markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Isolines
There are two Isoline functions: isochrones and isodistances. In this guide we will use the isochrones function to calculate walking areas by time for each Starbucks store and the isodistances function to calculate the walking area by distance.
By definition, isolines are concentric polygons that display equally calculated levels over a given surface area, and they are calculated as the intersection areas from the origin point, measured by:
Time in the case of isochrones
Distance in the case of isodistances
Isochrones
For isochrones, let's calculate the time ranges of 5, 15 and 30 minutes. These ranges are input in seconds, so they will be 300, 900, and 1800 respectively.
|
from cartoframes.data.services import Isolines
iso_service = Isolines()
_, isochrones_dry_metadata = iso_service.isochrones(geo_gdf, [300, 900, 1800], mode='walk', dry_run=True)
|
docs/guides/06-Data-Services.ipynb
|
CartoDB/cartoframes
|
bsd-3-clause
|
Remember to always check the quota using dry_run parameter and available_quota method before running the service!
|
print('available {0}, required {1}'.format(
iso_service.available_quota(),
isochrones_dry_metadata.get('required_quota'))
)
isochrones_gdf, isochrones_metadata = iso_service.isochrones(geo_gdf, [300, 900, 1800], mode='walk')
isochrones_gdf.head()
from cartoframes.viz import Layer, basic_style, basic_legend
Layer(isochrones_gdf, basic_style(opacity=0.5), basic_legend('Isochrones'))
|
docs/guides/06-Data-Services.ipynb
|
CartoDB/cartoframes
|
bsd-3-clause
|
Isodistances
For isodistances, let's calculate the distance ranges of 100, 500 and 1000 meters. These ranges are input in meters, so they will be 100, 500, and 1000 respectively.
|
_, isodistances_dry_metadata = iso_service.isodistances(geo_gdf, [100, 500, 1000], mode='walk', dry_run=True)
print('available {0}, required {1}'.format(
iso_service.available_quota(),
isodistances_dry_metadata.get('required_quota'))
)
isodistances_gdf, isodistances_metadata = iso_service.isodistances(geo_gdf, [100, 500, 1000], mode='walk')
isodistances_gdf.head()
from cartoframes.viz import Layer, basic_style, basic_legend
Layer(isodistances_gdf, basic_style(opacity=0.5), basic_legend('Isodistances'))
|
docs/guides/06-Data-Services.ipynb
|
CartoDB/cartoframes
|
bsd-3-clause
|
EXERCISE DATASET
Run the colorbot experiment and notice the choosen model_dir
Below is the input function definition,we don't need some of the auxiliar functions anymore
Add this cell and then add the solution to the EXERCISE EXPERIMENT
choose a different model_dir and run the cells
Copy the model_dir of the two models to the same path
tensorboard --logdir=path
|
def get_input_fn(csv_file, batch_size, num_epochs=1, shuffle=True):
def _parse(line):
# each line: name, red, green, blue
# split line
items = tf.string_split([line],',').values
# get color (r, g, b)
color = tf.string_to_number(items[1:], out_type=tf.float32) / 255.0
# split color_name into a sequence of characters
color_name = tf.string_split([items[0]], '')
length = color_name.indices[-1, 1] + 1 # length = index of last char + 1
color_name = color_name.values
return color, color_name, length
def input_fn():
# https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/data
dataset = (
tf.contrib.data.TextLineDataset(csv_file) # reading from the HD
.skip(1) # skip header
.map(_parse) # parse text to variables
.padded_batch(batch_size, padded_shapes=([None], [None], []),
padding_values=(0.0, chr(0), tf.cast(0, tf.int64)))
.repeat(num_epochs) # repeat dataset the number of epochs
)
# for our "manual" test we don't want to shuffle the data
if shuffle:
dataset = dataset.shuffle(buffer_size=100000)
# create iterator
color, color_name, length = dataset.make_one_shot_iterator().get_next()
features = {
COLOR_NAME_KEY: color_name,
SEQUENCE_LENGTH_KEY: length,
}
return features, color
return input_fn
|
code_samples/RNN/colorbot/colorbot_solutions.ipynb
|
mari-linhares/tensorflow-workshop
|
apache-2.0
|
As a result you will see something like:
We called the original model "sorted_batch" and the model using the simplified input function as "simple_batch"
Notice that both models have basically the same loss in the last step, but the "sorted_batch" model runs way faster , notice the global_step/sec metric, it measures how many steps the model executes per second. Since the "sorted_batch" has a larger global_step/sec it means it trains faster.
If you don't belive me you can change Tensorboard to compare the models in a "relative" way, this will compare the models over time. See result below.
EXERCISE HYPERPARAMETERS
This one is more personal, what you see will depends on what you change in the model.
Below is a very simple example we just changed the model to use a GRUCell, just in case...
|
def get_model_fn(rnn_cell_sizes,
label_dimension,
dnn_layer_sizes=[],
optimizer='SGD',
learning_rate=0.01):
def model_fn(features, labels, mode):
color_name = features[COLOR_NAME_KEY]
sequence_length = tf.cast(features[SEQUENCE_LENGTH_KEY], dtype=tf.int32) # int64 -> int32
# ----------- Preparing input --------------------
# Creating a tf constant to hold the map char -> index
# this is need to create the sparse tensor and after the one hot encode
mapping = tf.constant(CHARACTERS, name="mapping")
table = tf.contrib.lookup.index_table_from_tensor(mapping, dtype=tf.string)
int_color_name = table.lookup(color_name)
# representing colornames with one hot representation
color_name_onehot = tf.one_hot(int_color_name, depth=len(CHARACTERS) + 1)
# ---------- RNN -------------------
# Each RNN layer will consist of a GRU cell
rnn_layers = [tf.nn.rnn_cell.GRUCell(size) for size in rnn_cell_sizes]
# Construct the layers
multi_rnn_cell = tf.nn.rnn_cell.MultiRNNCell(rnn_layers)
# Runs the RNN model dynamically
# more about it at:
# https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn
outputs, final_state = tf.nn.dynamic_rnn(cell=multi_rnn_cell,
inputs=color_name_onehot,
sequence_length=sequence_length,
dtype=tf.float32)
# Slice to keep only the last cell of the RNN
last_activations = rnn_common.select_last_activations(outputs,
sequence_length)
# ------------ Dense layers -------------------
# Construct dense layers on top of the last cell of the RNN
for units in dnn_layer_sizes:
last_activations = tf.layers.dense(
last_activations, units, activation=tf.nn.relu)
# Final dense layer for prediction
predictions = tf.layers.dense(last_activations, label_dimension)
# ----------- Loss and Optimizer ----------------
loss = None
train_op = None
if mode != tf.estimator.ModeKeys.PREDICT:
loss = tf.losses.mean_squared_error(labels, predictions)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = tf.contrib.layers.optimize_loss(
loss,
tf.contrib.framework.get_global_step(),
optimizer=optimizer,
learning_rate=learning_rate)
return model_fn_lib.EstimatorSpec(mode,
predictions=predictions,
loss=loss,
train_op=train_op)
return model_fn
|
code_samples/RNN/colorbot/colorbot_solutions.ipynb
|
mari-linhares/tensorflow-workshop
|
apache-2.0
|
Edit form information
|
form.myattribute = "myinformation"
|
test/forms/test/test_testsuite_1234.ipynb
|
IS-ENES-Data/submission_forms
|
apache-2.0
|
Save your form
your form will be stored (the form name consists of your last name plut your keyword)
|
form_handler.save_form(sf,"..my comment..") # edit my comment info
|
test/forms/test/test_testsuite_1234.ipynb
|
IS-ENES-Data/submission_forms
|
apache-2.0
|
officially submit your form
the form will be submitted to the DKRZ team to process
you also receive a confirmation email with a reference to your online form for future modifications
|
form_handler.email_form_info(sf)
form_handler.form_submission(sf)
|
test/forms/test/test_testsuite_1234.ipynb
|
IS-ENES-Data/submission_forms
|
apache-2.0
|
TensorFlow 2 início rápido para especialistas
<table class="tfo-notebook-buttons" align="left">
<td><a target="_blank" href="https://www.tensorflow.org/tutorials/quickstart/advanced"><img src="https://www.tensorflow.org/images/tf_logo_32px.png">Ver em TensorFlow.org</a></td>
<td><a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/pt-br/tutorials/quickstart/advanced.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png">Executar no Google Colab</a></td>
<td><a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/pt-br/tutorials/quickstart/advanced.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png">Ver código fontes no GitHub</a></td>
<td><a href="https://storage.googleapis.com/tensorflow_docs/docs-l10n/site/pt-br/tutorials/quickstart/advanced.ipynb"><img src="https://www.tensorflow.org/images/download_logo_32px.png">Baixar notebook</a></td>
</table>
Este é um arquivo de notebook [Google Colaboratory] (https://colab.research.google.com/notebooks/welcome.ipynb). Os programas Python são executados diretamente no navegador - uma ótima maneira de aprender e usar o TensorFlow. Para seguir este tutorial, execute o bloco de anotações no Google Colab clicando no botão na parte superior desta página.
No Colab, conecte-se a uma instância do Python: No canto superior direito da barra de menus, selecione * CONNECT*.
Execute todas as células de código do notebook: Selecione * Runtime * > * Run all *.
Faça o download e instale o pacote TensorFlow 2:
Note: Upgrade pip to install the TensorFlow 2 package. See the install guide for details.
Importe o TensorFlow dentro de seu programa:
|
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Carregue e prepare o [conjunto de dados MNIST] (http://yann.lecun.com/exdb/mnist/).
|
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Adicione uma dimensão de canais
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Use tf.data para agrupar e embaralhar o conjunto de dados:
|
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Crie o modelo tf.keras usando a Keras [API de subclasse de modelo] (https://www.tensorflow.org/guide/keras#model_subclassing):
|
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10, activation='softmax')
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Crie uma instância do modelo
model = MyModel()
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Escolha uma função otimizadora e de perda para treinamento:
|
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Selecione métricas para medir a perda e a precisão do modelo. Essas métricas acumulam os valores ao longo das épocas e, em seguida, imprimem o resultado geral.
|
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Use tf.GradientTape para treinar o modelo:
|
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True é necessário apenas se houver camadas com diferentes
# comportamentos durante o treinamento versus inferência (por exemplo, Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
Teste o modelo:
|
@tf.function
def test_step(images, labels):
# training=True é necessário apenas se houver camadas com diferentes
# comportamentos durante o treinamento versus inferência (por exemplo, Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS = 5
for epoch in range(EPOCHS):
# Reiniciar as métricas no início da próxima época
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch+1,
train_loss.result(),
train_accuracy.result()*100,
test_loss.result(),
test_accuracy.result()*100))
|
site/pt-br/tutorials/quickstart/advanced.ipynb
|
tensorflow/docs-l10n
|
apache-2.0
|
We'll train an autoencoder with these images by flattening them into 784 length vectors. The images from this dataset are already normalized such that the values are between 0 and 1. Let's start by building basically the simplest autoencoder with a single ReLU hidden layer. This layer will be used as the compressed representation. Then, the encoder is the input layer and the hidden layer. The decoder is the hidden layer and the output layer. Since the images are normalized between 0 and 1, we need to use a sigmoid activation on the output layer to get values matching the input.
Exercise: Build the graph for the autoencoder in the cell below. The input images will be flattened into 784 length vectors. The targets are the same as the inputs. And there should be one hidden layer with a ReLU activation and an output layer with a sigmoid activation. The loss should be calculated with the cross-entropy loss, there is a convenient TensorFlow function for this tf.nn.sigmoid_cross_entropy_with_logits (documentation). You should note that tf.nn.sigmoid_cross_entropy_with_logits takes the logits, but to get the reconstructed images you'll need to pass the logits through the sigmoid function.
|
# Size of the encoding layer (the hidden layer)
encoding_dim = 32
image_size = mnist.train.images.shape[1]
inputs_ = tf.placeholder(tf.float32, (None, image_size), name='inputs')
targets_ = tf.placeholder(tf.float32, (None, image_size), name='targets')
# Output of hidden layer
encoded = tf.layers.dense(inputs_, encoding_dim, activation=tf.nn.relu)
# Output layer logits
logits = tf.layers.dense(encoded, image_size, activation=None)
# Sigmoid output from
decoded = tf.nn.sigmoid(logits, name='output')
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=targets_, logits=logits)
cost = tf.reduce_mean(loss)
opt = tf.train.AdamOptimizer(0.001).minimize(cost)
|
autoencoder/Simple_Autoencoder_Solution.ipynb
|
chusine/dlnd
|
mit
|
Spinning Symmetric Rigid Body setup: The body's orientation in inertial frame $\mathcal I$ is described by a 3-1-2 $(\psi,\theta,\phi)$ rotation: the body is rotated by angle $\psi$ about $\mathbf e_3$ (creating intermediate frame $\mathcal A$), by an angle $\theta$ about $\mathbf a_1$ (creating intermediate frame $\mathcal B$), and finally spinning about $\mathbf b_2 \equiv \mathbf c_2$ at a rate $\Omega \equiv \dot\phi$, creating body-fixed frame $\mathcal C$. Note that while the body fixed frame is $\mathcal C$, all computations here are performed in $\mathcal B$ frame components.
${}^\mathcal{B}C^\mathcal{A}$:
|
bCa = rotMat(1,th);bCa
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
$\left[{}^\mathcal{I}\boldsymbol{\omega}^\mathcal{B}\right]_\mathcal{B}$:
|
iWb_B = bCa*Matrix([0,0,psid])+ Matrix([thd,0,0]); iWb_B
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
${}^\mathcal{I}\boldsymbol{\omega}^\mathcal{C} = {}^\mathcal{I}\boldsymbol{\omega}^\mathcal{B} + {}^\mathcal{B}\boldsymbol{\omega}^\mathcal{C}$.
$\left[{}^\mathcal{I}\boldsymbol{\omega}^\mathcal{C}\right]_\mathcal{B}$:
|
iWc_B = iWb_B +Matrix([0,Omega,0]); iWc_B
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
$\left[ \mathbb I_G \right]_\mathcal B$:
|
IG_B = diag(I1,I2,I1);IG_B
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
$\left[{}^\mathcal{I} \mathbf h_G\right]_\mathcal{B}$:
|
hG_B = IG_B*iWc_B; hG_B
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
$\vphantom{\frac{\mathrm{d}}{\mathrm{d}t}}^\mathcal{I}\frac{\mathrm{d}}{\mathrm{d}t} {}^\mathcal{I} \mathbf h_G = \vphantom{\frac{\mathrm{d}}{\mathrm{d}t}}^\mathcal{B}\frac{\mathrm{d}}{\mathrm{d}t} {}^\mathcal{I} \mathbf h_G + {}^\mathcal{I}\boldsymbol{\omega}^\mathcal{B} \times \mathbf h_G$.
$\left[\vphantom{\frac{\mathrm{d}}{\mathrm{d}t}}^\mathcal{I}\frac{\mathrm{d}}{\mathrm{d}t} {}^\mathcal{I} \mathbf h_G\right]_\mathcal{B}$:
|
dhG_B = difftotalmat(hG_B,t,diffmap) + skew(iWb_B)*hG_B; dhG_B
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
Note that the $\mathbf b_2$ component of ${}^\mathcal{I}\boldsymbol{\omega}^\mathcal{B} \times \mathbf h_G$ is zero:
|
skew(iWb_B)*hG_B
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
Define $C \triangleq \Omega + \dot\psi\sin\theta$ and substitute into $\left[\vphantom{\frac{\mathrm{d}}{\mathrm{d}t}}^\mathcal{I}\frac{\mathrm{d}}{\mathrm{d}t} {}^\mathcal{I} \mathbf h_G\right]_\mathcal{B}$:
|
dhG_B_simp = dhG_B.subs(Omega+psid*sin(th),C); dhG_B_simp
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
Assume an external torque generating moment about $G$ of $\mathbf M_G = -M_1\mathbf b_1$:
|
solve([dhG_B_simp[0] + M1,dhG_B_simp[2]],[thdd,psidd])
|
Notebooks/Spinning Symmetric Rigid Body.ipynb
|
dsavransky/MAE4060
|
mit
|
Training
|
batch_size = 100
epochs = 100
samples = []
losses = []
# Only save generator variables
saver = tf.train.Saver(var_list=g_vars)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for e in range(epochs):
for ii in range(mnist.train.num_examples//batch_size):
batch = mnist.train.next_batch(batch_size)
# Get images, reshape and rescale to pass to D
batch_images = batch[0].reshape((batch_size, 784))
batch_images = batch_images*2 - 1
# Sample random noise for G
batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))
# Run optimizers
_ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z})
_ = sess.run(g_train_opt, feed_dict={input_z: batch_z})
# At the end of each epoch, get the losses and print them out
train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images})
train_loss_g = g_loss.eval({input_z: batch_z})
print("Epoch {}/{}...".format(e+1, epochs),
"Discriminator Loss: {:.4f}...".format(train_loss_d),
"Generator Loss: {:.4f}".format(train_loss_g))
# Save losses to view after training
losses.append((train_loss_d, train_loss_g))
# Sample from generator as we're training for viewing afterwards
sample_z = np.random.uniform(-1, 1, size=(16, z_size))
gen_samples = sess.run(
generator(input_z, input_size, reuse=True),
feed_dict={input_z: sample_z})
samples.append(gen_samples)
saver.save(sess, './checkpoints/generator.ckpt')
# Save training generator samples
with open('train_samples.pkl', 'wb') as f:
pkl.dump(samples, f)
|
gan_mnist/Intro_to_GANs_Solution.ipynb
|
dataewan/deep-learning
|
mit
|
Helper function to compute the Bit Error Rate (BER)
|
# helper function to compute the bit error rate
def BER(predictions, labels):
return np.mean(1-np.isclose((predictions > 0.5).astype(float), labels))
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Define Parameters
Here, we consider the simple AWGN channel. We modulate using a constellation with $M = 2^m$ different symbol. To symbol $i$, we assign the binary representation of $i$ as bit pattern.
|
# number of bits assigned to symbol
m = 5
# number of symbols
M = 2**m
EbN0 = 10
# noise standard deviation
sigma_n = np.sqrt((1/2/np.log2(M)) * 10**(-EbN0/10))
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Here, we define the parameters of the neural network and training, generate the validation set and a helping set to show the decision regions
|
# Bit representation of symbols
binaries = torch.from_numpy(np.reshape(np.unpackbits(np.uint8(np.arange(0,2**m))), (-1,8))).float().to(device)
binaries = binaries[:,(8-m):]
# validation set. Training examples are generated on the fly
N_valid = 100000
# number of neurons in hidden layers at receiver
hidden_neurons_RX_1 = 50
hidden_neurons_RX_2 = 128
hidden_neurons_RX = [hidden_neurons_RX_1, hidden_neurons_RX_2]
# Generate Validation Data
y_valid = np.random.randint(M,size=N_valid)
y_valid_onehot = np.eye(M)[y_valid]
y_valid_binary = binaries[y_valid,:].detach().cpu().numpy()
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Define the architecture of the autoencoder, i.e. the neural network
This is the main neural network/Autoencoder with transmitter, channel and receiver. Transmitter and receiver each with ELU activation function. Note that the final layer does not use a softmax function, as this function is already included in the CrossEntropyLoss.
|
class Autoencoder(nn.Module):
def __init__(self, hidden_neurons_RX):
super(Autoencoder, self).__init__()
# Define Transmitter Layer: Linear function, M input neurons (symbols), 2 output neurons (real and imaginary part)
self.fcT = nn.Linear(M, 2)
# Define Receiver Layer: Linear function, 2 input neurons (real and imaginary part), m output neurons (bits)
self.fcR1 = nn.Linear(2,hidden_neurons_RX[0])
self.fcR2 = nn.Linear(hidden_neurons_RX[0], hidden_neurons_RX[1])
self.fcR3 = nn.Linear(hidden_neurons_RX[1], m)
# Non-linearity (used in transmitter and receiver)
self.activation_function = nn.ELU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
# compute output
encoded = self.network_transmitter(x)
# compute normalization factor and normalize channel output
norm_factor = torch.sqrt(torch.mean(torch.mul(encoded,encoded)) * 2 )
modulated = encoded / norm_factor
received = self.channel_model(modulated)
bitprob = self.network_receiver(received)
return bitprob
def network_transmitter(self,batch_labels):
return self.fcT(batch_labels)
def network_receiver(self,inp):
out = self.activation_function(self.fcR1(inp))
out = self.activation_function(self.fcR2(out))
logits = self.sigmoid(self.fcR3(out))
return logits
def channel_model(self,modulated):
# just add noise, nothing else
received = torch.add(modulated, sigma_n*torch.randn(len(modulated),2).to(device))
return received
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Train the NN and evaluate it at the end of each epoch
Here the idea is to vary the batch size during training. In the first iterations, we start with a small batch size to rapidly get to a working solution. The closer we come towards the end of the training we increase the batch size. If keeping the batch size small, it may happen that there are no misclassifications in a small batch and there is no incentive of the training to improve. A larger batch size will most likely contain errors in the batch and hence there will be incentive to keep on training and improving.
Here, the data is generated on the fly inside the graph, by using PyTorch random number generation. As PyTorch does not natively support complex numbers (at least in early versions), we decided to replace the complex number operations in the channel by a simple rotation matrix and treating real and imaginary parts separately.
We use the ELU activation function inside the neural network and employ the Adam optimization algorithm.
Now, carry out the training as such. First initialize the variables and then loop through the training. Here, the epochs are not defined in the classical way, as we do not have a training set per se. We generate new data on the fly and never reuse data. We change the batch size in each epoch.<br>
To get the constellation symbols and the received data, we apply the model after each epoch.
|
model = Autoencoder(hidden_neurons_RX)
model.to(device)
loss_fn = nn.BCELoss()
# Adam Optimizer
optimizer = optim.Adam(model.parameters())
# Training parameters
num_epochs = 150
batches_per_epoch = np.linspace(1, 1000, num=num_epochs).astype(int)
# Vary batch size during training
batch_size_per_epoch = np.linspace(200,5000,num=num_epochs)
learning_rate_per_epoch = np.linspace(0.001, 0.00001, num=num_epochs)
validation_BERs = np.zeros(num_epochs)
validation_received = []
constellations = []
print('Start Training')
for epoch in range(num_epochs):
batch_labels = torch.empty(int(batch_size_per_epoch[epoch]), device=device)
batch_labels_binary = torch.zeros(int(batch_size_per_epoch[epoch]), m, device=device)
for step in range(batches_per_epoch[epoch]):
# Generate training data: In most cases, you have a dataset and do not generate a training dataset during training loop
# sample new mini-batch directory on the GPU (if available)
batch_labels.random_(M)
batch_labels_onehot = torch.zeros(int(batch_size_per_epoch[epoch]), M, device=device)
batch_labels_onehot[range(batch_labels_onehot.shape[0]), batch_labels.long()]=1
batch_labels_binary[range(batch_labels_onehot.shape[0]), :] = binaries[batch_labels.long(),:]
# Propagate (training) data through the net
NN_output = model(batch_labels_onehot)
# compute loss
loss = loss_fn(NN_output, batch_labels_binary)
# compute gradients
loss.backward()
# Adapt weights
optimizer.step()
# reset gradients
optimizer.zero_grad()
optimizer.param_groups[0]['lr'] = learning_rate_per_epoch[epoch]
# compute validation BER
out_valid = model(torch.Tensor(y_valid_onehot).to(device))
validation_BERs[epoch] = BER(out_valid.detach().cpu().numpy(), y_valid_binary)
print('Validation BER after epoch %d: %f (loss %1.8f)' % (epoch, validation_BERs[epoch], loss.detach().cpu().numpy()))
# calculate and store constellation
encoded = model.network_transmitter(torch.eye(M).to(device))
norm_factor = torch.sqrt(torch.mean(torch.mul(encoded,encoded)) * 2 )
modulated = encoded / norm_factor
constellations.append(modulated.detach().cpu().numpy())
print('Training finished')
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Evaluate results
Plt decision region and scatter plot of the validation set. Note that the validation set is only used for computing SERs and plotting, there is no feedback towards the training!
|
cmap = matplotlib.cm.tab20
base = plt.cm.get_cmap(cmap)
color_list = base.colors
new_color_list = [[t/2 + 0.5 for t in color_list[k]] for k in range(len(color_list))]
# find minimum SER from validation set
min_BER_iter = np.argmin(validation_BERs)
plt.figure(figsize=(10,8))
font = {'size' : 14}
plt.rc('font', **font)
plt.rc('text', usetex=True)
bin_labels = [np.binary_repr(j).zfill(m) for j in range(2**m)]
plt.scatter(constellations[min_BER_iter][:,0], constellations[min_BER_iter][:,1], c=range(M), cmap='tab20',s=50)
for i, txt in enumerate(bin_labels):
plt.annotate(txt, xy=(constellations[min_BER_iter][i,0], constellations[min_BER_iter][i,1]), xycoords='data', \
xytext=(0, 3), textcoords='offset points', \
ha='center', va='bottom')
plt.axis('scaled')
plt.xlabel(r'$\Re\{r\}$',fontsize=16)
plt.ylabel(r'$\Im\{r\}$',fontsize=16)
plt.xlim((-1.7, +1.7))
plt.ylim((-1.7, +1.7))
plt.grid(which='both')
plt.title('Constellation with Bit Mapping',fontsize=18)
plt.savefig('learning_AWGN_BitAE_EbN0%1.1f_M%d.pdf' % (EbN0,M),bbox_inches='tight')
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Generate animation and save as a gif. (Evaluate results III)
|
%matplotlib notebook
%matplotlib notebook
# Generate animation
from matplotlib import animation, rc
from matplotlib.animation import PillowWriter # Disable if you don't want to save any GIFs.
font = {'size' : 18}
plt.rc('font', **font)
fig = plt.figure(figsize=(8,6))
ax1 = fig.add_subplot(1,1,1)
ax1.axis('scaled')
written = False
def animate(i):
ax1.clear()
ax1.scatter(constellations[i][:,0], constellations[i][:,1], c=range(M), cmap='tab20',s=50)
for j, txt in enumerate(bin_labels):
ax1.annotate(txt, xy=(constellations[i][j,0], constellations[i][j,1]), xycoords='data', \
xytext=(0, 3), textcoords='offset points', \
ha='center', va='bottom', fontsize=12)
ax1.set_xlim(( -1.7, +1.7))
ax1.set_ylim(( -1.7, +1.7))
ax1.set_title('Constellation', fontsize=18)
ax1.set_xlabel(r'$\Re\{r\}$',fontsize=16)
ax1.set_ylabel(r'$\Im\{r\}$',fontsize=16)
anim = animation.FuncAnimation(fig, animate, frames=min_BER_iter+1, interval=200, blit=False)
fig.show()
anim.save('learning_AWGN_BitAE_EbN0%1.1f_M%d.gif' % (EbN0,M), writer=PillowWriter(fps=5))
|
mloc/ch4_Autoencoders/BinaryAutoencoder_AWGN.ipynb
|
kit-cel/wt
|
gpl-2.0
|
Step 3: Complete application code in application/main.py
We can set up our server with python using Flask. Below, we've already built out most of the application for you.
The @app.route() decorator defines a function to handle web reqests. Let's say our website is www.example.com. With how our @app.route("/") function is defined, our sever will render our <a href="application/templates/index.html">index.html</a> file when users go to www.example.com/ (which is the default route for a website).
So, when a user pings our server with www.example.com/predict, they would use @app.route("/predict", methods=["POST"]) to make a prediction. The data that gets sent over the internet isn't a dictionary, but a string like below:
name1=value1&name2=value2 where name corresponds to the name on the input tag of our html form, and the value is what the user entered. Thankfully, Flask makes it easy to transform this string into a dictionary with request.form.to_dict(), but we still need to transform the data into a format our model expects. We've done this with the gender2str and the plurality2str utility functions.
Ok! Let's set up a webserver to take in the form inputs, process them into features, and send these features to our model on Cloud AI Platform to generate predictions to serve to back to users.
Fill in the TODO comments in <a href="application/main.py">application/main.py</a>. Give it a go first and review the solutions folder if you get stuck.
Note: AppEngine test configurations have already been set for you in the file <a href="application/app.yaml">application/app.yaml</a>. Review app.yaml documentation for additional configuration options.
Step 4: Deploy application
So how do we know that it works? We'll have to deploy our website and find out! Notebooks aren't made for website deployment, so we'll move our operation to the Google Cloud Shell.
By default, the shell doesn't have Flask installed, so copy over the following command to install it.
python3 -m pip install --user Flask==0.12.1
Next, we'll need to copy our web app to the Cloud Shell. We can use Google Cloud Storage as an inbetween.
|
%%bash
gsutil -m rm -r gs://$BUCKET/baby_app
gsutil -m cp -r application/ gs://$BUCKET/baby_app
|
courses/machine_learning/deepdive2/structured/labs/6_serving_babyweight.ipynb
|
GoogleCloudPlatform/training-data-analyst
|
apache-2.0
|
Run the below cell, and copy the output into the Google Cloud Shell
|
%%bash
echo rm -r baby_app/
echo mkdir baby_app/
echo gsutil cp -r gs://$BUCKET/baby_app ./
echo python3 baby_app/main.py
|
courses/machine_learning/deepdive2/structured/labs/6_serving_babyweight.ipynb
|
GoogleCloudPlatform/training-data-analyst
|
apache-2.0
|
Custom layers
<table class="tfo-notebook-buttons" align="left"><td>
<a target="_blank" href="https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb">
<img src="https://www.tensorflow.org/images/colab_logo_32px.png" />Run in Google Colab</a>
</td><td>
<a target="_blank" href="https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />View source on GitHub</a></td></table>
We recommend using tf.keras as a high-level API for building neural networks. That said, most TensorFlow APIs are usable with eager execution.
|
import tensorflow as tf
tfe = tf.contrib.eager
tf.enable_eager_execution()
|
tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb
|
manipopopo/tensorflow
|
apache-2.0
|
Layers: common sets of useful operations
Most of the time when writing code for machine learning models you want to operate at a higher level of abstraction than individual operations and manipulation of individual variables.
Many machine learning models are expressible as the composition and stacking of relatively simple layers, and TensorFlow provides both a set of many common layers as a well as easy ways for you to write your own application-specific layers either from scratch or as the composition of existing layers.
TensorFlow includes the full Keras API in the tf.keras package, and the Keras layers are very useful when building your own models.
|
# In the tf.keras.layers package, layers are objects. To construct a layer,
# simply construct the object. Most layers take as a first argument the number
# of output dimensions / channels.
layer = tf.keras.layers.Dense(100)
# The number of input dimensions is often unnecessary, as it can be inferred
# the first time the layer is used, but it can be provided if you want to
# specify it manually, which is useful in some complex models.
layer = tf.keras.layers.Dense(10, input_shape=(None, 5))
|
tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb
|
manipopopo/tensorflow
|
apache-2.0
|
The full list of pre-existing layers can be seen in the documentation. It includes Dense (a fully-connected layer),
Conv2D, LSTM, BatchNormalization, Dropout, and many others.
|
# To use a layer, simply call it.
layer(tf.zeros([10, 5]))
# Layers have many useful methods. For example, you can inspect all variables
# in a layer by calling layer.variables. In this case a fully-connected layer
# will have variables for weights and biases.
layer.variables
# The variables are also accessible through nice accessors
layer.kernel, layer.bias
|
tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb
|
manipopopo/tensorflow
|
apache-2.0
|
Implementing custom layers
The best way to implement your own layer is extending the tf.keras.Layer class and implementing:
* __init__ , where you can do all input-independent initialization
* build, where you know the shapes of the input tensors and can do the rest of the initialization
* call, where you do the forward computation
Note that you don't have to wait until build is called to create your variables, you can also create them in __init__. However, the advantage of creating them in build is that it enables late variable creation based on the shape of the inputs the layer will operate on. On the other hand, creating variables in __init__ would mean that shapes required to create the variables will need to be explicitly specified.
|
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
self.kernel = self.add_variable("kernel",
shape=[input_shape[-1].value,
self.num_outputs])
def call(self, input):
return tf.matmul(input, self.kernel)
layer = MyDenseLayer(10)
print(layer(tf.zeros([10, 5])))
print(layer.variables)
|
tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb
|
manipopopo/tensorflow
|
apache-2.0
|
Note that you don't have to wait until build is called to create your variables, you can also create them in __init__.
Overall code is easier to read and maintain if it uses standard layers whenever possible, as other readers will be familiar with the behavior of standard layers. If you want to use a layer which is not present in tf.keras.layers or tf.contrib.layers, consider filing a github issue or, even better, sending us a pull request!
Models: composing layers
Many interesting layer-like things in machine learning models are implemented by composing existing layers. For example, each residual block in a resnet is a composition of convolutions, batch normalizations, and a shortcut.
The main class used when creating a layer-like thing which contains other layers is tf.keras.Model. Implementing one is done by inheriting from tf.keras.Model.
|
class ResnetIdentityBlock(tf.keras.Model):
def __init__(self, kernel_size, filters):
super(ResnetIdentityBlock, self).__init__(name='')
filters1, filters2, filters3 = filters
self.conv2a = tf.keras.layers.Conv2D(filters1, (1, 1))
self.bn2a = tf.keras.layers.BatchNormalization()
self.conv2b = tf.keras.layers.Conv2D(filters2, kernel_size, padding='same')
self.bn2b = tf.keras.layers.BatchNormalization()
self.conv2c = tf.keras.layers.Conv2D(filters3, (1, 1))
self.bn2c = tf.keras.layers.BatchNormalization()
def call(self, input_tensor, training=False):
x = self.conv2a(input_tensor)
x = self.bn2a(x, training=training)
x = tf.nn.relu(x)
x = self.conv2b(x)
x = self.bn2b(x, training=training)
x = tf.nn.relu(x)
x = self.conv2c(x)
x = self.bn2c(x, training=training)
x += input_tensor
return tf.nn.relu(x)
block = ResnetIdentityBlock(1, [1, 2, 3])
print(block(tf.zeros([1, 2, 3, 3])))
print([x.name for x in block.variables])
|
tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb
|
manipopopo/tensorflow
|
apache-2.0
|
Much of the time, however, models which compose many layers simply call one layer after the other. This can be done in very little code using tf.keras.Sequential
|
my_seq = tf.keras.Sequential([tf.keras.layers.Conv2D(1, (1, 1)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(2, 1,
padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(3, (1, 1)),
tf.keras.layers.BatchNormalization()])
my_seq(tf.zeros([1, 2, 3, 3]))
|
tensorflow/contrib/eager/python/examples/notebooks/custom_layers.ipynb
|
manipopopo/tensorflow
|
apache-2.0
|
retrieve the NBAR and PQ for the spatiotemporal range of interest
|
#Define which pixel quality artefacts you want removed from the results
mask_components = {'cloud_acca':'no_cloud',
'cloud_shadow_acca' :'no_cloud_shadow',
'cloud_shadow_fmask' : 'no_cloud_shadow',
'cloud_fmask' :'no_cloud',
'blue_saturated' : False,
'green_saturated' : False,
'red_saturated' : False,
'nir_saturated' : False,
'swir1_saturated' : False,
'swir2_saturated' : False,
'contiguous':True}
#Retrieve the NBAR and PQ data for sensor n
sensor_clean = {}
for sensor in sensors:
#Load the NBAR and corresponding PQ
sensor_nbar = dc.load(product= sensor+'_nbar_albers', group_by='solar_day', measurements = bands_of_interest, **query)
sensor_pq = dc.load(product= sensor+'_pq_albers', group_by='solar_day', **query)
#grab the projection info before masking/sorting
crs = sensor_nbar.crs
crswkt = sensor_nbar.crs.wkt
affine = sensor_nbar.affine
#This line is to make sure there's PQ to go with the NBAR
sensor_nbar = sensor_nbar.sel(time = sensor_pq.time)
#Apply the PQ masks to the NBAR
cloud_free = masking.make_mask(sensor_pq, **mask_components)
good_data = cloud_free.pixelquality.loc[start_of_epoch:end_of_epoch]
sensor_nbar = sensor_nbar.where(good_data)
sensor_clean[sensor] = sensor_nbar
#Conctanate measurements from the different sensors together
nbar_clean = xr.concat(sensor_clean.values(), dim='time')
time_sorted = nbar_clean.time.argsort()
nbar_clean = nbar_clean.isel(time=time_sorted)
nbar_clean.attrs['crs'] = crs
nbar_clean.attrs['affine'] = affine
#calculate the normalised difference vegetation index (NDVI)
all_ndvi_sorted = ((nbar_clean.nir - nbar_clean.red)/(nbar_clean.nir + nbar_clean.red))
print('The number of time slices at this location is '+ str(nbar_clean.red.shape[0]))
|
notebooks/07_hovmoller_space_time_visualisation.ipynb
|
data-cube/agdc-v2-examples
|
apache-2.0
|
Plotting an image, select a location for extracting the hovmoller plot
The interactive widget allows you to select a location (x, y coordinates), the plot will then show all of the time series that fall into the same x coordinate.
|
#select time slice of interest - this is trial and error until you get a decent image
time_slice_i = 481
rgb = nbar_clean.isel(time =time_slice_i).to_array(dim='color').sel(color=['swir1', 'nir', 'green']).transpose('y', 'x', 'color')
#rgb = nbar_clean.isel(time =time_slice).to_array(dim='color').sel(color=['swir1', 'nir', 'green']).transpose('y', 'x', 'color')
fake_saturation = 4500
clipped_visible = rgb.where(rgb<fake_saturation).fillna(fake_saturation)
max_val = clipped_visible.max(['y', 'x'])
scaled = (clipped_visible / max_val)
#Click on this image to chose the location for time series extraction
w = widgets.HTML("Event information appears here when you click on the figure")
def callback(event):
global x, y
x, y = int(event.xdata + 0.5), int(event.ydata + 0.5)
w.value = 'X: {}, Y: {}'.format(x,y)
fig = plt.figure(figsize =(12,6))
plt.imshow(scaled, interpolation = 'nearest',
extent=[scaled.coords['x'].min(), scaled.coords['x'].max(),
scaled.coords['y'].min(), scaled.coords['y'].max()])
fig.canvas.mpl_connect('button_press_event', callback)
date_ = nbar_clean.time[time_slice_i]
plt.title(date_.astype('datetime64[D]'))
plt.show()
display(w)
#this converts the map x coordinate into image x coordinates
image_coords = ~affine * (x, y)
imagex = int(image_coords[0])
imagey = int(image_coords[1])
#This sets up the NDVI colour ramp and corresponding thresholds
ndvi_cmap = mpl.colors.ListedColormap(['blue', '#ffcc66','#ffffcc' , '#ccff66' , '#2eb82e', '#009933' , '#006600'])
ndvi_bounds = [-1, 0, 0.1, 0.25, 0.35, 0.5, 0.8, 1]
ndvi_norm = mpl.colors.BoundaryNorm(ndvi_bounds, ndvi_cmap.N)
#This cell shows the x transect that you've chosen in the context of an NDVI image with a suitable colour ramp
fig = plt.figure(figsize=(11.69,4))
plt.plot([0, all_ndvi_sorted.shape[2]], [imagey,imagey], 'r')
plt.imshow(all_ndvi_sorted.isel(time = time_slice_i), cmap = ndvi_cmap, norm = ndvi_norm)
#Hovmoller plot for the x transect
fig = plt.figure(figsize=(11.69,7))
all_ndvi_sorted.isel(#x=[xdim],
y=[imagey]
).plot(norm= ndvi_norm, cmap = ndvi_cmap, yincrease = False)
|
notebooks/07_hovmoller_space_time_visualisation.ipynb
|
data-cube/agdc-v2-examples
|
apache-2.0
|
Fun with MyPETS
Table of Contents
Motivation
Introduction
Problem Statement
Import packages
History of Open Source Movement
How to learn STEM (or MyPETS)
References
Contributors
Appendix
Motivation <a class="anchor" id="hid_why"></a>
Current Choice
<img src=http://www.cctechlimited.com/pics/office1.jpg>
A New Option
The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, machine learning and much more.
Useful for many tasks
Programming
Blogging
Learning
Research
Documenting work
Collaborating
Communicating
Publishing results
or even
Doing homework as a student
|
HTML("<img src=../images/office-suite.jpg>")
|
learn_stem/fun_with_mypets.ipynb
|
wgong/open_source_learning
|
apache-2.0
|
Introduction <a class="anchor" id="hid_intro"></a>
Problem Statement <a class="anchor" id="hid_problem"></a>
Import packages <a class="anchor" id="hid_pkg"></a>
|
# math function
import math
# create np array
import numpy as np
# pandas for data analysis
import pandas as pd
# plotting
import matplotlib.pyplot as plt
%matplotlib inline
# symbolic math
import sympy as sy
# html5
from IPython.display import HTML, SVG, YouTubeVideo
# widgets
from collections import OrderedDict
from IPython.display import display, clear_output
from ipywidgets import Dropdown
# csv file
import csv
|
learn_stem/fun_with_mypets.ipynb
|
wgong/open_source_learning
|
apache-2.0
|
History of Open Source Movement <a class="anchor" id="hid_open_src"></a>
|
with open('../dataset/open_src_move_v2_1.csv') as csvfile:
reader = csv.DictReader(csvfile)
table_str = '<table>'
table_row = """
<tr><td>{year}</td>
<td><img src={picture}></td>
<td><table>
<tr><td>{person}</td></tr>
<tr><td><a target=new href={subject_url}>{subject}</a></td></tr>
<tr><td>{history}</td></tr>
</table>
</td>
</tr>
"""
for row in reader:
table_str = table_str + table_row.format(year=row['Year'], \
subject=row['Subject'],\
subject_url=row['SubjectURL'],\
person=row['Person'],\
picture=row['Picture'],\
history=row['History'])
table_str = table_str + '</table>'
HTML(table_str)
|
learn_stem/fun_with_mypets.ipynb
|
wgong/open_source_learning
|
apache-2.0
|
How to learn STEM <a class="anchor" id="hid_stem"></a>
|
HTML("Wen calls it -<br><br><br> <font color=red size=+4>M</font><font color=purple>y</font><font color=blue size=+3>P</font><font color=blue size=+4>E</font><font color=green size=+4>T</font><font color=magenta size=+3>S</font><br>")
|
learn_stem/fun_with_mypets.ipynb
|
wgong/open_source_learning
|
apache-2.0
|
The MUV dataset is a challenging benchmark in molecular design that consists of 17 different "targets" where there are only a few "active" compounds per target. The goal of working with this dataset is to make a machine learnign model which achieves high accuracy on held-out compounds at predicting activity. To get started, let's download the MUV dataset for us to play with.
|
import os
import deepchem as dc
current_dir = os.path.dirname(os.path.realpath("__file__"))
dataset_file = "medium_muv.csv.gz"
full_dataset_file = "muv.csv.gz"
# We use a small version of MUV to make online rendering of notebooks easy. Replace with full_dataset_file
# In order to run the full version of this notebook
dc.utils.download_url("https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/%s" % dataset_file,
current_dir)
dataset = dc.utils.save.load_from_disk(dataset_file)
print("Columns of dataset: %s" % str(dataset.columns.values))
print("Number of examples in dataset: %s" % str(dataset.shape[0]))
|
examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb
|
miaecle/deepchem
|
mit
|
Now, let's visualize some compounds from our dataset
|
from rdkit import Chem
from rdkit.Chem import Draw
from itertools import islice
from IPython.display import Image, display, HTML
def display_images(filenames):
"""Helper to pretty-print images."""
for filename in filenames:
display(Image(filename))
def mols_to_pngs(mols, basename="test"):
"""Helper to write RDKit mols to png files."""
filenames = []
for i, mol in enumerate(mols):
filename = "MUV_%s%d.png" % (basename, i)
Draw.MolToFile(mol, filename)
filenames.append(filename)
return filenames
num_to_display = 12
molecules = []
for _, data in islice(dataset.iterrows(), num_to_display):
molecules.append(Chem.MolFromSmiles(data["smiles"]))
display_images(mols_to_pngs(molecules))
|
examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb
|
miaecle/deepchem
|
mit
|
There are 17 datasets total in MUV as we mentioned previously. We're going to train a multitask model that attempts to build a joint model to predict activity across all 17 datasets simultaneously. There's some evidence [2] that multitask training creates more robust models.
As fair warning, from my experience, this effect can be quite fragile. Nonetheless, it's a tool worth trying given how easy DeepChem makes it to build these models. To get started towards building our actual model, let's first featurize our data.
|
MUV_tasks = ['MUV-692', 'MUV-689', 'MUV-846', 'MUV-859', 'MUV-644',
'MUV-548', 'MUV-852', 'MUV-600', 'MUV-810', 'MUV-712',
'MUV-737', 'MUV-858', 'MUV-713', 'MUV-733', 'MUV-652',
'MUV-466', 'MUV-832']
featurizer = dc.feat.CircularFingerprint(size=1024)
loader = dc.data.CSVLoader(
tasks=MUV_tasks, smiles_field="smiles",
featurizer=featurizer)
dataset = loader.featurize(dataset_file)
|
examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb
|
miaecle/deepchem
|
mit
|
We'll now want to split our dataset into training, validation, and test sets. We're going to do a simple random split using dc.splits.RandomSplitter. It's worth noting that this will provide overestimates of real generalizability! For better real world estimates of prospective performance, you'll want to use a harder splitter.
|
splitter = dc.splits.RandomSplitter(dataset_file)
train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
dataset)
#NOTE THE RENAMING:
valid_dataset, test_dataset = test_dataset, valid_dataset
|
examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb
|
miaecle/deepchem
|
mit
|
Let's now get started building some models! We'll do some simple hyperparameter searching to build a robust model.
|
import numpy as np
import numpy.random
params_dict = {"activation": ["relu"],
"momentum": [.9],
"batch_size": [50],
"init": ["glorot_uniform"],
"data_shape": [train_dataset.get_data_shape()],
"learning_rate": [1e-3],
"decay": [1e-6],
"nb_epoch": [1],
"nesterov": [False],
"dropouts": [(.5,)],
"nb_layers": [1],
"batchnorm": [False],
"layer_sizes": [(1000,)],
"weight_init_stddevs": [(.1,)],
"bias_init_consts": [(1.,)],
"penalty": [0.],
}
n_features = train_dataset.get_data_shape()[0]
def model_builder(model_params, model_dir):
model = dc.models.MultitaskClassifier(
len(MUV_tasks), n_features, **model_params)
return model
metric = dc.metrics.Metric(dc.metrics.roc_auc_score, np.mean)
optimizer = dc.hyper.HyperparamOpt(model_builder)
best_dnn, best_hyperparams, all_results = optimizer.hyperparam_search(
params_dict, train_dataset, valid_dataset, [], metric)
|
examples/tutorials/05_Putting_Multitask_Learning_to_Work.ipynb
|
miaecle/deepchem
|
mit
|
Hodrick-Prescott Filter
The Hodrick-Prescott filter separates a time-series $y_t$ into a trend $\tau_t$ and a cyclical component $\zeta_t$
$$y_t = \tau_t + \zeta_t$$
The components are determined by minimizing the following quadratic loss function
$$\min_{\{ \tau_{t}\} }\sum_{t}^{T}\zeta_{t}^{2}+\lambda\sum_{t=1}^{T}\left[\left(\tau_{t}-\tau_{t-1}\right)-\left(\tau_{t-1}-\tau_{t-2}\right)\right]^{2}$$
|
gdp_cycle, gdp_trend = sm.tsa.filters.hpfilter(dta.realgdp)
gdp_decomp = dta[['realgdp']]
gdp_decomp["cycle"] = gdp_cycle
gdp_decomp["trend"] = gdp_trend
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
gdp_decomp[["realgdp", "trend"]]["2000-03-31":].plot(ax=ax, fontsize=16);
legend = ax.get_legend()
legend.prop.set_size(20);
|
examples/notebooks/tsa_filters.ipynb
|
phobson/statsmodels
|
bsd-3-clause
|
Baxter-King approximate band-pass filter: Inflation and Unemployment
Explore the hypothesis that inflation and unemployment are counter-cyclical.
The Baxter-King filter is intended to explictly deal with the periodicty of the business cycle. By applying their band-pass filter to a series, they produce a new series that does not contain fluctuations at higher or lower than those of the business cycle. Specifically, the BK filter takes the form of a symmetric moving average
$$y_{t}^{*}=\sum_{k=-K}^{k=K}a_ky_{t-k}$$
where $a_{-k}=a_k$ and $\sum_{k=-k}^{K}a_k=0$ to eliminate any trend in the series and render it stationary if the series is I(1) or I(2).
For completeness, the filter weights are determined as follows
$$a_{j} = B_{j}+\theta\text{ for }j=0,\pm1,\pm2,\dots,\pm K$$
$$B_{0} = \frac{\left(\omega_{2}-\omega_{1}\right)}{\pi}$$
$$B_{j} = \frac{1}{\pi j}\left(\sin\left(\omega_{2}j\right)-\sin\left(\omega_{1}j\right)\right)\text{ for }j=0,\pm1,\pm2,\dots,\pm K$$
where $\theta$ is a normalizing constant such that the weights sum to zero.
$$\theta=\frac{-\sum_{j=-K^{K}b_{j}}}{2K+1}$$
$$\omega_{1}=\frac{2\pi}{P_{H}}$$
$$\omega_{2}=\frac{2\pi}{P_{L}}$$
$P_L$ and $P_H$ are the periodicity of the low and high cut-off frequencies. Following Burns and Mitchell's work on US business cycles which suggests cycles last from 1.5 to 8 years, we use $P_L=6$ and $P_H=32$ by default.
|
bk_cycles = sm.tsa.filters.bkfilter(dta[["infl","unemp"]])
|
examples/notebooks/tsa_filters.ipynb
|
phobson/statsmodels
|
bsd-3-clause
|
We lose K observations on both ends. It is suggested to use K=12 for quarterly data.
|
fig = plt.figure(figsize=(12,10))
ax = fig.add_subplot(111)
bk_cycles.plot(ax=ax, style=['r--', 'b-']);
|
examples/notebooks/tsa_filters.ipynb
|
phobson/statsmodels
|
bsd-3-clause
|
Christiano-Fitzgerald approximate band-pass filter: Inflation and Unemployment
The Christiano-Fitzgerald filter is a generalization of BK and can thus also be seen as weighted moving average. However, the CF filter is asymmetric about $t$ as well as using the entire series. The implementation of their filter involves the
calculations of the weights in
$$y_{t}^{*}=B_{0}y_{t}+B_{1}y_{t+1}+\dots+B_{T-1-t}y_{T-1}+\tilde B_{T-t}y_{T}+B_{1}y_{t-1}+\dots+B_{t-2}y_{2}+\tilde B_{t-1}y_{1}$$
for $t=3,4,...,T-2$, where
$$B_{j} = \frac{\sin(jb)-\sin(ja)}{\pi j},j\geq1$$
$$B_{0} = \frac{b-a}{\pi},a=\frac{2\pi}{P_{u}},b=\frac{2\pi}{P_{L}}$$
$\tilde B_{T-t}$ and $\tilde B_{t-1}$ are linear functions of the $B_{j}$'s, and the values for $t=1,2,T-1,$ and $T$ are also calculated in much the same way. $P_{U}$ and $P_{L}$ are as described above with the same interpretation.
The CF filter is appropriate for series that may follow a random walk.
|
print(sm.tsa.stattools.adfuller(dta['unemp'])[:3])
print(sm.tsa.stattools.adfuller(dta['infl'])[:3])
cf_cycles, cf_trend = sm.tsa.filters.cffilter(dta[["infl","unemp"]])
print(cf_cycles.head(10))
fig = plt.figure(figsize=(14,10))
ax = fig.add_subplot(111)
cf_cycles.plot(ax=ax, style=['r--','b-']);
|
examples/notebooks/tsa_filters.ipynb
|
phobson/statsmodels
|
bsd-3-clause
|
Check your work
|
genos_new == [0, 2, 1, 1, 2]
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
Part 2:
Sometimes there are errors and the genotype cannot be determined. Adapt your code from above to deal with this problem (in this example missing data is assigned NA for "Not Available").
|
genos_w_missing = ['AA', 'NA', 'GG', 'AG', 'AG', 'GG', 'NA']
genos_w_missing_new = []
# The missing data should not be converted to a number, but remain 'NA' in the new list
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
Check your work
|
genos_w_missing_new == [0, 'NA', 2, 1, 1, 2, 'NA']
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
Main Practice
Setup: Open a terminal and run the following commands:
```bash
create a new directory
mkdir python-intro
cd python-intro
download data file, and ipython notebook
curl -O https://raw.githubusercontent.com/gastonstat/stat259/gh-pages/tutorials/genos.txt
curl -O https://raw.githubusercontent.com/gastonstat/stat259/gh-pages/tutorials/genotypes.ipynb
```
Data File: The raw data for this practice is in the file genos.txt which contains one column of genotypes (one genotype per row). Each genotype consists of two characters: e.g. 'AA' or 'GG'. In addition, there are some rows that contain missing values denoted as 'NA'.
I. Read in the data and store the contents in a list called genos.
II. Find out how what are the different (i.e. unique) values are in genos.
III. Calculate the number of occurrences of each genotype, and store the results in a dictionary called geno_counts. Use the following 3 approaches:
1. Use a for loop to count the genotypes (store the result in a dictionary)
2. Get the same counts but this time using the count() method
3. Another alternative is to use Counter from Collections
IV. Once you've counted the genotypes, make a function get_proportions() that takes geno_counts and returns a dictionary with relative frequencies (i.e. proportions) of genotypes. Also, test your function with the provided assertion.
V. Convert the string values in genos into integers ('NA' remains as 'NA') and put them in a new list called numeric_genos:
- 'AA' = 0
- 'AG' = 1
- 'GG' = 2
- 'NA' = 'NA'
VI. Write the data in numeric_genos to a text file called genos_int.txt
VII. Finally, convert your notebook to html (and open it) by running these commands from the shell:
shell
ipython nbconvert genotypes.ipynb
open genotypes.html
|
# things to be imported
from __future__ import division # if you use python 2.?
from collections import Counter
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
I. Reading a text file
Some refs about Reading Files:
File Operations: https://github.com/dlab-berkeley/python-fundamentals/blob/master/cheat-sheets/12-Files.ipynb
Reading Text Files: http://www.jarrodmillman.com/rcsds/lectures/reading_text_files.html
|
# open 'genos.txt' and store values in "genos"
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
II. Unique Genotypes
|
# Find the unique values in genos
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
III. Counting Genotypes
a) Using a for loop
|
# For loop to count occurrences of AA, AG, GG, NA
# (store results in dictionary "geno_counts")
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
b) Using count method
|
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
c) Using Counter from collections
|
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
IV. Function to Calculate Proportions
|
# Write a function "get_proportions()"
# Parameters: geno_counts (dictionary)
# Returns: dictionary of proportions
# YOUR CODE
# apply your function:
# get_proportions(geno_counts)
# test for function get_proportions()
def test_get_proportions():
# We make a fake dictionary
input_val = {'AA': 2, 'AB': 4, 'BB': 14}
expected_result = {'AA': 0.1, 'AB': 0.2, 'BB': 0.7}
# run function
res = get_proportions(input_val)
assert res == expected_result
# run the test and see what happens:
# test_get_proportions()
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
V. Converting to numeric genotypes
|
# convert genotypes: AA = 0, AG = 1, GG = 2, NA = NA
# (create a list called "numeric_genos")
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
VI. Write Numeric Genotypes to a text file
|
# write values in "numeric_genos" to a file "genos_int.txt"
# YOUR CODE
|
tutorials/genotypes.ipynb
|
gastonstat/stat259
|
mit
|
Now that we have our design, let's generate some synthetic data. We will generate AR1 noise to add to the data; this is not a perfect model of the autocorrelation in fMRI, but it's at least a start towards realistic noise.
|
from statsmodels.tsa.arima_process import arma_generate_sample
ar1_noise=arma_generate_sample([1,0.3],[1,0.],len(regressor))
beta=4
y=regressor.T*beta + ar1_noise
print y.shape
plt.plot(y.T)
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's fit the general linear model to these data. We will ignore serial autocorrelation for now.
|
X=numpy.vstack((regressor.T,numpy.ones(y.shape))).T
plt.imshow(X,interpolation='nearest',cmap='gray')
plt.axis('auto')
beta_hat=numpy.linalg.inv(X.T.dot(X)).dot(X.T).dot(y.T)
y_est=X.dot(beta_hat)
plt.plot(y.T,color='blue')
plt.plot(y_est,color='red',linewidth=2)
print X.shape
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's make a function to repeatedly generate data and fit the model.
|
def efficiency_older(X,c=None):
if not c==None:
c=numpy.ones((X.shape[1]))
else:
c=numpy.array(c)
return 1./c.dot(numpy.linalg.inv(X.T.dot(X))).dot(c)
def efficiency(X,c=None):
""" remove the intercept"""
if not c==None:
c=numpy.ones((X.shape[1]))
else:
c=numpy.array(c)
return 1./numpy.trace((numpy.linalg.inv(X[:,:-1].T.dot(X[:,:-1]))))
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's write a simulation that creates datasets with varying levels of blockiness, runs the previous function 1000 times for each level, and plots mean efficiency. Note that we don't actually need to run it 1000 times for blockiness=1, since that design is exactly the same each time.
|
nruns=100
blockiness_vals=numpy.arange(0,1.1,0.1)
meaneff_blockiness=numpy.zeros(len(blockiness_vals))
for b in range(len(blockiness_vals)):
eff=numpy.zeros(nruns)
for i in range(nruns):
d_sim,design_sim=create_design_singlecondition(blockiness=blockiness_vals[b])
regressor_sim,_=compute_regressor(design_sim,'spm',numpy.arange(0,len(d_sim)))
X=numpy.vstack((regressor_sim.T,numpy.ones(y.shape))).T
eff[i]=efficiency(X,c=[1,0])
meaneff_blockiness[b]=numpy.mean(eff)
plt.plot(blockiness_vals,meaneff_blockiness)
plt.xlabel('blockiness')
plt.ylabel('efficiency')
X.shape
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's do a similar simulation looking at the effects of varying block length between 10 seconds and 120 seconds (in steps of 10). since blockiness is 1.0 here, we only need one run per block length.
|
blocklenvals=numpy.arange(10,120,1)
meaneff_blocklen=numpy.zeros(len(blocklenvals))
sims=[]
for b in range(len(blocklenvals)):
d_sim,design_sim=create_design_singlecondition(blocklength=blocklenvals[b],blockiness=1.)
regressor_sim,_=compute_regressor(design_sim,'spm',numpy.arange(0,len(d_sim)))
X=numpy.vstack((regressor_sim.T,numpy.ones(y.shape))).T
sims.append(numpy.mean(regressor_sim))
meaneff_blocklen[b]=efficiency(X,c=[1,0])
plt.plot(blocklenvals,meaneff_blocklen)
plt.xlabel('block length')
plt.ylabel('efficiency')
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's look at the effects of correlation between regressors. We first need to create a function to generate a design with two conditions where we can control the correlation between them.
|
from mkdesign import create_design_twocondition
d,des1,des2=create_design_twocondition(correlation=1.0)
regressor1,_=compute_regressor(des1,'spm',numpy.arange(0,d.shape[0]))
regressor2,_=compute_regressor(des2,'spm',numpy.arange(0,d.shape[0]))
X=numpy.vstack((regressor1.T,regressor2.T,numpy.ones(y.shape))).T
nruns=100
corr_vals_intended=numpy.arange(-1,1.1,0.1)
corr_vals=numpy.zeros(len(corr_vals_intended))
meaneff_corr=numpy.zeros(len(corr_vals))
sumx=numpy.zeros(len(corr_vals))
for b in range(len(corr_vals_intended)):
eff=numpy.zeros(nruns)
corrs=numpy.zeros(nruns)
for i in range(nruns):
d_sim,des1_sim,des2_sim=create_design_twocondition(correlation=corr_vals_intended[b])
regressor1_sim,_=compute_regressor(des1_sim,'spm',numpy.arange(0,d_sim.shape[0]))
regressor2_sim,_=compute_regressor(des2_sim,'spm',numpy.arange(0,d_sim.shape[0]))
X=numpy.vstack((regressor1_sim.T,regressor2_sim.T,numpy.ones(y.shape))).T
# use contrast of first regressor
eff[i]=efficiency(X,c=[1,0,0])
corrs[i]=numpy.corrcoef(X.T)[0,1]
corr_vals[b]=numpy.mean(corrs)
sumx[b]=numpy.sum(X[:,0])
meaneff_corr[b]=numpy.mean(eff)
plt.plot(corr_vals,meaneff_corr)
plt.xlabel('mean correlation between regressors')
plt.ylabel('efficiency')
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's look at efficiency of estimation of the shape of the HRF, rather than detection of the activation effect. This requires that we use a finite impulse response (FIR) model.
|
d,design=create_design_singlecondition(blockiness=0.0)
regressor,_=compute_regressor(design,'fir',numpy.arange(0,len(d)),fir_delays=numpy.arange(0,16))
plt.imshow(regressor[:50,:],interpolation='nearest',cmap='gray')
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Now let's simulate the FIR model, and estimate the variance of the fits.
|
nruns=100
blockiness_vals=numpy.arange(0,1.1,0.1)
meaneff_fit_blockiness=numpy.zeros(len(blockiness_vals))
meancorr=[]
for b in range(len(blockiness_vals)):
eff=numpy.zeros(nruns)
cc=numpy.zeros(nruns)
for i in range(nruns):
d_sim,design_sim=create_design_singlecondition(blockiness=blockiness_vals[b])
regressor_sim,_=compute_regressor(design_sim,'fir',
numpy.arange(0,len(d_sim)),fir_delays=numpy.arange(0,16))
X=numpy.vstack((regressor_sim.T,numpy.ones(regressor_sim.shape[0]))).T
eff[i]=efficiency(X)
cc[i]=numpy.corrcoef(X.T)[0,1]
meaneff_fit_blockiness[b]=numpy.mean(eff)
meancorr.append(numpy.mean(cc))
plt.plot(blockiness_vals,meaneff_fit_blockiness)
plt.xlabel('blockiness')
plt.ylabel('efficiency')
plt.plot(blockiness_vals,meancorr)
__Exercise:__ write a function to generate random designs, and then do this a large number of times, each time estimating the efficiency. Then plot the histogram of efficiencies.
|
analysis/efficiency/DesignEfficiency.ipynb
|
poldrack/fmri-analysis-vm
|
mit
|
Then connect to ChemSpider by creating a ChemSpider instance using your security token:
|
# Tip: Store your security token as an environment variable to reduce the chance of accidentally sharing it
import os
mytoken = os.environ['CHEMSPIDER_SECURITY_TOKEN']
cs = ChemSpider(security_token=mytoken)
|
examples/Getting Started.ipynb
|
mcs07/ChemSpiPy
|
mit
|
All your interaction with the ChemSpider database should now happen through this ChemSpider object, cs.
Retrieve a Compound
Retrieving information about a specific Compound in the ChemSpider database is simple.
Let’s get the Compound with ChemSpider ID 2157:
|
comp = cs.get_compound(2157)
comp
|
examples/Getting Started.ipynb
|
mcs07/ChemSpiPy
|
mit
|
Now we have a Compound object called comp. We can get various identifiers and calculated properties from this object:
|
print(comp.molecular_formula)
print(comp.molecular_weight)
print(comp.smiles)
print(comp.common_name)
|
examples/Getting Started.ipynb
|
mcs07/ChemSpiPy
|
mit
|
Search for a name
What if you don’t know the ChemSpider ID of the Compound you want? Instead use the search method:
|
for result in cs.search('glucose'):
print(result)
|
examples/Getting Started.ipynb
|
mcs07/ChemSpiPy
|
mit
|
numpy has a handy polyfit function we can use, to let us construct an nth-degree polynomial model of our data that minimizes squared error. Let's try it with a 4th degree polynomial:
|
x = np.array(pageSpeeds)
y = np.array(purchaseAmount)
p4 = np.poly1d(np.polyfit(x, y, 4))
|
MachineLearning/DataScience-Python3/PolynomialRegression.ipynb
|
martinggww/lucasenlights
|
cc0-1.0
|
We'll visualize our original scatter plot, together with a plot of our predicted values using the polynomial for page speed times ranging from 0-7 seconds:
|
import matplotlib.pyplot as plt
xp = np.linspace(0, 7, 100)
plt.scatter(x, y)
plt.plot(xp, p4(xp), c='r')
plt.show()
|
MachineLearning/DataScience-Python3/PolynomialRegression.ipynb
|
martinggww/lucasenlights
|
cc0-1.0
|
Looks pretty good! Let's measure the r-squared error:
|
from sklearn.metrics import r2_score
r2 = r2_score(y, p4(x))
print(r2)
|
MachineLearning/DataScience-Python3/PolynomialRegression.ipynb
|
martinggww/lucasenlights
|
cc0-1.0
|
Using the two contig names you sent me it's simplest to do this:
|
desired_contigs = ['Contig' + str(x) for x in [1131, 3182, 39106, 110, 5958]]
desired_contigs
|
scanfasta.ipynb
|
plumbwj01/Barcoding-Fraxinus
|
apache-2.0
|
If you have a genuinely big file then I would do the following:
|
grab = [c for c in contigs if c.name in desired_contigs]
len(grab)
|
scanfasta.ipynb
|
plumbwj01/Barcoding-Fraxinus
|
apache-2.0
|
Ya! There's two contigs.
|
import os
print(os.getcwd())
write_contigs_to_file('data2/sequences_desired.fa', grab)
[c.name for c in grab[:100]]
import os
os.path.realpath('')
|
scanfasta.ipynb
|
plumbwj01/Barcoding-Fraxinus
|
apache-2.0
|
Informal Methods
The most straightforward approach for assessing convergence is based on
simply plotting and inspecting traces and histograms of the observed
MCMC sample. If the trace of values for each of the stochastics exhibits
asymptotic behavior over the last $m$ iterations, this may be
satisfactory evidence for convergence.
|
with bioassay_model:
bioassay_trace = sample(10000)
traceplot(bioassay_trace[9000:], varnames=['beta'])
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
A similar approach involves
plotting a histogram for every set of $k$ iterations (perhaps 50-100)
beyond some burn in threshold $n$; if the histograms are not visibly
different among the sample intervals, this may be considered some evidence for
convergence. Note that such diagnostics should be carried out for each
stochastic estimated by the MCMC algorithm, because convergent behavior
by one variable does not imply evidence for convergence for other
variables in the analysis.
|
import matplotlib.pyplot as plt
beta_trace = bioassay_trace['beta']
fig, axes = plt.subplots(2, 5, figsize=(14,6))
axes = axes.ravel()
for i in range(10):
axes[i].hist(beta_trace[500*i:500*(i+1)])
plt.tight_layout()
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
An extension of this approach can be taken
when multiple parallel chains are run, rather than just a single, long
chain. In this case, the final values of $c$ chains run for $n$
iterations are plotted in a histogram; just as above, this is repeated
every $k$ iterations thereafter, and the histograms of the endpoints are
plotted again and compared to the previous histogram. This is repeated
until consecutive histograms are indistinguishable.
Another ad hoc method for detecting lack of convergence is to examine
the traces of several MCMC chains initialized with different starting
values. Overlaying these traces on the same set of axes should (if
convergence has occurred) show each chain tending toward the same
equilibrium value, with approximately the same variance. Recall that the
tendency for some Markov chains to converge to the true (unknown) value
from diverse initial values is called ergodicity. This property is
guaranteed by the reversible chains constructed using MCMC, and should
be observable using this technique. Again, however, this approach is
only a heuristic method, and cannot always detect lack of convergence,
even though chains may appear ergodic.
|
with bioassay_model:
bioassay_trace = sample(1000, njobs=2, start=[{'alpha':0.5}, {'alpha':5}])
bioassay_trace.get_values('alpha', chains=0)[0]
plt.plot(bioassay_trace.get_values('alpha', chains=0)[:200], 'r--')
plt.plot(bioassay_trace.get_values('alpha', chains=1)[:200], 'k--')
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
A principal reason that evidence from informal techniques cannot
guarantee convergence is a phenomenon called metastability. Chains may
appear to have converged to the true equilibrium value, displaying
excellent qualities by any of the methods described above. However,
after some period of stability around this value, the chain may suddenly
move to another region of the parameter space. This period
of metastability can sometimes be very long, and therefore escape
detection by these convergence diagnostics. Unfortunately, there is no
statistical technique available for detecting metastability.
Formal Methods
Along with the ad hoc techniques described above, a number of more
formal methods exist which are prevalent in the literature. These are
considered more formal because they are based on existing statistical
methods, such as time series analysis.
PyMC currently includes three formal convergence diagnostic methods. The
first, proposed by Geweke (1992), is a time-series approach that
compares the mean and variance of segments from the beginning and end of
a single chain.
$$z = \frac{\bar{\theta}_a - \bar{\theta}_b}{\sqrt{S_a(0) + S_b(0)}}$$
where $a$ is the early interval and $b$ the late interval, and $S_i(0)$ is the spectral density estimate at zero frequency for chain segment $i$. If the
z-scores (theoretically distributed as standard normal variates) of
these two segments are similar, it can provide evidence for convergence.
PyMC calculates z-scores of the difference between various initial
segments along the chain, and the last 50% of the remaining chain. If
the chain has converged, the majority of points should fall within 2
standard deviations of zero.
In PyMC, diagnostic z-scores can be obtained by calling the geweke function. It
accepts either (1) a single trace, (2) a Node or Stochastic object, or
(4) an entire Model object:
|
from pymc3 import geweke
with bioassay_model:
tr = sample(2000)
z = geweke(tr, intervals=15)
plt.scatter(*z['alpha'].T)
plt.hlines([-1,1], 0, 1000, linestyles='dotted')
plt.xlim(0, 1000)
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
The arguments expected are the following:
x : The trace of a variable.
first : The fraction of series at the beginning of the trace.
last : The fraction of series at the end to be compared with the section at the beginning.
intervals : The number of segments.
Plotting the output displays the scores in series, making it is easy to
see departures from the standard normal assumption.
A second convergence diagnostic provided by PyMC is the Gelman-Rubin
statistic Gelman and Rubin (1992). This diagnostic uses multiple chains to
check for lack of convergence, and is based on the notion that if
multiple chains have converged, by definition they should appear very
similar to one another; if not, one or more of the chains has failed to
converge.
The Gelman-Rubin diagnostic uses an analysis of variance approach to
assessing convergence. That is, it calculates both the between-chain
varaince (B) and within-chain varaince (W), and assesses whether they
are different enough to worry about convergence. Assuming $m$ chains,
each of length $n$, quantities are calculated by:
$$\begin{align}B &= \frac{n}{m-1} \sum_{j=1}^m (\bar{\theta}{.j} - \bar{\theta}{..})^2 \
W &= \frac{1}{m} \sum_{j=1}^m \left[ \frac{1}{n-1} \sum_{i=1}^n (\theta_{ij} - \bar{\theta}_{.j})^2 \right]
\end{align}$$
for each scalar estimand $\theta$. Using these values, an estimate of
the marginal posterior variance of $\theta$ can be calculated:
$$\hat{\text{Var}}(\theta | y) = \frac{n-1}{n} W + \frac{1}{n} B$$
Assuming $\theta$ was initialized to arbitrary starting points in each
chain, this quantity will overestimate the true marginal posterior
variance. At the same time, $W$ will tend to underestimate the
within-chain variance early in the sampling run. However, in the limit
as $n \rightarrow
\infty$, both quantities will converge to the true variance of $\theta$.
In light of this, the Gelman-Rubin statistic monitors convergence using
the ratio:
$$\hat{R} = \sqrt{\frac{\hat{\text{Var}}(\theta | y)}{W}}$$
This is called the potential scale reduction, since it is an estimate of
the potential reduction in the scale of $\theta$ as the number of
simulations tends to infinity. In practice, we look for values of
$\hat{R}$ close to one (say, less than 1.1) to be confident that a
particular estimand has converged. In PyMC, the function
gelman_rubin will calculate $\hat{R}$ for each stochastic node in
the passed model:
|
from pymc3 import gelman_rubin
gelman_rubin(bioassay_trace)
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
For the best results, each chain should be initialized to highly
dispersed starting values for each stochastic node.
By default, when calling the forestplot function using nodes with
multiple chains, the $\hat{R}$ values will be plotted alongside the
posterior intervals.
|
from pymc3 import forestplot
forestplot(bioassay_trace)
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
Autocorrelation
|
from pymc3 import autocorrplot
autocorrplot(tr);
bioassay_trace['alpha'].shape
from pymc3 import effective_n
effective_n(bioassay_trace)
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
Goodness of Fit
Checking for model convergence is only the first step in the evaluation
of MCMC model outputs. It is possible for an entirely unsuitable model
to converge, so additional steps are needed to ensure that the estimated
model adequately fits the data. One intuitive way of evaluating model
fit is to compare model predictions with the observations used to fit
the model. In other words, the fitted model can be used to simulate
data, and the distribution of the simulated data should resemble the
distribution of the actual data.
Fortunately, simulating data from the model is a natural component of
the Bayesian modelling framework. Recall, from the discussion on
imputation of missing data, the posterior predictive distribution:
$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta) f(\theta|y) d\theta$$
Here, $\tilde{y}$ represents some hypothetical new data that would be
expected, taking into account the posterior uncertainty in the model
parameters. Sampling from the posterior predictive distribution is easy
in PyMC. The code looks identical to the corresponding data stochastic,
with two modifications: (1) the node should be specified as
deterministic and (2) the statistical likelihoods should be replaced by
random number generators. Consider the gelman_bioassay example,
where deaths are modeled as a binomial random variable for which
the probability of death is a logit-linear function of the dose of a
particular drug.
|
from pymc3 import Normal, Binomial, Deterministic, invlogit
# Samples for each dose level
n = 5 * np.ones(4, dtype=int)
# Log-dose
dose = np.array([-.86, -.3, -.05, .73])
with Model() as model:
# Logit-linear model parameters
alpha = Normal('alpha', 0, 0.01)
beta = Normal('beta', 0, 0.01)
# Calculate probabilities of death
theta = Deterministic('theta', invlogit(alpha + beta * dose))
# Data likelihood
deaths = Binomial('deaths', n=n, p=theta, observed=[0, 1, 3, 5])
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
The posterior predictive distribution of deaths uses the same functional
form as the data likelihood, in this case a binomial stochastic. Here is
the corresponding sample from the posterior predictive distribution:
|
with model:
deaths_sim = Binomial('deaths_sim', n=n, p=theta, shape=4)
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
Notice that the observed stochastic Binomial has been replaced with a stochastic node that is identical in every respect to deaths, except that its values are not fixed to be the observed data -- they are left to vary according to the values of the fitted parameters.
The degree to which simulated data correspond to observations can be evaluated in at least two ways. First, these quantities can simply be compared visually. This allows for a qualitative comparison of model-based replicates and observations. If there is poor fit, the true value of the data may appear in the tails of the histogram of replicated data, while a good fit will tend to show the true data in high-probability regions of the posterior predictive distribution. The Matplot package in PyMC provides an easy way of producing such plots, via the gof_plot function.
|
with model:
gof_trace = sample(2000)
from pymc3 import forestplot
forestplot(gof_trace, varnames=['deaths_sim'])
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
Exercise: Meta-analysis of beta blocker effectiveness
Carlin (1992) considers a Bayesian approach to meta-analysis, and includes the following examples of 22 trials of beta-blockers to prevent mortality after myocardial infarction.
In a random effects meta-analysis we assume the true effect (on a log-odds scale) $d_i$ in a trial $i$
is drawn from some population distribution. Let $r^C_i$ denote number of events in the control group in trial $i$,
and $r^T_i$ denote events under active treatment in trial $i$. Our model is:
$$\begin{aligned}
r^C_i &\sim \text{Binomial}\left(p^C_i, n^C_i\right) \
r^T_i &\sim \text{Binomial}\left(p^T_i, n^T_i\right) \
\text{logit}\left(p^C_i\right) &= \mu_i \
\text{logit}\left(p^T_i\right) &= \mu_i + \delta_i \
\delta_i &\sim \text{Normal}(d, t) \
\mu_i &\sim \text{Normal}(m, s)
\end{aligned}$$
We want to make inferences about the population effect $d$, and the predictive distribution for the effect $\delta_{\text{new}}$ in a new trial. Build a model to estimate these quantities in PyMC, and (1) use convergence diagnostics to check for convergence and (2) use posterior predictive checks to assess goodness-of-fit.
Here are the data:
|
r_t_obs = [3, 7, 5, 102, 28, 4, 98, 60, 25, 138, 64, 45, 9, 57, 25, 33, 28, 8, 6, 32, 27, 22]
n_t_obs = [38, 114, 69, 1533, 355, 59, 945, 632, 278,1916, 873, 263, 291, 858, 154, 207, 251, 151, 174, 209, 391, 680]
r_c_obs = [3, 14, 11, 127, 27, 6, 152, 48, 37, 188, 52, 47, 16, 45, 31, 38, 12, 6, 3, 40, 43, 39]
n_c_obs = [39, 116, 93, 1520, 365, 52, 939, 471, 282, 1921, 583, 266, 293, 883, 147, 213, 122, 154, 134, 218, 364, 674]
N = len(n_c_obs)
# Write your answer here
|
notebooks/6. Model Checking.ipynb
|
fonnesbeck/PyMC3_Oslo
|
cc0-1.0
|
Class 9: The Solow growth model
The Solow growth model is at the core of modern theories of growth and business cycles. The Solow model is a model of exogenous growth: long-run growth arises in the model as a consequence of exogenous growth in the labor supply and total factor productivity. The Solow model, like many other macroeconomic models, is a time series model.
The Solow model without exogenous growth
For the moment, let's disregard population and total factor productivity growth and assume that equilibrium in a closed economy is described by the following four equations:
\begin{align}
Y_t & = A K_t^{\alpha} \tag{1}\
C_t & = (1-s)Y_t \tag{2}\
Y_t & = C_t + I_t \tag{3}\
K_{t+1} & = I_t + ( 1- \delta)K_t \tag{4}\
\end{align}
Equation (1) is the production function. Equation (2) is the consumption function where $s$ denotes the exogenously given saving rate. Equation (3) is the aggregate market clearing condition. Finally, Equation (4) is the capital evolution equation specifying that capital in yeat $t+1$ is the sum of newly created capital $I_t$ and the capital stock from year $t$ that has not depreciated $(1-\delta)K_t$.
Combine Equations (1) through (4) to eliminate $C_t$, $I_t$, and $Y_t$ and obtain a single-variable recurrence relation for $K_{t+1}$:
\begin{align}
K_{t+1} & = sAK_t^{\alpha} + ( 1- \delta)K_t \tag{5}
\end{align}
Given an initial value for capital $K_0 >0$, iterate on Equation (5) to compute the value of the capital stock at some future date $T$. Furthermore, the values of consumption, output, and investment at date $T$ can also be computed using Equations (1) through (3).
Simulation
Simulate the Solow growth model for $t=0\ldots 100$. For the simulation, assume the following values of the parameters:
\begin{align}
A & = 10\
\alpha & = 0.35\
s & = 0.15\
\delta & = 0.1
\end{align}
Furthermore, suppose that the initial value of capital is:
\begin{align}
K_0 & = 20
\end{align}
|
# Initialize parameters for the simulation (A, s, T, delta, alpha, K0)
# Initialize a variable called capital as a (T+1)x1 array of zeros and set first value to K0
# Compute all capital values by iterating over t from 0 through T
# Print the value of capital at dates 0 and T
# Store the simulated capital data in a pandas DataFrame called data
# Print the first five rows of the DataFrame
# Create columns in the DataFrame to store computed values of the other endogenous variables
# Print the first row of the DataFrame
# Print the last row of the DataFrame
# Create a 2x2 grid of plots of capital, output, consumption, and investment
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(2,2,1)
ax.plot(data['capital'],lw=3)
ax.grid()
ax.set_title('Capital')
|
winter2017/econ129/python/Econ129_Class_09.ipynb
|
letsgoexploring/teaching
|
mit
|
The Solow model with exogenous population growth
Now, let's suppose that production is a function of the supply of labor $L_t$:
\begin{align}
Y_t & = AK_t^{\alpha} L_t^{1-\alpha}\tag{6}
\end{align}
The supply of labor grows at an exogenously determined rate $n$ and so it's value is determined recursively by a first-order difference equation:
\begin{align}
L_{t+1} & = (1+n) L_t \tag{7}
\end{align}
The rest of the economy is characterized by the same equations as before:
\begin{align}
C_t & = (1-s)Y_t \tag{8}\
Y_t & = C_t + I_t \tag{9}\
K_{t+1} & = I_t + ( 1- \delta)K_t \tag{10}\
\end{align}
Combine Equations (6), (8), (9), and (10) to eliminate $C_t$, $I_t$, and $Y_t$ and obtain a recurrence relation specifying $K_{t+1}$ as a funtion of $K_t$ and $L_t$:
\begin{align}
K_{t+1} & = sAK_t^{\alpha}L_t^{1-\alpha} + ( 1- \delta)K_t \tag{11}
\end{align}
Given an initial values for capital and labor, Equations (7) and (11) can be iterated on to compute the values of the capital stock and labor supply at some future date $T$. Furthermore, the values of consumption, output, and investment at date $T$ can also be computed using Equations (6), (8), (9), and (10).
Simulation
Simulate the Solow growth model with exogenous labor growth for $t=0\ldots 100$. For the simulation, assume the following values of the parameters:
\begin{align}
A & = 10\
\alpha & = 0.35\
s & = 0.15\
\delta & = 0.1\
n & = 0.01
\end{align}
Furthermore, suppose that the initial values of capital and labor are:
\begin{align}
K_0 & = 20\
L_0 & = 1
\end{align}
|
# Initialize parameters for the simulation (A, s, T, delta, alpha, n, K0, L0)
# Initialize a variable called labor as a (T+1)x1 array of zeros and set first value to L0
# Compute all labor values by iterating over t from 0 through T
# Plot the simulated labor series
# Initialize a variable called capital as a (T+1)x1 array of zeros and set first value to K0
# Compute all capital values by iterating over t from 0 through T
# Plot the simulated capital series
# Store the simulated capital data in a pandas DataFrame called data_labor
# Print the first five rows of the data_labor
# Create columns in the DataFrame to store computed values of the other endogenous variables
# Print the first five rows of data_labor
# Create columns in the DataFrame to store capital per worker, output per worker, consumption per worker, and investment per worker
# Print the first five rows of data_labor
# Create a 2x2 grid of plots of capital, output, consumption, and investment
# Create a 2x2 grid of plots of capital per worker, outputper worker, consumption per worker, and investment per worker
|
winter2017/econ129/python/Econ129_Class_09.ipynb
|
letsgoexploring/teaching
|
mit
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.