markdown
stringlengths 0
37k
| code
stringlengths 1
33.3k
| path
stringlengths 8
215
| repo_name
stringlengths 6
77
| license
stringclasses 15
values |
---|---|---|---|---|
Converting fragments to kde object
|
!cd $workDir; \
SIPSim fragment_kde \
ampFrags_wRand.pkl \
> ampFrags_wRand_kde.pkl
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Adding diffusion
|
!cd $workDir; \
SIPSim diffusion \
ampFrags_wRand_kde.pkl \
--np $nprocs \
> ampFrags_wRand_kde_dif.pkl
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Making an incorp config file
|
!cd $workDir; \
SIPSim incorpConfigExample \
--percTaxa 0 \
--percIncorpUnif 100 \
> PT0_PI100.config
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Adding isotope incorporation to BD distribution
|
!cd $workDir; \
SIPSim isotope_incorp \
ampFrags_wRand_kde_dif.pkl \
PT0_PI100.config \
--comm comm.txt \
--np $nprocs \
> ampFrags_wRand_kde_dif_incorp.pkl
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Calculating BD shift from isotope incorporation
|
!cd $workDir; \
SIPSim BD_shift \
ampFrags_wRand_kde_dif.pkl \
ampFrags_wRand_kde_dif_incorp.pkl \
--np $nprocs \
> ampFrags_wRand_kde_dif_incorp_BD-shift.txt
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Simulating gradient fractions
|
!cd $workDir; \
SIPSim gradient_fractions \
comm.txt \
> fracs.txt
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Simulating an OTU table
|
!cd $workDir; \
SIPSim OTU_table \
ampFrags_wRand_kde_dif_incorp.pkl \
comm.txt \
fracs.txt \
--abs 1e9 \
--np $nprocs \
> OTU_abs1e9.txt
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Plotting taxon abundances
|
%%R -i workDir
setwd(workDir)
# loading file
tbl = read.delim('OTU_abs1e9.txt', sep='\t')
%%R
## BD for G+C of 0 or 100
BD.GCp0 = 0 * 0.098 + 1.66
BD.GCp100 = 1 * 0.098 + 1.66
%%R -w 800 -h 300
# plotting absolute abundances
tbl.s = tbl %>%
group_by(library, BD_mid) %>%
summarize(total_count = sum(count))
## plot
p = ggplot(tbl.s, aes(BD_mid, total_count)) +
geom_area(stat='identity', alpha=0.3, position='dodge') +
geom_histogram(stat='identity') +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16)
)
p
%%R -w 800 -h 300
# plotting number of taxa at each BD
tbl.nt = tbl %>%
filter(count > 0) %>%
group_by(library, BD_mid) %>%
summarize(n_taxa = n())
## plot
p = ggplot(tbl.nt, aes(BD_mid, n_taxa)) +
geom_area(stat='identity', alpha=0.3, position='dodge') +
geom_histogram(stat='identity') +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density', y='Number of taxa') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p
%%R -w 800 -h 250
# plotting relative abundances
## plot
p = ggplot(tbl, aes(BD_mid, count, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p + geom_area(stat='identity', position='dodge', alpha=0.5)
%%R -w 800 -h 250
p + geom_area(stat='identity', position='fill')
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Subsampling from the OTU table
|
dist,loc,scale = seq_per_fraction
!cd $workDir; \
SIPSim OTU_subsample \
--dist $dist \
--dist_params mean:$loc,sigma:$scale \
--walk 2 \
--min_size 10000 \
--max_size 200000 \
OTU_abs1e9.txt \
> OTU_abs1e9_sub.txt
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Testing/Plotting seq count distribution of subsampled fraction samples
|
%%R -h 300 -i workDir
setwd(workDir)
tbl = read.csv('OTU_abs1e9_sub.txt', sep='\t')
tbl.s = tbl %>%
group_by(library, fraction) %>%
summarize(total_count = sum(count)) %>%
ungroup() %>%
mutate(library = as.character(library))
ggplot(tbl.s, aes(total_count)) +
geom_density(fill='blue')
%%R -h 300 -w 600
setwd(workDir)
tbl.s = tbl %>%
group_by(fraction, BD_min, BD_mid, BD_max) %>%
summarize(total_count = sum(count))
ggplot(tbl.s, aes(BD_mid, total_count)) +
geom_point() +
geom_line() +
labs(x='Buoyant density', y='Total sequences') +
theme_bw() +
theme(
text = element_text(size=16)
)
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Getting list of target taxa
|
%%R -i workDir
inFile = paste(c(workDir, 'target_genome_index.txt'), collapse='/')
tbl.target = read.delim(inFile, sep='\t', header=F)
colnames(tbl.target) = c('OTUId', 'genome_file', 'genome_ID', 'X', 'Y', 'Z')
tbl.target = tbl.target %>% distinct(OTUId)
cat('Number of target OTUs: ', tbl.target$OTUId %>% unique %>% length, '\n')
cat('----------\n')
tbl.target %>% head(n=3)
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Plotting abundance distributions
|
%%R -w 800 -h 250
# plotting relative abundances
tbl = tbl %>%
group_by(fraction) %>%
mutate(rel_abund = count / sum(count))
## plot
p = ggplot(tbl, aes(BD_mid, count, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p + geom_area(stat='identity', position='dodge', alpha=0.5)
%%R -w 800 -h 250
p = ggplot(tbl, aes(BD_mid, rel_abund, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p + geom_area(stat='identity')
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Abundance distribution of just target taxa
|
%%R
targets = tbl.target$OTUId %>% as.vector %>% unique
tbl.f = tbl %>%
filter(taxon %in% targets)
tbl.f %>% head
%%R -w 800 -h 250
# plotting absolute abundances
## plot
p = ggplot(tbl.f, aes(BD_mid, count, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p + geom_area(stat='identity', position='dodge', alpha=0.5)
%%R -w 800 -h 250
# plotting relative abundances
p = ggplot(tbl.f, aes(BD_mid, rel_abund, fill=taxon)) +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p + geom_area(stat='identity')
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Plotting 'true' taxon abundance distribution (from priming exp dataset)
|
%%R -i metaDataFile
# loading priming_exp metadata file
meta = read.delim(metaDataFile, sep='\t')
meta %>% head(n=4)
%%R -i otuTableFile
# loading priming_exp OTU table
tbl.otu.true = read.delim(otuTableFile, sep='\t') %>%
select(OTUId, starts_with('X12C.700.28'))
tbl.otu.true %>% head(n=3)
%%R
# editing table
tbl.otu.true.w = tbl.otu.true %>%
gather('sample', 'count', 2:ncol(tbl.otu.true)) %>%
mutate(sample = gsub('^X', '', sample)) %>%
group_by(sample) %>%
mutate(rel_abund = count / sum(count)) %>%
ungroup() %>%
filter(count > 0)
tbl.otu.true.w %>% head(n=5)
%%R
tbl.true.j = inner_join(tbl.otu.true.w, meta, c('sample' = 'Sample'))
tbl.true.j %>% as.data.frame %>% head(n=3)
%%R -w 800 -h 300 -i workDir
# plotting number of taxa at each BD
tbl = read.csv('OTU_abs1e9_sub.txt', sep='\t')
tbl.nt = tbl %>%
filter(count > 0) %>%
group_by(library, BD_mid) %>%
summarize(n_taxa = n())
## plot
p = ggplot(tbl.nt, aes(BD_mid, n_taxa)) +
geom_area(stat='identity', alpha=0.5) +
geom_point() +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density', y='Number of taxa') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
p
%%R -w 700 -h 350
tbl.true.j.s = tbl.true.j %>%
filter(count > 0) %>%
group_by(sample, Density) %>%
summarize(n_taxa = sum(count > 0))
ggplot(tbl.true.j.s, aes(Density, n_taxa)) +
geom_area(stat='identity', alpha=0.5) +
geom_point() +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density', y='Number of taxa') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Plotting total counts for each sample
|
%%R -h 300 -w 600
tbl.true.j.s = tbl.true.j %>%
group_by(sample, Density) %>%
summarize(total_count = sum(count))
ggplot(tbl.true.j.s, aes(Density, total_count)) +
geom_point() +
geom_line() +
labs(x='Buoyant density', y='Total sequences') +
theme_bw() +
theme(
text = element_text(size=16)
)
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Plotting abundance distribution of target OTUs
|
%%R
tbl.true.j.f = tbl.true.j %>%
filter(OTUId %in% targets) %>%
arrange(OTUId, Density) %>%
group_by(sample)
tbl.true.j.f %>% head(n=3) %>% as.data.frame
%%R -w 800 -h 250
# plotting relative abundances
## plot
ggplot(tbl.true.j.f, aes(Density, rel_abund, fill=OTUId)) +
geom_area(stat='identity') +
geom_vline(xintercept=c(BD.GCp0, BD.GCp100), linetype='dashed', alpha=0.5) +
labs(x='Buoyant density') +
theme_bw() +
theme(
text = element_text(size=16),
legend.position = 'none'
)
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Combining true and simulated OTU tables for target taxa
|
%%R
tbl.f.e = tbl.f %>%
mutate(library = 'simulation') %>%
rename('density' = BD_mid) %>%
select(-BD_min, -BD_max)
tbl.true.e = tbl.true.j.f %>%
select('taxon' = OTUId,
'fraction' = sample,
'density' = Density,
count, rel_abund) %>%
mutate(library = 'true')
tbl.sim.true = rbind(tbl.f.e, tbl.true.e) %>% as.data.frame
tbl.f.e = data.frame()
tbl.true.e = data.frame()
tbl.sim.true %>% head(n=3)
%%R
# check
cat('Number of target taxa: ', tbl.sim.true$taxon %>% unique %>% length, '\n')
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Abundance distributions of each target taxon
|
%%R -w 900 -h 3500
tbl.sim.true.f = tbl.sim.true %>%
ungroup() %>%
filter(density >= 1.677) %>%
filter(density <= 1.761) %>%
group_by(taxon) %>%
mutate(mean_rel_abund = mean(rel_abund)) %>%
ungroup()
tbl.sim.true.f$taxon = reorder(tbl.sim.true.f$taxon, -tbl.sim.true.f$mean_rel_abund)
ggplot(tbl.sim.true.f, aes(density, rel_abund, color=library)) +
geom_point() +
geom_line() +
theme_bw() +
facet_wrap(~ taxon, ncol=4, scales='free_y')
%%R
tbl.otu.true.w %>%
filter(OTUId == 'OTU.1') %>%
as.data.frame()
|
ipynb/bac_genome/priming_exp/validation_sample/.ipynb_checkpoints/X12C.700.45.01_fracRichness-checkpoint.ipynb
|
nick-youngblut/SIPSim
|
mit
|
Versió 1.0
Utilitzeu el codi de l'exemple anterior del bucle while: només heu d'afegir que, quan xoque, el robot vaja cap enrere, gire una mica (cap al vostre costat preferit), i pare.
|
while not touch():
forward()
backward()
sleep(1)
left()
sleep(1)
stop()
|
task/navigation_teacher.ipynb
|
ecervera/mindstorms-nb
|
mit
|
Versió 2.0
Se suposa que la maniobra del robot li permet evitar l'obstacle, i per tant tornar a anar cap avant. Com ho podem programar?
Cal repetir tot el bloc d'instruccions del comportament, incloent el bucle. Cap problema, els llenguatges de programació permeten posar un bucle dins d'un altre, el que s'anomena bucles anidats.
Utilitzeu un bucle for per a repetir 5 vegades el codi anterior.
|
for ...:
while ...:
...
...
for i in range(5):
while not touch():
forward()
backward()
sleep(1)
left()
sleep(1)
stop()
|
task/navigation_teacher.ipynb
|
ecervera/mindstorms-nb
|
mit
|
Versió 3.0
<img src="img/interrupt.png" align="right">
I si en lloc de repetir 10 o 20 vegades, volem que el robot continue fins que el parem nosaltres? Ho podem fer amb un bucle infinit, i indicarem al programa que pare amb el botó interrupt kernel.
En Python, un bucle infinit s'escriu així:
python
while True:
statement
Quan s'interromp el programa, s'abandona la instrucció que s'estava executant en eixe moment, i cal parar el robot. En Python, aquest procés s'anomena excepció i es gestiona d'aquesta manera:
python
try:
while True:
statement # ací anirà el comportament
except KeyboardInterrupt:
statement # ací pararem el robot
Utilitzeu un bucle infinit per a repetir el comportament del robot fins que el pareu.
|
try:
while True:
while not touch():
forward()
backward()
sleep(1)
left()
sleep(1)
except KeyboardInterrupt:
stop()
|
task/navigation_teacher.ipynb
|
ecervera/mindstorms-nb
|
mit
|
Versió 4.0
El comportament del robot, girant sempre cap al mateix costat, és una mica previsible, no vos sembla?
Anem a introduir un component d'atzar: en els llenguatges de programació, existeixen els generadors de números aleatoris, que són com els daus dels ordinadors.
Executeu el següent codi vàries vegades amb Ctrl+Enter i comproveu els resultats.
|
from random import random
random()
|
task/navigation_teacher.ipynb
|
ecervera/mindstorms-nb
|
mit
|
La funció random és com llançar un dau, però en compte de donar una valor d'1 a 6, dóna un número real entre 0 i 1.
Aleshores, el robot pot utilitzar eixe valor per a decidir si gira a esquerra o dreta. Com? Doncs si el valor és major que 0.5, gira a un costat, i si no, cap a l'altre. Aleshores, girarà a l'atzar, amb una probabilitat del 50% per a cada costat.
Incorporeu la decisió a l'atzar per a girar al codi de la versió anterior:
|
try:
while True:
while not touch():
forward()
backward()
sleep(1)
if random() > 0.5:
left()
else:
right()
sleep(1)
except KeyboardInterrupt:
stop()
|
task/navigation_teacher.ipynb
|
ecervera/mindstorms-nb
|
mit
|
Recapitulem
Abans de continuar, desconnecteu el robot:
|
disconnect()
|
task/navigation_teacher.ipynb
|
ecervera/mindstorms-nb
|
mit
|
Let's load in the datasets
|
book1 = pd.read_csv('datasets/game_of_thrones_network/asoiaf-book1-edges.csv')
book2 = pd.read_csv('datasets/game_of_thrones_network/asoiaf-book2-edges.csv')
book3 = pd.read_csv('datasets/game_of_thrones_network/asoiaf-book3-edges.csv')
book4 = pd.read_csv('datasets/game_of_thrones_network/asoiaf-book4-edges.csv')
book5 = pd.read_csv('datasets/game_of_thrones_network/asoiaf-book5-edges.csv')
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
The resulting DataFrame book1 has 5 columns: Source, Target, Type, weight, and book. Source and target are the two nodes that are linked by an edge. A network can have directed or undirected edges and in this network all the edges are undirected. The weight attribute of every edge tells us the number of interactions that the characters have had over the book, and the book column tells us the book number.
|
book1.head()
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Once we have the data loaded as a pandas DataFrame, it's time to create a network. We create a graph for each book. It's possible to create one MultiGraph instead of 5 graphs, but it is easier to play with different graphs.
|
G_book1 = nx.Graph()
G_book2 = nx.Graph()
G_book3 = nx.Graph()
G_book4 = nx.Graph()
G_book5 = nx.Graph()
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Let's populate the graph with edges from the pandas DataFrame.
|
for row in book1.iterrows():
G_book1.add_edge(row[1]['Source'], row[1]['Target'], weight=row[1]['weight'], book=row[1]['book'])
for row in book2.iterrows():
G_book2.add_edge(row[1]['Source'], row[1]['Target'], weight=row[1]['weight'], book=row[1]['book'])
for row in book3.iterrows():
G_book3.add_edge(row[1]['Source'], row[1]['Target'], weight=row[1]['weight'], book=row[1]['book'])
for row in book4.iterrows():
G_book4.add_edge(row[1]['Source'], row[1]['Target'], weight=row[1]['weight'], book=row[1]['book'])
for row in book5.iterrows():
G_book5.add_edge(row[1]['Source'], row[1]['Target'], weight=row[1]['weight'], book=row[1]['book'])
books = [G_book1, G_book2, G_book3, G_book4, G_book5]
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Let's have a look at these edges.
|
list(G_book1.edges(data=True))[16]
list(G_book1.edges(data=True))[400]
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Finding the most important node i.e character in these networks.
Is it Jon Snow, Tyrion, Daenerys, or someone else? Let's see! Network Science offers us many different metrics to measure the importance of a node in a network as we saw in the first part of the tutorial. Note that there is no "correct" way of calculating the most important node in a network, every metric has a different meaning.
First, let's measure the importance of a node in a network by looking at the number of neighbors it has, that is, the number of nodes it is connected to. For example, an influential account on Twitter, where the follower-followee relationship forms the network, is an account which has a high number of followers. This measure of importance is called degree centrality.
Using this measure, let's extract the top ten important characters from the first book (book[0]) and the fifth book (book[4]).
|
deg_cen_book1 = nx.degree_centrality(books[0])
deg_cen_book5 = nx.degree_centrality(books[4])
sorted(deg_cen_book1.items(), key=lambda x:x[1], reverse=True)[0:10]
sorted(deg_cen_book5.items(), key=lambda x:x[1], reverse=True)[0:10]
# Plot a histogram of degree centrality
plt.hist(list(nx.degree_centrality(G_book4).values()))
plt.show()
d = {}
for i, j in dict(nx.degree(G_book4)).items():
if j in d:
d[j] += 1
else:
d[j] = 1
x = np.log2(list((d.keys())))
y = np.log2(list(d.values()))
plt.scatter(x, y, alpha=0.9)
plt.show()
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Exercise
Create a new centrality measure, weighted_degree(Graph, weight) which takes in Graph and the weight attribute and returns a weighted degree dictionary. Weighted degree is calculated by summing the weight of the all edges of a node and find the top five characters according to this measure.
|
def weighted_degree(G, weight):
result = dict()
for node in G.nodes():
weight_degree = 0
for n in G.edges([node], data=True):
weight_degree += n[2]['weight']
result[node] = weight_degree
return result
plt.hist(list(weighted_degree(G_book1, 'weight').values()))
plt.show()
sorted(weighted_degree(G_book1, 'weight').items(), key=lambda x:x[1], reverse=True)[0:10]
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Let's do this for Betweeness centrality and check if this makes any difference
Haha, evil laugh
|
# First check unweighted, just the structure
sorted(nx.betweenness_centrality(G_book1).items(), key=lambda x:x[1], reverse=True)[0:10]
# Let's care about interactions now
sorted(nx.betweenness_centrality(G_book1, weight='weight').items(), key=lambda x:x[1], reverse=True)[0:10]
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
PageRank
The billion dollar algorithm, PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying assumption is that more important websites are likely to receive more links from other websites.
|
# by default weight attribute in pagerank is weight, so we use weight=None to find the unweighted results
sorted(nx.pagerank_numpy(G_book1, weight=None).items(), key=lambda x:x[1], reverse=True)[0:10]
sorted(nx.pagerank_numpy(G_book1, weight='weight').items(), key=lambda x:x[1], reverse=True)[0:10]
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Is there a correlation between these techniques?
Exercise
Find the correlation between these four techniques.
pagerank
betweenness_centrality
weighted_degree
degree centrality
|
cor = pd.DataFrame.from_records([nx.pagerank_numpy(G_book1, weight='weight'), nx.betweenness_centrality(G_book1, weight='weight'), weighted_degree(G_book1, 'weight'), nx.degree_centrality(G_book1)])
# cor.T
cor.T.corr()
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Evolution of importance of characters over the books
According to degree centrality the most important character in the first book is Eddard Stark but he is not even in the top 10 of the fifth book. The importance changes over the course of five books, because you know stuff happens ;)
Let's look at the evolution of degree centrality of a couple of characters like Eddard Stark, Jon Snow, Tyrion which showed up in the top 10 of degree centrality in first book.
We create a dataframe with character columns and index as books where every entry is the degree centrality of the character in that particular book and plot the evolution of degree centrality Eddard Stark, Jon Snow and Tyrion.
We can see that the importance of Eddard Stark in the network dies off and with Jon Snow there is a drop in the fourth book but a sudden rise in the fifth book
|
evol = [nx.degree_centrality(book) for book in books]
evol_df = pd.DataFrame.from_records(evol).fillna(0)
evol_df[['Eddard-Stark', 'Tyrion-Lannister', 'Jon-Snow']].plot()
set_of_char = set()
for i in range(5):
set_of_char |= set(list(evol_df.T[i].sort_values(ascending=False)[0:5].index))
set_of_char
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Exercise
Plot the evolution of weighted degree centrality of the above mentioned characters over the 5 books, and repeat the same exercise for betweenness centrality.
|
evol_df[list(set_of_char)].plot(figsize=(29,15))
evol = [nx.betweenness_centrality(graph, weight='weight') for graph in [G_book1, G_book2, G_book3, G_book4, G_book5]]
evol_df = pd.DataFrame.from_records(evol).fillna(0)
set_of_char = set()
for i in range(5):
set_of_char |= set(list(evol_df.T[i].sort_values(ascending=False)[0:5].index))
evol_df[list(set_of_char)].plot(figsize=(19,10))
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
So what's up with Stannis Baratheon?
|
nx.draw(nx.barbell_graph(5, 1), with_labels=True)
sorted(nx.degree_centrality(G_book5).items(), key=lambda x:x[1], reverse=True)[:5]
sorted(nx.betweenness_centrality(G_book5).items(), key=lambda x:x[1], reverse=True)[:5]
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Community detection in Networks
A network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally.
We will use louvain community detection algorithm to find the modules in our graph.
|
plt.figure(figsize=(15, 15))
partition = community.best_partition(G_book1)
size = float(len(set(partition.values())))
pos = nx.kamada_kawai_layout(G_book1)
count = 0
colors = ['red', 'blue', 'yellow', 'black', 'brown', 'purple', 'green', 'pink']
for com in set(partition.values()):
list_nodes = [nodes for nodes in partition.keys()
if partition[nodes] == com]
nx.draw_networkx_nodes(G_book1, pos, list_nodes, node_size = 20,
node_color = colors[count])
count = count + 1
nx.draw_networkx_edges(G_book1, pos, alpha=0.2)
plt.show()
d = {}
for character, par in partition.items():
if par in d:
d[par].append(character)
else:
d[par] = [character]
d
nx.draw(nx.subgraph(G_book1, d[3]))
nx.draw(nx.subgraph(G_book1, d[1]))
nx.density(G_book1)
nx.density(nx.subgraph(G_book1, d[4]))
nx.density(nx.subgraph(G_book1, d[4]))/nx.density(G_book1)
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Exercise
Find the most important node in the partitions according to degree centrality of the nodes.
|
max_d = {}
deg_book1 = nx.degree_centrality(G_book1)
for group in d:
temp = 0
for character in d[group]:
if deg_book1[character] > temp:
max_d[group] = character
temp = deg_book1[character]
max_d
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
A bit about power law in networks
|
G_random = nx.erdos_renyi_graph(100, 0.1)
nx.draw(G_random)
G_ba = nx.barabasi_albert_graph(100, 2)
nx.draw(G_ba)
# Plot a histogram of degree centrality
plt.hist(list(nx.degree_centrality(G_random).values()))
plt.show()
plt.hist(list(nx.degree_centrality(G_ba).values()))
plt.show()
G_random = nx.erdos_renyi_graph(2000, 0.2)
G_ba = nx.barabasi_albert_graph(2000, 20)
d = {}
for i, j in dict(nx.degree(G_random)).items():
if j in d:
d[j] += 1
else:
d[j] = 1
x = np.log2(list((d.keys())))
y = np.log2(list(d.values()))
plt.scatter(x, y, alpha=0.9)
plt.show()
d = {}
for i, j in dict(nx.degree(G_ba)).items():
if j in d:
d[j] += 1
else:
d[j] = 1
x = np.log2(list((d.keys())))
y = np.log2(list(d.values()))
plt.scatter(x, y, alpha=0.9)
plt.show()
|
archive/7-game-of-thrones-case-study-instructor.ipynb
|
ericmjl/Network-Analysis-Made-Simple
|
mit
|
Exercise
Import the classifier object ``sklearn.svm.SVC```
initialize it
fit it with the training data (no need to split a second time)
evaluate the quality of the created classifier using score()
Pipelining and cross-validation
It's common to want to preprocess data somehow or in general have several steps. This can be easily done with the Pipeline class.
There are typically parameters involved and you might want to select the best possible parameter.
|
from sklearn.decomposition import PCA # pca is a subspace method that projects the data into a lower-dimensional space
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
pca = PCA(n_components=2)
knn = KNeighborsClassifier(n_neighbors=3)
from sklearn.pipeline import Pipeline
pipeline = Pipeline([("pca", pca), ("kneighbors", knn)])
parameters_grid = dict(
pca__n_components=[1,2,3,4],
kneighbors__n_neighbors=[1,2,3,4,5,6]
)
grid_search = GridSearchCV(pipeline, parameters_grid)
grid_search.fit(train_X, train_Y)
grid_search.best_estimator_
# you can now test agains the held out part
grid_search.best_estimator_.score(test_X, test_Y)
|
notebooks/examples/Extra Scikit-learn.ipynb
|
csc-training/python-introduction
|
mit
|
Implementing an Earley Parser
A Grammar for Grammars
Earley's algorithm has two inputs:
- a grammar $G$ and
- a string $s$.
It then checks whether the string $s$ can be parsed with the given grammar.
In order to input the grammar in a natural way, we first have to develop a parser for grammars.
An example grammar that we want to parse is stored in the file simple.g.
|
!cat simple.g
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
We use <span style="font-variant:small-caps;">Antlr</span> to develop a parser for this Grammar.
The pure grammar to parse this type of grammar is stored in
the file Pure.g4.
|
!cat Pure.g4
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The annotated grammar is stored in the file Grammar.g4.
|
!cat -n Grammar.g4
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
We start by generating both scanner and parser.
|
!antlr4 -Dlanguage=Python3 Grammar.g4
from GrammarLexer import GrammarLexer
from GrammarParser import GrammarParser
import antlr4
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function parse_grammar takes a filename as its argument and returns the grammar that is stored in the given file. The grammar is represented as list of rules. Each rule is represented as a tuple. The example below will clarify this structure.
|
def parse_grammar(filename):
input_stream = antlr4.FileStream(filename)
lexer = GrammarLexer(input_stream)
token_stream = antlr4.CommonTokenStream(lexer)
parser = GrammarParser(token_stream)
grammar = parser.start()
return grammar.g
parse_grammar('simple.g')
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
Earley's Algorithm
Given a context-free grammar $G = \langle V, \Sigma, R, S \rangle$ and a string $s = x_1x_2 \cdots x_n \in \Sigma^$ of length $n$,
an Earley item* is a pair of the form
$$\langle A \rightarrow \alpha \bullet \beta, k \rangle$$
such that
- $(A \rightarrow \alpha \beta) \in R\quad$ and
- $k \in {0,1,\cdots,n}$.
The class EarleyItem represents a single Earley item.
- mVariable is the variable $A$,
- mAlpha is $\alpha$,
- mBeta is $\beta$, and
- mIndex is $k$.
Since we later have to store objects of class EarleyItem in sets, we have to implement the functions
- __eq__,
- __ne__,
- __hash__.
It is easiest to implement __hash__ by first converting the object into a string. Hence we also
implement the function __repr__, that converts an EarleyItem into a string.
|
class EarleyItem():
def __init__(self, variable, alpha, beta, index):
self.mVariable = variable
self.mAlpha = alpha
self.mBeta = beta
self.mIndex = index
def __eq__(self, other):
return isinstance(other, EarleyItem) and \
self.mVariable == other.mVariable and \
self.mAlpha == other.mAlpha and \
self.mBeta == other.mBeta and \
self.mIndex == other.mIndex
def __ne__(self, other):
return not self.__eq__(other)
def __hash__(self):
return hash(self.__repr__())
def __repr__(self):
alphaStr = ' '.join(self.mAlpha)
betaStr = ' '.join(self.mBeta)
return f'<{self.mVariable} → {alphaStr} • {betaStr}, {self.mIndex}>'
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
Given an Earley item self, the function isComplete checks, whether the Earley item self has the form
$$\langle A \rightarrow \alpha \bullet, k \rangle,$$
i.e. whether the $\bullet$ is at the end of the grammar rule.
|
def isComplete(self):
return self.mBeta == ()
EarleyItem.isComplete = isComplete
del isComplete
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function sameVar(self, C) checks, whether the item following the dot is the same as the variable
given as argument, i.e. sameVar(self, C) returns True if self is an Earley item of the form
$$\langle A \rightarrow \alpha \bullet C\beta, k \rangle.$$
|
def sameVar(self, C):
return len(self.mBeta) > 0 and self.mBeta[0] == C
EarleyItem.sameVar = sameVar
del sameVar
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function scan(self, t) checks, whether the item following the dot matches the token t,
i.e. scan(self, t) returns True if self is an Earley item of the form
$$\langle A \rightarrow \alpha \bullet t\beta, k \rangle.$$
The argument $t$ can either be the name of a token or a literal.
|
def scan(self, t):
if len(self.mBeta) > 0:
return self.mBeta[0] == t or self.mBeta[0] == "'" + t + "'"
return False
EarleyItem.scan = scan
del scan
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
Given an Earley item, this function returns the name of the variable following the dot. If there is no variable following the dot, the function returns None. The function can distinguish variables from token names because variable names consist only of lower case letters.
|
def nextVar(self):
if len(self.mBeta) > 0:
var = self.mBeta[0]
if var[0] != "'" and var.islower():
return var
return None
EarleyItem.nextVar = nextVar
del nextVar
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function moveDot(self) moves the $\bullet$ in the Earley item self, where self has the form
$$\langle A \rightarrow \alpha \bullet \beta, k \rangle$$
over the next variable, token, or literal in $\beta$. It assumes that $\beta$ is not empty.
|
def moveDot(self):
return EarleyItem(self.mVariable,
self.mAlpha + (self.mBeta[0],),
self.mBeta[1:],
self.mIndex)
EarleyItem.moveDot = moveDot
del moveDot
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The class Grammar represents a context free grammar. It stores a list of the rules of the grammar.
Each grammar rule of the form
$$ a \rightarrow \beta $$
is stored as the tuple $(a,) + \beta$. The start symbol is assumed to be the variable on the left hand side of
the first rule. To distinguish syntactical variables form tokens, variables contain only lower case letters,
while tokens either contain only upper case letters or they start and end with a single quote character "'".
|
class Grammar():
def __init__(self, Rules):
self.mRules = Rules
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function startItem returns the Earley item
$$ \langle\hat{S} \rightarrow \bullet S, 0\rangle $$
where $S$ is the start variable of the given grammar and $\hat{S}$ is a new variable.
|
def startItem(self):
return EarleyItem('Start', (), (self.startVar(),), 0)
Grammar.startItem = startItem
del startItem
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function finishItem returns the Earley item
$$ \langle\hat{S} \rightarrow S \bullet, 0\rangle $$
where $S$ is the start variable of the given grammar and $\hat{S}$ is a new variable.
|
def finishItem(self):
return EarleyItem('Start', (self.startVar(),), (), 0)
Grammar.finishItem = finishItem
del finishItem
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function startVar returns the start variable of the grammar. It is assumed that
the first rule grammar starts with the start variable of the grammar.
|
def startVar(self):
return self.mRules[0][0]
Grammar.startVar = startVar
del startVar
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function toString creates a readable presentation of the grammar rules.
|
def toString(self):
result = ''
for head, *body in self.mRules:
result += f'{head}: {body};\n'
return result
Grammar.__str__ = toString
del toString
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The class EarleyParser implements the parsing algorithm of Jay Earley.
The class maintains the following member variables:
- mGrammar is the grammar that is used to parse the given token string.
- mString is the list of tokens and literals that has to be parsed.
As a hack, the first element of this list in None.
Therefore, mString[i] is the ith token.
- mStateList is a list of sets of Earley items. If $n$ is the length of the given token string
(excluding the first element None), then $Q_i = \texttt{mStateList}[i]$.
The idea is that the set $Q_i$ is the set of those Earley items that the parser could be in
when it has read the tokens mString[1], $\cdots$, mString[n]. $Q_0$ is initialized as follows:
$$ Q_0 = \bigl{\langle\hat{S} \rightarrow \bullet S, 0\rangle\bigr}. $$
The Earley items are interpreted as follows: If we have
$$ \langle C \rightarrow \alpha \bullet \beta, k\rangle \in Q_i, $$
then we know the following:
- After having read the tokens mString[:k+1] the parser tries to parse the variable $C$
in the token string mString[k+1:].
- After having read the token string mString[k+1:i+1] the parser has already recognized $\alpha$
and now needs to recognize $\beta$ in the token string mString[i+1:] in order to parse the variable $C$.
|
class EarleyParser():
def __init__(self, grammar, TokenList):
self.mGrammar = grammar
self.mString = [None] + TokenList # dirty hack so mString[1] is first token
self.mStateList = [set() for i in range(len(TokenList)+1)]
print('Grammar:\n')
print(self.mGrammar)
print(f'Input: {self.mString}\n')
self.mStateList[0] = { self.mGrammar.startItem() }
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The method parse implements Earley's algorithm. For all states
$Q_1$, $\cdots$, $Q_n$ we proceed as follows:
- We apply the completion operation followed by the prediction operation.
This is done until no more states are added to $Q_i$.
(The inner while loop is not necessary if the grammar does not contain $\varepsilon$-rules.)
- Finally, the scanning operation is applied to $Q_i$.
After $Q_i$ has been computed, we proceed to compute $Q_{i+1}$.
Parsing is successful iff
$$ \langle\hat{S} \rightarrow S \bullet, 0\rangle \in Q_n $$
|
def parse(self):
"run Earley's algorithm"
n = len(self.mString) - 1 # mString[0] = None
for i in range(0, n+1):
if i + 1 <= n:
next_token = self.mString[i+1]
else:
next_token = 'EOF'
print('_' * 80)
print(f'next token = {next_token}')
print('_' * 80)
change = True
while change:
change = self.complete(i)
change = self.predict(i) or change
self.scan(i)
# print states
print(f'\nQ{i}:')
Qi = self.mStateList[i]
for item in Qi:
print(item)
if i + 1 <= n:
print(f'\nQ{i+1}:')
Qip1 = self.mStateList[i+1]
for item in Qip1:
print(item)
if self.mGrammar.finishItem() in self.mStateList[-1]:
print('Parsing successful!')
else:
print('Parsing failed!')
EarleyParser.parse = parse
del parse
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The method complete(self, i) applies the completion operation to the state $Q_i$:
If we have
- $\langle C \rightarrow \gamma \bullet, j\rangle \in Q_i$ and
- $\langle A \rightarrow \beta \bullet C \delta, k\rangle \in Q_j$,
then the parser tried to parse the variable $C$ after having read mString[:j+1]
and we know that
$$ C \Rightarrow^ \texttt{mString[j+1:i+1]}, $$
i.e. the parser has recognized $C$ after having read mString[j+1:i+1].
Therefore the parser should proceed to recognize $\delta$ in state $Q_i$.
Therefore we add the Earley item* $\langle A \rightarrow \beta C \bullet \delta,k\rangle$ to the set $Q_i$:
$$\langle C \rightarrow \gamma \bullet, j\rangle \in Q_i \wedge
\langle A \rightarrow \beta \bullet C \delta, k\rangle \in Q_j \;\rightarrow\;
Q_i := Q_i \cup \bigl{ \langle A \rightarrow \beta C \bullet \delta, k\rangle \bigr}
$$
|
def complete(self, i):
change = False
added = True
Qi = self.mStateList[i]
while added:
added = False
newQi = set()
for item in Qi:
if item.isComplete():
C = item.mVariable
j = item.mIndex
Qj = self.mStateList[j]
for newItem in Qj:
if newItem.sameVar(C):
moved = newItem.moveDot()
newQi.add(moved)
if not (newQi <= Qi):
change = True
added = True
print("completion:")
for newItem in newQi:
if newItem not in Qi:
print(f'{newItem} added to Q{i}')
self.mStateList[i] |= newQi
Qi = self.mStateList[i]
return change
EarleyParser.complete = complete
del complete
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The method self.predict(i) applies the prediction operation to the state $Q_i$:
If $\langle A \rightarrow \beta \bullet C \delta, k \rangle \in Q_j$, then
the parser tries to recognize $C\delta$ after having read mString[:j+1]. To this end
it has to parse $C$ in the string mString[j+1:].
Therefore, if $C \rightarrow \gamma$ is a rule of our grammar,
we add the Earley item $\langle C \rightarrow \bullet \gamma, j\rangle$ to the set $Q_j$:
$$ \langle A \rightarrow \beta \bullet C \delta, k\rangle \in Q_j
\wedge (C \rightarrow \gamma) \in R
\;\rightarrow\;
Q_j := Q_j \cup\bigl{ \langle C \rightarrow \bullet\gamma, j\rangle\bigr}.
$$
As the right hand side $\gamma$ might start with a variable, the function uses a fix point iteration
until no more Earley items are added to $Q_j$.
|
def predict(self, i):
change = False
added = True
Qi = self.mStateList[i]
while added:
added = False
newQi = set()
for item in Qi:
c = item.nextVar()
if c != None:
for rule in self.mGrammar.mRules:
if c == rule[0]:
newQi.add(EarleyItem(c, (), rule[1:], i))
if not (newQi <= Qi):
change = True
added = True
print("prediction:")
for newItem in newQi:
if newItem not in Qi:
print(f'{newItem} added to Q{i}')
self.mStateList[i] |= newQi
Qi = self.mStateList[i]
return change
EarleyParser.predict = predict
del predict
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function self.scan(i) applies the scanning operation to the state $Q_i$.
If $\langle A \rightarrow \beta \bullet a \gamma, k\rangle \in Q_i$ and $a$ is a token,
then the parser tries to recognize the right hand side of the grammar rule
$$ A \rightarrow \beta a \gamma$$
and after having read mString[k+1:i+1] it has already recognized $\beta$.
If we now have mString[i+1] == a, then the parser still has to recognize $\gamma$ in mString[i+2:].
Therefore, the Earley object $\langle A \rightarrow \beta a \bullet \gamma, k\rangle$ is added to
the set $Q_{i+1}$:
$$\langle A \rightarrow \beta \bullet a \gamma, k\rangle \in Q_i \wedge x_{i+1} = a
\;\rightarrow\;
Q_{i+1} := Q_{i+1} \cup \bigl{ \langle A \rightarrow \beta a \bullet \gamma, k\rangle \bigr}
$$
|
def scan(self, i):
Qi = self.mStateList[i]
n = len(self.mString) - 1 # remember mStateList[0] == None
if i + 1 <= n:
a = self.mString[i+1]
for item in Qi:
if item.scan(a):
self.mStateList[i+1].add(item.moveDot())
print('scanning:')
print(f'{item.moveDot()} added to Q{i+1}')
EarleyParser.scan = scan
del scan
import re
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function tokenize transforms the string s into a list of tokens. See below for an example.
|
def tokenize(s):
'''Transform the string s into a list of tokens. The string s
is supposed to represent an arithmetic expression.
'''
lexSpec = r'''([ \t]+) | # blanks and tabs
([1-9][0-9]*|0) | # number
([()]) | # parentheses
([-+*/]) | # arithmetical operators
(.) # unrecognized character
'''
tokenList = re.findall(lexSpec, s, re.VERBOSE)
result = []
for ws, number, parenthesis, operator, error in tokenList:
if ws: # skip blanks and tabs
continue
elif number:
result += [ 'NUMBER' ]
elif parenthesis:
result += [ parenthesis ]
elif operator:
result += [ operator ]
else:
result += [ f'ERROR({error})']
return result
tokenize('1 + 2 * 3')
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The function test takes two arguments.
- file is the name of a file containing a grammar,
- word is a string that should be parsed.
word is first tokenized. Then the resulting token list is parsed using Earley's algorithm.
|
def test(file, word):
Rules = parse_grammar(file)
grammar = Grammar(Rules)
TokenList = tokenize(word)
ep = EarleyParser(grammar, TokenList)
ep.parse()
test('simple.g', '1 + 2 * 3')
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
The command below cleans the directory. If you are running windows, you have to replace rmwith del.
|
!rm GrammarLexer.* GrammarParser.* Grammar.tokens GrammarListener.py Grammar.interp
!rm -r __pycache__
!ls
|
ANTLR4-Python/Earley-Parser/Earley-Parser.ipynb
|
Danghor/Formal-Languages
|
gpl-2.0
|
Univariate normal
Generate data
|
from scipy.stats import norm
data = norm(10, 2).rvs(20)
data
n = len(data)
xbar = np.mean(data)
s2 = np.var(data)
n, xbar, s2
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Grid algorithm
|
mus = np.linspace(8, 12, 101)
prior_mu = Pmf(1, mus)
prior_mu.index.name = 'mu'
sigmas = np.linspace(0.01, 5, 100)
ps = sigmas**-2
prior_sigma = Pmf(ps, sigmas)
prior_sigma.index.name = 'sigma'
from utils import make_joint
prior = make_joint(prior_mu, prior_sigma)
from utils import normalize
def update_norm(prior, data):
"""Update the prior based on data.
prior: joint distribution of mu and sigma
data: sequence of observations
"""
X, Y, Z = np.meshgrid(prior.columns, prior.index, data)
likelihood = norm(X, Y).pdf(Z).prod(axis=2)
posterior = prior * likelihood
normalize(posterior)
return posterior
posterior = update_norm(prior, data)
from utils import marginal
posterior_mu_grid = marginal(posterior, 0)
posterior_sigma_grid = marginal(posterior, 1)
posterior_mu_grid.plot()
decorate(title='Posterior distribution of mu')
posterior_sigma_grid.plot(color='C1')
decorate(title='Posterior distribution of sigma')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Update
Mostly following notation in Murphy, Conjugate Bayesian analysis of the Gaussian distribution
|
m0 = 0
kappa0 = 0
alpha0 = 0
beta0 = 0
m_n = (kappa0 * m0 + n * xbar) / (kappa0 + n)
m_n
kappa_n = kappa0 + n
kappa_n
alpha_n = alpha0 + n/2
alpha_n
beta_n = beta0 + n*s2/2 + n * kappa0 * (xbar-m0)**2 / (kappa0 + n) / 2
beta_n
def update_normal(prior, summary):
m0, kappa0, alpha0, beta0 = prior
n, xbar, s2 = summary
m_n = (kappa0 * m0 + n * xbar) / (kappa0 + n)
kappa_n = kappa0 + n
alpha_n = alpha0 + n/2
beta_n = (beta0 + n*s2/2 +
n * kappa0 * (xbar-m0)**2 / (kappa0 + n) / 2)
return m_n, kappa_n, alpha_n, beta_n
prior = 0, 0, 0, 0
summary = n, xbar, s2
update_normal(prior, summary)
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior distribution of sigma
|
from scipy.stats import invgamma
dist_sigma2 = invgamma(alpha_n, scale=beta_n)
dist_sigma2.mean()
dist_sigma2.std()
sigma2s = np.linspace(0.01, 20, 101)
ps = dist_sigma2.pdf(sigma2s)
posterior_sigma2_invgammas = Pmf(ps, sigma2s)
posterior_sigma2_invgammas.normalize()
posterior_sigma2_invgammas.plot()
decorate(xlabel='$\sigma^2$',
ylabel='PDF',
title='Posterior distribution of variance')
sigmas = np.sqrt(sigma2s)
posterior_sigma_invgammas = Pmf(ps, sigmas)
posterior_sigma_invgammas.normalize()
posterior_sigma_grid.make_cdf().plot(color='gray', label='grid')
posterior_sigma_invgammas.make_cdf().plot(color='C1', label='invgamma')
decorate(xlabel='$\sigma$',
ylabel='PDF',
title='Posterior distribution of standard deviation')
posterior_sigma_invgammas.mean(), posterior_sigma_grid.mean()
posterior_sigma_invgammas.std(), posterior_sigma_grid.std()
2 / np.sqrt(2 * (n-1))
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior distribution of mu
|
from scipy.stats import t as student_t
def make_student_t(df, loc, scale):
return student_t(df, loc=loc, scale=scale)
df = 2 * alpha_n
precision = alpha_n * kappa_n / beta_n
dist_mu = make_student_t(df, m_n, 1/np.sqrt(precision))
dist_mu.mean()
dist_mu.std()
np.sqrt(4/n)
mus = np.linspace(8, 12, 101)
ps = dist_mu.pdf(mus)
posterior_mu_student = Pmf(ps, mus)
posterior_mu_student.normalize()
posterior_mu_student.plot()
decorate(xlabel='$\mu$',
ylabel='PDF',
title='Posterior distribution of mu')
posterior_mu_grid.make_cdf().plot(color='gray', label='grid')
posterior_mu_student.make_cdf().plot(label='invgamma')
decorate(xlabel='$\mu$',
ylabel='CDF',
title='Posterior distribution of mu')
def make_posterior_mu(m_n, kappa_n, alpha_n, beta_n):
df = 2 * alpha_n
loc = m_n
precision = alpha_n * kappa_n / beta_n
dist_mu = make_student_t(df, loc, 1/np.sqrt(precision))
return dist_mu
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior joint distribution
|
mu_mesh, sigma2_mesh = np.meshgrid(mus, sigma2s)
joint = (dist_sigma2.pdf(sigma2_mesh) *
norm(m_n, sigma2_mesh/kappa_n).pdf(mu_mesh))
joint_df = pd.DataFrame(joint, columns=mus, index=sigma2s)
from utils import plot_contour
plot_contour(joint_df)
decorate(xlabel='$\mu$',
ylabel='$\sigma^2$',
title='Posterior joint distribution')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Sampling from posterior predictive
|
sample_sigma2 = dist_sigma2.rvs(1000)
sample_mu = norm(m_n, sample_sigma2 / kappa_n).rvs()
sample_pred = norm(sample_mu, np.sqrt(sample_sigma2)).rvs()
cdf_pred = Cdf.from_seq(sample_pred)
cdf_pred.plot()
sample_pred.mean(), sample_pred.var()
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Analytic posterior predictive
|
df = 2 * alpha_n
precision = alpha_n * kappa_n / beta_n / (kappa_n+1)
dist_pred = make_student_t(df, m_n, 1/np.sqrt(precision))
xs = np.linspace(2, 16, 101)
ys = dist_pred.cdf(xs)
plt.plot(xs, ys, color='gray', label='student t')
cdf_pred.plot(label='sample')
decorate(title='Predictive distribution')
def make_posterior_pred(m_n, kappa_n, alpha_n, beta_n):
df = 2 * alpha_n
loc = m_n
precision = alpha_n * kappa_n / beta_n / (kappa_n+1)
dist_pred = make_student_t(df, loc, 1/np.sqrt(precision))
return dist_pred
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Multivariate normal
Generate data
|
mean = [10, 20]
sigma_x = 2
sigma_y = 3
rho = 0.3
cov = rho * sigma_x * sigma_y
Sigma = [[sigma_x**2, cov], [cov, sigma_y**2]]
Sigma
from scipy.stats import multivariate_normal
n = 20
data = multivariate_normal(mean, Sigma).rvs(n)
data
n = len(data)
n
xbar = np.mean(data, axis=0)
xbar
S = np.cov(data.transpose())
S
np.corrcoef(data.transpose())
stds = np.sqrt(np.diag(S))
stds
corrcoef = S / np.outer(stds, stds)
corrcoef
def unpack_cov(S):
stds = np.sqrt(np.diag(S))
corrcoef = S / np.outer(stds, stds)
return stds[0], stds[1], corrcoef[0][1]
sigma_x, sigma_y, rho = unpack_cov(S)
sigma_x, sigma_y, rho
def pack_cov(sigma_x, sigma_y, rho):
cov = sigma_x * sigma_y * rho
return np.array([[sigma_x**2, cov], [cov, sigma_y**2]])
pack_cov(sigma_x, sigma_y, rho)
S
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Update
|
m_0 = 0
Lambda_0 = 0
nu_0 = 0
kappa_0 = 0
m_n = (kappa_0 * m_0 + n * xbar) / (kappa_0 + n)
m_n
xbar
diff = (xbar - m_0)
D = np.outer(diff, diff)
D
Lambda_n = Lambda_0 + S + n * kappa_0 * D / (kappa_0 + n)
Lambda_n
S
nu_n = nu_0 + n
nu_n
kappa_n = kappa_0 + n
kappa_n
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior distribution of covariance
|
from scipy.stats import invwishart
def make_invwishart(nu, Lambda):
d, _ = Lambda.shape
return invwishart(nu, scale=Lambda * (nu - d - 1))
dist_cov = make_invwishart(nu_n, Lambda_n)
dist_cov.mean()
S
sample_Sigma = dist_cov.rvs(1000)
np.mean(sample_Sigma, axis=0)
res = [unpack_cov(Sigma) for Sigma in sample_Sigma]
sample_sigma_x, sample_sigma_y, sample_rho = np.transpose(res)
sample_sigma_x.mean(), sample_sigma_y.mean(), sample_rho.mean()
unpack_cov(S)
Cdf.from_seq(sample_sigma_x).plot(label=r'$\sigma_x$')
Cdf.from_seq(sample_sigma_y).plot(label=r'$\sigma_y$')
decorate(xlabel='Standard deviation',
ylabel='CDF',
title='Posterior distribution of standard deviation')
Cdf.from_seq(sample_rho).plot()
decorate(xlabel='Coefficient of correlation',
ylabel='CDF',
title='Posterior distribution of correlation')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Evaluate the Inverse Wishart PDF
|
num = 51
sigma_xs = np.linspace(0.01, 10, num)
sigma_ys = np.linspace(0.01, 10, num)
rhos = np.linspace(-0.3, 0.9, num)
index = pd.MultiIndex.from_product([sigma_xs, sigma_ys, rhos],
names=['sigma_x', 'sigma_y', 'rho'])
joint = Pmf(0, index)
joint.head()
dist_cov.pdf(S)
for sigma_x, sigma_y, rho in joint.index:
Sigma = pack_cov(sigma_x, sigma_y, rho)
joint.loc[sigma_x, sigma_y, rho] = dist_cov.pdf(Sigma)
joint.normalize()
from utils import pmf_marginal
posterior_sigma_x = pmf_marginal(joint, 0)
posterior_sigma_y = pmf_marginal(joint, 1)
marginal_rho = pmf_marginal(joint, 2)
posterior_sigma_x.mean(), posterior_sigma_y.mean(), marginal_rho.mean()
unpack_cov(S)
posterior_sigma_x.plot(label='$\sigma_x$')
posterior_sigma_y.plot(label='$\sigma_y$')
decorate(xlabel='Standard deviation',
ylabel='PDF',
title='Posterior distribution of standard deviation')
posterior_sigma_x.make_cdf().plot(color='gray')
posterior_sigma_y.make_cdf().plot(color='gray')
Cdf.from_seq(sample_sigma_x).plot(label=r'$\sigma_x$')
Cdf.from_seq(sample_sigma_y).plot(label=r'$\sigma_y$')
decorate(xlabel='Standard deviation',
ylabel='CDF',
title='Posterior distribution of standard deviation')
marginal_rho.make_cdf().plot(color='gray')
Cdf.from_seq(sample_rho).plot()
decorate(xlabel='Coefficient of correlation',
ylabel='CDF',
title='Posterior distribution of correlation')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior distribution of mu
|
m_n
sample_mu = [multivariate_normal(m_n, Sigma/kappa_n).rvs()
for Sigma in sample_Sigma]
sample_mu0, sample_mu1 = np.transpose(sample_mu)
sample_mu0.mean(), sample_mu1.mean()
xbar
sample_mu0.std(), sample_mu1.std()
2 / np.sqrt(n), 3 / np.sqrt(n)
Cdf.from_seq(sample_mu0).plot(label=r'$\mu_0$ sample')
Cdf.from_seq(sample_mu1).plot(label=r'$\mu_1$ sample')
decorate(xlabel=r'$\mu$',
ylabel='CDF',
title=r'Posterior distribution of $\mu$')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Multivariate student t
Let's use this implementation
|
from scipy.special import gammaln
def multistudent_pdf(x, mean, shape, df):
return np.exp(logpdf(x, mean, shape, df))
def logpdf(x, mean, shape, df):
p = len(mean)
vals, vecs = np.linalg.eigh(shape)
logdet = np.log(vals).sum()
valsinv = np.array([1.0/v for v in vals])
U = vecs * np.sqrt(valsinv)
dev = x - mean
maha = np.square(dev @ U).sum(axis=-1)
t = 0.5 * (df + p)
A = gammaln(t)
B = gammaln(0.5 * df)
C = p/2. * np.log(df * np.pi)
D = 0.5 * logdet
E = -t * np.log(1 + (1./df) * maha)
return A - B - C - D + E
d = len(m_n)
x = m_n
mean = m_n
df = nu_n - d + 1
shape = Lambda_n / kappa_n
multistudent_pdf(x, mean, shape, df)
mu0s = np.linspace(8, 12, 91)
mu1s = np.linspace(18, 22, 101)
mu_mesh = np.dstack(np.meshgrid(mu0s, mu1s))
mu_mesh.shape
ps = multistudent_pdf(mu_mesh, mean, shape, df)
joint = pd.DataFrame(ps, columns=mu0s, index=mu1s)
normalize(joint)
plot_contour(joint)
from utils import marginal
posterior_mu0_student = marginal(joint, 0)
posterior_mu1_student = marginal(joint, 1)
posterior_mu0_student.make_cdf().plot(color='gray', label=r'$\mu_0 multi t$')
posterior_mu1_student.make_cdf().plot(color='gray', label=r'$\mu_1 multi t$')
Cdf.from_seq(sample_mu0).plot(label=r'$\mu_0$ sample')
Cdf.from_seq(sample_mu1).plot(label=r'$\mu_1$ sample')
decorate(xlabel=r'$\mu$',
ylabel='CDF',
title=r'Posterior distribution of $\mu$')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Compare to analytic univariate distributions
|
prior = 0, 0, 0, 0
summary = n, xbar[0], S[0][0]
summary
params = update_normal(prior, summary)
params
dist_mu0 = make_posterior_mu(*params)
dist_mu0.mean(), dist_mu0.std()
mu0s = np.linspace(7, 12, 101)
ps = dist_mu0.pdf(mu0s)
posterior_mu0 = Pmf(ps, index=mu0s)
posterior_mu0.normalize()
prior = 0, 0, 0, 0
summary = n, xbar[1], S[1][1]
summary
params = update_normal(prior, summary)
params
dist_mu1 = make_posterior_mu(*params)
dist_mu1.mean(), dist_mu1.std()
mu1s = np.linspace(17, 23, 101)
ps = dist_mu1.pdf(mu1s)
posterior_mu1 = Pmf(ps, index=mu1s)
posterior_mu1.normalize()
posterior_mu0.make_cdf().plot(label=r'$\mu_0$ uni t', color='gray')
posterior_mu1.make_cdf().plot(label=r'$\mu_1$ uni t', color='gray')
Cdf.from_seq(sample_mu0).plot(label=r'$\mu_0$ sample')
Cdf.from_seq(sample_mu1).plot(label=r'$\mu_1$ sample')
decorate(xlabel=r'$\mu$',
ylabel='CDF',
title=r'Posterior distribution of $\mu$')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Sampling from posterior predictive
|
sample_pred = [multivariate_normal(mu, Sigma).rvs()
for mu, Sigma in zip(sample_mu, sample_Sigma)]
sample_x0, sample_x1 = np.transpose(sample_pred)
sample_x0.mean(), sample_x1.mean()
sample_x0.std(), sample_x1.std()
prior = 0, 0, 0, 0
summary = n, xbar[0], S[0][0]
params = update_normal(prior, summary)
dist_x0 = make_posterior_pred(*params)
dist_x0.mean(), dist_x0.std()
x0s = np.linspace(2, 18, 101)
ps = dist_x0.pdf(x0s)
pred_x0 = Pmf(ps, index=x0s)
pred_x0.normalize()
prior = 0, 0, 0, 0
summary = n, xbar[1], S[1][1]
params = update_normal(prior, summary)
dist_x1 = make_posterior_pred(*params)
dist_x1.mean(), dist_x1.std()
x1s = np.linspace(10, 30, 101)
ps = dist_x1.pdf(x1s)
pred_x1 = Pmf(ps, index=x1s)
pred_x1.normalize()
pred_x0.make_cdf().plot(label=r'$x_0$ student t', color='gray')
pred_x1.make_cdf().plot(label=r'$x_1$ student t', color='gray')
Cdf.from_seq(sample_x0).plot(label=r'$x_0$ sample')
Cdf.from_seq(sample_x1).plot(label=r'$x_1$ sample')
decorate(xlabel='Quantity',
ylabel='CDF',
title='Posterior predictive distributions')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Comparing to the multivariate student t
|
d = len(m_n)
x = m_n
mean = m_n
df = nu_n - d + 1
shape = Lambda_n * (kappa_n+1) / kappa_n
multistudent_pdf(x, mean, shape, df)
x0s = np.linspace(0, 20, 91)
x1s = np.linspace(10, 30, 101)
x_mesh = np.dstack(np.meshgrid(x0s, x1s))
x_mesh.shape
ps = multistudent_pdf(x_mesh, mean, shape, df)
joint = pd.DataFrame(ps, columns=x0s, index=x1s)
normalize(joint)
plot_contour(joint)
from utils import marginal
posterior_x0_student = marginal(joint, 0)
posterior_x1_student = marginal(joint, 1)
posterior_x0_student.make_cdf().plot(color='gray', label=r'$x_0$ multi t')
posterior_x1_student.make_cdf().plot(color='gray', label=r'$x_1$ multi t')
Cdf.from_seq(sample_x0).plot(label=r'$x_0$ sample')
Cdf.from_seq(sample_x1).plot(label=r'$x_1$ sample')
decorate(xlabel='Quantity',
ylabel='CDF',
title='Posterior predictive distributions')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Bayesian linear regression
Generate data
|
inter, slope = 5, 2
sigma = 3
n = 20
xs = norm(0, 3).rvs(n)
xs = np.sort(xs)
ys = inter + slope * xs + norm(0, sigma).rvs(20)
plt.plot(xs, ys, 'o');
import statsmodels.api as sm
X = sm.add_constant(xs)
X
model = sm.OLS(ys, X)
results = model.fit()
results.summary()
beta_hat = results.params
beta_hat
# k = results.df_model
k = 2
s2 = results.resid @ results.resid / (n - k)
s2
s2 = results.ssr / (n - k)
s2
np.sqrt(s2)
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Grid algorithm
|
beta0s = np.linspace(2, 8, 71)
prior_inter = Pmf(1, beta0s, name='inter')
prior_inter.index.name = 'Intercept'
beta1s = np.linspace(1, 3, 61)
prior_slope = Pmf(1, beta1s, name='slope')
prior_slope.index.name = 'Slope'
sigmas = np.linspace(1, 6, 51)
ps = sigmas**-2
prior_sigma = Pmf(ps, sigmas, name='sigma')
prior_sigma.index.name = 'Sigma'
prior_sigma.normalize()
prior_sigma.plot()
from utils import make_joint
def make_joint3(pmf1, pmf2, pmf3):
"""Make a joint distribution with three parameters.
pmf1: Pmf object
pmf2: Pmf object
pmf3: Pmf object
returns: Pmf representing a joint distribution
"""
joint2 = make_joint(pmf2, pmf1).stack()
joint3 = make_joint(pmf3, joint2).stack()
return Pmf(joint3)
prior3 = make_joint3(prior_slope, prior_inter, prior_sigma)
prior3.head()
from utils import normalize
def update_optimized(prior, data):
"""Posterior distribution of regression parameters
`slope`, `inter`, and `sigma`.
prior: Pmf representing the joint prior
data: DataFrame with columns `x` and `y`
returns: Pmf representing the joint posterior
"""
xs = data['x']
ys = data['y']
sigmas = prior.columns
likelihood = prior.copy()
for slope, inter in prior.index:
expected = slope * xs + inter
resid = ys - expected
resid_mesh, sigma_mesh = np.meshgrid(resid, sigmas)
densities = norm.pdf(resid_mesh, 0, sigma_mesh)
likelihood.loc[slope, inter] = densities.prod(axis=1)
posterior = prior * likelihood
normalize(posterior)
return posterior
data = pd.DataFrame(dict(x=xs, y=ys))
from utils import normalize
posterior = update_optimized(prior3.unstack(), data)
normalize(posterior)
from utils import marginal
posterior_sigma_grid = marginal(posterior, 0)
posterior_sigma_grid.plot(label='grid')
decorate(title='Posterior distribution of sigma')
joint_posterior = marginal(posterior, 1).unstack()
plot_contour(joint_posterior)
posterior_beta0_grid = marginal(joint_posterior, 0)
posterior_beta1_grid = marginal(joint_posterior, 1)
posterior_beta0_grid.make_cdf().plot(label=r'$\beta_0$')
posterior_beta1_grid.make_cdf().plot(label=r'$\beta_1$')
decorate(title='Posterior distributions of parameters')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior distribution of sigma
According to Gelman et al, the posterior distribution of $\sigma^2$ is scaled inverse chi2 with $\nu=n-k$ and scale $s^2$.
According to Wikipedia, that's equivalent to inverse gamma with parameters $\nu/2$ and $\nu s^2 / 2$.
|
nu = n-k
nu/2, nu*s2/2
from scipy.stats import invgamma
dist_sigma2 = invgamma(nu/2, scale=nu*s2/2)
dist_sigma2.mean()
sigma2s = np.linspace(0.01, 30, 101)
ps = dist_sigma2.pdf(sigma2s)
posterior_sigma2_invgamma = Pmf(ps, sigma2s)
posterior_sigma2_invgamma.normalize()
posterior_sigma2_invgamma.plot()
sigmas = np.sqrt(sigma2s)
posterior_sigma_invgamma = Pmf(ps, sigmas)
posterior_sigma_invgamma.normalize()
posterior_sigma_invgamma.mean(), posterior_sigma_grid.mean()
posterior_sigma_grid.make_cdf().plot(color='gray', label='grid')
posterior_sigma_invgamma.make_cdf().plot(label='invgamma')
decorate(title='Posterior distribution of sigma')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior distribution of sigma, updatable version
Per the Wikipedia page: https://en.wikipedia.org/wiki/Bayesian_linear_regression
|
Lambda_0 = np.zeros((k, k))
Lambda_n = Lambda_0 + X.T @ X
Lambda_n
from scipy.linalg import inv
mu_0 = np.zeros(k)
mu_n = inv(Lambda_n) @ (Lambda_0 @ mu_0 + X.T @ X @ beta_hat)
mu_n
a_0 = 0
a_n = a_0 + n / 2
a_n
b_0 = 0
b_n = b_0 + (ys.T @ ys +
mu_0.T @ Lambda_0 @ mu_0 -
mu_n.T @ Lambda_n @ mu_n) / 2
b_n
a_n, nu/2
b_n, nu * s2 / 2
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Sampling the posterior of the parameters
|
sample_sigma2 = dist_sigma2.rvs(1000)
sample_sigma = np.sqrt(sample_sigma2)
from scipy.linalg import inv
V_beta = inv(X.T @ X)
V_beta
sample_beta = [multivariate_normal(beta_hat, V_beta * sigma2).rvs()
for sigma2 in sample_sigma2]
np.mean(sample_beta, axis=0)
beta_hat
np.std(sample_beta, axis=0)
results.bse
sample_beta0, sample_beta1 = np.transpose(sample_beta)
Cdf.from_seq(sample_beta0).plot(label=r'$\beta_0$')
Cdf.from_seq(sample_beta1).plot(label=r'$\beta_1$')
decorate(title='Posterior distributions of the parameters')
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Posterior using multivariate Student t
|
x = beta_hat
mean = beta_hat
df = (n - k)
shape = (V_beta * s2)
multistudent_pdf(x, mean, shape, df)
low, high = sample_beta0.min(), sample_beta0.max()
low, high
beta0s = np.linspace(0.9*low, 1.1*high, 101)
low, high = sample_beta1.min(), sample_beta1.max()
beta1s = np.linspace(0.9*low, 1.1*high, 91)
beta0_mesh, beta1_mesh = np.meshgrid(beta0s, beta1s)
beta_mesh = np.dstack(np.meshgrid(beta0s, beta1s))
beta_mesh.shape
ps = multistudent_pdf(beta_mesh, mean, shape, df)
ps.shape
joint = pd.DataFrame(ps, columns=beta0s, index=beta1s)
from utils import normalize
normalize(joint)
from utils import plot_contour
plot_contour(joint)
decorate(xlabel=r'$\beta_0$',
ylabel=r'$\beta_1$')
marginal_beta0_student = marginal(joint, 0)
marginal_beta1_student = marginal(joint, 1)
from utils import marginal
posterior_beta0_grid.make_cdf().plot(color='gray', label=r'grid $\beta_0$')
posterior_beta1_grid.make_cdf().plot(color='gray', label=r'grid $\beta_1$')
marginal_beta0_student.make_cdf().plot(label=r'student $\beta_0$', color='gray')
marginal_beta1_student.make_cdf().plot(label=r'student $\beta_0$', color='gray')
Cdf.from_seq(sample_beta0).plot(label=r'sample $\beta_0$')
Cdf.from_seq(sample_beta1).plot(label=r'sample $\beta_1$')
decorate()
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Sampling the predictive distribution
|
t = [X @ beta + norm(0, sigma).rvs(n)
for beta, sigma in zip(sample_beta, sample_sigma)]
predictions = np.array(t)
predictions.shape
low, median, high = np.percentile(predictions, [5, 50, 95], axis=0)
plt.plot(xs, ys, 'o')
plt.plot(xs, median)
plt.fill_between(xs, low, high, color='C1', alpha=0.3)
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Modeling the predictive distribution
|
xnew = [1, 2, 3]
Xnew = sm.add_constant(xnew)
Xnew
t = [Xnew @ beta + norm(0, sigma).rvs(len(xnew))
for beta, sigma in zip(sample_beta, sample_sigma)]
predictions = np.array(t)
predictions.shape
x0, x1, x2 = predictions.T
Cdf.from_seq(x0).plot()
Cdf.from_seq(x1).plot()
Cdf.from_seq(x2).plot()
mu_new = Xnew @ beta_hat
mu_new
cov_new = s2 * (np.eye(len(xnew)) + Xnew @ V_beta @ Xnew.T)
cov_new
x = mu_new
mean = mu_new
df = (n - k)
shape = cov_new
multistudent_pdf(x, mean, shape, df)
y1s = np.linspace(0, 20, 51)
y0s = np.linspace(0, 20, 61)
y2s = np.linspace(0, 20, 71)
mesh = np.stack(np.meshgrid(y0s, y1s, y2s), axis=-1)
mesh.shape
ps = multistudent_pdf(mesh, mean, shape, df)
ps.shape
ps /= ps.sum()
ps.sum()
p1s = ps.sum(axis=1).sum(axis=1)
p1s.shape
p0s = ps.sum(axis=0).sum(axis=1)
p0s.shape
p2s = ps.sum(axis=0).sum(axis=0)
p2s.shape
pmf_y0 = Pmf(p0s, y0s)
pmf_y1 = Pmf(p1s, y1s)
pmf_y2 = Pmf(p2s, y2s)
pmf_y0.mean(), pmf_y1.mean(), pmf_y2.mean()
pmf_y0.make_cdf().plot(color='gray')
pmf_y1.make_cdf().plot(color='gray')
pmf_y2.make_cdf().plot(color='gray')
Cdf.from_seq(x0).plot()
Cdf.from_seq(x1).plot()
Cdf.from_seq(x2).plot()
stop
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Leftovers
Related discussion saved for the future
https://stats.stackexchange.com/questions/78177/posterior-covariance-of-normal-inverse-wishart-not-converging-properly
|
from scipy.stats import chi2
class NormalInverseWishartDistribution(object):
def __init__(self, mu, lmbda, nu, psi):
self.mu = mu
self.lmbda = float(lmbda)
self.nu = nu
self.psi = psi
self.inv_psi = np.linalg.inv(psi)
def sample(self):
sigma = np.linalg.inv(self.wishartrand())
return (np.random.multivariate_normal(self.mu, sigma / self.lmbda), sigma)
def wishartrand(self):
dim = self.inv_psi.shape[0]
chol = np.linalg.cholesky(self.inv_psi)
foo = np.zeros((dim,dim))
for i in range(dim):
for j in range(i+1):
if i == j:
foo[i,j] = np.sqrt(chi2.rvs(self.nu-(i+1)+1))
else:
foo[i,j] = np.random.normal(0,1)
return np.dot(chol, np.dot(foo, np.dot(foo.T, chol.T)))
def posterior(self, data):
n = len(data)
mean_data = np.mean(data, axis=0)
sum_squares = np.sum([np.array(np.matrix(x - mean_data).T * np.matrix(x - mean_data)) for x in data], axis=0)
mu_n = (self.lmbda * self.mu + n * mean_data) / (self.lmbda + n)
lmbda_n = self.lmbda + n
nu_n = self.nu + n
dev = mean_data - self.mu
psi_n = (self.psi + sum_squares +
self.lmbda * n / (self.lmbda + n) * np.array(dev.T @ dev))
return NormalInverseWishartDistribution(mu_n, lmbda_n, nu_n, psi_n)
x = NormalInverseWishartDistribution(np.array([0,0])-3,1,3,np.eye(2))
samples = [x.sample() for _ in range(100)]
data = [np.random.multivariate_normal(mu,cov) for mu,cov in samples]
y = NormalInverseWishartDistribution(np.array([0,0]),1,3,np.eye(2))
z = y.posterior(data)
print('mu_n: {0}'.format(z.mu))
print('psi_n: {0}'.format(z.psi))
from scipy.linalg import inv
from scipy.linalg import cholesky
def wishartrand(nu, Lambda):
d, _ = Lambda.shape
chol = cholesky(Lambda)
foo = np.empty((d, d))
for i in range(d):
for j in range(i+1):
if i == j:
foo[i,j] = np.sqrt(chi2.rvs(nu-(i+1)+1))
else:
foo[i,j] = np.random.normal(0, 1)
return np.dot(chol, np.dot(foo, np.dot(foo.T, chol.T)))
sample = [wishartrand(nu_n, Lambda_n) for i in range(1000)]
np.mean(sample, axis=0)
Lambda_n
|
examples/normal.ipynb
|
AllenDowney/ThinkBayes2
|
mit
|
Keys for each of the columns in the orbit (Keplerian state) report.
|
utc = 0
sma = 1
ecc = 2
inc = 3
raan = 4
aop = 5
ma = 6
ta = 7
|
dslwp/DSLWP-B deorbit.ipynb
|
daniestevez/jupyter_notebooks
|
gpl-3.0
|
Plot the orbital parameters which are vary significantly between different tracking files.
|
#fig1 = plt.figure(figsize = [15,8], facecolor='w')
fig_peri = plt.figure(figsize = [15,8], facecolor='w')
fig_peri_deorbit = plt.figure(figsize = [15,8], facecolor='w')
fig_apo = plt.figure(figsize = [15,8], facecolor='w')
fig3 = plt.figure(figsize = [15,8], facecolor='w')
fig4 = plt.figure(figsize = [15,8], facecolor='w')
fig4_rap = plt.figure(figsize = [15,8], facecolor='w')
fig5 = plt.figure(figsize = [15,8], facecolor='w')
fig6 = plt.figure(figsize = [15,8], facecolor='w')
#sub1 = fig1.add_subplot(111)
sub_peri = fig_peri.add_subplot(111)
sub_peri_deorbit = fig_peri_deorbit.add_subplot(111)
sub_apo = fig_apo.add_subplot(111)
sub3 = fig3.add_subplot(111)
sub4 = fig4.add_subplot(111)
sub4_rap = fig4_rap.add_subplot(111)
sub5 = fig5.add_subplot(111)
sub6 = fig6.add_subplot(111)
subs = [sub_peri, sub_peri_deorbit, sub_apo, sub3, sub4, sub4_rap, sub5, sub6]
for file in ['orbit_deorbit.txt', 'orbit_deorbit2.txt', 'orbit_deorbit3.txt']:
orbit = load_orbit_file(file)
t = Time(mjd2unixtimestamp(orbit[:,utc]), format='unix')
#sub1.plot(t.datetime, orbit[:,sma])
sub_peri.plot(t.datetime, orbit[:,sma]*(1-orbit[:,ecc]))
deorbit_sel = (mjd2unixtimestamp(orbit[:,utc]) >= 1564012800) & (mjd2unixtimestamp(orbit[:,utc]) <= 1564963200)
if np.any(deorbit_sel):
sub_peri_deorbit.plot(t[deorbit_sel].datetime, orbit[deorbit_sel,sma]*(1-orbit[deorbit_sel,ecc]))
sub_apo.plot(t.datetime, orbit[:,sma]*(1+orbit[:,ecc]))
sub3.plot(t.datetime, orbit[:,ecc])
sub4.plot(t.datetime, orbit[:,aop])
sub4_rap.plot(t.datetime, np.fmod(orbit[:,aop] + orbit[:,raan],360))
sub5.plot(t.datetime, orbit[:,inc])
sub6.plot(t.datetime, orbit[:,raan])
sub_peri.axhline(y = 1737, color='red')
sub_peri_deorbit.axhline(y = 1737, color='red')
month_locator = mdates.MonthLocator()
day_locator = mdates.DayLocator()
for sub in subs:
sub.set_xlabel('Time')
sub.xaxis.set_major_locator(month_locator)
sub.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
sub.xaxis.set_tick_params(rotation=45)
sub_peri_deorbit.xaxis.set_major_locator(day_locator)
sub_peri_deorbit.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
#sub1.set_ylabel('SMA (km)')
sub_peri.set_ylabel('Periapsis radius (km)')
sub_peri_deorbit.set_ylabel('Periapsis radius (km)')
sub_apo.set_ylabel('Apoapsis radius (km)')
sub3.set_ylabel('ECC')
sub4.set_ylabel('AOP (deg)')
sub4_rap.set_ylabel('RAOP (deg)')
sub5.set_ylabel('INC (deg)')
sub6.set_ylabel('RAAN (deg)')
#sub1.set_title('Semi-major axis')
sub_peri.set_title('Periapsis radius')
sub_peri_deorbit.set_title('Periapsis radius')
sub_apo.set_title('Apoapsis radius')
sub3.set_title('Eccentricity')
sub4.set_title('Argument of periapsis')
sub4_rap.set_title('Right ascension of periapsis')
sub5.set_title('Inclination')
sub6.set_title('Right ascension of ascending node')
for sub in subs:
sub.legend(['Before periapsis lowering', 'After periapsis lowering', 'Latest ephemeris'])
sub_peri.legend(['Before periapsis lowering', 'After periapsis lowering', 'Latest ephemeris', 'Lunar radius']);
sub_peri_deorbit.legend(['Before periapsis lowering', 'After periapsis lowering', 'Latest ephemeris', 'Lunar radius']);
|
dslwp/DSLWP-B deorbit.ipynb
|
daniestevez/jupyter_notebooks
|
gpl-3.0
|
Try running a few tests on a subset of users, the keys are our unique user IDs. We proceed as follows for each user ID:
1.Create a user dataframe with the following columns:•(review_text, review rating, business_id)
2.Create a list of unique business IDs for that user
3.Connect to the MongoDB server and pull all of the reviews for the restaurants that the user has reviewed
4.Create a restaurant dataframe with the following columns:•(review_text, biz rating, business_id)
5.Do a 80/20 training/test split, randomizing over the set of user' reviewed restaurants
6.Train the LSI model on the set of training reviews, get the number of topics used in fitting
7.Set up the FeatureUnion with the desired features, then fit according to the train reviews and transform the train reviews
8.
|
#####Test Machine Learning Algorithms
ip = 'Insert IP here'
conn = MongoClient(ip, 27017)
conn.database_names()
db = conn.get_database('cleaned_data')
reviews = db.get_collection('restaurant_reviews')
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
1.Create a user dataframe with the following columns:•(review_text, review rating, business_id)
|
useridlist =[]
for user in users_dict.keys():
useridlist.append(user)
print(useridlist[1])
def make_user_df(user_specific_reviews):
#Input:
#user_specific_reviews: A list of reviews for a specific user
#Output: A dataframe with the columns (user_reviews, user_ratings, biz_ids)
user_reviews = []
user_ratings = []
business_ids = []
for review in user_specific_reviews:
user_reviews.append(review['text'])
user_ratings.append(review['stars'])
business_ids.append(review['business_id'])
###WE SHOULD MAKE THE OUR OWN PUNCTUATION RULES
#https://www.tutorialspoint.com/python/string_translate.htm
#I'm gonna have to go and figure out what this does -ed
#user_reviews = [review.encode('utf-8').translate(None, string.punctuation) for review in user_reviews]
user_df = pd.DataFrame({'review_text': user_reviews, 'rating': user_ratings, 'biz_id': business_ids})
return user_df
#test to make users_dict,make_user_df works
user_specific_reviews = users_dict[useridlist[0]]
x= make_user_df(user_specific_reviews)
x.head()
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
2.Create a list of unique business IDs for that user
|
business_ids = list(set(user['biz_id']))
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
3.Connect to the MongoDB server and pull all of the reviews for the restaurants that the user has reviewed
|
restreview = {}
for i in range(0, len(business_ids)):
rlist = []
for obj in reviews.find({'business_id':business_ids[i]}):
rlist.append(obj)
restreview[business_ids[i]] = rlist
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
4.Create a restaurant dataframe with the following columns:•(review_text, biz rating, business_id)
|
restaurant_df = yml.make_biz_df(user, restreview)
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
5.Do a 80/20 training/test split, randomizing over the set of user' reviewed restaurants
|
#Create a training and test sample from the user reviewed restaurants
split_samp = .30
random_int = random.randint(1, len(business_ids)-1)
len_random = int(len(business_ids) * split_samp)
test_set = business_ids[random_int:random_int+len_random]
training_set = business_ids[0:random_int]+business_ids[random_int+len_random:len(business_ids)]
train_reviews, train_ratings = [], []
#Create a list of training reviews and training ratings
for rest_id in training_set:
train_reviews.extend(list(user_df[user_df['biz_id'] == rest_id]['review_text']))
train_ratings.extend(list(user_df[user_df['biz_id'] == rest_id]['rating']))
#Transform the star labels into a binary class problem, 0 if rating is < 4 else 1
train_labels = [1 if x >=4 else 0 for x in train_ratings]
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
6.Train the LSI model on the set of training reviews, get the number of topics used in fitting
|
#this is just for my understand of how the model is working under the hood
def fit_lsi(train_reviews):
#Input: train_reviews is a list of reviews that will be used to train the LSI feature transformer
#Output: A trained LSI model and the transformed training reviews
texts = [[word for word in review.lower().split() if (word not in stop_words)]
for review in train_reviews]
dictionary = corpora.Dictionary(texts)
corpus = [dictionary.doc2bow(text) for text in texts]
numpy_matrix = matutils.corpus2dense(corpus, num_terms=10000)
singular_values = np.linalg.svd(numpy_matrix, full_matrices=False, compute_uv=False)
mean_sv = sum(list(singular_values))/len(singular_values)
topics = int(mean_sv)
tfidf = models.TfidfModel(corpus)
corpus_tfidf = tfidf[corpus]
lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=topics)
return lsi, topics, dictionary
#Fit LSI model and return number of LSI topics
lsi, topics, dictionary = yml.fit_lsi(train_reviews)
|
machine_learning/User_Sample_test_draft_ed.ipynb
|
georgetown-analytics/yelp-classification
|
mit
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.