repo_id
stringlengths
4
110
author
stringlengths
2
27
model_type
stringlengths
2
29
files_per_repo
int64
2
15.4k
downloads_30d
int64
0
19.9M
library
stringlengths
2
37
likes
int64
0
4.34k
pipeline
stringlengths
5
30
pytorch
bool
2 classes
tensorflow
bool
2 classes
jax
bool
2 classes
license
stringlengths
2
30
languages
stringlengths
4
1.63k
datasets
stringlengths
2
2.58k
co2
stringclasses
29 values
prs_count
int64
0
125
prs_open
int64
0
120
prs_merged
int64
0
15
prs_closed
int64
0
28
discussions_count
int64
0
218
discussions_open
int64
0
148
discussions_closed
int64
0
70
tags
stringlengths
2
513
has_model_index
bool
2 classes
has_metadata
bool
1 class
has_text
bool
1 class
text_length
int64
401
598k
is_nc
bool
1 class
readme
stringlengths
0
598k
hash
stringlengths
32
32
JacksonYan/Real-CUGAN
JacksonYan
null
16
0
null
1
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,219
false
> From <https://github.com/bilibili/ailab/tree/main/Real-CUGAN> # Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio`, `streamlit`, or `static` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code, or `static` html code). Path is relative to the root of the repository. `models`: _List[string]_ HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space. Will be parsed automatically from your code if not specified here. `datasets`: _List[string]_ HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space. Will be parsed automatically from your code if not specified here. `pinned`: _boolean_ Whether the Space stays on top of your list.
5b1b899e5e6b856c2ee8dc6e79213714
sd-concepts-library/naval-portrait
sd-concepts-library
null
12
0
null
3
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,416
false
### naval-portrait on Stable Diffusion This is the `<naval-portrait>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<naval-portrait> 0](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/1.jpeg) ![<naval-portrait> 1](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/5.jpeg) ![<naval-portrait> 2](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/0.jpeg) ![<naval-portrait> 3](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/4.jpeg) ![<naval-portrait> 4](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/2.jpeg) ![<naval-portrait> 5](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/3.jpeg) ![<naval-portrait> 6](https://huggingface.co/sd-concepts-library/naval-portrait/resolve/main/concept_images/6.jpeg)
51069597e1f5f452de37cf8bb92187b4
Kilgori/correct-yes-model
Kilgori
null
20
84
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
1
0
1
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
426
false
### Correct-Yes-model Dreambooth model trained by Kilgori with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
d7238b6dbdcc625b9bf3d330e9ce4f61
bofenghuang/whisper-large-v2-french
bofenghuang
whisper
44
331
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['fr']
['mozilla-foundation/common_voice_11_0', 'facebook/multilingual_librispeech', 'facebook/voxpopuli', 'google/fleurs', 'gigant/african_accented_french']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'hf-asr-leaderboard', 'whisper-event']
true
true
true
6,342
false
<style> img { display: inline; } </style> ![Model architecture](https://img.shields.io/badge/Model_Architecture-seq2seq-lightgrey) ![Model size](https://img.shields.io/badge/Params-1550M-lightgrey) ![Language](https://img.shields.io/badge/Language-French-lightgrey) # Fine-tuned whisper-large-v2 model for ASR in French This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2), trained on a composite dataset comprising of over 2200 hours of French speech audio, using the train and the validation splits of [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://github.com/facebookresearch/voxpopuli), [Fleurs](https://huggingface.co/datasets/google/fleurs), [Multilingual TEDx](http://www.openslr.org/100), [MediaSpeech](https://www.openslr.org/108), and [African Accented French](https://huggingface.co/datasets/gigant/african_accented_french). When using the model make sure that your speech input is sampled at 16Khz. **This model doesn't predict casing or punctuation.** ## Performance *Below are the WERs of the pre-trained models on the [Common Voice 9.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_9_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://github.com/facebookresearch/voxpopuli) and [Fleurs](https://huggingface.co/datasets/google/fleurs). These results are reported in the original [paper](https://cdn.openai.com/papers/whisper.pdf).* | Model | Common Voice 9.0 | MLS | VoxPopuli | Fleurs | | --- | :---: | :---: | :---: | :---: | | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 22.7 | 16.2 | 15.7 | 15.0 | | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 16.0 | 8.9 | 12.2 | 8.7 | | [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 14.7 | 8.9 | **11.0** | **7.7** | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | **13.9** | **7.3** | 11.4 | 8.3 | *Below are the WERs of the fine-tuned models on the [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0), [Multilingual LibriSpeech](https://huggingface.co/datasets/facebook/multilingual_librispeech), [Voxpopuli](https://github.com/facebookresearch/voxpopuli), and [Fleurs](https://huggingface.co/datasets/google/fleurs). Note that these evaluation datasets have been filtered and preprocessed to only contain French alphabet characters and are removed of punctuation outside of apostrophe. The results in the table are reported as `WER (greedy search) / WER (beam search with beam width 5)`.* | Model | Common Voice 11.0 | MLS | VoxPopuli | Fleurs | | --- | :---: | :---: | :---: | :---: | | [bofenghuang/whisper-small-cv11-french](https://huggingface.co/bofenghuang/whisper-small-cv11-french) | 11.76 / 10.99 | 9.65 / 8.91 | 14.45 / 13.66 | 10.76 / 9.83 | | [bofenghuang/whisper-medium-cv11-french](https://huggingface.co/bofenghuang/whisper-medium-cv11-french) | 9.03 / 8.54 | 6.34 / 5.86 | 11.64 / 11.35 | 7.13 / 6.85 | | [bofenghuang/whisper-medium-french](https://huggingface.co/bofenghuang/whisper-medium-french) | 9.03 / 8.73 | 4.60 / 4.44 | 9.53 / 9.46 | 6.33 / 5.94 | | [bofenghuang/whisper-large-v2-cv11-french](https://huggingface.co/bofenghuang/whisper-large-v2-cv11-french) | **8.05** / **7.67** | 5.56 / 5.28 | 11.50 / 10.69 | 5.42 / 5.05 | | [bofenghuang/whisper-large-v2-french](https://huggingface.co/bofenghuang/whisper-large-v2-french) | 8.15 / 7.83 | **4.20** / **4.03** | **9.10** / **8.66** | **5.22** / **4.98** | ## Usage Inference with 🤗 Pipeline ```python import torch from datasets import load_dataset from transformers import pipeline device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load pipeline pipe = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-french", device=device) # NB: set forced_decoder_ids for generation utils pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe") # Load data ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "fr", split="test", streaming=True) test_segment = next(iter(ds_mcv_test)) waveform = test_segment["audio"] # Run generated_sentences = pipe(waveform, max_new_tokens=225)["text"] # greedy # generated_sentences = pipe(waveform, max_new_tokens=225, generate_kwargs={"num_beams": 5})["text"] # beam search # Normalise predicted sentences if necessary ``` Inference with 🤗 low-level APIs ```python import torch import torchaudio from datasets import load_dataset from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Load model model = AutoModelForSpeechSeq2Seq.from_pretrained("bofenghuang/whisper-large-v2-french").to(device) processor = AutoProcessor.from_pretrained("bofenghuang/whisper-large-v2-french", language="french", task="transcribe") # NB: set forced_decoder_ids for generation utils model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fr", task="transcribe") # 16_000 model_sample_rate = processor.feature_extractor.sampling_rate # Load data ds_mcv_test = load_dataset("mozilla-foundation/common_voice_11_0", "fr", split="test", streaming=True) test_segment = next(iter(ds_mcv_test)) waveform = torch.from_numpy(test_segment["audio"]["array"]) sample_rate = test_segment["audio"]["sampling_rate"] # Resample if sample_rate != model_sample_rate: resampler = torchaudio.transforms.Resample(sample_rate, model_sample_rate) waveform = resampler(waveform) # Get feat inputs = processor(waveform, sampling_rate=model_sample_rate, return_tensors="pt") input_features = inputs.input_features input_features = input_features.to(device) # Generate generated_ids = model.generate(inputs=input_features, max_new_tokens=225) # greedy # generated_ids = model.generate(inputs=input_features, max_new_tokens=225, num_beams=5) # beam search # Detokenize generated_sentences = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # Normalise predicted sentences if necessary ```
f376cdb21885a53eb0708fe994e5f498
jmparejaz/qa_bert_finetuned-squad
jmparejaz
distilbert
12
8
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,275
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # qa_bert_finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.157358 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2206 | 1.0 | 5533 | 1.160322 | | 0.9452 | 2.0 | 11066 | 1.121690 | | 0.773 | 3.0 | 16599 | 1.157358 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
223044ba277776a580487661e231e94c
Helsinki-NLP/opus-mt-sv-ny
Helsinki-NLP
marian
10
8
transformers
0
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-sv-ny * source languages: sv * target languages: ny * OPUS readme: [sv-ny](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/sv-ny/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/sv-ny/opus-2020-01-21.zip) * test set translations: [opus-2020-01-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ny/opus-2020-01-21.test.txt) * test set scores: [opus-2020-01-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/sv-ny/opus-2020-01-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.sv.ny | 25.9 | 0.523 |
d98900166af193d0998db1d4c7d017c8
AymanMansour/Whisper-Sudanese-Dialect-medium
AymanMansour
whisper
41
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,532
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # openai/whisper-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2201 - Wer: 44.6966 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0566 | 6.02 | 1000 | 0.9354 | 47.1998 | | 0.0025 | 13.01 | 2000 | 1.0806 | 47.5605 | | 0.0012 | 19.03 | 3000 | 1.1642 | 47.6665 | | 0.0002 | 26.01 | 4000 | 1.1866 | 44.9724 | | 0.0001 | 33.0 | 5000 | 1.2201 | 44.6966 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2
587a6d3e186e2eae1a19ab1a16b14319
gokuls/bert-base-uncased-sst2
gokuls
bert
17
66
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,737
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-sst2 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2333 - Accuracy: 0.9128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2103 | 1.0 | 527 | 0.2507 | 0.9048 | | 0.1082 | 2.0 | 1054 | 0.2333 | 0.9128 | | 0.0724 | 3.0 | 1581 | 0.2371 | 0.9186 | | 0.0521 | 4.0 | 2108 | 0.2582 | 0.9186 | | 0.0393 | 5.0 | 2635 | 0.3094 | 0.9220 | | 0.0302 | 6.0 | 3162 | 0.3506 | 0.9197 | | 0.0258 | 7.0 | 3689 | 0.4149 | 0.9071 | | 0.0209 | 8.0 | 4216 | 0.3121 | 0.9174 | | 0.018 | 9.0 | 4743 | 0.4919 | 0.9060 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
5ebd7924e3c39ebb821afc8aa93a0055
MichaelHarborg/NMT_da-en_translator
MichaelHarborg
marian
10
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
633
false
Transformer model based on Vaswani et al., 2017 for Danish-English Neural Machine Translation. It has ~74M parameters and is a fine-tuned version of Helsinki-Opus-NLP da-en. The model achieves a BLEU score of 49.16 on a hold-out test set for the TED2020 dataset (in-domain dataset). The model achieves a BLEU score of 44.16 on a hold-out test set for the for CCAligned and Wikimatrix (out-of-domain dataset). This outperforms the baseline Opus model, which achieved BLEU scores of 46.74 and 42.31 on the in-domain and out-of-domain data respectively. Note: When running inference "_" characters can sometimes replace spaces.
3243754312ae30219fed80e5c0071787
sibyl/BART-large-commongen
sibyl
bart
13
6
transformers
0
text2text-generation
true
false
false
mit
null
['gem']
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,957
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # BART-large-commongen This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the gem dataset. It achieves the following results on the evaluation set: - Loss: 1.1409 - Spice: 0.4009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 6317 ### Training results | Training Loss | Epoch | Step | Validation Loss | Spice | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.1086 | 0.05 | 100 | 4.9804 | 0.3736 | | 4.4168 | 0.09 | 200 | 2.4402 | 0.4079 | | 1.8158 | 0.14 | 300 | 1.1096 | 0.4258 | | 1.1723 | 0.19 | 400 | 1.0845 | 0.4086 | | 1.0894 | 0.24 | 500 | 1.0727 | 0.423 | | 1.0949 | 0.28 | 600 | 1.0889 | 0.4224 | | 1.0773 | 0.33 | 700 | 1.0977 | 0.4201 | | 1.0708 | 0.38 | 800 | 1.1157 | 0.4213 | | 1.0663 | 0.43 | 900 | 1.1798 | 0.421 | | 1.0985 | 0.47 | 1000 | 1.1611 | 0.4025 | | 1.0561 | 0.52 | 1100 | 1.1048 | 0.421 | | 1.0594 | 0.57 | 1200 | 1.2044 | 0.3626 | | 1.0689 | 0.62 | 1300 | 1.1409 | 0.4009 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.1.dev0 - Tokenizers 0.10.3
7fb6c1391761bc3f2b8f1e11f6a7736d
tomekkorbak/compassionate_elion
tomekkorbak
null
2
0
null
0
null
false
false
false
mit
['en']
['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
8,594
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # compassionate_elion This model was trained from scratch on the tomekkorbak/pii-pile-chunk3-0-50000, the tomekkorbak/pii-pile-chunk3-50000-100000, the tomekkorbak/pii-pile-chunk3-100000-150000, the tomekkorbak/pii-pile-chunk3-150000-200000, the tomekkorbak/pii-pile-chunk3-200000-250000, the tomekkorbak/pii-pile-chunk3-250000-300000, the tomekkorbak/pii-pile-chunk3-300000-350000, the tomekkorbak/pii-pile-chunk3-350000-400000, the tomekkorbak/pii-pile-chunk3-400000-450000, the tomekkorbak/pii-pile-chunk3-450000-500000, the tomekkorbak/pii-pile-chunk3-500000-550000, the tomekkorbak/pii-pile-chunk3-550000-600000, the tomekkorbak/pii-pile-chunk3-600000-650000, the tomekkorbak/pii-pile-chunk3-650000-700000, the tomekkorbak/pii-pile-chunk3-700000-750000, the tomekkorbak/pii-pile-chunk3-750000-800000, the tomekkorbak/pii-pile-chunk3-800000-850000, the tomekkorbak/pii-pile-chunk3-850000-900000, the tomekkorbak/pii-pile-chunk3-900000-950000, the tomekkorbak/pii-pile-chunk3-950000-1000000, the tomekkorbak/pii-pile-chunk3-1000000-1050000, the tomekkorbak/pii-pile-chunk3-1050000-1100000, the tomekkorbak/pii-pile-chunk3-1100000-1150000, the tomekkorbak/pii-pile-chunk3-1150000-1200000, the tomekkorbak/pii-pile-chunk3-1200000-1250000, the tomekkorbak/pii-pile-chunk3-1250000-1300000, the tomekkorbak/pii-pile-chunk3-1300000-1350000, the tomekkorbak/pii-pile-chunk3-1350000-1400000, the tomekkorbak/pii-pile-chunk3-1400000-1450000, the tomekkorbak/pii-pile-chunk3-1450000-1500000, the tomekkorbak/pii-pile-chunk3-1500000-1550000, the tomekkorbak/pii-pile-chunk3-1550000-1600000, the tomekkorbak/pii-pile-chunk3-1600000-1650000, the tomekkorbak/pii-pile-chunk3-1650000-1700000, the tomekkorbak/pii-pile-chunk3-1700000-1750000, the tomekkorbak/pii-pile-chunk3-1750000-1800000, the tomekkorbak/pii-pile-chunk3-1800000-1850000, the tomekkorbak/pii-pile-chunk3-1850000-1900000 and the tomekkorbak/pii-pile-chunk3-1900000-1950000 datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - training_steps: 2362 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu113 - Datasets 2.5.1 - Tokenizers 0.11.6 # Full config {'dataset': {'conditional_training_config': {'aligned_prefix': '<|aligned|>', 'drop_token_fraction': 0.01, 'misaligned_prefix': '<|misaligned|>', 'threshold': 0.0}, 'datasets': ['tomekkorbak/pii-pile-chunk3-0-50000', 'tomekkorbak/pii-pile-chunk3-50000-100000', 'tomekkorbak/pii-pile-chunk3-100000-150000', 'tomekkorbak/pii-pile-chunk3-150000-200000', 'tomekkorbak/pii-pile-chunk3-200000-250000', 'tomekkorbak/pii-pile-chunk3-250000-300000', 'tomekkorbak/pii-pile-chunk3-300000-350000', 'tomekkorbak/pii-pile-chunk3-350000-400000', 'tomekkorbak/pii-pile-chunk3-400000-450000', 'tomekkorbak/pii-pile-chunk3-450000-500000', 'tomekkorbak/pii-pile-chunk3-500000-550000', 'tomekkorbak/pii-pile-chunk3-550000-600000', 'tomekkorbak/pii-pile-chunk3-600000-650000', 'tomekkorbak/pii-pile-chunk3-650000-700000', 'tomekkorbak/pii-pile-chunk3-700000-750000', 'tomekkorbak/pii-pile-chunk3-750000-800000', 'tomekkorbak/pii-pile-chunk3-800000-850000', 'tomekkorbak/pii-pile-chunk3-850000-900000', 'tomekkorbak/pii-pile-chunk3-900000-950000', 'tomekkorbak/pii-pile-chunk3-950000-1000000', 'tomekkorbak/pii-pile-chunk3-1000000-1050000', 'tomekkorbak/pii-pile-chunk3-1050000-1100000', 'tomekkorbak/pii-pile-chunk3-1100000-1150000', 'tomekkorbak/pii-pile-chunk3-1150000-1200000', 'tomekkorbak/pii-pile-chunk3-1200000-1250000', 'tomekkorbak/pii-pile-chunk3-1250000-1300000', 'tomekkorbak/pii-pile-chunk3-1300000-1350000', 'tomekkorbak/pii-pile-chunk3-1350000-1400000', 'tomekkorbak/pii-pile-chunk3-1400000-1450000', 'tomekkorbak/pii-pile-chunk3-1450000-1500000', 'tomekkorbak/pii-pile-chunk3-1500000-1550000', 'tomekkorbak/pii-pile-chunk3-1550000-1600000', 'tomekkorbak/pii-pile-chunk3-1600000-1650000', 'tomekkorbak/pii-pile-chunk3-1650000-1700000', 'tomekkorbak/pii-pile-chunk3-1700000-1750000', 'tomekkorbak/pii-pile-chunk3-1750000-1800000', 'tomekkorbak/pii-pile-chunk3-1800000-1850000', 'tomekkorbak/pii-pile-chunk3-1850000-1900000', 'tomekkorbak/pii-pile-chunk3-1900000-1950000'], 'is_split_by_sentences': True, 'skip_tokens': 2990407680}, 'generation': {'force_call_on': [25177], 'metrics_configs': [{}, {'n': 1}, {'n': 2}, {'n': 5}], 'scenario_configs': [{'generate_kwargs': {'bad_words_ids': [[50257], [50258]], 'do_sample': True, 'max_length': 128, 'min_length': 10, 'temperature': 0.7, 'top_k': 0, 'top_p': 0.9}, 'name': 'unconditional', 'num_samples': 4096, 'prefix': '<|aligned|>'}], 'scorer_config': {}}, 'kl_gpt3_callback': {'force_call_on': [25177], 'gpt3_kwargs': {'model_name': 'davinci'}, 'max_tokens': 64, 'num_samples': 4096, 'prefix': '<|aligned|>'}, 'model': {'from_scratch': False, 'gpt2_config_kwargs': {'reorder_and_upcast_attn': True, 'scale_attn_by': True}, 'model_kwargs': {'revision': '5c64636da035c40bb8b1186648a39822071476cb'}, 'num_additional_tokens': 2, 'path_or_name': 'tomekkorbak/cranky_lichterman'}, 'objective': {'name': 'MLE'}, 'tokenizer': {'path_or_name': 'gpt2', 'special_tokens': ['<|aligned|>', '<|misaligned|>']}, 'training': {'dataloader_num_workers': 0, 'effective_batch_size': 128, 'evaluation_strategy': 'no', 'fp16': True, 'hub_model_id': 'compassionate_elion', 'hub_strategy': 'all_checkpoints', 'learning_rate': 0.0005, 'logging_first_step': True, 'logging_steps': 1, 'num_tokens': 3300000000, 'output_dir': 'training_output2', 'per_device_train_batch_size': 16, 'push_to_hub': True, 'remove_unused_columns': False, 'save_steps': 251, 'save_strategy': 'steps', 'seed': 42, 'tokens_already_seen': 2990407680, 'warmup_ratio': 0.01, 'weight_decay': 0.1}} # Wandb URL: https://wandb.ai/tomekkorbak/apo/runs/mt2ulgpd
49693d943965cd0f1be23abfcd2253c8
mrgreat1110/bert-finetuned-ner
mrgreat1110
bert
12
1
transformers
0
token-classification
true
false
false
mit
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,526
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0883 - Precision: 0.9343 - Recall: 0.9495 - F1: 0.9418 - Accuracy: 0.9861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.02 | 1.0 | 1756 | 0.0944 | 0.9189 | 0.9381 | 0.9284 | 0.9833 | | 0.011 | 2.0 | 3512 | 0.0809 | 0.9358 | 0.9514 | 0.9435 | 0.9862 | | 0.0032 | 3.0 | 5268 | 0.0883 | 0.9343 | 0.9495 | 0.9418 | 0.9861 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
dff385ea9713defb3a2e03049960b217
muhtasham/base-vanilla-target-tweet
muhtasham
bert
10
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,708
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-vanilla-target-tweet This model is a fine-tuned version of [google/bert_uncased_L-12_H-768_A-12](https://huggingface.co/google/bert_uncased_L-12_H-768_A-12) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.8380 - Accuracy: 0.7781 - F1: 0.7773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3831 | 4.9 | 500 | 0.9800 | 0.7807 | 0.7785 | | 0.0414 | 9.8 | 1000 | 1.4175 | 0.7754 | 0.7765 | | 0.015 | 14.71 | 1500 | 1.6411 | 0.7754 | 0.7708 | | 0.0166 | 19.61 | 2000 | 1.5930 | 0.7941 | 0.7938 | | 0.0175 | 24.51 | 2500 | 1.3934 | 0.7888 | 0.7852 | | 0.0191 | 29.41 | 3000 | 1.9407 | 0.7647 | 0.7658 | | 0.0137 | 34.31 | 3500 | 1.8380 | 0.7781 | 0.7773 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
b53e09cf9258e6bed065e0b984579bb9
jonatasgrosman/exp_w2v2r_de_xls-r_age_teens-10_sixties-0_s460
jonatasgrosman
wav2vec2
10
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'de']
false
true
true
476
false
# exp_w2v2r_de_xls-r_age_teens-10_sixties-0_s460 Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
7714c2878922714bfd57dcd8340f404f
bitsanlp/roberta-finetuned-DA-task-B-100k-5-labels
bitsanlp
roberta
13
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
970
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-finetuned-DA-task-B-100k-5-labels This model is a fine-tuned version of [bitsanlp/roberta-retrained-100k](https://huggingface.co/bitsanlp/roberta-retrained-100k) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 28 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
1432c1a3bed2858bb207bbce23f3f8b7
jonatasgrosman/exp_w2v2t_en_vp-nl_s281
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
475
false
# exp_w2v2t_en_vp-nl_s281 Fine-tuned [facebook/wav2vec2-large-nl-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-nl-voxpopuli) for speech recognition on English using the train split of [Common Voice 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
31db89cd67826277449f0558d813fc9e
google/realm-cc-news-pretrained-encoder
google
realm
7
309
transformers
0
null
true
false
false
apache-2.0
['en']
null
null
0
0
0
0
0
0
0
[]
false
true
true
524
false
# realm-cc-news-pretrained-encoder ## Model description The REALM checkpoint pretrained with CC-News as target corpus and Wikipedia as knowledge corpus, converted from the TF checkpoint provided by Google Language. The original paper, code, and checkpoints can be found [here](https://github.com/google-research/language/tree/master/language/realm). ## Usage ```python from transformers import RealmKnowledgeAugEncoder encoder = RealmKnowledgeAugEncoder.from_pretrained("qqaatw/realm-cc-news-pretrained-encoder") ```
466d9688cce13307fb756abdb96c1037
coreml/coreml-stable-diffusion-2-1-base
coreml
null
6
0
null
10
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
1
0
1
['coreml', 'stable-diffusion', 'text-to-image']
false
true
true
12,899
false
# Core ML Converted Model This model was converted to Core ML for use on Apple Silicon devices by following Apple's instructions [here](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml).<br> Provide the model to an app such as [Mochi Diffusion](https://github.com/godly-devotion/MochiDiffusion) to generate images.<br> `split_einsum` version is compatible with all compute unit options including Neural Engine.<br> `original` version is only compatible with CPU & GPU option. # Stable Diffusion v2-1-base Model Card This model card focuses on the model associated with the Stable Diffusion v2-1-base model. This `stable-diffusion-2-1-base` model fine-tunes [stable-diffusion-2-base](https://huggingface.co/stabilityai/stable-diffusion-2-base) (`512-base-ema.ckpt`) with 220k extra steps taken, with `punsafe=0.98` on the same dataset. - Use it with the [`stablediffusion`](https://github.com/Stability-AI/stablediffusion) repository: download the `v2-1_512-ema-pruned.ckpt` [here](https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt). - Use it with 🧨 [`diffusers`](#examples) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL) - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([OpenCLIP-ViT/H](https://github.com/mlfoundations/open_clip)). - **Resources for more information:** [GitHub Repository](https://github.com/Stability-AI/). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion 2 in a simple and efficient manner. ```bash pip install diffusers transformers accelerate scipy safetensors ``` Running the pipeline (if you don't swap the scheduler it will run with the default PNDM/PLMS scheduler, in this example we are swapping it to EulerDiscreteScheduler): ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-2-1-base" scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` **Notes**: - Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance) - If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed) # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion v1, but applies in the same way to Stable Diffusion v2_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have filtered the dataset using LAION's NFSW detector (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion vw was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. Stable Diffusion v2 mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-5B and subsets (details below). The training data is further filtered using LAION's NSFW detector, with a "p_unsafe" score of 0.1 (conservative). For more details, please refer to LAION-5B's [NeurIPS 2022](https://openreview.net/forum?id=M3Y74vmsMcY) paper and reviewer discussions on the topic. **Training Procedure** Stable Diffusion v2 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through the OpenCLIP-ViT/H text-encoder. - The output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We also use the so-called _v-objective_, see https://arxiv.org/abs/2202.00512. We currently provide the following checkpoints, for various versions: ### Version 2.1 - `512-base-ema.ckpt`: Fine-tuned on `512-base-ema.ckpt` 2.0 with 220k extra steps taken, with `punsafe=0.98` on the same dataset. - `768-v-ema.ckpt`: Resumed from `768-v-ema.ckpt` 2.0 with an additional 55k steps on the same dataset (`punsafe=0.1`), and then fine-tuned for another 155k extra steps with `punsafe=0.98`. ### Version 2.0 - `512-base-ema.ckpt`: 550k steps at resolution `256x256` on a subset of [LAION-5B](https://laion.ai/blog/laion-5b/) filtered for explicit pornographic material, using the [LAION-NSFW classifier](https://github.com/LAION-AI/CLIP-based-NSFW-Detector) with `punsafe=0.1` and an [aesthetic score](https://github.com/christophschuhmann/improved-aesthetic-predictor) >= `4.5`. 850k steps at resolution `512x512` on the same dataset with resolution `>= 512x512`. - `768-v-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for 150k steps using a [v-objective](https://arxiv.org/abs/2202.00512) on the same dataset. Resumed for another 140k steps on a `768x768` subset of our dataset. - `512-depth-ema.ckpt`: Resumed from `512-base-ema.ckpt` and finetuned for 200k steps. Added an extra input channel to process the (relative) depth prediction produced by [MiDaS](https://github.com/isl-org/MiDaS) (`dpt_hybrid`) which is used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. - `512-inpainting-ema.ckpt`: Resumed from `512-base-ema.ckpt` and trained for another 200k steps. Follows the mask-generation strategy presented in [LAMA](https://github.com/saic-mdal/lama) which, in combination with the latent VAE representations of the masked image, are used as an additional conditioning. The additional input channels of the U-Net which process this extra information were zero-initialized. The same strategy was used to train the [1.5-inpainting checkpoint](https://github.com/saic-mdal/lama). - `x4-upscaling-ema.ckpt`: Trained for 1.25M steps on a 10M subset of LAION containing images `>2048x2048`. The model was trained on crops of size `512x512` and is a text-guided [latent upscaling diffusion model](https://arxiv.org/abs/2112.10752). In addition to the textual input, it receives a `noise_level` as an input parameter, which can be used to add noise to the low-resolution input according to a [predefined diffusion schedule](configs/stable-diffusion/x4-upscaling.yaml). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 1 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 steps DDIM sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/stabilityai/stable-diffusion-2/resolve/main/model-variants.jpg) Evaluated using 50 DDIM steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 200000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 15000 kg CO2 eq. ## Citation @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } *This model card was written by: Robin Rombach, Patrick Esser and David Ha and is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
560f0ce05d6602e6fb692b55f9da6dbd
Qiliang/bart-large-cnn-samsum-ElectrifAi_v10
Qiliang
bart
13
11
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,685
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-samsum-ElectrifAi_v10 This model is a fine-tuned version of [philschmid/bart-large-cnn-samsum](https://huggingface.co/philschmid/bart-large-cnn-samsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1748 - Rouge1: 58.3392 - Rouge2: 35.1686 - Rougel: 45.4136 - Rougelsum: 56.9138 - Gen Len: 108.375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 21 | 1.1573 | 56.0772 | 34.1572 | 44.3652 | 54.8621 | 106.0833 | | No log | 2.0 | 42 | 1.1764 | 57.7245 | 34.6517 | 45.67 | 56.3426 | 106.4167 | | No log | 3.0 | 63 | 1.1748 | 58.3392 | 35.1686 | 45.4136 | 56.9138 | 108.375 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.2
57b92ebb20bff8e624ff9c364f91f862
akahnn/aaureeliaav3
akahnn
null
13
0
null
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
420
false
### aaureeliaav3 Dreambooth model trained by akahnn with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
4f277c6edef71e43895de21689730ac2
paola-md/distilr2-lr1e05-wd0.08-bs16
paola-md
roberta
6
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,441
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilr2-lr1e05-wd0.08-bs16 This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2760 - Rmse: 0.5254 - Mse: 0.2760 - Mae: 0.4277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rmse | Mse | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 0.2765 | 1.0 | 1245 | 0.2733 | 0.5228 | 0.2733 | 0.4100 | | 0.2733 | 2.0 | 2490 | 0.2739 | 0.5233 | 0.2739 | 0.4224 | | 0.2713 | 3.0 | 3735 | 0.2760 | 0.5254 | 0.2760 | 0.4277 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 2.4.0 - Tokenizers 0.12.1
81a6a53930da15773a005f3eb61e310a
WillHeld/t5-base-adv-mtop
WillHeld
mt5
41
3
transformers
0
text2text-generation
true
false
false
apache-2.0
['en']
['mtop']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,180
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-adv-mtop This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the mtop dataset. It achieves the following results on the evaluation set: - Loss: 0.1009 - Exact Match: 0.7937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | |:-------------:|:-----:|:----:|:---------------:|:-----------:| | 4.2521 | 1.09 | 200 | 0.1367 | 0.5418 | | 6.2586 | 2.17 | 400 | 0.1020 | 0.6004 | | 4.0003 | 3.26 | 600 | 0.1009 | 0.6179 | | 2.7191 | 4.35 | 800 | 0.1066 | 0.6251 | | 1.5031 | 5.43 | 1000 | 0.1215 | 0.6286 | | 0.703 | 6.52 | 1200 | 0.1238 | 0.6215 | | 0.6371 | 7.61 | 1400 | 0.1365 | 0.6286 | | 0.3712 | 8.69 | 1600 | 0.1450 | 0.6300 | | 0.5666 | 9.78 | 1800 | 0.1500 | 0.6295 | | 0.5237 | 10.87 | 2000 | 0.1416 | 0.6251 | | 0.4562 | 11.96 | 2200 | 0.1464 | 0.6313 | | 0.3421 | 13.04 | 2400 | 0.1635 | 0.6277 | | 0.3686 | 14.13 | 2600 | 0.1643 | 0.6322 | | 0.218 | 15.22 | 2800 | 0.1800 | 0.6277 | | 0.2371 | 16.3 | 3000 | 0.1742 | 0.6268 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
3b67c1666072f3d7a2528f3083edbc3c
blizrys/distilbert-base-uncased-finetuned-mnli
blizrys
distilbert
13
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,489
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6753 - Accuracy: 0.8206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.5146 | 1.0 | 24544 | 0.4925 | 0.8049 | | 0.4093 | 2.0 | 49088 | 0.5090 | 0.8164 | | 0.3122 | 3.0 | 73632 | 0.5299 | 0.8185 | | 0.2286 | 4.0 | 98176 | 0.6753 | 0.8206 | | 0.182 | 5.0 | 122720 | 0.8372 | 0.8195 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
3a031583a5fb571636f020d384720510
Helsinki-NLP/opus-mt-fr-ms
Helsinki-NLP
marian
11
8
transformers
0
translation
true
true
false
apache-2.0
['fr', 'ms']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,167
false
### fra-msa * source group: French * target group: Malay (macrolanguage) * OPUS readme: [fra-msa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-msa/README.md) * model: transformer-align * source language(s): fra * target language(s): ind zsm_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.fra.msa | 35.3 | 0.617 | ### System Info: - hf_name: fra-msa - source_languages: fra - target_languages: msa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-msa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'ms'] - src_constituents: {'fra'} - tgt_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-msa/opus-2020-06-17.test.txt - src_alpha3: fra - tgt_alpha3: msa - short_pair: fr-ms - chrF2_score: 0.617 - bleu: 35.3 - brevity_penalty: 0.978 - ref_len: 6696.0 - src_name: French - tgt_name: Malay (macrolanguage) - train_date: 2020-06-17 - src_alpha2: fr - tgt_alpha2: ms - prefer_old: False - long_pair: fra-msa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
b543e2a5b3ea088aef74dfb05cad1f30
WillHeld/t5-base-adv-cstop_artificial
WillHeld
mt5
23
2
transformers
0
text2text-generation
true
false
false
apache-2.0
['en']
['cstop_artificial']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,204
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-adv-cstop_artificial This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the cstop_artificial dataset. It achieves the following results on the evaluation set: - Loss: 0.0997 - Exact Match: 0.8479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 64 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | |:-------------:|:-----:|:----:|:---------------:|:-----------:| | 1.8954 | 12.5 | 200 | 0.1003 | 0.4902 | | 0.3392 | 25.0 | 400 | 0.0997 | 0.5671 | | 0.3092 | 37.5 | 600 | 0.1067 | 0.5653 | | 0.3062 | 50.0 | 800 | 0.1245 | 0.5689 | | 0.5401 | 62.5 | 1000 | 0.1096 | 0.5581 | | 0.3075 | 75.0 | 1200 | 0.1197 | 0.5581 | | 0.3039 | 87.5 | 1400 | 0.1339 | 0.5689 | | 0.3041 | 100.0 | 1600 | 0.1485 | 0.5635 | | 0.3036 | 112.5 | 1800 | 0.1498 | 0.5581 | | 0.304 | 125.0 | 2000 | 0.1454 | 0.5617 | | 0.3022 | 137.5 | 2200 | 0.1516 | 0.5689 | | 0.3032 | 150.0 | 2400 | 0.1361 | 0.5635 | | 0.3035 | 162.5 | 2600 | 0.1427 | 0.5635 | | 0.3001 | 175.0 | 2800 | 0.1466 | 0.5635 | | 0.3048 | 187.5 | 3000 | 0.1471 | 0.5635 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.7.0 - Tokenizers 0.13.2
1c3b2513fb310959b01be420f7cbcc3e
sureshchinta/wav2vec2-base-finetuned-ks
sureshchinta
wav2vec2
9
3
transformers
0
audio-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,241
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2562 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4691 | 0.99 | 26 | 2.3935 | 0.2310 | | 2.1621 | 1.99 | 52 | 2.0155 | 0.3202 | | 1.8731 | 2.99 | 78 | 1.6397 | 0.7929 | | 1.4521 | 3.99 | 104 | 1.2337 | 0.8940 | | 1.101 | 4.99 | 130 | 0.9519 | 0.9393 | | 0.9401 | 5.99 | 156 | 0.7686 | 0.975 | | 0.7463 | 6.99 | 182 | 0.6338 | 0.9774 | | 0.6555 | 7.99 | 208 | 0.5214 | 0.9810 | | 0.5095 | 8.99 | 234 | 0.4228 | 0.9869 | | 0.4152 | 9.99 | 260 | 0.3658 | 0.9857 | | 0.3764 | 10.99 | 286 | 0.3311 | 0.9857 | | 0.3325 | 11.99 | 312 | 0.2954 | 0.9881 | | 0.3121 | 12.99 | 338 | 0.2797 | 0.9869 | | 0.281 | 13.99 | 364 | 0.2650 | 0.9857 | | 0.2627 | 14.99 | 390 | 0.2571 | 0.9869 | | 0.2655 | 15.99 | 416 | 0.2562 | 0.9869 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 1.14.0 - Tokenizers 0.12.1
f2ab542db889ee38fb57858785758391
google/ddpm-cat-256
google
null
10
35
diffusers
0
unconditional-image-generation
true
false
false
apache-2.0
null
null
null
2
0
1
1
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation']
false
true
true
2,874
false
# Denoising Diffusion Probabilistic Models (DDPM) **Paper**: [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) **Authors**: Jonathan Ho, Ajay Jain, Pieter Abbeel **Abstract**: *We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN.* ## Inference **DDPM** models can use *discrete noise schedulers* such as: - [scheduling_ddpm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddpm.py) - [scheduling_ddim](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_ddim.py) - [scheduling_pndm](https://github.com/huggingface/diffusers/blob/main/src/diffusers/schedulers/scheduling_pndm.py) for inference. Note that while the *ddpm* scheduler yields the highest quality, it also takes the longest. For a good trade-off between quality and inference speed you might want to consider the *ddim* or *pndm* schedulers instead. See the following code: ```python # !pip install diffusers from diffusers import DDPMPipeline, DDIMPipeline, PNDMPipeline model_id = "google/ddpm-cat-256" # load model and scheduler ddpm = DDPMPipeline.from_pretrained(model_id) # you can replace DDPMPipeline with DDIMPipeline or PNDMPipeline for faster inference # run pipeline in inference (sample random noise and denoise) image = ddpm().images[0] # save image image.save("ddpm_generated_image.png") ``` For more in-detail information, please have a look at the [official inference example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/diffusers_intro.ipynb) ## Training If you want to train your own model, please have a look at the [official training example](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb) ## Samples 1. ![sample_1](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_0.png) 2. ![sample_2](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_1.png) 3. ![sample_3](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_2.png) 4. ![sample_4](https://huggingface.co/google/ddpm-cat-256/resolve/main/images/generated_image_3.png)
9dd32a7799e1b7deb83af917316df292
gabella/bert-emotion
gabella
distilbert
18
4
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,455
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 1.1951 - Precision: 0.7350 - Recall: 0.7334 - Fscore: 0.7341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8468 | 1.0 | 815 | 0.7465 | 0.7116 | 0.6096 | 0.6325 | | 0.5105 | 2.0 | 1630 | 0.9035 | 0.7532 | 0.7111 | 0.7276 | | 0.2492 | 3.0 | 2445 | 1.1951 | 0.7350 | 0.7334 | 0.7341 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
5806e680324907514ec53e31a5819c85
chrommium/xlm-roberta-large-finetuned-sent_in_news
chrommium
xlm-roberta
12
1
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,665
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-large-finetuned-sent_in_news This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8872 - Accuracy: 0.7273 - F1: 0.5125 ## Model description Модель ассиметрична, реагирует на метку X в тексте новости. Попробуйте следующие примеры: a) Агентство X понизило рейтинг банка Fitch. b) Агентство Fitch понизило рейтинг банка X. a) Компания Финам показала рекордную прибыль, говорят аналитики компании X. b) Компания X показала рекордную прибыль, говорят аналитики компании Финам. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 106 | 1.2526 | 0.6108 | 0.1508 | | No log | 2.0 | 212 | 1.1553 | 0.6648 | 0.1141 | | No log | 3.0 | 318 | 1.1150 | 0.6591 | 0.1247 | | No log | 4.0 | 424 | 1.0007 | 0.6705 | 0.1383 | | 1.1323 | 5.0 | 530 | 0.9267 | 0.6733 | 0.2027 | | 1.1323 | 6.0 | 636 | 1.0869 | 0.6335 | 0.4084 | | 1.1323 | 7.0 | 742 | 1.1224 | 0.6932 | 0.4586 | | 1.1323 | 8.0 | 848 | 1.2535 | 0.6307 | 0.3424 | | 1.1323 | 9.0 | 954 | 1.4288 | 0.6932 | 0.4881 | | 0.5252 | 10.0 | 1060 | 1.5856 | 0.6932 | 0.4739 | | 0.5252 | 11.0 | 1166 | 1.7101 | 0.6733 | 0.4530 | | 0.5252 | 12.0 | 1272 | 1.7330 | 0.6903 | 0.4750 | | 0.5252 | 13.0 | 1378 | 1.8872 | 0.7273 | 0.5125 | | 0.5252 | 14.0 | 1484 | 1.8797 | 0.7301 | 0.5033 | | 0.1252 | 15.0 | 1590 | 1.9339 | 0.7330 | 0.5024 | | 0.1252 | 16.0 | 1696 | 1.9632 | 0.7301 | 0.4967 | ### Framework versions - Transformers 4.11.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
87bdb4174cd125b1db2444c29f42a94a
kornosk/bert-political-election2020-twitter-mlm
kornosk
bert
11
1,099
transformers
3
fill-mask
true
false
true
gpl-3.0
['en']
null
null
0
0
0
0
0
0
0
['twitter', 'masked-token-prediction', 'election2020', 'politics']
false
true
true
2,433
false
# Pre-trained BERT on Twitter US Political Election 2020 Pre-trained weights for [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. We use the initialized weights from BERT-base (uncased) or `bert-base-uncased`. # Training Data This model is pre-trained on over 5 million English tweets about the 2020 US Presidential Election. # Training Objective This model is initialized with BERT-base and trained with normal MLM objective. # Usage This pre-trained language model **can be fine-tunned to any downstream task (e.g. classification)**. Please see the [official repository](https://github.com/GU-DataLab/stance-detection-KE-MLM) for more detail. ```python from transformers import BertTokenizer, BertForMaskedLM, pipeline import torch # Choose GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Select mode path here pretrained_LM_path = "kornosk/bert-political-election2020-twitter-mlm" # Load model tokenizer = BertTokenizer.from_pretrained(pretrained_LM_path) model = BertForMaskedLM.from_pretrained(pretrained_LM_path) # Fill mask example = "Trump is the [MASK] of USA" fill_mask = pipeline('fill-mask', model=model, tokenizer=tokenizer) # Use following line instead of the above one does not work. # Huggingface have been updated, newer version accepts a string of model name instead. fill_mask = pipeline('fill-mask', model=pretrained_LM_path, tokenizer=tokenizer) outputs = fill_mask(example) print(outputs) # See embeddings inputs = tokenizer(example, return_tensors="pt") outputs = model(**inputs) print(outputs) # OR you can use this model to train on your downstream task! # Please consider citing our paper if you feel this is useful :) ``` # Reference - [Knowledge Enhance Masked Language Model for Stance Detection](https://www.aclweb.org/anthology/2021.naacl-main.376), NAACL 2021. # Citation ```bibtex @inproceedings{kawintiranon2021knowledge, title={Knowledge Enhanced Masked Language Model for Stance Detection}, author={Kawintiranon, Kornraphop and Singh, Lisa}, booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, year={2021}, publisher={Association for Computational Linguistics}, url={https://www.aclweb.org/anthology/2021.naacl-main.376} } ```
45190e9ca19aac98d0cff6f9846f9d6f
ChattychipsHuggingFace/DecentGenerate
ChattychipsHuggingFace
null
2
0
null
0
null
false
false
false
openrail
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,231
false
pip install transformers from transformers import Trainer, TrainingArguments # Load the training and validation data train_data = ... validation_data = ... # Define the model architecture and hyperparameters model_name = "bert-base-cased" num_labels = 2 # Define the training arguments training_args = TrainingArguments( output_dir="./output", # directory to save the trained model num_train_epochs=3, # number of training epochs per_device_train_batch_size=32, # batch size per_device_eval_batch_size=64, # batch size for evaluation warmup_steps=500, # number of warmup steps weight_decay=0.01, # L2 regularization coefficient learning_rate=3e-5, # learning rate adam_epsilon=1e-8, # epsilon for Adam optimizer max_grad_norm=1.0, # maximum gradient norm for gradient clipping save_steps=1000, # number of steps after which to save the model save_total_limit=2, # maximum number of models to save ) # Initialize the trainer trainer = Trainer( model_name=model_name, num_labels=num_labels, data_collator=data_collator, # data collator for the training and validation data args=training_args, ) # Train the model trainer.train(train_data, validation_data)
706e0e2e8d49db0f6cbae3368ca4c19a
sonoisa/t5-base-japanese-question-generation
sonoisa
t5
7
341
transformers
2
text2text-generation
true
false
false
cc-by-sa-4.0
['ja']
null
null
0
0
0
0
0
0
0
['t5', 'text2text-generation', 'seq2seq']
false
true
true
572
false
# 回答と回答が出てくるパラグラフを与えると質問文を生成するモデル SEE: https://github.com/sonoisa/deep-question-generation ## 本モデルの作成ステップ概要 1. [SQuAD 1.1](https://rajpurkar.github.io/SQuAD-explorer/)を日本語に機械翻訳し、不正なデータをクレンジング(有効なデータは約半分)。 回答が含まれるコンテキスト、質問文、解答の3つ組ができる。 2. [日本語T5モデル](https://huggingface.co/sonoisa/t5-base-japanese)を次の設定でファインチューニング * 入力: "answer: {解答} content: {回答が含まれるコンテキスト}" * 出力: "{質問文}" * 各種ハイパーパラメータ * 最大入力トークン数: 512 * 最大出力トークン数: 64 * 最適化アルゴリズム: AdaFactor * 学習率: 0.001(固定) * バッチサイズ: 128 * ステップ数: 2500(500ステップごとにチェックポイントを出力、定量・定性評価を行い2500ステップ目を採用)
c80df0eadd72ea1491f315767ea0ebe1
mujerry/bert-base-uncased-finetuned-QnA
mujerry
bert
11
4
transformers
0
fill-mask
true
false
false
apache-2.0
null
[]
null
0
0
0
0
0
0
0
['generated_from_trainer']
false
true
true
1,613
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-QnA This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 20 | 3.4894 | | No log | 2.0 | 40 | 3.5654 | | No log | 3.0 | 60 | 3.3185 | | No log | 4.0 | 80 | 3.2859 | | No log | 5.0 | 100 | 3.2947 | | No log | 6.0 | 120 | 3.3998 | | No log | 7.0 | 140 | 3.1642 | | No log | 8.0 | 160 | 3.2653 | | No log | 9.0 | 180 | 3.3427 | | No log | 10.0 | 200 | 3.3549 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
e9a2a6a4f17d18e8d252976b8ddf5f2c
henryscheible/eval_v2_qnli
henryscheible
bert
13
1
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
888
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eval_v2_qnli This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE QNLI dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1 - Datasets 2.6.1 - Tokenizers 0.13.1
ef6d413420bc478fa193fd6b91dd5f0b
raw-vitor/jowx
raw-vitor
null
19
27
diffusers
0
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
415
false
### jowx Dreambooth model trained by raw-vitor with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
2005f4db8e95c9ee1e44d9ddd8fbe6bc
gokuls/distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qqp
gokuls
distilbert
17
2
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,100
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert_sa_GLUE_Experiment_logit_kd_pretrain_qqp This model is a fine-tuned version of [gokuls/distilbert_sa_pre-training-complete](https://huggingface.co/gokuls/distilbert_sa_pre-training-complete) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.5449 - Accuracy: 0.6632 - F1: 0.1647 - Combined Score: 0.4139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.6004 | 1.0 | 1422 | 0.5643 | 0.6623 | 0.1630 | 0.4126 | | 0.5393 | 2.0 | 2844 | 0.5498 | 0.6538 | 0.1199 | 0.3869 | | 0.5157 | 3.0 | 4266 | 0.5449 | 0.6632 | 0.1647 | 0.4139 | | 0.5007 | 4.0 | 5688 | 0.5512 | 0.6848 | 0.2663 | 0.4755 | | 0.4914 | 5.0 | 7110 | 0.5501 | 0.6665 | 0.1817 | 0.4241 | | 0.4847 | 6.0 | 8532 | 0.5475 | 0.6816 | 0.2517 | 0.4667 | | 0.4803 | 7.0 | 9954 | 0.5478 | 0.6768 | 0.2301 | 0.4535 | | 0.4768 | 8.0 | 11376 | 0.5488 | 0.6839 | 0.2610 | 0.4724 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
e996cf5d3b9ea2c58299ab4a0e25da3c
atowey01/hostel-reviews-sentiment-model
atowey01
distilbert
8
353
transformers
0
text-classification
false
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_keras_callback']
true
true
true
1,831
false
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # atowey01/hostel-reviews-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2391 - Validation Loss: 0.3849 - Train Accuracy: 0.8675 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 185, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.8401 | 0.6058 | 0.8278 | 0 | | 0.4835 | 0.4979 | 0.8146 | 1 | | 0.3606 | 0.4885 | 0.8079 | 2 | | 0.2943 | 0.3936 | 0.8742 | 3 | | 0.2391 | 0.3849 | 0.8675 | 4 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.11.0 - Datasets 2.6.2 - Tokenizers 0.13.2
81e87bd13234e1ddf8ece61e37e7b22c
gvin/testmodel
gvin
distilbert
14
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['tweet_eval']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,029
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # testmodel This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.7132 - Accuracy: 0.697 - F1: 0.697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.23.0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.1
85f5038ac0bcd540845d91f4e4c9cb39
VanessaSchenkel/pt-opus-news
VanessaSchenkel
marian
14
1
transformers
0
translation
true
false
false
apache-2.0
null
['news_commentary']
null
0
0
0
0
0
0
0
['translation', 'generated_from_trainer']
true
true
true
1,070
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pt-opus-news This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-mul](https://huggingface.co/Helsinki-NLP/opus-mt-en-mul) on the news_commentary dataset. It achieves the following results on the evaluation set: - Loss: 1.0975 - Bleu: 37.5502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.22.0 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
ddfb3dd1d82f736cd292d3f881340d24
bdickson/albert-base-v2-finetuned-squad
bdickson
albert
11
3
transformers
0
question-answering
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,095
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-base-v2-finetuned-squad This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the squad dataset. It achieves the following results on the evaluation set: - eval_loss: 1.0191 - eval_runtime: 291.8551 - eval_samples_per_second: 37.032 - eval_steps_per_second: 2.316 - epoch: 3.0 - step: 16620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1
af42fc0250dc64320cf75aeb31e6b856
alphatozeta/nasa-potw-hbbltls-astronomy
alphatozeta
null
16
32
diffusers
4
text-to-image
true
false
false
creativeml-openrail-m
null
null
null
1
1
0
0
0
0
0
['pytorch', 'diffusers', 'stable-diffusion', 'text-to-image', 'diffusion-models-class', 'dreambooth-hackathon', 'astronomy']
false
true
true
881
false
# DreamBooth model for the astronomy concept trained by Dhruv Singal on the NASA Astronomy Picture of the Week dataset. This is a Stable Diffusion 2.1 model fine-tuned on the astronomy concept with DreamBooth. It can be used by modifying the `instance_prompt`: a photo of the solar system hbbltls astronomy**** This model was created as part of the DreamBooth Hackathon 🔥. Visit the [organisation page](https://huggingface.co/dreambooth-hackathon) for instructions on how to take part! ## Example ![](download.png) ## Description This is a Stable Diffusion model fine-tuned on NASA's Astronomy Picture of the Week images from the Hubble Telescope for the astronomy theme. ## Usage ```python from diffusers import StableDiffusionPipeline pipeline = StableDiffusionPipeline.from_pretrained('alphatozeta/nasa-potw-hbbltls-astronomy') image = pipeline().images[0] image ```
f08e836495d780a049843bdaa3e503b8
annahaz/xlm-roberta-base-finetuned-misogyny-sexism
annahaz
xlm-roberta
10
3
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-misogyny-sexism This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9064 - Accuracy: 0.8334 - F1: 0.3322 - Precision: 0.2498 - Recall: 0.4961 - Mae: 0.1666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Mae | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| | 0.3869 | 1.0 | 2395 | 0.2905 | 0.8778 | 0.3528 | 0.3164 | 0.3988 | 0.1222 | | 0.3539 | 2.0 | 4790 | 0.4143 | 0.8278 | 0.3465 | 0.2536 | 0.5467 | 0.1722 | | 0.3124 | 3.0 | 7185 | 0.3327 | 0.8568 | 0.3583 | 0.2864 | 0.4786 | 0.1432 | | 0.2817 | 4.0 | 9580 | 0.5621 | 0.7329 | 0.3092 | 0.1972 | 0.7160 | 0.2671 | | 0.2651 | 5.0 | 11975 | 0.4376 | 0.8520 | 0.3607 | 0.2821 | 0.5 | 0.1480 | | 0.2249 | 6.0 | 14370 | 0.5581 | 0.8326 | 0.3312 | 0.2485 | 0.4961 | 0.1674 | | 0.1958 | 7.0 | 16765 | 0.6728 | 0.8382 | 0.3234 | 0.2484 | 0.4630 | 0.1618 | | 0.1899 | 8.0 | 19160 | 0.7404 | 0.8304 | 0.3316 | 0.2471 | 0.5039 | 0.1696 | | 0.1619 | 9.0 | 21555 | 0.8309 | 0.8461 | 0.3382 | 0.2639 | 0.4708 | 0.1539 | | 0.1453 | 10.0 | 23950 | 0.9064 | 0.8334 | 0.3322 | 0.2498 | 0.4961 | 0.1666 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
6066036931c94f5b6b26d7bbc476d48a
jonatasgrosman/exp_w2v2t_uk_wavlm_s21
jonatasgrosman
wavlm
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['uk']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'uk']
false
true
true
438
false
# exp_w2v2t_uk_wavlm_s21 Fine-tuned [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) for speech recognition using the train split of [Common Voice 7.0 (uk)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
59092655c43833bad912e4b4ba34cdc8
csikasote/xls-r-300m-bemba-20hrs
csikasote
wav2vec2
17
0
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,371
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-bemba-20hrs This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2815 - Wer: 0.3435 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.3301 | 0.54 | 400 | 0.5177 | 0.7570 | | 0.6437 | 1.08 | 800 | 0.3580 | 0.5658 | | 0.5149 | 1.61 | 1200 | 0.2953 | 0.5004 | | 0.4547 | 2.15 | 1600 | 0.2701 | 0.4464 | | 0.4084 | 2.69 | 2000 | 0.2743 | 0.4383 | | 0.3606 | 3.23 | 2400 | 0.2482 | 0.3952 | | 0.3227 | 3.76 | 2800 | 0.2461 | 0.3965 | | 0.3025 | 4.3 | 3200 | 0.2484 | 0.4015 | | 0.2697 | 4.84 | 3600 | 0.2357 | 0.3838 | | 0.2443 | 5.38 | 4000 | 0.2385 | 0.3822 | | 0.2287 | 5.91 | 4400 | 0.2353 | 0.3747 | | 0.1977 | 6.45 | 4800 | 0.2337 | 0.3624 | | 0.1895 | 6.99 | 5200 | 0.2319 | 0.3568 | | 0.1561 | 7.53 | 5600 | 0.2540 | 0.3561 | | 0.1448 | 8.06 | 6000 | 0.2772 | 0.3612 | | 0.1221 | 8.6 | 6400 | 0.2755 | 0.3596 | | 0.1133 | 9.14 | 6800 | 0.2733 | 0.3495 | | 0.0969 | 9.68 | 7200 | 0.2815 | 0.3435 | ### Framework versions - Transformers 4.19.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1
25ad3eb3630bbbdf728296684bdc51f8
deepmind/vision-perceiver-fourier
deepmind
perceiver
5
681
transformers
1
image-classification
true
false
false
apache-2.0
null
['imagenet']
null
0
0
0
0
0
0
0
[]
false
true
true
4,958
false
# Perceiver IO for vision (fixed Fourier position embeddings) Perceiver IO model pre-trained on ImageNet (14 million images, 1,000 classes) at resolution 224x224. It was introduced in the paper [Perceiver IO: A General Architecture for Structured Inputs & Outputs](https://arxiv.org/abs/2107.14795) by Jaegle et al. and first released in [this repository](https://github.com/deepmind/deepmind-research/tree/master/perceiver). Disclaimer: The team releasing Perceiver IO did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Perceiver IO is a transformer encoder model that can be applied on any modality (text, images, audio, video, ...). The core idea is to employ the self-attention mechanism on a not-too-large set of latent vectors (e.g. 256 or 512), and only use the inputs to perform cross-attention with the latents. This allows for the time and memory requirements of the self-attention mechanism to not depend on the size of the inputs. To decode, the authors employ so-called decoder queries, which allow to flexibly decode the final hidden states of the latents to produce outputs of arbitrary size and semantics. For image classification, the output is a tensor containing the logits, of shape (batch_size, num_labels). <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/perceiver_architecture.jpg" alt="drawing" width="600"/> <small> Perceiver IO architecture.</small> As the time and memory requirements of the self-attention mechanism don't depend on the size of the inputs, the Perceiver IO authors can train the model directly on raw pixel values, rather than on patches as is done in ViT. This particular model only adds fixed Fourier 2D position embeddings to the pixel values. By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by replacing the classification decoder. ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=deepmind/perceiver) to look for other fine-tuned versions on a task that may interest you. ### How to use Here is how to use this model in PyTorch: ```python from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationFourier import requests from PIL import Image feature_extractor = PerceiverFeatureExtractor.from_pretrained("deepmind/vision-perceiver-fourier") model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) # prepare input inputs = feature_extractor(image, return_tensors="pt").pixel_values # forward pass outputs = model(inputs) logits = outputs.logits print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) >>> should print Predicted class: tabby, tabby cat ``` ## Training data This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 million images and 1k classes. ## Training procedure ### Preprocessing Images are center cropped and resized to a resolution of 224x224 and normalized across the RGB channels. Note that data augmentation was used during pre-training, as explained in Appendix H of the [paper](https://arxiv.org/abs/2107.14795). ### Pretraining Hyperparameter details can be found in Appendix H of the [paper](https://arxiv.org/abs/2107.14795). ## Evaluation results This model is able to achieve a top-1 accuracy of 79.0 on ImageNet-1k, and 84.5 when pre-trained on a large-scale dataset (JFT-300M, an internal dataset of Google). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2107-14795, author = {Andrew Jaegle and Sebastian Borgeaud and Jean{-}Baptiste Alayrac and Carl Doersch and Catalin Ionescu and David Ding and Skanda Koppula and Daniel Zoran and Andrew Brock and Evan Shelhamer and Olivier J. H{\'{e}}naff and Matthew M. Botvinick and Andrew Zisserman and Oriol Vinyals and Jo{\~{a}}o Carreira}, title = {Perceiver {IO:} {A} General Architecture for Structured Inputs {\&} Outputs}, journal = {CoRR}, volume = {abs/2107.14795}, year = {2021}, url = {https://arxiv.org/abs/2107.14795}, eprinttype = {arXiv}, eprint = {2107.14795}, timestamp = {Tue, 03 Aug 2021 14:53:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2107-14795.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
1b8130fd3a56038c256539079cfee054
thkkvui/xlm-roberta-base-finetuned-panx-all
thkkvui
xlm-roberta
10
4
transformers
0
token-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,324
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1737 - F1: 0.8521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.305 | 1.0 | 835 | 0.1944 | 0.7968 | | 0.1569 | 2.0 | 1670 | 0.1759 | 0.8395 | | 0.1027 | 3.0 | 2505 | 0.1737 | 0.8521 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.13.0.dev20220711 - Datasets 2.4.0 - Tokenizers 0.12.1
fe411dbb8acbd5d88e1e879b552b152b
julien-c/reactiongif-roberta
julien-c
roberta
26
145
transformers
1
text-classification
true
false
false
apache-2.0
null
['julien-c/reactiongif']
null
18
0
0
18
0
0
0
['generated-from-trainer']
false
true
true
1,498
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.9150 - Accuracy: 0.2662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.0528 | 0.44 | 1000 | 3.0265 | 0.2223 | | 2.9836 | 0.89 | 2000 | 2.9263 | 0.2332 | | 2.7409 | 1.33 | 3000 | 2.9041 | 0.2533 | | 2.7905 | 1.77 | 4000 | 2.8763 | 0.2606 | | 2.4359 | 2.22 | 5000 | 2.9072 | 0.2642 | | 2.4507 | 2.66 | 6000 | 2.9230 | 0.2644 | ### Framework versions - Transformers 4.7.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
7fc0a8d8fadd39f9942761d25fb57082
Helsinki-NLP/opus-mt-he-it
Helsinki-NLP
marian
12
13
transformers
0
translation
true
true
false
apache-2.0
['he', 'it']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,012
false
### he-it * source group: Hebrew * target group: Italian * OPUS readme: [heb-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md) * model: transformer * source language(s): heb * target language(s): ita * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ita | 41.1 | 0.643 | ### System Info: - hf_name: he-it - source_languages: heb - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'it'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Italian', {'ita'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-ita - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: ita - chrF2_score: 0.643 - bleu: 41.1 - brevity_penalty: 0.997 - ref_len: 11464.0 - src_name: Hebrew - tgt_name: Italian - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: it - prefer_old: False - short_pair: he-it - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-11:50
62a79e848b4328acca982e8b0d32bc92
hamzab/roberta-fake-news-classification
hamzab
roberta
9
5
transformers
0
text-classification
true
false
false
mit
['en']
['fake-and-real-news-dataset on kaggle']
null
0
0
0
0
0
0
0
['classification']
false
true
true
1,684
false
## Overview The model is a `roberta-base` fine-tuned on [fake-and-real-news-dataset](https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset). It has a 100% accuracy on that dataset. The model takes a news article and predicts if it is true or fake. The format of the input should be: ``` <title> TITLE HERE <content> CONTENT HERE <end> ``` ## Using this model in your code To use this model, first download it from the hugginface website: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification") model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification") ``` Then, make a prediction like follows: ```python import torch def predict_fake(title,text): input_str = "<title>" + title + "<content>" + text + "<end>" input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt") device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) with torch.no_grad(): output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device)) return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] )) print(predict_fake(<HEADLINE-HERE>,<CONTENT-HERE>)) ``` You can also use Gradio to test the model on real-time: ```python import gradio as gr iface = gr.Interface(fn=predict_fake, inputs=[gr.inputs.Textbox(lines=1,label="headline"),gr.inputs.Textbox(lines=6,label="content")], outputs="label").launch(share=True) ```
0e7173ddcf12671ead4feaf6a9f55dc4
elopezlopez/distilbert-base-uncased_fold_3_binary_v1
elopezlopez
distilbert
13
1
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,658
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased_fold_3_binary_v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9405 - F1: 0.7878 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 289 | 0.4630 | 0.7897 | | 0.3954 | 2.0 | 578 | 0.4549 | 0.7936 | | 0.3954 | 3.0 | 867 | 0.6527 | 0.7868 | | 0.1991 | 4.0 | 1156 | 0.7510 | 0.7951 | | 0.1991 | 5.0 | 1445 | 0.9327 | 0.8000 | | 0.095 | 6.0 | 1734 | 1.0974 | 0.7859 | | 0.0347 | 7.0 | 2023 | 1.2692 | 0.7919 | | 0.0347 | 8.0 | 2312 | 1.3718 | 0.7921 | | 0.0105 | 9.0 | 2601 | 1.4679 | 0.7999 | | 0.0105 | 10.0 | 2890 | 1.5033 | 0.8070 | | 0.0079 | 11.0 | 3179 | 1.6074 | 0.8008 | | 0.0079 | 12.0 | 3468 | 1.6921 | 0.7904 | | 0.0053 | 13.0 | 3757 | 1.7079 | 0.7945 | | 0.0054 | 14.0 | 4046 | 1.8361 | 0.7887 | | 0.0054 | 15.0 | 4335 | 1.7695 | 0.7873 | | 0.0046 | 16.0 | 4624 | 1.7934 | 0.7917 | | 0.0046 | 17.0 | 4913 | 1.8036 | 0.8008 | | 0.0064 | 18.0 | 5202 | 1.8780 | 0.7888 | | 0.0064 | 19.0 | 5491 | 1.8943 | 0.7923 | | 0.0032 | 20.0 | 5780 | 1.8694 | 0.7905 | | 0.002 | 21.0 | 6069 | 1.9348 | 0.7869 | | 0.002 | 22.0 | 6358 | 1.9578 | 0.7804 | | 0.0036 | 23.0 | 6647 | 1.9438 | 0.7827 | | 0.0036 | 24.0 | 6936 | 1.9386 | 0.7878 | | 0.0011 | 25.0 | 7225 | 1.9405 | 0.7878 | ### Framework versions - Transformers 4.21.0 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
536eac13e6db2ab8aeac43255448e42e
Helsinki-NLP/opus-mt-ko-en
Helsinki-NLP
marian
11
3,758
transformers
9
translation
true
true
false
apache-2.0
['ko', 'en']
null
null
1
1
0
0
0
0
0
['translation']
false
true
true
2,051
false
### kor-eng * source group: Korean * target group: English * OPUS readme: [kor-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-eng/README.md) * model: transformer-align * source language(s): kor kor_Hang kor_Latn * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-eng/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-eng/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-eng/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.eng | 41.3 | 0.588 | ### System Info: - hf_name: kor-eng - source_languages: kor - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'en'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-eng/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-eng/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: eng - short_pair: ko-en - chrF2_score: 0.588 - bleu: 41.3 - brevity_penalty: 0.9590000000000001 - ref_len: 17711.0 - src_name: Korean - tgt_name: English - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: en - prefer_old: False - long_pair: kor-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
1845f114f1c35724dade1c130c0eb452
vasista22/whisper-hindi-small
vasista22
whisper
12
54
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['hi']
null
null
0
0
0
0
0
0
0
['whisper-event']
true
true
true
1,322
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Hindi Small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Hindi data available from multiple publicly available ASR corpuses. It has been fine-tuned as a part of the Whisper fine-tuning sprint. ## Training and evaluation data at Speech Lab, IITM Training Data: GramVaani ASR Corpus, ULCA ASR Corpus, Shrutilipi ASR Corpus, Google/Fleurs (Train+Dev) set. Evaluation Data: GramVaani ASR Corpus Test, Google/Fleurs Test set. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.75e-05 - train_batch_size: 48 - eval_batch_size: 32 - seed: 22 - optimizer: adamw_bnb_8bit - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20000 - training_steps: 19377 (Initially set to 129180 steps) - mixed_precision_training: True ## Acknowledgement This work was done at Speech Lab, IITM. The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India.
4e9d4c25489b15b7a80625909db34b9c
EleutherAI/pythia-410m-deduped
EleutherAI
gpt_neox
7
5,137
transformers
4
text-generation
true
false
false
apache-2.0
['en']
['EleutherAI/raw_deduplicated_pile']
null
2
1
1
0
1
0
1
['pytorch', 'causal-lm', 'pythia']
false
true
true
10,888
false
The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models match or exceed the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact model parameter counts. ## Pythia-410M-deduped ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change in the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-410M-deduped for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-410M-deduped as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-410M-deduped has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-410M-deduped will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “understand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most “accurate” text. Never rely on Pythia-410M-deduped to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-410M-deduped may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-410M-deduped. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model. For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data Pythia-410M-deduped was trained on the Pile **after the dataset has been globally deduplicated**. [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). #### Training procedure Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 “actual” steps). See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json). February 2023 note: select evaluations and comparison with OPT and BLOOM models will be added here at a later date. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
6c3809b8b7f3cd3aa2595ff0d1fda3ad
Bistolero/genlen2ep
Bistolero
t5
9
2
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
882
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # genlen2ep This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 25 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1
a5c17aeeb51847cb3ca6ded186d4d5dc
Akumetsu971/SD_Samurai_Anime_Style
Akumetsu971
null
11
0
null
3
text-to-image
false
false
false
creativeml-openrail-m
['en']
null
null
0
0
0
0
0
0
0
['stable-diffusion', 'text-to-image']
false
true
true
4,936
false
# SD_Samurai_Anime_Style is an open source Stable Diffusion Embedding on art style of Samurai, by Akumetsu971 (https://www.tiktok.com/@akumetsu971) --- ### Model used to train: wd-v1-3-full-opt.ckpt (https://huggingface.co/hakurei/waifu-diffusion-v1-3) ### Files 5 files available (Best version is 4000steps): -Smrai_style - 4000 steps (First version, work great!) -Smrai2_style-1000 - 1000 steps -Smrai2_style-2000 - 2000 steps -Smrai2_style-3000 - 3000 steps -Smrai2_style-4000 - 4000 steps (recommended) ### Prompt You need to use DeepDanBooru Tags (https://gigazine.net/gsc_news/en/20221012-automatic1111-stable-diffusion-webui-deep-danbooru/) I also used Nixeu_style embedding (not necessary): https://huggingface.co/sd-concepts-library/nixeu) And Elysium_Anime_V2.ckpt (https://huggingface.co/hesw23168/SD-Elysium-Model) ### Example Positive Prompt: (Nixeu_style:1.2), (Smrai2_style-4000:0.9), close-up portrait, 1girl, manga art, (red symmetrical circle behind:1.2), intricate details, highly detailed, photorealistic, octane render, 8k, unreal engine, sharp focus, volumetric lighting unreal engine. art by artgerm and greg rutkowski and alphonse mucha Negative Prompt: (mediocre:1.2), (average:1.2), (bad:1.2), (wrong:1.2), (error:1.2), (fault:1.2),( badly_drawn:1.2), (poorly_drawn:1.2), ( low_quality:1.2), no_quality, bad_quality, no_resolution, low_resolution, (lowres:1.2), normal_resolution, (disfigured:1.6), (deformed:1.4), (distortion:1.2), bad_anatomy, (no_detail:1.2), low_detail, normal_detail, (scribble:1.2), (rushed:1.2), (unfinished:1.2), blur, blurry, claws, (misplaced:1.2), (disconnected:1.2), nonsense, random, (noise:1.2), (deformation:1.2), 3d, dull, boring, uninteresting, screencap, (text:1.2), (frame:1.1), (out_of_frame:1.2), (title:1.2), (description:1.3), (sexual:1.2), text, error,(logo:1.3), (watermark:1.3), bad_perspective, bad_proportions, cinematic, jpg_artifacts, jpeg_artifacts, extra_leg, missing_leg, extra_arm, missing_arm, long_hand, bad_hands, (mutated_hand:1.2), (extra_finger:1.2), (missing_finger:1.2), broken_finger, (fused_fingers:1.2), extra_feet, missing_feet, fused_feet, long_feet, missing_limbs, extra_limbs, fused_limbs, claw, (extra_digit:1.2), (fewer_digits:1.2), elves_ears, (naked:1.3), (wet:1.2), uncensored, (long_neck:1.2), (weapon:1.5) <img src="https://huggingface.co/Akumetsu971/SD_Samurai_Anime_Style/resolve/main/05740-1662921804-(Nixeu_style_1.2)%2C%20(Smrai2_style-4000_0.9)%2C%20close-up%20portrait%2C%201girl%2C%20manga%20art%2C%20(red%20symmetrical%20circle%20behind_1.2)%2C%20intricate.png" width="50%"/> <img src="https://huggingface.co/Akumetsu971/SD_Samurai_Anime_Style/resolve/main/05743-815262338-(Nixeu_style_1.2)%2C%20(Smrai2_style-4000_0.9)%2C%20close-up%20portrait%2C%201girl%2C%20manga%20art%2C%20(red%20symmetrical%20circle%20behind_1.2)%2C%20intricate.png" width="50%"/> <img src="https://huggingface.co/Akumetsu971/SD_Samurai_Anime_Style/resolve/main/05748-2610321799-(Nixeu_style_1.2)%2C%20(Smrai2_style-4000_0.9)%2C%20close-up%20portrait%2C%201girl%2C%20manga%20art%2C%20(red%20symmetrical%20circle%20behind_1.2)%2C%20intricate.png" width="50%"/> ### First Version Example Positive Prompt: portrait, (Smrai_style:1.0), vampire samurai, red_eyes, 2vampire_ fangs, solo, single,fighting_stance, male_focus, pink_hair, sakura_petals, painting,beautifully drawn, heavily detailed, high quality, (cherry_blossom_print:1.1), scenery, smoke, fog, dynamic, detailed_limbs, (Nixeu_style:1.2) Negative Prompt: (mediocre:1.2), (average:1.2), (bad:1.2), (wrong:1.2), (error:1.2), (fault:1.2),( badly_drawn:1.2), (poorly_drawn:1.2), ( low_quality:1.2), no_quality, bad_quality, no_resolution, low_resolution, (lowres:1.2), normal_resolution, (disfigured:1.6), (deformed:1.5), (distortion:1.2), bad_anatomy, (no_detail:1.2), low_detail, normal_detail, (scribble:1.2), (rushed:1.2), (unfinished:1.2), blur, blurry, claws, (misplaced:1.2), (disconnected:1.2), nonsense, random, (noise:1.2), (deformation:1.2), 3d, dull, boring, uninteresting, screencap, (text:1.2), (frame:1.1), (out_of_frame:1.2), (title:1.2), (description:1.3), (sexual:1.2), text, error,(logo:1.3), (watermark:1.3), bad_perspective, bad_proportions, cinematic, jpg_artifacts, jpeg_artifacts, extra_leg, missing_leg, extra_arm, missing_arm, long_hand, bad_hands, (mutated_hand:1.2), (extra_finger:1.2), (missing_finger:1.2), broken_finger, (fused_fingers:1.2), extra_feet, missing_feet, fused_feet, long_feet, missing_limbs, extra_limbs, fused_limbs, claw, (extra_digit:1.2), (fewer_digits:1.2), elves_ears, (naked:1.3), (wet:1.2), uncensored, (long_neck:1.2) <img src="https://huggingface.co/Akumetsu971/SD_Samurai_Anime_Style/resolve/main/05241-239803495-portrait%2C%20(Smrai_style_1.0)%2C%20vampire%20samurai%2C%20red_eyes%2C%202vampire_%20fangs%2C%20solo%2C%20single%2Cfighting_stance%2C%20male_focus%2C%20pink_hair%2C%20sa.png" width="50%"/> ```
b5b9a2a0de1fdefc5a9c51a839ce34c8
rmihaylov/gpt2-small-bg
rmihaylov
gpt2
10
3
transformers
0
text-generation
true
false
false
mit
['bg']
['oscar', 'chitanka', 'wikipedia']
null
0
0
0
0
0
0
0
['torch']
false
true
true
2,635
false
# GPT-2 Pretrained model on Bulgarian language using a causal language modeling (CLM) objective. It was introduced in [this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at [this page](https://openai.com/blog/better-language-models/). ## Model description This is the **SMALL** version. The training data is Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/). ## Intended uses & limitations You can use the raw model for: - text generation - auto-complete - spelling correction Or fine-tune it to a downstream task. ### How to use Here is how to use this model in PyTorch: ```python >>> from transformers import AutoModel, AutoTokenizer >>> >>> model_id = "rmihaylov/gpt2-small-bg" >>> tokenizer = AutoTokenizer.from_pretrained(model_id) >>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True) >>> >>> input_ids = tokenizer.encode( >>> "Здравей,", >>> add_special_tokens=False, >>> return_tensors='pt') >>> >>> output_ids = model.generate( >>> input_ids, >>> do_sample=True, >>> max_length=50, >>> top_p=0.92, >>> pad_token_id=2, >>> top_k=0) >>> >>> output = tokenizer.decode(output_ids[0]) >>> >>> output = output.replace('<|endoftext|>', '\n\n\n') >>> output = output.replace('<|unknown|>', '') >>> output = output.replace('▁', ' ') >>> output = output.replace('<|n|>', '\n') >>> >>> print(output) Здравей, Ани! Не е ли прекрасно? Нещото се засмя. Зъбите му блеснаха. — Ще те разведа насам-натам! Ани се замисли, когато той си тръгна. Може би не искаше да го е ``` ### Limitations and bias As the openAI team themselves point out in their [model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases): > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases > that require the generated text to be true. > > Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do > not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a > study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, > and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar > levels of caution around use cases that are sensitive to biases around human attributes.
b0683631a7408a0c5463fef84cdcd068
pupubear/pupu_girl_ver1
pupubear
null
20
125
diffusers
3
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
['text-to-image', 'stable-diffusion']
false
true
true
648
false
### girl Dreambooth model trained by pupubear with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook trianed from c_PVC_mix Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept: ![0](https://huggingface.co/pupubear/girl/resolve/main/sample_images/00001-1639922232-Ultra-res_,NSFW,_1girl,_cum,_full_body,,_best_quality,highly_detailed,masterpiece,ultra-detailed,illustration.png)
f034eec712da47879948a1e1b71818aa
fathyshalab/all-roberta-large-v1-credit_cards-3-16-5
fathyshalab
roberta
11
3
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,517
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # all-roberta-large-v1-credit_cards-3-16-5 This model is a fine-tuned version of [sentence-transformers/all-roberta-large-v1](https://huggingface.co/sentence-transformers/all-roberta-large-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.3376 - Accuracy: 0.3186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.75 | 1.0 | 1 | 2.5769 | 0.2389 | | 2.178 | 2.0 | 2 | 2.4879 | 0.2389 | | 1.769 | 3.0 | 3 | 2.4180 | 0.2566 | | 1.4703 | 4.0 | 4 | 2.3657 | 0.3097 | | 1.2711 | 5.0 | 5 | 2.3376 | 0.3186 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu102 - Datasets 2.3.2 - Tokenizers 0.12.1
ee50410735d99c78107c0014dcc813c4
Hamine/distilbert-base-uncased-finetuned-mnli
Hamine
distilbert
13
1
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
1
1
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,356
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-mnli This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.5486 - Accuracy: 0.8244 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5142 | 1.0 | 24544 | 0.4922 | 0.8075 | | 0.4089 | 2.0 | 49088 | 0.4865 | 0.8194 | | 0.2936 | 3.0 | 73632 | 0.5486 | 0.8244 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
116ae73710b075b2c8801c55fba3fae7
ariesutiono/finetuned-test-1
ariesutiono
bert
16
2
transformers
0
fill-mask
true
false
false
apache-2.0
null
['conll2003']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,155
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-test-1 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 1.8192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.8219 | 1.0 | 30 | 2.3343 | | 2.4148 | 2.0 | 60 | 2.2010 | | 2.3236 | 3.0 | 90 | 2.1442 | | 2.2231 | 4.0 | 120 | 2.1651 | | 2.2171 | 5.0 | 150 | 2.0614 | | 2.127 | 6.0 | 180 | 2.0405 | | 2.0748 | 7.0 | 210 | 2.0092 | | 2.0511 | 8.0 | 240 | 1.9798 | | 2.0097 | 9.0 | 270 | 1.8662 | | 1.9969 | 10.0 | 300 | 1.9257 | | 2.0006 | 11.0 | 330 | 1.9386 | | 1.9273 | 12.0 | 360 | 1.9357 | | 1.9177 | 13.0 | 390 | 1.8983 | | 1.9128 | 14.0 | 420 | 1.8990 | | 1.8979 | 15.0 | 450 | 1.9037 | | 1.8721 | 16.0 | 480 | 1.8440 | | 1.8998 | 17.0 | 510 | 1.8404 | | 1.8862 | 18.0 | 540 | 1.9193 | | 1.9133 | 19.0 | 570 | 1.8494 | | 1.8799 | 20.0 | 600 | 1.8192 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
81b0760f4bd8af43bb5cdc4eee54bc10
pjox/dalembert-classical-fr-ner
pjox
null
8
0
flair
0
token-classification
false
false
false
apache-2.0
['fr']
['freemner']
null
0
0
0
0
0
0
0
['Early Modern French', 'Historical', 'NER', 'flair']
false
true
true
2,371
false
<a href="https://portizs.eu/publication/2022/lrec/dalembert/"> <img width="300px" src="https://portizs.eu/publication/2022/lrec/dalembert/featured_hu18bf34d40cdc71c744bdd15e48ff0b23_61788_720x2500_fit_q100_h2_lanczos_3.webp"> </a> # D'AlemBERT-NER model This model is fine-tuned version of a [D'AlemBERT](https://huggingface.co/pjox/DalemBERT) on the [FreEMNER corpus](https://doi.org/10.5281/zenodo.6481135) for Early Modern French. It was introduced in [this paper](https://aclanthology.org/2022.coling-1.327/). ### BibTeX entry and citation info ```bibtex @inproceedings{ortiz-suarez-gabay-2022-data, title = "A Data-driven Approach to Named Entity Recognition for Early {M}odern {F}rench", author = "Ortiz Suarez, Pedro and Gabay, Simon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.327", pages = "3722--3730", abstract = "Named entity recognition has become an increasingly useful tool for digital humanities research, specially when it comes to historical texts. However, historical texts pose a wide range of challenges to both named entity recognition and natural language processing in general that are still difficult to address even with modern neural methods. In this article we focus in named entity recognition for historical French, and in particular for Early Modern French (16th-18th c.), i.e. Ancien R{\'e}gime French. However, instead of developing a specialised architecture to tackle the particularities of this state of language, we opt for a data-driven approach by developing a new corpus with fine-grained entity annotation, covering three centuries of literature corresponding to the early modern period; we try to annotate as much data as possible producing a corpus that is many times bigger than the most popular NER evaluation corpora for both Contemporary English and French. We then fine-tune existing state-of-the-art architectures for Early Modern and Contemporary French, obtaining results that are on par with those of the current state-of-the-art NER systems for Contemporary English. Both the corpus and the fine-tuned models are released.", } ```
086343507570053696aa448d3894d1e3
jonatasgrosman/exp_w2v2t_de_unispeech-ml_s750
jonatasgrosman
unispeech
10
4
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['de']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'de']
false
true
true
500
false
# exp_w2v2t_de_unispeech-ml_s750 Fine-tuned [microsoft/unispeech-large-multi-lingual-1500h-cv](https://huggingface.co/microsoft/unispeech-large-multi-lingual-1500h-cv) for speech recognition using the train split of [Common Voice 7.0 (de)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
24295145163a1af37d387ada11ce8c82
facebook/convnext-base-224-22k
facebook
convnext
6
795
transformers
0
image-classification
true
true
false
apache-2.0
null
['imagenet-21k']
null
0
0
0
0
0
0
0
['vision', 'image-classification']
false
true
true
2,664
false
# ConvNeXT (base-sized model) ConvNeXT model trained on ImageNet-22k at resolution 224x224. It was introduced in the paper [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) by Liu et al. and first released in [this repository](https://github.com/facebookresearch/ConvNeXt). Disclaimer: The team releasing ConvNeXT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ConvNeXT is a pure convolutional model (ConvNet), inspired by the design of Vision Transformers, that claims to outperform them. The authors started from a ResNet and "modernized" its design by taking the Swin Transformer as inspiration. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png) ## Intended uses & limitations You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=convnext) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes: ```python from transformers import ConvNextFeatureExtractor, ConvNextForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] feature_extractor = ConvNextFeatureExtractor.from_pretrained("facebook/convnext-base-224-22k") model = ConvNextForImageClassification.from_pretrained("facebook/convnext-base-224-22k") inputs = feature_extractor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # model predicts one of the 22k ImageNet classes predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label]), ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/convnext). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-03545, author = {Zhuang Liu and Hanzi Mao and Chao{-}Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {CoRR}, volume = {abs/2201.03545}, year = {2022}, url = {https://arxiv.org/abs/2201.03545}, eprinttype = {arXiv}, eprint = {2201.03545}, timestamp = {Thu, 20 Jan 2022 14:21:35 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-03545.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
a6cff181fe289e8e2d6c1ceb2e267079
anas-awadalla/t5-base-few-shot-k-16-finetuned-squad-infilling-seed-4
anas-awadalla
t5
17
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
968
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-few-shot-k-16-finetuned-squad-infilling-seed-4 This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
e4c078fdc180f963489192d3330c8ccc
microsoft/reacc-py-retriever
microsoft
roberta
9
3
transformers
3
feature-extraction
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,043
false
# ReACC-py-retriever This is the retrieval model for [ReACC: A Retrieval-Augmented Code Completion Framework](https://arxiv.org/abs/2203.07722). In this paper, the model is used to retrieve similar codes given an incompletion code snippet as query. The model can be also used for incomplete code-to-code search, code clone detection. `py-retriever` is BERT-like encoder consisting of 12 transformer layers. It is continual pre-trained on [GraphCodeBERT](https://huggingface.co/microsoft/graphcodebert-base) with contrastive learning in Python programming language. More details can be found in our paper. Note that the format of input codes is different from original source code. We normalize the source codes to better capture information from line break and indention in Python. An example of input is: ```python sum = 0<endofline>for val in numbers:<endofline><INDENT>sum = sum+val ``` To get more information about how to convert source codes into this format, please refer to [ReACC GitHub repo](https://github.com/microsoft/ReACC).
d552b1a1276f9b039a3e863017dd1485
theojolliffe/bart-cnn-science-v3-e2
theojolliffe
bart
13
1
transformers
0
text2text-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,568
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-cnn-science-v3-e2 This model is a fine-tuned version of [theojolliffe/bart-cnn-science](https://huggingface.co/theojolliffe/bart-cnn-science) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9352 - Rouge1: 52.5497 - Rouge2: 32.5507 - Rougel: 35.0014 - Rougelsum: 50.0575 - Gen Len: 141.5741 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | No log | 1.0 | 398 | 1.0023 | 52.0744 | 31.917 | 33.2804 | 49.6569 | 142.0 | | 1.1851 | 2.0 | 796 | 0.9352 | 52.5497 | 32.5507 | 35.0014 | 50.0575 | 141.5741 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
ca48f118485232b118e7a51668b1096f
anas-awadalla/t5-small-few-shot-k-512-finetuned-squad-seed-0
anas-awadalla
t5
15
1
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['squad']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
960
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-few-shot-k-512-finetuned-squad-seed-0 This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 0 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 35.0 ### Training results ### Framework versions - Transformers 4.20.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.11.6
ab6465a9cc086db6ccc7b33108d9b98e
google/t5-efficient-base-kv32
google
t5
12
19
transformers
0
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,252
false
# T5-Efficient-BASE-KV32 (Deep-Narrow version) T5-Efficient-BASE-KV32 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-base-kv32** - is of model type **Base** with the following variations: - **kv** is **32** It has **180.46** million parameters and thus requires *ca.* **721.86 MB** of memory in full precision (*fp32*) or **360.93 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
19dd9c633fedec170889ad836b5e1c72
okho0653/Bio_ClinicalBERT-zero-shot
okho0653
bert
11
4
transformers
0
text-classification
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,142
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bio_ClinicalBERT-zero-shot This model is a fine-tuned version of [emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5417 - eval_accuracy: 1.0 - eval_f1: 1.0 - eval_runtime: 4.3261 - eval_samples_per_second: 6.241 - eval_steps_per_second: 0.462 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.2
3aae72d4c05f68e35a4d01ce22eed250
dandelin/vilt-b32-finetuned-nlvr2
dandelin
vilt
9
375
transformers
1
null
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
2,071
false
# Vision-and-Language Transformer (ViLT), fine-tuned on NLVR2 Vision-and-Language Transformer (ViLT) model fine-tuned on [NLVR2](https://lil.nlp.cornell.edu/nlvr/). It was introduced in the paper [ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision](https://arxiv.org/abs/2102.03334) by Kim et al. and first released in [this repository](https://github.com/dandelin/ViLT). Disclaimer: The team releasing ViLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Intended uses & limitations You can use the model to determine whether a sentence is true or false given 2 images. ### How to use Here is how to use the model in PyTorch: ``` from transformers import ViltProcessor, ViltForImagesAndTextClassification import requests from PIL import Image image1 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg", stream=True).raw) image2 = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_1.jpg", stream=True).raw) text = "The left image contains twice the number of dogs as the right image." processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") model = ViltForImagesAndTextClassification.from_pretrained("dandelin/vilt-b32-finetuned-nlvr2") # prepare inputs encoding = processor([image1, image2], text, return_tensors="pt") # forward pass outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) logits = outputs.logits idx = logits.argmax(-1).item() print("Predicted answer:", model.config.id2label[idx]) ``` ## Training data (to do) ## Training procedure ### Preprocessing (to do) ### Pretraining (to do) ## Evaluation results (to do) ### BibTeX entry and citation info ```bibtex @misc{kim2021vilt, title={ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision}, author={Wonjae Kim and Bokyung Son and Ildoo Kim}, year={2021}, eprint={2102.03334}, archivePrefix={arXiv}, primaryClass={stat.ML} } ```
e686b400b849b6fa5d044dd49ecf2452
freedomfrier/my-128dim-model2
freedomfrier
bert
14
14
sentence-transformers
0
sentence-similarity
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['sentence-transformers', 'feature-extraction', 'sentence-similarity', 'transformers']
false
true
true
3,533
false
# sentence-transformers/msmarco-MiniLM-L-6-v3 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/msmarco-MiniLM-L-6-v3') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3') model = AutoModel.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-MiniLM-L-6-v3) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
9d1a421ec6ca66b718fd9374640c7b53
Reggie/muppet-roberta-base-joke_detector
Reggie
roberta
8
55
transformers
0
text-classification
true
false
false
mit
['en']
null
null
0
0
0
0
0
0
0
['roberta']
false
true
true
1,858
false
### What is this? This model has been developed to detect "narrative-style" jokes, stories and anecdotes (i.e. they are narrated as a story) spoken during speeches or conversations etc. It works best when jokes/anecdotes are at least 40 words or longer. It is based on Facebook's [RoBerta-MUPPET](https://huggingface.co/facebook/muppet-roberta-base). The training dataset was a private collection of around 2000 jokes. This model has not been trained or tested on one-liners, puns or Reddit-style language-manipulation jokes such as knock-knock, Q&A jokes etc. See the example in the inference widget or How to use section for what constitues a narrative-style joke. For a slightly more accurate model (0.4% more) that is 65% slower at inference, see the [Deberta-v3 model](https://huggingface.co/Reggie/DeBERTa-v3-base-joke_detector). For a much more inaccurate model (2.4% less) that is way faster at inference, see the [distilbert model](https://huggingface.co/Reggie/distilbert-joke_detector). ### Install these first You'll need to pip install transformers & maybe sentencepiece ### How to use ```python from transformers import pipeline import torch device = 0 if torch.cuda.is_available() else -1 model_name = 'Reggie/muppet-roberta-base-joke_detector' max_seq_len = 510 pipe = pipeline(model=model_name, device=device, truncation=True, max_length=max_seq_len) is_it_a_joke = """A nervous passenger is about to book a flight ticket, and he asks the airlines' ticket seller, "I hope your planes are safe. Do they have a good track record for safety?" The airline agent replies, "Sir, I can guarantee you, we've never had a plane that has crashed more than once." """ result = pipe(is_it_a_joke) # [{'label': 'LABEL_1', 'score': 0.7313136458396912}] print('This is a joke') if result[0]['label'] == 'LABEL_1' else print('This is not a joke') ```
586a9f7895a15545415d62a4938253f6
redevaaa/fin4
redevaaa
bert
12
5
transformers
0
token-classification
true
false
false
cc-by-sa-4.0
null
['fin']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,153
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fin4 This model is a fine-tuned version of [nlpaueb/sec-bert-num](https://huggingface.co/nlpaueb/sec-bert-num) on the fin dataset. It achieves the following results on the evaluation set: - Loss: 0.0549 - Precision: 0.9209 - Recall: 0.9283 - F1: 0.9246 - Accuracy: 0.9913 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 129 | 0.1041 | 0.8242 | 0.8406 | 0.8323 | 0.9788 | | No log | 2.0 | 258 | 0.0511 | 0.9173 | 0.9283 | 0.9228 | 0.9902 | | No log | 3.0 | 387 | 0.0430 | 0.9102 | 0.9283 | 0.9191 | 0.9907 | | 0.0598 | 4.0 | 516 | 0.0501 | 0.9368 | 0.9442 | 0.9405 | 0.9922 | | 0.0598 | 5.0 | 645 | 0.0436 | 0.9325 | 0.9363 | 0.9344 | 0.9924 | | 0.0598 | 6.0 | 774 | 0.0489 | 0.9433 | 0.9283 | 0.9357 | 0.9917 | | 0.0598 | 7.0 | 903 | 0.0499 | 0.932 | 0.9283 | 0.9301 | 0.9919 | | 0.0028 | 8.0 | 1032 | 0.0537 | 0.9209 | 0.9283 | 0.9246 | 0.9913 | | 0.0028 | 9.0 | 1161 | 0.0540 | 0.9170 | 0.9243 | 0.9206 | 0.9911 | | 0.0028 | 10.0 | 1290 | 0.0549 | 0.9209 | 0.9283 | 0.9246 | 0.9913 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
5a987fb10ca5862a4f9be8e46b38f51b
Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-32
Celal11
beit
11
6
transformers
0
image-classification
true
false
false
apache-2.0
null
['image_folder']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,505
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-32 This model is a fine-tuned version of [Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05](https://huggingface.co/Celal11/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013CKPlus-7e-05) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.8037 - Accuracy: 0.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8058 | 1.0 | 112 | 0.8260 | 0.7056 | | 0.6999 | 2.0 | 224 | 0.8037 | 0.7201 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
0b3f5a6aa7ac037f55988857dfd55c95
Helsinki-NLP/opus-mt-kg-fr
Helsinki-NLP
marian
10
7
transformers
1
translation
true
true
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['translation']
false
true
true
768
false
### opus-mt-kg-fr * source languages: kg * target languages: fr * OPUS readme: [kg-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/kg-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-09.zip](https://object.pouta.csc.fi/OPUS-MT-models/kg-fr/opus-2020-01-09.zip) * test set translations: [opus-2020-01-09.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/kg-fr/opus-2020-01-09.test.txt) * test set scores: [opus-2020-01-09.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/kg-fr/opus-2020-01-09.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.kg.fr | 26.0 | 0.433 |
c19ed754e218a19b96091a83a999fbc3
MeshalAlamr/wav2vec2-xls-r-300m-ar-4
MeshalAlamr
wav2vec2
7
6
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
['common_voice']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
4,403
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-ar-4 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.7888 - Wer: 0.3697 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.8069 | 1.18 | 400 | 1.7793 | 0.9883 | | 1.1949 | 2.35 | 800 | 0.9662 | 0.7908 | | 0.8996 | 3.53 | 1200 | 0.8404 | 0.7154 | | 0.7652 | 4.71 | 1600 | 0.7478 | 0.6379 | | 0.6611 | 5.88 | 2000 | 0.7687 | 0.6229 | | 0.6015 | 7.06 | 2400 | 0.7153 | 0.5948 | | 0.5444 | 8.24 | 2800 | 0.7062 | 0.5826 | | 0.4872 | 9.41 | 3200 | 0.6568 | 0.5414 | | 0.4729 | 10.59 | 3600 | 0.6817 | 0.5599 | | 0.4238 | 11.76 | 4000 | 0.6406 | 0.5262 | | 0.4022 | 12.94 | 4400 | 0.6797 | 0.5184 | | 0.3945 | 14.12 | 4800 | 0.6744 | 0.5147 | | 0.3711 | 15.29 | 5200 | 0.6807 | 0.5090 | | 0.3318 | 16.47 | 5600 | 0.6286 | 0.5011 | | 0.3132 | 17.65 | 6000 | 0.6481 | 0.4814 | | 0.2992 | 18.82 | 6400 | 0.6454 | 0.4958 | | 0.2734 | 20.0 | 6800 | 0.6465 | 0.4825 | | 0.2534 | 21.18 | 7200 | 0.6559 | 0.4658 | | 0.2505 | 22.35 | 7600 | 0.6601 | 0.4618 | | 0.2495 | 23.53 | 8000 | 0.7080 | 0.4813 | | 0.2387 | 24.71 | 8400 | 0.6635 | 0.4508 | | 0.2154 | 25.88 | 8800 | 0.6442 | 0.4538 | | 0.2096 | 27.06 | 9200 | 0.7399 | 0.4579 | | 0.2007 | 28.24 | 9600 | 0.6957 | 0.4512 | | 0.1942 | 29.41 | 10000 | 0.6642 | 0.4267 | | 0.1854 | 30.59 | 10400 | 0.6842 | 0.4393 | | 0.1782 | 31.76 | 10800 | 0.7007 | 0.4393 | | 0.1751 | 32.94 | 11200 | 0.7063 | 0.4321 | | 0.1695 | 34.12 | 11600 | 0.7057 | 0.4330 | | 0.1638 | 35.29 | 12000 | 0.7416 | 0.4266 | | 0.1531 | 36.47 | 12400 | 0.7420 | 0.4273 | | 0.1475 | 37.65 | 12800 | 0.7334 | 0.4218 | | 0.1388 | 38.82 | 13200 | 0.7420 | 0.4227 | | 0.1372 | 40.0 | 13600 | 0.7492 | 0.4238 | | 0.1341 | 41.18 | 14000 | 0.7803 | 0.4193 | | 0.133 | 42.35 | 14400 | 0.7396 | 0.4105 | | 0.1238 | 43.53 | 14800 | 0.7561 | 0.4098 | | 0.1163 | 44.71 | 15200 | 0.7987 | 0.4049 | | 0.116 | 45.88 | 15600 | 0.7769 | 0.4093 | | 0.1079 | 47.06 | 16000 | 0.7780 | 0.3986 | | 0.1043 | 48.24 | 16400 | 0.7674 | 0.3905 | | 0.1004 | 49.41 | 16800 | 0.7931 | 0.3949 | | 0.0987 | 50.59 | 17200 | 0.7605 | 0.3938 | | 0.0963 | 51.76 | 17600 | 0.7735 | 0.3858 | | 0.0905 | 52.94 | 18000 | 0.7504 | 0.3802 | | 0.086 | 54.12 | 18400 | 0.8038 | 0.3867 | | 0.0839 | 55.29 | 18800 | 0.7887 | 0.3797 | | 0.0798 | 56.47 | 19200 | 0.7832 | 0.3705 | | 0.0785 | 57.65 | 19600 | 0.7771 | 0.3706 | | 0.0765 | 58.82 | 20000 | 0.7858 | 0.3703 | | 0.0739 | 60.0 | 20400 | 0.7888 | 0.3697 | ### Framework versions - Transformers 4.14.1 - Pytorch 1.11.0 - Datasets 1.18.3 - Tokenizers 0.10.3
41ed1d5580751f054c7e1338f459f3df
debbiesoon/summarise_v11
debbiesoon
led
13
7
transformers
1
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
7,878
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # summarise_v11 This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6322 - Rouge1 Precision: 0.6059 - Rouge1 Recall: 0.6233 - Rouge1 Fmeasure: 0.5895 - Rouge2 Precision: 0.4192 - Rouge2 Recall: 0.4512 - Rouge2 Fmeasure: 0.4176 - Rougel Precision: 0.4622 - Rougel Recall: 0.4946 - Rougel Fmeasure: 0.4566 - Rougelsum Precision: 0.4622 - Rougelsum Recall: 0.4946 - Rougelsum Fmeasure: 0.4566 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 Precision | Rouge1 Recall | Rouge1 Fmeasure | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | Rougel Precision | Rougel Recall | Rougel Fmeasure | Rougelsum Precision | Rougelsum Recall | Rougelsum Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:----------------:|:-------------:|:---------------:|:-------------------:|:----------------:|:------------------:| | 1.6201 | 0.45 | 10 | 1.4875 | 0.3203 | 0.64 | 0.3932 | 0.197 | 0.3839 | 0.2385 | 0.1952 | 0.4051 | 0.2454 | 0.1952 | 0.4051 | 0.2454 | | 0.9172 | 0.91 | 20 | 1.4404 | 0.4917 | 0.5134 | 0.4699 | 0.288 | 0.3095 | 0.276 | 0.3371 | 0.3594 | 0.3277 | 0.3371 | 0.3594 | 0.3277 | | 1.0923 | 1.36 | 30 | 1.3575 | 0.519 | 0.5505 | 0.4936 | 0.3114 | 0.3237 | 0.2958 | 0.3569 | 0.3702 | 0.3364 | 0.3569 | 0.3702 | 0.3364 | | 1.1287 | 1.82 | 40 | 1.3269 | 0.4913 | 0.5997 | 0.5068 | 0.3108 | 0.3964 | 0.3269 | 0.3355 | 0.427 | 0.3521 | 0.3355 | 0.427 | 0.3521 | | 0.9938 | 2.27 | 50 | 1.3189 | 0.5339 | 0.5781 | 0.4973 | 0.3555 | 0.3883 | 0.3345 | 0.3914 | 0.4289 | 0.3678 | 0.3914 | 0.4289 | 0.3678 | | 0.8659 | 2.73 | 60 | 1.3241 | 0.525 | 0.638 | 0.5165 | 0.3556 | 0.4349 | 0.3535 | 0.3914 | 0.4793 | 0.3886 | 0.3914 | 0.4793 | 0.3886 | | 0.6187 | 3.18 | 70 | 1.3360 | 0.5875 | 0.5864 | 0.5416 | 0.4005 | 0.4045 | 0.3701 | 0.4485 | 0.4556 | 0.414 | 0.4485 | 0.4556 | 0.414 | | 0.3941 | 3.64 | 80 | 1.4176 | 0.5373 | 0.6415 | 0.5328 | 0.3576 | 0.446 | 0.3642 | 0.3787 | 0.4586 | 0.3781 | 0.3787 | 0.4586 | 0.3781 | | 0.4145 | 4.09 | 90 | 1.3936 | 0.4127 | 0.6553 | 0.4568 | 0.2568 | 0.4498 | 0.2988 | 0.2918 | 0.4933 | 0.328 | 0.2918 | 0.4933 | 0.328 | | 0.4203 | 4.55 | 100 | 1.4703 | 0.6545 | 0.601 | 0.5981 | 0.4789 | 0.4373 | 0.438 | 0.5251 | 0.4851 | 0.4818 | 0.5251 | 0.4851 | 0.4818 | | 0.687 | 5.0 | 110 | 1.4304 | 0.5566 | 0.6357 | 0.5637 | 0.3734 | 0.4186 | 0.3748 | 0.4251 | 0.4825 | 0.4286 | 0.4251 | 0.4825 | 0.4286 | | 0.4006 | 5.45 | 120 | 1.5399 | 0.5994 | 0.5794 | 0.5515 | 0.4215 | 0.4218 | 0.398 | 0.4359 | 0.4369 | 0.4084 | 0.4359 | 0.4369 | 0.4084 | | 0.2536 | 5.91 | 130 | 1.5098 | 0.5074 | 0.6254 | 0.4874 | 0.3369 | 0.4189 | 0.3256 | 0.3802 | 0.4738 | 0.3664 | 0.3802 | 0.4738 | 0.3664 | | 0.2218 | 6.36 | 140 | 1.5278 | 0.5713 | 0.6059 | 0.5688 | 0.3887 | 0.4233 | 0.3916 | 0.4414 | 0.4795 | 0.4457 | 0.4414 | 0.4795 | 0.4457 | | 0.2577 | 6.82 | 150 | 1.5469 | 0.5148 | 0.5941 | 0.5175 | 0.3284 | 0.3856 | 0.3335 | 0.3616 | 0.4268 | 0.3681 | 0.3616 | 0.4268 | 0.3681 | | 0.1548 | 7.27 | 160 | 1.5986 | 0.5983 | 0.657 | 0.5862 | 0.4322 | 0.4877 | 0.4287 | 0.4466 | 0.5167 | 0.4482 | 0.4466 | 0.5167 | 0.4482 | | 0.1535 | 7.73 | 170 | 1.5796 | 0.5609 | 0.641 | 0.5616 | 0.3856 | 0.4428 | 0.3892 | 0.4238 | 0.4921 | 0.4263 | 0.4238 | 0.4921 | 0.4263 | | 0.1568 | 8.18 | 180 | 1.6052 | 0.5669 | 0.617 | 0.5679 | 0.3911 | 0.4382 | 0.3969 | 0.4363 | 0.4877 | 0.4417 | 0.4363 | 0.4877 | 0.4417 | | 0.2038 | 8.64 | 190 | 1.6191 | 0.5466 | 0.5973 | 0.5313 | 0.3543 | 0.4114 | 0.3531 | 0.4061 | 0.4666 | 0.404 | 0.4061 | 0.4666 | 0.404 | | 0.1808 | 9.09 | 200 | 1.6165 | 0.5751 | 0.5919 | 0.5587 | 0.3831 | 0.4097 | 0.3817 | 0.4482 | 0.4728 | 0.4405 | 0.4482 | 0.4728 | 0.4405 | | 0.1021 | 9.55 | 210 | 1.6316 | 0.5316 | 0.6315 | 0.535 | 0.3588 | 0.4563 | 0.3697 | 0.405 | 0.502 | 0.4126 | 0.405 | 0.502 | 0.4126 | | 0.1407 | 10.0 | 220 | 1.6322 | 0.6059 | 0.6233 | 0.5895 | 0.4192 | 0.4512 | 0.4176 | 0.4622 | 0.4946 | 0.4566 | 0.4622 | 0.4946 | 0.4566 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 1.2.1 - Tokenizers 0.12.1
81593e4d038f404304d010bd38aaeb47
google/t5-efficient-xl-nl16
google
t5
12
12
transformers
0
text2text-generation
true
true
true
apache-2.0
['en']
['c4']
null
0
0
0
0
0
0
0
['deep-narrow']
false
true
true
6,247
false
# T5-Efficient-XL-NL16 (Deep-Narrow version) T5-Efficient-XL-NL16 is a variation of [Google's original T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) following the [T5 model architecture](https://huggingface.co/docs/transformers/model_doc/t5). It is a *pretrained-only* checkpoint and was released with the paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** by *Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, Donald Metzler*. In a nutshell, the paper indicates that a **Deep-Narrow** model architecture is favorable for **downstream** performance compared to other model architectures of similar parameter count. To quote the paper: > We generally recommend a DeepNarrow strategy where the model’s depth is preferentially increased > before considering any other forms of uniform scaling across other dimensions. This is largely due to > how much depth influences the Pareto-frontier as shown in earlier sections of the paper. Specifically, a > tall small (deep and narrow) model is generally more efficient compared to the base model. Likewise, > a tall base model might also generally more efficient compared to a large model. We generally find > that, regardless of size, even if absolute performance might increase as we continue to stack layers, > the relative gain of Pareto-efficiency diminishes as we increase the layers, converging at 32 to 36 > layers. Finally, we note that our notion of efficiency here relates to any one compute dimension, i.e., > params, FLOPs or throughput (speed). We report all three key efficiency metrics (number of params, > FLOPS and speed) and leave this decision to the practitioner to decide which compute dimension to > consider. To be more precise, *model depth* is defined as the number of transformer blocks that are stacked sequentially. A sequence of word embeddings is therefore processed sequentially by each transformer block. ## Details model architecture This model checkpoint - **t5-efficient-xl-nl16** - is of model type **Xl** with the following variations: - **nl** is **16** It has **1912.07** million parameters and thus requires *ca.* **7648.29 MB** of memory in full precision (*fp32*) or **3824.14 MB** of memory in half precision (*fp16* or *bf16*). A summary of the *original* T5 model architectures can be seen here: | Model | nl (el/dl) | ff | dm | kv | nh | #Params| | ----| ---- | ---- | ---- | ---- | ---- | ----| | Tiny | 4/4 | 1024 | 256 | 32 | 4 | 16M| | Mini | 4/4 | 1536 | 384 | 32 | 8 | 31M| | Small | 6/6 | 2048 | 512 | 32 | 8 | 60M| | Base | 12/12 | 3072 | 768 | 64 | 12 | 220M| | Large | 24/24 | 4096 | 1024 | 64 | 16 | 738M| | Xl | 24/24 | 16384 | 1024 | 128 | 32 | 3B| | XXl | 24/24 | 65536 | 1024 | 128 | 128 | 11B| whereas the following abbreviations are used: | Abbreviation | Definition | | ----| ---- | | nl | Number of transformer blocks (depth) | | dm | Dimension of embedding vector (output vector of transformers block) | | kv | Dimension of key/value projection matrix | | nh | Number of attention heads | | ff | Dimension of intermediate vector within transformer block (size of feed-forward projection matrix) | | el | Number of transformer blocks in the encoder (encoder depth) | | dl | Number of transformer blocks in the decoder (decoder depth) | | sh | Signifies that attention heads are shared | | skv | Signifies that key-values projection matrices are tied | If a model checkpoint has no specific, *el* or *dl* than both the number of encoder- and decoder layers correspond to *nl*. ## Pre-Training The checkpoint was pretrained on the [Colossal, Cleaned version of Common Crawl (C4)](https://huggingface.co/datasets/c4) for 524288 steps using the span-based masked language modeling (MLM) objective. ## Fine-Tuning **Note**: This model is a **pretrained** checkpoint and has to be fine-tuned for practical usage. The checkpoint was pretrained in English and is therefore only useful for English NLP tasks. You can follow on of the following examples on how to fine-tune the model: *PyTorch*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) - [Question Answering](https://github.com/huggingface/transformers/blob/master/examples/pytorch/question-answering/run_seq2seq_qa.py) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *Tensorflow*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/tensorflow/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. *JAX/Flax*: - [Summarization](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) - [Text Classification](https://github.com/huggingface/transformers/tree/master/examples/flax/text-classification) - *Note*: You will have to slightly adapt the training example here to make it work with an encoder-decoder model. ## Downstream Performance TODO: Add table if available ## Computational Complexity TODO: Add table if available ## More information We strongly recommend the reader to go carefully through the original paper **[Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers](https://arxiv.org/abs/2109.10686)** to get a more nuanced understanding of this model checkpoint. As explained in the following [issue](https://github.com/google-research/google-research/issues/986#issuecomment-1035051145), checkpoints including the *sh* or *skv* model architecture variations have *not* been ported to Transformers as they are probably of limited practical usage and are lacking a more detailed description. Those checkpoints are kept [here](https://huggingface.co/NewT5SharedHeadsSharedKeyValues) as they might be ported potentially in the future.
82a591b11936ec3e10a8caf444ae6060
AI-Ahmed/deberta-v3-base-funetuned-cls-qqa
AI-Ahmed
deberta-v2
61
15
transformers
0
text-classification
true
false
false
cc-by-4.0
['en']
['SetFit/qqp']
null
1
0
1
0
0
0
0
['classification']
true
true
true
1,789
false
A fine-tuned model based on the **DeBERTaV3** model of Microsoft and fine-tuned on **Glue QQP**, which detects the linguistical similarities between two questions and whether they are duplicates questions or different. ## Model Hyperparameters ```python epoch=4 per_device_train_batch_size=32 per_device_eval_batch_size=16 lr=2e-5 weight_decay=1e-2 gradient_checkpointing=True gradient_accumulation_steps=8 ``` ## Model Performance ```JSON {"Training Loss": 0.132400, "Validation Loss": 0.217410, "Validation Accuracy": 0.917969 } ``` ## Model Dependencies ```JSON {"Main Model": "microsoft/deberta-v3-base", "Dataset": "SetFit/qqp" } ``` ## Training Monitoring & Performance - [wandb - deberta_qqa_classification](https://wandb.ai/ai-ahmed/deberta_qqa_classification?workspace=user-ai-ahmed) ## Model Testing ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification model_name = "AI-Ahmed/deberta-v3-base-funetuned-cls-qqa" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenized_input = tokenizer("How is the life of a math student? Could you describe your own experiences? Which level of preparation is enough for the exam jlpt5?", return_tensors="pt") with torch.no_grad(): logits = model(**tokenized_input).logits predicted_class_id = logits.argmax().item() model.config.id2label[predicted_class_id] ``` ## Information Citation ```bibtex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
192c508932f59879f54a42b027389dd6
jeraldflowers/distilroberts-base-mrpc-glue-jeraldflowers
jeraldflowers
roberta
17
3
transformers
0
text-classification
true
false
false
apache-2.0
null
['glue']
null
0
0
0
0
0
0
0
['text-classification', 'generated_from_trainer']
true
true
true
1,344
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberts-base-mrpc-glue-jeraldflowers This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue and the mrpc datasets. It achieves the following results on the evaluation set: - Loss: 0.4990 - Accuracy: 0.8431 - F1: 0.8815 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5289 | 1.09 | 500 | 0.5668 | 0.8211 | 0.8689 | | 0.3675 | 2.18 | 1000 | 0.4990 | 0.8431 | 0.8815 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
198ce21dee5b672deb2990c399e58308
YasinShihab/asr-en-bn-test
YasinShihab
null
2
0
null
0
automatic-speech-recognition
false
false
false
cc-by-sa-4.0
['Bengali']
['OpenSLR']
null
0
0
0
0
0
0
0
['bn', 'audio', 'automatic-speech-recognition', 'speech']
true
true
true
1,660
false
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
79df9741d1bf656211ca2a3a0ac54ddc
jonatasgrosman/exp_w2v2t_uk_unispeech-sat_s27
jonatasgrosman
unispeech-sat
10
2
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['uk']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'uk']
false
true
true
462
false
# exp_w2v2t_uk_unispeech-sat_s27 Fine-tuned [microsoft/unispeech-sat-large](https://huggingface.co/microsoft/unispeech-sat-large) for speech recognition using the train split of [Common Voice 7.0 (uk)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
e61d0f2e5cb304ba20de27a178f1a5c3
gustavecortal/flan-t5-large-dream-character
gustavecortal
t5
10
4
transformers
0
text2text-generation
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,017
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-large-dream-character This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0937 - Gen Len: 2.8625 - F1: 0.6843 - Precision: 0.7760 - Recall: 0.6755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Gen Len | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:---------:|:------:| | 0.714 | 0.59 | 250 | 0.1678 | 3.025 | 0.2809 | 0.3302 | 0.3145 | | 0.1488 | 1.18 | 500 | 0.1332 | 2.1 | 0.4394 | 0.575 | 0.4082 | | 0.1206 | 1.78 | 750 | 0.1023 | 2.35 | 0.5491 | 0.6948 | 0.5205 | | 0.097 | 2.37 | 1000 | 0.0974 | 2.8375 | 0.5889 | 0.6956 | 0.5904 | | 0.0859 | 2.96 | 1250 | 0.0884 | 2.9 | 0.6610 | 0.7510 | 0.6574 | | 0.0635 | 3.55 | 1500 | 0.0926 | 2.4625 | 0.6429 | 0.7875 | 0.5930 | | 0.0581 | 4.15 | 1750 | 0.0930 | 2.75 | 0.6651 | 0.7754 | 0.6446 | | 0.0453 | 4.74 | 2000 | 0.0937 | 2.8625 | 0.6843 | 0.7760 | 0.6755 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2
08eb6e5d27f14fb850a6bb34b318cafe
agungbesti/house
agungbesti
null
5
0
null
0
null
false
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
779
false
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
93eaa78d7f0056b64c5516ac1f78b64f
AMAN-B/Demo-Dreambooth
AMAN-B
null
18
69
diffusers
1
text-to-image
false
false
false
creativeml-openrail-m
null
null
null
3
3
0
0
0
0
0
['stable-diffusion', 'stable-diffusion-diffusers', 'text-to-image']
false
true
true
572
false
### Diffusers ```py from diffusers import StableDiffusionPipeline import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` For more detailed instructions, use-cases and examples in JAX follow the instructions [here](https://github.com/huggingface/diffusers#text-to-image-generation-with-stable-diffusion)
6af3f44627dbf33e0ce399b6129c582b
CCMat/ddpm-bored-apes-128
CCMat
null
7
0
diffusers
0
unconditional-image-generation
true
false
false
mit
null
null
null
0
0
0
0
0
0
0
['pytorch', 'diffusers', 'unconditional-image-generation', 'diffusion-models-class']
false
true
true
413
false
# Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of bored apes 🦧. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('CCMat/diff-bored-apes-128') image = pipeline().images[0] image ``` ## Samples ![example images](bored-apes-grid.png)
d7fddf96df1b6b98b01a158367ad6fdb
jonatasgrosman/exp_w2v2t_nl_r-wav2vec2_s925
jonatasgrosman
wav2vec2
10
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['nl']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'nl']
false
true
true
462
false
# exp_w2v2t_nl_r-wav2vec2_s925 Fine-tuned [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) for speech recognition using the train split of [Common Voice 7.0 (nl)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
2b4056bdd23ed48bfac4fd72756e4c0a
CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa
CAMeL-Lab
bert
12
154
transformers
0
token-classification
true
true
false
apache-2.0
['ar']
null
null
0
0
0
0
0
0
0
[]
false
true
true
3,770
false
# CAMeLBERT-CA POS-MSA Model ## Model description **CAMeLBERT-CA POS-MSA Model** is a Modern Standard Arabic (MSA) POS tagging model that was built by fine-tuning the [CAMeLBERT-CA](https://huggingface.co/CAMeL-Lab/bert-base-arabic-camelbert-ca/) model. For the fine-tuning, we used the [PATB](https://dl.acm.org/doi/pdf/10.5555/1621804.1621808) dataset. Our fine-tuning procedure and the hyperparameters we used can be found in our paper *"[The Interplay of Variant, Size, and Task Type in Arabic Pre-trained Language Models](https://arxiv.org/abs/2103.06678)."* Our fine-tuning code can be found [here](https://github.com/CAMeL-Lab/CAMeLBERT). ## Intended uses You can use the CAMeLBERT-CA POS-MSA model as part of the transformers pipeline. This model will also be available in [CAMeL Tools](https://github.com/CAMeL-Lab/camel_tools) soon. #### How to use To use the model with a transformers pipeline: ```python >>> from transformers import pipeline >>> pos = pipeline('token-classification', model='CAMeL-Lab/bert-base-arabic-camelbert-ca-pos-msa') >>> text = 'إمارة أبوظبي هي إحدى إمارات دولة الإمارات العربية المتحدة السبع' >>> pos(text) [{'entity': 'noun', 'score': 0.9999758, 'index': 1, 'word': 'إمارة', 'start': 0, 'end': 5}, {'entity': 'noun_prop', 'score': 0.9997559, 'index': 2, 'word': 'أبوظبي', 'start': 6, 'end': 12}, {'entity': 'pron', 'score': 0.99996257, 'index': 3, 'word': 'هي', 'start': 13, 'end': 15}, {'entity': 'noun', 'score': 0.9958452, 'index': 4, 'word': 'إحدى', 'start': 16, 'end': 20}, {'entity': 'noun', 'score': 0.9999635, 'index': 5, 'word': 'إما', 'start': 21, 'end': 24}, {'entity': 'noun', 'score': 0.99991685, 'index': 6, 'word': '##رات', 'start': 24, 'end': 27}, {'entity': 'noun', 'score': 0.99997497, 'index': 7, 'word': 'دولة', 'start': 28, 'end': 32}, {'entity': 'noun', 'score': 0.9999795, 'index': 8, 'word': 'الإمارات', 'start': 33, 'end': 41}, {'entity': 'adj', 'score': 0.99924207, 'index': 9, 'word': 'العربية', 'start': 42, 'end': 49}, {'entity': 'adj', 'score': 0.99994195, 'index': 10, 'word': 'المتحدة', 'start': 50, 'end': 57}, {'entity': 'noun_num', 'score': 0.9997414, 'index': 11, 'word': 'السبع', 'start': 58, 'end': 63}] ``` *Note*: to download our models, you would need `transformers>=3.5.0`. Otherwise, you could download the models manually. ## Citation ```bibtex @inproceedings{inoue-etal-2021-interplay, title = "The Interplay of Variant, Size, and Task Type in {A}rabic Pre-trained Language Models", author = "Inoue, Go and Alhafni, Bashar and Baimukan, Nurpeiis and Bouamor, Houda and Habash, Nizar", booktitle = "Proceedings of the Sixth Arabic Natural Language Processing Workshop", month = apr, year = "2021", address = "Kyiv, Ukraine (Online)", publisher = "Association for Computational Linguistics", abstract = "In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.", } ```
66b1bdec6921430b8cb2224e766c2fe0
Praboda/xlm-roberta-base-finetuned-panx-it
Praboda
xlm-roberta
10
3
transformers
0
token-classification
true
false
false
mit
null
['xtreme']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,320
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2369 - F1: 0.8322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8113 | 1.0 | 70 | 0.3088 | 0.7546 | | 0.259 | 2.0 | 140 | 0.2541 | 0.8155 | | 0.1791 | 3.0 | 210 | 0.2369 | 0.8322 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3
7cb96e6d28eede79721dbc43f46a8213
Adil617/wav2vec2-base-timit-demo-colab
Adil617
wav2vec2
14
5
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,237
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.9314 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 8.686 | 0.16 | 20 | 13.6565 | 1.0 | | 8.0711 | 0.32 | 40 | 12.5379 | 1.0 | | 6.9967 | 0.48 | 60 | 9.7215 | 1.0 | | 5.2368 | 0.64 | 80 | 5.8459 | 1.0 | | 3.4499 | 0.8 | 100 | 3.3413 | 1.0 | | 3.1261 | 0.96 | 120 | 3.2858 | 1.0 | | 3.0654 | 1.12 | 140 | 3.1945 | 1.0 | | 3.0421 | 1.28 | 160 | 3.1296 | 1.0 | | 3.0035 | 1.44 | 180 | 3.1172 | 1.0 | | 3.0067 | 1.6 | 200 | 3.1217 | 1.0 | | 2.9867 | 1.76 | 220 | 3.0715 | 1.0 | | 2.9653 | 1.92 | 240 | 3.0747 | 1.0 | | 2.9629 | 2.08 | 260 | 2.9984 | 1.0 | | 2.9462 | 2.24 | 280 | 2.9991 | 1.0 | | 2.9391 | 2.4 | 300 | 3.0391 | 1.0 | | 2.934 | 2.56 | 320 | 2.9682 | 1.0 | | 2.9193 | 2.72 | 340 | 2.9701 | 1.0 | | 2.8985 | 2.88 | 360 | 2.9314 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
6ba065814b7e0d723c2ebc89b4b5e551
danghuy1999/gpt2-viwiki
danghuy1999
gpt2
7
10
transformers
3
null
true
true
false
mit
['vi']
null
null
0
0
0
0
0
0
0
['gpt2-viwiki']
false
true
true
3,121
false
# GPT-2 Fine-tuning in Vietnamese Wikipedia ## Model description This is a Vietnamese GPT-2 model which is finetuned on the [Latest pages articles of Vietnamese Wikipedia](https://dumps.wikimedia.org/viwiki/latest/viwiki-latest-pages-articles.xml.bz2). ## Dataset The dataset is about 800MB, includes many articles from Wikipedia. ## How to use You can use this model to: - Tokenize Vietnamese sentences with GPT2Tokenizer. - Generate text seems like a Wikipedia article. - Finetune it to other downstream tasks. Here is how to use the model to generate text in Pytorch: ```python import torch from transformers import GPT2Tokenizer, GPT2LMHeadModel tokenizer = GPT2Tokenizer.from_pretrained('danghuy1999/gpt2-viwiki') model = GPT2LMHeadModel.from_pretrained('danghuy1999/gpt2-viwiki').to('cuda') text = "Albert Einstein là nhà vật lý học tạo ra thuyết lượng tử" input_ids = tokenizer.encode(text, return_tensors='pt').to('cuda') max_length = 100 sample_outputs = model.generate(input_ids,pad_token_id=tokenizer.eos_token_id, do_sample=True, max_length=max_length, min_length=max_length, top_k=40, num_beams=5, early_stopping=True, no_repeat_ngram_size=2, num_return_sequences=3) for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\n\n{}".format(i+1, tokenizer.decode(sample_output.tolist()))) print('\n---') ``` And the results are: ```bash >> Generated text 1 Albert Einstein là nhà vật lý học tạo ra thuyết lượng tử. Mặc dù thuyết tương đối tổng quát không được áp dụng rộng rãi trong nhiều lĩnh vực khác nhau, nhưng các nhà lý thuyết đã đưa ra khái niệm rộng hơn về tính chất của vật chất. Một trong những nghiên cứu của Albert Einstein về sự tồn tại của hệ quy chiếu quán tính, ông đã đề xuất rằng một lực hấp dẫn có thể có khối lượng bằng năng lượng của nó. Tuy nhiên, những người cho rằng --- >> Generated text 2 Albert Einstein là nhà vật lý học tạo ra thuyết lượng tử. Tuy nhiên, thuyết tương đối hẹp không phải là lý thuyết của Einstein. Cho đến tận cuối thế kỷ 19, Albert Einstein đã chứng minh được sự tồn tại của lực hấp dẫn trong một số trường hợp đặc biệt. Năm 1915, ông đưa ra khái niệm "khối lượng" để miêu tả chuyển động lượng của một hạt bằng khối lượng nghỉ của nó. Ông cho rằng năng lượng "m" là một thành phần của --- >> Generated text 3 Albert Einstein là nhà vật lý học tạo ra thuyết lượng tử. Tuy nhiên, thuyết tương đối hẹp không được chấp nhận rộng rãi bởi các nhà lý thuyết. Một trong những nghiên cứu của Einstein về tính chất của lực hấp dẫn là vào năm 1905, ông đã đưa ra một khái niệm về lực học. Ông đã phát biểu rằng nếu một hạt mang điện tích dương, nó có thể chuyển đổi năng lượng của nó thành các hạt khác. Năm 1915, Arthur Eddington phát minh ra --- ``` You can do the same with **Tensorflow** by using the model **TFGPT2Tokenizer** instead.
315b1ed6a9c1a650d68e4a788b69ae45
LinfO/yerlearsi
LinfO
null
31
2
diffusers
0
null
false
false
false
mit
null
null
null
2
2
0
0
0
0
0
[]
false
true
true
1,961
false
### yerlearsi on Stable Diffusion via Dreambooth #### model by LinfO This your the Stable Diffusion model fine-tuned the yerlearsi concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt`: **yerlearsi** You can also train your own concepts and upload them to the library by using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_training.ipynb). And you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Here are the images used for training this concept: ![image 0](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/6.jpeg) ![image 1](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/9.jpeg) ![image 2](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/1.jpeg) ![image 3](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/5.jpeg) ![image 4](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/2.jpeg) ![image 5](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/11.jpeg) ![image 6](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/3.jpeg) ![image 7](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/12.jpeg) ![image 8](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/10.jpeg) ![image 9](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/0.jpeg) ![image 10](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/4.jpeg) ![image 11](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/7.jpeg) ![image 12](https://huggingface.co/LinfO/yerlearsi/resolve/main/concept_images/8.jpeg)
8020df3a9fb76ea5ef512c60995469de
sd-concepts-library/boris-anderson
sd-concepts-library
null
9
0
null
0
null
false
false
false
mit
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
1,070
false
### Boris Anderson on Stable Diffusion This is the `<boris-anderson>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<boris-anderson> 0](https://huggingface.co/sd-concepts-library/boris-anderson/resolve/main/concept_images/0.jpeg) ![<boris-anderson> 1](https://huggingface.co/sd-concepts-library/boris-anderson/resolve/main/concept_images/3.jpeg) ![<boris-anderson> 2](https://huggingface.co/sd-concepts-library/boris-anderson/resolve/main/concept_images/2.jpeg) ![<boris-anderson> 3](https://huggingface.co/sd-concepts-library/boris-anderson/resolve/main/concept_images/1.jpeg)
9e4af5f64a3d47558463a1db267446d3
StonyBrookNLP/preasm-large-drop
StonyBrookNLP
t5
8
3
transformers
0
text2text-generation
true
false
false
cc-by-4.0
null
null
null
0
0
0
0
0
0
0
['question-answering, multi-step-reasoning, multi-hop-reasoning']
false
true
true
2,603
false
# What's this? This is one of the models reported in the paper: ["Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts".](https://arxiv.org/abs/2205.12496). This paper proposes a procedure to synthetically generate a QA dataset, TeaBReaC, for pretraining language models for robust multi-step reasoning. Pretraining plain LMs like Bart, T5 and numerate LMs like NT5, PReasM, POET on TeaBReaC leads to improvemed downstream performance on several multi-step QA datasets. Please checkout out the paper for the details. We release the following models: - **A:** Base Models finetuned on target datasets: `{base_model}-{target_dataset}` - **B:** Base models pretrained on TeaBReaC: `teabreac-{base_model}` - **C:** Base models pretrained on TeaBReaC and then finetuned on target datasets: `teabreac-{base_model}-{target_dataset}` The `base_model` above can be from: `bart-large`, `t5-large`, `t5-3b`, `nt5-small`, `preasm-large`. The `target_dataset` above can be from: `drop`, `tatqa`, `iirc-gold`, `iirc-retrieved`, `numglue`. The **A** models are only released for completeness / reproducibility. In your end application you probably just want to use either **B** or **C**. # How to use it? Please checkout the details in our [github repository](https://github.com/stonybrooknlp/teabreac), but in a nutshell: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from digit_tokenization import enable_digit_tokenization # digit_tokenization.py from https://github.com/stonybrooknlp/teabreac model_name = "StonyBrookNLP/preasm-large-drop" tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) # Fast doesn't work with digit tokenization model = AutoModelForSeq2SeqLM.from_pretrained(model_name) enable_digit_tokenization(tokenizer) input_texts = [ "Who scored the first touchdown of the game?\n" + "... Oakland would get the early lead in the first quarter as quarterback JaMarcus Russell completed a 20-yard touchdown pass to rookie wide receiver Chaz Schilens..." # Note: some models have slightly different qn/ctxt format. See the github repo. ] input_ids = tokenizer( input_texts, return_tensors="pt", truncation=True, max_length=800, add_special_tokens=True, padding=True, )["input_ids"] generated_ids = model.generate(input_ids, min_length=1, max_length=50) generated_predictions = tokenizer.batch_decode(generated_ids, skip_special_tokens=False) generated_predictions = [ tokenizer.fix_decoded_text(generated_prediction) for generated_prediction in generated_predictions ] # => ["Chaz Schilens"] ```
3d213ef898085b2fa80998bb098c4f21
YoungMasterFromSect/ManyColors
YoungMasterFromSect
null
8
0
null
2
null
false
false
false
creativeml-openrail-m
null
null
null
0
0
0
0
0
0
0
[]
false
true
true
848
false
Depending on tags and length of tags artstyle will vary, so experiment with them! | wral artstyle - artstyle tag | watercolor \(medium\) - helps to bring out watercolor | multicolored hair - helps to make image multicolored Sample images: <style> img { display: inline-block; } </style> <img src="https://huggingface.co/YoungMasterFromSect/ManyColors/resolve/main/1.png" width="300" height="200"> <img src="https://huggingface.co/YoungMasterFromSect/ManyColors/resolve/main/2.png" width="300" height="200"> <img src="https://huggingface.co/YoungMasterFromSect/ManyColors/resolve/main/3.png" width="300" height="300"> <img src="https://huggingface.co/YoungMasterFromSect/ManyColors/resolve/main/4.png" width="300" height="300"> <img src="https://huggingface.co/YoungMasterFromSect/ManyColors/resolve/main/5.png" width="300" height="300">
baf2b4518d03a8bc32b1a03c7805410a
muhtasham/tiny-mlm-imdb-target-rotten_tomatoes
muhtasham
bert
10
4
transformers
0
text-classification
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,578
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-mlm-imdb-target-rotten_tomatoes This model is a fine-tuned version of [muhtasham/small-mlm-wikitext](https://huggingface.co/muhtasham/small-mlm-wikitext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3909 - Accuracy: 0.8021 - F1: 0.8017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.4528 | 1.87 | 500 | 0.4296 | 0.8030 | 0.8028 | | 0.2265 | 3.75 | 1000 | 0.5558 | 0.8096 | 0.8096 | | 0.1111 | 5.62 | 1500 | 0.9042 | 0.8039 | 0.8039 | | 0.0584 | 7.49 | 2000 | 1.1252 | 0.8058 | 0.8058 | | 0.0405 | 9.36 | 2500 | 1.3909 | 0.8021 | 0.8017 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2
d74078bee176ab1437a869e6677dc0ef
gokuls/mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_128
gokuls
mobilebert
17
0
transformers
0
text-classification
true
false
false
apache-2.0
['en']
['glue']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,617
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mobilebert_sa_GLUE_Experiment_logit_kd_data_aug_qnli_128 This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.1653 - Accuracy: 0.5779 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.7088 | 1.0 | 33208 | 1.1653 | 0.5779 | | 0.5355 | 2.0 | 66416 | 1.2844 | 0.5889 | | 0.4541 | 3.0 | 99624 | 1.2482 | 0.5825 | | 0.4041 | 4.0 | 132832 | 1.2911 | 0.5836 | | 0.3722 | 5.0 | 166040 | 1.3428 | 0.5779 | | 0.3486 | 6.0 | 199248 | 1.3220 | 0.5781 | ### Framework versions - Transformers 4.26.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.9.0 - Tokenizers 0.13.2
9819670ec436558fe43ff5048d9ee0ef
MadMarx37/mt5-small-finetuned-cnn-dailymail
MadMarx37
mt5
17
3
transformers
0
text2text-generation
true
false
false
apache-2.0
null
['cnn_dailymail']
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
2,029
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-small-finetuned-cnn-dailymail This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 1.7294 - Rouge1: 32.8352 - Rouge2: 17.0633 - Rougel: 29.0888 - Rougelsum: 30.8226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| | No log | 1.0 | 8973 | 1.9272 | 31.6634 | 16.1653 | 28.1624 | 29.7819 | | No log | 2.0 | 17946 | 1.8282 | 32.1032 | 16.4388 | 28.4914 | 30.1856 | | No log | 3.0 | 26919 | 1.7967 | 32.5721 | 16.8392 | 28.8483 | 30.5764 | | 2.1615 | 4.0 | 35892 | 1.7640 | 32.6788 | 16.94 | 28.994 | 30.6883 | | 2.1615 | 5.0 | 44865 | 1.7450 | 32.8129 | 17.048 | 29.0788 | 30.8106 | | 2.1615 | 6.0 | 53838 | 1.7379 | 32.7074 | 16.9641 | 28.9745 | 30.7043 | | 2.1615 | 7.0 | 62811 | 1.7317 | 32.7692 | 17.0116 | 29.0395 | 30.7685 | | 2.0886 | 8.0 | 71784 | 1.7294 | 32.8352 | 17.0633 | 29.0888 | 30.8226 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.11.0+cu102 - Datasets 2.7.1 - Tokenizers 0.13.2
f958e60efe693de5e330344da91ff967
jonatasgrosman/exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320
jonatasgrosman
wav2vec2
10
1
transformers
0
automatic-speech-recognition
true
false
false
apache-2.0
['en']
['mozilla-foundation/common_voice_7_0']
null
0
0
0
0
0
0
0
['automatic-speech-recognition', 'en']
false
true
true
498
false
# exp_w2v2r_en_vp-100k_gender_male-2_female-8_s320 Fine-tuned [facebook/wav2vec2-large-100k-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-100k-voxpopuli) for speech recognition using the train split of [Common Voice 7.0 (en)](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool.
8d5fec508fac974560e7eb8b4fd017f2
davidlekve/distilroberta-base-finetuned-the-beatles
davidlekve
roberta
8
6
transformers
0
fill-mask
true
false
false
apache-2.0
null
null
null
0
0
0
0
0
0
0
['generated_from_trainer']
true
true
true
1,267
false
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilroberta-base-finetuned-the-beatles This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 84 | 2.6517 | | No log | 2.0 | 168 | 2.6433 | | No log | 3.0 | 252 | 2.5186 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cpu - Datasets 2.1.0 - Tokenizers 0.12.1
5687f04595678814935816019e4ba434