sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-19 00:40:46
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A384671
|
Expansion of (1-x^2) / (1-2*x-5*x^2+2*x^3).
|
[
"1",
"2",
"8",
"24",
"84",
"272",
"916",
"3024",
"10084",
"33456",
"111284",
"369680",
"1228868",
"4083568",
"13572116",
"45104336",
"149902116",
"498181680",
"1655665268",
"5502434704",
"18286832388",
"60774507760",
"201978308052",
"671255490128",
"2230853504996",
"7414027844528",
"24639812233780"
] |
[
"nonn",
"easy",
"walk"
] | 7 | 0 | 2 |
[
"A384646",
"A384671",
"A384672",
"A384673"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-06-07T09:02:17 |
oeisdata/seq/A384/A384671.seq
|
093b2b22a837f28fc20cbd0aa2661572
|
A384672
|
Expansion of (1+2*x-x^2) / (1-2*x-5*x^2+2*x^3).
|
[
"1",
"4",
"12",
"42",
"136",
"458",
"1512",
"5042",
"16728",
"55642",
"184840",
"614434",
"2041784",
"6786058",
"22552168",
"74951058",
"249090840",
"827832634",
"2751217352",
"9143416194",
"30387253880",
"100989154026",
"335627745064",
"1115426752498",
"3707013922264",
"12319906116890",
"40944028340104"
] |
[
"nonn",
"easy",
"walk"
] | 6 | 0 | 2 |
[
"A384646",
"A384671",
"A384672",
"A384673"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-06-07T00:12:20 |
oeisdata/seq/A384/A384672.seq
|
262e736f564140848c816d9254f2a55b
|
A384673
|
Expansion of (1+x) / (1-2*x-5*x^2+2*x^3).
|
[
"1",
"3",
"11",
"35",
"119",
"391",
"1307",
"4331",
"14415",
"47871",
"159155",
"528835",
"1757703",
"5841271",
"19413387",
"64517723",
"214419839",
"712601519",
"2368266787",
"7870701491",
"26157533879",
"86932041639",
"288910349691",
"960165839819",
"3191019344815",
"10605047189343",
"35244859423123"
] |
[
"nonn",
"easy",
"walk"
] | 4 | 0 | 2 |
[
"A384646",
"A384671",
"A384672",
"A384673"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-06-07T00:12:03 |
oeisdata/seq/A384/A384673.seq
|
b11a5c2a6c0df7af9e6d4945ef15cf55
|
A384674
|
Lexicographically smallest sequence of distinct primes whose inverse binomial transform consists only of primes.
|
[
"2",
"5",
"11",
"23",
"47",
"97",
"211",
"491",
"1187",
"2857",
"6659",
"14879",
"31891",
"65929",
"132469",
"261059",
"510031",
"999721",
"1988797",
"4048339",
"8450557",
"18014701",
"38902439",
"84347189",
"182269327",
"390630769",
"828123239",
"1735146097",
"3594509969",
"7369765889",
"14975024861",
"30200498591",
"60537295711"
] |
[
"nonn"
] | 22 | 0 | 1 |
[
"A000040",
"A007442",
"A111107",
"A384674"
] | null |
Alexander R. Povolotsky, Jun 06 2025
| 2025-06-08T21:29:49 |
oeisdata/seq/A384/A384674.seq
|
a969f5da1caf59219592fc2c25c935cc
|
A384675
|
Consecutive states of the linear congruential pseudo-random number generator 7^13*s mod 10^11 when started at 1.
|
[
"1",
"96889010407",
"47754305649",
"5019889143",
"18113311201",
"58918668807",
"8009274449",
"41680190743",
"64272062401",
"49842407207",
"88954803249",
"44998412343",
"99404253601",
"47356225607",
"72862892049",
"19678553943",
"78037884801",
"24356124007",
"88405540849",
"55224615543",
"68300956001"
] |
[
"nonn",
"easy"
] | 10 | 1 | 2 |
[
"A096550",
"A096561",
"A384675"
] | null |
Sean A. Irvine, Jun 06 2025
| 2025-06-12T10:17:16 |
oeisdata/seq/A384/A384675.seq
|
749252671c48d8624501bfce1339d559
|
A384676
|
Binomial transform of A111107.
|
[
"2",
"5",
"13",
"37",
"101",
"271",
"727",
"1931",
"5003",
"12547",
"30449",
"71761",
"165037",
"372149",
"826303",
"1813219",
"3944921",
"8533073",
"18393821",
"39588071",
"85192381",
"183479291",
"395667617",
"854417989",
"1847225579",
"3996807053",
"8650687127",
"18721431499",
"40496966207",
"87538925959",
"189076973699"
] |
[
"nonn"
] | 9 | 0 | 1 |
[
"A000040",
"A111107",
"A384676"
] | null |
Alois P. Heinz, Jun 06 2025
| 2025-06-06T18:17:01 |
oeisdata/seq/A384/A384676.seq
|
453b4e050fbe5aee44e606dec3ee4cc5
|
A384677
|
Expansion of (1-x-2*x^2) / (1-2*x-4*x^2+2*x^3).
|
[
"1",
"1",
"4",
"10",
"34",
"100",
"316",
"964",
"2992",
"9208",
"28456",
"87760",
"270928",
"835984",
"2580160",
"7962400",
"24573472",
"75836224",
"234041536",
"722281024",
"2229055744",
"6879152512",
"21229965952",
"65518430464",
"202198419712",
"624010629376",
"1925778076672",
"5943201831424",
"18341494710784"
] |
[
"nonn",
"easy",
"walk",
"changed"
] | 11 | 0 | 3 |
[
"A000244",
"A384633",
"A384640",
"A384677",
"A384678"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-07-08T11:46:15 |
oeisdata/seq/A384/A384677.seq
|
049750a61b793052f67002b149092a57
|
A384678
|
Expansion of (1+x) / (1-2*x-4*x^2+2*x^3).
|
[
"1",
"3",
"10",
"30",
"94",
"288",
"892",
"2748",
"8488",
"26184",
"80824",
"249408",
"769744",
"2375472",
"7331104",
"22624608",
"69822688",
"215481600",
"665004736",
"2052290496",
"6333636736",
"19546425984",
"60322817920",
"186164066304",
"574526552320",
"1773063734016",
"5471905544704",
"16887012920832"
] |
[
"nonn",
"easy",
"walk",
"changed"
] | 9 | 0 | 2 |
[
"A000244",
"A384633",
"A384640",
"A384677",
"A384678"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-07-07T18:40:50 |
oeisdata/seq/A384/A384678.seq
|
c64c0d1b50116a81e9584021d73c4a4b
|
A384679
|
Number of edge-connected components on the faces of a tetrakis square tiling where the degree-8 vertices have been truncated, up to translation, rotation and reflection of the tiling.
|
[
"1",
"2",
"3",
"10",
"30",
"123",
"500",
"2240",
"10153",
"47341",
"223015",
"1063340",
"5108118",
"24710991",
"120202087",
"587570923",
"2884199700",
"14210246496",
"70242677688"
] |
[
"nonn",
"more"
] | 16 | 0 | 2 |
[
"A197465",
"A384679"
] | null |
Peter Kagey, Jun 06 2025
| 2025-06-14T17:16:45 |
oeisdata/seq/A384/A384679.seq
|
f1fcc305d27bef1e682384969a7b4a23
|
A384680
|
G.f. A(x) satisfies A(x) = 1/( 1 - x*A(x)*A(x*A(x)^3) ).
|
[
"1",
"1",
"3",
"15",
"100",
"805",
"7442",
"76750",
"866818",
"10586499",
"138549918",
"1929878820",
"28459172110",
"442421488758",
"7225177328165",
"123586748434192",
"2208493015533530",
"41138303109509415",
"797178212982793708",
"16041390159326400966",
"334654194086236031816",
"7227174934846895031544"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A143501",
"A215505",
"A384145",
"A384680",
"A384681"
] | null |
Seiichi Manyama, Jun 06 2025
| 2025-06-07T08:21:35 |
oeisdata/seq/A384/A384680.seq
|
c91f6dbfa42ee95da9170f2a23c07651
|
A384681
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384680.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"7",
"15",
"0",
"1",
"4",
"12",
"36",
"100",
"0",
"1",
"5",
"18",
"64",
"239",
"805",
"0",
"1",
"6",
"25",
"100",
"426",
"1900",
"7442",
"0",
"1",
"7",
"33",
"145",
"671",
"3357",
"17319",
"76750",
"0",
"1",
"8",
"42",
"200",
"985",
"5260",
"30228",
"176214",
"866818",
"0",
"1",
"9",
"52",
"266",
"1380",
"7706",
"46880",
"303687",
"1965938",
"10586499",
"0"
] |
[
"nonn",
"tabl"
] | 11 | 0 | 8 |
[
"A000007",
"A384581",
"A384652",
"A384680",
"A384681"
] | null |
Seiichi Manyama, Jun 06 2025
| 2025-06-07T08:21:18 |
oeisdata/seq/A384/A384681.seq
|
3576a0f69a5a8ea89f0ef2f8ded1f11d
|
A384682
|
Decimal expansion of (5/6)*phi = 5*(1 + sqrt(5))/12, where phi is the golden ratio.
|
[
"1",
"3",
"4",
"8",
"3",
"6",
"1",
"6",
"5",
"7",
"2",
"9",
"1",
"5",
"7",
"9",
"0",
"4",
"0",
"1",
"7",
"0",
"4",
"8",
"9",
"0",
"2",
"8",
"6",
"3",
"8",
"0",
"3",
"1",
"7",
"6",
"4",
"7",
"6",
"6",
"9",
"2",
"4",
"3",
"1",
"6",
"5",
"0",
"4",
"8",
"0",
"2",
"3",
"8",
"5",
"1",
"1",
"2",
"8",
"7",
"3",
"8",
"5",
"2",
"2",
"5",
"4",
"3",
"8",
"3",
"7",
"1",
"9",
"0",
"1",
"5",
"7",
"5",
"2",
"0",
"4",
"1",
"4",
"2",
"2",
"6",
"7"
] |
[
"nonn",
"cons",
"easy"
] | 18 | 1 | 2 |
[
"A001622",
"A021016",
"A134944",
"A134946",
"A384238",
"A384682"
] | null |
Kritsada Moomuang, Jun 06 2025
| 2025-06-09T00:58:03 |
oeisdata/seq/A384/A384682.seq
|
b571e9784d0c2d0a5797d4d282a73b59
|
A384683
|
Decimal expansion of Sum_{i >= 1} 1/(3*i-1) - 1/(3*i).
|
[
"2",
"4",
"7",
"0",
"0",
"6",
"2",
"5",
"0",
"2",
"9",
"5",
"0",
"1",
"8",
"5",
"3",
"7",
"2",
"6",
"5",
"2",
"7",
"6",
"2",
"4",
"2",
"1",
"8",
"7",
"5",
"7",
"0",
"2",
"3",
"0",
"2",
"7",
"6",
"4",
"0",
"0",
"9",
"0",
"4",
"2",
"2",
"9",
"2",
"5",
"1",
"2",
"9",
"6",
"6",
"0",
"5",
"6",
"9",
"9",
"6",
"7",
"7",
"5",
"8",
"7",
"3",
"9",
"3",
"2",
"8",
"3",
"0",
"8",
"8",
"2",
"4",
"5",
"5",
"0",
"2",
"8",
"2",
"2",
"7",
"8",
"7",
"0",
"4",
"6",
"0",
"3",
"8",
"1",
"8",
"9",
"3",
"4",
"9",
"5",
"8",
"4",
"6",
"1",
"4",
"6",
"1",
"2",
"1",
"1",
"9",
"4",
"6",
"7",
"8",
"4"
] |
[
"nonn",
"cons"
] | 28 | 0 | 1 |
[
"A002162",
"A007494",
"A152743",
"A156057",
"A294514",
"A381671",
"A384683"
] | null |
Jason Bard, Jun 06 2025
| 2025-06-13T00:12:44 |
oeisdata/seq/A384/A384683.seq
|
495efce0109e9e55a9bc92a9f92491d2
|
A384684
|
Nonprimes k such that sopf(k)^k == sopf(k) (mod k) where sopf = A008472.
|
[
"1",
"28",
"30",
"45",
"65",
"66",
"90",
"105",
"133",
"190",
"231",
"286",
"301",
"325",
"369",
"385",
"426",
"496",
"532",
"561",
"645",
"793",
"946",
"1016",
"1105",
"1288",
"1353",
"1729",
"1905",
"2041",
"2107",
"2121",
"2275",
"2278",
"2413",
"2465",
"2501",
"2701",
"2737",
"2821",
"3577",
"3781",
"3861",
"4015",
"4123",
"4161",
"4699"
] |
[
"nonn",
"changed"
] | 24 | 1 | 2 |
[
"A000396",
"A005835",
"A008472",
"A107290",
"A239546",
"A302333",
"A384684"
] | null |
Juri-Stepan Gerasimov, Jun 06 2025
| 2025-07-07T14:26:06 |
oeisdata/seq/A384/A384684.seq
|
c66003b7de1b44bac6243d4c7aba54e9
|
A384685
|
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, all internal nodes have weight 1, and leaf nodes have weights in {1,...,k}.
|
[
"1",
"0",
"1",
"0",
"2",
"3",
"0",
"5",
"8",
"9",
"0",
"14",
"25",
"28",
"29",
"0",
"42",
"83",
"95",
"98",
"99",
"0",
"132",
"289",
"337",
"349",
"352",
"353",
"0",
"429",
"1041",
"1236",
"1285",
"1297",
"1300",
"1301",
"0",
"1430",
"3847",
"4652",
"4854",
"4903",
"4915",
"4918",
"4919",
"0",
"4862",
"14504",
"17865",
"18709",
"18912",
"18961",
"18973",
"18976",
"18977"
] |
[
"nonn",
"easy",
"tabl"
] | 8 | 0 | 5 |
[
"A000108",
"A078481",
"A078482",
"A088218",
"A143330",
"A380761",
"A384613",
"A384685"
] | null |
John Tyler Rascoe, Jun 06 2025
| 2025-06-07T08:22:57 |
oeisdata/seq/A384/A384685.seq
|
73c5de13136682cb990bf6c7d7cf7342
|
A384686
|
a(n) = 2^(n-4)*(5*binomial(n,5) + 6*binomial(n,4)).
|
[
"0",
"0",
"0",
"0",
"6",
"70",
"480",
"2520",
"11200",
"44352",
"161280",
"549120",
"1774080",
"5491200",
"16400384",
"47523840",
"134184960",
"370442240",
"1002700800",
"2667184128",
"6985482240",
"18042716160",
"46022000640",
"116064256000",
"289696382976",
"716282265600",
"1755735654400",
"4269382041600",
"10305404928000"
] |
[
"nonn",
"easy"
] | 14 | 0 | 5 |
[
"A384506",
"A384686"
] | null |
Enrique Navarrete, Jun 07 2025
| 2025-06-13T07:49:41 |
oeisdata/seq/A384/A384686.seq
|
1d5f73a70697dc6efaed033d94667d67
|
A384687
|
Number of elements in the Dedekind-MacNeille completion of the Bruhat order on D_n.
|
[
"4",
"42",
"1292",
"114976",
"29735760"
] |
[
"nonn",
"more"
] | 6 | 2 | 1 |
[
"A002866",
"A005130",
"A378072",
"A384687"
] | null |
Dmitry I. Ignatov, Jun 07 2025
| 2025-06-14T18:43:52 |
oeisdata/seq/A384/A384687.seq
|
990c3094219c5ca68d7af2eed4f562e0
|
A384688
|
Runs of t in the range 0 <= t <= k and the same parity as k, for successive k >= 0.
|
[
"0",
"1",
"0",
"2",
"1",
"3",
"0",
"2",
"4",
"1",
"3",
"5",
"0",
"2",
"4",
"6",
"1",
"3",
"5",
"7",
"0",
"2",
"4",
"6",
"8",
"1",
"3",
"5",
"7",
"9",
"0",
"2",
"4",
"6",
"8",
"10",
"1",
"3",
"5",
"7",
"9",
"11",
"0",
"2",
"4",
"6",
"8",
"10",
"12",
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"0",
"2",
"4",
"6",
"8",
"10",
"12",
"14",
"1",
"3",
"5",
"7",
"9",
"11",
"13",
"15",
"0",
"2",
"4",
"6",
"8",
"10",
"12",
"14",
"16"
] |
[
"nonn",
"easy",
"changed"
] | 14 | 0 | 4 |
[
"A000196",
"A000267",
"A000290",
"A002378",
"A002620",
"A053186",
"A055086",
"A055087",
"A079813",
"A216607",
"A384688"
] | null |
Kevin Ryde, Jun 07 2025
| 2025-07-09T19:28:17 |
oeisdata/seq/A384/A384688.seq
|
f18dcb44c7f1bea2445463bca497e054
|
A384689
|
E.g.f. A(x) satisfies A(x) = exp( x*A(x)^2 * A(x*A(x)) ).
|
[
"1",
"1",
"7",
"106",
"2593",
"89796",
"4085029",
"232694806",
"16053415249",
"1308960150472",
"123811136509861",
"13387049625793746",
"1635128238889494793",
"223420020463904387020",
"33872693045213102767093",
"5658826351169923606739206",
"1035543935182601250745181089",
"206506472947550295487980305424"
] |
[
"nonn"
] | 11 | 0 | 3 |
[
"A140049",
"A384689",
"A384690"
] | null |
Seiichi Manyama, Jun 07 2025
| 2025-06-07T08:21:44 |
oeisdata/seq/A384/A384689.seq
|
f30190acf2d2185b16e0493f242372e5
|
A384690
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384689.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"7",
"0",
"1",
"3",
"16",
"106",
"0",
"1",
"4",
"27",
"254",
"2593",
"0",
"1",
"5",
"40",
"450",
"6328",
"89796",
"0",
"1",
"6",
"55",
"700",
"11457",
"220362",
"4085029",
"0",
"1",
"7",
"72",
"1010",
"18256",
"402468",
"10016860",
"232694806",
"0",
"1",
"8",
"91",
"1386",
"27025",
"648564",
"18326853",
"568220102",
"16053415249",
"0"
] |
[
"nonn",
"tabl"
] | 12 | 0 | 8 |
[
"A000007",
"A379168",
"A380178",
"A384689",
"A384690"
] | null |
Seiichi Manyama, Jun 07 2025
| 2025-06-07T08:21:24 |
oeisdata/seq/A384/A384690.seq
|
4110efd99fc4aea9cc7e3a66310c316a
|
A384691
|
E.g.f. A(x) satisfies A(x) = exp( x*A(x) * A(x*A(x))^2 ).
|
[
"1",
"1",
"7",
"112",
"2989",
"115136",
"5899159",
"381657928",
"30082660633",
"2814548348224",
"306467497027531",
"38242238970083336",
"5401465336487870533",
"854848596955885610560",
"150317821473136130378335",
"29159232358630752927016456",
"6201999009581132843649181489",
"1438725999127826885623788697472"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A384691",
"A384692"
] | null |
Seiichi Manyama, Jun 07 2025
| 2025-06-07T08:21:50 |
oeisdata/seq/A384/A384691.seq
|
5c30968665ef4a97cb72bce28434eb53
|
A384692
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384691.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"7",
"0",
"1",
"3",
"16",
"112",
"0",
"1",
"4",
"27",
"266",
"2989",
"0",
"1",
"5",
"40",
"468",
"7168",
"115136",
"0",
"1",
"6",
"55",
"724",
"12789",
"275842",
"5899159",
"0",
"1",
"7",
"72",
"1040",
"20128",
"493248",
"14058520",
"381657928",
"0",
"1",
"8",
"91",
"1422",
"29485",
"780164",
"25060203",
"903187826",
"30082660633",
"0"
] |
[
"nonn",
"tabl"
] | 9 | 0 | 8 |
[
"A000007",
"A384691",
"A384692"
] | null |
Seiichi Manyama, Jun 07 2025
| 2025-06-07T08:21:30 |
oeisdata/seq/A384/A384692.seq
|
1c22d55af26fbb4d93951cf521b64da1
|
A384695
|
Self-convolution square-root of A169961, where A169961(n) = binomial(12*n,n).
|
[
"1",
"6",
"120",
"2850",
"72990",
"1950816",
"53594508",
"1500996420",
"42639593040",
"1224606404670",
"35477155257720",
"1035058071490152",
"30375294227227530",
"895810786837337880",
"26530164526824124560",
"788575111385154710700",
"23513904388397505712014",
"703104985574123730695460",
"21076207836773295148694400"
] |
[
"nonn"
] | 6 | 0 | 2 |
[
"A169961",
"A208977",
"A383965",
"A384695"
] | null |
Vaclav Kotesovec, Jun 07 2025
| 2025-06-07T08:13:10 |
oeisdata/seq/A384/A384695.seq
|
e17a0db5edf226c7e075419cc5c01631
|
A384696
|
Consecutive states of the linear congruential pseudo-random number generator Cray RANF when started at 1.
|
[
"1",
"44485709377909",
"232253848878969",
"94800993741645",
"243522309605169",
"20783065360997",
"154093299791145",
"161954398135485",
"183663036741473",
"207319719370837",
"142356556532697",
"278312552510253",
"242082341486737",
"37630394630981",
"176334633251721",
"233894773868189"
] |
[
"nonn",
"easy"
] | 19 | 1 | 2 |
[
"A096550",
"A096561",
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552",
"A384696",
"A384746",
"A384775",
"A384776",
"A384778",
"A384779",
"A384780"
] | null |
Sean A. Irvine, Jun 07 2025
| 2025-06-12T21:54:59 |
oeisdata/seq/A384/A384696.seq
|
7d38004147cacaf3f989fae275f76b93
|
A384697
|
Primes of the form floor(2^k / 5).
|
[
"3",
"409",
"6553",
"1677721",
"6871947673",
"472236648286964521369",
"7922816251426433759354395033",
"2451992865385422173373355243440494693789982595493763481"
] |
[
"nonn"
] | 18 | 1 | 1 |
[
"A383966",
"A384697"
] | null |
Vincenzo Librandi, Jun 07 2025
| 2025-06-17T19:18:04 |
oeisdata/seq/A384/A384697.seq
|
523bbb7e95a5e9fe25b5e801a15ad8e3
|
A384698
|
The first prime number reached by iterating the map, x -> 2*x + 1 if x is even; x - lpf(x) otherwise where lpf(x) is the least prime factor of x, on n >= 2; or -1 if a prime is never reached.
|
[
"2",
"3",
"13",
"5",
"13",
"7",
"17",
"13",
"37",
"11",
"41",
"13",
"29",
"41",
"61",
"17",
"37",
"19",
"41",
"37",
"613",
"23",
"613",
"41",
"53",
"613",
"109",
"29",
"61",
"31",
"829",
"61",
"1861",
"61",
"73",
"37",
"277",
"73",
"157",
"41",
"613",
"43",
"89",
"613",
"181",
"47",
"97",
"613",
"101",
"97",
"401",
"53",
"109",
"101",
"113",
"109",
"229",
"59",
"829",
"61",
"241"
] |
[
"nonn"
] | 23 | 2 | 1 |
[
"A020639",
"A383777",
"A384698"
] | null |
Ya-Ping Lu, Jun 09 2025
| 2025-06-15T19:52:28 |
oeisdata/seq/A384/A384698.seq
|
8e4f2d1bc0b961ad2b2ae3fe9916d4dd
|
A384699
|
Triples of distinct primes whose sum is a perfect square ordered by increasing sum and then lexicographically.
|
[
"2",
"3",
"11",
"3",
"5",
"17",
"5",
"7",
"13",
"2",
"3",
"31",
"2",
"5",
"29",
"2",
"11",
"23",
"3",
"5",
"41",
"3",
"17",
"29",
"5",
"7",
"37",
"5",
"13",
"31",
"7",
"11",
"31",
"7",
"13",
"29",
"7",
"19",
"23",
"13",
"17",
"19",
"2",
"3",
"59",
"2",
"19",
"43",
"3",
"5",
"73",
"3",
"7",
"71",
"3",
"11",
"67",
"3",
"17",
"61",
"3",
"19",
"59",
"3",
"31",
"47",
"3",
"37",
"41",
"5",
"17",
"59",
"5",
"23",
"53",
"5",
"29",
"47",
"7",
"13",
"61",
"7",
"31",
"43",
"11",
"17",
"53"
] |
[
"nonn",
"tabf"
] | 20 | 1 | 1 |
[
"A000040",
"A000290",
"A183168",
"A384699"
] | null |
Vincenzo Librandi, Jun 09 2025
| 2025-06-18T17:29:15 |
oeisdata/seq/A384/A384699.seq
|
b3e928f9640cc20a06147037c197fe3b
|
A384700
|
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct circles created.
|
[
"0",
"1",
"9",
"24",
"52",
"93",
"153",
"232",
"336",
"465",
"625",
"816",
"1044",
"1309",
"1617",
"1968",
"2368",
"2817",
"3321",
"3880",
"4500",
"5181",
"5929"
] |
[
"nonn",
"more"
] | 16 | 1 | 3 |
[
"A365669",
"A372981",
"A373110",
"A374338",
"A384700",
"A384701",
"A384702",
"A384703"
] | null |
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
| 2025-06-15T14:36:30 |
oeisdata/seq/A384/A384700.seq
|
0f6a3e688c8951c68de133686d8d39e6
|
A384701
|
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct points where circles intersect.
|
[
"2",
"4",
"18",
"172",
"978",
"3672",
"11034",
"27241",
"60804",
"122741",
"232138",
"412263",
"697058"
] |
[
"nonn",
"more"
] | 19 | 1 | 1 |
[
"A359569",
"A373106",
"A374338",
"A374825",
"A384700",
"A384701",
"A384702",
"A384703"
] | null |
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
| 2025-06-15T14:37:11 |
oeisdata/seq/A384/A384701.seq
|
f08a4fd36296f9b4b3011f30a0ee32ce
|
A384702
|
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct (finite) regions created.
|
[
"0",
"1",
"37",
"245",
"1205",
"4213",
"12261",
"29742",
"65507",
"130824",
"245325",
"432262",
"727259"
] |
[
"nonn",
"more"
] | 17 | 1 | 3 |
[
"A359570",
"A372978",
"A374337",
"A374826",
"A384700",
"A384701",
"A384702",
"A384703"
] | null |
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
| 2025-06-15T14:36:43 |
oeisdata/seq/A384/A384702.seq
|
6df36b6164f08d94976000f0641bc0ae
|
A384703
|
On a 2 X n grid of vertices, draw a circle through every unordered triple of non-collinear vertices: a(n) is the number of distinct edges in the planar graph formed from the intersections of the circles.
|
[
"0",
"4",
"54",
"416",
"2182",
"7884",
"23294",
"56982",
"126310",
"253564",
"477462",
"844524",
"1424316"
] |
[
"nonn",
"more"
] | 9 | 1 | 2 |
[
"A359571",
"A373108",
"A374339",
"A374827",
"A384700",
"A384701",
"A384702",
"A384703"
] | null |
Scott R. Shannon and N. J. A. Sloane, Jun 07 2025
| 2025-06-15T14:36:12 |
oeisdata/seq/A384/A384703.seq
|
b623a29b94c8c3debf4c81533f32b8de
|
A384704
|
Triangle T(i, j), 1 <= j <= i, read by rows. T(i, j) is the smallest number k that has i odd divisors and whose symmetric representation of sigma, SRS(k), has j parts; when no such k exists then T(i, j) = -1.
|
[
"1",
"6",
"3",
"18",
"-1",
"9",
"30",
"78",
"15",
"21",
"162",
"-1",
"-1",
"-1",
"81",
"90",
"666",
"45",
"75",
"63",
"147",
"1458",
"-1",
"-1",
"-1",
"-1",
"-1",
"729",
"210",
"1830",
"135",
"105",
"165",
"189",
"357",
"903",
"450",
"-1",
"225",
"-1",
"1225",
"-1",
"441",
"-1",
"3025",
"810",
"53622",
"405",
"-1",
"1377",
"1875",
"567",
"1539",
"4779",
"6875",
"118098",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1",
"59049"
] |
[
"sign",
"tabl"
] | 24 | 1 | 2 |
[
"A003056",
"A038547",
"A174973",
"A235791",
"A237048",
"A237591",
"A237593",
"A239929",
"A249223",
"A279102",
"A279387",
"A280107",
"A318843",
"A320066",
"A320511",
"A377654",
"A384704"
] | null |
Hartmut F. W. Hoft, Jun 07 2025
| 2025-06-18T21:56:42 |
oeisdata/seq/A384/A384704.seq
|
b126455a684b69bea266f2bc0a0f5cf3
|
A384705
|
Number of binary shuffle squares of length 2n with prefix 0, that can be obtained from a unique binary word of length n.
|
[
"1",
"3",
"11",
"38",
"135",
"475",
"1681",
"5875",
"20641",
"71956",
"250448",
"869332",
"3015496",
"10440429"
] |
[
"nonn",
"hard"
] | 29 | 1 | 2 |
[
"A191755",
"A384705"
] | null |
Bartlomiej Pawlik, Jun 07 2025
| 2025-06-24T23:49:31 |
oeisdata/seq/A384/A384705.seq
|
c4b0a5c4808a1befc47ed7b5e2e3da07
|
A384706
|
Integers y such that there exists an integer 0 < x < y such that y/sigma(x) + x/sigma(y) = 1.
|
[
"14",
"20",
"42",
"54",
"62",
"88",
"99",
"108",
"114",
"124",
"126",
"132",
"189",
"195",
"204",
"210",
"220",
"238",
"252",
"254",
"272",
"284",
"328",
"340",
"385",
"414",
"420",
"432",
"455",
"464",
"468",
"495",
"508",
"528",
"560",
"572",
"608",
"621",
"630",
"663",
"693",
"748",
"828",
"837",
"870",
"888",
"1008",
"1089",
"1136",
"1192",
"1197",
"1210",
"1288",
"1416",
"1422",
"1440"
] |
[
"nonn",
"changed"
] | 23 | 1 | 1 |
[
"A000043",
"A000203",
"A000396",
"A002025",
"A002046",
"A253534",
"A253535",
"A384706"
] | null |
S. I. Dimitrov, Jun 07 2025
| 2025-07-10T14:01:51 |
oeisdata/seq/A384/A384706.seq
|
9bd4a421afdd9249d46b2d44252d71ed
|
A384707
|
Consecutive states of the linear congruential pseudo-random number generator 71971110957370*s mod (2^47-115) when started at s=1.
|
[
"1",
"71971110957370",
"97751155475215",
"63928805697070",
"118479530220817",
"88722126962001",
"99358377603253",
"117985650682333",
"127902272911221",
"81288594853390",
"117258482513099",
"129195671766469",
"4907951471492",
"76094880219228",
"40827677163278",
"73675282162193"
] |
[
"nonn",
"easy"
] | 19 | 1 | 2 |
[
"A096550",
"A096561",
"A384707"
] | null |
Sean A. Irvine, Jun 07 2025
| 2025-06-12T10:22:46 |
oeisdata/seq/A384/A384707.seq
|
b170c144d1af2ff20b71e2af23bf2f99
|
A384708
|
a(n) is the smallest integer k such that k is the sum of exactly n distinct permutations of k, all having the same number of digits as k.
|
[
"1",
"954",
"4617",
"5112",
"8136",
"67104",
"76011",
"90216",
"910107"
] |
[
"nonn",
"base",
"fini",
"full"
] | 20 | 1 | 2 |
[
"A055098",
"A384433",
"A384708"
] | null |
Gonzalo Martínez, Jun 07 2025
| 2025-06-19T17:02:03 |
oeisdata/seq/A384/A384708.seq
|
2825c5cfc45e61994a1345621a647d6b
|
A384709
|
a(n) = [n > 1 and A076479(n) = -Möbius(A067029(n))], where [.] is the Iverson bracket.
|
[
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"1"
] |
[
"nonn"
] | 13 | 1 | null |
[
"A008683",
"A067029",
"A076479",
"A384709",
"A385055"
] | null |
Peter Luschny and Friedjof Tellkamp, Jun 16 2025
| 2025-06-25T12:03:36 |
oeisdata/seq/A384/A384709.seq
|
69774b048a4933aecd4796e8e9eb8c05
|
A384710
|
a(n) = Sum_{k=0..n} [gcd(k, n) = 1], where [.] are the Iverson brackets.
|
[
"0",
"2",
"1",
"2",
"2",
"4",
"2",
"6",
"4",
"6",
"4",
"10",
"4",
"12",
"6",
"8",
"8",
"16",
"6",
"18",
"8",
"12",
"10",
"22",
"8",
"20",
"12",
"18",
"12",
"28",
"8",
"30",
"16",
"20",
"16",
"24",
"12",
"36",
"18",
"24",
"16",
"40",
"12",
"42",
"20",
"24",
"22",
"46",
"16",
"42",
"20",
"32",
"24",
"52",
"18",
"40",
"24",
"36",
"28",
"58",
"16",
"60",
"30",
"36",
"32",
"48",
"20",
"66",
"32",
"44",
"24"
] |
[
"nonn"
] | 15 | 0 | 2 |
[
"A000010",
"A109004",
"A217831",
"A372728",
"A384710"
] | null |
Peter Luschny, Jun 07 2025
| 2025-06-09T14:43:27 |
oeisdata/seq/A384/A384710.seq
|
7e3212c942323ad892faac135d09f14b
|
A384711
|
Expansion of (1+x) / (1-2*x-6*x^2).
|
[
"1",
"3",
"12",
"42",
"156",
"564",
"2064",
"7512",
"27408",
"99888",
"364224",
"1327776",
"4840896",
"17648448",
"64342272",
"234575232",
"855204096",
"3117859584",
"11366943744",
"41441044992",
"151083752448",
"550813774848",
"2008130064384",
"7321142777856",
"26691065942016",
"97308988551168"
] |
[
"nonn",
"easy",
"walk"
] | 8 | 0 | 2 |
[
"A133592",
"A384711",
"A384712"
] | null |
Sean A. Irvine, Jun 07 2025
| 2025-06-08T05:00:23 |
oeisdata/seq/A384/A384711.seq
|
bc1f3149df286cd60144439f465148c6
|
A384712
|
Expansion of (1+2*x) / (1-2*x-6*x^2).
|
[
"1",
"4",
"14",
"52",
"188",
"688",
"2504",
"9136",
"33296",
"121408",
"442592",
"1613632",
"5882816",
"21447424",
"78191744",
"285068032",
"1039286528",
"3788981248",
"13813681664",
"50361250816",
"183604591616",
"669376688128",
"2440380925952",
"8897021980672",
"32436329517056",
"118254790918144"
] |
[
"nonn",
"easy",
"walk"
] | 7 | 0 | 2 |
[
"A133592",
"A384711",
"A384712"
] | null |
Sean A. Irvine, Jun 07 2025
| 2025-06-08T05:00:08 |
oeisdata/seq/A384/A384712.seq
|
e18ec74cd0634786e17a246f1d93fffe
|
A384713
|
The number of steps that n requires to reach 1 under the map: x-> x^2 - 1 if x is an odd prime, x/2 if x is even, x - lpf(x) otherwise where lpf(x) is the least prime factor of x. a(n) = -1 if 1 is never reached.
|
[
"0",
"1",
"4",
"2",
"8",
"5",
"9",
"3",
"6",
"9",
"11",
"6",
"12",
"10",
"7",
"4",
"12",
"7",
"14",
"10",
"8",
"12",
"14",
"7",
"11",
"13",
"8",
"11",
"15",
"8",
"14",
"5",
"9",
"13",
"9",
"8",
"16",
"15",
"9",
"11",
"16",
"9",
"17",
"13",
"10",
"15",
"17",
"8",
"10",
"12",
"9",
"14",
"18",
"9",
"13",
"12",
"10",
"16",
"17",
"9",
"19",
"15",
"10",
"6",
"10",
"10",
"20",
"14",
"11",
"10",
"18",
"9",
"20"
] |
[
"nonn"
] | 15 | 1 | 3 |
[
"A339991",
"A384713"
] | null |
Ya-Ping Lu, Jun 23 2025
| 2025-07-04T01:11:21 |
oeisdata/seq/A384/A384713.seq
|
969ce22bd7b70ba31a4bbc1f9d0ac563
|
A384714
|
Nonpowers of 2 whose trailing digits form a power of 2.
|
[
"11",
"12",
"14",
"18",
"21",
"22",
"24",
"28",
"31",
"34",
"38",
"41",
"42",
"44",
"48",
"51",
"52",
"54",
"58",
"61",
"62",
"68",
"71",
"72",
"74",
"78",
"81",
"82",
"84",
"88",
"91",
"92",
"94",
"98",
"101",
"102",
"104",
"108",
"111",
"112",
"114",
"116",
"118",
"121",
"122",
"124",
"131",
"132",
"134",
"138",
"141",
"142",
"144",
"148",
"151",
"152",
"154",
"158",
"161",
"162"
] |
[
"nonn",
"base",
"easy"
] | 34 | 1 | 1 |
[
"A000079",
"A002275",
"A007524",
"A017281",
"A057716",
"A209229",
"A384714",
"A385289"
] | null |
Stefano Spezia, Jun 23 2025
| 2025-06-25T17:27:21 |
oeisdata/seq/A384/A384714.seq
|
2666e80c5f32569313b008ef744a1844
|
A384715
|
a(n) = Sum_{k=0..n} (binomial(n, k) mod 4).
|
[
"1",
"2",
"4",
"8",
"4",
"8",
"12",
"16",
"4",
"8",
"12",
"24",
"12",
"24",
"24",
"32",
"4",
"8",
"12",
"24",
"12",
"24",
"32",
"48",
"12",
"24",
"32",
"48",
"24",
"48",
"48",
"64",
"4",
"8",
"12",
"24",
"12",
"24",
"32",
"48",
"12",
"24",
"32",
"64",
"32",
"64",
"64",
"96",
"12",
"24",
"32",
"48",
"32",
"64",
"64",
"96",
"24",
"48",
"64",
"96",
"48",
"96",
"96",
"128",
"4",
"8",
"12",
"24"
] |
[
"nonn",
"easy",
"changed"
] | 58 | 0 | 2 |
[
"A001316",
"A014081",
"A033264",
"A034931",
"A051638",
"A085357",
"A384715"
] | null |
David Radcliffe, Jun 23 2025
| 2025-07-12T20:52:20 |
oeisdata/seq/A384/A384715.seq
|
1f1d12332f79664a51a7de7d6decb605
|
A384716
|
The totient of the product of unitary divisors of n.
|
[
"1",
"1",
"2",
"2",
"4",
"12",
"6",
"4",
"6",
"40",
"10",
"48",
"12",
"84",
"120",
"8",
"16",
"108",
"18",
"160",
"252",
"220",
"22",
"192",
"20",
"312",
"18",
"336",
"28",
"216000",
"30",
"16",
"660",
"544",
"840",
"432",
"36",
"684",
"936",
"640",
"40",
"889056",
"42",
"880",
"1080",
"1012",
"46",
"768",
"42",
"1000",
"1632",
"1248",
"52",
"972",
"2200",
"1344",
"2052"
] |
[
"nonn"
] | 24 | 1 | 3 |
[
"A000010",
"A000225",
"A006093",
"A061537",
"A384716",
"A384763"
] | null |
Darío Clavijo, Jun 11 2025
| 2025-06-16T16:09:41 |
oeisdata/seq/A384/A384716.seq
|
4f7d607668c8ee2b51580a6e2a1ffe86
|
A384718
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A052750.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"5",
"0",
"1",
"3",
"12",
"49",
"0",
"1",
"4",
"21",
"128",
"729",
"0",
"1",
"5",
"32",
"243",
"2000",
"14641",
"0",
"1",
"6",
"45",
"400",
"3993",
"41472",
"371293",
"0",
"1",
"7",
"60",
"605",
"6912",
"85683",
"1075648",
"11390625",
"0",
"1",
"8",
"77",
"864",
"10985",
"153664",
"2278125",
"33554432",
"410338673",
"0"
] |
[
"nonn",
"tabl"
] | 11 | 0 | 8 |
[
"A000007",
"A052750",
"A058127",
"A097629",
"A232006",
"A384692",
"A384718"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-08T10:49:53 |
oeisdata/seq/A384/A384718.seq
|
b17b596d3c3b665d95b15a80916a44b4
|
A384719
|
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x))^2 ).
|
[
"1",
"1",
"5",
"61",
"1281",
"39641",
"1655713",
"88312869",
"5792082817",
"454510418545",
"41802078248001",
"4434246169988669",
"535583662477158529",
"72887981688629021097",
"11079094119653898282337",
"1867050981690536859738901",
"346619463962928284995333377",
"70501622878003227432547203809"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A162659",
"A384691",
"A384719",
"A384720",
"A384721"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-08T10:50:04 |
oeisdata/seq/A384/A384719.seq
|
8cd14e98130cd367ac4bc8858184f978
|
A384720
|
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x))^3 ).
|
[
"1",
"1",
"7",
"118",
"3385",
"141556",
"7918489",
"561302470",
"48589734337",
"5001284972872",
"599865865782481",
"82534986682048066",
"12863925185682542833",
"2248009460254706256460",
"436716594440553989797369",
"93635975845903995553159126",
"22021353830468757164023479169",
"5650417076648052544704264390160"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A162659",
"A384719",
"A384720",
"A384722"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-08T10:50:08 |
oeisdata/seq/A384/A384720.seq
|
f6f694de72908d36ab2f4a65d68984f8
|
A384721
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384719.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"5",
"0",
"1",
"3",
"12",
"61",
"0",
"1",
"4",
"21",
"152",
"1281",
"0",
"1",
"5",
"32",
"279",
"3200",
"39641",
"0",
"1",
"6",
"45",
"448",
"5937",
"98192",
"1655713",
"0",
"1",
"7",
"60",
"665",
"9696",
"181563",
"4053688",
"88312869",
"0",
"1",
"8",
"77",
"936",
"14705",
"296864",
"7430265",
"213600200",
"5792082817",
"0"
] |
[
"nonn",
"tabl"
] | 13 | 0 | 8 |
[
"A000007",
"A380178",
"A384692",
"A384718",
"A384719",
"A384721",
"A384722"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-08T10:50:00 |
oeisdata/seq/A384/A384721.seq
|
4cbefcb19ca8038cb5efbe0935cea0b6
|
A384722
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384720.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"7",
"0",
"1",
"3",
"16",
"118",
"0",
"1",
"4",
"27",
"278",
"3385",
"0",
"1",
"5",
"40",
"486",
"8008",
"141556",
"0",
"1",
"6",
"55",
"748",
"14121",
"333482",
"7918489",
"0",
"1",
"7",
"72",
"1070",
"22000",
"587268",
"18524980",
"561302470",
"0",
"1",
"8",
"91",
"1458",
"31945",
"916084",
"32452353",
"1303041350",
"48589734337",
"0"
] |
[
"nonn",
"tabl"
] | 12 | 0 | 8 |
[
"A000007",
"A380178",
"A384720",
"A384721",
"A384722"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-08T10:49:56 |
oeisdata/seq/A384/A384722.seq
|
801706b55f03cbb7593037d13ecee989
|
A384723
|
Heinz numbers of conjugates of maximally refined strict integer partitions.
|
[
"1",
"2",
"4",
"6",
"12",
"18",
"24",
"30",
"60",
"90",
"120",
"150",
"180",
"210",
"240",
"420",
"540",
"630",
"840",
"1050",
"1260",
"1470",
"1680",
"1890",
"2100",
"2310",
"2520",
"3360",
"4620",
"6300",
"6930",
"7560",
"9240"
] |
[
"nonn",
"more"
] | 8 | 1 | 2 |
[
"A003963",
"A048767",
"A055396",
"A056239",
"A061395",
"A112798",
"A122111",
"A130091",
"A179009",
"A239455",
"A299200",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A382525",
"A383706",
"A383707",
"A384005",
"A384010",
"A384317",
"A384318",
"A384320",
"A384347",
"A384349",
"A384390",
"A384394",
"A384723"
] | null |
Gus Wiseman, Jun 09 2025
| 2025-06-10T16:25:58 |
oeisdata/seq/A384/A384723.seq
|
8b3e6d3d5035ae975d6b2cb3e4e7d85c
|
A384726
|
a(n) is the least number that is both the product of n distinct primes and the concatenation of n distinct primes.
|
[
"2",
"35",
"273",
"11235",
"237615",
"11237835",
"1123317195",
"111371237835",
"11132343837615",
"1113172923477615",
"111317233377372295",
"11131723677292413195",
"1113172377671953734135",
"111317192375336174123715"
] |
[
"nonn",
"base",
"more"
] | 13 | 1 | 1 |
[
"A083427",
"A374665",
"A384726"
] | null |
Robert Israel, Jun 08 2025
| 2025-06-16T16:20:59 |
oeisdata/seq/A384/A384726.seq
|
f1147ed221449856e15ad9d7dd5c2c0c
|
A384727
|
Number of groups of order n (up to isomorphism) with exactly n subgroups.
|
[
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1"
] |
[
"nonn"
] | 17 | 1 | 40 |
[
"A368538",
"A384727",
"A384800"
] | null |
Richard Stanley, Jun 08 2025
| 2025-06-10T02:20:25 |
oeisdata/seq/A384/A384727.seq
|
9ff8a8e1029786134c12991c731aed91
|
A384728
|
The number of different shuffle square roots of the prefix of length 2n of the infinte word 00110011001100...
|
[
"1",
"1",
"1",
"2",
"3",
"4",
"6",
"9",
"13",
"19",
"28",
"42",
"62",
"91",
"135",
"204",
"304",
"450",
"674",
"1016",
"1519",
"2267",
"3408",
"5138",
"7718",
"11574",
"17431",
"26325",
"39653",
"59637",
"89962",
"136038",
"205288",
"309398",
"467365",
"707419",
"1069043",
"1613776",
"2440562",
"3697006",
"5593116",
"8454010",
"12797766",
"19398770",
"29374186",
"44446508"
] |
[
"nonn"
] | 28 | 1 | 4 |
[
"A191755",
"A384728"
] | null |
Bartlomiej Pawlik, Jun 08 2025
| 2025-06-26T00:36:44 |
oeisdata/seq/A384/A384728.seq
|
27f9cf0e7e03dfc9c984f88f2ee43291
|
A384729
|
A B_2-sequence with reciprocal sum > 2.1615.
|
[
"1",
"2",
"4",
"8",
"13",
"21",
"31",
"45",
"66",
"81",
"97",
"123",
"148",
"182",
"204",
"252",
"291",
"324",
"352",
"415",
"486",
"540",
"651",
"706",
"792",
"838",
"928",
"1046",
"1134",
"1228",
"1358",
"1407",
"1512",
"1624",
"1869",
"1938",
"2087",
"2170",
"2367",
"2480",
"2608",
"2765",
"3033",
"3080",
"3232",
"3567",
"3605",
"3797",
"3950",
"4267",
"4505",
"4677",
"5064",
"5290",
"5480",
"5655",
"6059",
"6507",
"6892",
"6967"
] |
[
"nonn"
] | 12 | 1 | 2 |
[
"A005282",
"A046185",
"A384729"
] | null |
Logan J. Kleinwaks, Jun 08 2025
| 2025-06-16T01:06:30 |
oeisdata/seq/A384/A384729.seq
|
48b4fa93e84126aab1c68260fa38c570
|
A384730
|
Expansion of (1+x-2*x^2) / (1-x-6*x^2+2*x^3).
|
[
"1",
"2",
"6",
"16",
"48",
"132",
"388",
"1084",
"3148",
"8876",
"25596",
"72556",
"208380",
"592524",
"1697692",
"4836076",
"13837180",
"39458252",
"112809180",
"321884332",
"919822908",
"2625510540",
"7500679324",
"21414096748",
"61167151612",
"174650373452",
"498825089628",
"1424393027116",
"4068042817980"
] |
[
"nonn",
"easy",
"walk"
] | 7 | 0 | 2 |
[
"A384730",
"A384731",
"A384732"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-06-08T17:32:30 |
oeisdata/seq/A384/A384730.seq
|
ac94d42d0787b47d5fa74f9c9d2afbfe
|
A384731
|
Expansion of (1+2*x-x^2) / (1-x-6*x^2+2*x^3).
|
[
"1",
"3",
"8",
"24",
"66",
"194",
"542",
"1574",
"4438",
"12798",
"36278",
"104190",
"296262",
"848846",
"2418038",
"6918590",
"19729126",
"56404590",
"160942166",
"459911454",
"1312755270",
"3750339662",
"10707048374",
"30583575806",
"87325186726",
"249412544814",
"712196513558",
"2034021408990",
"5808375400710"
] |
[
"nonn",
"easy",
"walk"
] | 6 | 0 | 2 |
[
"A384730",
"A384731",
"A384732"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-06-08T17:32:22 |
oeisdata/seq/A384/A384731.seq
|
0e35bd5aed25027d8bd56fe933f35b69
|
A384732
|
Expansion of (1+2*x) / (1-x-6*x^2+2*x^3).
|
[
"1",
"3",
"9",
"25",
"73",
"205",
"593",
"1677",
"4825",
"13701",
"39297",
"111853",
"320233",
"912757",
"2610449",
"7446525",
"21283705",
"60741957",
"173551137",
"495435469",
"1415258377",
"4040768917",
"11541448241",
"32955544989",
"94122696601",
"268773070053",
"767598159681",
"2191991186797",
"6260034004777"
] |
[
"nonn",
"easy",
"walk"
] | 6 | 0 | 2 |
[
"A384730",
"A384731",
"A384732"
] | null |
Sean A. Irvine, Jun 05 2025
| 2025-06-08T17:32:16 |
oeisdata/seq/A384/A384732.seq
|
60cc2dc01d82cefd882a2c47be3bc4bc
|
A384733
|
a(n) = 5*binomial(n,6) + 2*binomial(n,4).
|
[
"0",
"0",
"0",
"0",
"2",
"10",
"35",
"105",
"280",
"672",
"1470",
"2970",
"5610",
"10010",
"17017",
"27755",
"43680",
"66640",
"98940",
"143412",
"203490",
"283290",
"387695",
"522445",
"694232",
"910800",
"1181050",
"1515150",
"1924650",
"2422602",
"3023685",
"3744335",
"4602880",
"5619680",
"6817272",
"8220520",
"9856770",
"11756010"
] |
[
"nonn"
] | 13 | 0 | 5 |
[
"A384686",
"A384733"
] | null |
Enrique Navarrete, Jun 08 2025
| 2025-06-11T11:33:36 |
oeisdata/seq/A384/A384733.seq
|
d4e3995e43e5237bad5c27f70e316898
|
A384734
|
Consecutive states of the linear congruential pseudo-random number generator (513*s+29741096258473) mod 2^47 when started at s=1.
|
[
"1",
"29741096258986",
"87274734742867",
"47158722354940",
"15317667226277",
"6405035440206",
"78562044911607",
"81148466289056",
"607749367113",
"60041544876786",
"9543668232859",
"140568295633988",
"83682718566381",
"34041772436886",
"41721800320319",
"40926430572264",
"55114214886033"
] |
[
"nonn",
"easy"
] | 12 | 1 | 2 |
[
"A096550",
"A096561",
"A384734"
] | null |
Sean A. Irvine, Jun 08 2025
| 2025-06-11T11:33:48 |
oeisdata/seq/A384/A384734.seq
|
97001514b57d3b917adbd412795cc05c
|
A384735
|
Numbers that are prime or end in a prime number (of any length).
|
[
"2",
"3",
"5",
"7",
"11",
"12",
"13",
"15",
"17",
"19",
"22",
"23",
"25",
"27",
"29",
"31",
"32",
"33",
"35",
"37",
"41",
"42",
"43",
"45",
"47",
"52",
"53",
"55",
"57",
"59",
"61",
"62",
"63",
"65",
"67",
"71",
"72",
"73",
"75",
"77",
"79",
"82",
"83",
"85",
"87",
"89",
"92",
"93",
"95",
"97",
"101",
"102",
"103",
"105",
"107",
"109",
"111",
"112",
"113",
"115",
"117"
] |
[
"nonn",
"base"
] | 49 | 1 | 1 |
[
"A000040",
"A017293",
"A017305",
"A017329",
"A017353",
"A033664",
"A055642",
"A384735"
] | null |
Mohd Anwar Jamal Faiz, Jun 08 2025
| 2025-06-20T20:23:02 |
oeisdata/seq/A384/A384735.seq
|
a147aa4b300b7559be95b9fde24b901e
|
A384736
|
Numbers k such that (28^k - 3^k)/25 is prime.
|
[
"2",
"3",
"7",
"43",
"197",
"13397",
"28837",
"29153"
] |
[
"nonn",
"hard",
"more"
] | 4 | 1 | 1 |
[
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A229542",
"A375161",
"A375236",
"A377031",
"A384736"
] | null |
Robert Price, Jun 08 2025
| 2025-06-09T00:59:35 |
oeisdata/seq/A384/A384736.seq
|
86f594e79a538859fcffcae8fa66d487
|
A384737
|
a(n) is the number of distinct five-cuboid combinations filling an n X n X n cube only with at least one cut spanning through the full cube.
|
[
"0",
"0",
"1",
"27",
"195",
"527",
"1487",
"2711",
"5648",
"8694"
] |
[
"nonn",
"more"
] | 12 | 1 | 4 |
[
"A381847",
"A384208",
"A384311",
"A384479",
"A384737"
] | null |
Janaka Rodrigo, Jun 08 2025
| 2025-06-22T00:51:34 |
oeisdata/seq/A384/A384737.seq
|
02c7d159558d619aaa63daaa1ffbeb32
|
A384738
|
Decimal expansion of 3*log(2)/4 - Pi/8.
|
[
"1",
"2",
"7",
"1",
"6",
"1",
"3",
"0",
"3",
"7",
"2",
"1",
"2",
"3",
"4",
"8",
"2",
"7",
"2",
"5",
"5",
"0",
"9",
"3",
"6",
"6",
"8",
"1",
"8",
"3",
"6",
"9",
"4",
"5",
"6",
"5",
"5",
"3",
"1",
"9",
"7",
"8",
"9",
"2",
"5",
"8",
"4",
"8",
"3",
"0",
"3",
"2",
"1",
"2",
"9",
"6",
"8",
"6",
"4",
"1",
"9",
"3",
"3",
"0",
"8",
"1",
"5",
"6",
"8",
"1",
"6",
"5",
"6",
"9",
"1",
"4",
"9",
"4",
"9",
"1",
"1",
"8",
"7",
"5",
"8",
"9",
"3"
] |
[
"nonn",
"cons"
] | 18 | 0 | 2 |
[
"A002162",
"A100046",
"A384683",
"A384738"
] | null |
Jason Bard, Jun 08 2025
| 2025-06-15T22:16:37 |
oeisdata/seq/A384/A384738.seq
|
1d067b9d8170320fd2c640e2be6d0462
|
A384739
|
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^2) ).
|
[
"1",
"1",
"3",
"28",
"461",
"11776",
"421207",
"19832128",
"1179482201",
"85990657024",
"7513043962571",
"772836266189824",
"92270347493126629",
"12636256749099114496",
"1965364897138717976735",
"344225592620170387849216",
"67392512492360201909759153",
"14653181755453024592646111232",
"3518079370651785227796264294163"
] |
[
"nonn"
] | 10 | 0 | 3 |
[
"A000272",
"A162659",
"A384719",
"A384739",
"A384740",
"A384741",
"A384749"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-09T10:34:13 |
oeisdata/seq/A384/A384739.seq
|
ad9d8c72db6db86decea5a1d3e748c13
|
A384740
|
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^3) ).
|
[
"1",
"1",
"3",
"34",
"665",
"20556",
"901417",
"52455250",
"3885229665",
"355223077336",
"39166024398641",
"5113078496932374",
"778733373110049601",
"136679150176555902436",
"27360426865918664532393",
"6191378995818235673842546",
"1571577905668087973855557313",
"444441393534829346316950781744"
] |
[
"nonn"
] | 9 | 0 | 3 |
[
"A000272",
"A162659",
"A384720",
"A384739",
"A384740",
"A384742"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-09T10:34:09 |
oeisdata/seq/A384/A384740.seq
|
1b886fd1aa5efd063144b3861180dc2b
|
A384741
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384739.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"8",
"28",
"0",
"1",
"4",
"15",
"74",
"461",
"0",
"1",
"5",
"24",
"144",
"1200",
"11776",
"0",
"1",
"6",
"35",
"244",
"2325",
"29842",
"421207",
"0",
"1",
"7",
"48",
"380",
"3968",
"56688",
"1040896",
"19832128",
"0",
"1",
"8",
"63",
"558",
"6285",
"95524",
"1933227",
"47948490",
"1179482201",
"0"
] |
[
"nonn",
"tabl"
] | 11 | 0 | 8 |
[
"A000007",
"A380178",
"A384739",
"A384741",
"A384742"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-09T10:34:06 |
oeisdata/seq/A384/A384741.seq
|
b09858d7a7e8295058310c67d7c09984
|
A384742
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384740.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"8",
"34",
"0",
"1",
"4",
"15",
"86",
"665",
"0",
"1",
"5",
"24",
"162",
"1656",
"20556",
"0",
"1",
"6",
"35",
"268",
"3081",
"49802",
"901417",
"0",
"1",
"7",
"48",
"410",
"5072",
"90588",
"2132476",
"52455250",
"0",
"1",
"8",
"63",
"594",
"7785",
"146484",
"3792177",
"121703094",
"3885229665",
"0"
] |
[
"nonn",
"tabl"
] | 11 | 0 | 8 |
[
"A000007",
"A380178",
"A384740",
"A384741",
"A384742"
] | null |
Seiichi Manyama, Jun 08 2025
| 2025-06-09T10:34:02 |
oeisdata/seq/A384/A384742.seq
|
db8a6aef5b9919bcf7c59449498870a5
|
A384743
|
a(n) is the number of distinct five-cuboid combinations filling n X n X n cube without allowing a cut spanning through the full cube in any of filling positions.
|
[
"0",
"0",
"0",
"1",
"6",
"20",
"50",
"110",
"197",
"343"
] |
[
"nonn",
"more"
] | 15 | 1 | 5 |
[
"A381847",
"A384208",
"A384311",
"A384479",
"A384743"
] | null |
Janaka Rodrigo, Jun 08 2025
| 2025-06-22T00:51:37 |
oeisdata/seq/A384/A384743.seq
|
9fa2938d56eb89d3de91b5523dde96f3
|
A384744
|
Numbers in which all substrings in base 16 are primes.
|
[
"2",
"3",
"5",
"7",
"11",
"13",
"37",
"43",
"53",
"59",
"61",
"83",
"179",
"181",
"211",
"691",
"947",
"3389"
] |
[
"base",
"easy",
"fini",
"full",
"nonn"
] | 23 | 1 | 1 |
[
"A085823",
"A384744"
] | null |
Yuri Urvantsev, Jun 08 2025
| 2025-06-15T19:23:20 |
oeisdata/seq/A384/A384744.seq
|
370ec679bc9d7f7d4e4b4ec69430c9f3
|
A384745
|
Consecutive states of the linear congruential pseudo-random number generator (5^17*s+1) mod 2^48 when started at s=1.
|
[
"1",
"762939453126",
"108446592504415",
"237117407802652",
"117233362822797",
"181464088068226",
"50336702857227",
"255306056401528",
"30528867956313",
"110940877951102",
"23915768730871",
"190863546762260",
"232890898414437",
"164321838504634",
"236717685210403",
"41303196833264"
] |
[
"nonn",
"easy"
] | 12 | 1 | 2 |
[
"A382305",
"A384745"
] | null |
Sean A. Irvine, Jun 08 2025
| 2025-06-12T10:22:43 |
oeisdata/seq/A384/A384745.seq
|
6be46df5510cf8565d783f46cedf4427
|
A384746
|
Consecutive states of the linear congruential pseudo-random number generator MCNP from Los Alamos when started at 1.
|
[
"1",
"19073486328125",
"29763723208841",
"187205367447973",
"131230026111313",
"264374031214925",
"74735272014937",
"31978779697717",
"72377397341089",
"127824407320157",
"39323977335081",
"168134765887429",
"73951303845617",
"27971537168493",
"266449281326841",
"41546074810965"
] |
[
"nonn",
"easy"
] | 15 | 1 | 2 |
[
"A096550",
"A096561",
"A384746"
] | null |
Sean A. Irvine, Jun 09 2025
| 2025-06-11T10:11:58 |
oeisdata/seq/A384/A384746.seq
|
4ff38e618d100747274c462539a4b297
|
A384747
|
Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.
|
[
"1",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"5",
"6",
"0",
"1",
"11",
"15",
"16",
"0",
"1",
"26",
"39",
"43",
"44",
"0",
"1",
"63",
"110",
"123",
"127",
"128",
"0",
"1",
"153",
"308",
"358",
"371",
"375",
"376",
"0",
"1",
"376",
"869",
"1046",
"1096",
"1109",
"1113",
"1114",
"0",
"1",
"931",
"2499",
"3098",
"3278",
"3328",
"3341",
"3345",
"3346",
"0",
"1",
"2317",
"7238",
"9283",
"9904",
"10084",
"10134",
"10147",
"10151",
"10152"
] |
[
"nonn",
"tabl"
] | 16 | 0 | 6 |
[
"A000108",
"A002212",
"A051286",
"A143330",
"A382096",
"A384613",
"A384685",
"A384747",
"A384748"
] | null |
John Tyler Rascoe, Jun 09 2025
| 2025-06-12T00:50:46 |
oeisdata/seq/A384/A384747.seq
|
cb8238eafdb1c1e21dde45769a8b29aa
|
A384748
|
Number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are greater than 0, and no nodes have the same weight as their parent node.
|
[
"1",
"1",
"2",
"6",
"16",
"44",
"128",
"376",
"1114",
"3346",
"10152",
"31028",
"95474",
"295532",
"919446",
"2873388",
"9015812",
"28390466",
"89689586",
"284173096",
"902780060",
"2875016084",
"9176388532",
"29349499212",
"94050228650",
"301918397716",
"970815092346"
] |
[
"nonn",
"more"
] | 15 | 0 | 3 |
[
"A000108",
"A002212",
"A143330",
"A384613",
"A384685",
"A384747",
"A384748"
] | null |
John Tyler Rascoe, Jun 09 2025
| 2025-06-12T00:49:50 |
oeisdata/seq/A384/A384748.seq
|
ba2b0769261d6ff39bdc57b0a9af4cf0
|
A384749
|
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^2)^2 ).
|
[
"1",
"1",
"5",
"73",
"1881",
"73281",
"3919453",
"271474953",
"23404227185",
"2440865803969",
"301418221716981",
"43342981732882569",
"7161103011598307401",
"1344575638159799606913",
"284279495938201825060301",
"67153086545904981925170121",
"17604147845521944687437836257",
"5091302668361626521610878847617"
] |
[
"nonn"
] | 8 | 0 | 3 |
[
"A384739",
"A384749",
"A384751"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:58 |
oeisdata/seq/A384/A384749.seq
|
4f4ffe6e6b36634442a2bd6e960be1c7
|
A384750
|
E.g.f. A(x) satisfies A(x) = exp( x * A(x*A(x)^3)^3 ).
|
[
"1",
"1",
"7",
"154",
"5977",
"351196",
"28315369",
"2954632402",
"383525186209",
"60193522329112",
"11181354061281841",
"2417710637018004406",
"600471190717495018849",
"169437981624693089625604",
"53825488351532394141057001",
"19100433341924628525123843826",
"7520675779186271371397475067969"
] |
[
"nonn"
] | 7 | 0 | 3 |
[
"A384750",
"A384752"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:55 |
oeisdata/seq/A384/A384750.seq
|
e9734a3aa64e57501219843b34262ecd
|
A384751
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384749.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"5",
"0",
"1",
"3",
"12",
"73",
"0",
"1",
"4",
"21",
"176",
"1881",
"0",
"1",
"5",
"32",
"315",
"4496",
"73281",
"0",
"1",
"6",
"45",
"496",
"8025",
"172672",
"3919453",
"0",
"1",
"7",
"60",
"725",
"12672",
"304803",
"9107008",
"271474953",
"0",
"1",
"8",
"77",
"1008",
"18665",
"477504",
"15874605",
"622823168",
"23404227185",
"0"
] |
[
"nonn",
"tabl"
] | 10 | 0 | 8 |
[
"A000007",
"A384749",
"A384751"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:51 |
oeisdata/seq/A384/A384751.seq
|
9c775ce9772a7b72dc7f757d2615e1bb
|
A384752
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384750.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"7",
"0",
"1",
"3",
"16",
"154",
"0",
"1",
"4",
"27",
"350",
"5977",
"0",
"1",
"5",
"40",
"594",
"13480",
"351196",
"0",
"1",
"6",
"55",
"892",
"22761",
"783722",
"28315369",
"0",
"1",
"7",
"72",
"1250",
"34096",
"1311228",
"62574580",
"2954632402",
"0",
"1",
"8",
"91",
"1674",
"47785",
"1949044",
"103734513",
"6473363654",
"383525186209",
"0"
] |
[
"nonn",
"tabl"
] | 9 | 0 | 8 |
[
"A000007",
"A384750",
"A384752"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:48 |
oeisdata/seq/A384/A384752.seq
|
1c4f964ccb72df206008471e09e5708a
|
A384753
|
Order of the permutation of {1,...,n} formed by a Josephus elimination variation: take 2, skip 1.
|
[
"1",
"1",
"1",
"2",
"3",
"3",
"5",
"6",
"4",
"7",
"9",
"10",
"5",
"9",
"13",
"70",
"12",
"15",
"84",
"70",
"52",
"42",
"21",
"30",
"15",
"16",
"38",
"84",
"168",
"24",
"90",
"360",
"120",
"27",
"24",
"72",
"30",
"108",
"286",
"276",
"105",
"4680",
"198",
"36",
"630",
"234",
"120",
"2856",
"54",
"1056",
"532",
"660",
"51",
"310",
"406",
"54",
"420",
"120",
"55",
"264",
"150"
] |
[
"nonn"
] | 29 | 1 | 4 |
[
"A051732",
"A384753"
] | null |
Chuck Seggelin, Jun 09 2025
| 2025-06-14T04:20:53 |
oeisdata/seq/A384/A384753.seq
|
f4ca216a3ad5b51bb5960b886b82a0fb
|
A384754
|
The number of face-connected components of polyhedra in the omnitruncated cubic honeycomb up to translation, rotation, and reflection.
|
[
"1",
"2",
"4",
"22",
"179",
"2227",
"34278",
"591787",
"10765367",
"201844314",
"3860318208"
] |
[
"nonn",
"more"
] | 15 | 0 | 2 |
[
"A038119",
"A038181",
"A343909",
"A384254",
"A384274",
"A384754",
"A384755"
] | null |
Peter Kagey, Jun 09 2025
| 2025-06-14T15:07:37 |
oeisdata/seq/A384/A384754.seq
|
3413e5d4a681f136101768b5eefaa438
|
A384755
|
Triangle read by rows: T(n,k) is the number of face-connected components of polyhedra with k prisms and n-k truncated cuboctahedra in the omnitruncated cubic honeycomb up to rotation and reflection, 0 <= k <= n.
|
[
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"7",
"10",
"2",
"12",
"41",
"76",
"46",
"4",
"61",
"335",
"809",
"777",
"232",
"13",
"407",
"3065",
"9512",
"12863",
"7186",
"1206",
"39",
"3226",
"30401",
"114516",
"204143",
"172377",
"60421",
"6548",
"155",
"28335",
"311782",
"1381363",
"3054599",
"3507278",
"1975767",
"469525",
"36081",
"637",
"262091",
"3260971",
"16569719",
"43731912"
] |
[
"nonn",
"tabl"
] | 17 | 0 | 5 |
[
"A038171",
"A365970",
"A384486",
"A384754",
"A384755",
"A384756",
"A384782"
] | null |
Peter Kagey, Jun 09 2025
| 2025-06-14T17:16:25 |
oeisdata/seq/A384/A384755.seq
|
e5695ffec04d176cc00854c206084f91
|
A384756
|
Triangle read by rows: T(n,k) is the number of face-connected components of polyhedra with k prisms and n-k truncated cuboctahedra in the omnitruncated cubic honeycomb up to translation and rotation, 0 <= k <= n.
|
[
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"8",
"11",
"2",
"14",
"60",
"118",
"63",
"5",
"88",
"575",
"1457",
"1372",
"368",
"16",
"686",
"5741",
"18261",
"24831",
"13581",
"2124",
"59",
"5966",
"59088",
"225424",
"403494",
"339880",
"117447",
"12201",
"250",
"54722",
"616110",
"2745525",
"6084433",
"6987036",
"3927441",
"926001",
"69445",
"1136"
] |
[
"nonn",
"tabl"
] | 16 | 0 | 5 |
[
"A384755",
"A384756"
] | null |
Peter Kagey, Jun 09 2025
| 2025-06-14T17:16:33 |
oeisdata/seq/A384/A384756.seq
|
d7b27972877a9561580d2db9b0bdbbba
|
A384757
|
E.g.f. A(x) satisfies A(x) = exp( -x * A(-x*A(x)) ).
|
[
"1",
"-1",
"-1",
"14",
"9",
"-1516",
"4345",
"507870",
"-4984063",
"-367545880",
"7749976401",
"471799390490",
"-18036953224367",
"-948817553760324",
"60774529797257081",
"2736041193224490494",
"-284790488755979731455",
"-10493764378757426300848",
"1792499910367109444364961",
"49177040508763120698604578"
] |
[
"sign"
] | 13 | 0 | 4 |
[
"A162659",
"A384757",
"A384758",
"A384760"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:43 |
oeisdata/seq/A384/A384757.seq
|
f28e9741e32531e60e3b0003ad485ed3
|
A384758
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384757.
|
[
"1",
"1",
"0",
"1",
"-1",
"0",
"1",
"-2",
"-1",
"0",
"1",
"-3",
"0",
"14",
"0",
"1",
"-4",
"3",
"34",
"9",
"0",
"1",
"-5",
"8",
"54",
"-88",
"-1516",
"0",
"1",
"-6",
"15",
"68",
"-327",
"-3402",
"4345",
"0",
"1",
"-7",
"24",
"70",
"-720",
"-4908",
"30532",
"507870",
"0",
"1",
"-8",
"35",
"54",
"-1255",
"-5044",
"84321",
"1027402",
"-4984063",
"0"
] |
[
"sign",
"tabl"
] | 11 | 0 | 8 |
[
"A000007",
"A384757",
"A384758",
"A384761"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:38 |
oeisdata/seq/A384/A384758.seq
|
63f4f5aa9ea5ed6f99359892e55abf62
|
A384759
|
Number of legal arrangements in pawn-only chess on an n X n board where no pieces have been taken and no piece attacks another piece.
|
[
"0",
"3",
"2031",
"728174",
"247646098",
"91880342535",
"38818192375310",
"18907485764545412",
"10626953883068264472",
"6866760686250915376779",
"5073038373153476636807709",
"4259014676256866422905669602",
"4038463837000965678262091166880",
"4299625631242136963071149921577615",
"5111407212497576694797045579672852791"
] |
[
"nonn"
] | 17 | 4 | 2 |
[
"A035290",
"A294240",
"A384759"
] | null |
Edwin Hermann, Jun 09 2025
| 2025-06-26T01:25:33 |
oeisdata/seq/A384/A384759.seq
|
704e5b35b497b25b6774b266aa5b56f3
|
A384760
|
E.g.f. A(x) satisfies A(x) = exp( -x*A(x) * A(-x*A(x)) ).
|
[
"1",
"-1",
"1",
"5",
"-35",
"-281",
"5671",
"42671",
"-2179127",
"-9146017",
"1529743051",
"-2876300681",
"-1703719191635",
"19006164045023",
"2748187169359087",
"-67807538576332801",
"-6002760779933693039",
"267196356696377129023",
"16763997717087046669459",
"-1258157898725874129675001"
] |
[
"sign"
] | 9 | 0 | 4 |
[
"A384760",
"A384761"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:35 |
oeisdata/seq/A384/A384760.seq
|
564b7021b14eac0bb3d59001a785435a
|
A384761
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384760.
|
[
"1",
"1",
"0",
"1",
"-1",
"0",
"1",
"-2",
"1",
"0",
"1",
"-3",
"4",
"5",
"0",
"1",
"-4",
"9",
"4",
"-35",
"0",
"1",
"-5",
"16",
"-9",
"-104",
"-281",
"0",
"1",
"-6",
"25",
"-40",
"-171",
"-112",
"5671",
"0",
"1",
"-7",
"36",
"-95",
"-176",
"717",
"14164",
"42671",
"0",
"1",
"-8",
"49",
"-180",
"-35",
"2176",
"20619",
"-18104",
"-2179127",
"0"
] |
[
"sign",
"tabl"
] | 11 | 0 | 8 |
[
"A000007",
"A379168",
"A384760",
"A384761"
] | null |
Seiichi Manyama, Jun 09 2025
| 2025-06-09T10:33:31 |
oeisdata/seq/A384/A384761.seq
|
904ac651a00e8d598ca1268fdb2030a3
|
A384762
|
Number of minimal total dominating sets in the n-Hanoi graph.
|
[
"3",
"14",
"10773",
"2349005042448",
"24908520273548884722124787384195553925"
] |
[
"nonn"
] | 9 | 1 | 1 |
[
"A303898",
"A382695",
"A384762"
] | null |
Eric W. Weisstein, Jun 09 2025
| 2025-06-10T01:13:17 |
oeisdata/seq/A384/A384762.seq
|
f1a3acda20fbf3e5703a24af7bf5f742
|
A384763
|
Product of the Euler totients of the unitary divisors of n.
|
[
"1",
"1",
"2",
"2",
"4",
"4",
"6",
"4",
"6",
"16",
"10",
"16",
"12",
"36",
"64",
"8",
"16",
"36",
"18",
"64",
"144",
"100",
"22",
"64",
"20",
"144",
"18",
"144",
"28",
"4096",
"30",
"16",
"400",
"256",
"576",
"144",
"36",
"324",
"576",
"256",
"40",
"20736",
"42",
"400",
"576",
"484",
"46",
"256",
"42",
"400",
"1024",
"576",
"52",
"324",
"1600",
"576",
"1296",
"784",
"58",
"65536"
] |
[
"nonn"
] | 16 | 1 | 3 |
[
"A000010",
"A034444",
"A055653",
"A061537",
"A077610",
"A384763"
] | null |
Darío Clavijo, Jun 09 2025
| 2025-06-15T22:59:33 |
oeisdata/seq/A384/A384763.seq
|
ca714cdc6e8905fbbcd8d6a112e5719a
|
A384764
|
Number of uniquely solveable n X m nonograms (hanjie), read by antidiagonals.
|
[
"1",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"4",
"1",
"1",
"8",
"14",
"8",
"1",
"1",
"16",
"52",
"52",
"16",
"1",
"1",
"32",
"210",
"384",
"210",
"32",
"1",
"1",
"64",
"816",
"3152",
"3152",
"816",
"64",
"1",
"1",
"128",
"3206",
"24230",
"52362",
"24230",
"3206",
"128",
"1",
"1",
"256",
"12536",
"189898",
"814632",
"814632",
"189898",
"12536",
"256",
"1",
"1",
"512",
"48962",
"1473674",
"12819322",
"25309575",
"12819322",
"1473674",
"48962",
"512",
"1"
] |
[
"nonn",
"tabl",
"hard"
] | 23 | 0 | 5 |
[
"A000012",
"A000079",
"A242876",
"A384764"
] | null |
Bertram Felgenhauer, Jun 09 2025
| 2025-06-10T09:31:21 |
oeisdata/seq/A384/A384764.seq
|
3c9eec87bdf84b8edc73fb6c0371155c
|
A384766
|
Maximum number of non-blank symbols that an n-instruction Turing machine (allowing any number of states and symbols) can leave on an initially blank tape before eventually halting.
|
[
"0",
"1",
"2",
"4",
"5",
"9"
] |
[
"hard",
"more",
"nonn"
] | 4 | 0 | 3 |
[
"A028444",
"A384629",
"A384766"
] | null |
Brian Galebach, Jun 09 2025
| 2025-06-15T22:31:33 |
oeisdata/seq/A384/A384766.seq
|
ed57be50420c1dbc2e56868b6292bd8e
|
A384767
|
Numbers k such that (29^k - 3^k)/26 is prime.
|
[
"3",
"7",
"17",
"1069",
"28081",
"66509",
"91493"
] |
[
"nonn",
"hard",
"more"
] | 5 | 1 | 1 |
[
"A062587",
"A062589",
"A127996",
"A127997",
"A128344",
"A204940",
"A217320",
"A225807",
"A229542",
"A375161",
"A375236",
"A377031",
"A384767"
] | null |
Robert Price, Jun 09 2025
| 2025-06-10T04:19:35 |
oeisdata/seq/A384/A384767.seq
|
779b395977a9428ea3b64b60cc00bc43
|
A384768
|
Inverse binomial transform of A384674.
|
[
"2",
"3",
"3",
"3",
"3",
"5",
"11",
"13",
"7",
"5",
"7",
"5",
"3",
"17",
"29",
"11",
"11",
"17",
"13",
"7",
"29",
"3",
"3",
"23",
"3",
"17",
"37",
"5",
"223",
"5",
"37",
"59",
"19",
"23",
"433",
"13",
"89",
"7",
"7",
"43",
"3",
"61",
"5",
"3",
"191",
"61",
"149",
"43",
"89",
"71",
"13",
"43",
"41",
"79",
"31",
"61",
"23",
"73",
"53",
"11",
"157",
"197",
"83",
"163",
"3",
"47",
"7",
"109",
"5"
] |
[
"nonn"
] | 13 | 0 | 1 |
[
"A000040",
"A111107",
"A384674",
"A384676",
"A384768"
] | null |
Alexander R. Povolotsky, Jun 09 2025
| 2025-06-10T12:38:45 |
oeisdata/seq/A384/A384768.seq
|
676b92b7d1c0865b7ca3dd01599c48f8
|
A384769
|
Primes p such that p + 6, p + 12, p + 20, p + 26 and p + 32 are also primes.
|
[
"11",
"41",
"47",
"251",
"347",
"587",
"1097",
"1427",
"2687",
"5387",
"11801",
"17021",
"19457",
"23741",
"24071",
"32057",
"42677",
"47501",
"55787",
"55817",
"71327",
"115751",
"127637",
"165437",
"179801",
"191441",
"226637",
"282671",
"344231",
"344237",
"348431",
"349907",
"391367",
"408197",
"411557",
"416387",
"422057",
"501197",
"526931",
"571841",
"572801"
] |
[
"nonn"
] | 6 | 1 | 1 |
[
"A000040",
"A001223",
"A384526",
"A384527",
"A384528",
"A384769"
] | null |
Alexander Yutkin, Jun 09 2025
| 2025-06-16T00:12:51 |
oeisdata/seq/A384/A384769.seq
|
1a6c10b009e4b60350b34f21e5e18e51
|
A384771
|
Primes p such that p + 8, p + 12, p + 20, p + 24 and p + 32 are also primes.
|
[
"58889",
"114749",
"185519",
"476579",
"568979",
"904769",
"1726919",
"4143389",
"4413029",
"6432599",
"7571009",
"9848249",
"10444859",
"12271439",
"12338849",
"13599689",
"14669639",
"15136259",
"16390799",
"17016809",
"18453209",
"20649809",
"22190579",
"22581809",
"23475359",
"24249419",
"26979419",
"29202059",
"30126269",
"30869669",
"33263039"
] |
[
"nonn"
] | 7 | 1 | 1 |
[
"A000040",
"A001223",
"A022008",
"A384298",
"A384299",
"A384771"
] | null |
Alexander Yutkin, Jun 09 2025
| 2025-06-16T00:11:04 |
oeisdata/seq/A384/A384771.seq
|
117ce68a2401f3e200f367585b89dfce
|
A384773
|
a(1) = 1, a(2) = 1. For n > 2 if a(n-1) = k is a novel term, a(n) = a(n-1-k). Otherwise if a(n-1) is a repeat term a(n) = number of m; 1 <= m <= n-2 such that a(m) = a(n-1).
|
[
"1",
"1",
"1",
"2",
"1",
"3",
"1",
"4",
"2",
"1",
"5",
"3",
"1",
"6",
"4",
"1",
"7",
"1",
"8",
"5",
"1",
"9",
"1",
"10",
"6",
"1",
"11",
"1",
"12",
"7",
"1",
"13",
"8",
"1",
"14",
"1",
"15",
"9",
"1",
"16",
"10",
"1",
"17",
"1",
"18",
"11",
"1",
"19",
"12",
"1",
"20",
"1",
"21",
"13",
"1",
"22",
"1",
"23",
"14",
"1",
"24",
"15",
"1",
"25",
"1",
"26",
"16",
"1",
"27",
"1",
"28",
"17",
"1",
"29",
"18",
"1",
"30"
] |
[
"nonn",
"easy"
] | 32 | 1 | 4 |
[
"A000027",
"A026278",
"A335999",
"A364749",
"A384773"
] | null |
David James Sycamore, Jun 09 2025
| 2025-06-17T21:52:00 |
oeisdata/seq/A384/A384773.seq
|
9502c00267c80b352c1bcb96b5bdaeb0
|
A384775
|
Consecutive states of the linear congruential pseudo-random number generator 33952834046453*s mod 2^48 when started at 1.
|
[
"1",
"33952834046453",
"181226512753785",
"17547632994509",
"138001340383537",
"86153482263781",
"229799995061289",
"280681352600637",
"119513974041441",
"216025667693781",
"238363414258905",
"47318339740845",
"113868956675729",
"85138704755141",
"217581192963721",
"88846792569373"
] |
[
"nonn",
"easy"
] | 18 | 1 | 2 |
[
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552",
"A384696",
"A384746",
"A384775",
"A384776",
"A384778",
"A384779",
"A384780"
] | null |
Sean A. Irvine, Jun 09 2025
| 2025-06-11T10:11:54 |
oeisdata/seq/A384/A384775.seq
|
f71ffd64b38d8d9b1e813a534cb82ce8
|
A384776
|
Consecutive states of the linear congruential pseudo-random number generator 43272750451645*s mod 2^48 when started at 1.
|
[
"1",
"43272750451645",
"61318499813769",
"79085427649829",
"68025911569233",
"83056068785613",
"355731277657",
"91085083377589",
"166436801793953",
"88719099065565",
"111268338599465",
"46775231680325",
"152215507893489",
"127293649213677",
"121144755885561",
"62037290331093"
] |
[
"nonn",
"easy"
] | 14 | 1 | 2 |
[
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552",
"A384696",
"A384746",
"A384775",
"A384776",
"A384778",
"A384779",
"A384780"
] | null |
Sean A. Irvine, Jun 09 2025
| 2025-06-11T10:11:47 |
oeisdata/seq/A384/A384776.seq
|
4d68dfca8c96e4bee538b0b5e0f93bf0
|
A384777
|
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A382450.
|
[
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"3",
"7",
"19",
"0",
"1",
"4",
"12",
"44",
"221",
"0",
"1",
"5",
"18",
"76",
"489",
"4597",
"0",
"1",
"6",
"25",
"116",
"813",
"9750",
"174007",
"0",
"1",
"7",
"33",
"165",
"1203",
"15543",
"358895",
"12328367",
"0",
"1",
"8",
"42",
"224",
"1670",
"22072",
"555696",
"25040728",
"1674839513",
"0",
"1",
"9",
"52",
"294",
"2226",
"29446",
"765572",
"38156448",
"3375603329",
"443624694633",
"0"
] |
[
"nonn",
"tabl"
] | 27 | 0 | 8 |
[
"A000007",
"A379598",
"A382450",
"A384777"
] | null |
Seiichi Manyama, Jun 10 2025
| 2025-06-10T13:57:14 |
oeisdata/seq/A384/A384777.seq
|
805094488b163b37066c9b7376686c0b
|
A384778
|
Consecutive states of the linear congruential pseudo-random number generator 55151000561141*s mod 2^48 when started at 1.
|
[
"1",
"55151000561141",
"29815832362105",
"55100342394061",
"179741519900977",
"7132195055845",
"74704892394537",
"220210368430141",
"73887840684897",
"135379684698325",
"280350175386841",
"124994015967405",
"227696133324433",
"118996703729093",
"242320442691209",
"24065948923421"
] |
[
"nonn",
"easy"
] | 14 | 1 | 2 |
[
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552",
"A384696",
"A384746",
"A384775",
"A384776",
"A384778",
"A384779",
"A384780"
] | null |
Sean A. Irvine, Jun 09 2025
| 2025-06-11T10:11:51 |
oeisdata/seq/A384/A384778.seq
|
770a6cd69946d8705ccd13578fce29c6
|
A384779
|
Consecutive states of the linear congruential pseudo-random number generator 68909602460261*s mod 2^48 when started at 1.
|
[
"1",
"68909602460261",
"267986871311321",
"40223525715613",
"170906480868849",
"105934630117909",
"220872133340233",
"58531276790477",
"54428804463841",
"144397689558725",
"44956117505465",
"810057454589",
"86145210100945",
"204213264588917",
"259238501435433",
"238216607930925"
] |
[
"nonn",
"easy"
] | 15 | 1 | 2 |
[
"A384546",
"A384547",
"A384548",
"A384549",
"A384550",
"A384551",
"A384552",
"A384696",
"A384746",
"A384775",
"A384776",
"A384778",
"A384779",
"A384780"
] | null |
Sean A. Irvine, Jun 09 2025
| 2025-06-11T10:11:44 |
oeisdata/seq/A384/A384779.seq
|
ffc3a9bb4fd7992abb118ad888181b07
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.