833", "2893604521320117995839047401472" ]
[ "nonn" ]
17
0
3
[ "A002293", "A052873", "A382034", "A382036", "A382037", "A382038" ]
null
Seiichi Manyama, Mar 12 2025
2025-03-15T09:42:34
oeisdata/seq/A382/A382038.seq
0df0ba1cbc7d4d9babd7d25d7ce7b2c5
A382039
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(3*x)) ).
[ "1", "1", "10", "147", "3252", "96165", "3569778", "159771717", "8378589096", "504057519945", "34227869887710", "2589957885708369", "216121694333055228", "19717935804239270013", "1952741002119283320714", "208629930642065967641805", "23919711023929511941080912", "2929406351866509691077727761" ]
[ "nonn" ]
14
0
3
[ "A213644", "A366233", "A379690", "A382039", "A382040" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:52:02
oeisdata/seq/A382/A382039.seq
f50bc37892f95e2e0b0f364388bbd474
A382040
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x*exp(4*x)) ).
[ "1", "1", "12", "198", "4912", "163120", "6796224", "341366704", "20088997632", "1356164492544", "103333898644480", "8773563043734016", "821474949840482304", "84093840447771701248", "9344359942839980900352", "1120159940123276849141760", "144096985208727744665288704", "19800296439825918648654561280" ]
[ "nonn" ]
11
0
3
[ "A213644", "A366234", "A379690", "A382031", "A382039", "A382040" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:51:59
oeisdata/seq/A382/A382040.seq
adfc6ecc2de3f52cdeb287b3622d00e2
A382041
Triangle read by rows: T(n, k) is the number of partitions of n with at most k parts where 0 <= k <= n, and each part is one of four kinds.
[ "1", "0", "4", "0", "4", "14", "0", "4", "20", "40", "0", "4", "30", "70", "105", "0", "4", "36", "116", "196", "252", "0", "4", "46", "170", "350", "490", "574", "0", "4", "52", "236", "556", "896", "1120", "1240", "0", "4", "62", "310", "845", "1505", "2079", "2415", "2580", "0", "4", "68", "400", "1200", "2400", "3584", "4480", "4960", "5180", "0", "4", "78", "494", "1670", "3626", "5910", "7842", "9162", "9822", "10108" ]
[ "nonn", "tabl" ]
12
0
3
[ "A023003", "A026820", "A381895", "A382025", "A382041" ]
null
Peter Dolland, Mar 12 2025
2025-03-19T10:39:55
oeisdata/seq/A382/A382041.seq
3f10c23776c6baa1ae1305047040c1c7
A382042
E.g.f. A(x) satisfies A(x) = exp(x*C(x*A(x)^3)), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "3", "37", "733", "20181", "714541", "30903769", "1579206441", "93099946249", "6219777779641", "464382363698661", "38319628830696973", "3463058939163189133", "340172205752538636933", "36087128101110502864561", "4111807211977470782285521", "500807663307856030823859729", "64931674940413564774656214513" ]
[ "nonn" ]
19
0
3
[ "A000108", "A161629", "A212917", "A382029", "A382039", "A382042" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-14T08:58:57
oeisdata/seq/A382/A382042.seq
e6e57583b84e07c7c06d2c579797431a
A382043
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^3*exp(2*x*A(x)).
[ "1", "1", "10", "168", "4280", "146840", "6354432", "332467072", "20419261312", "1440559380096", "114820434103040", "10205253450850304", "1000815286620229632", "107355373421379825664", "12504295470535952613376", "1571670041412254073323520", "212035122185327799251468288", "30561822671438790519426154496" ]
[ "nonn" ]
9
0
3
[ "A364984", "A366232", "A379690", "A382030", "A382043", "A382044" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:52:11
oeisdata/seq/A382/A382043.seq
ed9f98c5e89182f6fb4845acb4512d30
A382044
E.g.f. A(x) satisfies A(x) = 1 + x*A(x)^4*exp(2*x*A(x)).
[ "1", "1", "12", "252", "8096", "352120", "19372512", "1290832480", "101078857728", "9098805892608", "925857411706880", "105098610198360064", "13167689873652178944", "1804954814456584081408", "268702350796640969736192", "43172786067215188056023040", "7446421094705349321120677888", "1372319952106065844255081037824" ]
[ "nonn" ]
10
0
3
[ "A365175", "A366232", "A379690", "A382031", "A382043", "A382044" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-13T09:52:07
oeisdata/seq/A382/A382044.seq
1a16412d54d4fe0741222a45d1834055
A382045
Triangle read by rows: T(n,k) is the number of partitions of a 3-colored set of n objects into at most k parts with 0 <= k <= n.
[ "1", "0", "3", "0", "6", "12", "0", "10", "28", "38", "0", "15", "66", "102", "117", "0", "21", "126", "249", "309", "330", "0", "28", "236", "562", "788", "878", "906", "0", "36", "396", "1167", "1845", "2205", "2331", "2367", "0", "45", "651", "2292", "4128", "5289", "5814", "5982", "6027", "0", "55", "1001", "4272", "8703", "12106", "13881", "14602", "14818", "14873", "0", "66", "1512", "7608", "17634", "26616", "32088", "34608", "35556", "35826", "35892" ]
[ "nonn", "tabl" ]
18
0
3
[ "A000217", "A026820", "A217093", "A381891", "A382045" ]
null
Peter Dolland, Mar 13 2025
2025-04-01T19:58:03
oeisdata/seq/A382/A382045.seq
35711d75a443905710a929aa586361df
A382046
Connected domination number of the n-Lucas cube graph.
[ "1", "1", "1", "3", "4", "7", "10", "14", "20" ]
[ "nonn", "more" ]
4
1
4
null
null
Eric W. Weisstein, Mar 13 2025
2025-03-13T09:52:23
oeisdata/seq/A382/A382046.seq
80aa3971cb7fac62e70c82c6dc74a8b2
A382047
Connected domination number of the n X n knight graph.
[ "7", "7", "8", "11", "15", "19", "23", "26" ]
[ "nonn", "more" ]
13
4
1
[ "A382047", "A382207" ]
null
Eric W. Weisstein, Mar 13 2025
2025-03-21T07:00:24
oeisdata/seq/A382/A382047.seq
be50eb44fbce29e6686d482ce0bd278f
A382048
Starting from n and decrement, d = 1 we repeatedly subtract d until we reach a multiple of d+1. Whereupon we set d := d+1 and continue the process. a(n) is the total number of subtractions required to reduce n to 0.
[ "1", "2", "2", "3", "3", "4", "4", "5", "4", "5", "5", "6", "6", "7", "6", "7", "7", "8", "8", "9", "7", "8", "8", "9", "9", "10", "9", "10", "10", "11", "11", "12", "9", "10", "10", "11", "11", "12", "11", "12", "12", "13", "13", "14", "12", "13", "13", "14", "14", "15", "14", "15", "15", "16", "16", "17", "13", "14", "14", "15", "15", "16", "15", "16", "16", "17", "17", "18", "16", "17", "17", "18", "18", "19", "18", "19", "19", "20", "20", "21", "18", "19", "19" ]
[ "nonn" ]
29
1
2
null
null
Howard J. Bradley, Mar 13 2025
2025-03-30T00:16:59
oeisdata/seq/A382/A382048.seq
d0f55d4b586820594f5addc0f61b87d9
A382049
Numbers k such that k +- 2 and k +- 3 are all semiprimes.
[ "12", "36", "216", "540", "1044", "4284", "6336", "11304", "17640", "30276", "31284", "34056", "35496", "35820", "37836", "41796", "46080", "47664", "50940", "57240", "62244", "71064", "75096", "80856", "84924", "98820", "100044", "103536", "106344", "143100", "143424", "144936", "149220", "159264", "159804", "162036", "168120", "172584", "175176", "177624", "194760", "195300" ]
[ "nonn" ]
7
1
1
[ "A001358", "A105571", "A382049" ]
null
Zak Seidov and Robert Israel, Mar 13 2025
2025-03-14T20:23:19
oeisdata/seq/A382/A382049.seq
6083ec80381b8acf7b3ff4f896840c6a
A382050
a(n) = least positive integer m such that when m*(m+1) is written in base n, it is zeroless and contains every single nonzero digit exactly once, or 0 if no such number exists.
[ "0", "0", "5", "0", "79", "0", "650", "2716", "17846", "0", "277166", "1472993", "8233003", "0", "286485314", "1797613432", "11675780880", "0", "538954048563", "3821844010905", "27824692448867", "0", "1587841473665581", "12417635018180828", "99246128296767625", "0", "6742930364132819544", "57228575814672196977", "494789896551823383745", "0", "38997607084561562847324" ]
[ "nonn", "base" ]
16
2
3
[ "A381266", "A382050" ]
null
Chai Wah Wu, Mar 13 2025
2025-03-17T22:15:44
oeisdata/seq/A382/A382050.seq
c248c727586953e7fb6e05587f923a02
A382051
Primes prime(k) such that k*log(k)/prime(k) < (k-1)*log(k-1)/prime(k-1).
[ "11", "17", "23", "29", "37", "53", "59", "67", "79", "89", "97", "127", "137", "149", "157", "163", "173", "179", "191", "211", "223", "239", "251", "257", "263", "269", "277", "293", "307", "331", "347", "367", "397", "409", "419", "431", "457", "479", "487", "499", "521", "541", "557", "587", "631", "641", "673", "691", "701", "709", "719", "727", "751", "769", "787", "797" ]
[ "nonn" ]
23
1
1
[ "A001113", "A060769", "A068985", "A382051", "A382052" ]
null
Alain Rocchelli, Mar 13 2025
2025-04-08T10:20:03
oeisdata/seq/A382/A382051.seq
ff0b03569294479d8b2af9109b5f5d1e
A382052
Primes prime(k) such that k*log(k)/prime(k) > (k-1)*log(k-1)/prime(k-1).
[ "3", "5", "7", "13", "19", "31", "41", "43", "47", "61", "71", "73", "83", "101", "103", "107", "109", "113", "131", "139", "151", "167", "181", "193", "197", "199", "227", "229", "233", "241", "271", "281", "283", "311", "313", "317", "337", "349", "353", "359", "373", "379", "383", "389", "401", "421", "433", "439", "443", "449", "461", "463", "467", "491", "503", "509", "523", "547", "563", "569", "571", "577", "593", "599" ]
[ "nonn" ]
27
1
1
[ "A060770", "A068996", "A185393", "A382051", "A382052" ]
null
Alain Rocchelli, Mar 13 2025
2025-04-16T09:02:51
oeisdata/seq/A382/A382052.seq
3dccc22cd24257c1e46b2cda5b7e33c0
A382053
Numbers k such that Fibonacci(k) has a Fibonacci number of 1's in its binary representation.
[ "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "12", "13", "16", "19", "20", "22", "30", "33", "46", "47", "56", "85", "105", "109", "150", "173", "254", "266", "279", "413", "416", "444", "624", "651", "690", "713", "746", "1031", "1110", "2841", "2864", "2867", "2892", "2895", "2994", "4516", "4523", "4543", "4559", "7452", "7491", "7532", "11840", "11852", "11863", "19297", "19311", "19442", "19462" ]
[ "nonn", "base" ]
14
1
3
[ "A000045", "A381704", "A382053" ]
null
Robert Israel, Mar 13 2025
2025-03-15T11:31:04
oeisdata/seq/A382/A382053.seq
96ba84f87a475e83224ac29ffa628e30
A382054
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digit n-1 and contains every single digit from 0 to n-2 exactly once, or 0 if no such number exists.
[ "0", "0", "14", "54", "0", "616", "2251", "12069", "0", "251085", "1348305", "7619403", "0", "269717049", "1698727527", "11061795398", "0", "513383208454", "3648738866370", "26618719297968", "0", "1524495582671125", "11941193897016731", "95578593301936475", "0", "6510865478836888683", "55324396705324796861", "478855818873249715068", "0", "37817609915967014967822" ]
[ "nonn", "base" ]
19
3
3
[ "A381266", "A382050", "A382054" ]
null
Chai Wah Wu, Mar 13 2025
2025-03-17T22:15:38
oeisdata/seq/A382/A382054.seq
3393d247a710b3260e40b786f94fa8e3
A382055
a(n) = least positive integer m such that when m*(m+1) is written in base n, it does not contain the digits 0 or n-1 and contains every single digit from 1 to n-2 exactly once, or 0 if no such number exists.
[ "0", "2", "6", "19", "0", "420", "924", "3672", "0", "78880", "431493", "2173950", "0", "71583429", "436726936", "2750336517", "0", "120521201887", "833996387274", "5932255141224", "0", "324116744376715", "2483526997445916", "19463766853506024", "0", "1274294107710603710", "10627079743009611713", "90335862784009245081", "0" ]
[ "nonn", "base" ]
17
3
2
[ "A381266", "A382050", "A382054", "A382055" ]
null
Chai Wah Wu, Mar 13 2025
2025-03-17T22:15:22
oeisdata/seq/A382/A382055.seq
32db728bbc88a404e5aff5fbc94380ff
A382056
Remove every copy of the largest digit of n; if any digits remain, return the number formed by arranging the remaining digits in nondecreasing order. If no digits remain, return 0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "2", "2", "2", "2", "2", "2", "2", "0", "1", "2", "0", "3", "3", "3", "3", "3", "3", "0", "1", "2", "3", "0", "4", "4", "4", "4", "4", "0", "1", "2", "3", "4", "0", "5", "5", "5", "5", "0", "1", "2", "3", "4", "5", "0", "6", "6", "6", "0", "1", "2", "3", "4", "5", "6", "0", "7", "7", "0", "1", "2", "3", "4", "5", "6", "7", "0" ]
[ "nonn", "look", "base" ]
24
1
23
[ "A054055", "A125289", "A382056", "A382401" ]
null
Ali Sada, Mar 13 2025
2025-03-23T23:20:02
oeisdata/seq/A382/A382056.seq
39cc60650f816a27ef24a79325a9a292
A382057
Z-sequence for the Riordan triangle A125166.
[ "8", "-37", "181", "-865", "4105", "-19441", "92017", "-435457", "2060641", "-9751105", "46142785", "-218350081", "1033243777", "-4889362177", "23136710401", "-109484089345", "518084273665", "-2451601105921", "11601100993537", "-54896999325697", "259775389992961", "-1229270344003585", "5816969724063745", "-27526196280360961" ]
[ "sign", "easy" ]
12
0
1
[ "A006232", "A125166", "A382057" ]
null
Wolfdieter Lang, Mar 25 2025
2025-04-01T22:38:20
oeisdata/seq/A382/A382057.seq
0e630c378c1fbf67902b0b287f058d3f
A382058
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^2), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "5", "67", "1465", "44541", "1735681", "82527439", "4632741905", "299875704697", "21989097804961", "1801520077445331", "163092373817762137", "16168084561101716725", "1741946677697976052577", "202668693570279026375671", "25324088113475137179021601", "3382305512670022948599733233", "480858973986045019386825360577" ]
[ "nonn" ]
15
0
3
[ "A001764", "A161629", "A161635", "A377546", "A382032", "A382033", "A382058", "A382059" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-14T09:00:26
oeisdata/seq/A382/A382058.seq
83b283bdae3416c0a347b467a48b04d3
A382059
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^3), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "7", "127", "3733", "152161", "7939261", "505087843", "37920697753", "3281899787137", "321700411900441", "35227497466867531", "4262151791317099285", "564639582580738851265", "81290104199287214904037", "12637400195063381931755731", "2109868901338065949399370161", "376504852688521502050554789889" ]
[ "nonn" ]
15
0
3
[ "A002293", "A161629", "A364938", "A377548", "A382033", "A382034", "A382058", "A382059" ]
null
Seiichi Manyama, Mar 13 2025
2025-03-14T09:00:31
oeisdata/seq/A382/A382059.seq
1de6de6ba667c57ab36bd4c4ff046bd3
A382060
Number of rooted ordered trees with n nodes such that the degree of each node is less than or equal to its depth plus one.
[ "1", "1", "1", "1", "2", "4", "10", "27", "77", "231", "719", "2302", "7541", "25177", "85405", "293635", "1021272", "3587674", "12713796", "45402113", "163244197", "590529759", "2147915920", "7851127319", "28826079193", "106268313333", "393218951710", "1459969448090", "5437679646441", "20311366912839", "76072367645347", "285623120079865", "1074888308119285" ]
[ "nonn" ]
28
0
5
[ "A000081", "A000108", "A000957", "A036765", "A288942", "A358586", "A358590", "A380761", "A382060" ]
null
John Tyler Rascoe, Mar 14 2025
2025-03-20T06:01:29
oeisdata/seq/A382/A382060.seq
87fc8a20e77b5fa9bc55887a0c1b11b3
A382061
Numbers whose number of divisors is divisible by their number of unitary divisors.
[ "1", "2", "3", "5", "6", "7", "8", "10", "11", "13", "14", "15", "17", "19", "21", "22", "23", "24", "26", "27", "29", "30", "31", "32", "33", "34", "35", "37", "38", "39", "40", "41", "42", "43", "46", "47", "51", "53", "54", "55", "56", "57", "58", "59", "61", "62", "65", "66", "67", "69", "70", "71", "72", "73", "74", "77", "78", "79", "82", "83", "85", "86", "87", "88", "89", "91", "93", "94", "95", "96", "97" ]
[ "nonn", "easy" ]
9
1
2
[ "A000005", "A005117", "A013661", "A034444", "A057521", "A065463", "A268335", "A382061", "A382062", "A382063" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:16:44
oeisdata/seq/A382/A382061.seq
13e6bb1fa72bf8583cb76e764acffff0
A382062
Powerful numbers whose number of divisors is divisible by their number of unitary divisors.
[ "1", "8", "27", "32", "72", "108", "125", "128", "200", "216", "243", "343", "392", "432", "500", "512", "648", "675", "864", "968", "1000", "1125", "1152", "1323", "1331", "1352", "1372", "1728", "1944", "2000", "2048", "2187", "2197", "2312", "2744", "2888", "3087", "3125", "3200", "3267", "3375", "3456", "4000", "4232", "4563", "4913", "5000", "5324", "5400" ]
[ "nonn", "easy" ]
9
1
2
[ "A000005", "A001694", "A034444", "A382061", "A382062", "A382064" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:16:50
oeisdata/seq/A382/A382062.seq
5bb09ab800a82cbe9672b55b26ec9832
A382063
Numbers whose number of coreful divisors is divisible by their number of exponential divisors.
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "25", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79" ]
[ "nonn", "easy" ]
9
1
2
[ "A000005", "A002117", "A004709", "A005361", "A036966", "A049419", "A344742", "A360540", "A377019", "A382061", "A382063", "A382064", "A382065" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:16:56
oeisdata/seq/A382/A382063.seq
fbef558b8b1191b4d901f87f30b130b2
A382064
Cubefull numbers whose number of coreful divisors is divisible by their number of exponential divisors.
[ "1", "256", "432", "512", "648", "2000", "4096", "5000", "5184", "5488", "6561", "6912", "10125", "11664", "16875", "19208", "19683", "21296", "27783", "32000", "35152", "40000", "41472", "52488", "54000", "62208", "64827", "78608", "81000", "87808", "107811", "109744", "110592", "117128", "135000", "148176", "153664", "177957", "186624" ]
[ "nonn" ]
11
1
2
[ "A004709", "A005361", "A036966", "A049419", "A382062", "A382063", "A382064" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:17:04
oeisdata/seq/A382/A382064.seq
6c9245238d60dd058d201c6160ffbce0
A382065
Exponentially refactorable numbers: numbers whose exponents in their canonical prime factorization are all refactorable numbers (A033950).
[ "1", "2", "3", "4", "5", "6", "7", "9", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "25", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "49", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79" ]
[ "nonn", "easy" ]
8
1
2
[ "A004709", "A033950", "A138302", "A197680", "A209061", "A268335", "A344742", "A361177", "A377019", "A382063", "A382065" ]
null
Amiram Eldar, Mar 14 2025
2025-03-14T21:17:12
oeisdata/seq/A382/A382065.seq
a8344ef96acb8e63ad8b97e664ba920f
A382066
a(n) = Sum_{k=1..prime(n)-1} (-k/prime(n)) * 3^(k-1) / 2, where (p/q) is the Legendre symbol of p and q.
[ "1", "8", "151", "8083", "70568", "8910416", "39392803", "7701058213", "2325990648824", "43563061207573", "19999898090377928", "2566793589644124992", "10627327735475477203", "2179055220073884519235", "630486036620986837882904", "646895254841829205782412249", "5802709167332592724735012664" ]
[ "nonn" ]
19
2
2
null
null
Steven Lu, Mar 14 2025
2025-03-31T21:19:51
oeisdata/seq/A382/A382066.seq
ec89e8639d9038a7c04f4d5f369ecfd7
A382067
Lexicographically earliest sequence of distinct positive integers such that the product of two consecutive terms is always a factorial number.
[ "1", "2", "3", "8", "15", "48", "105", "384", "945", "3840", "10395", "46080", "135135", "645120", "2027025", "3072", "155925", "256", "14175", "2816", "170100", "36608", "2381400", "549120", "11340", "32", "1260", "4", "6", "20", "36", "140", "288", "12600", "3168", "151200", "24", "5", "144", "35", "1152", "315", "16", "45", "112", "360", "14", "2880" ]
[ "nonn" ]
12
1
2
[ "A000142", "A375579", "A382067", "A382072", "A382083", "A382085" ]
null
Rémy Sigrist, Mar 14 2025
2025-03-17T22:19:57
oeisdata/seq/A382/A382067.seq
1e9ead9b29c5559db606ffe13b51200f
A382068
Array read by ascending antidiagonals: A(n,m) is obtained by concatenating the digits of floor(n/m) with those of its fractional part up to the digits of the first period, where the leading and trailing 0's are omitted.
[ "1", "2", "5", "3", "1", "3", "4", "15", "6", "25", "5", "2", "1", "5", "2", "6", "25", "13", "75", "4", "16", "7", "3", "16", "1", "6", "3", "142857", "8", "35", "2", "125", "8", "5", "285714", "125", "9", "4", "23", "15", "1", "6", "428571", "25", "1", "10", "45", "26", "175", "12", "83", "571428", "375", "2", "1", "11", "5", "3", "2", "14", "1", "714285", "5", "3", "2", "9" ]
[ "nonn", "base", "tabl" ]
13
1
2
[ "A000012", "A000027", "A266385", "A382068" ]
null
Stefano Spezia, Mar 14 2025
2025-03-14T21:06:17
oeisdata/seq/A382/A382068.seq
4a64f7cd896420442f1f6289cd087d51
A382069
Row sums of the triangular array in A199408.
[ "1", "4", "10", "18", "31", "42", "64", "80", "105", "128", "166", "182", "235", "262", "300", "344", "409", "432", "514", "538", "607", "674", "760", "776", "885", "952", "1026", "1086", "1219", "1230", "1396", "1440", "1545", "1652", "1738", "1794", "1999", "2074", "2176", "2240", "2461", "2472", "2710", "2758", "2871", "3062", "3244", "3240", "3493" ]
[ "nonn" ]
15
1
2
[ "A000040", "A000217", "A000290", "A001248", "A006093", "A018804", "A040976", "A087397", "A199408", "A382069" ]
null
Ctibor O. Zizka, Mar 14 2025
2025-03-14T21:16:05
oeisdata/seq/A382/A382069.seq
4f0db93c0211043e25acdc27342c659f
A382070
Semiperimeter of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
[ "15", "28", "66", "120", "276", "378", "630", "780", "1128", "1770", "2016", "2850", "3486", "3828", "4560", "5778", "7140", "7626", "9180", "10296", "10878", "12720", "14028", "16110", "19110", "20706", "21528", "23220", "24090", "25878", "32640", "34716", "37950", "39060", "44850", "46056", "49770", "53628", "56280", "60378" ]
[ "nonn", "easy" ]
36
1
1
[ "A034953", "A098996", "A367573", "A382070", "A382097" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 15 2025
2025-03-24T02:03:57
oeisdata/seq/A382/A382070.seq
70c539175b5fb6fa261bca20353ece97
A382071
Connected domination number of the n X n zebra graph.
[ "21", "20", "19", "20", "21", "25", "31", "37" ]
[ "nonn", "more" ]
6
6
1
null
null
Eric W. Weisstein, Mar 14 2025
2025-03-14T15:06:16
oeisdata/seq/A382/A382071.seq
acb7f573c94b430ae6912dcf717e7ea6
A382072
Lexicographically earliest sequence of distinct positive integers such that for any n > 0, n*a(n) is a factorial number.
[ "1", "3", "2", "6", "24", "4", "720", "15", "80", "12", "3628800", "10", "479001600", "360", "8", "45", "20922789888000", "40", "6402373705728000", "36", "240", "1814400", "1124000727777607680000", "5", "145152", "239500800", "13440", "180", "304888344611713860501504000000", "168", "265252859812191058636308480000000" ]
[ "nonn" ]
6
1
2
[ "A000142", "A007672", "A382067", "A382072" ]
null
Rémy Sigrist, Mar 14 2025
2025-03-17T22:19:30
oeisdata/seq/A382/A382072.seq
4f5049ec1c72eab9d2cd9c137f628bf5
A382073
Semiprimes with sum of digits 4.
[ "4", "22", "121", "202", "301", "1003", "1111", "2101", "10003", "10021", "10102", "10201", "11002", "11101", "12001", "30001", "100021", "100102", "100201", "101011", "110002", "110101", "111001", "200011", "200101", "1000021", "1000111", "1000201", "1001002", "1001101", "1110001", "2001001", "3000001", "10000003", "10000021", "10000201", "10010002", "10020001" ]
[ "nonn", "base" ]
8
1
1
[ "A001358", "A052218", "A062339", "A382073" ]
null
Zak Seidov and Robert Israel, Mar 14 2025
2025-03-14T20:23:29
oeisdata/seq/A382/A382073.seq
2a193f5e3b1022e62fe553e7dd37a13f
A382074
a(n) is the number of solutions to phi(x) + phi(n-x) = phi(n) where 1 <= x <= floor(n/2).
[ "0", "0", "1", "1", "0", "0", "0", "1", "1", "1", "0", "1", "0", "2", "2", "1", "0", "1", "0", "3", "2", "2", "0", "2", "2", "2", "2", "4", "0", "0", "0", "1", "3", "1", "1", "2", "0", "3", "1", "4", "0", "1", "0", "5", "3", "2", "0", "2", "0", "2", "3", "5", "0", "2", "1", "5", "2", "1", "0", "1", "0", "2", "2", "1", "2", "2", "0", "5", "2", "2", "0", "3", "0", "2", "4", "5", "1", "3", "0", "4", "0", "1", "0", "2", "2", "2", "4", "5" ]
[ "nonn" ]
13
1
14
[ "A000010", "A065381", "A211225", "A381747", "A382074" ]
null
Felix Huber, Mar 22 2025
2025-04-26T03:32:51
oeisdata/seq/A382/A382074.seq
b6ee0ffed842977824e6e8dd106c1458
A382075
Numbers whose prime indices can be partitioned into a set of sets with distinct sums.
[ "1", "2", "3", "5", "6", "7", "10", "11", "12", "13", "14", "15", "17", "18", "19", "20", "21", "22", "23", "26", "28", "29", "30", "31", "33", "34", "35", "36", "37", "38", "39", "41", "42", "43", "44", "45", "46", "47", "50", "51", "52", "53", "55", "57", "58", "59", "60", "61", "62", "63", "65", "66", "67", "68", "69", "70", "71", "73", "74", "75", "76", "77", "78", "79", "82", "83", "84" ]
[ "nonn" ]
9
1
2
[ "A000720", "A001055", "A001222", "A005117", "A045778", "A050320", "A050326", "A050345", "A055396", "A056239", "A061395", "A089259", "A112798", "A270995", "A279785", "A292432", "A293243", "A293511", "A300383", "A302494", "A317141", "A318360", "A321469", "A358914", "A381078", "A381441", "A381633", "A381634", "A381635", "A381636", "A381716", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382214", "A382216" ]
null
Gus Wiseman, Mar 19 2025
2025-03-20T22:35:20
oeisdata/seq/A382/A382075.seq
966ac18ef642372f816b3f78958c54b2
A382076
Number of integer partitions of n whose run-sums are not all equal.
[ "0", "0", "0", "1", "1", "5", "6", "13", "15", "27", "37", "54", "64", "99", "130", "172", "220", "295", "372", "488", "615", "788", "997", "1253", "1547", "1955", "2431", "3005", "3706", "4563", "5586", "6840", "8332", "10139", "12305", "14879", "17933", "21635", "26010", "31181", "37314", "44581", "53156", "63259", "75163", "89124", "105553", "124752", "147210" ]
[ "nonn" ]
21
0
6
[ "A000688", "A005117", "A006171", "A047966", "A050361", "A279784", "A300383", "A304405", "A304406", "A304428", "A304430", "A304442", "A317141", "A326534", "A353833", "A353837", "A354584", "A355743", "A357861", "A357862", "A357864", "A357875", "A381453", "A381455", "A381635", "A381636", "A381715", "A381717", "A381871", "A381993", "A381994", "A381995", "A382076", "A382204" ]
null
Gus Wiseman, Apr 02 2025
2025-06-24T13:22:39
oeisdata/seq/A382/A382076.seq
c0b605eac5fabfac55e6869536e8eb26
A382077
Number of integer partitions of n that can be partitioned into a set of sets.
[ "1", "1", "1", "2", "3", "5", "6", "9", "13", "17", "25", "33", "44", "59", "77", "100", "134", "171", "217", "283", "361", "449", "574", "721", "900", "1126", "1397", "1731", "2143", "2632", "3223", "3961", "4825", "5874", "7131", "8646", "10452", "12604", "15155", "18216", "21826", "26108", "31169", "37156", "44202", "52492", "62233", "73676", "87089", "102756", "121074" ]
[ "nonn" ]
12
0
4
[ "A000009", "A000041", "A050320", "A050326", "A050345", "A089259", "A116539", "A116540", "A265947", "A270995", "A292432", "A292444", "A293243", "A293511", "A296119", "A299202", "A302494", "A317142", "A318360", "A358914", "A381441", "A381454", "A381717", "A381718", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382214" ]
null
Gus Wiseman, Mar 18 2025
2025-03-29T13:49:13
oeisdata/seq/A382/A382077.seq
8b7e20bf14e03ed4b373f9862240d5cd
A382078
Number of integer partitions of n that cannot be partitioned into a set of sets.
[ "0", "0", "1", "1", "2", "2", "5", "6", "9", "13", "17", "23", "33", "42", "58", "76", "97", "126", "168", "207", "266", "343", "428", "534", "675", "832", "1039", "1279", "1575", "1933", "2381", "2881", "3524", "4269", "5179", "6237", "7525", "9033", "10860", "12969", "15512", "18475", "22005", "26105", "30973", "36642", "43325", "51078", "60184", "70769", "83152" ]
[ "nonn" ]
11
0
5
[ "A000009", "A000041", "A050320", "A050326", "A050345", "A089259", "A116539", "A116540", "A265947", "A270995", "A292432", "A292444", "A293243", "A293511", "A296119", "A299202", "A302494", "A317142", "A318360", "A358914", "A381441", "A381454", "A381717", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200" ]
null
Gus Wiseman, Mar 18 2025
2025-03-29T13:40:24
oeisdata/seq/A382/A382078.seq
a97ec1497ed59d4ba71bb5f9b5f12204
A382079
Number of integer partitions of n that can be partitioned into a set of sets in exactly one way.
[ "1", "1", "1", "1", "2", "3", "3", "4", "6", "5", "10", "9", "13", "14", "21", "20", "32", "31", "42", "47", "63", "62", "90", "94", "117", "138", "170", "186", "235", "260", "315", "363", "429", "493", "588", "674", "795", "901", "1060", "1209", "1431", "1608", "1896", "2152", "2515", "2854", "3310", "3734", "4368", "4905", "5686" ]
[ "nonn", "more" ]
14
0
5
[ "A000009", "A000041", "A002846", "A050320", "A050326", "A089259", "A116539", "A116540", "A213427", "A265947", "A270995", "A279785", "A293243", "A293511", "A296119", "A299202", "A302478", "A302494", "A317142", "A318360", "A358914", "A381078", "A381441", "A381454", "A381633", "A381636", "A381718", "A381806", "A381870", "A381990", "A381992", "A382075", "A382077", "A382078", "A382079", "A382200", "A382201", "A382460" ]
null
Gus Wiseman, Mar 20 2025
2025-03-29T17:25:18
oeisdata/seq/A382/A382079.seq
7e6077b71254357cfe9de02e226432d7
A382080
Number of ways to partition the prime indices of n into sets with a common sum.
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "1", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "1", "1", "0", "0", "1", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "0", "1", "1", "0", "1", "1", "1", "1", "0", "1", "2", "1", "0", "1", "1", "0", "0", "1", "1", "1", "0", "1", "1", "1", "0", "1", "1", "1" ]
[ "nonn" ]
6
1
30
[ "A000688", "A000720", "A000961", "A001055", "A001222", "A006171", "A045778", "A050320", "A050326", "A050361", "A055396", "A056239", "A061395", "A112798", "A279784", "A279788", "A300383", "A302478", "A317141", "A321455", "A326534", "A353866", "A381633", "A381635", "A381719", "A381871", "A381994", "A381995", "A382080" ]
null
Gus Wiseman, Mar 20 2025
2025-03-22T08:38:53
oeisdata/seq/A382/A382080.seq
31db704db164b3d227eb209ab75ba15a
A382081
a(n) = binomial(n,3) + 6*binomial(n,4) + 15*binomial(n,5) + 15*binomial(n,6).
[ "0", "0", "0", "1", "10", "55", "215", "665", "1736", "3990", "8310", "16005", "28930", "49621", "81445", "128765", "197120", "293420", "426156", "605625", "844170", "1156435", "1559635", "2073841", "2722280", "3531650", "4532450", "5759325", "7251426", "9052785", "11212705", "13786165", "16834240", "20424536", "24631640", "29537585" ]
[ "nonn", "easy" ]
15
0
5
[ "A382081", "A382084" ]
null
Enrique Navarrete, Mar 15 2025
2025-03-24T05:21:25
oeisdata/seq/A382/A382081.seq
217c2cb923c4bd723094bf3fc0c330cb
A382082
F(k) such that F(k) + (F(k) reversed) is a palindrome, where F(k) is a Fibonacci number.
[ "0", "1", "2", "3", "13", "21", "34", "144", "233", "610", "4181", "832040", "102334155", "1134903170", "20365011074", "12200160415121876738" ]
[ "nonn", "base" ]
39
1
3
[ "A000045", "A002113", "A004086", "A004091", "A015976", "A352124", "A382082" ]
null
Vincenzo Librandi, Mar 21 2025
2025-03-24T13:01:57
oeisdata/seq/A382/A382082.seq
a750eaaec6b39ff6ef25a22c0c3e4722
A382083
a(n) is the ratio between A382067(n) and A382067(n+2).
[ "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "210", "13", "12", "11", "11", "12", "13", "14", "15", "210", "17160", "9", "8", "210", "5", "6", "7", "8", "90", "11", "12", "132", "30240", "6", "7", "8", "9", "72", "7", "7", "8", "8", "8", "9", "72", "7", "7", "72", "10", "11", "12", "132", "10", "9", "336", "6", "7", "8", "9", "9", "9", "10", "90", "8", "7", "7", "72", "10" ]
[ "nonn" ]
6
1
1
[ "A382067", "A382083" ]
null
Rémy Sigrist, Mar 15 2025
2025-03-17T22:19:23
oeisdata/seq/A382/A382083.seq
16bd289f33c8732852399f5ab542ddec
A382084
a(n) = 90*binomial(n,6) + 18*binomial(n,4) + 3*binomial(n,2) + 1.
[ "1", "1", "4", "10", "37", "121", "406", "1324", "3865", "9937", "22816", "47686", "92269", "167545", "288562", "475336", "753841", "1157089", "1726300", "2512162", "3576181", "4992121", "6847534", "9245380", "12305737", "16167601", "20990776", "26957854", "34276285", "43180537", "53934346", "66833056", "82206049", "100419265" ]
[ "nonn", "easy" ]
15
0
3
[ "A382081", "A382084" ]
null
Enrique Navarrete, Mar 15 2025
2025-04-25T21:11:45
oeisdata/seq/A382/A382084.seq
70c7580a563ab5fea67473f9c5e76314
A382085
a(n) is the unique k such that A382067(n) * A382067(n+1) = k!.
[ "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "13", "12", "11", "10", "11", "12", "13", "14", "15", "13", "9", "8", "7", "4", "5", "6", "7", "8", "10", "11", "12", "10", "5", "6", "7", "8", "9", "7", "6", "7", "8", "7", "8", "9", "7", "6", "7", "9", "10", "11", "12", "10", "9", "8", "5", "6", "7", "8", "9", "8", "9", "10", "8", "7", "6", "7", "9", "10", "11", "12", "10", "9", "10" ]
[ "nonn" ]
7
1
1
[ "A084558", "A382067", "A382085" ]
null
Rémy Sigrist, Mar 15 2025
2025-03-17T22:19:18
oeisdata/seq/A382/A382085.seq
1483b9a3ff4fff1ae9c5d6efa6fa96d3
A382086
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * C(x)) ), where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
[ "1", "1", "5", "52", "845", "18816", "533617", "18404800", "748039833", "35016198400", "1855389108221", "109781344134144", "7174844881882405", "513331696318615552", "39905830821183755625", "3349445733955326754816", "301886246619209909215793", "29080090017105458412257280", "2981488457660004727761477493" ]
[ "nonn" ]
10
0
3
[ "A000108", "A377831", "A382036", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:11:19
oeisdata/seq/A382/A382086.seq
2aa35e4a678b5326920c1d899b43517a
A382087
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^2) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
[ "1", "1", "7", "106", "2525", "82536", "3436867", "174045376", "10385025849", "713599868800", "55498397386751", "4819444051348224", "462246012357060373", "48531686994029295616", "5536163290789601602875", "681824639839489261060096", "90168540044259473683829873", "12744019609725371553920876544" ]
[ "nonn" ]
10
0
3
[ "A001764", "A377832", "A382037", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:12:34
oeisdata/seq/A382/A382087.seq
9ae82b19d46dd81eb74f8ec56aa4d4af
A382088
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
[ "1", "1", "9", "178", "5549", "237456", "12945037", "858203872", "67035559257", "6029839290880", "613862192499281", "69777500840918784", "8760124051527691141", "1203852634738613966848", "179746834136205848167125", "28975042890917781500747776", "5015346425440407318539964593", "927775677566572703009955053568" ]
[ "nonn" ]
11
0
3
[ "A002293", "A377833", "A382038", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:13:27
oeisdata/seq/A382/A382088.seq
451bd0db5a7cde1927d45daaa209e35c
A382089
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^5 is the g.f. of A002294.
[ "1", "1", "11", "268", "10301", "543576", "36542527", "2987431168", "287751180537", "31916479461760", "4006558784401811", "561568192339405824", "86932015931716588789", "14730649112418719484928", "2711977587454133506904775", "539042371050858695696121856", "115046065096051639979478349553" ]
[ "nonn" ]
9
0
3
[ "A002294", "A382086", "A382087", "A382088", "A382089" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-15T10:14:27
oeisdata/seq/A382/A382089.seq
3e56f582d674cdb5848000139757546f
A382090
Connected domination number of the n-triangular honeycomb obtuse knight graph.
[ "10", "9", "9", "10", "13", "15", "18", "20" ]
[ "nonn", "more" ]
8
6
1
null
null
Eric W. Weisstein, Mar 15 2025
2025-03-15T11:29:35
oeisdata/seq/A382/A382090.seq
836fa5675a3bbf4543c2e87dd655dad4
A382091
a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number such that a(n) shares a factor with a(n-1) while the total number of prime terms of the form 4*k + 1 is never less than those of the form 4*k + 3.
[ "1", "2", "4", "6", "8", "10", "5", "15", "3", "9", "12", "14", "16", "18", "20", "22", "24", "21", "27", "30", "25", "35", "28", "26", "13", "39", "33", "11", "44", "32", "34", "17", "51", "36", "38", "19", "57", "42", "40", "45", "48", "46", "50", "52", "54", "56", "49", "63", "60", "55", "65", "70", "58", "29", "87", "66", "62", "31", "93", "69", "72", "64", "68", "74", "37", "111" ]
[ "nonn" ]
10
1
2
[ "A007350", "A027748", "A038698", "A064413", "A382091" ]
null
Scott R. Shannon, Mar 15 2025
2025-03-15T11:29:29
oeisdata/seq/A382/A382091.seq
e453e88afda621acd92c56871029e5c7
A382092
Values taken by gcd(a^2 + b^2 + c^2, a*b*c), where a, b, c are positive integers.
[ "1", "2", "4", "5", "8", "9", "10", "13", "16", "17", "18", "20", "25", "26", "27", "29", "32", "34", "36", "37", "40", "41", "45", "49", "50", "52", "53", "54", "58", "61", "64", "65", "68", "72", "73", "74", "80", "81", "82", "85", "89", "90", "97", "98", "100", "101", "104", "106", "108", "109", "113", "116", "117", "121", "122", "125", "128", "130", "135", "136", "137" ]
[ "nonn", "easy" ]
26
1
2
[ "A001481", "A002145", "A072437", "A382092" ]
null
Yifan Xie, Mar 29 2025
2025-04-02T15:04:50
oeisdata/seq/A382/A382092.seq
b9d7c13ad93884ab6f189226c8e9c153
A382093
Sequence where k is appended after every (k-1)! occurrences of 1, with multiple values following a 1 listed in order.
[ "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "5", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "1", "2", "1", "2", "3", "4", "1", "2", "1", "2", "3", "1", "2" ]
[ "nonn" ]
29
1
2
[ "A381522", "A381900", "A382093", "A382095" ]
null
Jwalin Bhatt, Mar 25 2025
2025-05-24T16:21:35
oeisdata/seq/A382/A382093.seq
e3d09c4ba0c07a3cdc38459802754827
A382094
Integers k such that k*2^k + 3 is prime.
[ "0", "1", "2", "4", "5", "10", "11", "28", "40", "110", "124", "826", "871", "1355", "1540", "2285", "8908", "20824", "31715", "61655", "75920", "96274", "195871", "233125", "242594", "252760", "259825", "349315" ]
[ "nonn", "more", "hard" ]
26
1
3
[ "A182373", "A182375", "A265121", "A382094" ]
null
Juri-Stepan Gerasimov, Mar 15 2025
2025-05-14T10:50:48
oeisdata/seq/A382/A382094.seq
9b0095b811bcbaa177c10579a2a9e8ed
A382095
Decimal expansion of exp((Sum_{k>=2} log(k)/(k-1)!)/e).
[ "1", "7", "7", "4", "2", "9", "4", "3", "7", "5", "7", "8", "8", "8", "1", "3", "0", "6", "3", "4", "0", "6", "2", "8", "6", "5", "7", "3", "1", "9", "7", "1", "0", "8", "9", "4", "2", "9", "2", "4", "2", "2", "2", "9", "1", "4", "2", "9", "7", "5", "4", "2", "1", "8", "0", "1", "4", "8", "0", "8", "5", "1", "7", "2", "5", "1", "0", "0", "4", "1", "3", "1", "8", "2", "1", "1", "5", "7", "6", "3", "9", "1", "0", "6", "3", "8", "7", "2", "7", "4", "9", "6", "0", "8", "5", "1", "4", "2", "6", "7", "7", "5", "3", "8", "9", "4", "3", "3", "0", "3", "6", "2", "7", "5", "3", "0", "0", "6", "8", "2" ]
[ "nonn", "cons" ]
31
1
2
[ "A193424", "A381456", "A381898", "A382093", "A382095" ]
null
Jwalin Bhatt, Mar 25 2025
2025-04-01T23:11:23
oeisdata/seq/A382/A382095.seq
91ea4ca8a6410d5d2969097c38233cf3
A382096
Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,2,3}, and no nodes have the same weight as their parent node.
[ "1", "1", "2", "6", "15", "39", "110", "308", "869", "2499", "7238", "21086", "61871", "182523", "540830", "1609238", "4805871", "14398559", "43264896", "130347450", "393650751", "1191441349", "3613345360", "10978726634", "33414836743", "101863289331", "310984519412", "950734751040", "2910319385881", "8919643999157", "27368321239074" ]
[ "nonn" ]
55
0
3
[ "A000108", "A002212", "A143330", "A382096", "A384613", "A384685", "A384747" ]
null
John Tyler Rascoe, Jun 08 2025
2025-06-11T03:59:32
oeisdata/seq/A382/A382096.seq
9b8ca21c1f7ede9dc9971fe1642264cd
A382097
Sum of the legs of the unique primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number.
[ "17", "31", "71", "127", "287", "391", "647", "799", "1151", "1799", "2047", "2887", "3527", "3871", "4607", "5831", "7199", "7687", "9247", "10367", "10951", "12799", "14111", "16199", "19207", "20807", "21631", "23327", "24199", "25991", "32767", "34847", "38087", "39199", "44999", "46207", "49927", "53791", "56447", "60551" ]
[ "nonn", "easy" ]
37
1
1
[ "A034953", "A098996", "A367573", "A382070", "A382097" ]
null
Miguel-Ángel Pérez García-Ortega, Mar 15 2025
2025-03-24T02:02:53
oeisdata/seq/A382/A382097.seq
b7cbbaf052bfd21b6dd02faee7b2d18d
A382098
a(n) is the numerator of the square of the n-th Lagrange number.
[ "5", "8", "221", "1517", "7565", "2600", "71285", "257045", "84680", "488597", "1687397", "837224", "8732021", "15800621", "22953677", "75533477", "157326845", "296631725", "94070600", "514518485", "741527357", "269583560", "1945074605", "7391012837", "10076746685", "3192137000", "16843627085", "24001135925", "8707689224" ]
[ "nonn", "frac" ]
7
1
1
[ "A002163", "A002559", "A010466", "A200991", "A305308", "A382098", "A382099" ]
null
Stefano Spezia, Mar 15 2025
2025-03-19T10:03:06
oeisdata/seq/A382/A382098.seq
5d780e7a57bb458a1da680ef5f7f4736
A382099
a(n) is the denominator of the square of the n-th Lagrange number.
[ "1", "1", "25", "169", "841", "289", "7921", "28561", "9409", "54289", "187489", "93025", "970225", "1755625", "2550409", "8392609", "17480761", "32959081", "10452289", "57168721", "82391929", "29953729", "216119401", "821223649", "1119638521", "354681889", "1871514121", "2666792881", "967521025", "5628750625", "9323254249" ]
[ "nonn", "frac" ]
6
1
3
[ "A002163", "A002559", "A010466", "A200991", "A305308", "A382098", "A382099" ]
null
Stefano Spezia, Mar 15 2025
2025-03-19T10:03:14
oeisdata/seq/A382/A382099.seq
dabf0688a7b43510f56a44975a4af7c8
A382100
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of 1/(2 - B_k(x)), where B_k(x) = 1 + x*B_k(x)^k.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "1", "1", "1", "3", "4", "1", "1", "1", "4", "10", "8", "1", "1", "1", "5", "19", "35", "16", "1", "1", "1", "6", "31", "98", "126", "32", "1", "1", "1", "7", "46", "213", "531", "462", "64", "1", "1", "1", "8", "64", "396", "1556", "2974", "1716", "128", "1", "1", "1", "9", "85", "663", "3651", "11843", "17060", "6435", "256", "1" ]
[ "nonn", "tabl" ]
24
0
9
[ "A000012", "A011782", "A047099", "A088218", "A107026", "A107027", "A107030", "A304979", "A355262", "A382100", "A382101" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-16T12:20:09
oeisdata/seq/A382/A382100.seq
a9eed280b4ca18691e011d3a8c9b3382
A382101
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(B_k(x) - 1), where B_k(x) = 1 + x*B_k(x)^k.
[ "1", "1", "1", "1", "1", "1", "1", "1", "3", "1", "1", "1", "5", "13", "1", "1", "1", "7", "43", "73", "1", "1", "1", "9", "91", "529", "501", "1", "1", "1", "11", "157", "1753", "8501", "4051", "1", "1", "1", "13", "241", "4129", "45001", "169021", "37633", "1", "1", "1", "15", "343", "8041", "146001", "1447471", "4010455", "394353", "1", "1", "1", "17", "463", "13873", "362501", "6502681", "56041987", "110676833", "4596553", "1" ]
[ "nonn", "tabl" ]
19
0
9
[ "A000012", "A000262", "A251568", "A355262", "A380512", "A380516", "A382100", "A382101" ]
null
Seiichi Manyama, Mar 15 2025
2025-03-16T12:42:09
oeisdata/seq/A382/A382101.seq
46e92172ec74d57d088153683c69cc2d
A382102
Remove all occurrences of a digit from n such that the resulting number, formed by the remaining digits in their original order, is as small as possible. If no digits remain, a(n)=0.
[ "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1", "1", "1", "1", "1", "0", "1", "0", "2", "2", "2", "2", "2", "2", "2", "0", "1", "2", "0", "3", "3", "3", "3", "3", "3", "0", "1", "2", "3", "0", "4", "4", "4", "4", "4", "0", "1", "2", "3", "4", "0", "5", "5", "5", "5", "0", "1", "2", "3", "4", "5", "0", "6", "6", "6", "0", "1", "2", "3", "4", "5", "6", "0", "7", "7", "0", "1", "2", "3", "4", "5", "6", "7" ]
[ "nonn", "base", "look", "nice" ]
26
1
23
[ "A382056", "A382102" ]
null
Ali Sada, Mar 15 2025
2025-03-23T23:21:18
oeisdata/seq/A382/A382102.seq
ca6fafa360c1c48c257fff45197e0a7b
A382103
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372267.
[ "3", "4", "7", "8", "5", "4", "8", "4", "5", "1", "3", "7", "4", "5", "3", "8", "5", "7", "3", "7", "3", "0", "6", "3", "9", "4", "9", "2", "2", "1", "9", "9", "9", "4", "0", "7", "2", "3", "5", "3", "4", "8", "6", "9", "5", "8", "3", "3", "8", "9", "3", "5", "4", "0", "4", "9", "2", "5", "2", "9", "3", "1", "9", "5", "1", "8", "7", "5", "1", "8", "6", "7", "4", "6", "5", "9", "1", "0", "3", "5", "1", "7", "2", "1", "9", "8", "3" ]
[ "nonn", "cons" ]
29
0
1
[ "A372267", "A382103" ]
null
A.H.M. Smeets, Mar 15 2025
2025-04-12T12:19:00
oeisdata/seq/A382/A382103.seq
16ea76b962ad0d528ec12095337f8928
A382104
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372268.
[ "6", "5", "2", "1", "4", "5", "1", "5", "4", "8", "6", "2", "5", "4", "6", "1", "4", "2", "6", "2", "6", "9", "3", "6", "0", "5", "0", "7", "7", "8", "0", "0", "0", "5", "9", "2", "7", "6", "4", "6", "5", "1", "3", "0", "4", "1", "6", "6", "1", "0", "6", "4", "5", "9", "5", "0", "7", "4", "7", "0", "6", "8", "0", "4", "8", "1", "2", "4", "8", "1", "3", "2", "5", "3", "4", "0", "8", "9", "6", "4", "8", "2", "7", "8", "0", "1", "6" ]
[ "nonn", "cons" ]
27
0
1
[ "A372268", "A382104" ]
null
A.H.M. Smeets, Mar 15 2025
2025-05-23T01:14:16
oeisdata/seq/A382/A382104.seq
28a5624e331bcae7b67248b235e1a837
A382105
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372269.
[ "4", "7", "8", "6", "2", "8", "6", "7", "0", "4", "9", "9", "3", "6", "6", "4", "6", "8", "0", "4", "1", "2", "9", "1", "5", "1", "4", "8", "3", "5", "6", "3", "8", "1", "9", "2", "9", "1", "2", "2", "9", "5", "5", "5", "3", "3", "4", "3", "1", "4", "1", "5", "3", "9", "9", "7", "2", "7", "2", "7", "6", "6", "7", "3", "3", "3", "8", "3", "8", "2", "6", "7", "1", "5", "2", "5", "1", "2", "4", "5", "6", "9", "7", "5", "5", "6", "2" ]
[ "nonn", "cons" ]
18
0
1
[ "A372269", "A382105" ]
null
A.H.M. Smeets, Mar 27 2025
2025-04-12T09:50:13
oeisdata/seq/A382/A382105.seq
4423d0d2add3f190fd9deee5d491b6c2
A382106
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372270.
[ "2", "3", "6", "9", "2", "6", "8", "8", "5", "0", "5", "6", "1", "8", "9", "0", "8", "7", "5", "1", "4", "2", "6", "4", "0", "4", "0", "7", "1", "9", "9", "1", "7", "3", "6", "2", "6", "4", "3", "2", "6", "0", "0", "0", "2", "2", "1", "2", "4", "1", "4", "0", "1", "5", "5", "8", "2", "8", "2", "7", "8", "8", "8", "2", "2", "1", "7", "1", "7", "2", "8", "8", "4", "0", "3", "0", "4", "3", "0", "9", "8", "5", "7", "9", "9", "9", "3" ]
[ "nonn", "cons" ]
13
0
1
[ "A372270", "A382106" ]
null
A.H.M. Smeets, Mar 27 2025
2025-04-12T09:50:17
oeisdata/seq/A382/A382106.seq
0daf619572ef9e5ec00f27e0cb2fa54a
A382107
Decimal expansion of the weight factor for Legendre-Gauss quadrature corresponding to abscissa A372271.
[ "4", "6", "7", "9", "1", "3", "9", "3", "4", "5", "7", "2", "6", "9", "1", "0", "4", "7", "3", "8", "9", "8", "7", "0", "3", "4", "3", "9", "8", "9", "5", "5", "0", "9", "9", "4", "8", "1", "1", "6", "5", "5", "6", "0", "5", "7", "6", "9", "2", "1", "0", "5", "3", "5", "3", "1", "1", "6", "2", "5", "3", "1", "9", "9", "6", "3", "9", "1", "4", "2", "0", "1", "6", "2", "0", "3", "9", "8", "1", "2", "7", "0", "3", "1", "1", "1", "0" ]
[ "nonn", "cons" ]
11
0
1
[ "A372271", "A382107" ]
null
A.H.M. Smeets, Mar 27 2025
2025-04-24T17:43:28
oeisdata/seq/A382/A382107.seq
ffa8521ec9919dc3052f32d1662a9b67
A382108
Number of zeros (counted with multiplicity) on the unit circle of the polynomial P(n,z) = Sum_{k=0..n} T(n,k)*z^k where T(n,k) = A214292(n,k) is the first differences of rows in Pascal's triangle.
[ "0", "1", "2", "3", "4", "5", "6", "3", "4", "3", "6", "5", "6", "5", "6", "7", "8", "9", "10", "3", "8", "7", "10", "9", "10", "7", "10", "11", "8", "11", "12", "9", "10", "11", "14", "11", "14", "11", "12", "13", "12", "13", "12", "15", "12", "7", "18", "19", "16", "11", "14", "11", "14", "11", "18", "11", "18", "15", "18", "19", "22", "7", "16", "21", "20", "17", "22", "15", "18", "21", "20", "25", "20" ]
[ "nonn" ]
7
0
3
[ "A007318", "A214292", "A382019", "A382108" ]
null
Michel Lagneau, Mar 15 2025
2025-03-25T14:03:04
oeisdata/seq/A382/A382108.seq
4557e3f0493bc28ddf6eda42b1a67cee
A382109
a(n) is the index of the first Issai Schur additive sequence that will accept n.
[ "1", "1", "2", "1", "2", "2", "1", "3", "3", "1", "3", "2", "1", "2", "3", "1", "4", "3", "1", "4", "2", "1", "2", "4", "1", "4", "4", "1", "4", "2", "1", "2", "4", "1", "3", "3", "1", "3", "2", "1", "2", "3", "1", "5", "4", "1", "5", "2", "1", "2", "5", "1", "5", "4", "1", "5", "2", "1", "2", "5", "1", "3", "3", "1", "3", "2", "1", "2", "3", "1", "5", "5", "1", "5", "2", "1", "2", "5", "1", "5", "5", "1", "5", "2", "1", "2", "5", "1", "3", "3" ]
[ "nonn" ]
48
1
3
[ "A033627", "A382109" ]
null
Gordon Hamilton, Mar 24 2025
2025-03-31T01:59:41
oeisdata/seq/A382/A382109.seq
b5be8a1e7e27de7ff74c2b0d13eddde8
A382110
Smallest number k such that k-n and k+n are consecutive primes and k has exactly n distinct prime factors.
[ "4", "15", "154", "3045", "22386", "2467465", "3015870", "368961285", "6326289970", "2313524242029", "1568018377380", "5808562826801735", "1575649493651310", "6177821212870783905", "171718219950879367766", "2039004035049368722335", "13156579658122684173390", "112733682549950000276753015" ]
[ "nonn" ]
27
1
1
[ "A001221", "A087378", "A382110" ]
null
Jean-Marc Rebert, Mar 16 2025
2025-03-25T16:39:08
oeisdata/seq/A382/A382110.seq
34ed81569fa2ef882ad556be2e41ef36
A382111
Maximum number of moves required to transition from the initial configuration (all disks on the first peg) to any possible configuration in the Towers of Hanoi puzzle with 4 pegs and n disks.
[ "0", "1", "3", "5", "9", "13", "17", "25", "33", "41", "49", "65", "81", "97", "113", "130", "161", "193", "225", "257", "294" ]
[ "nonn", "more" ]
16
0
3
[ "A007664", "A382111" ]
null
Geethan Pfeifer, Mar 16 2025
2025-03-31T02:02:38
oeisdata/seq/A382/A382111.seq
75d186cf9d3a81d55d4e98dcb571dbb2
A382112
Distinct elements of A105774.
[ "0", "1", "2", "4", "7", "6", "12", "11", "9", "20", "19", "17", "14", "15", "33", "32", "30", "27", "28", "22", "23", "25", "54", "53", "51", "48", "49", "43", "44", "46", "35", "36", "38", "41", "40", "88", "87", "85", "82", "83", "77", "78", "80", "69", "70", "72", "75", "74", "56", "57", "59", "62", "61", "67", "66", "64", "143", "142", "140", "137", "138", "132", "133", "135", "124" ]
[ "nonn" ]
9
0
3
[ "A105774", "A382112", "A382113" ]
null
Jeffrey Shallit, Mar 16 2025
2025-03-16T12:42:38
oeisdata/seq/A382/A382112.seq
48646720ab70abe75c88f43ad178499f
A382113
Gray code transformation of the Zeckendorf representation of n.
[ "0", "1", "3", "6", "5", "11", "10", "8", "19", "18", "16", "13", "14", "32", "31", "29", "26", "27", "21", "22", "24", "53", "52", "50", "47", "48", "42", "43", "45", "34", "35", "37", "40", "39", "87", "86", "84", "81", "82", "76", "77", "79", "68", "69", "71", "74", "73", "55", "56", "58", "61", "60", "66", "65", "63", "142", "141", "139", "136", "137", "131", "132", "134", "123", "124" ]
[ "nonn", "easy" ]
19
0
3
[ "A003714", "A006068", "A022290", "A382112", "A382113", "A382116" ]
null
Jeffrey Shallit, Mar 16 2025
2025-03-18T07:22:10
oeisdata/seq/A382/A382113.seq
75b41bc181e481cc5846136e83b3a2b6
A382114
Semiperimeter of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "6", "6", "15", "66", "435", "3655", "35245", "369370", "4094091", "47292675", "564261621", "6911763951", "86538608325", "1103803048701", "14305266650521", "187980068232586", "2500329761730811", "33615543537222571", "456277456908296101", "6246438370759741771", "86175353796214314061", "1197196443861278161861", "16738118900567747790121", "235379797036403711485951" ]
[ "nonn", "easy" ]
27
0
1
[ "A000108", "A381483", "A382114", "A383251" ]
null
Miguel-Ángel Pérez García-Ortega, Apr 22 2025
2025-05-05T22:35:12
oeisdata/seq/A382/A382114.seq
53c4ceec42da1be461aec4663a2ae2e9