|
import os |
|
from fastapi import FastAPI |
|
import subprocess |
|
import wandb |
|
from huggingface_hub import HfApi |
|
|
|
TOKEN = os.environ.get("DATACOMP_TOKEN") |
|
API = HfApi(token=TOKEN) |
|
wandb_api_key = os.environ.get('wandb_api_key') |
|
wandb.login(key=wandb_api_key) |
|
|
|
random_num = 10.0 |
|
subset = 'frac-1over32' |
|
experiment_name = f"ImageNetTraining{random_num}-{subset}" |
|
experiment_repo = f"datacomp/{experiment_name}" |
|
app = FastAPI() |
|
|
|
@app.get("/") |
|
def start_train(): |
|
os.system("echo '#### pwd'") |
|
os.system("pwd") |
|
os.system("echo '#### ls'") |
|
os.system("ls") |
|
|
|
os.system("echo 'Creating results output repository in case it does not exist yet...'") |
|
try: |
|
API.create_repo(repo_id=f"{experiment_repo}", repo_type="dataset",) |
|
os.system(f"echo 'Created results output repository {experiment_repo}'") |
|
except: |
|
os.system("echo 'Already there; skipping.'") |
|
pass |
|
os.system("echo 'Beginning processing.'") |
|
|
|
os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True") |
|
os.system("echo 'Okay, trying training.'") |
|
os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-{random_num}-{subset} --log-wandb --experiment {experiment_name} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4") |
|
os.system("echo 'Done'.") |
|
os.system("ls") |
|
|
|
os.system("echo 'trying to upload...'") |
|
API.upload_folder(folder_path="/app", repo_id=f"{experiment_repo}", repo_type="dataset",) |
|
API.pause_space(experiment_repo) |
|
return {"Completed": "!"} |