Dataset Viewer
Auto-converted to Parquet
Question
stringclasses
5 values
A
stringclasses
5 values
B
stringclasses
5 values
C
stringclasses
5 values
D
stringclasses
5 values
Answer
stringclasses
3 values
特定微血管區段之微血管靜水壓(capillaryhydrostaticpressure)為32mmHg、組織間隙靜水壓(interstitialhydrostaticpressure)為-2mmHg、微血管滲透壓(capillarycolloidosmoticpressure)為25mmHg、組織間隙滲透壓(interstitialcolloidosmoticpressure)為2mmHg,則該處微血管液流動形式及總驅動力(netfiltrationpressure)分別為何?
再吸收(absorption)流入微血管、7mmHg
再吸收(absorption)流入微血管、11mmHg
過濾(filtration)流出微血管、11mmHg
過濾(filtration)流出微血管、7mmHg
C
下列何者屬於無血管(avascular)分佈的組織?
硬骨組織(bonetissue)
軟骨組織(cartilagetissue)
白色脂肪組織(whiteadiposetissue)
棕色脂肪組織(brownadiposetissue)
B
下列何者不是位於縱隔腔內?
肺葉支氣管(lobarbronchi)
心臟
主動脈
胸腔段(thoracic)的食道
A
依據液態鑲嵌模式(fluidmosaicmodel),雙層磷脂質分子的極性端(頭端)與非極性端(尾端)在細胞膜的分佈方式為下列何者?
尾端連接頭端
頭端連接頭端
尾端連接尾端
頭端連接尾端
C
下列何者為穩定橈骨頭(headofradius)和尺骨的橈骨切跡(radialnotchofulna)之間關節的最主要構造?
橈骨環狀韌帶(anularligamentofradius)
骨間膜(interosseusmembrane)
尺側副韌帶(ulnarcollateralligament)
橈側副韌帶(radialcollateralligament)
A

HKMMLU Dataset

| 📖 Paper |🤗 Leaderboard

HKMMLU dataset is a multi-task language understanding dataset that evaluates both Hong Kong linguistic competence and socio-cultural knowledge.

Dataset Summary

The HKMMLU includes 26,698 multi-choice questions across 66 subjects, organized into four categories: Science, Technology, Engineering, and Mathematics (STEM), Social Sciences, Humanities, and Other. To evaluate the multilingual understanding ability of LLMs, it additionally comprises 88,292 Mandarin-Cantonese translation tasks.

Alt text

🏆 Mini-Leaderboard

Model performance on multi-choice tasks in HKMMLU using zero-shot prompting.

Model HKMMLU
DeepSeek-V3-0324 76.6
DeepSeek-V3 74.7
GPT-4o 70.5
Qwen2.5-72B-Instruct 69.0
Llama-3-Taiwan-70B-Instruct 67.5
Claude 3.7 Sonnet 67.2
Qwen2.5-14B-Instruct 62.2
Yi-1.5-34B-Chat 60.1
Mistral-Large-Instruct 60.0
Llama-3-70B-Instruct 58.9
Llama-3.1-70B-Instruct 58.7
Gemma-2-27B-IT 57.1
Qwen2.5-7B-Instruct 56.9
Yi-1.5-9B-Chat 52.1
Llama-3-Taiwan-8B-Instruct 51.3
Qwen2.5-3B-Instruct 49.9
GLM-4-9B-Chat 48.4
Mistral-Small-Instruct 44.6
Llama-3-8B-Instruct 44.1
Gemma-2-2B-IT 41.4
Llama-3.1-8B-Instruct 39.5

Load data

from datasets import load_dataset
hkmmlu_hklaw = load_dataset(r"chuxuecao/HKMMLU", 'hk_law')
print(hkmmlu_hklaw)
print(hkmmlu_hklaw['test'][0])

Output

DatasetDict({
    test: Dataset({
        features: ['Question', 'A', 'B', 'C', 'D', 'Answer'],
        num_rows: 407
    })
    validation: Dataset({
        features: ['Question', 'A', 'B', 'C', 'D', 'Answer'],
        num_rows: 5
    })
})
{'Question': '以下哪一選項最準確描述制定《中華人民共和國香港特別行政區維護國家安全法》的法律依據?', 'A': '《中華人民共和國憲法》和《中華人民共和國香港特別行政區基本法》', 'B': '《中華人民共和國憲法》、《中華人民共和國香港特別行政區基本法》和《全國人民代表大會關於建立健全香港特別行政區維護國家安全的法律制度和執行機制的決定》', 'C': '《中華人民共和國憲法》、《中華人民共和國香港特別行政區基本法》和《中華人民共和國刑法》', 'D': '《全國人民代表大會關於建立健全香港特別行政區維護國家安全的法律制度和執行機制的決定》、《中華人民共和國刑法》和《中華人民共和國國家安全法》', 'Answer': 'B'}

Load all data at once

from datasets import load_dataset

multi_choice_task_list = ['basic_medical_science', 'business_management', 'chinese_conditions', 'chinese_history', 'chinese_world_culture', 'chinese_world_geography', 'clinical_psychology', 'college_math', 'culture_commonsense', 'dentistry', 'economics', 'educational_psychology', 'financial_analysis', 'fire_science', 'hk_celebrity', 'hk_cultural_art', 'hk_current_affairs', 'hk_education', 'hk_entertainment_industry_management', 'hk_events_festivals', 'hk_film_television', 'hk_government_political_system', 'hk_historical_development_geography', 'hk_history', 'hk_human_geography', 'hk_law', 'hk_life_knowledge', 'hk_literature', 'hk_livelihood', 'hk_music', 'hk_party_politics', 'hk_physical_geography', 'hk_politicians_events', 'hk_society', 'hk_transport_infrastructure', 'hk_transportation', 'hk_urban_regional_development', 'hkdse_biology', 'hkdse_business_accounting_finance', 'hkdse_chemistry', 'hkdse_economics', 'hkdse_geography', 'hkdse_information_and_communication_technology', 'hkdse_mathematics', 'hkdse_physics', 'hkdse_tourism', 'human_behavior', 'insurance_studies', 'logic_reasoning', 'management_accounting', 'marketing_management', 'mechanical', 'nautical_science', 'optometry', 'organic_chemistry', 'pharmacology', 'pharmacy', 'physics', 'science_technology_commonsense', 'social_commonsense', 'statistics_and_machine_learning', 'technical', 'traditional_chinese_medicine_clinical_medicine', 'veterinary_pathology', 'veterinary_pharmacology', 'world_entertainment']

hkmmlu_multichoice = {k: load_dataset(r"chuxuecao/HKMMLU", k) for k in multi_choice_task_list}

Categories

stem_list = ['basic_medical_science', 'dentistry', 'dse_biology', 'dse_chemistry', 
                'dse_information_and_communication_technology', 'dse_mathematics', 'dse_physics', 
                'college_math','engineering_math', 'linear_algebra', 'mechanical', 'optometry', 
                'organic_chemistry', 'pharmacology', 'pharmacy', 'physics', 'statistics_and_machine_learning', 
                'traditional_chinese_medicine_clinical_medicine', 'veterinary_pathology','veterinary_pharmacology']
socialsci_list = ['business_management', 'chinese_world_geography', 'clinical_psychology', 'dse_business_accounting_finance', 
                    'dse_economic', 'dse_geography', 'dse_travel', 'economics', 'educational_psychology', 'financial_analysis', 
                    'fire_science', 'hk_physical_geography', 'hk_transport_infrastructure', 'hk_urban_regional_development', 
                    'insurance_studies', 'management_accounting', 'marketing_management', 'nautical_science']
humanities_list = ['chinese_conditions', 'chinese_history', 'chinese_world_culture', 'hk_current_affairs', 'hk_education', 
                    'hk_entertainment_arts_culture', 'hk_entertainment_celebrity_culture', 'hk_government_political_system', 
                    'hk_historical_development_geography', 'hk_history', 'hk_human_geography', 'hk_law', 'hk_literature', 
                    'hk_party_politics', 'hk_politicians_events', 'hk_society', 'human_behavior', 'world_entertainment_culture']
other_list = ['culture_commonsense', 'hk_entertainment_industry_management', 'hk_events_festivals', 'hk_film_television', 
                'hk_life_knowledge', 'hk_music','hk_people_livelihood', 'hk_transportation', 'logic_reasoning', 
                'science_technology_commonsense', 'social_commonsense', 'technical']

Citation

@misc{cao2025measuringhongkongmassive,
      title={Measuring Hong Kong Massive Multi-Task Language Understanding}, 
      author={Chuxue Cao and Zhenghao Zhu and Junqi Zhu and Guoying Lu and Siyu Peng and Juntao Dai and Weijie Shi and Sirui Han and Yike Guo},
      year={2025},
      eprint={2505.02177},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.02177}, 
}
Downloads last month
118