image
imagewidth (px) 4
512
| latex
stringlengths 1
188
| sample_id
stringlengths 16
16
| split_tag
stringclasses 1
value | data_type
stringclasses 1
value |
---|---|---|---|---|
\tilde{Y}^{n}
|
be1f5972d5f5d5b5
|
train
|
human
|
|
0.5\sqrt{2}
|
a58b29aa8a4f4f31
|
train
|
human
|
|
\frac{\partial f_{k}}{\partial x_{j}}
|
554866b1352ca641
|
train
|
human
|
|
{10^{218}}^{10}-\frac{\frac{4}{\sqrt{375}}}{179}
|
4d59b397b0f9e669
|
train
|
human
|
|
\chi=(E_{i}+E_{ea})/2
|
7f42fa1f682afbb0
|
train
|
human
|
|
(8\cdot119)/5-319^{97}
|
28ecab124abb9f5b
|
train
|
human
|
|
a=\sqrt{2\varphi^{-1}}
|
07eb112ea61369cf
|
train
|
human
|
|
\hat{B}
|
d995ef9e2699ad4f
|
train
|
human
|
|
y=\sqrt{x^{2}-|w|^{2}}>0
|
81652621ff52a353
|
train
|
human
|
|
\frac{1}{n}!=\int_{0}^{\infty}e^{-x^{n}}dx
|
a794cb3748b54914
|
train
|
human
|
|
\frac{(3-170)}{\frac{7}{8}\cdot169}
|
18588c0f98998f00
|
train
|
human
|
|
0=E\{(\hat{x}-x)y\}
|
dd989331170f4ed9
|
train
|
human
|
|
(107+393)^{\frac{10}{10}}
|
5f55e3b4d0b5cbec
|
train
|
human
|
|
3\cdot10^{{6^{1}}^{1}}
|
96759dd0136afc20
|
train
|
human
|
|
||v||=\sqrt{v^{\top}v}
|
7b94165cf45291de
|
train
|
human
|
|
\sqrt{re^{i\theta}}=\pm\sqrt{r}e^{i\theta/2}
|
06f572fe66612448
|
train
|
human
|
|
\frac{\frac{\frac{\sqrt{449}}{9}}{217}}{(\frac{\sqrt{318}}{313})^{3}}
|
39f1ae5aa180fe91
|
train
|
human
|
|
z=i\frac{log3}{4\pi}
|
72815a520798140f
|
train
|
human
|
|
v(x_{0})
|
fd5834356c996180
|
train
|
human
|
|
(1)y^{\prime}=F(x,y)
|
a8e8e573167628f0
|
train
|
human
|
|
[\begin{matrix}1&1\\ 0&1\end{matrix}]
|
c8a130af45f76b27
|
train
|
human
|
|
\sum_{i=0}^{4}(\begin{matrix}8\\ 2i\end{matrix})(\begin{matrix}28\\ 16-i\end{matrix})
|
03bcac8d4ea1dea3
|
train
|
human
|
|
\int fg=f(x)\int g
|
8dbd24881a54785b
|
train
|
human
|
|
\sigma=\sqrt{\frac{B-ND^{2}}{N}}
|
1fffcc0286cdfd52
|
train
|
human
|
|
\frac{E_{1}}{E_{2}}=\frac{n_{1}}{n_{2}}
|
abc84973c454a7e8
|
train
|
human
|
|
\omega\notin X
|
57096b3c3e25de85
|
train
|
human
|
|
\sqrt{-h}h^{ab}\rightarrow\eta^{ab}
|
7fd44063e9cc0930
|
train
|
human
|
|
m_{2}=\frac{a^{2}+ab+b^{2}}{3}
|
d8d32298269dd225
|
train
|
human
|
|
\frac{2\chi}{\sqrt{\frac{Um_{sen}}{o^{9}}}}
|
0d8041cb5a09fab5
|
train
|
human
|
|
y=x^{2}\iff x=\sqrt{y}
|
c958660677c98097
|
train
|
human
|
|
\overline{n}
|
bbe0d36d5a9533f9
|
train
|
human
|
|
\frac{d\Phi}{dr}=-\frac{1}{\rho}\frac{dP}{dr}
|
f098dd4f127830ed
|
train
|
human
|
|
((\frac{442}{\sqrt{389}})^{8})^{395^{1}}
|
06466a1065289bb5
|
train
|
human
|
|
(\frac{3^{8}}{209}-3/2)
|
3dbedacb32fb18b2
|
train
|
human
|
|
((10\cdot496)-8)^{317\cdot\sqrt{8}+3}
|
1876794d7755a785
|
train
|
human
|
|
Z[p^{-1}]
|
4f5026e7364c078a
|
train
|
human
|
|
(\begin{matrix}n\\ p\end{matrix})
|
a44632d92e2b7d3d
|
train
|
human
|
|
3,\frac{8}{3},\frac{11}{4},\frac{19}{7},\frac{87}{32},...
|
a3d7b3b345e4f331
|
train
|
human
|
|
dsin\theta_{n}=n\lambda
|
e666ef7c09700c13
|
train
|
human
|
|
(\begin{matrix}N\\ 2\end{matrix})
|
9e8c89381b09d69b
|
train
|
human
|
|
p=\frac{m+u}{\sqrt{6-\frac{u^{2}}{c^{2}}}}
|
906edd61c6be9435
|
train
|
human
|
|
x^{(3)}=x_{4}
|
d7508f56a94b00f6
|
train
|
human
|
|
\frac{4^{4}}{4}=64<70=(\begin{matrix}8\\ 4\end{matrix})
|
e3ede36163cbcf60
|
train
|
human
|
|
N\equiv\sqrt{-\frac{g}{\rho}\frac{d\rho}{dz}}
|
c8db92bbc341612b
|
train
|
human
|
|
V_{q}=\frac{4\pi e^{2}}{\epsilon q^{2}L^{3}}
|
5a6711b016d8e32e
|
train
|
human
|
|
\mu=\beta(1+\frac{\alpha^{2}}{2})
|
d162376373527d34
|
train
|
human
|
|
[\begin{matrix}12&12&123&124\\ \end{matrix}]
|
27943634325d1bd0
|
train
|
human
|
|
273^{4}+26+403
|
4441173467e06747
|
train
|
human
|
|
\frac{D_{P1}}{D_{P2}}=\frac{\rho_{P2}}{\rho_{P1}}
|
711d84cab90d29a4
|
train
|
human
|
|
{(H^{f})}^{\xi}
|
35aa471f328144b0
|
train
|
human
|
|
{(\frac{{w_{z}}^{4}}{{w_{a}}^{4}}-1)}^{4}\ge0
|
89ffac05e75cdfe8
|
train
|
human
|
|
\lfloor\frac{37+3}{4}\rfloor=10
|
a3b491d845aba9e6
|
train
|
human
|
|
\alpha=\frac{lnC}{T-1}
|
c3207a4076e6f2a4
|
train
|
human
|
|
{{417^{103}}^{4}}^{\frac{7}{46}}
|
c4d268c84416c188
|
train
|
human
|
|
\overline{x_{i}}
|
36e0c51d779bc1e5
|
train
|
human
|
|
\tilde{\gamma}
|
4a077549da4d749c
|
train
|
human
|
|
bf(m\tilde{T})
|
96cd8e0cfbc92a2e
|
train
|
human
|
|
\frac{(3-\sqrt{2})}{\frac{1^{6}}{7}}
|
364bf97c6fdd967d
|
train
|
human
|
|
\underline{P}(Cl_{1}^{\le})=\{x_{1},x_{5}\}
|
3537d3c8cd31fa86
|
train
|
human
|
|
W=-\int Fdx
|
be3365e04f7d6b46
|
train
|
human
|
|
||f_{\theta}-f_{\theta^{\prime}}||_{L_{1}}\ge\alpha
|
c8cb375cc1c4678e
|
train
|
human
|
|
F(r)=\frac{C(r)}{Rr^{3}}
|
ad30c2589c7c39d6
|
train
|
human
|
|
\int_{0}^{1}3x^{2}+2x+5dt
|
05dde2352693762a
|
train
|
human
|
|
\frac{(b-a)^{3}}{36}f^{(2)}(\xi)
|
9432e5e59a773a98
|
train
|
human
|
|
lim_{n\rightarrow\infty}z^{\pm n}
|
4c87ab92cc5dfbfa
|
train
|
human
|
|
GZ=GM\cdot sin\phi
|
28dc474c88ad0dfd
|
train
|
human
|
|
Af=i\frac{d}{dx}f
|
3913db154ee42480
|
train
|
human
|
|
I_{n}=\int sin^{n}x
|
9b1e5bedd3aad447
|
train
|
human
|
|
(\begin{matrix}0&i\\ i&0\end{matrix})
|
a5d201921f51aaa2
|
train
|
human
|
|
2^{O(\sqrt{k})}n^{O(1)}
|
5dfbd67654f854ce
|
train
|
human
|
|
\epsilon_{2}=\lambda^{\lambda^{\lambda^{\cdot^{\cdot^{\cdot}}}}}
|
df77854b3f98473f
|
train
|
human
|
|
({\sqrt{56}^{5}}^{1}+10^{\sqrt{5}})
|
aebf5691c09ed4a3
|
train
|
human
|
|
P_{max}=P_{m}+H
|
0afebcff2eab2d0b
|
train
|
human
|
|
(\begin{matrix}n\\ k\end{matrix})=(\begin{matrix}n-1\\ k-1\end{matrix})+(\begin{matrix}n-1\\ k\end{matrix})
|
f3181fa678fc5e5a
|
train
|
human
|
|
\hat{\rho}
|
8f8f0a10114a79a5
|
train
|
human
|
|
\pi-\psi=\angle AKP_{2}
|
b1935edf11cd74c9
|
train
|
human
|
|
\frac{\partial}{\partial c}P_{c}^{n}(c)
|
b24910dd4e5a697e
|
train
|
human
|
|
c_{c}=1
|
5f5abcf6fd3a473d
|
train
|
human
|
|
\frac{\sqrt{\frac{(d_{1}n)^{d_{1}}d_{7}^{d_{7}}}{(d_{1}n+d_{7})^{d_{1}+d_{7}}}}}{nU(\frac{d_{1}}{7},\frac{d_{7}}{7})}
|
7adb6ef7f655dd5d
|
train
|
human
|
|
(\begin{matrix}n\\ c\end{matrix})
|
831fbf3ee29135fa
|
train
|
human
|
|
p=\frac{e^{\theta}}{1+e^{\theta}}=
|
f6594b46c7ef3083
|
train
|
human
|
|
x^{p/q}=\sqrt[q]{x^{p}}
|
27e4ed62587415be
|
train
|
human
|
|
w^{+\frac{(V+M)^{2}}{2{(s_{V})}^{2}}}
|
93a68d7d96cec163
|
train
|
human
|
|
\frac{\frac{2}{3}}{\frac{\frac{7}{300}}{1}}
|
7e3c2db34885f8ac
|
train
|
human
|
|
\prod_{j\ne i}(x_{i}-x_{j})
|
412500632a50c3d8
|
train
|
human
|
|
(\frac{378}{4}+(\frac{143}{10})^{196})
|
d1f46a8ca9091110
|
train
|
human
|
|
RC=\Delta_{T}(\frac{1-\alpha}{\alpha})
|
e94f2702384c2872
|
train
|
human
|
|
c_{n}=\prod_{i=1}^{n}p_{i}
|
e86a0d1a3dbae839
|
train
|
human
|
|
\tilde{v}_{ij}
|
2b95997b1dbbc841
|
train
|
human
|
|
=\frac{(\begin{matrix}K\\ k\end{matrix})(\begin{matrix}N-K\\ n-k\end{matrix})}{(\begin{matrix}N+1\\ n+1\end{matrix})}
|
f14ca7618d191b18
|
train
|
human
|
|
\hat{S_{z}}
|
7a2392e6a2b333b4
|
train
|
human
|
|
\frac{k-1}{k}
|
f0cd3b34bf9e9673
|
train
|
human
|
|
\frac{(5-5)^{7}}{7\cdot7}
|
452aab155f72bb1f
|
train
|
human
|
|
F=x^{2}-y^{2}-z^{2}
|
024a00b093eb3886
|
train
|
human
|
|
\{\begin{matrix}3\\ 5\end{matrix}\}
|
9d74b841c1d9ede3
|
train
|
human
|
|
\tilde{m}=\frac{rhp}{\sqrt{\frac{r_{1}r_{2}}{r_{1}-r_{2}}}}
|
6da3f05378d2c237
|
train
|
human
|
|
e^{k}k^{O(logk)}log|V|
|
391e8e07e399429e
|
train
|
human
|
|
\frac{(210^{9}/4)}{\frac{(\sqrt{9}+317)}{\sqrt{5}}}
|
7a055c0ae01a06d0
|
train
|
human
|
|
\sqrt{\frac{\alpha\lambda}{\beta}}(x-\mu)
|
15dc2648d6f2f527
|
train
|
human
|
|
{149^{4}}^{\frac{20^{197}}{306}}
|
72bf2f84fbb1b614
|
train
|
human
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.