sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A383117
|
Indices of record high-water marks of the sequence abs((cos p)^p) where p is the numerator of the n-th convergent to Pi (A002485), starting from n = 1.
|
[
"1",
"2",
"3",
"5",
"13",
"17",
"18",
"19",
"20",
"22",
"26",
"28",
"30",
"32",
"33",
"34",
"38",
"39",
"40",
"43",
"44",
"46",
"48",
"49",
"50",
"52",
"53",
"55",
"59",
"62",
"65",
"67",
"70",
"71",
"72",
"73",
"75",
"76",
"77",
"78",
"80",
"81",
"83",
"86",
"88",
"90",
"91",
"95",
"97",
"98",
"100",
"102",
"103",
"105",
"106",
"107",
"109",
"110",
"111",
"112",
"114",
"117",
"119",
"122",
"123",
"124",
"125",
"127",
"129"
] |
[
"nonn"
] | 52 | 1 | 2 |
[
"A002485",
"A382564",
"A383117"
] | null |
Jwalin Bhatt, May 01 2025
| 2025-05-07T08:26:20 |
oeisdata/seq/A383/A383117.seq
|
d69a8cc8a1fdf1fce01dffef2b29786d
|
A383118
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(3*k,k).
|
[
"1",
"2",
"10",
"47",
"238",
"1232",
"6499",
"34715",
"187198",
"1016840",
"5555560",
"30497150",
"168073195",
"929348396",
"5153362231",
"28646281502",
"159579236014",
"890644144580",
"4979200476088",
"27878225498030",
"156298588113088",
"877350590047496",
"4930273302851830",
"27733610884176338"
] |
[
"nonn"
] | 15 | 0 | 2 |
[
"A002426",
"A005809",
"A127897",
"A188686",
"A346628",
"A383118",
"A383119"
] | null |
Ilya Gutkovskiy, Apr 17 2025
| 2025-04-17T08:11:07 |
oeisdata/seq/A383/A383118.seq
|
3221067f4ce7e45e48b14e76d0010b18
|
A383119
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(4*k,k).
|
[
"1",
"3",
"21",
"147",
"1093",
"8343",
"64869",
"510891",
"4062277",
"32539647",
"262181601",
"2122581123",
"17252278789",
"140695104943",
"1150670390541",
"9433965332127",
"77512716483461",
"638080242074447",
"5261486780929209",
"43450477494413751",
"359308411992366513",
"2974886601163646379",
"24657831769475675253"
] |
[
"nonn"
] | 12 | 0 | 2 |
[
"A002426",
"A005810",
"A317133",
"A346664",
"A359643",
"A383118",
"A383119"
] | null |
Ilya Gutkovskiy, Apr 17 2025
| 2025-04-17T08:11:03 |
oeisdata/seq/A383/A383119.seq
|
35e11a1a953f4f5afac5cdb12969e392
|
A383120
|
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k).
|
[
"1",
"2",
"11",
"139",
"2885",
"82381",
"2979565",
"130203494",
"6664589321",
"390857822425",
"25832193906761",
"1899273577364197",
"153741850998047053",
"13585520026454056279",
"1301210398133681268381",
"134270617908678099820891",
"14849785991790603714043921",
"1752283118795349858851381297"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A001850",
"A014062",
"A026375",
"A188686",
"A226391",
"A359643",
"A378327",
"A383120",
"A383121"
] | null |
Ilya Gutkovskiy, Apr 17 2025
| 2025-04-17T14:54:49 |
oeisdata/seq/A383/A383120.seq
|
3a612b33972a5d14e2c94f2c29766aa5
|
A383121
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k).
|
[
"1",
"0",
"3",
"47",
"1093",
"33029",
"1236781",
"55325416",
"2879987209",
"171061709417",
"11418368571721",
"846230146390001",
"68949300160035373",
"6126085419697733567",
"589470974371501065845",
"61068847238080533844679",
"6777270943578364524130321",
"802138434294752321142680145"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A002426",
"A349471",
"A378409",
"A383118",
"A383119",
"A383120",
"A383121"
] | null |
Ilya Gutkovskiy, Apr 17 2025
| 2025-04-17T14:54:44 |
oeisdata/seq/A383/A383121.seq
|
95674581b3c4b8280eb32d4ef345d863
|
A383122
|
a(n) is the smallest number that can be expressed as the sum of the smallest number of powers with different exponents greater than one in n different ways (for unitary bases, the smallest possible exponents are considered).
|
[
"1",
"16",
"17",
"65",
"80",
"105",
"139",
"193",
"329",
"313",
"336",
"410",
"477",
"273",
"553",
"461",
"436",
"1219",
"942",
"10153",
"1595",
"1038",
"722",
"636",
"1769",
"1344",
"2045",
"2381",
"1805",
"2379",
"3683",
"2365",
"1611",
"3319",
"3815",
"4416",
"4838",
"4029",
"3531",
"5606",
"5789",
"4411",
"4341",
"5849",
"7392",
"1642",
"4885",
"8246",
"3074",
"5251",
"5774",
"3165",
"2498",
"12347",
"9987",
"5405",
"8075",
"11101",
"2346",
"6749"
] |
[
"nonn"
] | 11 | 1 | 2 |
[
"A351062",
"A351063",
"A351064",
"A351065",
"A351066",
"A383122"
] | null |
Alberto Zanoni, Apr 17 2025
| 2025-04-18T22:24:52 |
oeisdata/seq/A383/A383122.seq
|
4c6b3d590f7af720c84c53c84462e453
|
A383123
|
The Möbius transform of A382883.
|
[
"1",
"-2",
"-2",
"2",
"-2",
"4",
"-2",
"0",
"2",
"4",
"-2",
"-3",
"-2",
"4",
"4",
"-1",
"-2",
"-3",
"-2",
"-3",
"4",
"4",
"-2",
"0",
"2",
"4",
"0",
"-3",
"-2",
"-8",
"-2",
"1",
"4",
"4",
"4",
"0",
"-2",
"4",
"4",
"0",
"-2",
"-8",
"-2",
"-3",
"-3",
"4",
"-2",
"1",
"2",
"-3",
"4",
"-3",
"-2",
"0",
"4",
"0",
"4",
"4",
"-2",
"5",
"-2",
"4",
"-3",
"-2",
"4",
"-8",
"-2",
"-3",
"4",
"-8",
"-2",
"1",
"-2",
"4"
] |
[
"sign"
] | 12 | 1 | 2 |
[
"A008683",
"A382883",
"A383123"
] | null |
Peter Luschny, Apr 18 2025
| 2025-04-29T16:52:08 |
oeisdata/seq/A383/A383123.seq
|
df075887f01897ef0857a7d430a43195
|
A383124
|
a(n) = Sum_{d|n} A382883(d)*(n/d).
|
[
"1",
"1",
"2",
"3",
"4",
"2",
"6",
"7",
"7",
"4",
"10",
"7",
"12",
"6",
"8",
"14",
"16",
"8",
"18",
"13",
"12",
"10",
"22",
"17",
"21",
"12",
"22",
"19",
"28",
"8",
"30",
"29",
"20",
"16",
"24",
"24",
"36",
"18",
"24",
"31",
"40",
"12",
"42",
"31",
"29",
"22",
"46",
"34",
"43",
"22",
"32",
"37",
"52",
"26",
"40",
"45",
"36",
"28",
"58",
"31",
"60",
"30",
"43",
"57",
"48",
"20",
"66",
"49",
"44"
] |
[
"nonn"
] | 8 | 1 | 3 |
[
"A000010",
"A047994",
"A152958",
"A382883",
"A383104",
"A383124"
] | null |
Peter Luschny, Apr 17 2025
| 2025-04-29T16:52:03 |
oeisdata/seq/A383/A383124.seq
|
d16bfb2c5d73a3632ec81f502d739c22
|
A383125
|
Number of cyclic edge cuts in the n-web graph.
|
[
"8",
"48",
"2592",
"113856",
"3777664",
"105202432",
"2607968768",
"59563461632",
"1280762398720",
"26305784328192",
"521325843259392",
"10041603365060608",
"189005928050491392",
"3490617343237881856",
"63453465548367724544",
"1138182144128359071744",
"20185020166145139277824",
"354486178810344080670720"
] |
[
"nonn",
"easy"
] | 9 | 3 | 1 |
[
"A378311",
"A383125"
] | null |
Eric W. Weisstein, Apr 17 2025
| 2025-05-29T01:05:48 |
oeisdata/seq/A383/A383125.seq
|
fe1d67b48561627ccb013416106441de
|
A383126
|
Consecutive internal states of the linear congruential pseudo-random number generator (281*s + 28411) mod 134456 when started at 1.
|
[
"1",
"28692",
"23503",
"44410",
"3213",
"124528",
"62219",
"32670",
"65673",
"62052",
"120199",
"55874",
"132109",
"41184",
"37899",
"56006",
"34745",
"110924",
"4263",
"16210",
"11917",
"15688",
"134147",
"76038",
"16585",
"117292",
"45743",
"108874",
"100493",
"31184",
"51475",
"106094",
"126049",
"86252",
"63143",
"23402"
] |
[
"nonn",
"look",
"easy",
"changed"
] | 21 | 1 | 2 |
[
"A383126",
"A383127",
"A384431",
"A385002",
"A385003",
"A385037",
"A385039",
"A385078"
] | null |
Sean A. Irvine, Jun 17 2025
| 2025-07-06T18:23:15 |
oeisdata/seq/A383/A383126.seq
|
7996b79c1f889e2d741199fdbfde257d
|
A383127
|
Consecutive internal states of the linear congruential pseudo-random number generator (205*s + 29573) mod 139968 when started at 1.
|
[
"1",
"29778",
"115439",
"39976",
"106509",
"28910",
"77467",
"93924",
"108377",
"131914",
"58119",
"46688",
"82789",
"65190",
"96563",
"89500",
"41265",
"90818",
"31519",
"52440",
"2237",
"68254",
"24843",
"83540",
"79177",
"24570",
"27575",
"83728",
"117717",
"87062",
"101347",
"90444",
"94817",
"11506",
"8847",
"23624",
"113581"
] |
[
"nonn",
"easy",
"changed"
] | 17 | 1 | 2 |
[
"A383126",
"A383127",
"A384431",
"A385002",
"A385003",
"A385037",
"A385039",
"A385078"
] | null |
Sean A. Irvine, Jun 17 2025
| 2025-07-06T18:23:47 |
oeisdata/seq/A383/A383127.seq
|
f050e795ede357ab5ad3d8d47741076a
|
A383128
|
Consecutive internal states of the linear congruential pseudo-random number generator (321*s + 123) mod 10^5 when started at 1.
|
[
"1",
"444",
"42647",
"89810",
"29133",
"51816",
"33059",
"12062",
"72025",
"20148",
"67631",
"9674",
"5477",
"58240",
"95163",
"47446",
"30289",
"22892",
"48455",
"54178",
"91261",
"94904",
"64307",
"42670",
"97193",
"99076",
"3519",
"29722",
"40885",
"24208",
"70891",
"56134",
"19137",
"43100",
"35223",
"6706",
"52749",
"32552"
] |
[
"nonn",
"look",
"easy"
] | 17 | 1 | 2 |
[
"A383126",
"A383127",
"A383128",
"A384341"
] | null |
Sean A. Irvine, Jun 17 2025
| 2025-06-18T11:23:34 |
oeisdata/seq/A383/A383128.seq
|
e608308ea909e529224a2b59a8bf63da
|
A383129
|
Consecutive internal states of the linear congruential pseudo-random number generator (421*s + 54773) mod 259200 when started at 1.
|
[
"1",
"55194",
"222647",
"217960",
"59133",
"66566",
"85459",
"4212",
"13625",
"88498",
"246831",
"31424",
"65077",
"236190",
"217163",
"241996",
"69489",
"20042",
"198055",
"232728",
"55661",
"160054",
"45507",
"32420",
"225193",
"253026",
"47519",
"101872",
"174885",
"68558",
"146491",
"37884",
"192737",
"67450",
"198423"
] |
[
"nonn",
"look",
"easy"
] | 20 | 1 | 2 |
[
"A383126",
"A383127",
"A383128",
"A383129"
] | null |
Sean A. Irvine, Jun 17 2025
| 2025-06-18T12:20:18 |
oeisdata/seq/A383/A383129.seq
|
2fe139285a10d77fc0f37c3162981a01
|
A383130
|
Coefficients of the linear terms in the continued fraction representation of the product logarithm.
|
[
"1",
"1",
"1",
"5",
"17",
"133",
"1927",
"13582711",
"92612482895",
"10402118970990527",
"59203666396198716260449",
"83631044830029201279016528831",
"1149522186344339904123210420373026673",
"458029700061597358458976211208014885543904637441",
"203695852839150317577316770934832249000714992664672874100151"
] |
[
"nonn"
] | 25 | 1 | 4 |
[
"A213236",
"A383130"
] | null |
Jacob DeMoss, Jun 17 2025
| 2025-06-25T00:36:58 |
oeisdata/seq/A383/A383130.seq
|
e67c3cfd22b92e2d8038f6db50a98ca2
|
A383131
|
a(n) is the number of iterations that n requires to reach 1 under the map x -> -x/2 if x is even, 3x + 1 if x is odd; a(n) = -1 if 1 is never reached.
|
[
"0",
"3",
"12",
"2",
"5",
"5",
"8",
"5",
"11",
"11",
"50",
"14",
"14",
"14",
"53",
"4",
"17",
"17",
"43",
"7",
"7",
"7",
"20",
"7",
"46",
"46",
"59",
"10",
"10",
"10",
"23",
"7",
"49",
"49",
"62",
"13",
"13",
"13",
"13",
"13",
"26",
"26",
"39",
"52",
"52",
"52",
"65",
"16",
"16",
"16",
"78",
"16",
"16",
"16",
"29",
"16",
"42",
"42",
"55",
"55",
"55",
"55",
"68",
"6",
"19",
"19",
"19",
"19",
"19"
] |
[
"nonn"
] | 17 | 1 | 2 |
[
"A006577",
"A381055",
"A383131"
] | null |
Ya-Ping Lu, Apr 17 2025
| 2025-04-30T11:10:28 |
oeisdata/seq/A383/A383131.seq
|
ceeaee75d64bafd8a74e7fc1259259ab
|
A383132
|
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) * n^k.
|
[
"1",
"2",
"33",
"2701",
"524993",
"181752001",
"97735073905",
"75179269556672",
"78240951854025217",
"105806762566689176353",
"180297512864534759056001",
"377878889913778527874694227",
"955217573424445946022789385537",
"2865620569274978738097814056365899",
"10064763360358683666070320479027168465"
] |
[
"nonn"
] | 7 | 0 | 2 |
[
"A084771",
"A187021",
"A331656",
"A340971",
"A383120",
"A383132",
"A383133"
] | null |
Ilya Gutkovskiy, Apr 17 2025
| 2025-04-19T05:17:12 |
oeisdata/seq/A383/A383132.seq
|
2a678a605056ee9a7879db42442975a2
|
A383133
|
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k) * n^k.
|
[
"1",
"0",
"17",
"1889",
"412225",
"151448249",
"84430503361",
"66535567456546",
"70456680210155009",
"96530372235620300465",
"166169585125820280654001",
"351113456811120647774884511",
"893491183170443755035588745153",
"2695374684029443253628238600963667",
"9511442599320236554084097413617603681"
] |
[
"nonn"
] | 6 | 0 | 3 |
[
"A307885",
"A331657",
"A340972",
"A383121",
"A383132",
"A383133"
] | null |
Ilya Gutkovskiy, Apr 17 2025
| 2025-04-19T05:22:14 |
oeisdata/seq/A383/A383133.seq
|
8e3a628004ef40d50e39efb8e00d1701
|
A383134
|
Array read by ascending antidiagonals: A(n,k) is the length of the arithmetic progression of only primes having difference n and first term prime(k).
|
[
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"3",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"4",
"1",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] |
[
"nonn",
"tabl"
] | 12 | 1 | 1 |
[
"A000012",
"A006512",
"A040976",
"A054977",
"A088430",
"A175191",
"A206045",
"A237453",
"A383134"
] | null |
Stefano Spezia, Apr 17 2025
| 2025-04-18T09:53:25 |
oeisdata/seq/A383/A383134.seq
|
1e8d5368aa7aae329ba46437ba15d244
|
A383135
|
a(n) = number of iterations that n requires to reach 1 under the x -> A380891(x) map, or -1 if it never does.
|
[
"0",
"1",
"2",
"1",
"3",
"1",
"5",
"2",
"3",
"2",
"3",
"2",
"4",
"2",
"4",
"2",
"6",
"2",
"4",
"2",
"6",
"2",
"13",
"2",
"13",
"2",
"8",
"3",
"8",
"3",
"10",
"3",
"10",
"3",
"3",
"3",
"10",
"3",
"5",
"3",
"10",
"3",
"5",
"3",
"5",
"3",
"6",
"3",
"5",
"3",
"5",
"3",
"17",
"3",
"5",
"3",
"5",
"3",
"17",
"3",
"3",
"3",
"3",
"2",
"12",
"2",
"3",
"2",
"5",
"2",
"5",
"2",
"12",
"2",
"3",
"2",
"7",
"2",
"3",
"2",
"7",
"2",
"7",
"2"
] |
[
"nonn"
] | 24 | 1 | 3 |
[
"A006577",
"A380891",
"A381246",
"A383135"
] | null |
James C. McMahon and Vikram Prasad, Apr 17 2025
| 2025-05-05T16:44:05 |
oeisdata/seq/A383/A383135.seq
|
59252c3e1ec98181ac64121b46b326de
|
A383136
|
a(n) = Sum_{k=0..n} k^2 * 2^(n-k) * binomial(n,k).
|
[
"0",
"1",
"8",
"45",
"216",
"945",
"3888",
"15309",
"58320",
"216513",
"787320",
"2814669",
"9920232",
"34543665",
"119042784",
"406552365",
"1377495072",
"4634696961",
"15496819560",
"51526925037",
"170465015160",
"561372288561",
"1841022163728",
"6014703091725",
"19581781196016",
"63546645708225",
"205608702558168"
] |
[
"nonn",
"easy"
] | 9 | 0 | 3 |
[
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null |
Seiichi Manyama, Apr 17 2025
| 2025-04-17T12:27:58 |
oeisdata/seq/A383/A383136.seq
|
d1ac27a822d131860f2f01ee15488ea8
|
A383137
|
a(n) = Sum_{k=0..n} k^3 * 2^(n-k) * binomial(n,k).
|
[
"0",
"1",
"12",
"87",
"504",
"2565",
"11988",
"52731",
"221616",
"898857",
"3542940",
"13640319",
"51490728",
"191141613",
"699376356",
"2527001955",
"9030245472",
"31955015889",
"112093661484",
"390132432423",
"1348223301720",
"4629287423061",
"15802106905332",
"53651151578187",
"181257000301584"
] |
[
"nonn",
"easy"
] | 10 | 0 | 3 |
[
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null |
Seiichi Manyama, Apr 17 2025
| 2025-04-17T12:27:54 |
oeisdata/seq/A383/A383137.seq
|
e4a27d31640dfe420420ae01c0da9869
|
A383138
|
a(n) = Sum_{k=0..n} k^4 * 2^(n-k) * binomial(n,k).
|
[
"0",
"1",
"20",
"189",
"1320",
"7785",
"41148",
"201285",
"929232",
"4100625",
"17452260",
"72098829",
"290521080",
"1146082041",
"4439303820",
"16923738645",
"63619864992",
"236206924065",
"867305334708",
"3152957079645",
"11359168737480",
"40589657212041",
"143957705302620",
"507079568653029"
] |
[
"nonn",
"easy"
] | 10 | 0 | 3 |
[
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null |
Seiichi Manyama, Apr 17 2025
| 2025-04-17T12:27:50 |
oeisdata/seq/A383/A383138.seq
|
65abcd2c22eacd593322db69c9525816
|
A383139
|
a(n) = Sum_{k=0..n} k^5 * 2^(n-k) * binomial(n,k).
|
[
"0",
"1",
"36",
"447",
"3768",
"25725",
"153468",
"832923",
"4213296",
"20179449",
"92510100",
"409137399",
"1755881064",
"7345518453",
"30059956332",
"120676965075",
"476358203232",
"1852442299377",
"7108046758404",
"26948581794351",
"101065091563800",
"375297714478701",
"1381124599327836",
"5040775635099147"
] |
[
"nonn",
"easy"
] | 8 | 0 | 3 |
[
"A027471",
"A383136",
"A383137",
"A383138",
"A383139"
] | null |
Seiichi Manyama, Apr 17 2025
| 2025-04-17T12:27:44 |
oeisdata/seq/A383/A383139.seq
|
3adc5207c3f0898d0429f0bab11df8f8
|
A383140
|
Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.
|
[
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"2",
"6",
"1",
"0",
"-6",
"20",
"12",
"1",
"0",
"-30",
"10",
"80",
"20",
"1",
"0",
"42",
"-320",
"270",
"220",
"30",
"1",
"0",
"882",
"-1386",
"-770",
"1470",
"490",
"42",
"1",
"0",
"954",
"7308",
"-15064",
"2800",
"5180",
"952",
"56",
"1",
"0",
"-39870",
"101826",
"-39340",
"-61992",
"29820",
"14364",
"1680",
"72",
"1",
"0",
"-203958",
"-40680",
"841770",
"-666820",
"-86940",
"139440",
"34020",
"2760",
"90",
"1"
] |
[
"sign",
"tabl"
] | 36 | 0 | 5 |
[
"A000007",
"A027471",
"A129062",
"A133494",
"A179929",
"A209849",
"A212846",
"A383136",
"A383137",
"A383138",
"A383139",
"A383140"
] | null |
Seiichi Manyama, Apr 17 2025
| 2025-04-18T08:44:25 |
oeisdata/seq/A383/A383140.seq
|
ba97be33e8c61ab725d44b77e3fd1631
|
A383141
|
Decimal expansion of the obliquity (in degrees) of a planet at which the annual instellations received by the poles and the equator are identical.
|
[
"5",
"3",
"8",
"9",
"6",
"2",
"3",
"5",
"8",
"6",
"2",
"9",
"5",
"4",
"2",
"8",
"7",
"3",
"1",
"0",
"1",
"1",
"2",
"4",
"6",
"9",
"2",
"4",
"2",
"0",
"8",
"2",
"1",
"0",
"8",
"4",
"5",
"7",
"9",
"2",
"0",
"9",
"5",
"8",
"3",
"7",
"4",
"4",
"7",
"8",
"6",
"1",
"1",
"2",
"2",
"2",
"7",
"5",
"5",
"8",
"9",
"3",
"4",
"3",
"6",
"4",
"9",
"5",
"4",
"0",
"1",
"9",
"1",
"1",
"0",
"0",
"1",
"4",
"7",
"8",
"7",
"7",
"7",
"9",
"8",
"2",
"6",
"4",
"7",
"9",
"8",
"5",
"9",
"7",
"7",
"7",
"5",
"2",
"5",
"5",
"7",
"3",
"4",
"3",
"5",
"2",
"7",
"0",
"1",
"8",
"5",
"7",
"4",
"0",
"5",
"6",
"5"
] |
[
"nonn",
"cons"
] | 27 | 2 | 1 |
[
"A381254",
"A383141"
] | null |
Eliora Ben-Gurion, Apr 17 2025
| 2025-05-03T22:25:54 |
oeisdata/seq/A383/A383141.seq
|
4b6fab752e7efeb1040d1873d0549bd8
|
A383142
|
Smallest positive integer with shortest addition-subtraction chain of length n.
|
[
"1",
"2",
"3",
"5",
"7",
"11",
"19",
"29",
"53",
"87",
"151",
"267",
"461",
"811",
"1383",
"2357",
"4277",
"7499",
"14003",
"25931",
"44269",
"87773",
"152947",
"271563"
] |
[
"nonn",
"hard",
"more"
] | 10 | 0 | 2 |
[
"A003064",
"A128998",
"A383001",
"A383142",
"A383143"
] | null |
Jinyuan Wang, Apr 17 2025
| 2025-04-18T10:59:25 |
oeisdata/seq/A383/A383142.seq
|
03678383505ee891fec5dc1400426b4c
|
A383143
|
Number of positive integers with a shortest addition-subtraction chain of length n.
|
[
"1",
"1",
"2",
"3",
"5",
"9",
"16",
"28",
"49",
"88",
"156",
"280",
"499",
"904",
"1639",
"2986",
"5442",
"9936",
"18134"
] |
[
"nonn",
"hard",
"more"
] | 9 | 0 | 3 |
[
"A003065",
"A128998",
"A383002",
"A383142",
"A383143"
] | null |
Jinyuan Wang, Apr 17 2025
| 2025-04-18T10:59:33 |
oeisdata/seq/A383/A383143.seq
|
b6d0f663cc4abfd99c5737e0576a7986
|
A383144
|
Number of abelian/medial racks of order n, up to isomorphism.
|
[
"1",
"1",
"2",
"6",
"18",
"68",
"329",
"1965",
"15455",
"155902",
"2064870",
"35982366",
"832699635",
"25731050872"
] |
[
"nonn",
"hard",
"more"
] | 15 | 0 | 3 |
[
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A383144",
"A383145",
"A383146",
"A383829",
"A383831"
] | null |
Luc Ta, Apr 17 2025
| 2025-05-16T07:19:23 |
oeisdata/seq/A383/A383144.seq
|
597b9257226bd99dccb0222812c76d58
|
A383145
|
Number of GL-racks of order n, up to isomorphism.
|
[
"1",
"1",
"4",
"13",
"62",
"308",
"2132",
"17268",
"189373"
] |
[
"hard",
"more",
"nonn"
] | 12 | 0 | 3 |
[
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A374939",
"A374942",
"A374943",
"A374944",
"A374945",
"A374946",
"A374947",
"A383144",
"A383145",
"A383146"
] | null |
Luc Ta, Apr 17 2025
| 2025-05-16T09:46:02 |
oeisdata/seq/A383/A383145.seq
|
ac1701b3588c85d6ecdf56abf4eb3350
|
A383146
|
Number of medial GL-racks of order n, up to isomorphism.
|
[
"1",
"1",
"4",
"13",
"61",
"298",
"2087",
"16941",
"187160"
] |
[
"hard",
"more",
"nonn"
] | 10 | 0 | 3 |
[
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A374939",
"A374942",
"A374943",
"A374944",
"A374945",
"A374946",
"A374947",
"A383144",
"A383145",
"A383146"
] | null |
Luc Ta, Apr 17 2025
| 2025-05-16T09:45:32 |
oeisdata/seq/A383/A383146.seq
|
13c09f9132e7ad09d0ca5bf1065737a4
|
A383147
|
Sum of odd divisors m of n such that there is a divisor d of n with d < m < 2*d.
|
[
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"5",
"0",
"0",
"12",
"0",
"5",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"7",
"0",
"23",
"0",
"0",
"0",
"0",
"7",
"12",
"0",
"0",
"0",
"5",
"0",
"31",
"0",
"0",
"29",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"39",
"0",
"7",
"0",
"0",
"0",
"23",
"0",
"0",
"9",
"0",
"0",
"47",
"0",
"0",
"0",
"7",
"0",
"12",
"0",
"0",
"30",
"0",
"11",
"42",
"0",
"5",
"0",
"0",
"0",
"31",
"0",
"0",
"0",
"11",
"0",
"77",
"13",
"0",
"0",
"0",
"0"
] |
[
"nonn"
] | 18 | 1 | 6 |
[
"A000593",
"A237270",
"A237271",
"A237593",
"A239657",
"A379379",
"A383147",
"A383209"
] | null |
Omar E. Pol, Apr 17 2025
| 2025-04-25T18:48:18 |
oeisdata/seq/A383/A383147.seq
|
1208bd32b0ad144409efb81cf80b8809
|
A383148
|
k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m.
|
[
"12",
"18",
"20",
"24",
"30",
"40",
"42",
"54",
"56",
"60",
"66",
"78",
"84",
"88",
"90",
"102",
"104",
"114",
"120",
"132",
"138",
"140",
"168",
"174",
"186",
"196",
"204",
"222",
"224",
"234",
"246",
"252",
"258",
"264",
"270",
"280",
"282",
"308",
"312",
"318",
"348",
"354",
"360",
"364",
"366",
"368",
"380",
"402",
"414",
"420",
"426",
"438",
"440",
"456",
"464",
"468",
"474",
"476"
] |
[
"nonn"
] | 22 | 1 | 1 |
[
"A000203",
"A000396",
"A005101",
"A181595",
"A383148"
] | null |
Joshua Zelinsky, Apr 17 2025
| 2025-04-24T18:27:20 |
oeisdata/seq/A383/A383148.seq
|
06b1efc486c3063db6d9d62100350ffe
|
A383149
|
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
|
[
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"12",
"9",
"1",
"0",
"66",
"75",
"18",
"1",
"0",
"480",
"690",
"255",
"30",
"1",
"0",
"4368",
"7290",
"3555",
"645",
"45",
"1",
"0",
"47712",
"88536",
"52290",
"12705",
"1365",
"63",
"1",
"0",
"608016",
"1223628",
"831684",
"249585",
"36120",
"2562",
"84",
"1",
"0",
"8855040",
"19019664",
"14405580",
"5073012",
"915705",
"87696",
"4410",
"108",
"1"
] |
[
"nonn",
"tabl"
] | 35 | 0 | 5 |
[
"A000007",
"A001787",
"A122704",
"A123227",
"A129062",
"A178987",
"A209849",
"A383140",
"A383149",
"A383150",
"A383151",
"A383152",
"A383155",
"A383163",
"A383164"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T08:44:21 |
oeisdata/seq/A383/A383149.seq
|
ed321630bfc9096af6944981d0279b39
|
A383150
|
a(n) = Sum_{k=0..n} k^3 * (-1)^k * 3^(n-k) * binomial(n,k).
|
[
"0",
"-1",
"2",
"18",
"64",
"160",
"288",
"224",
"-1024",
"-6912",
"-28160",
"-95744",
"-294912",
"-851968",
"-2351104",
"-6266880",
"-16252928",
"-41222144",
"-102629376",
"-251527168",
"-608174080",
"-1453326336",
"-3437232128",
"-8055160832",
"-18723373056",
"-43201331200",
"-99019128832",
"-225586446336"
] |
[
"sign",
"easy"
] | 18 | 0 | 3 |
[
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-05-02T00:52:29 |
oeisdata/seq/A383/A383150.seq
|
228d658f64f20fd94d7f76362770b224
|
A383151
|
a(n) = Sum_{k=0..n} k^4 * (-1)^k * 3^(n-k) * binomial(n,k).
|
[
"0",
"-1",
"10",
"36",
"40",
"-160",
"-1152",
"-4480",
"-13568",
"-34560",
"-74240",
"-123904",
"-92160",
"425984",
"2867200",
"11796480",
"40763392",
"128122880",
"378667008",
"1070858240",
"2928148480",
"7795113984",
"20300431360",
"51900317696",
"130610626560",
"324219699200",
"795206483968",
"1929715384320"
] |
[
"sign",
"easy"
] | 18 | 0 | 3 |
[
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-23T16:21:30 |
oeisdata/seq/A383/A383151.seq
|
c3b13530c1908ae4f212e13baea86bbc
|
A383152
|
a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k).
|
[
"0",
"-1",
"26",
"18",
"-272",
"-1400",
"-4032",
"-7168",
"-1024",
"55296",
"294400",
"1086976",
"3354624",
"9132032",
"22249472",
"47923200",
"85983232",
"99155968",
"-102629376",
"-1237712896",
"-5688524800",
"-20775960576",
"-67868033024",
"-207022456832",
"-602167836672",
"-1690304512000",
"-4613767954432"
] |
[
"sign",
"easy"
] | 28 | 0 | 3 |
[
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-05-01T23:52:37 |
oeisdata/seq/A383/A383152.seq
|
5f9c3aa56d4117555897edc0ff6846a7
|
A383153
|
Square array read by antidiagonals: A(m,n) is the number of 2m-by-2n fers-wazir tours.
|
[
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"4",
"1",
"1",
"9",
"22",
"9",
"1",
"1",
"23",
"124",
"124",
"23",
"1",
"1",
"62",
"818",
"1620",
"818",
"62",
"1",
"1",
"170",
"6004",
"25111",
"25111",
"6004",
"170",
"1",
"1",
"469",
"46488",
"455219",
"882130",
"455219",
"46488",
"469",
"1",
"1",
"1297",
"367880",
"9103712",
"36979379",
"36979379",
"9103712",
"367880",
"1297",
"1"
] |
[
"nonn",
"tabl"
] | 58 | 1 | 1 |
[
"A339190",
"A383153",
"A383154"
] | null |
Don Knuth, Apr 18 2025
| 2025-04-25T14:31:07 |
oeisdata/seq/A383/A383153.seq
|
de8d6d65709a52e09b111e0e01dd7739
|
A383154
|
The number of 2n-by-2n fers-wazir tours.
|
[
"2",
"2",
"22",
"1620",
"882130",
"3465050546"
] |
[
"nonn",
"more"
] | 13 | 1 | 1 |
[
"A140519",
"A383153",
"A383154"
] | null |
Don Knuth, Apr 18 2025
| 2025-04-18T13:57:51 |
oeisdata/seq/A383/A383154.seq
|
7a5229ee02d5cc0f9c69e98b1e430499
|
A383155
|
a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k).
|
[
"0",
"-1",
"58",
"-180",
"-1304",
"-2920",
"1008",
"34496",
"163840",
"525312",
"1285120",
"2241536",
"1124352",
"-12113920",
"-72052736",
"-282378240",
"-924581888",
"-2699493376",
"-7201751040",
"-17666670592",
"-39507722240",
"-77918109696",
"-121883328512",
"-78622228480",
"453588811776",
"2904974950400",
"11885785120768"
] |
[
"sign",
"easy"
] | 15 | 0 | 3 |
[
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-23T13:24:30 |
oeisdata/seq/A383/A383155.seq
|
9781197c82dcb22970e5f3cf2cae31df
|
A383156
|
The sum of the maximum exponents in the prime factorizations of the divisors of n.
|
[
"0",
"1",
"1",
"3",
"1",
"3",
"1",
"6",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"10",
"1",
"7",
"1",
"7",
"3",
"3",
"1",
"13",
"3",
"3",
"6",
"7",
"1",
"7",
"1",
"15",
"3",
"3",
"3",
"13",
"1",
"3",
"3",
"13",
"1",
"7",
"1",
"7",
"7",
"3",
"1",
"21",
"3",
"7",
"3",
"7",
"1",
"13",
"3",
"13",
"3",
"3",
"1",
"15",
"1",
"3",
"7",
"21",
"3",
"7",
"1",
"7",
"3",
"7",
"1",
"22",
"1",
"3",
"7",
"7",
"3",
"7",
"1",
"21",
"10",
"3",
"1"
] |
[
"nonn",
"easy"
] | 10 | 1 | 4 |
[
"A000005",
"A001221",
"A001620",
"A005117",
"A013661",
"A033150",
"A034444",
"A051903",
"A073184",
"A118914",
"A252505",
"A306016",
"A309307",
"A383156",
"A383157",
"A383158",
"A383159"
] | null |
Amiram Eldar, Apr 18 2025
| 2025-04-20T02:39:02 |
oeisdata/seq/A383/A383156.seq
|
3f8b107cbe0c54bb268e111409081ae0
|
A383157
|
a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
|
[
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"7",
"1",
"3",
"3",
"2",
"1",
"7",
"1",
"7",
"3",
"3",
"1",
"13",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"13",
"1",
"3",
"3",
"13",
"1",
"7",
"1",
"7",
"7",
"3",
"1",
"21",
"1",
"7",
"3",
"7",
"1",
"13",
"3",
"13",
"3",
"3",
"1",
"5",
"1",
"3",
"7",
"3",
"3",
"7",
"1",
"7",
"3",
"7",
"1",
"11",
"1",
"3",
"7",
"7",
"3",
"7",
"1",
"21",
"2",
"3",
"1",
"5",
"3"
] |
[
"nonn",
"easy",
"frac"
] | 10 | 1 | 6 |
[
"A000005",
"A001248",
"A051903",
"A118914",
"A308043",
"A345231",
"A361062",
"A383156",
"A383157",
"A383158"
] | null |
Amiram Eldar, Apr 18 2025
| 2025-04-20T02:39:14 |
oeisdata/seq/A383/A383157.seq
|
c7adfecc18a75672f1ca34429119b78e
|
A383158
|
a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
|
[
"1",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"1",
"4",
"2",
"6",
"2",
"4",
"4",
"1",
"2",
"6",
"2",
"6",
"4",
"4",
"2",
"8",
"1",
"4",
"2",
"6",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"9",
"2",
"4",
"4",
"8",
"2",
"8",
"2",
"6",
"6",
"4",
"2",
"10",
"1",
"6",
"4",
"6",
"2",
"8",
"4",
"8",
"4",
"4",
"2",
"4",
"2",
"4",
"6",
"1",
"4",
"8",
"2",
"6",
"4",
"8",
"2",
"6",
"2",
"4",
"6",
"6",
"4",
"8",
"2",
"10",
"1",
"4",
"2",
"4",
"4",
"4",
"4"
] |
[
"nonn",
"easy",
"frac"
] | 7 | 1 | 2 |
[
"A000005",
"A051903",
"A056798",
"A118914",
"A383156",
"A383157",
"A383158"
] | null |
Amiram Eldar, Apr 18 2025
| 2025-04-20T02:39:40 |
oeisdata/seq/A383/A383158.seq
|
0a25497b97de8e8b99c71f164aff6091
|
A383159
|
The sum of the maximum exponents in the prime factorizations of the unitary divisors of n.
|
[
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"2",
"3",
"1",
"5",
"1",
"3",
"3",
"4",
"1",
"5",
"1",
"5",
"3",
"3",
"1",
"7",
"2",
"3",
"3",
"5",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"6",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"5",
"3",
"1",
"9",
"2",
"5",
"3",
"5",
"1",
"7",
"3",
"7",
"3",
"3",
"1",
"11",
"1",
"3",
"5",
"6",
"3",
"7",
"1",
"5",
"3",
"7",
"1",
"8",
"1",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"4",
"3",
"1",
"11",
"3",
"3",
"3"
] |
[
"nonn",
"easy"
] | 11 | 1 | 4 |
[
"A005117",
"A032741",
"A034444",
"A051903",
"A056671",
"A077610",
"A305611",
"A325770",
"A365498",
"A365499",
"A383156",
"A383159",
"A383160",
"A383161"
] | null |
Amiram Eldar, Apr 18 2025
| 2025-04-20T02:40:04 |
oeisdata/seq/A383/A383159.seq
|
ac7ec3ae5f50581a8b089881e0a32f0e
|
A383160
|
a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.
|
[
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"3",
"3",
"2",
"1",
"5",
"1",
"5",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"5",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"3",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"5",
"3",
"1",
"9",
"1",
"5",
"3",
"5",
"1",
"7",
"3",
"7",
"3",
"3",
"1",
"11",
"1",
"3",
"5",
"3",
"3",
"7",
"1",
"5",
"3",
"7",
"1",
"2",
"1",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"2",
"3",
"1",
"11",
"3",
"3",
"3"
] |
[
"nonn",
"easy",
"frac"
] | 9 | 1 | 6 |
[
"A000961",
"A001248",
"A005117",
"A034444",
"A051903",
"A077610",
"A118914",
"A126706",
"A296082",
"A345288",
"A383057",
"A383058",
"A383157",
"A383158",
"A383159",
"A383160",
"A383161"
] | null |
Amiram Eldar, Apr 18 2025
| 2025-04-20T02:40:20 |
oeisdata/seq/A383/A383160.seq
|
bbf4f693d0197047b3851b39ad2ad46b
|
A383161
|
a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.
|
[
"1",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"1",
"4",
"2",
"4",
"2",
"4",
"4",
"1",
"2",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"1",
"4",
"2",
"4",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"2",
"2",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"4",
"2",
"4",
"1",
"4",
"4",
"4",
"2",
"4",
"4",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"1",
"4",
"8",
"2",
"4",
"4",
"8",
"2",
"1",
"2",
"4",
"4",
"4",
"4",
"8",
"2",
"4",
"1",
"4",
"2",
"8",
"4",
"4",
"4",
"4"
] |
[
"nonn",
"easy",
"frac"
] | 8 | 1 | 2 |
[
"A034444",
"A051903",
"A056798",
"A077610",
"A118914",
"A383158",
"A383159",
"A383160",
"A383161"
] | null |
Amiram Eldar, Apr 18 2025
| 2025-04-20T02:38:27 |
oeisdata/seq/A383/A383161.seq
|
dbbcda0ce2a2263334c983954714edfc
|
A383162
|
Consecutive states of the linear congruential pseudo-random number generator (7200*s + 1) mod 23^4 when started at s=1.
|
[
"1",
"7201",
"76616",
"68590",
"208477",
"247118",
"20523",
"9553",
"220556",
"185367",
"80672",
"168326",
"235671",
"155218",
"164488",
"26489",
"149080",
"185766",
"155062",
"160652",
"111548",
"1931",
"190992",
"3727",
"249506",
"143822",
"106701",
"83656",
"105369",
"7850",
"271960",
"64524",
"36741",
"85456",
"192683"
] |
[
"nonn",
"easy"
] | 18 | 1 | 2 |
[
"A383129",
"A383162",
"A384081"
] | null |
Sean A. Irvine, Jun 13 2025
| 2025-06-18T12:20:36 |
oeisdata/seq/A383/A383162.seq
|
2bac7e4d08a49a2002abf6afb3d90fa9
|
A383163
|
Expansion of e.g.f. log(1 - (exp(2*x) - 1)/2)^2 / 2.
|
[
"0",
"0",
"1",
"9",
"75",
"690",
"7290",
"88536",
"1223628",
"19019664",
"328908720",
"6268688448",
"130615236576",
"2954657491968",
"72128519473920",
"1890266313945600",
"52937770062975744",
"1577901064699594752",
"49877742373556336640",
"1666688195869095124992",
"58704547943954039672832"
] |
[
"nonn"
] | 12 | 0 | 4 |
[
"A000254",
"A383149",
"A383163"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T10:05:53 |
oeisdata/seq/A383/A383163.seq
|
24612671d2a1c2ae01c2cc4957a38ddc
|
A383164
|
Expansion of e.g.f. -log(1 - (exp(2*x) - 1)/2)^3 / 6.
|
[
"0",
"0",
"0",
"1",
"18",
"255",
"3555",
"52290",
"831684",
"14405580",
"271688580",
"5562400800",
"123123764808",
"2933953637472",
"74953425290016",
"2044855241694720",
"59361121229581440",
"1827578437315965696",
"59494057195888597248",
"2042194772007257103360",
"73731225467600254686720"
] |
[
"nonn"
] | 11 | 0 | 5 |
[
"A000399",
"A383149",
"A383164",
"A383166"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T10:10:32 |
oeisdata/seq/A383/A383164.seq
|
5035ec32f97c0034cca4beee6aa76531
|
A383165
|
Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^2 / 2.
|
[
"0",
"0",
"1",
"3",
"3",
"-10",
"-30",
"112",
"588",
"-2448",
"-18960",
"87296",
"911328",
"-4599296",
"-61152000",
"335523840",
"5464904448",
"-32363874304",
"-627708979200",
"3987441516544",
"90133968949248",
"-610866587369472",
"-15823700431503360",
"113884455221854208",
"3334995367266582528",
"-25385597162671308800"
] |
[
"sign"
] | 10 | 0 | 4 |
[
"A009392",
"A209849",
"A383163",
"A383165"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T08:44:46 |
oeisdata/seq/A383/A383165.seq
|
852d41a7f2d7adf609094eb5fcb09dc0
|
A383166
|
Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^3 / 6.
|
[
"0",
"0",
"0",
"1",
"6",
"15",
"-15",
"-210",
"28",
"5292",
"4140",
"-208560",
"-369864",
"11847264",
"33630688",
"-917280000",
"-3642944640",
"92903375616",
"479824306944",
"-11926470604800",
"-76477342307840",
"1892813347934208",
"14591875555074048",
"-363945109924577280",
"-3293838565260693504",
"83374884181664563200"
] |
[
"sign"
] | 9 | 0 | 5 |
[
"A209849",
"A383164",
"A383166"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T08:44:42 |
oeisdata/seq/A383/A383166.seq
|
8aba7255127be54b52300af7f5c7656e
|
A383167
|
Primes p such that p + 4, p + 10, p + 12, p + 18 and p + 22 are also primes.
|
[
"19",
"1279",
"5839",
"32359",
"75979",
"88789",
"113149",
"138559",
"229759",
"246919",
"357649",
"433249",
"460969",
"590119",
"595939",
"839599",
"855709",
"1257229",
"1266259",
"1287739",
"1652869",
"1749259",
"1880929",
"2428879",
"2580649",
"2882479",
"3245569",
"3300949",
"3753349",
"3809149",
"3939769"
] |
[
"nonn"
] | 51 | 1 | 1 |
[
"A000040",
"A001223",
"A022008",
"A140565",
"A383167"
] | null |
Alexander Yutkin, Apr 25 2025
| 2025-05-02T22:36:46 |
oeisdata/seq/A383/A383167.seq
|
afcd34dc587fe7dfec1efeeda53d079b
|
A383168
|
Triangle T(n,k) read by rows: For closed chains of identical regular m-gons with connecting inner vertices lying n vertices apart, the n-th row lists the possible m in ascending order; n>=0, 1<=k<=d(8+4n).
|
[
"5",
"6",
"8",
"12",
"7",
"8",
"9",
"10",
"12",
"18",
"9",
"10",
"12",
"16",
"24",
"11",
"12",
"14",
"15",
"20",
"30",
"13",
"14",
"15",
"16",
"18",
"20",
"24",
"36",
"15",
"16",
"18",
"21",
"28",
"42",
"17",
"18",
"20",
"24",
"32",
"48",
"19",
"20",
"21",
"22",
"24",
"27",
"30",
"36",
"54",
"21",
"22",
"24",
"25",
"28",
"30",
"40",
"60",
"23",
"24",
"26",
"33",
"44",
"66"
] |
[
"nonn",
"tabf"
] | 13 | 1 | 1 |
[
"A047244",
"A366872",
"A383168",
"A383169"
] | null |
Manfred Boergens, Apr 18 2025
| 2025-05-09T01:31:31 |
oeisdata/seq/A383/A383168.seq
|
4555b78cff7f8fe19042d41859e58fef
|
A383169
|
Triangle T(n,k) read by rows: For closed chains of j identical regular polygons with connecting inner vertices lying n vertices apart, the n-th row lists the possible j in descending order; n>=0, 1<=k<=d(8+4n).
|
[
"10",
"6",
"4",
"3",
"14",
"8",
"6",
"5",
"4",
"3",
"18",
"10",
"6",
"4",
"3",
"22",
"12",
"7",
"6",
"4",
"3",
"26",
"14",
"10",
"8",
"6",
"5",
"4",
"3",
"30",
"16",
"9",
"6",
"4",
"3",
"34",
"18",
"10",
"6",
"4",
"3",
"38",
"20",
"14",
"11",
"8",
"6",
"5",
"4",
"3",
"42",
"22",
"12",
"10",
"7",
"6",
"4",
"3",
"46",
"24",
"13",
"6",
"4",
"3",
"50",
"26",
"18",
"14",
"10",
"8",
"6",
"5",
"4",
"3"
] |
[
"nonn",
"tabf"
] | 10 | 1 | 1 |
[
"A366872",
"A383168",
"A383169"
] | null |
Manfred Boergens, Apr 18 2025
| 2025-05-01T19:59:08 |
oeisdata/seq/A383/A383169.seq
|
f28d9780c286ed8abd26003b2937f610
|
A383170
|
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2).
|
[
"0",
"1",
"3",
"16",
"122",
"1208",
"14704",
"212336",
"3547984",
"67337728",
"1430990976",
"33664165632",
"868592478720",
"24390846882816",
"740570519159808",
"24177326011834368",
"844599686386919424",
"31438092340685144064",
"1242230898248798896128",
"51933512200489564962816",
"2290351520336982559358976"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A003713",
"A227917",
"A383170",
"A383171",
"A383172"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T10:16:21 |
oeisdata/seq/A383/A383170.seq
|
f051fe91d8989b4297145265a0e6bfcb
|
A383171
|
Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2.
|
[
"0",
"0",
"1",
"9",
"91",
"1090",
"15298",
"247352",
"4537132",
"93195696",
"2120623984",
"52973194560",
"1441635171040",
"42464913775232",
"1346297567292416",
"45715740985471744",
"1655552663185480448",
"63698261991541393408",
"2595107348458704209920",
"111613055867327344582656"
] |
[
"nonn"
] | 11 | 0 | 4 |
[
"A341587",
"A383163",
"A383170",
"A383171",
"A383172"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T10:22:17 |
oeisdata/seq/A383/A383171.seq
|
99dce5dce06d3949a1d359ceccef6e87
|
A383172
|
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6.
|
[
"0",
"0",
"0",
"1",
"18",
"295",
"5115",
"96838",
"2012724",
"45825148",
"1137703140",
"30643915984",
"891001127016",
"27835772321344",
"930387252759328",
"33141746095999552",
"1253756533365348992",
"50210676392866266880",
"2122613151692627299584",
"94470824166941637093376"
] |
[
"nonn"
] | 10 | 0 | 5 |
[
"A341588",
"A383164",
"A383170",
"A383171",
"A383172"
] | null |
Seiichi Manyama, Apr 18 2025
| 2025-04-18T08:44:28 |
oeisdata/seq/A383/A383172.seq
|
ac9680a5c7d0399394d45a6625d48d8a
|
A383173
|
Decimal expansion of the area of the biggest little decagon.
|
[
"7",
"4",
"9",
"1",
"3",
"7",
"3",
"4",
"5",
"8",
"7",
"7",
"8",
"3",
"0",
"2",
"7",
"0",
"6",
"2",
"2",
"7",
"1",
"9",
"8",
"2",
"7",
"8",
"8",
"2",
"7",
"0",
"1",
"4",
"5",
"1",
"9",
"4",
"9",
"1",
"5",
"2",
"5",
"8",
"0",
"8",
"1",
"5",
"0",
"2",
"5",
"4",
"5",
"7",
"7",
"2",
"1",
"0",
"5",
"5",
"3",
"8",
"2",
"3",
"2",
"4",
"2",
"9",
"2",
"7",
"8",
"5",
"6",
"1",
"1",
"1",
"9",
"0",
"0",
"7",
"7",
"5",
"1",
"9",
"8",
"6",
"0",
"3",
"7",
"2",
"5",
"7",
"6",
"8",
"5",
"8",
"6",
"8",
"5",
"8",
"7",
"7",
"2",
"7",
"5",
"6",
"7",
"7",
"8",
"9",
"3",
"0",
"8",
"6",
"7",
"7",
"6",
"2",
"3"
] |
[
"nonn",
"cons"
] | 12 | 0 | 1 |
[
"A111969",
"A381252",
"A383173"
] | null |
Eric W. Weisstein, Apr 18 2025
| 2025-06-14T21:42:21 |
oeisdata/seq/A383/A383173.seq
|
383b7772c9cf00e8d1c832ddfd4b417b
|
A383174
|
Permutation of the natural numbers formed by ordering by max(gpfi,bigomega), then bigomega, then numerically, where gpfi(k) = A061395(k) and bigomega(k) = A001222(k).
|
[
"1",
"2",
"3",
"4",
"6",
"9",
"5",
"10",
"15",
"25",
"8",
"12",
"18",
"20",
"27",
"30",
"45",
"50",
"75",
"125",
"7",
"14",
"21",
"35",
"49",
"28",
"42",
"63",
"70",
"98",
"105",
"147",
"175",
"245",
"343",
"16",
"24",
"36",
"40",
"54",
"56",
"60",
"81",
"84",
"90",
"100",
"126",
"135",
"140",
"150",
"189",
"196",
"210",
"225",
"250",
"294",
"315",
"350",
"375",
"441",
"490",
"525"
] |
[
"nonn"
] | 55 | 1 | 2 |
[
"A001222",
"A061395",
"A263297",
"A344844",
"A383174"
] | null |
Bassam Abdul-Baki, Apr 18 2025
| 2025-05-02T22:28:45 |
oeisdata/seq/A383/A383174.seq
|
4f70a12047dd24bb77641860cd6b5b66
|
A383175
|
Number of compositions of n such that any fixed point k can be k different colors.
|
[
"1",
"1",
"2",
"5",
"10",
"22",
"48",
"101",
"213",
"450",
"945",
"1961",
"4064",
"8385",
"17242",
"35332",
"72141",
"146924",
"298552",
"605377",
"1225277",
"2475912",
"4995754",
"10067848",
"20267680",
"40762951",
"81916919",
"164504411",
"330155437",
"662265817",
"1327860471",
"2661376529",
"5332341881",
"10680912173"
] |
[
"nonn",
"easy"
] | 13 | 0 | 3 |
[
"A011782",
"A088305",
"A238349",
"A238350",
"A238351",
"A335713",
"A352512",
"A383175"
] | null |
John Tyler Rascoe, Apr 18 2025
| 2025-04-21T16:27:11 |
oeisdata/seq/A383/A383175.seq
|
5cf26780acadfe5288a0acfd63b49630
|
A383176
|
If p = A002313(n) is a prime such that p = x^2 + y^2, then a(n) is the largest integer k that satisfies x^2 + y^2 - k*x*y > 0.
|
[
"1",
"2",
"2",
"4",
"2",
"6",
"2",
"3",
"2",
"3",
"2",
"2",
"10",
"3",
"2",
"3",
"2",
"2",
"6",
"2",
"2",
"14",
"7",
"2",
"4",
"16",
"2",
"2",
"3",
"8",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"20",
"6",
"2",
"2",
"3",
"5",
"2",
"4",
"2",
"2",
"2",
"2",
"24",
"3",
"5",
"2",
"2",
"6",
"2",
"4",
"2",
"26",
"5",
"2",
"13",
"3",
"2",
"2",
"2",
"2",
"5",
"2",
"3",
"2",
"7",
"5",
"2",
"2",
"2",
"3",
"2",
"7",
"5",
"2",
"2",
"3"
] |
[
"nonn"
] | 19 | 1 | 2 |
[
"A002313",
"A002330",
"A002331",
"A383176"
] | null |
Gonzalo Martínez, Apr 18 2025
| 2025-04-27T01:12:35 |
oeisdata/seq/A383/A383176.seq
|
0678bb1895d5d33d7f6270bb1b07e3c7
|
A383177
|
Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
|
[
"1001",
"1309",
"1547",
"1729",
"2093",
"2261",
"3553",
"4199",
"4301",
"4807",
"5681",
"6061",
"6479",
"7337",
"7843",
"8671",
"9269",
"9361",
"9889",
"10373",
"10879",
"11063",
"11339",
"11687",
"11803",
"11891",
"12121",
"12617",
"13079",
"13717",
"13949",
"13981",
"14911",
"15283",
"15457",
"16211",
"16523",
"17081",
"17329",
"17719"
] |
[
"nonn"
] | 16 | 1 | 1 |
[
"A005117",
"A007304",
"A010846",
"A162306",
"A380995",
"A381250",
"A382022",
"A383177"
] | null |
Michael De Vlieger, Apr 21 2025
| 2025-06-07T11:58:51 |
oeisdata/seq/A383/A383177.seq
|
09ede25eda6a1fe30e80225be27ce9d3
|
A383178
|
Numbers k such that omega(k) = 4 and p^omega(k) < k^(1/4) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
|
[
"81719",
"268801",
"565471",
"626603",
"631997",
"657169",
"700321",
"799459",
"838457",
"893513",
"916453",
"1108927",
"1212083",
"1239389",
"1271209",
"1354681",
"1366817",
"1408637",
"1420763",
"1500313",
"1527619",
"1574359",
"1602137",
"1639877",
"1700557",
"1719871",
"1751173",
"1758203",
"1775341",
"1783511",
"1843969"
] |
[
"nonn"
] | 7 | 1 | 1 |
[
"A010846",
"A020639",
"A162306",
"A383177",
"A383178"
] | null |
Michael De Vlieger, May 09 2025
| 2025-05-16T00:55:54 |
oeisdata/seq/A383/A383178.seq
|
bb93f5ed0035d2fd618ef6ac06b79796
|
A383179
|
Numbers k such that omega(k) = 5 and p^omega(k) < k^(1/5) < lpf(k)^(omega(k)+1) for all primes p | k such that p > lpf(k), where lpf = A020639(k).
|
[
"101007559",
"112442377",
"145352341",
"370621421",
"392748073",
"396181519",
"403811399",
"496492847",
"510478561",
"530733733",
"540954893",
"545683979",
"552435703",
"578262127",
"580407131",
"585416939",
"590534717",
"594163571",
"620435209",
"625790521",
"633456391",
"635140369",
"643418423",
"651300233"
] |
[
"nonn"
] | 7 | 1 | 1 |
[
"A010846",
"A020639",
"A162306",
"A383177",
"A383178",
"A383179"
] | null |
Michael De Vlieger, May 09 2025
| 2025-05-16T00:55:47 |
oeisdata/seq/A383/A383179.seq
|
1debc115b845f3eb66be8974645d0afb
|
A383180
|
Irregular table T(n,k) = A010846(A019565(2^n + k)).
|
[
"1",
"2",
"2",
"5",
"2",
"6",
"5",
"18",
"2",
"6",
"5",
"19",
"5",
"20",
"16",
"68",
"2",
"7",
"6",
"22",
"5",
"21",
"18",
"77",
"5",
"22",
"17",
"79",
"16",
"74",
"60",
"283",
"2",
"7",
"6",
"23",
"5",
"23",
"18",
"80",
"5",
"22",
"18",
"82",
"16",
"78",
"62",
"295",
"5",
"24",
"19",
"87",
"16",
"82",
"64",
"315",
"15",
"80",
"62",
"316",
"55",
"290",
"226",
"1161"
] |
[
"nonn",
"tabf"
] | 8 | 0 | 2 |
[
"A005117",
"A010846",
"A019565",
"A363061",
"A383180"
] | null |
Michael De Vlieger, May 09 2025
| 2025-05-14T01:24:17 |
oeisdata/seq/A383/A383180.seq
|
523d54c2e7136e51fefe54cdf5fadede
|
A383181
|
Family of 2-colorings of {1..7824} with no monochromatic Pythagorean triples.
|
[
"0",
"0",
"2",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"0",
"2",
"2",
"0",
"1",
"1",
"0",
"1",
"0",
"2",
"2",
"0",
"0",
"2",
"2",
"0",
"1",
"1",
"1",
"2",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"2",
"2",
"1",
"1",
"2",
"2",
"2",
"0",
"0",
"2",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"1",
"1",
"0",
"1",
"2",
"2",
"2",
"1",
"1",
"1",
"0",
"2",
"2",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"2",
"2",
"0",
"2",
"1",
"2",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"0",
"1",
"0",
"2",
"2",
"2",
"2",
"1",
"2"
] |
[
"nonn",
"fini",
"full"
] | 31 | 1 | 3 |
[
"A009003",
"A156685",
"A224921",
"A272709",
"A383181"
] | null |
David Dewan, Apr 18 2025
| 2025-05-19T00:07:14 |
oeisdata/seq/A383/A383181.seq
|
395163ce0d67778072727178e165fe77
|
A383182
|
a(n) = 2^n - A129629(n+1).
|
[
"0",
"1",
"1",
"1",
"2",
"1",
"1",
"5",
"1",
"1",
"9",
"1",
"4",
"16",
"1",
"1",
"33",
"11",
"1",
"65",
"1",
"1",
"142",
"1",
"8",
"257",
"1",
"35",
"513",
"1",
"1",
"1038",
"67",
"1",
"2049",
"1",
"1",
"4220",
"39",
"1",
"8192",
"1",
"259",
"16385",
"1",
"71",
"32769",
"515",
"1",
"65550",
"1",
"1",
"132211",
"1",
"1",
"262145",
"1",
"2051",
"524302",
"263",
"32",
"1048577",
"4096",
"1",
"2097153",
"1",
"519",
"4202480",
"1",
"1"
] |
[
"nonn"
] | 9 | 0 | 5 |
[
"A129629",
"A383182"
] | null |
M. F. Hasler, May 27 2025
| 2025-06-01T18:52:05 |
oeisdata/seq/A383/A383182.seq
|
e515251b6cd67393b4a02685b4108eba
|
A383183
|
Square spiral numbers of the n-th grid point visited by a king always moving to the unvisited point labeled with the smallest possible prime or else composite number.
|
[
"0",
"2",
"3",
"5",
"7",
"23",
"47",
"79",
"48",
"24",
"8",
"1",
"11",
"13",
"31",
"29",
"53",
"27",
"9",
"10",
"26",
"25",
"49",
"83",
"50",
"51",
"52",
"28",
"12",
"30",
"54",
"55",
"89",
"131",
"179",
"129",
"87",
"127",
"85",
"84",
"124",
"173",
"229",
"293",
"227",
"169",
"223",
"167",
"119",
"80",
"81",
"82",
"122",
"120",
"121",
"168",
"170",
"171",
"123",
"172",
"228",
"292",
"226",
"224",
"225",
"287",
"359",
"439"
] |
[
"nonn",
"walk",
"fini",
"full"
] | 15 | 0 | 2 |
[
"A316328",
"A335856",
"A383183",
"A383184",
"A383185"
] | null |
M. F. Hasler, May 13 2025
| 2025-05-20T15:33:00 |
oeisdata/seq/A383/A383183.seq
|
23bf754dee93f8e5eadb06e458a56639
|
A383184
|
Diamond spiral numbers of the grid points visited by a king always moving to the unvisited point labeled with the smallest possible prime or else composite number.
|
[
"0",
"2",
"3",
"11",
"23",
"4",
"5",
"13",
"12",
"24",
"41",
"61",
"40",
"59",
"83",
"60",
"84",
"113",
"85",
"86",
"62",
"25",
"26",
"43",
"14",
"1",
"7",
"17",
"31",
"8",
"19",
"9",
"10",
"37",
"21",
"20",
"53",
"34",
"33",
"18",
"32",
"71",
"97",
"127",
"72",
"73",
"50",
"49",
"48",
"47",
"29",
"6",
"15",
"16",
"30",
"69",
"68",
"67",
"28",
"27",
"44",
"89",
"64",
"63",
"42",
"87",
"88",
"149",
"116",
"115",
"114",
"146",
"223",
"182",
"181",
"144",
"179",
"112",
"111",
"110",
"109",
"58",
"38",
"22",
"57",
"56",
"79",
"107",
"139",
"80",
"81",
"82",
"39"
] |
[
"nonn",
"walk",
"fini",
"full"
] | 8 | 0 | 2 |
[
"A305258",
"A383183",
"A383184"
] | null |
M. F. Hasler, May 13 2025
| 2025-05-24T17:53:58 |
oeisdata/seq/A383/A383184.seq
|
fb862f6f96d0c31b03c9686988d3ab3e
|
A383185
|
Number of the square visited by a king moving on a spirally numbered board always to the lowest available unvisited square, when a wall delimiting the spiral must be crossed on each move.
|
[
"0",
"3",
"13",
"2",
"10",
"1",
"7",
"21",
"6",
"18",
"4",
"14",
"32",
"12",
"28",
"11",
"27",
"9",
"23",
"8",
"22",
"44",
"20",
"40",
"19",
"5",
"17",
"37",
"16",
"34",
"15",
"33",
"59",
"31",
"57",
"30",
"54",
"29",
"53",
"85",
"51",
"25",
"47",
"24",
"46",
"76",
"45",
"75",
"43",
"73",
"42",
"70",
"41",
"69",
"39",
"67",
"38",
"66",
"36",
"62",
"35",
"61",
"95",
"60",
"94",
"58",
"92",
"56",
"88",
"55",
"87",
"127",
"86",
"52",
"26"
] |
[
"nonn",
"walk"
] | 38 | 0 | 2 |
[
"A033638",
"A316328",
"A316667",
"A335856",
"A336038",
"A375925",
"A383185",
"A383186"
] | null |
M. F. Hasler, May 12 2025
| 2025-05-21T11:21:21 |
oeisdata/seq/A383/A383185.seq
|
e038c1b49572b4d7891c3de821096dce
|
A383186
|
Inverse permutation to A383185 (square spiral numbers of king filling the two-dimensional grid always crossing the spiral's wall).
|
[
"0",
"5",
"3",
"1",
"10",
"25",
"8",
"6",
"19",
"17",
"4",
"15",
"13",
"2",
"11",
"30",
"28",
"26",
"9",
"24",
"22",
"7",
"20",
"18",
"43",
"41",
"74",
"16",
"14",
"37",
"35",
"33",
"12",
"31",
"29",
"60",
"58",
"27",
"56",
"54",
"23",
"52",
"50",
"48",
"21",
"46",
"44",
"42",
"79",
"77",
"75",
"40",
"73",
"38",
"36",
"69",
"67",
"34",
"65",
"32",
"63",
"61",
"59",
"100",
"98",
"147",
"57",
"55",
"94",
"53",
"51",
"90",
"88",
"49",
"86"
] |
[
"nonn"
] | 11 | 0 | 2 |
[
"A383185",
"A383186"
] | null |
M. F. Hasler, May 12 2025
| 2025-05-21T23:24:00 |
oeisdata/seq/A383/A383186.seq
|
b753a544f66894ff177a35306bf2ec8b
|
A383187
|
Diamond spiral number of the n-th point visited by the king moving on the two-dimensional grid always to the earliest unvisited point on the spiral, not immediately preceding or following on the spiral.
|
[
"0",
"2",
"7",
"1",
"4",
"11",
"3",
"9",
"19",
"8",
"17",
"30",
"16",
"6",
"14",
"5",
"12",
"23",
"38",
"22",
"10",
"20",
"34",
"52",
"33",
"18",
"31",
"48",
"69",
"47",
"29",
"15",
"27",
"43",
"26",
"13",
"24",
"39",
"58",
"81",
"57",
"37",
"21",
"35",
"53",
"75",
"101",
"74",
"51",
"32",
"49",
"70",
"95",
"124",
"94",
"68",
"46",
"28",
"44",
"64",
"88",
"63",
"42",
"25",
"40",
"59",
"82",
"109",
"140",
"108",
"80",
"56",
"36",
"54",
"76"
] |
[
"nonn",
"walk"
] | 13 | 0 | 2 |
[
"A305258",
"A383185",
"A383187",
"A383189"
] | null |
M. F. Hasler, May 12 2025
| 2025-05-20T15:32:20 |
oeisdata/seq/A383/A383187.seq
|
ca22aa1eb60f1608b3242a2104106348
|
A383188
|
Irregular table, read by rows, where row z = 2, 3, 4, ... lists pairs (y, x) such that x + y/z = concat(y, x)/z with 0 < y < z, gcd(y, z) = 1, and primitive x, cf. comments.
|
[
"1",
"9",
"2",
"9",
"1",
"3",
"3",
"9",
"4",
"9",
"5",
"9",
"2",
"3",
"4",
"6",
"6",
"9",
"1",
"142857",
"3",
"428571",
"5",
"714285",
"7",
"9",
"8",
"9",
"3",
"3",
"7",
"7",
"9",
"9",
"10",
"9",
"5",
"45",
"7",
"63",
"11",
"9",
"4",
"3",
"8",
"6",
"12",
"9",
"3",
"230769",
"5",
"384615",
"7",
"538461",
"11",
"846153",
"13",
"9",
"2",
"142857",
"4",
"285714",
"8",
"571428",
"14",
"9",
"5",
"3",
"15",
"9",
"16",
"9",
"5",
"2941176470588235",
"7",
"4117647058823529",
"11",
"6470588235294117",
"13",
"7647058823529411",
"17",
"9",
"2",
"1",
"4",
"2",
"6",
"3",
"8",
"4",
"10",
"5",
"12",
"6",
"14",
"7",
"16",
"8",
"18",
"9"
] |
[
"nonn"
] | 14 | 2 | 2 |
[
"A036275",
"A060284",
"A383188"
] | null |
M. F. Hasler, May 03 2025
| 2025-05-16T18:11:43 |
oeisdata/seq/A383/A383188.seq
|
2d48291efb728b41451223ace618cdc8
|
A383189
|
Inverse permutation to A383187 (diamond spiral numbers of a king moving on the infinite two-dimensional grid, not to the point numbered a(n)+-1).
|
[
"0",
"3",
"1",
"6",
"4",
"15",
"13",
"2",
"9",
"7",
"20",
"5",
"16",
"35",
"14",
"31",
"12",
"10",
"25",
"8",
"21",
"42",
"19",
"17",
"36",
"63",
"34",
"32",
"57",
"30",
"11",
"26",
"49",
"24",
"22",
"43",
"72",
"41",
"18",
"37",
"64",
"99",
"62",
"33",
"58",
"91",
"56",
"29",
"27",
"50",
"81",
"48",
"23",
"44",
"73",
"110",
"71",
"40",
"38",
"65",
"100",
"143",
"98",
"61",
"59",
"92",
"133",
"90",
"55",
"28",
"51",
"82",
"121",
"80"
] |
[
"nonn"
] | 13 | 0 | 2 |
[
"A383187",
"A383189"
] | null |
M. F. Hasler, May 12 2025
| 2025-05-23T01:08:04 |
oeisdata/seq/A383/A383189.seq
|
9e04f89e8ea407aeaec21936477df715
|
A383190
|
a(2n) and a(2n+1) are the square spiral numbers of the position on which the (n+1)th domino is placed, when tiling the plane by placing the dominos always as near as possible to the origin and so that no two dominos share a long side. Inverse permutation of A383191.
|
[
"0",
"1",
"3",
"4",
"5",
"6",
"7",
"22",
"2",
"11",
"8",
"9",
"10",
"27",
"14",
"13",
"18",
"17",
"15",
"16",
"19",
"20",
"21",
"44",
"23",
"46",
"12",
"29",
"24",
"25",
"33",
"34",
"39",
"40",
"45",
"76",
"28",
"53",
"32",
"31",
"38",
"37",
"26",
"51",
"35",
"36",
"41",
"42",
"43",
"74",
"47",
"78",
"52",
"85",
"60",
"59",
"68",
"67",
"61",
"62",
"69",
"70",
"75",
"114",
"77",
"116",
"30",
"55",
"48",
"49",
"54",
"87",
"58",
"57",
"66",
"65"
] |
[
"nonn"
] | 20 | 0 | 3 |
[
"A174344",
"A316328",
"A383190",
"A383191"
] | null |
M. F. Hasler, Apr 18 2025
| 2025-04-23T10:35:15 |
oeisdata/seq/A383/A383190.seq
|
5b41df890d7a8215b499c1b4a8ae56ff
|
A383191
|
a(n) is the number on the n-th position on the square spiral on the plane tiled with dominoes always placed nearest to the origin and so that no two dominos share a long side. Inverse permutation of A383190.
|
[
"0",
"1",
"8",
"2",
"3",
"4",
"5",
"6",
"10",
"11",
"12",
"9",
"26",
"15",
"14",
"18",
"19",
"17",
"16",
"20",
"21",
"22",
"7",
"24",
"28",
"29",
"42",
"13",
"36",
"27",
"66",
"39",
"38",
"30",
"31",
"44",
"45",
"41",
"40",
"32",
"33",
"46",
"47",
"48",
"23",
"34",
"25",
"50",
"68",
"69",
"76",
"43",
"52",
"37",
"70",
"67",
"108",
"73",
"72",
"55",
"54",
"58",
"59",
"80",
"81",
"75",
"74",
"57",
"56",
"60",
"61",
"84",
"85",
"86",
"49",
"62"
] |
[
"nonn"
] | 13 | 0 | 3 |
[
"A174344",
"A316328",
"A316667",
"A383190",
"A383191"
] | null |
M. F. Hasler, Apr 18 2025
| 2025-04-23T10:35:36 |
oeisdata/seq/A383/A383191.seq
|
faeb054b1648fcfa1623f5419e9856aa
|
A383192
|
a(n) is the number of possible choices for the first n terms of a "mean-central" sequence, where a monotonically increasing sequence of positive integers {b(n)} is called "mean-central" if for each positive integer k, the arithmetic mean of the first b(k) terms is exactly b(k).
|
[
"1",
"2",
"2",
"3",
"3",
"4",
"8",
"16",
"20",
"25",
"27",
"48",
"72",
"107",
"149",
"260",
"372",
"511",
"653",
"1032",
"1192",
"1713",
"2218",
"3992",
"5504",
"7729",
"10452",
"16397",
"21700",
"32292",
"43742",
"72859",
"98926",
"143759",
"187703",
"284689",
"368374",
"526256",
"729299",
"1315303"
] |
[
"nonn",
"more"
] | 27 | 1 | 2 |
[
"A383192",
"A383193",
"A383194"
] | null |
Yifan Xie, Apr 19 2025
| 2025-04-29T13:16:59 |
oeisdata/seq/A383/A383192.seq
|
a07e3f698a2b2be383b36e6f2bb4ddc0
|
A383193
|
The lexicographically earliest "mean-central" sequence, as is defined in A383192.
|
[
"1",
"3",
"5",
"6",
"10",
"11",
"12",
"13",
"19",
"20",
"21",
"23",
"25",
"26",
"27",
"28",
"36",
"37",
"38",
"39",
"41",
"42",
"46",
"47",
"49",
"51",
"53",
"55",
"56",
"57",
"58",
"59",
"69",
"70",
"71",
"72",
"73",
"75",
"77",
"78",
"82",
"83",
"84",
"85",
"91",
"92",
"93",
"94",
"98",
"99",
"101",
"102",
"106",
"107",
"109",
"111",
"113",
"115",
"117",
"118",
"119",
"120"
] |
[
"nonn"
] | 10 | 1 | 2 |
[
"A383192",
"A383193",
"A383194"
] | null |
Yifan Xie, Apr 20 2025
| 2025-04-29T13:19:41 |
oeisdata/seq/A383/A383193.seq
|
0602eeee00392591983b1207f03160f8
|
A383194
|
The least number of times that b(k) = 2*k - 1 for the first n terms of a "mean-central" sequence, as is defined in A383192.
|
[
"1",
"1",
"2",
"2",
"3",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"8",
"8",
"8",
"9",
"10",
"10",
"10",
"10",
"10",
"11",
"11"
] |
[
"nonn",
"more"
] | 10 | 1 | 3 |
[
"A383192",
"A383193",
"A383194"
] | null |
Yifan Xie, Apr 21 2025
| 2025-04-29T13:20:06 |
oeisdata/seq/A383/A383194.seq
|
c518d9e15753dbe8ca15f3ee9fb0b9d8
|
A383195
|
Primes that are the concatenation of three primes, of which two are equal.
|
[
"223",
"227",
"233",
"277",
"337",
"353",
"373",
"557",
"577",
"727",
"733",
"757",
"773",
"1733",
"1777",
"1933",
"2213",
"2237",
"2243",
"2267",
"2273",
"2297",
"2333",
"2377",
"3313",
"3319",
"3323",
"3329",
"3331",
"3343",
"3347",
"3359",
"3361",
"3371",
"3373",
"3389",
"3413",
"3433",
"3533",
"3593",
"3613",
"3673",
"3733",
"3793",
"3833",
"4133",
"4177",
"4733",
"5333",
"5519",
"5531",
"5573"
] |
[
"nonn"
] | 20 | 1 | 1 |
[
"A100607",
"A100633",
"A383195"
] | null |
Robert Israel, Apr 28 2025
| 2025-04-29T13:27:48 |
oeisdata/seq/A383/A383195.seq
|
69cd596ad62a9a72dacb117096eb30cb
|
A383196
|
Expansion of e.g.f. (1/(1 - 3*x)^(1/3) - 1)^3 / 6.
|
[
"0",
"0",
"0",
"1",
"24",
"520",
"11880",
"295960",
"8090880",
"242280640",
"7912262400",
"280384720000",
"10727852889600",
"441104638374400",
"19407654326860800",
"910140650683264000",
"45332366929833984000",
"2390437704451084288000",
"133060566042200788992000",
"7797805996570952986624000"
] |
[
"nonn"
] | 10 | 0 | 5 |
[
"A001754",
"A035119",
"A143169",
"A371080",
"A383196"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-05-03T03:00:05 |
oeisdata/seq/A383/A383196.seq
|
946645f4b3b4a1d3b822ef6d18ac2c36
|
A383197
|
Number of positive integers with n digits in which adjacent digits differ by at most 2.
|
[
"9",
"41",
"188",
"867",
"4010",
"18574",
"86096",
"399225",
"1851529",
"8587802",
"39833891",
"184770640",
"857073208",
"3975623218",
"18441391129",
"85542653145",
"396800342804",
"1840608838251",
"8537899488042",
"39604141848678",
"183708898915088",
"852157340908409",
"3952841397780937",
"18335763176322738"
] |
[
"nonn",
"base",
"easy"
] | 17 | 1 | 1 |
[
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null |
Edwin Hermann, Apr 19 2025
| 2025-04-23T13:10:04 |
oeisdata/seq/A383/A383197.seq
|
e856289de176059c5a15c6c52f9dc61d
|
A383198
|
Number of positive integers with n digits in which adjacent digits differ by at most 3.
|
[
"9",
"54",
"328",
"2000",
"12202",
"74458",
"454366",
"2772710",
"16920138",
"103253214",
"630091042",
"3845059318",
"23464039746",
"143186649814",
"873780342786",
"5332145758694",
"32538816680050",
"198564450196598",
"1211717109125762",
"7394366670845606",
"45123286657530514",
"275359755529253142"
] |
[
"nonn",
"base",
"easy"
] | 13 | 1 | 1 |
[
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null |
Edwin Hermann, Apr 19 2025
| 2025-05-02T10:32:51 |
oeisdata/seq/A383/A383198.seq
|
32e4092db2a8926ec423d82088f36271
|
A383199
|
Number of positive integers with n digits in which adjacent digits differ by at most 4.
|
[
"9",
"65",
"475",
"3465",
"25282",
"184463",
"1345887",
"9819916",
"71648478",
"522764591",
"3814216651",
"27829445433",
"203050351876",
"1481504383412",
"10809413614854",
"78868091114176",
"575440631436879",
"4198553757680021",
"30633661742154286",
"223510591001999469",
"1630787227154056312"
] |
[
"nonn",
"base",
"easy"
] | 15 | 1 | 1 |
[
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null |
Edwin Hermann, Apr 19 2025
| 2025-05-02T10:33:14 |
oeisdata/seq/A383/A383199.seq
|
17f7671c25313b5cbd2228da9ee8e909
|
A383200
|
Number of positive integers with n digits in which adjacent digits differ by at most 5.
|
[
"9",
"74",
"610",
"5020",
"41317",
"340050",
"2798709",
"23034169",
"189577752",
"1560278726",
"12841536934",
"105689495131",
"869854553902",
"7159149960981",
"58921836913893",
"484943447787706",
"3991222267830858",
"32848892512931768",
"270355712339865433",
"2225104276073281126",
"18313239977617203949"
] |
[
"nonn",
"base",
"easy"
] | 17 | 1 | 1 |
[
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null |
Edwin Hermann, Apr 19 2025
| 2025-05-08T09:59:21 |
oeisdata/seq/A383/A383200.seq
|
137f4e1712671a3e74cf5ff58582d52a
|
A383201
|
Number of positive integers with n digits in which adjacent digits differ by at most 6.
|
[
"9",
"81",
"724",
"6472",
"57851",
"517112",
"4622299",
"41317257",
"369321783",
"3301249634",
"29508817638",
"263769909867",
"2357755102376",
"21075220921085",
"188384678470177",
"1683910560899833",
"15051939468415328",
"134544486519385896",
"1202650255852445247",
"10750107085908359068"
] |
[
"nonn",
"base",
"easy"
] | 14 | 1 | 1 |
[
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null |
Edwin Hermann, Apr 19 2025
| 2025-05-02T17:13:08 |
oeisdata/seq/A383/A383201.seq
|
9b50d26590c3a12033a4d69afa7112fa
|
A383202
|
Number of positive integers with n digits in which adjacent digits differ by at most 7.
|
[
"9",
"86",
"813",
"7693",
"72786",
"688661",
"6515721",
"61648078",
"583279341",
"5518660133",
"52214449434",
"494023669525",
"4674173312097",
"44224391459894",
"418426247682381",
"3958913146568317",
"37457003208767394",
"354397037125653845",
"3353104871295311673",
"31725187008033469918"
] |
[
"nonn",
"base",
"easy"
] | 16 | 1 | 1 |
[
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null |
Edwin Hermann, Apr 19 2025
| 2025-05-07T20:05:24 |
oeisdata/seq/A383/A383202.seq
|
472be38d7fab701ea5ec24646fde6c9c
|
A383203
|
Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(2*x) - 1)/2.
|
[
"0",
"1",
"4",
"19",
"104",
"641",
"4380",
"32803",
"266768",
"2337505",
"21925236",
"218946003",
"2316939256",
"25878593313",
"304020964876",
"3745210267939",
"48248600421664",
"648460085178689",
"9072650530778084",
"131884007007981075",
"1988341404357799048",
"31040812899065995073",
"501049583881525932028"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A154602",
"A383203"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-04-19T10:05:04 |
oeisdata/seq/A383/A383203.seq
|
c49ae1682bd6228ac928f91e0de32a6c
|
A383204
|
Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(2*x) - 1)/2.
|
[
"0",
"0",
"1",
"9",
"70",
"550",
"4531",
"39515",
"365324",
"3575820",
"36971461",
"402741581",
"4610187154",
"55316069874",
"694067320311",
"9087012399007",
"123889735839000",
"1755654433460248",
"25816120675972105",
"393285627390135313",
"6198118449550830302",
"100916786871955767998",
"1695424878199285059003"
] |
[
"nonn"
] | 7 | 0 | 4 |
[
"A154602",
"A383204"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-04-19T10:04:10 |
oeisdata/seq/A383/A383204.seq
|
a8fe307973b64a2315620ed281cbfef8
|
A383205
|
Expansion of e.g.f. f(x)^3 * exp(f(x)) / 6, where f(x) = (exp(2*x) - 1)/2.
|
[
"0",
"0",
"0",
"1",
"16",
"190",
"2080",
"22491",
"247072",
"2792476",
"32659840",
"396255541",
"4991365808",
"65268062938",
"885442472096",
"12451577262671",
"181326192307264",
"2731564737248696",
"42522062246582784",
"683301050932028777",
"11322975536640636240",
"193300021823406703990",
"3396381539718451143200"
] |
[
"nonn"
] | 7 | 0 | 5 |
[
"A154602",
"A383205"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-04-19T10:03:29 |
oeisdata/seq/A383/A383205.seq
|
3fb25b2d0d13b39ad80854f9bef3d100
|
A383206
|
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k).
|
[
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"11",
"9",
"1",
"0",
"49",
"71",
"18",
"1",
"0",
"257",
"575",
"245",
"30",
"1",
"0",
"1539",
"4957",
"3120",
"625",
"45",
"1",
"0",
"10299",
"45829",
"39697",
"11480",
"1330",
"63",
"1",
"0",
"75905",
"454015",
"517790",
"201677",
"33250",
"2506",
"84",
"1",
"0",
"609441",
"4804191",
"6999785",
"3513762",
"770007",
"81774",
"4326",
"108",
"1"
] |
[
"nonn",
"tabl"
] | 11 | 0 | 5 |
[
"A000007",
"A004211",
"A130191",
"A380228",
"A383206",
"A383207",
"A383208"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-04-19T10:04:05 |
oeisdata/seq/A383/A383206.seq
|
8ed4401044675307e47ee117edf1b4f8
|
A383207
|
Expansion of e.g.f. (exp(f(x)) - 1)^2 / 2, where f(x) = (exp(2*x) - 1)/2.
|
[
"0",
"0",
"1",
"9",
"71",
"575",
"4957",
"45829",
"454015",
"4804191",
"54094749",
"645720757",
"8142419727",
"108110708511",
"1506969153757",
"21993472779461",
"335257957315199",
"5325979566073919",
"87999598425114045",
"1509471498829147637",
"26835040585117438415",
"493677094649876461759",
"9384926300821643459133"
] |
[
"nonn"
] | 9 | 0 | 4 |
[
"A000558",
"A383206",
"A383207"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-04-19T10:04:14 |
oeisdata/seq/A383/A383207.seq
|
e7fcd2affd63c9a47667e76e34beb0cc
|
A383208
|
Expansion of e.g.f. (exp(f(x)) - 1)^3 / 6, where f(x) = (exp(2*x) - 1)/2.
|
[
"0",
"0",
"0",
"1",
"18",
"245",
"3120",
"39697",
"517790",
"6999785",
"98520060",
"1445923149",
"22129416210",
"352932509085",
"5859167661256",
"101122879922313",
"1811960841148774",
"33662625853200337",
"647550189266734452",
"12881675626292023173",
"264677402162135670554",
"5610552395871699336453"
] |
[
"nonn"
] | 8 | 0 | 5 |
[
"A000559",
"A383206",
"A383208"
] | null |
Seiichi Manyama, Apr 19 2025
| 2025-04-19T10:04:18 |
oeisdata/seq/A383/A383208.seq
|
42b9cd1f90f8f8ac1f9478263e5227dd
|
A383209
|
Irregular triangle read by rows in which row n lists the odd divisors m of n such that there is a divisor d of n with d < m < 2*d, or 0 if such odd divisors do not exist.
|
[
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"5",
"0",
"0",
"3",
"9",
"0",
"5",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"7",
"0",
"3",
"5",
"15",
"0",
"0",
"0",
"0",
"7",
"3",
"9",
"0",
"0",
"0",
"5",
"0",
"3",
"7",
"21",
"0",
"0",
"5",
"9",
"15",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"9",
"27",
"0",
"7",
"0",
"0",
"0",
"3",
"5",
"15",
"0",
"0",
"9",
"0",
"0",
"3",
"11",
"33",
"0",
"0",
"0",
"7",
"0",
"3",
"9",
"0",
"0",
"5",
"25",
"0",
"11",
"3",
"39"
] |
[
"nonn",
"tabf"
] | 26 | 1 | 6 |
[
"A027750",
"A237593",
"A239657",
"A379288",
"A379374",
"A379461",
"A383147",
"A383209"
] | null |
Omar E. Pol, Apr 19 2025
| 2025-04-27T15:06:20 |
oeisdata/seq/A383/A383209.seq
|
ad300f36a49904cc8b08793eac17ebcf
|
A383210
|
The Dirichlet inverse of A382883.
|
[
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"-2",
"0",
"1",
"1",
"-1",
"1",
"1",
"1",
"-3",
"1",
"-1",
"1",
"-1",
"1",
"1",
"1",
"-5",
"0",
"1",
"-2",
"-1",
"1",
"1",
"1",
"-2",
"1",
"1",
"1",
"-2",
"1",
"1",
"1",
"-5",
"1",
"1",
"1",
"-1",
"-1",
"1",
"1",
"-6",
"0",
"-1",
"1",
"-1",
"1",
"-5",
"1",
"-5",
"1",
"1",
"1",
"-3",
"1",
"1",
"-1",
"3",
"1",
"1",
"1",
"-1",
"1",
"1",
"1",
"-2",
"1",
"1",
"-1",
"-1",
"1",
"1",
"1"
] |
[
"sign"
] | 10 | 1 | 8 |
[
"A382883",
"A383210"
] | null |
Peter Luschny, Apr 19 2025
| 2025-04-29T16:51:58 |
oeisdata/seq/A383/A383210.seq
|
812be7e3c933557cd16496bb7acdb777
|
A383211
|
Numbers of the form p^e where p is prime and e > 1 is squarefree.
|
[
"4",
"8",
"9",
"25",
"27",
"32",
"49",
"64",
"121",
"125",
"128",
"169",
"243",
"289",
"343",
"361",
"529",
"729",
"841",
"961",
"1024",
"1331",
"1369",
"1681",
"1849",
"2048",
"2187",
"2197",
"2209",
"2809",
"3125",
"3481",
"3721",
"4489",
"4913",
"5041",
"5329",
"6241",
"6859",
"6889",
"7921",
"8192",
"9409",
"10201",
"10609",
"11449",
"11881",
"12167"
] |
[
"nonn"
] | 24 | 1 | 1 |
[
"A005117",
"A053810",
"A144338",
"A383211",
"A383266"
] | null |
Peter Luschny, Apr 21 2025
| 2025-05-28T14:19:37 |
oeisdata/seq/A383/A383211.seq
|
6560de0fa2795d447a79ff6bea5b6a51
|
A383212
|
a(n) = permanent of the n-th principal submatrix of the rectangular array whose odd-numbered rows are (2,1,2,1,2,1,2,1,...) and even-numbered rows are (1,2,1,2,1,2,1,2,...).
|
[
"1",
"2",
"5",
"24",
"132",
"1032",
"8820",
"95616",
"1106496",
"15327360",
"223560000",
"3768768000",
"66305952000",
"1316927808000",
"27127003680000",
"620221722624000",
"14638710417408000",
"378633583448064000",
"10073602372700160000",
"290788929384726528000",
"8609476463579013120000",
"274361332654900592640000",
"8946658680536444313600000"
] |
[
"nonn"
] | 18 | 0 | 2 |
[
"A204252",
"A383212"
] | null |
Clark Kimberling, Apr 19 2025
| 2025-04-24T09:01:55 |
oeisdata/seq/A383/A383212.seq
|
c12989626deb51f74e06eb3791df90f1
|
A383213
|
a(n) = number of distinct prime factors of binomial(2n,n+1).
|
[
"0",
"1",
"2",
"2",
"4",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"6",
"7",
"6",
"7",
"9",
"8",
"10",
"9",
"10",
"10",
"10",
"9",
"10",
"10",
"11",
"11",
"12",
"13",
"12",
"12",
"14",
"14",
"14",
"14",
"14",
"14",
"16",
"14",
"16",
"15",
"16",
"17",
"16",
"17",
"18",
"17",
"18",
"18",
"18",
"18",
"20",
"18",
"20",
"19",
"19",
"20",
"20",
"21",
"21",
"21",
"21",
"21",
"23",
"22",
"24",
"23",
"23",
"23"
] |
[
"nonn"
] | 20 | 1 | 3 |
[
"A000984",
"A001221",
"A067434",
"A383213",
"A383214"
] | null |
Clark Kimberling, Apr 19 2025
| 2025-04-26T20:30:09 |
oeisdata/seq/A383/A383213.seq
|
a5e9be5f4d029c480002c4b25313488c
|
A383214
|
a(n) = A067434(n) - A383213(n).
|
[
"1",
"1",
"0",
"1",
"-1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"-1",
"1",
"1",
"-1",
"1",
"-1",
"1",
"0",
"0",
"-1",
"1",
"0",
"0",
"-1",
"1",
"1",
"-1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"-2",
"1",
"-1",
"1",
"0",
"-1",
"1",
"0",
"-1",
"1",
"0",
"0",
"0",
"0",
"-1",
"2",
"-1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"-1",
"1",
"0",
"0",
"0",
"0",
"-1",
"1",
"0",
"-1",
"1",
"-1",
"1",
"0",
"-1",
"1"
] |
[
"sign"
] | 8 | 1 | 39 |
[
"A000984",
"A067634",
"A383213",
"A383214"
] | null |
Clark Kimberling, Apr 19 2025
| 2025-05-03T17:45:24 |
oeisdata/seq/A383/A383214.seq
|
a3404b6e7488734b792e05fbca2e176c
|
A383215
|
Primes p preceded and followed by gaps whose difference (absolute value) is greater than log(p).
|
[
"7",
"29",
"31",
"113",
"127",
"139",
"149",
"181",
"191",
"199",
"223",
"241",
"283",
"307",
"317",
"331",
"347",
"419",
"421",
"431",
"467",
"521",
"523",
"541",
"619",
"641",
"661",
"673",
"773",
"809",
"811",
"821",
"829",
"853",
"863",
"877",
"887",
"907",
"953",
"967",
"1009",
"1021",
"1031",
"1049",
"1051",
"1061",
"1069",
"1087",
"1129",
"1151",
"1153",
"1213",
"1259",
"1277"
] |
[
"nonn"
] | 22 | 1 | 1 |
[
"A036263",
"A068985",
"A383215",
"A383216"
] | null |
Alain Rocchelli, Apr 19 2025
| 2025-05-10T03:07:55 |
oeisdata/seq/A383/A383215.seq
|
60386ac0af9039d53e1882e9986d28b0
|
A383216
|
Primes p which are preceded and followed by gaps whose difference is greater than 2*log(p).
|
[
"113",
"127",
"523",
"887",
"907",
"1087",
"1129",
"1151",
"1277",
"1327",
"1361",
"1669",
"1693",
"1931",
"1951",
"1973",
"2203",
"2311",
"2333",
"2477",
"2557",
"2971",
"2999",
"3163",
"3251",
"3299",
"3469",
"4049",
"4297",
"4327",
"4523",
"4547",
"4783",
"4861",
"5119",
"5147",
"5237",
"5351",
"5381",
"5531",
"5557",
"5591",
"5749",
"5779",
"5981"
] |
[
"nonn"
] | 19 | 1 | 1 |
[
"A036263",
"A092553",
"A383215",
"A383216"
] | null |
Alain Rocchelli, Apr 19 2025
| 2025-05-10T03:07:50 |
oeisdata/seq/A383/A383216.seq
|
2434f21558d159bc2897de811ba79d70
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.