Datasets:
Tasks:
Image-to-Text
Formats:
parquet
Languages:
Japanese
Size:
10K - 100K
Tags:
advertisement
License:
license: cc-by-nc-sa-4.0 | |
language: ja | |
tags: | |
- advertisement | |
task_categories: | |
- text2text-generation | |
- image-to-text | |
size_categories: 10K<n<100K | |
pretty_name: camera | |
dataset_info: | |
- config_name: with-lp-images | |
features: | |
- name: asset_id | |
dtype: int64 | |
- name: kw | |
dtype: string | |
- name: lp_meta_description | |
dtype: string | |
- name: title_org | |
dtype: string | |
- name: title_ne1 | |
dtype: string | |
- name: title_ne2 | |
dtype: string | |
- name: title_ne3 | |
dtype: string | |
- name: domain | |
dtype: string | |
- name: parsed_full_text_annotation | |
sequence: | |
- name: text | |
dtype: string | |
- name: xmax | |
dtype: int64 | |
- name: xmin | |
dtype: int64 | |
- name: ymax | |
dtype: int64 | |
- name: ymin | |
dtype: int64 | |
- name: lp_image | |
dtype: image | |
splits: | |
- name: test | |
num_bytes: 2528981570 | |
num_examples: 872 | |
- name: dev | |
num_bytes: 13133740369.43 | |
num_examples: 3098 | |
- name: train | |
num_bytes: 51367983297.415 | |
num_examples: 12395 | |
download_size: 65867475365 | |
dataset_size: 67030705236.845 | |
- config_name: without-lp-images | |
features: | |
- name: asset_id | |
dtype: int64 | |
- name: kw | |
dtype: string | |
- name: lp_meta_description | |
dtype: string | |
- name: title_org | |
dtype: string | |
- name: title_ne1 | |
dtype: string | |
- name: title_ne2 | |
dtype: string | |
- name: title_ne3 | |
dtype: string | |
- name: domain | |
dtype: string | |
- name: parsed_full_text_annotation | |
sequence: | |
- name: text | |
dtype: string | |
- name: xmax | |
dtype: int64 | |
- name: xmin | |
dtype: int64 | |
- name: ymax | |
dtype: int64 | |
- name: ymin | |
dtype: int64 | |
splits: | |
- name: test | |
num_bytes: 14634833 | |
num_examples: 872 | |
- name: dev | |
num_bytes: 69170878 | |
num_examples: 3098 | |
- name: train | |
num_bytes: 280633510 | |
num_examples: 12395 | |
download_size: 150489014 | |
dataset_size: 364439221 | |
configs: | |
- config_name: with-lp-images | |
data_files: | |
- split: test | |
path: with-lp-images/test-* | |
- split: dev | |
path: with-lp-images/validation-* | |
- split: train | |
path: with-lp-images/train-* | |
default: true | |
- config_name: without-lp-images | |
data_files: | |
- split: test | |
path: without-lp-images/test-* | |
- split: dev | |
path: without-lp-images/validation-* | |
- split: train | |
path: without-lp-images/train-* | |
# Dataset Card for CAMERA📷: | |
## Table of Contents: | |
- [Dataset Card for Camera](#dataset-card-for-camera) | |
- [Table of Contents](#table-of-contents) | |
- [Dataset Details](#dataset-details) | |
- [Dataset Description](#dataset-description) | |
- [Dataset Sources](#dataset-sources) | |
- [Uses](#uses) | |
- [Direct Use](#direct-use) | |
- [Dataset Information](#datasest-information) | |
- [Data Example](#data-example) | |
- [Dataset Structure](#dataset-structure) | |
- [Citation](#citation) | |
## Dataset Details | |
### Dataset Description | |
CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset, which comprises actual data sourced from Japanese search ads and incorporates annotations encompassing multi-modal information such as the LP images. | |
### Dataset Sources | |
- **Homepage:** [Github](https://github.com/CyberAgentAILab/camera) | |
- **Paper:** [Striking Gold in Advertising: Standardization and Exploration of Ad Text | |
Generation](https://aclanthology.org/2024.acl-long.54/) | |
- [NEW!] Our paper has been accepted to [ACL2024](https://2024.aclweb.org/), and we will update the paper information as soon as the proceedings are published. | |
## Uses | |
### Direct Use | |
- Dataset with lp images (with-lp-images) | |
```python | |
import datasets | |
dataset = datasets.load_dataset("cyberagent/camera", name="with-lp-images") | |
``` | |
- Dataset without lp images (without-lp-images) | |
```python | |
import datasets | |
dataset = datasets.load_dataset("cyberagent/camera", name="without-lp-images") | |
``` | |
### Dataset Information | |
- with-lp-images | |
``` | |
DatasetDict({ | |
train: Dataset({ | |
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'], | |
num_rows: 12395 | |
}) | |
dev: Dataset({ | |
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'], | |
num_rows: 3098 | |
}) | |
test: Dataset({ | |
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'], | |
num_rows: 872 | |
}) | |
}) | |
``` | |
- without-lp-images | |
``` | |
DatasetDict({ | |
train: Dataset({ | |
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'], | |
num_rows: 12395 | |
}) | |
dev: Dataset({ | |
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'], | |
num_rows: 3098 | |
}) | |
test: Dataset({ | |
features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'], | |
num_rows: 872 | |
}) | |
}) | |
``` | |
### Data Example | |
``` | |
{'asset_id': 6041, | |
'kw': 'GLLARE MARUYAMA', | |
'lp_meta_description': '美容サロン ブルーヘアー 札幌市 西区 琴似 創業34年 かゆみ、かぶれを防ぎ、美しい髪へ', | |
'title_org': '北海道、水の教会で結婚式', | |
'title_ne1': '', | |
'title_ne2': '', | |
'title_ne3': '', | |
'domain': '', | |
'parsed_full_text_annotation': { | |
'text': ['表参道', | |
'名古屋', | |
'梅田', | |
... | |
'成約者様専用ページ', | |
'個人情報保護方針', | |
'星野リゾートトマム'], | |
'xmax': [163, | |
162, | |
157, | |
... | |
1047, | |
1035, | |
1138], | |
'xmin': [125, | |
125, | |
129, | |
... | |
937, | |
936, | |
1027], | |
'ymax': [9652, | |
9791, | |
9928, | |
... | |
17119, | |
17154, | |
17515], | |
'ymin': [9642, | |
9781, | |
9918, | |
... | |
17110, | |
17143, | |
17458]}, | |
'lp_image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x17596>} | |
``` | |
### Dataset Structure | |
| Name | Description | | |
| ---- | ---- | | |
| asset_id | ids (associated with LP images) | | |
| kw | search keyword | | |
| lp_meta_description | meta description extracted from LP (i.e., LP Text)| | |
| title_org | ad text (original gold reference) | | |
| title_ne{1-3} | ad text (additonal gold references for multi-reference evaluation | | |
| domain | industry domain (HR, EC, Fin, Edu) for industry-wise evaluation | | |
| parsed_full_text_annotation | OCR result for LP image | | |
| lp_image | LP image | | |
## Citation | |
``` | |
@inproceedings{mita-etal-2024-striking, | |
title = "Striking Gold in Advertising: Standardization and Exploration of Ad Text Generation", | |
author = "Mita, Masato and | |
Murakami, Soichiro and | |
Kato, Akihiko and | |
Zhang, Peinan", | |
editor = "Ku, Lun-Wei and | |
Martins, Andre and | |
Srikumar, Vivek", | |
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", | |
month = aug, | |
year = "2024", | |
address = "Bangkok, Thailand and virtual meeting", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2024.acl-long.54", | |
pages = "955--972", | |
abstract = "In response to the limitations of manual ad creation, significant research has been conducted in the field of automatic ad text generation (ATG). However, the lack of comprehensive benchmarks and well-defined problem sets has made comparing different methods challenging. To tackle these challenges, we standardize the task of ATG and propose a first benchmark dataset, CAMERA, carefully designed and enabling the utilization of multi-modal information and facilitating industry-wise evaluations. Our extensive experiments with a variety of nine baselines, from classical methods to state-of-the-art models including large language models (LLMs), show the current state and the remaining challenges. We also explore how existing metrics in ATG and an LLM-based evaluator align with human evaluations.", | |
} | |
``` |