Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
German Wiktionary - Normalized SQLite Database
A fully normalized, production-ready SQLite database of German Wiktionary with complete linguistic information and optimized query performance.
π― Key Features
- β Zero data loss: All information from original Wiktionary preserved
- β‘ Lightning-fast queries: Comprehensive indexing (< 5ms typical queries)
- π Full grammatical analysis: Complete inflection paradigms, word forms, 185 unique grammatical tags
- π Semantic relations: Synonyms, antonyms, derived/related terms
- π Multi-language: Translations to 100+ languages
- π± Mobile-ready: Optimized for Flutter/Dart apps on all platforms
- π£οΈ Pronunciation: IPA, audio files, rhymes
- π Rich examples: Usage examples with citations
- π Proper normalization: Tags/topics/categories deduplicated (3NF)
π Database Statistics
- Entries: 970,801 German words
- Word senses: 3.1M+ definitions with glosses
- Translations: 1.1M+ translations
- Word forms: 6.1M+ inflected forms
- Pronunciations: 2.3M+ IPA/audio entries
- Examples: 427K+ usage examples
- Unique tags: 185 grammatical tags
- Unique topics: 58 domain topics
- Unique categories: 352 Wiktionary categories
- File size: ~3.6 GB (uncompressed), ~1.8 GB (compressed)
ποΈ Database Schema
Lookup Tables (Deduplicated)
- tags: Grammatical tags (nominative, plural, past, etc.)
- topics: Domain topics (biology, law, sports, etc.)
- categories: Wiktionary categories
Core Tables
- entries: Main word entries
- senses: Word senses/meanings
- glosses: Definitions for each sense
- examples: Usage examples with citations
Morphology
- forms: All inflected forms (declensions, conjugations)
- form_tags: Many-to-many: forms β grammatical tags
- hyphenations: Syllable breaks
Phonology
- sounds: IPA pronunciations, audio URLs, rhymes
- sound_tags: Pronunciation variants
Semantics
- synonyms: Synonymous words
- antonyms: Opposite words
- derived_terms: Morphologically derived words
- related_terms: Semantically related words
- synonym_tags/synonym_topics: Synonym metadata
Translation
- translations: Translations to other languages
- translation_tags: Translation grammatical tags
Metadata
- entry_tags: Word-level tags
- entry_categories: Wiktionary categories
- sense_tags/sense_topics/sense_categories: Sense-level metadata
π Usage
Download
from huggingface_hub import hf_hub_download
import sqlite3
import gzip
import shutil
# Download compressed database
db_gz_path = hf_hub_download(
repo_id="cstr/de-wiktionary-sqlite-normalized",
filename="de_wiktionary_normalized.db",
repo_type="dataset"
)
# Decompress if needed
if db_gz_path.endswith('.gz'):
db_path = db_gz_path[:-3]
with gzip.open(db_gz_path, 'rb') as f_in:
with open(db_path, 'wb') as f_out:
shutil.copyfileobj(f_in, f_out)
else:
db_path = db_gz_path
# Connect
conn = sqlite3.connect(db_path)
Python Examples
import sqlite3
conn = sqlite3.connect('de_wiktionary_normalized.db')
cursor = conn.cursor()
# Example 1: Get all inflections with grammatical tags
cursor.execute('''
SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
WHERE e.word = ? AND e.lang = 'Deutsch'
GROUP BY f.id
''', ('Haus',))
for form, tags in cursor.fetchall():
print(f"{form}: {tags}")
# Example 2: Get synonyms
cursor.execute('''
SELECT s.synonym_word
FROM entries e
JOIN synonyms s ON e.id = s.entry_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', ('schnell',))
synonyms = [row[0] for row in cursor.fetchall()]
print(f"Synonyms: {synonyms}")
# Example 3: Get IPA pronunciation
cursor.execute('''
SELECT s.ipa
FROM entries e
JOIN sounds s ON e.id = s.entry_id
WHERE e.word = ? AND s.ipa IS NOT NULL
''', ('Haus',))
print("IPA:", [row[0] for row in cursor.fetchall()])
# Example 4: Get definitions
cursor.execute('''
SELECT g.gloss_text
FROM entries e
JOIN senses se ON e.id = se.entry_id
JOIN glosses g ON se.id = g.sense_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', ('Liebe',))
print("Definitions:")
for (gloss,) in cursor.fetchall():
print(f" - {gloss}")
# Example 5: Get English translations
cursor.execute('''
SELECT t.word
FROM entries e
JOIN translations t ON e.id = t.entry_id
WHERE e.word = ? AND t.lang_code = 'en'
''', ('Hund',))
print("English:", [row[0] for row in cursor.fetchall()])
# Example 6: Find words by topic
cursor.execute('''
SELECT DISTINCT e.word
FROM entries e
JOIN senses s ON e.id = s.entry_id
JOIN sense_topics st ON s.id = st.sense_id
JOIN topics t ON st.topic_id = t.id
WHERE t.topic = 'biology'
LIMIT 20
''')
print("Biology terms:", [row[0] for row in cursor.fetchall()])
# Example 7: Autocomplete search
cursor.execute('''
SELECT DISTINCT word
FROM entries
WHERE word LIKE ? AND lang = 'Deutsch'
ORDER BY word
LIMIT 10
''', ('Sch%',))
print("Words starting with 'Sch':", [row[0] for row in cursor.fetchall()])
conn.close()
Flutter/Dart
import 'package:sqflite/sqflite.dart';
import 'package:http/http.dart' as http;
import 'package:path/path.dart';
import 'package:path_provider/path_provider.dart';
import 'dart:io';
import 'package:archive/archive_io.dart';
class WiktionaryDB {
static Database? _database;
Future<Database> get database async {
if (_database != null) return _database!;
_database = await initDB();
return _database!;
}
Future<Database> initDB() async {
final dir = await getApplicationDocumentsDirectory();
final dbPath = join(dir.path, 'de_wiktionary.db');
// Download and decompress on first run
if (!await File(dbPath).exists()) {
final url = 'https://huggingface.co/datasets/cstr/de-wiktionary-sqlite-normalized/resolve/main/de_wiktionary_normalized.db';
print('Downloading database...');
final response = await http.get(Uri.parse(url));
final gzPath = join(dir.path, 'de_wiktionary.db.gz');
await File(gzPath).writeAsBytes(response.bodyBytes);
print('Decompressing...');
final gzFile = File(gzPath);
final dbFile = File(dbPath);
// Decompress gzip
final bytes = gzFile.readAsBytesSync();
final archive = GZipDecoder().decodeBytes(bytes);
await dbFile.writeAsBytes(archive);
// Clean up
await gzFile.delete();
print('Database ready!');
}
return await openDatabase(dbPath, version: 1);
}
// Get word forms with grammatical tags
Future<List<Map<String, dynamic>>> getWordForms(String word) async {
final db = await database;
return await db.rawQuery('''
SELECT f.form_text, GROUP_CONCAT(t.tag, ', ') as tags
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
WHERE e.word = ? AND e.lang = 'Deutsch'
GROUP BY f.id
''', [word]);
}
// Get synonyms
Future<List<String>> getSynonyms(String word) async {
final db = await database;
final results = await db.rawQuery('''
SELECT s.synonym_word
FROM entries e
JOIN synonyms s ON e.id = s.entry_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', [word]);
return results.map((r) => r['synonym_word'] as String).toList();
}
// Get IPA pronunciation
Future<List<String>> getIPA(String word) async {
final db = await database;
final results = await db.rawQuery('''
SELECT s.ipa
FROM entries e
JOIN sounds s ON e.id = s.entry_id
WHERE e.word = ? AND s.ipa IS NOT NULL
''', [word]);
return results.map((r) => r['ipa'] as String).toList();
}
// Get definitions
Future<List<String>> getDefinitions(String word) async {
final db = await database;
final results = await db.rawQuery('''
SELECT g.gloss_text
FROM entries e
JOIN senses se ON e.id = se.entry_id
JOIN glosses g ON se.id = g.sense_id
WHERE e.word = ? AND e.lang = 'Deutsch'
''', [word]);
return results.map((r) => r['gloss_text'] as String).toList();
}
// Autocomplete search
Future<List<String>> searchWords(String prefix) async {
final db = await database;
final results = await db.rawQuery('''
SELECT DISTINCT word
FROM entries
WHERE word LIKE ? AND lang = 'Deutsch'
ORDER BY word
LIMIT 20
''', ['$prefix%']);
return results.map((r) => r['word'] as String).toList();
}
}
π Example Queries
Get complete grammatical analysis
SELECT
e.word,
f.form_text,
GROUP_CONCAT(DISTINCT t.tag) as grammatical_tags,
s.ipa
FROM entries e
JOIN forms f ON e.id = f.entry_id
LEFT JOIN form_tags ft ON f.id = ft.form_id
LEFT JOIN tags t ON ft.tag_id = t.id
LEFT JOIN sounds s ON e.id = s.entry_id
WHERE e.word = 'lieben'
GROUP BY f.id;
Find words by grammatical features
SELECT DISTINCT e.word
FROM entries e
JOIN forms f ON e.id = f.entry_id
JOIN form_tags ft ON f.id = ft.form_id
JOIN tags t ON ft.tag_id = t.id
WHERE t.tag = 'irregular' AND e.pos = 'verb'
LIMIT 100;
Get words with semantic relationships
SELECT
e.word,
s.synonym_word,
a.antonym_word
FROM entries e
LEFT JOIN synonyms s ON e.id = s.entry_id
LEFT JOIN antonyms a ON e.id = a.entry_id
WHERE e.word = 'gut';
π± Platform Support
- iOS: β Full support via sqflite
- Android: β Full support via sqflite
- Windows: β Via sqflite_common_ffi
- macOS: β Via sqflite_common_ffi
- Linux: β Via sqflite_common_ffi
- Web: β οΈ Via sql.js (WASM)
π Performance
Typical query times (modern hardware):
- Word lookup: < 1ms
- Get all forms: < 5ms
- Complex multi-table joins: < 20ms
- Autocomplete search: < 10ms
π Source
Original data: cstr/de-wiktionary-extracted
π License
CC-BY-SA 3.0 (same as source)
π οΈ Technical Details
- SQLite Version: 3.x compatible
- Encoding: UTF-8
- Foreign Keys: Enabled
- Indexes: 38 indexes for optimal performance
- Normalization: 3NF with deduplicated tags/topics/categories
π Schema Overview
entries (970K rows)
βββ senses (3.1M) β glosses (3.1M)
βββ forms (6.1M) β form_tags (26M) β tags (185)
βββ sounds (2.3M) β sound_tags
βββ translations (1.1M) β translation_tags
βββ synonyms (162K) β synonym_tags
βββ antonyms
βββ hyphenations (954K)
π€ Contributing
Found an issue? Please report it on the source dataset repository.
- Downloads last month
- 34