id
stringlengths 40
40
| repo_name
stringlengths 5
110
| path
stringlengths 2
233
| content
stringlengths 0
1.03M
⌀ | size
int32 0
60M
⌀ | license
stringclasses 15
values |
---|---|---|---|---|---|
233f3e1bbf84fba920c6bbaf638d42a13771c7e6
|
fingerhuth/NG-resistance-spread
|
sensitivity/fitness_costs/pn_8/s_g-init-res.R
|
cost_b <- vec_cost_b[l]
cost_v <- vec_cost_v[m]
parms <- c(c=c, noG=noG, alpha=alpha, v=v, gamma=gamma, rho=rho,
ta=ta,
e0_a=e0_a,
ea_a=ea_a,
mu_0a=mu_0a,
mu_a0=mu_a0,
cost_b=cost_b,
cost_v=cost_v
)
init <- unlist(free.out[1])
| 318 |
mit
|
48a213f6b3f77fccdb5a1ad84324167237e54a6b
|
RcppCore/Rcpp
|
inst/tinytest/test_client_package.R
|
## Copyright (C) 2010 - 2019 Dirk Eddelbuettel and Romain Francois
##
## This file is part of Rcpp.
##
## Rcpp is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## Rcpp is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
## This now (Dec 2011) appears to fail on Windows
.onWindows <- .Platform$OS.type == "windows"
.runThisTest <- Sys.getenv("RunAllRcppTests") == "yes" && Sys.getenv("RunVerboseRcppTests") == "yes"
if (! .runThisTest) exit_file("Set 'RunVerboseRcppTests' and 'RunAllRcppTests' to 'yes' to run.")
if (.onWindows) exit_file("Skipping on Windows.'")
#.client.package <- function(pkg = "testRcppPackage") {
td <- tempfile()
cwd <- getwd()
dir.create(td)
pkg <- "testRcppPackage"
#file.copy(system.file("unitTests", pkg, package = "Rcpp"), td, recursive = TRUE)
file.copy(pkg, td, recursive = TRUE) # simpler direct path thanks to tinytest
setwd(td)
on.exit( { setwd(cwd); unlink(td, recursive = TRUE) } )
R <- shQuote(file.path( R.home(component = "bin"), "R"))
cmd <- paste(R, "CMD build", pkg, " >/dev/null 2>&1")
system(cmd)
dir.create("templib")
pkgfile <- paste0(pkg, "_0.1.0.tar.gz")
install.packages(pkgfile, "templib", repos = NULL, type = "source")
require(pkg, lib.loc = "templib", character.only = TRUE)
hello_world <- get("rcpp_hello_world", asNamespace(pkg))
expect_equal(hello_world(), list(c("foo", "bar"), c(0.0, 1.0)),
info = "code from client package")
expect_error(.Call("hello_world_ex", PACKAGE = pkg), info = "exception in client package")
remove.packages(pkg, lib="templib")
unlink("templib", recursive = TRUE)
setwd(cwd)
unlink(pkgfile)
| 2,115 |
gpl-2.0
|
233f3e1bbf84fba920c6bbaf638d42a13771c7e6
|
fingerhuth/NG-resistance-spread
|
sensitivity/fitness_costs/pn_7/s_g-init-res.R
|
cost_b <- vec_cost_b[l]
cost_v <- vec_cost_v[m]
parms <- c(c=c, noG=noG, alpha=alpha, v=v, gamma=gamma, rho=rho,
ta=ta,
e0_a=e0_a,
ea_a=ea_a,
mu_0a=mu_0a,
mu_a0=mu_a0,
cost_b=cost_b,
cost_v=cost_v
)
init <- unlist(free.out[1])
| 318 |
mit
|
48a213f6b3f77fccdb5a1ad84324167237e54a6b
|
ellert/Rcpp
|
inst/tinytest/test_client_package.R
|
## Copyright (C) 2010 - 2019 Dirk Eddelbuettel and Romain Francois
##
## This file is part of Rcpp.
##
## Rcpp is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 2 of the License, or
## (at your option) any later version.
##
## Rcpp is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Rcpp. If not, see <http://www.gnu.org/licenses/>.
## This now (Dec 2011) appears to fail on Windows
.onWindows <- .Platform$OS.type == "windows"
.runThisTest <- Sys.getenv("RunAllRcppTests") == "yes" && Sys.getenv("RunVerboseRcppTests") == "yes"
if (! .runThisTest) exit_file("Set 'RunVerboseRcppTests' and 'RunAllRcppTests' to 'yes' to run.")
if (.onWindows) exit_file("Skipping on Windows.'")
#.client.package <- function(pkg = "testRcppPackage") {
td <- tempfile()
cwd <- getwd()
dir.create(td)
pkg <- "testRcppPackage"
#file.copy(system.file("unitTests", pkg, package = "Rcpp"), td, recursive = TRUE)
file.copy(pkg, td, recursive = TRUE) # simpler direct path thanks to tinytest
setwd(td)
on.exit( { setwd(cwd); unlink(td, recursive = TRUE) } )
R <- shQuote(file.path( R.home(component = "bin"), "R"))
cmd <- paste(R, "CMD build", pkg, " >/dev/null 2>&1")
system(cmd)
dir.create("templib")
pkgfile <- paste0(pkg, "_0.1.0.tar.gz")
install.packages(pkgfile, "templib", repos = NULL, type = "source")
require(pkg, lib.loc = "templib", character.only = TRUE)
hello_world <- get("rcpp_hello_world", asNamespace(pkg))
expect_equal(hello_world(), list(c("foo", "bar"), c(0.0, 1.0)),
info = "code from client package")
expect_error(.Call("hello_world_ex", PACKAGE = pkg), info = "exception in client package")
remove.packages(pkg, lib="templib")
unlink("templib", recursive = TRUE)
setwd(cwd)
unlink(pkgfile)
| 2,115 |
gpl-2.0
|
c6612ccd2a346181452bbe38c3ba222bd55c171c
|
IALSA/IALSA-2015-Portland
|
sandbox/shiny-basic/server.R
|
library(shiny)
if(basename(getwd())=="basic"){
dsb <- readRDS('../../data/shared/ds1a.rds')
}else{
dsb <- readRDS('./data/shared/ds1a.rds')
}
dsb <- dsb %>% dplyr::filter(model_number %in% c("u1","b1"))
ds <- dsb[ , c("study_name", "model_type","physical_construct","cognitive_construct","physical_measure","cognitive_measure","corr_int","p_cov_int","corr_slope","p_cov_slope")]
head(ds)
unique(ds$study_name)
unique(ds$physical_construct)
# Define server logic required to summarize and view the selected
# study
shinyServer(function(input, output,clientData,session) {
# Develope handler for when study variables is empty # use handlers / if()
observe({
# browser()
# ds_study <- ds[ds$study_name==input$study, ]
study_variables <- sort(unique(ds_study()$physical_construct))
updateSelectInput(session, "physical",
choices = study_variables,
selected=study_variables[1])
})
ds_study <- reactive({
ds[ds$study_name==input$study, ]
})
# Generate frequency count for the study
output$freqs <- renderPrint({
table(ds_study()$physical_construct,ds_study()$cognitive_construct)
#
})
#
# # Show the first "n" observations
output$view <- renderDataTable({
ds_study_physical <- ds_study()[ds_study()$physical_construct==input$physical, ]
head(ds_study_physical, n=input$obs)
},
options = list(
searching = F,
paging = FALSE,
sort = FALSE,
language= list(emptyTable="--<em>This table has no entries</em>--"))
)
})
| 1,513 |
gpl-2.0
|
9327fecda1528ba333c2c4ee8d07741af4af8124
|
gmonette/spida2
|
R/pch.R
|
#' Easy pch characters
#'
#' Fifteen pch symbols and six line types can be generated
#' mnemonic names.
#'
#' @param shape 'square', 'circle', 'triangle', 'diamond', 'ltriangle' (or 1, 2, 3, 4, 5 respectively). Default: 1
#' @param fill 'empty', 'solid', 'fill' (with different color) (or 1, 2, 3 respectively). Default: 1
#' @param line 'solid','dashed','dotted','dash dot','long dash','long dash dot' (or 1, 2, 3, 4, 5, 6 respectively). Default: 1
#' @return value(s) of pch or lty to produce corresponding character or line type
#' @export
pch <- function(shape = 1, fill = 1){
shapenames <- c('square', 'circle', 'triangle', 'diamond', 'ltriangle')
fillnames <- c('empty', 'solid', 'fill')
if(!is.numeric(shape)) shape <- sapply(shape,
function(s) grep(s,shapenames)[1])
if(!is.numeric(fill)) fill <- sapply(fill,
function(s) grep(s,fillnames)[1])
mat <- t(rbind( c(0,1,2,5,6), c(15,16,17,18,25),c(22,21,24,23,25)))
mat[cbind(shape,fill)]
}
#' @describeIn pch Easy line types
#' @export
lty <- function(line = 1){
linetypes <- c('solid', 'dashed', 'dotted', 'dash dot', 'long dash', 'long dash dot')
if(!is.numeric(line)) line <- sapply(line, function(s) grep(s,linetypes)[1])
line
}
| 1,286 |
gpl-2.0
|
9327fecda1528ba333c2c4ee8d07741af4af8124
|
gmonette/yscs
|
R/pch.R
|
#' Easy pch characters
#'
#' Fifteen pch symbols and six line types can be generated
#' mnemonic names.
#'
#' @param shape 'square', 'circle', 'triangle', 'diamond', 'ltriangle' (or 1, 2, 3, 4, 5 respectively). Default: 1
#' @param fill 'empty', 'solid', 'fill' (with different color) (or 1, 2, 3 respectively). Default: 1
#' @param line 'solid','dashed','dotted','dash dot','long dash','long dash dot' (or 1, 2, 3, 4, 5, 6 respectively). Default: 1
#' @return value(s) of pch or lty to produce corresponding character or line type
#' @export
pch <- function(shape = 1, fill = 1){
shapenames <- c('square', 'circle', 'triangle', 'diamond', 'ltriangle')
fillnames <- c('empty', 'solid', 'fill')
if(!is.numeric(shape)) shape <- sapply(shape,
function(s) grep(s,shapenames)[1])
if(!is.numeric(fill)) fill <- sapply(fill,
function(s) grep(s,fillnames)[1])
mat <- t(rbind( c(0,1,2,5,6), c(15,16,17,18,25),c(22,21,24,23,25)))
mat[cbind(shape,fill)]
}
#' @describeIn pch Easy line types
#' @export
lty <- function(line = 1){
linetypes <- c('solid', 'dashed', 'dotted', 'dash dot', 'long dash', 'long dash dot')
if(!is.numeric(line)) line <- sapply(line, function(s) grep(s,linetypes)[1])
line
}
| 1,286 |
gpl-2.0
|
fa6e38459c8786fce2be14b040c45427b02d14fd
|
pssguy/rstudio
|
src/cpp/r/R/Api.R
|
.rs.addApiFunction("versionInfo", function() {
info <- list()
info$citation <- .Call(getNativeSymbolInfo("rs_rstudioCitation",
PACKAGE=""))
info$mode <- .Call(getNativeSymbolInfo("rs_rstudioProgramMode",
PACKAGE=""))
info$version <- package_version(
.Call(getNativeSymbolInfo("rs_rstudioVersion", PACKAGE=""))
)
info
})
.rs.addApiFunction("diagnosticsReport", function() {
invisible(.Call(getNativeSymbolInfo("rs_sourceDiagnostics", PACKAGE="")))
})
.rs.addApiFunction("previewRd", function(rdFile) {
if (!is.character(rdFile) || (length(rdFile) != 1))
stop("rdFile must be a single element character vector.")
if (!file.exists(rdFile))
stop("The specified rdFile ' ", rdFile, "' does not exist.")
invisible(.Call(getNativeSymbolInfo("rs_previewRd", PACKAGE=""), rdFile))
})
.rs.addApiFunction("viewer", function(url, height = NULL) {
if (!is.character(url) || (length(url) != 1))
stop("url must be a single element character vector.")
if (identical(height, "maximize"))
height <- -1
if (!is.null(height) && (!is.numeric(height) || (length(height) != 1)))
stop("height must be a single element numeric vector or 'maximize'.")
invisible(.Call(getNativeSymbolInfo("rs_viewer", PACKAGE=""), url, height))
})
.rs.addApiFunction("sourceMarkers", function(name,
markers,
basePath = NULL,
autoSelect = c("none", "first", "error")) {
# validate name
if (!is.character(name))
stop("name parameter is specified or invalid: ", name, call. = FALSE)
# validate autoSelect
autoSelect = match.arg(autoSelect)
# normalize basePath
if (!is.null(basePath))
basePath <- .rs.normalizePath(basePath, mustWork = TRUE)
if (is.data.frame(markers)) {
cols <- colnames(markers)
if (!"type" %in% cols || !is.character(markers$type))
stop("markers type field is unspecified or invalid", call. = FALSE)
if (!"file" %in% cols || !is.character(markers$file))
stop("markers file field is unspecified or invalid", call. = FALSE)
if (!"line" %in% cols || !is.numeric(markers$line))
stop("markers line field is unspecified or invalid", call. = FALSE)
if (!"column" %in% cols || !is.numeric(markers$column))
stop("markers column field is unspecified or invalid", call. = FALSE)
if (!"message" %in% cols || !is.character(markers$message))
stop("markers message field is unspecified or invalid", call. = FALSE)
# normalize paths
cols$file <- .rs.normalizePath(cols$file, mustWork = TRUE)
# check for html
cols$messageHTML <- .rs.scalar(inherits(cols$message, "html"))
} else if (is.list(markers)) {
markers <- lapply(markers, function(marker) {
markerTypes <- c("error", "warning", "box", "info", "style", "usage")
if (is.null(marker$type) || (!marker$type %in% markerTypes))
stop("Invalid marker type (", marker$type, ")", call. = FALSE)
if (!is.character(marker$file))
stop("Marker file is unspecified or invalid: ", marker$file, call. = FALSE)
if (!is.numeric(marker$line))
stop("Marker line is unspecified or invalid", marker$line, call. = FALSE)
if (!is.numeric(marker$column))
stop("Marker column is unspecified or invalid", marker$line, call. = FALSE)
if (!is.character(marker$message))
stop("Marker message is unspecified or invalid: ", marker$message, call. = FALSE)
marker$type <- .rs.scalar(marker$type)
marker$file <- .rs.scalar(.rs.normalizePath(marker$file, mustWork = TRUE))
marker$line <- .rs.scalar(as.numeric(marker$line))
marker$column <- .rs.scalar(as.numeric(marker$column))
marker$message <- .rs.scalar(marker$message)
marker$messageHTML <- .rs.scalar(inherits(marker$message, "html"))
marker
})
} else {
stop("markers was not a data.frame or a list", call. = FALSE)
}
# validate basePath
if (is.null(basePath))
basePath <- ""
else if (!is.character(basePath))
stop("basePath parameter is not of type character", call. = FALSE)
invisible(.Call("rs_sourceMarkers", name, markers, basePath, autoSelect))
})
| 4,554 |
agpl-3.0
|
a8af4e1529bf45c65c4a272505d8a67b15b4a6e0
|
radfordneal/pqR
|
tests/subsetting.R
|
# Test possible bugs involving subset and subassign.
#
# Added for pqR, 2014, 2017, Radford M. Neal.
# General tests of subset extraction with scalar indexes, not array.
vi <- 11:15
vr <- (11:15) + 0.1
L <- list(11.1,12L,13.1,14L,TRUE)
Ln <- list(e1=11.1,e2=12L,e3=13.1,e4=14L,e5=TRUE)
vin <- vi
names(vin) <- paste0("a",1:length(vin))
vrn <- vr
names(vrn) <- paste0("a",1:length(vrn))
a <- vi[3L]
stopifnot(identical(a,13L))
a <- vi[3]
stopifnot(identical(a,13L))
a <- vr[3]
stopifnot(identical(a,13.1))
a <- vin[3]
stopifnot(identical(a,c(a3=13L)))
a <- vrn[3]
stopifnot(identical(a,c(a3=13.1)))
a <- L[3]
stopifnot(identical(a,list(13.1)))
a <- Ln[3]
stopifnot(identical(a,list(e3=13.1)))
a <- vi[[3]]
stopifnot(identical(a,13L))
a <- vr[[3]]
stopifnot(identical(a,13.1))
a <- vin[[3]]
stopifnot(identical(a,13L))
a <- vrn[[3]]
stopifnot(identical(a,13.1))
a <- L[[3]]
stopifnot(identical(a,13.1))
a <- Ln[[3]]
stopifnot(identical(a,13.1))
a <- vin["a3"]
stopifnot(identical(a,c(a3=13L)))
a <- vin[["a3"]]
stopifnot(identical(a,13L))
a <- Ln[["e3"]]
stopifnot(identical(a,13.1))
a <- Ln$e3
stopifnot(identical(a,13.1))
j <- 2
a <- vi[j+1]
stopifnot(identical(a,13L))
a <- vr[j+1]
stopifnot(identical(a,13.1))
a <- vin[j+1]
stopifnot(identical(a,c(a3=13L)))
a <- vrn[j+1]
stopifnot(identical(a,c(a3=13.1)))
a <- L[j+1]
stopifnot(identical(a,list(13.1)))
a <- Ln[j+1]
stopifnot(identical(a,list(e3=13.1)))
a <- vi[[j+1]]
stopifnot(identical(a,13L))
a <- vr[[j+1]]
stopifnot(identical(a,13.1))
a <- vin[[j+1]]
stopifnot(identical(a,13L))
a <- vrn[[j+1]]
stopifnot(identical(a,13.1))
a <- L[[j+1]]
stopifnot(identical(a,13.1))
a <- Ln[[j+1]]
stopifnot(identical(a,13.1))
# General tests of subset replacement with scalar indexes, not array.
vi <- 11:15
vr <- (11:15) + 0.1
L <- list(11.1,12L,13.1,14L,TRUE)
Ln <- list(e1=11.1,e2=12L,e3=13.1,e4=14L,e5=TRUE)
vin <- vi
names(vin) <- paste0("a",1:length(vin))
vrn <- vr
names(vrn) <- paste0("a",1:length(vrn))
vi[3] <- 20L
stopifnot(identical(vi,c(11L,12L,20L,14L,15L)))
vi[2] <- 30
stopifnot(identical(vi,c(11,30,20,14,15)))
vr[3] <- 20.2
vr[2] <- 30.2
stopifnot(identical(vr,c(11.1,30.2,20.2,14.1,15.1)))
vin[3] <- 20L
stopifnot(identical(vin,c(a1=11L,a2=12L,a3=20L,a4=14L,a5=15L)))
vin[2] <- 30
stopifnot(identical(vin,c(a1=11,a2=30,a3=20,a4=14,a5=15)))
vrn[3] <- 20.2
vrn[2] <- 30.2
stopifnot(identical(vrn,c(a1=11.1,a2=30.2,a3=20.2,a4=14.1,a5=15.1)))
L[3] <- list(FALSE)
stopifnot(identical(L,list(11.1,12L,FALSE,14L,TRUE)))
L[[2]] <- 1.1
stopifnot(identical(L,list(11.1,1.1,FALSE,14L,TRUE)))
Ln[3] <- list(FALSE)
stopifnot(identical(Ln,list(e1=11.1,e2=12L,e3=FALSE,e4=14L,e5=TRUE)))
Ln$e5 <- "abc"
stopifnot(identical(Ln,list(e1=11.1,e2=12L,e3=FALSE,e4=14L,e5="abc")))
Ln$e1 <- c(1,2)
stopifnot(identical(Ln,list(e1=c(1,2),e2=12L,e3=FALSE,e4=14L,e5="abc")))
vi <- 11:15
vr <- (11:15) + 0.1
L <- list(11.1,12L,13.1,14L,TRUE)
Ln <- list(e1=11.1,e2=12L,e3=13.1,e4=14L,e5=TRUE)
vin <- vi
names(vin) <- paste0("a",1:length(vin))
vrn <- vr
names(vrn) <- paste0("a",1:length(vrn))
vi[[3]] <- 20L
stopifnot(identical(vi,c(11L,12L,20L,14L,15L)))
vi[[2]] <- 30
stopifnot(identical(vi,c(11,30,20,14,15)))
vr[[3]] <- 20.2
vr[[2]] <- 30.2
stopifnot(identical(vr,c(11.1,30.2,20.2,14.1,15.1)))
vin[[3]] <- 20L
stopifnot(identical(vin,c(a1=11L,a2=12L,a3=20L,a4=14L,a5=15L)))
vin[[2]] <- 30
stopifnot(identical(vin,c(a1=11,a2=30,a3=20,a4=14,a5=15)))
vrn[[3]] <- 20.2
vrn[[2]] <- 30.2
stopifnot(identical(vrn,c(a1=11.1,a2=30.2,a3=20.2,a4=14.1,a5=15.1)))
vin["a1"] <- 10L
stopifnot(identical(vin,c(a1=10,a2=30,a3=20,a4=14,a5=15)))
vin[["a1"]] <- 12L
stopifnot(identical(vin,c(a1=12,a2=30,a3=20,a4=14,a5=15)))
# vin$a4 <- 50L
# stopifnot(identical(vin,c(a1=12,a2=30,a3=20,a4=50,a5=15)))
vi <- 11:15
vr <- (11:15) + 0.1
L <- list(11.1,12L,13.1,14L,TRUE)
Ln <- list(e1=11.1,e2=12L,e3=13.1,e4=14L,e5=TRUE)
vin <- vi
names(vin) <- paste0("a",1:length(vin))
vrn <- vr
names(vrn) <- paste0("a",1:length(vrn))
j <- 2
k <- 20L
vi[[j+1]] <- k
stopifnot(identical(vi,c(11L,12L,20L,14L,15L)))
vi[[j]] <- k+10
stopifnot(identical(vi,c(11,30,20,14,15)))
vr[[j+1]] <- k+0.2
vr[[j]] <- k+10.2
stopifnot(identical(vr,c(11.1,30.2,20.2,14.1,15.1)))
vin[[j+1]] <- k
stopifnot(identical(vin,c(a1=11L,a2=12L,a3=20L,a4=14L,a5=15L)))
vin[[j]] <- k+10
stopifnot(identical(vin,c(a1=11,a2=30,a3=20,a4=14,a5=15)))
vrn[[j+1]] <- k+0.2
vrn[[j]] <- k+10.2
stopifnot(identical(vrn,c(a1=11.1,a2=30.2,a3=20.2,a4=14.1,a5=15.1)))
vin["a1"] <- k-10L
stopifnot(identical(vin,c(a1=10,a2=30,a3=20,a4=14,a5=15)))
vin[["a1"]] <- k-8L
stopifnot(identical(vin,c(a1=12,a2=30,a3=20,a4=14,a5=15)))
# vin$a4 <- k+30L
# stopifnot(identical(vin,c(a1=12,a2=30,a3=20,a4=50,a5=15)))
# Replacement of pairlist or language elements.
L <- pairlist(1,2,3)
L[[2]] <- 9
stopifnot(identical(L,pairlist(1,9,3)))
L[[2]] <- NULL
stopifnot(identical(L,pairlist(1,3)))
L[[1]] <- NULL
stopifnot(identical(L,pairlist(3)))
L <- pairlist(a=1,b=2,c=3)
L$b <- 9
stopifnot(identical(L,pairlist(a=1,b=9,c=3)))
L$b <- NULL
stopifnot(identical(L,pairlist(a=1,c=3)))
L$a <- NULL
stopifnot(identical(L,pairlist(c=3)))
L <- parse(text="f(1,2)")[[1]]
L[[2]] <- 3
stopifnot(identical(L,parse(text="f(3,2)")[[1]]))
L[[1]] <- NULL
stopifnot(identical(L,pairlist(3,2)))
# Tests with ...
M <- matrix(101:112,3,4)
f <- function (w,...) stopifnot(identical(M[...],w))
f(104L,4)
f(104L,1,2)
f(105L,2,2)
f(M[])
f <- function (w,x,...) stopifnot(identical(M[x,...],w))
f(104L,4)
f(104L,1,2)
f(105L,2,2)
f <- function (w,...) stopifnot(identical(M[[...]],w))
f(104L,4)
f(104L,1,2)
f(105L,2,2)
f <- function (w,x,...) stopifnot(identical(M[[x,...]],w))
f(104L,4)
f(104L,1,2)
f(105L,2,2)
M2 <- M
M2[2,3] <- 9L
f <- function (M,W,...) { M[...] <- 9L; stopifnot(identical(M,W)) }
f(M,M2,2,3)
f <- function (M,W,x,...) { M[x,...] <- 9L; stopifnot(identical(M,W)) }
f(M,M2,2,3)
f <- function (M,W,...) { M[[...]] <- 9L; stopifnot(identical(M,W)) }
f(M,M2,2,3)
f <- function (M,W,x,...) { M[[x,...]] <- 9L; stopifnot(identical(M,W)) }
f(M,M2,2,3)
# Check that name after $ gets dispatched as a string.
a <- list(p=3,q=4)
class(a) <- "fred"
`$.fred` <-
function (x,n)
{ stopifnot(identical(n,substitute(n))); x[[n]] }
`$<-.fred` <-
function (x,n,value)
{ stopifnot(identical(n,substitute(n))); x[[n]] <- value; x }
a$q <- a$q + 1
stopifnot(identical(a,structure(list(p=3,q=5),class="fred")))
cat("DONE\n")
# Check how dimnames are converted to names when result is a vector.
M <- matrix(3,2,2)
rownames(M) <- c("a","b")
stopifnot(identical(M[2,2],c(b=3)))
colnames(M) <- c("x","y")
stopifnot(identical(M[2,2],3))
stopifnot(identical(M[array(2),2],c(b=3)))
stopifnot(identical(M[2,array(2)],c(y=3)))
A <- M[1..1,_]
stopifnot(identical(A[,2],3))
stopifnot(identical(A[_,2],c(a=3)))
A <- M[_,1..1]
stopifnot(identical(A[2,],3))
stopifnot(identical(A[2,_],c(x=3)))
# Check array indexing.
a <- array(1:120,c(2,3,4,5))
a[2,3,4,5] <- 9999L
stopifnot(a[2,3,4,5]==9999L)
stopifnot(a[length(a)]==9999L)
a[2,3,4,5] <- 120L
stopifnot(all(c(a)==1:120))
a <- array(1:120,c(2,3,4,5))
a[[2,3,4,5]] <- 9999L
stopifnot(a[[2,3,4,5]]==9999L)
stopifnot(a[length(a)]==9999L)
a[[2,3,4,5]] <- 120L
stopifnot(all(c(a)==1:120))
| 7,206 |
gpl-2.0
|
fa6e38459c8786fce2be14b040c45427b02d14fd
|
sfloresm/rstudio
|
src/cpp/r/R/Api.R
|
.rs.addApiFunction("versionInfo", function() {
info <- list()
info$citation <- .Call(getNativeSymbolInfo("rs_rstudioCitation",
PACKAGE=""))
info$mode <- .Call(getNativeSymbolInfo("rs_rstudioProgramMode",
PACKAGE=""))
info$version <- package_version(
.Call(getNativeSymbolInfo("rs_rstudioVersion", PACKAGE=""))
)
info
})
.rs.addApiFunction("diagnosticsReport", function() {
invisible(.Call(getNativeSymbolInfo("rs_sourceDiagnostics", PACKAGE="")))
})
.rs.addApiFunction("previewRd", function(rdFile) {
if (!is.character(rdFile) || (length(rdFile) != 1))
stop("rdFile must be a single element character vector.")
if (!file.exists(rdFile))
stop("The specified rdFile ' ", rdFile, "' does not exist.")
invisible(.Call(getNativeSymbolInfo("rs_previewRd", PACKAGE=""), rdFile))
})
.rs.addApiFunction("viewer", function(url, height = NULL) {
if (!is.character(url) || (length(url) != 1))
stop("url must be a single element character vector.")
if (identical(height, "maximize"))
height <- -1
if (!is.null(height) && (!is.numeric(height) || (length(height) != 1)))
stop("height must be a single element numeric vector or 'maximize'.")
invisible(.Call(getNativeSymbolInfo("rs_viewer", PACKAGE=""), url, height))
})
.rs.addApiFunction("sourceMarkers", function(name,
markers,
basePath = NULL,
autoSelect = c("none", "first", "error")) {
# validate name
if (!is.character(name))
stop("name parameter is specified or invalid: ", name, call. = FALSE)
# validate autoSelect
autoSelect = match.arg(autoSelect)
# normalize basePath
if (!is.null(basePath))
basePath <- .rs.normalizePath(basePath, mustWork = TRUE)
if (is.data.frame(markers)) {
cols <- colnames(markers)
if (!"type" %in% cols || !is.character(markers$type))
stop("markers type field is unspecified or invalid", call. = FALSE)
if (!"file" %in% cols || !is.character(markers$file))
stop("markers file field is unspecified or invalid", call. = FALSE)
if (!"line" %in% cols || !is.numeric(markers$line))
stop("markers line field is unspecified or invalid", call. = FALSE)
if (!"column" %in% cols || !is.numeric(markers$column))
stop("markers column field is unspecified or invalid", call. = FALSE)
if (!"message" %in% cols || !is.character(markers$message))
stop("markers message field is unspecified or invalid", call. = FALSE)
# normalize paths
cols$file <- .rs.normalizePath(cols$file, mustWork = TRUE)
# check for html
cols$messageHTML <- .rs.scalar(inherits(cols$message, "html"))
} else if (is.list(markers)) {
markers <- lapply(markers, function(marker) {
markerTypes <- c("error", "warning", "box", "info", "style", "usage")
if (is.null(marker$type) || (!marker$type %in% markerTypes))
stop("Invalid marker type (", marker$type, ")", call. = FALSE)
if (!is.character(marker$file))
stop("Marker file is unspecified or invalid: ", marker$file, call. = FALSE)
if (!is.numeric(marker$line))
stop("Marker line is unspecified or invalid", marker$line, call. = FALSE)
if (!is.numeric(marker$column))
stop("Marker column is unspecified or invalid", marker$line, call. = FALSE)
if (!is.character(marker$message))
stop("Marker message is unspecified or invalid: ", marker$message, call. = FALSE)
marker$type <- .rs.scalar(marker$type)
marker$file <- .rs.scalar(.rs.normalizePath(marker$file, mustWork = TRUE))
marker$line <- .rs.scalar(as.numeric(marker$line))
marker$column <- .rs.scalar(as.numeric(marker$column))
marker$message <- .rs.scalar(marker$message)
marker$messageHTML <- .rs.scalar(inherits(marker$message, "html"))
marker
})
} else {
stop("markers was not a data.frame or a list", call. = FALSE)
}
# validate basePath
if (is.null(basePath))
basePath <- ""
else if (!is.character(basePath))
stop("basePath parameter is not of type character", call. = FALSE)
invisible(.Call("rs_sourceMarkers", name, markers, basePath, autoSelect))
})
| 4,554 |
agpl-3.0
|
05af94e985d7b8d247fa275d6d1e26b1070bd0a0
|
dalehurtt/smartphones
|
run_analysis.R
|
####
# This script does the following, not necessarily in the listed order.
#
# 1. Merges the training and the test data sets to create one data set.
# 2. Extracts only the measurements on the mean and standard deviation for each measurement.
# 3. Uses descriptive activity names to name the activities in the data set.
# 4. Appropriately labels the data set with descriptive activity names.
# 5. Creates a second, independent tidy data set with the average of each variable for each activity and each subject.
##########
# VARIABLE DEFINITION
#
# This section lists the variables used in multiple functions, either getting or setting their values. It also
# provides a convenient location to document each variable's use, for data exploration and debugging purposes.
#
# activity_data : Map of activity codes to named values (i.e. 1 = "WALKING", etc.) as a data frame
# cols : Logical vector indicating the columns to "keep" (i.e. Subject, Activity, and those with mean() or std())
# full : Data frame containing the subject, x, and y (activity) data from both the test and training sets.
# labels : Data frame with the labels to each of the 561 columns in the X data files.
# test : Data frame containing the subject, x, and y (activity) data from the test set.
# tidy :
# train : Data frame containing the subject, x, and y (activity) data from the training set.
##########
########## START OF UTILITY FUNCTIONS ##########
##########
# Reads the "activity_labels.txt" file into the data frame 'activity_data'. This variable will be used to map
# activity codes to text values.
##########
getActivity <- function () {
activity_data <<- read.table ("UCI HAR Dataset/activity_labels.txt")
}
##########
# Calculates which of the columns in the test and training data to discard. It looks at the name of each column,
# referencing the 'labels' variable, matching exactly on "Subject"or "Activity", or partially on ".mean..." or
# ".std..." It sets the logical vector 'cols' indicating which columns are a match. Note that this function is aware
# of the two columns added beyond those provided by the 'labels' data frame, and that the label names get transformed
# when the data is read in by read.table (). (Specifically, "-mean()-" is transformed to ".mean..." and "-std()-"
# to ".std...".)
##########
getColumns <- function () {
col_labels <- c ("Subject", "Activity", as.character (labelnames$V2))
cols <<- (col_labels == "Subject" | col_labels == "Activity" | grepl (".mean...", col_labels) |
grepl (".std...", col_labels))
}
##########
# Reads the "features.txt" into the data frame 'labels'. This variable will be used to add column names to the X data.
##########
getLabels <- function () {
labelnames <<- read.table ("UCI HAR Dataset/features.txt")
}
##########
# Reads the "X_test.txt", "subject_test.txt", and "y_test.txt" data files, combining them into a single data frame,
# and then subsetting the data frame to include only those columns indicated by the 'cols' variable. The final data
# is loaded into the variable 'test'.
##########
getTest <- function () {
# Read in the test data.
test_data <- read.table ("UCI HAR Dataset/test/X_test.txt",
col.names = as.character (labelnames$V2)) # Produces 2947 obs of 561 vars
test_subjects <- read.table ("UCI HAR Dataset/test/subject_test.txt",
col.names = "Subject") # Produces 2947 obs of 1 var
test_activity <- read.table ("UCI HAR Dataset/test/y_test.txt",
col.names = "Activity") # Produces 2947 obs of 1 var
test_full <- cbind (test_subjects, test_activity, test_data) # Produces 2947 obs of 563 vars
test_full$Activity <- factor (test_full$Activity, levels = activity_data$V1, labels = activity_data$V2)
test <<- test_full [cols]
}
##########
# Reads the "X_train.txt", "subject_train.txt", and "y_train.txt" data files, combining them into a single data frame,
# and then subsetting the data frame to include only those columns indicated by the 'cols' variable. The final data
# is loaded into the variable 'train'.
##########
getTrain <- function () {
# Read in the training data.
train_data <- read.table ("UCI HAR Dataset/train/X_train.txt",
col.names = as.character (labelnames$V2)) # Produces 7352 obs of 561 vars
train_subjects <- read.table ("UCI HAR Dataset/train/subject_train.txt",
col.names = "Subject") # Produces 7352 obs of 1 var
train_activity <- read.table ("UCI HAR Dataset/train/y_train.txt",
col.names = "Activity") # Produces 7352 obs of 1 var
train_full <- cbind (train_subjects, train_activity, train_data) # Produces 7352 obs of 563 vars
train_full$Activity <- factor(train_full$Activity, levels = activity_data$V1, labels = activity_data$V2)
train <<- train_full [cols]
}
########## END OF UTILITY FUNCTIONS ##########
########## START OF MAIN CODE ##########
# Do all of the preparatory file reading and data transformations.
if (!exists ("activity_data")) getActivity ()
if (!exists ("labelnames")) getLabels ()
if (!exists ("cols")) getColumns ()
if (!exists ("test")) getTest ()
if (!exists ("train")) getTrain ()
# Merge the data sets into one.
if (!exists ("full")) {
full <- rbind (test, train)
full <- full [order (full$Subject),] # Sort the data by Subject ID
# Save some memory by flushing the previous data sets from memory.
rm (test)
rm (train)
}
# Now create a tidy data set with the mean of each variable for each activity and each subject.
if (!exists ("tidy")) {
library (plyr)
# Group on Subject and Activity, calculating the mean of every other column in the set.
tidy <- ddply (full, .(Subject, Activity), .fun = function (x) {
colMeans (x [, -c(1:2)])
})
# Modify the data column names by appending "_mean".
colnames (tidy)[-c(1:2)] <- paste (colnames (tidy)[-c(1:2)], "_mean", sep = "")
}
# Save the tidy data as a file. I use CSV for convenience.
write.csv (tidy, "tidy_dataset.csv")
########## END OF MAIN CODE ##########
| 6,210 |
gpl-2.0
|
7b11ccb8c87c072cb8f2a3c943a2c2b9e99cfc0c
|
USGS-R/WQ-Review
|
inst/shiny/WQReviewGUI/ui_dataImport.R
|
###This contains all the ui elements for the data import tab.
###It is sourced from the ui-body tab, which is eventually sourced from the ui tab.
###These are contained in individual scripts just for organization sake.
fluidPage(
pageWithSidebar(
headerPanel("User-specified import"),
sidebarPanel(
selectizeInput("STAIDS",label="Site number",choices=NULL,multiple=TRUE,options=list(create=TRUE)),
fileInput("siteFile",label="Site number file",accept="csv"),
selectizeInput("projectCd",label="Project code (optional)",choices=NULL,multiple=TRUE,options=list(create=TRUE)),
selectizeInput("dl.parms",label="Parameter codes",choices=NULL,multiple=TRUE,options=list(create=TRUE)),
selectInput("dl.parms.group","Parameter groups",choices=c("All" = "All",
"physical" = "PHY",
"cations" = "INM",
"anions" = "INN",
"nutrients" = "NUT",
"microbiological" = "MBI",
"biological" = "BIO",
"metals" = "IMM",
"nonmetals" = "IMN",
"pesticides" = "TOX",
"pcbs"="OPE",
"other organics" = "OPC",
"radio chemicals" = "RAD",
"stable isotopes" = "XXX",
"sediment" = "SED",
"population/community" = "POP")
,selectize=FALSE,multiple=TRUE),
fileInput("parmFile",label="pCode file",accept="csv"),
dateInput(inputId = "begin.date",label="Start date",max=Sys.Date(),value=Sys.Date()-365*10),
dateInput(inputId = "end.date",label="End date",max=Sys.Date(),value=Sys.Date()),
textInput("DSN",label="Server name (DSN)",value=""),
textInput("env.db",label="Environment DB Number",value="01"),
textInput("qa.db",label="QA DB Number",value="02"),
actionButton(inputId = "dataDownload",label="Get data"),
icon = icon("dashboard")
),
mainPanel(
h3(textOutput("importWarning")),
h3(textOutput("samplesRetrieved")),
h3(textOutput("resultsRetrieved")),
h3(textOutput("sampleModified")),
h4(textOutput("recordModified")),
h4(textOutput("recordModifiedDate")),
h4(textOutput("recordModifiedName")),
h3(textOutput("resultModified")),
h4(textOutput("resultRecordModified")),
h4(textOutput("resultModifiedPARM")),
h4(textOutput("resultModifiedDate")),
h4(textOutput("resultModifiedName")),
verbatimTextOutput("shinyErrors"),
verbatimTextOutput("errors")
)
)
)
| 3,320 |
unlicense
|
faf45990c006969f610d559038b9df3738bfb05e
|
AndreyAkinshin/DynamicalSystemsPortraits
|
SprottChaoticFlow/Input/L/Params.R
|
kx.y <- 1
kx.z <- 3.9
ky.xx <- 0.9
ky.y <- -1
kz <- 1
kz.x <- -1
| 75 |
mit
|
9eaebf883176dd0a279bc73d661c134decc7688f
|
michaelrstatfsu/spherical_data_analysis
|
R_Spherical_Regression_Code/sd_von_Mises_Fisher.R
|
UNIFORMdirections<-function(m,n){
# generate n uniformly distributed m dim'l random directions
# Using the logic: "directions of Normal distribution are uniform on sphere"
V = matrix(0,m,n);
nr = matrix(rnorm(m*n),m,n); #Normal random
for (i in 1:n){
repeat {
ni=t(nr[,i])%*%nr[,i] # length of ith vector
# exclude too small values to avoid numerical discretization
if (ni<1e-10){
# so repeat random generation
nr[,i]=matrix(rnorm(m),m,1)
} else {
V[,i]=nr[,i]/sqrt(ni)
break
}
}
}
return(V)
}
rvonMisesFisher<-function(n,m, kappa, mu) {
# RANDVONMISESFISHERM Random number generation from von Mises Fisher
# distribution.
# X = randvonMisesFisherm(m, n, kappa, mu) with direction parameter mu
# (m-dimensional column unit vector)
#
# Sungkyu Jung, Feb 3, 2010.
# rewritten in R by Michae Rosenthal
if (m < 2){
message('Message from randvonMisesFisherm.m: dimension m must be > 2');
message('Message from randvonMisesFisherm.m: Set m to be 2');
m = 2;
}
if (kappa < 0){
message('Message from randvonMisesFisherm.m: kappa must be >= 0');
message('Message from randvonMisesFisherm.m: Set kappa to be 0');
kappa = 0;
}
#
# the following algorithm is following the modified Ulrich's algorithm
# discussed by Andrew T.A. Wood in "SIMULATION OF THE VON MISES FISHER
# DISTRIBUTION", COMMUN. STATIST 23(1), 1994.
# step 0 : initialize
b = (-2*kappa + sqrt(4*kappa^2 + (m-1)^2))/(m-1);
x0 = (1-b)/(1+b);
c = kappa*x0 + (m-1)*log(1-x0^2);
# step 1 & step 2
nnow = n;
#cnt = 0;
ntrial = max(round(nnow*1.2),nnow+10) ;
Z =matrix(rbeta(ntrial,(m-1)/2,(m-1)/2))
U = matrix(runif(ntrial));
W = (1-(1+b)*Z)/(1-(1-b)*Z);
indicator = kappa*W + (m-1)*log(1-x0*W) - c >= log(U);
if (sum(indicator) >= nnow) {
w1 = matrix(W[indicator]);
w = matrix(c(w1[1:nnow]));
} else {
w = matrix(c( W[indicator]))
nnow = nnow-sum(indicator);
repeat{
ntrial = max(round(nnow*1.2),nnow+10) ;
Z =matrix(rbeta(ntrial,(m-1)/2,(m-1)/2))
U = matrix(runif(ntrial));
W = (1-(1+b)*Z)/(1-(1-b)*Z);
indicator = kappa*W + (m-1)*log(1-x0*W) - c >= log(U);
if (sum(indicator) >= nnow) {
w1 = matrix(W[indicator]);
w = matrix(c(w ,w1[1:nnow]));
break;
} else {
w = matrix(c(w , W[indicator]))
nnow = nnow-sum(indicator);
}
}
}
# step 3
V = UNIFORMdirections(m-1,n);
X=rbind(repmat(sqrt(1-t(w)^2),m-1,1)*V ,t(w))
mu = mu / norm(mu);
X = rotMat(matrix(c(0,0,1)),mu)%*%X;
return(X)
}
sample_resultant_length<-function(z){dz=dim(z);return(sqrt(sum(rowMeans(z)^2)))}
resultant_length<-function(d,kappa){
denom=besselI(kappa,d/2-1,1)
if (denom != Inf) {
A_p_kappa=besselI(kappa,d/2,1)/denom
} else {
A_p_kappa=1
}
}
kappa_tilde<-function(z) {
# Sra, S. (2011). "A short note on parameter approximation for von Mises-Fisher distributions: And a fast implementation of I s (x)". Computational Statistics 27: 177–190.
#Computes the MSE concentration given VMF data
#KAPPA Newton-Rapson method
maxitr=3; #Maximum number of iterations (algorithm usuual converges in as little as 2 iterations)
kappatilde=matrix(0,maxitr,1);
i=1; go=1;
dz=dim(z);
Rbar=sample_resultant_length(z);
kappatilde[1]=(Rbar*(dz[1]-Rbar^2))/(1- Rbar^2); # Initialize Kappa
while ((i<maxitr)&(go==1)) {
i=i+1;
A_p_kappa=resultant_length(dz[1],kappatilde[i-1]);
kappa=kappatilde[i-1]; #previous kappa
kappatilde[i]=kappa-( (A_p_kappa-Rbar)/(1-A_p_kappa^2- ((dz[1]-1)/kappa)*A_p_kappa)); #update kappa
# go=abs(kappatilde(i-1)-kappatilde(i))>.001; # if you want a stopping criterion
}
return(kappatilde[i])
}
mu_tilde<-function(z) {
#estimates the MSE mean direction given VMF data
xbar=matrix(rowMeans(z))
Rbar=sqrt(sum(xbar^2))
return(xbar/Rbar)
}
center<-function(mu,y){
dmu=dim(mu);
arbitrary_direction= matrix(0,dmu[1],1);
arbitrary_direction[dmu[1]]= 1;
z=y #initialize and declare dimension of z to avoid dynamic memory allocation
for (i in 1:dmu[2]) {
z[,i]=rotMat(mu[,i],arbitrary_direction )%*%y[,i];
}
}
vMF_gof<-function(z,mu=NaN,kappa=NaN){
dz=dim(z)
if (is.na(mu)) {
xbar=matrix(rowMeans(z))
mu=xbar/sqrt(sum(xbar^2))
}
if (is.na(kappa)) {kappa=kappa_tilde(z)}
r=2*kappa*(1-t(z)%*%mu)
hist(r,10,xlim=c(min(r),max(r)));
t=seq(0,max(r),length.out=100);
lines(t,n*dchisq(t,dz[1]-1))
if (dz[1]==3) {
lrt=vmf_fb_lrt3(z)
W=lrt[1]
pvalue=lrt[2]
W
pvalue
}
}
vmf_fb_lrt3 <- function(z) {
dz=dim(z);
if (dz[1]!=3) {message('p must equal 3')
} else {
xbar=matrix(rowMeans(z))
Rbar=sqrt(sum(xbar^2));
xbar0=xbar/Rbar;
k=kappa_tilde(z);
H=rotMat(xbar0,matrix(c(1,0,0)))
Y=H%*%z;
y=Y[2:dz[1],]
l=svd(y%*%t(y)/n)
T=(n*(k^3)*(l$d[1]-l$d[2])^2)/(4*(k-3*Rbar));
pvalue=pchisq(T,2,lower.tail=FALSE)
return(data.frame('Test.Statistic'=T,'p.value'=pvalue))
}
}
| 5,136 |
mit
|
faf45990c006969f610d559038b9df3738bfb05e
|
CyclicDynamicalSystems/DynamicalSystemsPortraits
|
SprottChaoticFlow/Input/L/Params.R
|
kx.y <- 1
kx.z <- 3.9
ky.xx <- 0.9
ky.y <- -1
kz <- 1
kz.x <- -1
| 75 |
mit
|
7f0780488ca3ebb243fa1e153080ed527e1a649c
|
youngstreetinitiative/lsp
|
Scripts/example of working with each file.R
|
#' @export
bundle_sheets <- function() {
files <- list.files("data-raw") %>%
map( ~ list(
name = str_replace(.x, ".xls", ""),
file_path = glue("data-raw/{.x}")
)) %>%
set_names(map_chr(., "name"))
master_ls <- files %>%
map( ~ process_sheet(.x))
nms <- master_ls %>% map_chr("full_name")
master_ls <- master_ls %>%
set_names(nms)
write_rds(master_ls, "data/master_ls.rds")
}
| 425 |
mit
|
1dd6e8d540e8297a310eb078144a8326d4effeb0
|
michalkurka/h2o-3
|
h2o-r/tests/testdir_algos/gam/runit_PUBDEV_7366_gam_cv_gaussian.R
|
setwd(normalizePath(dirname(R.utils::commandArgs(asValues=TRUE)$"f")))
source("../../../scripts/h2o-r-test-setup.R")
# make sure cross-validation runs properly in R
test.model.gam.cross.validation <- function() {
data <- h2o.importFile(path = locate("smalldata/glm_test/gaussian_20cols_10000Rows.csv"))
data$C1 <- h2o.asfactor(data$C1)
data$C2 <- h2o.asfactor(data$C2)
data$C3 <- h2o.asfactor(data$C3)
data$C4 <- h2o.asfactor(data$C4)
data$C5 <- h2o.asfactor(data$C5)
data$C6 <- h2o.asfactor(data$C6)
data$C7 <- h2o.asfactor(data$C7)
data$C8 <- h2o.asfactor(data$C8)
data$C9 <- h2o.asfactor(data$C9)
data$C10 <- h2o.asfactor(data$C10)
splits = h2o.splitFrame(data, ratios=c(0.8), seed=12345)
train = splits[[1]]
valid = splits[[2]]
gam_valid <- h2o.gam(y = "C21", x = c(1:20), gam_columns = c("C11"), training_frame = train, validation_frame = valid,
family = "gaussian", nfolds = 5, fold_assignment="modulo")
gam_no_valid <- h2o.gam(y = "C21", x = c(1:20), gam_columns = c("C11"), training_frame = train, family = "gaussian",
nfolds = 5, fold_assignment="modulo")
# coefficients from both models should be the same
compareResult <- gam_valid@model$coefficients==gam_no_valid@model$coefficients
expect_equal(sum(compareResult), length(gam_valid@model$coefficients))
}
doTest("General Additive Model cross validation test with Gaussian family", test.model.gam.cross.validation)
| 1,488 |
apache-2.0
|
14bbee1acd7d81ae66c3081016247518557f6a91
|
cboettig/pdg_control
|
R/value_iteration.R
|
#' Identify the dynamic optimum using backward iteration (dynamic programming)
#' @param SDP_Mat the stochastic transition matrix at each h value
#' @param x_grid the discrete values allowed for the population size, x
#' @param h_grid the discrete values of harvest levels to optimize over
#' @param OptTime the stopping time
#' @param xT the boundary condition population size at OptTime
#' @param delta the discounting rate (1-delta)
#' @param epsilon value iteration tolerance
#' @param profit the profit function
#' (i.e. enforces the boundary condition)
#' @return list containing the matrices D and V. D is an x_grid by OptTime
#' matrix with the indices of h_grid giving the optimal h at each value x
#' as the columns, with a column for each time.
#' V is a matrix of x_grid by x_grid, which is used to store the value
#' function at each point along the grid at each point in time.
#' The returned V gives the value matrix at the first (last) time.
#' @export
value_iteration <- function(SDP_Mat, x_grid, h_grid,
OptTime=100, xT, profit,
delta, epsilon = 1e-4){
## Initialize space for the matrices
gridsize <- length(x_grid)
HL <- length(h_grid)
D <- matrix(NA, nrow=gridsize, ncol=1)
V <- rep(0,gridsize) # initialize BC,
Vp <- rep(10, gridsize) # initialize previous value (not equal to current value)
# loop through time
#for(time in 1:OptTime){
time <- 1
while(max(abs(Vp - V)) >= (delta * epsilon / (2 - 2 * delta)) && time < OptTime){
# try all potential havest rates
V1 <- sapply(1:HL, function(i){
# Transition matrix times V gives dist in next time
SDP_Mat[[i]] %*% V +
# then (add) harvested amount times discount
profit(x_grid, h_grid[i]) * (1 - delta)
})
# find havest, h that gives the maximum value
out <- sapply(1:gridsize, function(j){
value <- max(V1[j,], na.rm = T) # each col is a diff h, max over these
index <- which.max(V1[j,]) # store index so we can recover h's
c(value, index) # returns both profit value & index of optimal h.
})
# Sets V[t+1] = max_h V[t] at each possible state value, x
Vp <- V
V <- out[1,] # The new value-to-go
D <- out[2,] # The index positions
time <- time+1
}
# check for convergence in V
# Reed derives a const escapement policy saying to fish the pop down to
# the largest population for which you shouldn't harvest:
ReedThreshold <- x_grid[max(which(D == 1))]
# Format the output
list(D=D, V=V, S=ReedThreshold)
}
| 2,634 |
cc0-1.0
|
1dd6e8d540e8297a310eb078144a8326d4effeb0
|
h2oai/h2o-3
|
h2o-r/tests/testdir_algos/gam/runit_PUBDEV_7366_gam_cv_gaussian.R
|
setwd(normalizePath(dirname(R.utils::commandArgs(asValues=TRUE)$"f")))
source("../../../scripts/h2o-r-test-setup.R")
# make sure cross-validation runs properly in R
test.model.gam.cross.validation <- function() {
data <- h2o.importFile(path = locate("smalldata/glm_test/gaussian_20cols_10000Rows.csv"))
data$C1 <- h2o.asfactor(data$C1)
data$C2 <- h2o.asfactor(data$C2)
data$C3 <- h2o.asfactor(data$C3)
data$C4 <- h2o.asfactor(data$C4)
data$C5 <- h2o.asfactor(data$C5)
data$C6 <- h2o.asfactor(data$C6)
data$C7 <- h2o.asfactor(data$C7)
data$C8 <- h2o.asfactor(data$C8)
data$C9 <- h2o.asfactor(data$C9)
data$C10 <- h2o.asfactor(data$C10)
splits = h2o.splitFrame(data, ratios=c(0.8), seed=12345)
train = splits[[1]]
valid = splits[[2]]
gam_valid <- h2o.gam(y = "C21", x = c(1:20), gam_columns = c("C11"), training_frame = train, validation_frame = valid,
family = "gaussian", nfolds = 5, fold_assignment="modulo")
gam_no_valid <- h2o.gam(y = "C21", x = c(1:20), gam_columns = c("C11"), training_frame = train, family = "gaussian",
nfolds = 5, fold_assignment="modulo")
# coefficients from both models should be the same
compareResult <- gam_valid@model$coefficients==gam_no_valid@model$coefficients
expect_equal(sum(compareResult), length(gam_valid@model$coefficients))
}
doTest("General Additive Model cross validation test with Gaussian family", test.model.gam.cross.validation)
| 1,488 |
apache-2.0
|
bd8941b60860b6b9fb9b33301cb16ad6434508f3
|
pchmieli/h2o-3
|
h2o-test-integ/tests/hdfs-bigdata/runit_RF_7MRows_4.4KCols_xlarge.R
|
#----------------------------------------------------------------------
# Purpose: This test exercises building 15MRows2KCols
#
#----------------------------------------------------------------------
test <-
function() {
hdfs_name_node <- Sys.getenv(c("NAME_NODE"))
print(hdfs_name_node)
hdfs_data_file = "/datasets/bigdata/7MRows_4400KCols.csv"
#----------------------------------------------------------------------
# Parameters for the test.
#----------------------------------------------------------------------
url <- sprintf("hdfs://%s%s", hdfs_name_node, hdfs_data_file)
parse_time <- system.time(data.hex <- h2o.importFile(url))
print("Time it took to parse")
print(parse_time)
# Start modeling
# Random Forest
response="C1" #1:1000 imbalance
predictors=c(4:ncol(data.hex))
rf_time <- system.time(mdl.rf <- h2o.randomForest(x=predictors, y=response, training_frame=data.hex, ntrees=10, max_depth=5))
mdl.rf
print("Time it took to build RF")
print(rf_time)
}
doTest("Test", test)
| 1,014 |
apache-2.0
|
9c3210c9d939290c3fb3c42589b142ca50fc9d89
|
danielturek/automated-blocking-examples
|
code/run_litters.R
|
source("autoBlock.R")
load(file.path("data", "model_litters.RData"))
dflitters <- autoBlock(code, constants, data, inits, 2e+05, runList)$summary
save(dflitters, file = file.path("results", "results_litters.RData"))
| 217 |
mit
|
bd8941b60860b6b9fb9b33301cb16ad6434508f3
|
madmax983/h2o-3
|
h2o-test-integ/tests/hdfs-bigdata/runit_RF_7MRows_4.4KCols_xlarge.R
|
#----------------------------------------------------------------------
# Purpose: This test exercises building 15MRows2KCols
#
#----------------------------------------------------------------------
test <-
function() {
hdfs_name_node <- Sys.getenv(c("NAME_NODE"))
print(hdfs_name_node)
hdfs_data_file = "/datasets/bigdata/7MRows_4400KCols.csv"
#----------------------------------------------------------------------
# Parameters for the test.
#----------------------------------------------------------------------
url <- sprintf("hdfs://%s%s", hdfs_name_node, hdfs_data_file)
parse_time <- system.time(data.hex <- h2o.importFile(url))
print("Time it took to parse")
print(parse_time)
# Start modeling
# Random Forest
response="C1" #1:1000 imbalance
predictors=c(4:ncol(data.hex))
rf_time <- system.time(mdl.rf <- h2o.randomForest(x=predictors, y=response, training_frame=data.hex, ntrees=10, max_depth=5))
mdl.rf
print("Time it took to build RF")
print(rf_time)
}
doTest("Test", test)
| 1,014 |
apache-2.0
|
b14c86fc50285314d86a561db9a9e9740acb5222
|
RebeccaSalles/TSPred
|
R/data.frame.na.R
|
#' data.frames with filled NA's
#' @keywords internal
data.frame.na <- function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
stringsAsFactors = FALSE)
{
data.row.names <- if (check.rows && is.null(row.names))
function(current, new, i) {
if (is.character(current))
new <- as.character(new)
if (is.character(new))
current <- as.character(current)
if (anyDuplicated(new))
return(current)
if (is.null(current))
return(new)
if (all(current == new) || all(current == ""))
return(new)
stop(gettextf("mismatch of row names in arguments of 'data.frame', item %d",
i), domain = NA)
}
else function(current, new, i) {
if (is.null(current)) {
if (anyDuplicated(new)) {
warning("some row.names duplicated: ", paste(which(duplicated(new)),
collapse = ","), " --> row.names NOT used")
current
}
else new
}
else current
}
object <- as.list(substitute(list(...)))[-1L]
mrn <- is.null(row.names)
x <- list(...)
n <- length(x)
if (n < 1L) {
if (!mrn) {
if (is.object(row.names) || !is.integer(row.names))
row.names <- as.character(row.names)
if (any(is.na(row.names)))
stop("row names contain missing values")
if (anyDuplicated(row.names))
stop("duplicate row.names: ", paste(unique(row.names[duplicated(row.names)]),
collapse = ", "))
}
else row.names <- integer(0L)
return(structure(list(), names = character(0L), row.names = row.names,
class = "data.frame"))
}
vnames <- names(x)
if (length(vnames) != n)
vnames <- character(n)
no.vn <- !nzchar(vnames)
vlist <- vnames <- as.list(vnames)
nrows <- ncols <- integer(n)
for (i in seq_len(n)) {
xi <- if (is.character(x[[i]]) || is.list(x[[i]]))
as.data.frame(x[[i]], optional = TRUE, stringsAsFactors = stringsAsFactors)
else as.data.frame(x[[i]], optional = TRUE)
nrows[i] <- .row_names_info(xi)
ncols[i] <- length(xi)
namesi <- names(xi)
if (ncols[i] > 1L) {
if (length(namesi) == 0L)
namesi <- seq_len(ncols[i])
if (no.vn[i])
vnames[[i]] <- namesi
else vnames[[i]] <- paste(vnames[[i]], namesi, sep = ".")
}
else {
if (length(namesi))
vnames[[i]] <- namesi
else if (no.vn[[i]]) {
tmpname <- deparse(object[[i]])[1L]
if (substr(tmpname, 1L, 2L) == "I(") {
ntmpn <- nchar(tmpname, "c")
if (substr(tmpname, ntmpn, ntmpn) == ")")
tmpname <- substr(tmpname, 3L, ntmpn - 1L)
}
vnames[[i]] <- tmpname
}
}
if (missing(row.names) && nrows[i] > 0L) {
rowsi <- attr(xi, "row.names")
nc <- nchar(rowsi, allowNA = FALSE)
nc <- nc[!is.na(nc)]
if (length(nc) && any(nc))
row.names <- data.row.names(row.names, rowsi,
i)
}
nrows[i] <- abs(nrows[i])
vlist[[i]] <- xi
}
nr <- max(nrows)
for (i in seq_len(n)[nrows < nr]) {
xi <- vlist[[i]]
if (nrows[i] > 0L) {
xi <- unclass(xi)
fixed <- TRUE
for (j in seq_along(xi)) {
### added NA fill to max length/nrow
xi1 <- xi[[j]]
if (is.vector(xi1) || is.factor(xi1))
xi[[j]] <- c(xi1, rep(NA, nr - nrows[i]))
else if (is.character(xi1) && class(xi1) == "AsIs")
xi[[j]] <- structure(c(xi1, rep(NA, nr - nrows[i])),
class = class(xi1))
else if (inherits(xi1, "Date") || inherits(xi1,
"POSIXct"))
xi[[j]] <- c(xi1, rep(NA, nr - nrows[i]))
else {
fixed <- FALSE
break
}
}
if (fixed) {
vlist[[i]] <- xi
next
}
}
stop("arguments imply differing number of rows: ", paste(unique(nrows),
collapse = ", "))
}
value <- unlist(vlist, recursive = FALSE, use.names = FALSE)
vnames <- unlist(vnames[ncols > 0L])
noname <- !nzchar(vnames)
if (any(noname))
vnames[noname] <- paste("Var", seq_along(vnames), sep = ".")[noname]
if (check.names)
vnames <- make.names(vnames, unique = TRUE)
names(value) <- vnames
if (!mrn) {
if (length(row.names) == 1L && nr != 1L) {
if (is.character(row.names))
row.names <- match(row.names, vnames, 0L)
if (length(row.names) != 1L || row.names < 1L ||
row.names > length(vnames))
stop("row.names should specify one of the variables")
i <- row.names
row.names <- value[[i]]
value <- value[-i]
}
else if (!is.null(row.names) && length(row.names) !=
nr)
stop("row names supplied are of the wrong length")
}
else if (!is.null(row.names) && length(row.names) != nr) {
warning("row names were found from a short variable and have been discarded")
row.names <- NULL
}
if (is.null(row.names))
row.names <- .set_row_names(nr)
else {
if (is.object(row.names) || !is.integer(row.names))
row.names <- as.character(row.names)
if (any(is.na(row.names)))
stop("row names contain missing values")
if (anyDuplicated(row.names))
stop("duplicate row.names: ", paste(unique(row.names[duplicated(row.names)]),
collapse = ", "))
}
attr(value, "row.names") <- row.names
attr(value, "class") <- "data.frame"
value
}
| 6,176 |
gpl-3.0
|
cf87d58d1d55129253ef8455b4c89c6cea5d9f64
|
wStockhausen/rTCSAM2015
|
R/writeModelResultsToCSV.PopProcesses.R
|
#'
#'@title Write population processes from model results from TCSAM2015 and rsimTCSAM model runs to a csv file
#'
#'@description Function to write population processes from model results from TCSAM2015 and rsimTCSAM model runs to a csv file.
#'
#'@param tcsams - single TCSAM2015 model report object, or named list of such
#'@param rsims - single rsimTCSAM results object, or named list of such
#'@param csv - base name for csv files to write to
#'@param verbose - flag (T/F) to print debug info
#'
#'@return nothing
#'
#'@details Extracts natural mortality, mean growth increments, molt-to-maturity, and recruitment
#'size distribution information.
#'
#'@export
#'
writeModelResultsToCSV.PopProcesses<-function(tcsams=NULL,
rsims=NULL,
csv="ModelResults.PopProcesses",
verbose=FALSE){
if (inherits(tcsams,'tcsam2015.rep')){
tcsams<-list(tcsam=tcsams);#wrap in list
}
if (class(rsims)=='rsimTCSAM'){
rsims<-list(rsim=rsims);#wrap in list
}
#natural mortality
mdfr<-getMDFR.NatMort(tcsams,rsims);
write.csv(mdfr,file=paste0(csv,".NatMort.csv"),row.names=TRUE);
#mean growth increments
mdfr<-getMDFR.MeanGrowthIncrements(tcsams,rsims);
write.csv(mdfr,file=paste0(csv,".MeanGrowthIncrements.csv"),row.names=TRUE);
#molt-to-maturity
write.csv(mdfr,file=paste0(csv,".prM2M.csv"),row.names=TRUE);
#recruitment size distribution
mdfr<-getMDFR.RecSizeDistribution(tcsams,rsims,verbose);
write.csv(mdfr,file=paste0(csv,".RecSizeDist.csv"),row.names=TRUE);
#recruitment sex ratio
mdfr<-getMDFR.SexRatio(tcsams,rsims,verbose);
write.csv(mdfr,file=paste0(csv,".SexRatio.csv"),row.names=TRUE);
#initial size distribution
if (verbose) cat("Plotting initial size distribution\n");
path<-'mr/iN_xmsz';
csvp<-paste0(csv,".InitialNatZ.csv");
extractModelResults.RepObjs(tcsams,rsims,path,
label.value="Abundance (millions)",
cast.formula="x+m+s+z",csv=csvp);
if (verbose) cat("Done!\n");
}
| 2,201 |
mit
|
c0b20738b59aa61d84a438b81bc113d4f6aaba28
|
wch/r-source
|
src/library/datasets/data/PlantGrowth.R
|
PlantGrowth <-
data.frame(weight = c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53,
5.33, 5.14, 4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69,
6.31, 5.12, 5.54, 5.5, 5.37, 5.29, 4.92, 6.15, 5.8, 5.26),
group = factor(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), levels=1:3,
labels = c("ctrl", "trt1", "trt2")))
| 372 |
gpl-2.0
|
052d5ab5e401de06571b2f2b2aa4689e3bc56126
|
vbarrera/thesis
|
Genomic_Evaluation_of_individual_CpG_Methylation/R/figure23_ADS_ADSC.R
|
################
### Figure 23 ###
################
ADSCgiFolder<-paste(baseDIR,"results/20120802/",sep="")
ADS_AdiposeCgiFolder<-paste(baseDIR,"results/20120802/",sep="")
datos_ADS<-read.table(paste(ADSCgiFolder,"hg18_reads_ads_CGi_status_sd.txt",sep=""))
datos_ADS_Adipose<-read.table(paste(ADS_AdiposeCgiFolder,"hg18_reads_ads_adipose_CGi_status_sd.txt",sep=""))
colnames(datos_ADS)<-c("id","nCGt","chr","chrStart","chrEnd","CGinf","methCoef","SD","nReads")
colnames(datos_ADS_Adipose)<-c("id","nCGt","chr","chrStart","chrEnd","CGinf","methCoef","SD","nReads")
#################################
## With Informativeness filter ##
#################################
validDatosADS<-subset(datos_ADS,datos_ADS$methCoef != -1.00 &
(datos_ADS$CGinf/2)/datos_ADS$nCGt >=0.25)
validDatosADS_Adipose<-subset(datos_ADS_Adipose,datos_ADS_Adipose$methCoef != -1.00 &
(datos_ADS_Adipose$CGinf/2)/datos_ADS_Adipose$nCGt >=0.25)
validDatosADS_unmeth<-subset(validDatosADS,
validDatosADS$methCoef<=0.25)
validDatosADS_halfmeth<-subset(validDatosADS,
validDatosADS$methCoef>0.25 & validDatosADS$methCoef<0.75)
validDatosADS_meth<-subset(validDatosADS,
validDatosADS$methCoef>=0.75)
validDatosADS_Adipose_unmeth<-subset(validDatosADS_Adipose,
validDatosADS_Adipose$methCoef<=0.25)
validDatosADS_Adipose_halfmeth<-subset(validDatosADS_Adipose,
validDatosADS_Adipose$methCoef>0.25 & validDatosADS_Adipose$methCoef<0.75)
validDatosADS_Adipose_meth<-subset(validDatosADS_Adipose,
validDatosADS_Adipose$methCoef>=0.75)
#Plotting
#ADS
if (numbered=='TRUE'){
png(paste(resultsDIR,"figure23ADSFilteredBNNumbered.png",sep=""),height=15,width=15,units="cm",res=300)
}else{
png(paste(resultsDIR,"figure23ADSFilteredBN.png",sep=""),height=15,width=15,units="cm",res=300)
}
def.par <- par(no.readonly = TRUE)
par(lwd=3)
par(cex.axis=1.2)
xhist <- hist(validDatosADS$methCoef, breaks=seq(0,1,0.1), plot=FALSE)
yhist <- hist(validDatosADS$SD, breaks=seq(0,1,0.1), plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
xrange <- c(0,1)
yrange <- c(0,1)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(5,5,1,1))
plot(validDatosADS$methCoef,validDatosADS$SD,
xlab="",ylab="",pch=20,xlim=c(0,1),col=rgb(0,0,0,0.2),type="n",ylim=c(0,0.6))
## Plot the points with some noise (jitter)
points(jitter(validDatosADS_unmeth$methCoef),jitter(validDatosADS_unmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_halfmeth$methCoef),jitter(validDatosADS_halfmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_meth$methCoef),jitter(validDatosADS_meth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
# Plot the points without noise
# points(validDatosADS_unmeth$methCoef,validDatosADS_unmeth$SD,pch=16,col=rgb(0,1,0,0.2),cex=1)
# points(validDatosADS_halfmeth$methCoef,validDatosADS_halfmeth$SD,pch=16,col=rgb(0,0,1,0.2),cex=1)
# points(validDatosADS_meth$methCoef,validDatosADS_meth$SD,pch=16,col=rgb(1,0,0,0.2),cex=1)
if (numbered=='TRUE'){
# Adding the number of points
text(0.1,0.4,dim(validDatosADS_unmeth)[1],cex=1.2,col="red")
text(0.5,0.4,dim(validDatosADS_halfmeth)[1],cex=1.2,col="red")
text(0.9,0.4,dim(validDatosADS_meth)[1],cex=1.2,col="red")
}else{}
abline(v=0.25,lty=2,lwd=1.5)
abline(v=0.75,lty=2,lwd=1.5)
par(mar=c(0,5,1,1))
par(lwd=1)
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0,
)
par(mar=c(5,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
horiz=TRUE)
par(def.par)
dev.off()
#ADS_Adipose
if (numbered=='TRUE'){
png(paste(resultsDIR,"figure23ADS_AdiposeFilteredBNNumbered.png",sep=""),height=15,width=15,units="cm",res=300)
}else{
png(paste(resultsDIR,"figure23ADS_AdiposeFilteredBN.png",sep=""),height=15,width=15,units="cm",res=300)
}
def.par <- par(no.readonly = TRUE)
par(lwd=3)
par(cex.axis=1.2)
xhist <- hist(validDatosADS_Adipose$methCoef, breaks=seq(0,1,0.1), plot=FALSE)
yhist <- hist(validDatosADS_Adipose$SD, breaks=seq(0,1,0.1), plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
xrange <- c(0,1)
yrange <- c(0,1)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(5,5,1,1))
plot(validDatosADS_Adipose$methCoef,validDatosADS_Adipose$SD,
xlab="", ylab="",pch=20,xlim=c(0,1),col=rgb(0,0,0,0.2),main="",type="n",ylim=c(0,0.6))
## Plot the points with some noise (jitter)
points(jitter(validDatosADS_Adipose_unmeth$methCoef),jitter(validDatosADS_Adipose_unmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_Adipose_halfmeth$methCoef),jitter(validDatosADS_Adipose_halfmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_Adipose_meth$methCoef),jitter(validDatosADS_Adipose_meth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
# Plot the points without noise
# points(validDatosADS_Adipose_unmeth$methCoef,validDatosADS_Adipose_unmeth$SD,pch=16,col=rgb(0,1,0,0.2),cex=1)
# points(validDatosADS_Adipose_halfmeth$methCoef,validDatosADS_Adipose_halfmeth$SD,pch=16,col=rgb(0,0,1,0.2),cex=1)
# points(validDatosADS_Adipose_meth$methCoef,validDatosADS_Adipose_meth$SD,pch=16,col=rgb(1,0,0,0.2),cex=1)
if (numbered=='TRUE'){
# Adding the number of points
text(0.1,0.4,dim(validDatosADS_Adipose_unmeth)[1],cex=1.2,col="red")
text(0.5,0.4,dim(validDatosADS_Adipose_halfmeth)[1],cex=1.2,col="red")
text(0.9,0.4,dim(validDatosADS_Adipose_meth)[1],cex=1.2,col="red")
}else{}
abline(v=0.25,lty=2,lwd=1.5)
abline(v=0.75,lty=2,lwd=1.5)
par(mar=c(0,5,1,1))
par(lwd=1)
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0,
)
par(mar=c(5,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
horiz=TRUE)
par(def.par)
dev.off()
####################################
## Without Informativeness filter ##
####################################
validDatosADS<-subset(datos_ADS,datos_ADS$methCoef != -1.00)
validDatosADS_Adipose<-subset(datos_ADS_Adipose,datos_ADS_Adipose$methCoef != -1.00)
validDatosADS_unmeth<-subset(validDatosADS,
validDatosADS$methCoef<=0.25)
validDatosADS_halfmeth<-subset(validDatosADS,
validDatosADS$methCoef>0.25 & validDatosADS$methCoef<0.75)
validDatosADS_meth<-subset(validDatosADS,
validDatosADS$methCoef>=0.75)
validDatosADS_Adipose_unmeth<-subset(validDatosADS_Adipose,
validDatosADS_Adipose$methCoef<=0.25)
validDatosADS_Adipose_halfmeth<-subset(validDatosADS_Adipose,
validDatosADS_Adipose$methCoef>0.25 & validDatosADS_Adipose$methCoef<0.75)
validDatosADS_Adipose_meth<-subset(validDatosADS_Adipose,
validDatosADS_Adipose$methCoef>=0.75)
#Plotting
#ADS
if (numbered=='TRUE'){
png(paste(resultsDIR,"figure23ADSAllBNNumbered.png",sep=""),height=15,width=15,units="cm",res=300)
}else{
png(paste(resultsDIR,"figure23ADSAllBN.png",sep=""),height=15,width=15,units="cm",res=300)
}
def.par <- par(no.readonly = TRUE)
par(lwd=3)
par(cex.axis=1.2)
xhist <- hist(validDatosADS$methCoef, breaks=seq(0,1,0.1), plot=FALSE)
yhist <- hist(validDatosADS$SD, breaks=seq(0,1,0.1), plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
xrange <- c(0,1)
yrange <- c(0,1)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(5,5,1,1))
plot(validDatosADS$methCoef,validDatosADS$SD,
xlab="",ylab="",pch=20,xlim=c(0,1),col=rgb(0,0,0,0.2),type="n",ylim=c(0,0.6))
## Plot the points with some noise (jitter)
points(jitter(validDatosADS_unmeth$methCoef),jitter(validDatosADS_unmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_halfmeth$methCoef),jitter(validDatosADS_halfmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_meth$methCoef),jitter(validDatosADS_meth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
# Plot the points without noise
# points(validDatosADS_unmeth$methCoef,validDatosADS_unmeth$SD,pch=16,col=rgb(0,1,0,0.2),cex=1)
# points(validDatosADS_halfmeth$methCoef,validDatosADS_halfmeth$SD,pch=16,col=rgb(0,0,1,0.2),cex=1)
# points(validDatosADS_meth$methCoef,validDatosADS_meth$SD,pch=16,col=rgb(1,0,0,0.2),cex=1)
if(numbered=='TRUE'){
# Adding the number of points
text(0.1,0.4,dim(validDatosADS_unmeth)[1],cex=1.2,col="red")
text(0.5,0.4,dim(validDatosADS_halfmeth)[1],cex=1.2,col="red")
text(0.9,0.4,dim(validDatosADS_meth)[1],cex=1.2,col="red")
}else{}
abline(v=0.25,lty=2,lwd=1.5)
abline(v=0.75,lty=2,lwd=1.5)
par(mar=c(0,5,1,1))
par(lwd=1)
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0,
)
par(mar=c(5,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
horiz=TRUE)
par(def.par)
dev.off()
#ADS_Adipose
if(numbered=='TRUE'){
png(paste(resultsDIR,"figure23ADS_AdiposeAllBNNumbered.png",sep=""),height=15,width=15,units="cm",res=300)
}else{
png(paste(resultsDIR,"figure23ADS_AdiposeAllBN.png",sep=""),height=15,width=15,units="cm",res=300)
}
def.par <- par(no.readonly = TRUE)
par(lwd=3)
par(cex.axis=1.2)
xhist <- hist(validDatosADS_Adipose$methCoef, breaks=seq(0,1,0.1), plot=FALSE)
yhist <- hist(validDatosADS_Adipose$SD, breaks=seq(0,1,0.1), plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
xrange <- c(0,1)
yrange <- c(0,1)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
par(mar=c(5,5,1,1))
plot(validDatosADS_Adipose$methCoef,validDatosADS_Adipose$SD,
xlab="",ylab="",pch=20,xlim=c(0,1),col=rgb(0,0,0,0.2),type="n",ylim=c(0,0.6))
# Plot the points with some noise (jitter)
points(jitter(validDatosADS_Adipose_unmeth$methCoef),jitter(validDatosADS_Adipose_unmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_Adipose_halfmeth$methCoef),jitter(validDatosADS_Adipose_halfmeth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
points(jitter(validDatosADS_Adipose_meth$methCoef),jitter(validDatosADS_Adipose_meth$SD,factor=5),pch=16,col=rgb(0,0,0,0.2),cex=0.8)
# Plot the points without noise
# points(validDatosADS_Adipose_unmeth$methCoef,validDatosADS_Adipose_unmeth$SD,pch=16,col=rgb(0,1,0,0.2),cex=1)
# points(validDatosADS_Adipose_halfmeth$methCoef,validDatosADS_Adipose_halfmeth$SD,pch=16,col=rgb(0,0,1,0.2),cex=1)
# points(validDatosADS_Adipose_meth$methCoef,validDatosADS_Adipose_meth$SD,pch=16,col=rgb(1,0,0,0.2),cex=1)
if(numbered=='TRUE'){
# Adding the number of points
text(0.1,0.4,dim(validDatosADS_Adipose_unmeth)[1],cex=1.2,col="red")
text(0.5,0.4,dim(validDatosADS_Adipose_halfmeth)[1],cex=1.2,col="red")
text(0.9,0.4,dim(validDatosADS_Adipose_meth)[1],cex=1.2,col="red")
}else{}
abline(v=0.25,lty=2,lwd=1.5)
abline(v=0.75,lty=2,lwd=1.5)
par(mar=c(0,5,1,1))
par(lwd=1)
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0,
)
par(mar=c(5,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0,
horiz=TRUE)
par(def.par)
dev.off()
| 11,332 |
gpl-2.0
|
c03ee59ae41431e2ffa3be41e8bc64c1ce15e97a
|
SantanderMetGroup/transformeR
|
R/intersectMembers.R
|
## matchMembers.R Subset two or more grids to the common members
##
## Copyright (C) 2017 Santander Meteorology Group (http://www.meteo.unican.es)
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
#' @title Subset two or more grids to the common members.
#' @description Subset two or more grids to the common members.
#' @param ... Grids.
#' @return input grids are updated in the global environment.
#' @author M. Iturbide
#' @export
intersectMembers <- function(...){
grids <- list(...) %>% lapply(redim)
grids <- list(hist.y, fut.ens) %>% lapply(redim)
grids.members <- lapply(grids, "[[", "Members")
members <- do.call("intersect", grids.members)
if (is.character(members) & length(members) > 0) {
ind <- lapply(grids.members, function(m){
lapply(members, function(i) grep(i, m)) %>% unlist
})
out <- lapply(1:length(grids), function(x) subsetGrid(grids[[x]], members = ind[[x]]))
nmes <- as.character(as.list(substitute(list(...)))[-1L])
if (length(nmes) < length(grids)) nmes <- paste0(nmes, 1:length(grids))
names(out) <- nmes
lapply(1:length(out), function(en) .GlobalEnv[[names(out)[en]]] <- out[[en]])
} else {
stop("Check input grids. Ensure the member dimension exists.")
}
}
#end
| 1,898 |
gpl-3.0
|
ec5cdeb9d1aacddad5e2adf98870f4b0bc20f37e
|
burrm/lolcat
|
R/mean.t.test.onesample.simple.R
|
#' One Sample t Test for Mean
#'
#' Calculate one sample t test for mean.
#'
#' @param x Vector - sample values to be used for mean calculation.
#' @param sample.mean Scalar - sample mean to be tested.
#' @param sample.variance Scalar - sample variance.
#' @param sample.size Scalar - sample size.
#' @param null.hypothesis.mean Scalar - null hypothesis mean value, sample.mean is tested against this value.
#' @param alternative The alternative hypothesis to use for the test computation.
#' @param conf.level The confidence level for this test, between 0 and 1.
#' @param finite.population.N Scalar - the population size if finite population adjustment needs to be made.
#' @param na.rm Logical - remove NA values prior to running calculation.
#'
#' @aliases mean.t.test.onesample
#'
#' @return The results of the statistical test.
mean.t.test.onesample.simple<-function(
sample.mean
,sample.variance
,sample.size
,null.hypothesis.mean = 0
,alternative = c("two.sided","less","greater")
,conf.level = 0.95
,finite.population.N = NA
) {
validate.htest.alternative(alternative = alternative)
se.est <- sqrt(sample.variance/sample.size)
if (!is.na(finite.population.N)) {
se.est <- se.est * sqrt((finite.population.N-sample.size)/(finite.population.N-1))
}
t <- (sample.mean-null.hypothesis.mean)/se.est
df <- sample.size-1
cv <- qt(conf.level+(1-conf.level)/2, df= df)
mean.upper <- sample.mean + cv*se.est
mean.lower <- sample.mean - cv*se.est
var.test.out <- variance.test.onesample.simple(sample.variance = sample.variance
,sample.size = sample.size
,null.hypothesis.variance = 1
,conf.level = conf.level)
var.lower <- var.test.out$conf.int[1]
var.upper <- var.test.out$conf.int[2]
sd.lower<-sqrt(var.lower)
sd.upper<-sqrt(var.upper)
p.value <- if (alternative[1] == "two.sided") {
tmp<-pt(t, df)
min(tmp,1-tmp)*2
} else if (alternative[1] == "greater") {
pt(t, df, lower.tail = FALSE)
} else if (alternative[1] == "less") {
pt(t, df, lower.tail = TRUE)
} else {
NA
}
pow <- power.mean.t.onesample(sample.size = sample.size
,effect.size = sample.mean - null.hypothesis.mean
,variance.est = sample.variance
,alpha = 1-conf.level
,alternative = alternative
,details = F)
retval<-list(data.name = "sample mean, sample size, and estimated variance",
statistic = t,
estimate = c(sample.mean = sample.mean
,se.est = se.est
,df = df
,var.lowerci = var.lower
,var = sample.variance
,var.upperci = var.upper
,sd.lowerci = sd.lower
,sd = sqrt(sample.variance)
,sd.upperci = sd.upper
,power = pow),
parameter = null.hypothesis.mean,
p.value = p.value,
null.value = null.hypothesis.mean,
alternative = alternative[1],
method = "One-Sample t Test For Means",
conf.int = c(mean.lower, mean.upper)
)
#names(retval$estimate) <- c("sample mean", "df")
names(retval$statistic) <- "t statistic"
names(retval$null.value) <- "mean"
names(retval$parameter) <- "null hypothesis mean"
attr(retval$conf.int, "conf.level") <- conf.level
class(retval)<-"htest"
retval
}
#require(lolcat)
#t.test.onesample.simple(sample.mean = .5,sample.variance = 1,sample.size = 25)
| 3,925 |
mit
|
5c88f1917a194d102c784f708bb689950def7e38
|
cran/metasens
|
R/print.summary.copas.R
|
#' Print detailed results of Copas selection model
#'
#' @description
#' Print method for objects of class \code{summary.copas}.
#'
#'
#' This function prints the following information:
#'
#' Range of gamma0 values used (see \code{help(copas)});
#'
#' Range of gamma1 values used (see \code{help(copas)});
#'
#' Largest SE of all studies in meta-analysis;
#'
#' Range of probability publishing trial with largest SE;
#'
#' The next table gives details relating to the summary of the contour plot.
#' Specifically, it gives details from fitting a straight line to each
#' treatment-contour in the contour plot. Column 1 (headed level) shows the
#' treatment-contours; column 2 (nobs) shows the number of observations used by
#' the contour plot command within the \code{copas} function to plot this
#' contour line; column 3 (adj.r.square) shows the adjusted r-square from
#' fitting a straight line to this contour; columns 4 & 5 show the slope and
#' its standard error from fitting a straight line to this contour.
#'
#' Next, the printout of \code{summary.copas} is shown.
#'
#' @aliases print.summary.copas
#'
#' @param x An object of class \code{summary.copas}.
#' @param backtransf A logical indicating whether results should be
#' back transformed in printouts and plots. If \code{backtransf =
#' TRUE} (default), results are printed as odds ratios rather than
#' log odds ratio, for example.
#' @param legend A logical indicating whether a legend should be
#' printed.
#' @param digits Minimal number of significant digits, see
#' \code{print.default}.
#' @param digits.se Minimal number of significant digits for standard
#' deviations and standard errors, see \code{print.default}.
#' @param ... Additional arguments (ignored).
#'
#' @author James Carpenter \email{James.Carpenter@@lshtm.ac.uk}, Guido
#' Schwarzer \email{sc@@imbi.uni-freiburg.de}
#'
#' @seealso \code{\link{copas}}, \code{\link{plot.copas}},
#' \code{\link{summary.copas}}
#'
#' @keywords print
#'
#' @examples
#' data(Fleiss1993bin, package = "meta")
#'
#' # Perform meta analysis, effect measure is odds ratio (OR)
#' #
#' m1 <- metabin(d.asp, n.asp, d.plac, n.plac, data=Fleiss1993bin, sm="OR")
#'
#' # Print summary of Copas analysis
#' #
#' summary(copas(m1), level = 0.95)
#'
#' @method print summary.copas
#' @export
#' @export print.summary.copas
print.summary.copas <- function(x, backtransf = x$backtransf,
legend = TRUE,
digits = gs("digits"),
digits.se = gs("digits.se"),
...) {
chkclass(x, "summary.copas")
cl <- class(x)[1]
addargs <- names(list(...))
##
fun <- "print.summarycopas"
##
warnarg("logscale", addargs, fun, otherarg = "backtransf")
##
if (is.null(backtransf))
if (!is.null(list(...)[["logscale"]]))
backtransf <- !list(...)[["logscale"]]
else
backtransf <- TRUE
else
chklogical(backtransf)
##
chklogical(legend)
chknumeric(digits, min = 0, length = 1)
chknumeric(digits.se, min = 0, length = 1)
crtitle(x)
##
print.copas(x$x,
header = FALSE, legend = FALSE,
digits = digits, backtransf = backtransf,
...)
##
res <- cbind(c("range of gamma0: ", "range of gamma1: "),
format(c(round(x$x$gamma0.range[1], digits),
round(x$x$gamma1.range[1], digits))),
##
format(c(round(x$x$gamma0.range[2], digits),
round(x$x$gamma1.range[2], digits))))
##
dimnames(res) <- list(rep("", dim(res)[1]), c("", "min", "max"))
cat("\n")
prmatrix(res, quote = FALSE, right = TRUE)
##
cat("\nLargest standard error (SE):",
max(round(x$x$seTE, digits.se)), "\n\n")
##
cat("Range of probability publishing trial with largest SE:\n")
##
res <-
matrix(format(round(range(pnorm(x$x$gamma0 + x$x$gamma1 / max(x$x$seTE))),
digits)), nrow = 1)
##
dimnames(res) <- list(rep("", dim(res)[1]), c("min", "max"))
##
prmatrix(res, quote = FALSE, right = TRUE)
##
cat("\nCalculation of orthogonal line:\n\n")
##
res <-
as.matrix(data.frame(x$x$regr)[ , c("levels", "nobs",
"adj.r.squareds",
"slopes", "se.slopes")])
dimnames(res) <- list(rep("", dim(res)[1]),
c("level", "nobs",
"adj.r.square",
"slope", "se.slope"))
prmatrix(res, quote = FALSE, right = TRUE)
##
if (legend) {
cat("\n Legend:\n")
cat(" p.publ - Probability of publishing study with largest SE\n")
cat(" p.trt - P-value for test of overall treatment effect\n")
cat(" p.rsb - P-value for test of residual selection bias\n")
cat(" N - Estimated number of unpublished studies\n")
}
invisible(NULL)
}
| 4,974 |
gpl-2.0
|
5c88f1917a194d102c784f708bb689950def7e38
|
guido-s/metasens
|
R/print.summary.copas.R
|
#' Print detailed results of Copas selection model
#'
#' @description
#' Print method for objects of class \code{summary.copas}.
#'
#'
#' This function prints the following information:
#'
#' Range of gamma0 values used (see \code{help(copas)});
#'
#' Range of gamma1 values used (see \code{help(copas)});
#'
#' Largest SE of all studies in meta-analysis;
#'
#' Range of probability publishing trial with largest SE;
#'
#' The next table gives details relating to the summary of the contour plot.
#' Specifically, it gives details from fitting a straight line to each
#' treatment-contour in the contour plot. Column 1 (headed level) shows the
#' treatment-contours; column 2 (nobs) shows the number of observations used by
#' the contour plot command within the \code{copas} function to plot this
#' contour line; column 3 (adj.r.square) shows the adjusted r-square from
#' fitting a straight line to this contour; columns 4 & 5 show the slope and
#' its standard error from fitting a straight line to this contour.
#'
#' Next, the printout of \code{summary.copas} is shown.
#'
#' @aliases print.summary.copas
#'
#' @param x An object of class \code{summary.copas}.
#' @param backtransf A logical indicating whether results should be
#' back transformed in printouts and plots. If \code{backtransf =
#' TRUE} (default), results are printed as odds ratios rather than
#' log odds ratio, for example.
#' @param legend A logical indicating whether a legend should be
#' printed.
#' @param digits Minimal number of significant digits, see
#' \code{print.default}.
#' @param digits.se Minimal number of significant digits for standard
#' deviations and standard errors, see \code{print.default}.
#' @param ... Additional arguments (ignored).
#'
#' @author James Carpenter \email{James.Carpenter@@lshtm.ac.uk}, Guido
#' Schwarzer \email{sc@@imbi.uni-freiburg.de}
#'
#' @seealso \code{\link{copas}}, \code{\link{plot.copas}},
#' \code{\link{summary.copas}}
#'
#' @keywords print
#'
#' @examples
#' data(Fleiss1993bin, package = "meta")
#'
#' # Perform meta analysis, effect measure is odds ratio (OR)
#' #
#' m1 <- metabin(d.asp, n.asp, d.plac, n.plac, data=Fleiss1993bin, sm="OR")
#'
#' # Print summary of Copas analysis
#' #
#' summary(copas(m1), level = 0.95)
#'
#' @method print summary.copas
#' @export
#' @export print.summary.copas
print.summary.copas <- function(x, backtransf = x$backtransf,
legend = TRUE,
digits = gs("digits"),
digits.se = gs("digits.se"),
...) {
chkclass(x, "summary.copas")
cl <- class(x)[1]
addargs <- names(list(...))
##
fun <- "print.summarycopas"
##
warnarg("logscale", addargs, fun, otherarg = "backtransf")
##
if (is.null(backtransf))
if (!is.null(list(...)[["logscale"]]))
backtransf <- !list(...)[["logscale"]]
else
backtransf <- TRUE
else
chklogical(backtransf)
##
chklogical(legend)
chknumeric(digits, min = 0, length = 1)
chknumeric(digits.se, min = 0, length = 1)
crtitle(x)
##
print.copas(x$x,
header = FALSE, legend = FALSE,
digits = digits, backtransf = backtransf,
...)
##
res <- cbind(c("range of gamma0: ", "range of gamma1: "),
format(c(round(x$x$gamma0.range[1], digits),
round(x$x$gamma1.range[1], digits))),
##
format(c(round(x$x$gamma0.range[2], digits),
round(x$x$gamma1.range[2], digits))))
##
dimnames(res) <- list(rep("", dim(res)[1]), c("", "min", "max"))
cat("\n")
prmatrix(res, quote = FALSE, right = TRUE)
##
cat("\nLargest standard error (SE):",
max(round(x$x$seTE, digits.se)), "\n\n")
##
cat("Range of probability publishing trial with largest SE:\n")
##
res <-
matrix(format(round(range(pnorm(x$x$gamma0 + x$x$gamma1 / max(x$x$seTE))),
digits)), nrow = 1)
##
dimnames(res) <- list(rep("", dim(res)[1]), c("min", "max"))
##
prmatrix(res, quote = FALSE, right = TRUE)
##
cat("\nCalculation of orthogonal line:\n\n")
##
res <-
as.matrix(data.frame(x$x$regr)[ , c("levels", "nobs",
"adj.r.squareds",
"slopes", "se.slopes")])
dimnames(res) <- list(rep("", dim(res)[1]),
c("level", "nobs",
"adj.r.square",
"slope", "se.slope"))
prmatrix(res, quote = FALSE, right = TRUE)
##
if (legend) {
cat("\n Legend:\n")
cat(" p.publ - Probability of publishing study with largest SE\n")
cat(" p.trt - P-value for test of overall treatment effect\n")
cat(" p.rsb - P-value for test of residual selection bias\n")
cat(" N - Estimated number of unpublished studies\n")
}
invisible(NULL)
}
| 4,974 |
gpl-2.0
|
9dc1af1cb4f518cc0bb8a8d932a20a9ca8e759ee
|
horver/InstallR
|
tests/testthat/test_install_from_list.R
|
test_that("install_from_script::Install libs", {
libs <- c("car", "ggplot2")
install_from_list(libs, load = FALSE)
for (lib in libs)
expect_true(lib %in% utils::installed.packages()[, 1])
})
test_that("install_from_script::Install libs and don't load", {
libs <- c("mgcv", "lme4")
install_from_list(libs, load = FALSE)
for (lib in libs) {
expect_true(lib %in% utils::installed.packages()[, 1])
expect_false(lib %in% devtools::loaded_packages()[, 1])
}
})
test_that("install_from_script::Install libs and load", {
libs <- c("gamm4", "MuMIn")
install_from_list(libs, load = TRUE)
for (lib in libs) {
expect_true(lib %in% utils::installed.packages()[, 1])
expect_true(lib %in% devtools::loaded_packages()[, 1])
}
})
| 757 |
mit
|
61ce45a3e0a9316eb9f2e801ac92f25999b34506
|
kingtuna/Hybrid-Darknet-Concept
|
datas/Attackers.R
|
# Writen by Terrence Gareau and Zane Witherspoon
# Analyzes feed data in R after attacks were inserted into csv by Python
# python script is feedme.py
library('rworldmap')
library('plyr')
library('ggplot2')
# Date
month <- "September 2015"
# Import Files Start -------------------
base <- read.csv("attack.csv", header = TRUE)
methodColors <- read.csv("colors.csv", header = TRUE)
methodColors$Color <- as.character(methodColors$Color)
jColors <- methodColors$Color
names(jColors) <- methodColors$Method
# Import Files End -------------------
## Footnote ---------
#https://ryouready.wordpress.com/2009/02/17/r-good-practice-adding-footnotes-to-graphics/
# basic information at the beginning of each script
scriptName <- "Attackers.R"
author <- "TG"
company <- "Nexusguard, Inc."
#footnote <- paste(scriptName, format(Sys.time(), "%d %b %Y"),
# author, sep=" / ")
footnote <- paste(company,
author, sep=" / ")
# default footnote is today's date, cex=.7 (size) and color
# is a kind of grey
makeFootnote <- function(footnoteText=
format(Sys.time(), "%d %b %Y"),
size= .7, color= grey(.5))
{
require(grid)
pushViewport(viewport())
grid.text(label= footnoteText ,
x = unit(1,"npc") - unit(2, "mm"),
y= unit(2, "mm"),
just=c("right", "bottom"),
gp=gpar(cex= size, col=color))
popViewport()
}
## Footnote
# Top10 Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:10]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
# scale_fill_brewer(palette="Paired") +
svg("attack_top10_bar.svg",width=11,height=8.5)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 10 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods"))
dev.off()
# Top10 End -------------------
# Top10 PNG Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:10]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
# scale_fill_brewer(palette="Paired") +
ppi <- 300
png("attack_top10_bar.png", width=11*ppi, height=8.5*ppi, res=ppi)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 10 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods"))
makeFootnote(footnote)
dev.off()
# Top10 PNG End -------------------
# Top50 Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:50]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
svg("attack_top50_bar.svg",width=11,height=8.5)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 50 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Top50 End -------------------
# Top50 PNG Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:50]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
ppi <- 300
png("attack_top50_bar.png", width=11*ppi, height=8.5*ppi, res=ppi)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 50 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Top50 PNG End -------------------
# Pie Start -------------------
attacks_counts <- count(base, "method")
bp<- ggplot(attacks_counts, aes(x="", y=freq, fill=method))+
geom_bar(width = 1, stat = "identity")
pie <- bp + coord_polar("y", start=0)
svg("attack_all_pie.svg",width=11,height=8.5)
print(pie + scale_fill_manual(values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
ggtitle(paste("Attacks by Method in",month)) +
labs(fill = "Attack Methods") +
ylab("Total Count of Attacks"))
dev.off()
# Pie End -------------------
# Pie PNG Start -------------------
attacks_counts <- count(base, "method")
bp<- ggplot(attacks_counts, aes(x="", y=freq, fill=method))+
geom_bar(width = 1, stat = "identity")
pie <- bp + coord_polar("y", start=0)
ppi <- 300
png("attack_all_pie.png", width=11*ppi, height=8.5*ppi, res=ppi)
print(pie + scale_fill_manual(values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
ggtitle(paste("Attacks by Method in",month)) +
labs(fill = "Attack Methods") +
ylab("Total Count of Attacks"))
dev.off()
# Pie PNG End -------------------
# World Start -------------------
svg("attack_all_worldmap.svg",width=11,height=8.5)
df <- count(base$cuntry)
n <- joinCountryData2Map(df, joinCode="ISO2", nameJoinColumn="x")
mapParams <- mapCountryData(n,
nameColumnToPlot="freq",
mapTitle=paste("Attack Events by Country in",month),
addLegend=FALSE,
catMethod="logFixedWidth",
colourPalette="heat")
do.call(addMapLegend, c(mapParams
,legendLabels="all"
,legendWidth=1))
print(mapParams)
dev.off()
# World End -------------------
# World PNG Start -------------------
ppi <- 300
png("attack_all_worldmap.png", width=11*ppi, height=8.5*ppi, res=ppi)
df <- count(base$cuntry)
n <- joinCountryData2Map(df, joinCode="ISO2", nameJoinColumn="x")
mapParams <- mapCountryData(n,
nameColumnToPlot="freq",
mapTitle=paste("Attack Events by Country in",month),
addLegend=FALSE,
catMethod="logFixedWidth",
colourPalette="heat")
do.call(addMapLegend, c(mapParams
,legendLabels="all"
,legendWidth=1))
print(mapParams)
dev.off()
# World PNG End -------------------
# Attacks by day Start -------------------
days = strtrim(base$time,10)
svg("attacks_byday_bar.svg",width=11,height=8.5)
print(ggplot(base, aes(x = days, fill = method)) +
ggtitle(paste("Attacks by Day in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlim(rev(sort(unique((days))))) +
xlab("Dates") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Attacks by day Start -------------------
# Attacks by day PNG Start -------------------
png("attacks_byday_bar.png", width=11*ppi, height=8.5*ppi, res=ppi)
print(ggplot(base, aes(x = days, fill = method)) +
ggtitle(paste("Attacks by Day in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlim(rev(sort(unique((days))))) +
xlab("Dates") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Attacks by day PNG Start -------------------
# Attacks Durations by day PNG Start -------------------
days = strtrim(base$time,10)
png("attacks_durations_byday_scatter.png", width=11*ppi, height=8.5*ppi, res=ppi)
number_ticks <- function(n) {function(limits) pretty(limits, n)}
print(ggplot(base, aes(method, duration, color=method)) +
xlab("") +
ylab("Time in Seconds") +
ggtitle(paste("Attack Durations by Day in",month)) +
scale_color_manual(name="Attack Methods", values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_jitter(shape=1, position=position_jitter(0.3)) +
#scale_y_continuous(limits=c(0, 86400)) +
scale_y_continuous(breaks=number_ticks(10),limits=c(0, 86400)) +
#facet_wrap(~method, nrow=1) +
geom_boxplot(outlier.shape = NA,col="Black",fill = NA))
dev.off()
# Attacks Durations by day PNG Start -------------------
# Attacks Durations by day SVG Start -------------------
days = strtrim(base$time,10)
svg("attacks_durations_byday_scatter.svg",width=11,height=8.5)
number_ticks <- function(n) {function(limits) pretty(limits, n)}
print(ggplot(base, aes(method, duration, color=method)) +
xlab("") +
ylab("Time in Seconds") +
ggtitle(paste("Attack Durations by Day in",month)) +
scale_color_manual(name="Attack Methods", values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_jitter(shape=1, position=position_jitter(0.3)) +
#scale_y_continuous(limits=c(0, 86400)) +
scale_y_continuous(breaks=number_ticks(10),limits=c(0, 86400)) +
#facet_wrap(~method, nrow=1) +
geom_boxplot(outlier.shape = NA,col="Black",fill = NA))
dev.off()
# Attacks Durations by day SVG Start -------------------
| 11,226 |
bsd-2-clause
|
1c7daa954f224dcbed354c34b2591dad0bb52ce3
|
bheesink/ENCODER
|
ENCODER/R/private.R
|
.is.wholenumber <- function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
.loadCovData <- function(files, gc=NULL, mapa=NULL, black=NULL, excludechr=NULL, datacol=5) {
d <- lapply(files, read.delim, header=F)
cnames <- .removeCommonFix(files)
names(d) <- cnames
#checks
if(length(unique(sapply(d,nrow))) != 1) {
stop("Files have variable number of lines and are not compatible")
}
#naturally sort data
d <- lapply(d, function(x) {
x[,1] <- factor(x[,1], levels=mixedsort(levels(x[,1])))
x[order(x[,1], x[,2]),]
})
#check row order in data files
for (i in 2:length(files)) {
if(!isTRUE(all.equal(d[[1]][,1:3], d[[i]][,1:3], check.attributes=FALSE))) stop(paste("Datafiles 1 and", i,"are not in the same order"))
}
cov <- sapply(d, function(x) x[!(x[,1] %in% excludechr),datacol])
anno <- data.frame(droplevels(d[[1]][!(d[[1]][,1] %in% excludechr),1:3]))
colnames(anno) <- c("chr","start","end")
annoid <- paste(anno$chr, anno$start, anno$end, sep=":")
if(!is.null(gc)) {
anno$gc <- gc[match(annoid, paste(gc$chr, gc$start, gc$end, sep=":")),"gc"]
}
if(!is.null(mapa)) {
anno$mapa <- mapa[match(annoid, paste(mapa$chr, mapa$start, mapa$end, sep=":")),"mapa"]
}
if(!is.null(black)) {
anno$black <- rep(F, nrow(anno))
for (c in levels(anno$chr)) {
ar <- IRanges(anno$start[anno$chr == c], anno$end[anno$chr == c])
br <- IRanges(black$start[black$chr == c], black$end[black$chr == c])
anno$black[anno$chr == c] <- ar %over% br
}
}
list(cov=cov, anno=anno)
}
.tng <- function(df, use, correctmapa=TRUE, plot=NULL, verbose=T) {
#tests
if(!is.logical(use) && length(use) ==nrow(df))
stop("use should be logicval vector with same size as df")
#df colums?
if(!is.null(plot)) {
if(!is.logical(plot)) {
if(verbose) cat("Plotting to file", plot,"\n")
png(plot, width=700, height=1400)
par(mfrow=c(2,1))
on.exit(dev.off())
plot <- TRUE
} else if(plot) {
par(mfrow=c(2,1))
}
}
#exclude contains the points to exclude in the
#fitting (usually sex chromosomes and blacklisted regions)
# gc fits also excludes the low mappability data
#correct gc using double lowess
gcuse <- (use & !is.na(df$mapa) & df$mapa > .8 & !is.na(df$gc) & df$gc > 0)
rough <- loess(count ~ gc, data=df, subset=gcuse, span = 0.03)
i <- seq(0, 1, by = 0.001)
final <- loess(predict(rough, i) ~ i, span = 0.3)
normv <- predict(final, df$gc)
df$countgcloess <- df$count/(normv/median(normv, na.rm=T))
if(plot) {
plot(count ~ gc, data=df, subset=gcuse, ylim=quantile(df$count[gcuse], c(0.0001, .999)), xlim=c(0,1), pch=".")
points(count ~ gc, data=df, subset=!gcuse, col=rgb(1,0,0,.3), pch=".")
lines(i, predict(rough, i), col="green")
points(df$gc, normv, col="red", pch=".")
}
#correct mapa using linear function that intercepts zero
#if(correctmapa) {
#mapause <- (use & !is.na(df$mapa))
#lm(countgcloess~0+mapa, data=df, subset=mapause) ->fll
#if(verbose) print(summary(fll))
#if (plot) {
# plot(countgcloess ~ mapa, data=df, subset=mapause, ylim=quantile(df$countgcloess, c(0.0001, .999), na.rm=T), pch=".")
# points(countgcloess ~ mapa, data=df, subset=!mapause, col=rgb(1,0,0,.3), pch=".")
# abline(0, fll$coef, col=2)
#}
#correct mapa using double lowess -> paired end sequencing
if(correctmapa) {
mapause <- (use & !is.na(df$mapa))
rough <- loess(countgcloess ~ mapa, data=df, subset=mapause, span = 0.03)
i <- seq(0, 1, by = 0.001)
final <- loess(predict(rough, i) ~ i, span = 0.3)
normv <- predict(final, df$mapa)
df$countgcmapaloess <- df$countgcloess/(normv/median(normv, na.rm=T))
if (plot) {
plot(countgcloess ~ mapa, data=df, subset=mapause, ylim=quantile(df$countgcloess[mapause], c(0.0001, .999), na.rm=T), xlim=c(0,1), pch=".")
points(countgcloess ~ mapa, data=df, subset=!mapause, col=rgb(1,0,0,.3), pch=".")
lines(i, predict(rough, i), col="green")
points(df$mapa, normv, subset = (!is.na(df$mapa) && !is.na(normv)), col="red", pch=".")
}
return(log2(df$countgcmapaloess / median(df$countgcmapaloess[use], na.rm=T)))
} else {
#corerct agains median value (exluding sex chr)
log2(df$countgcloess / median(df$countgcloess[use], na.rm=T))
}
}
.removeCommonFix <- function(names, distance=1) {
l <- strsplit(names,"")
#clip prefix
pclip <- 1
while( length(unique(sapply(l, "[", pclip))) <= distance) {
pclip <- pclip + 1
}
#reverse strings for end clip pos
l <- lapply(l, rev)
eclip <- 1
while( length(unique(sapply(l, "[", eclip))) <= distance) {
eclip <- eclip + 1
}
sapply(names, function(x) substr(x, pclip, nchar(x) - eclip), USE.NAMES=F)
}
| 4,621 |
gpl-2.0
|
61ce45a3e0a9316eb9f2e801ac92f25999b34506
|
kingtuna/honeynet
|
datas/Attackers.R
|
# Writen by Terrence Gareau and Zane Witherspoon
# Analyzes feed data in R after attacks were inserted into csv by Python
# python script is feedme.py
library('rworldmap')
library('plyr')
library('ggplot2')
# Date
month <- "September 2015"
# Import Files Start -------------------
base <- read.csv("attack.csv", header = TRUE)
methodColors <- read.csv("colors.csv", header = TRUE)
methodColors$Color <- as.character(methodColors$Color)
jColors <- methodColors$Color
names(jColors) <- methodColors$Method
# Import Files End -------------------
## Footnote ---------
#https://ryouready.wordpress.com/2009/02/17/r-good-practice-adding-footnotes-to-graphics/
# basic information at the beginning of each script
scriptName <- "Attackers.R"
author <- "TG"
company <- "Nexusguard, Inc."
#footnote <- paste(scriptName, format(Sys.time(), "%d %b %Y"),
# author, sep=" / ")
footnote <- paste(company,
author, sep=" / ")
# default footnote is today's date, cex=.7 (size) and color
# is a kind of grey
makeFootnote <- function(footnoteText=
format(Sys.time(), "%d %b %Y"),
size= .7, color= grey(.5))
{
require(grid)
pushViewport(viewport())
grid.text(label= footnoteText ,
x = unit(1,"npc") - unit(2, "mm"),
y= unit(2, "mm"),
just=c("right", "bottom"),
gp=gpar(cex= size, col=color))
popViewport()
}
## Footnote
# Top10 Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:10]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
# scale_fill_brewer(palette="Paired") +
svg("attack_top10_bar.svg",width=11,height=8.5)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 10 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods"))
dev.off()
# Top10 End -------------------
# Top10 PNG Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:10]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
# scale_fill_brewer(palette="Paired") +
ppi <- 300
png("attack_top10_bar.png", width=11*ppi, height=8.5*ppi, res=ppi)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 10 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods"))
makeFootnote(footnote)
dev.off()
# Top10 PNG End -------------------
# Top50 Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:50]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
svg("attack_top50_bar.svg",width=11,height=8.5)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 50 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Top50 End -------------------
# Top50 PNG Start -------------------
#The number 1 looked like an attack to a service provider
poo <- sort(table(base$asn),decreasing=TRUE)[1:50]
poo1 <- as.list(poo)
poo2 <- ls(poo1)
topbase <- base[which(base$asn %in% poo2),]
topbase$asn <- as.factor(topbase$asn)
ppi <- 300
png("attack_top50_bar.png", width=11*ppi, height=8.5*ppi, res=ppi)
# scale_fill_brewer(palette="Paired") +
print(ggplot(topbase, aes(x = asn, fill = method)) +
ggtitle(paste("Top 50 Reflective DDoS Attacks by ASN in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlab("Observed Autonomous Systems") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Top50 PNG End -------------------
# Pie Start -------------------
attacks_counts <- count(base, "method")
bp<- ggplot(attacks_counts, aes(x="", y=freq, fill=method))+
geom_bar(width = 1, stat = "identity")
pie <- bp + coord_polar("y", start=0)
svg("attack_all_pie.svg",width=11,height=8.5)
print(pie + scale_fill_manual(values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
ggtitle(paste("Attacks by Method in",month)) +
labs(fill = "Attack Methods") +
ylab("Total Count of Attacks"))
dev.off()
# Pie End -------------------
# Pie PNG Start -------------------
attacks_counts <- count(base, "method")
bp<- ggplot(attacks_counts, aes(x="", y=freq, fill=method))+
geom_bar(width = 1, stat = "identity")
pie <- bp + coord_polar("y", start=0)
ppi <- 300
png("attack_all_pie.png", width=11*ppi, height=8.5*ppi, res=ppi)
print(pie + scale_fill_manual(values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
ggtitle(paste("Attacks by Method in",month)) +
labs(fill = "Attack Methods") +
ylab("Total Count of Attacks"))
dev.off()
# Pie PNG End -------------------
# World Start -------------------
svg("attack_all_worldmap.svg",width=11,height=8.5)
df <- count(base$cuntry)
n <- joinCountryData2Map(df, joinCode="ISO2", nameJoinColumn="x")
mapParams <- mapCountryData(n,
nameColumnToPlot="freq",
mapTitle=paste("Attack Events by Country in",month),
addLegend=FALSE,
catMethod="logFixedWidth",
colourPalette="heat")
do.call(addMapLegend, c(mapParams
,legendLabels="all"
,legendWidth=1))
print(mapParams)
dev.off()
# World End -------------------
# World PNG Start -------------------
ppi <- 300
png("attack_all_worldmap.png", width=11*ppi, height=8.5*ppi, res=ppi)
df <- count(base$cuntry)
n <- joinCountryData2Map(df, joinCode="ISO2", nameJoinColumn="x")
mapParams <- mapCountryData(n,
nameColumnToPlot="freq",
mapTitle=paste("Attack Events by Country in",month),
addLegend=FALSE,
catMethod="logFixedWidth",
colourPalette="heat")
do.call(addMapLegend, c(mapParams
,legendLabels="all"
,legendWidth=1))
print(mapParams)
dev.off()
# World PNG End -------------------
# Attacks by day Start -------------------
days = strtrim(base$time,10)
svg("attacks_byday_bar.svg",width=11,height=8.5)
print(ggplot(base, aes(x = days, fill = method)) +
ggtitle(paste("Attacks by Day in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlim(rev(sort(unique((days))))) +
xlab("Dates") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Attacks by day Start -------------------
# Attacks by day PNG Start -------------------
png("attacks_byday_bar.png", width=11*ppi, height=8.5*ppi, res=ppi)
print(ggplot(base, aes(x = days, fill = method)) +
ggtitle(paste("Attacks by Day in",month)) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_histogram(width = 0.7) +
scale_fill_manual(values = jColors) +
xlim(rev(sort(unique((days))))) +
xlab("Dates") +
ylab("Total Count of Attacks") +
labs(fill = "Attack Methods") +
coord_flip())
dev.off()
# Attacks by day PNG Start -------------------
# Attacks Durations by day PNG Start -------------------
days = strtrim(base$time,10)
png("attacks_durations_byday_scatter.png", width=11*ppi, height=8.5*ppi, res=ppi)
number_ticks <- function(n) {function(limits) pretty(limits, n)}
print(ggplot(base, aes(method, duration, color=method)) +
xlab("") +
ylab("Time in Seconds") +
ggtitle(paste("Attack Durations by Day in",month)) +
scale_color_manual(name="Attack Methods", values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_jitter(shape=1, position=position_jitter(0.3)) +
#scale_y_continuous(limits=c(0, 86400)) +
scale_y_continuous(breaks=number_ticks(10),limits=c(0, 86400)) +
#facet_wrap(~method, nrow=1) +
geom_boxplot(outlier.shape = NA,col="Black",fill = NA))
dev.off()
# Attacks Durations by day PNG Start -------------------
# Attacks Durations by day SVG Start -------------------
days = strtrim(base$time,10)
svg("attacks_durations_byday_scatter.svg",width=11,height=8.5)
number_ticks <- function(n) {function(limits) pretty(limits, n)}
print(ggplot(base, aes(method, duration, color=method)) +
xlab("") +
ylab("Time in Seconds") +
ggtitle(paste("Attack Durations by Day in",month)) +
scale_color_manual(name="Attack Methods", values = jColors) +
theme(title = element_text(colour="black", face="bold")) +
theme(legend.title = element_text(colour="black", size=12, face="bold")) +
geom_jitter(shape=1, position=position_jitter(0.3)) +
#scale_y_continuous(limits=c(0, 86400)) +
scale_y_continuous(breaks=number_ticks(10),limits=c(0, 86400)) +
#facet_wrap(~method, nrow=1) +
geom_boxplot(outlier.shape = NA,col="Black",fill = NA))
dev.off()
# Attacks Durations by day SVG Start -------------------
| 11,226 |
bsd-2-clause
|
c2a906bfa6d24e9f664757d7e1cde0f6ed351519
|
KDE/rkward
|
tests/distributions/logistic_probabilities.rkcommands.R
|
local({
## Compute
q <- seq (-5, 5, length.out=20)
p <- plogis (q, location=0.0, scale=1.0)
## Print result
rk.header ("Logistic distribution", parameters=list("Location"="0.0",
"Scale"="1.0",
"Tail"="Lower tail: P[X ≤ x]"))
rk.results (data.frame ("Quantile"=q, "Probability"=p, check.names=FALSE))
})
| 307 |
gpl-2.0
|
4292857b904859232e0c2552e6836b242bdf1872
|
gdevailly/HeatStarSeq_gh
|
dataset_fromating/21_modEncode_dm_TF_chipseq.R
|
# 2016/03/21
# download all file from: ftp://data.modencode.org/D.melanogaster/Transcriptional-Factor/ChIP-seq/computed-peaks_gff3/
# we merged gff3 files
# gunzip *.gz
# grep -v '^#' --no-filename *.gff3 > ../mergedPeaks.gff3
# negative start values and 0 start values. :(
# removing them manually, then:
# sortBed -i mergedPeaks.gff3 > mergedPeaks_sorted.gff3
# bedtools merge -i mergedPeaks_sorted.gff3 > mergedPeaks_merged.gff3
setwd("/groups2/joshi_grp/guillaume/otherProject/ChIP_heatmap/data/modEncodeDM/computed-peaks_gff3")
library(dplyr)
library(readr)
library(parallel)
library(GenomicRanges)
mergedPeaks <- read_tsv("../mergedPeaks_merged.gff3", col_names = FALSE, col_types = "cii")
names(mergedPeaks) <- c("chr", "start", "end")
table(mergedPeaks$chr)
validChr <- c("X", "2L", "2R", "3L", "3R", "4", "Y", "M", "2CEN", "3CEN", "XY", "XHet", "YHet", "2LHet", "2RHet", "3LHet", "3RHet", "2", "3")
dim(mergedPeaks)
mergedPeaks <- filter(mergedPeaks, chr %in% validChr)
dim(mergedPeaks)
mergedPeaksGR <- with(mergedPeaks, GRanges(chr, IRanges(start, end)))
myFiles <- list.files()
t0 <- Sys.time()
modData <- mclapply(myFiles, function(x) read_tsv(x, col_names = FALSE, skip = 2, col_types = "c????????"), mc.cores = 32)
Sys.time() - t0 # 1 sec
t0 <- Sys.time()
modDataGR <- lapply(
modData,
function(x) with(x, GRanges(X1, IRanges(X4, X5)))
)
Sys.time() - t0 # 1 s
t0 <- Sys.time()
listOverlap <- lapply(
modDataGR,
function(x) overlapsAny(mergedPeaksGR, x)
)
Sys.time() - t0 # 3 sec
table(sapply(listOverlap, length)) # ok
dataMtrix <- do.call(cbind, listOverlap)
corMtrix <- cor(dataMtrix)
metadata <- sub(".gff3", "", myFiles)
strsplit(metadata, split = ":", fixed = TRUE) %>% sapply(. , length) %>% table
strsplit(metadata, split = ":", fixed = TRUE) %>% do.call(rbind, .) %>% data.frame(stringsAsFactors = FALSE) -> metadata
metadata <- metadata[, c(1, 2, 7)]
colnames(metadata) <- c("antibody", "developmentalStage", "id")
strsplit(metadata$developmentalStage, split = "#", fixed = TRUE) %>% sapply(. , length) %>% table
tempChr <- strsplit(metadata$developmentalStage, split = "#", fixed = TRUE)
library(stringr)
myMD <- data.frame(
cellLine = str_match(metadata$developmentalStage, ".*Cell-Line=(.*)")[, 2],
devStage = str_match(metadata$developmentalStage, ".*Developmental-Stage=(.*)")[, 2],
strain = str_match(metadata$developmentalStage, ".*Strain=(.*)")[, 2],
stringsAsFactors = FALSE
)
myMD <- lapply(myMD, function(x) gsub("#.*", "", x)) %>% data.frame(stringsAsFactors = FALSE)
metadata <- cbind(metadata[, c("antibody", "id")], myMD)
filter(metadata, antibody == "eGFP")
metadata[!is.na(metadata$cellLine), "devStage"] <- metadata[!is.na(metadata$cellLine), "cellLine"]
# http://stackoverflow.com/questions/13673894/suppress-nas-in-paste
paste3 <- function(... ,sep=" ") {
L <- list(...)
L <- lapply(L,function(x) {x[is.na(x)] <- ""; x})
ret <- gsub(paste0("(^",sep,"|",sep,"$)"),"",
gsub(paste0(sep,sep),sep,
do.call(paste,c(L,list(sep=sep)))))
is.na(ret) <- ret==""
ret
}
metadata$name <- paste3(metadata$antibody, metadata$devStage, metadata$strain, metadata$id)
length(metadata$name)
length(unique(metadata$name))
metadata$url <- paste0(
"http://data.modencode.org/cgi-bin/findFiles.cgi?download=",
sub("modENCODE_", "", metadata$id, fixed = TRUE)
)
metadata <- metadata[, c(1:2, 4:7)]
rownames(metadata) <- NULL
modEncodeD_ChIPseq <- list(
dataMatrix = dataMtrix,
regionMetaData = mergedPeaksGR,
correlationMatrix = cor(dataMtrix),
annotation = metadata
)
modEncodeD_ChIPseq$annotation$strain[is.na(modEncodeD_ChIPseq$annotation$strain)] <- "unspecify"
save(modEncodeD_ChIPseq, file = "../../../heatchipseq/data/modEncodeD_ChIPseq.RData")
| 3,810 |
gpl-3.0
|
936ddb6abc70f3ad69c7100a22b71c01770f03ef
|
donlelef/som-fault-pattern-recognition
|
ShinyViewer/Packages/STMDataMining/R/getUniqueColumns.R
|
#' This function selects a subset of a data.frame's rows and and returns unique values.
#'
#' @title Subset of a data.frame's rows and and return unique values.
#' @export
#' @param columns a vector containing the names of the columns that are to be used as ids.
#' @param dataFrame a data.frame with the supposed format.
#' @return a data.frame with only the selected columns containing unique values.
getUniqueColumns = function(dataFrame, columns){
ids = subset(x = dataFrame, select = columns)
ids = unique(ids)
return(ids)
}
| 540 |
gpl-3.0
|
936ddb6abc70f3ad69c7100a22b71c01770f03ef
|
donlelef/Faut-detection-Thesis
|
ShinyViewer/Packages/STMDataMining/R/getUniqueColumns.R
|
#' This function selects a subset of a data.frame's rows and and returns unique values.
#'
#' @title Subset of a data.frame's rows and and return unique values.
#' @export
#' @param columns a vector containing the names of the columns that are to be used as ids.
#' @param dataFrame a data.frame with the supposed format.
#' @return a data.frame with only the selected columns containing unique values.
getUniqueColumns = function(dataFrame, columns){
ids = subset(x = dataFrame, select = columns)
ids = unique(ids)
return(ids)
}
| 540 |
gpl-3.0
|
72b145378c6a54bc12576b427d89e6ab929306a9
|
MazamaScience/MazamaSpatialUtils
|
tests/testthat/test-getStateCode.R
|
# -----------------------------------------------------------------------------
testthat::context("getStateCode()")
setup_spatial_data <- function() {
skip_on_cran()
skip_on_travis()
# try to set up spatial data. Skip if fails.
spatialDataDir <- try(getSpatialDataDir(), silent = TRUE)
if (!exists('NaturalEarthAdm1')) {
tryCatch(getSpatialDataDir(),
error = function(error) {
setSpatialDataDir("~/Data/Spatial_0.8")
})
tryCatch(loadSpatialData("NaturalEarthAdm1"),
error = function(error) {
message("Could not load NaturalEarthAdm1")
})
}
if (!exists("NaturalEarthAdm1")) {
skip("Could not load NaturalEarthAdm1")
}
return(spatialDataDir)
}
testthat::test_that("handles errors correctly", {
skip_on_cran()
skip_on_travis()
# Setup
spatialDataDir <- setup_spatial_data()
testthat::expect_error(getStateCode())
testthat::expect_error(getStateCode())
testthat::expect_error(getStateCode(0, 100))
testthat::expect_error(getStateCode(-400, 0))
# Teardown
if (class(spatialDataDir) == "character") {
setSpatialDataDir(spatialDataDir)
} else {
.removeSpatialDataDir()
}
})
# NOTE: Slow!
# testthat::test_that("returns correct name", {
#
# skip_on_cran()
# skip_on_travis()
#
# # Setup
# spatialDataDir <- setup_spatial_data()
#
# # testthat::expect_match(getStateCode(-108, 48), "MT")
# # testthat::expect_match(getStateCode(2.1, 41.38), "CT")
# # testthat::expect_match(getStateCode(c(-108, 2.1), c(48, 41.38)), "MT|CT")
# # testthat::expect_equal(getStateCode(1,1), NA_character_)
#
# # Teardown
# if (class(spatialDataDir) == "character") {
# setSpatialDataDir(spatialDataDir)
# } else {
# .removeSpatialDataDir()
# }
#
# })
testthat::test_that("subsetting with countryCodes works", {
skip_on_cran()
skip_on_travis()
# Setup
spatialDataDir <- setup_spatial_data()
testthat::expect_match(getStateCode(2.1, 41.38, countryCodes = c("ES")), "CT")
testthat::expect_equal(getStateCode(c(2.1, -108), c(41.38, 48), countryCodes = "ES"), c("CT", NA_character_))
# Teardown
if (class(spatialDataDir) == "character") {
setSpatialDataDir(spatialDataDir)
} else {
.removeSpatialDataDir()
}
})
testthat::test_that("allData returns are correct dimension and type", {
skip_on_cran()
skip_on_travis()
# Setup
spatialDataDir <- setup_spatial_data()
testthat::expect_s3_class(getStateCode(-100, 48, countryCodes = c("US"), allData = TRUE), "data.frame")
testthat::expect_equal(dim(getStateCode(-100, 48, countryCodes = c("US"), allData = TRUE)), c(1,ncol(NaturalEarthAdm1) - 1)) # SFDF has an extra 'geometry' column
testthat::expect_s3_class(getStateCode(c(-100, -90), c(48, 38), countryCodes = c("US"), allData = TRUE), "data.frame")
testthat::expect_equal(dim(getStateCode(c(-100, -90), c(48, 38), countryCodes = c("US"), allData = TRUE)), c(2,ncol(NaturalEarthAdm1) - 1)) # SFDF has an extra 'geometry' column
# Teardown
if (class(spatialDataDir) == "character") {
setSpatialDataDir(spatialDataDir)
} else {
.removeSpatialDataDir()
}
})
| 3,183 |
gpl-2.0
|
40ec24d2e3b96ac3ce1ab6be6eb9401b446aba3a
|
sjewo/tmap
|
pkg/R/legend_hist.R
|
legend_hist <- function(x, legend.hist.size, lineHeight, scale, m, attr.color, legend.hist.bg.color) {
with(x, {
if (is.factor(values)) {
numbers <- table(values)
xticks <- seq(0, 1, length.out=length(numbers)*2+1)[seq(2,length(numbers)*2,by=2)]
ptx <- levels(values)
#if (any(nchar(ptx)>5)) ptx <- substr(ptx, 1, 3)
colors <- legend.palette
} else {
values <- na.omit(values)
breaks2 <- pretty(values, n=30)
toolow <- (breaks2 < min(breaks))
toohigh <- (breaks2 > max(breaks))
startID <- max(sum(toolow), 1)
endID <- length(breaks2) - max(sum(toohigh), 1) + 1
breaks2 <- breaks2[startID:endID]
bins.mean <- (breaks2[-1] + breaks2[1:(length(breaks2)-1)])/2
cvalues <- cut(values, breaks=breaks2, include.lowest=TRUE, right=FALSE)
numbers <- as.vector(table(cvalues))
breaks[1] <- -Inf
breaks[length(breaks)] <- Inf
colors <- legend.palette[sapply(bins.mean, function(x) which(x<breaks)[1]-1)]
ptx <- pretty(breaks2, n=5)
ptx <- ptx[ptx>breaks2[1] & ptx<tail(breaks2,1)]
rng <- range(breaks2)
xticks <- (ptx - rng[1]) / (rng[2] - rng[1])
}
maxnumber <- max(numbers)
pty <- pretty(c(0, numbers), n=5)
hs <- numbers / maxnumber
pty <- pty[pty<=maxnumber]
hpty <- pty / maxnumber
x <- seq(0, 1, length.out=length(numbers)+1)[1:length(numbers)]
ws <- 1/length(numbers)
# lower 1/2 line
hs <- hs * (1- (lineHeight/2))
hpty <- hpty * (1- (lineHeight/2))
formattedY <- format(pty, trim=TRUE)
width.npc <- max(convertWidth(stringWidth(paste(ptx, " ")), unitTo="npc", valueOnly=TRUE)) * (length(ptx)+1)
height.npc <- convertHeight(unit(length(formattedY)+2, "lines"), "npc", valueOnly=TRUE)
my <- lineHeight * legend.hist.size * m
mx <- convertWidth(convertHeight(unit(my, "npc"), "inch"), "npc", TRUE)
npcx.total <- 1-2*mx
npcy.total <- 1-2*my
## decrease factor
text_shrink <- (npcx.total/width.npc)
if (legend.hist.size/text_shrink>1.5) {
draw_x_axis <- FALSE
text_shrink <- Inf
} else {
draw_x_axis <- TRUE
}
#margin <- 0.05
#npc.total <- 1-2*m
size <- min(legend.hist.size,
text_shrink,
npcy.total/height.npc)
width.npc <- width.npc * size
height.npc <- height.npc * size
width.yaxis <- max(convertWidth(stringWidth(formattedY), unitTo="npc", valueOnly=TRUE)) * size
height.xaxis <- lineHeight * size * ifelse(draw_x_axis, 1, .25)
axisTicks <- convertWidth(unit(mx, "npc"), "inch", valueOnly=TRUE)
mxInch <- convertWidth(unit(mx, "npc"), "inch", valueOnly=TRUE)
height.xaxisInch <- convertHeight(unit(height.xaxis, "npc"), "inch", valueOnly=TRUE)
vpHist <- viewport(layout=grid.layout(5, 5,
heights=unit(c(my, 1, axisTicks, height.xaxis, my), c("npc", "null", "inch", "npc", "npc")),
widths=unit(c(width.yaxis, mx, axisTicks, 1, 3*mx), c("npc", "npc", "inch", "null", "npc"))))
pushViewport(vpHist)
histElems <- gList(
if (!is.na(legend.hist.bg.color)) cellplot(2,4,e={
rectGrob(gp=gpar(fill=legend.hist.bg.color, col=attr.color))
}) else NULL,
cellplot(2,4, e={
rectGrob(x=x, y=0, width=ws, height=hs, gp=gpar(col=NA,fill=colors), just=c("left", "bottom"))
}),
# plot y axis
cellplot(2,3,e={
axisTicks.npc <- convertWidth(unit(axisTicks, "inch"), "npc", valueOnly=TRUE)
polylineGrob(x=c(axisTicks.npc, axisTicks.npc,
rep(c(0,axisTicks.npc), length(pty))),
y=c(0, 1, rep(hpty, each=2)),
id=rep(1:(length(pty)+1),each=2), gp=gpar(col=attr.color, lwd=scale))
}),
cellplot(2:4,1,e={
maxWidth <- max(convertWidth(stringWidth(formattedY), unitTo="npc", valueOnly=TRUE)) * size
h_total <- convertHeight(unit(1, "npc"), "inch", valueOnly = TRUE)
h_extra <- axisTicks+height.xaxisInch
h_e <- h_extra / h_total
hpty <- h_e + hpty * (1-h_e)
textGrob(formattedY, x=maxWidth, y=hpty,
just=c(1,.4), gp=gpar(col=attr.color, cex=size))
}),
# plot x axis tick marks
cellplot(3,4,e={
axisTicks.npc <- convertHeight(unit(axisTicks, "inch"), "npc", valueOnly=TRUE)
n <- length(xticks)
line_height <- convertHeight(unit(1, "lines"), "npc", valueOnly=TRUE) * size
if (draw_x_axis) {
gTree(children = gList(linesGrob(x=c(0,1), y=c(1, 1), gp=gpar(lwd=scale)),
polylineGrob(x=rep(xticks, each=2), y=rep(c(1, 1-axisTicks.npc), n),
id=rep(1:n, each=2), gp=gpar(col=attr.color, lwd=scale))))
} else linesGrob(x=c(0,1), y=c(1, 1), gp=gpar(col=attr.color, lwd=scale))
}),
if (draw_x_axis) cellplot(4,4:5,e={
w_total <- convertWidth(unit(1, "npc"), "inch", valueOnly = TRUE)
w_extra <- 3*mxInch
w_e <- w_extra / w_total
xticks <- xticks * (1-w_e)
textGrob(ptx, x=xticks, y=.5, gp=gpar(col=attr.color, cex=size))
}) else NULL)
treeHist <- gTree(children=histElems, vp=vpHist)
upViewport()
list(treeHist, 1)
})
}
| 4,996 |
gpl-3.0
|
a953582bd7a000e57d2b0d9fe79825e0b61c7b5c
|
virtualstaticvoid/heroku-buildpack-r
|
test/ruby/init.R
|
# used for R buildpack detection
| 33 |
mit
|
4cd2319b842455362dc2ceeb1af0ba2eeca9b366
|
ganna10/Meteorology_and_Ozone
|
T_Dep_Indep_Comparisons/Old_stuff/Contours_and_m.R
|
# Plot O3 contours with m_O3-T as tile. facet run ~ mechanism
# Version 0: Jane Coates 09/11/2015
setwd("~/Documents//Analysis//2015_Meteorology_and_Ozone//T_Dep_Indep_Comparisons")
get.labels = function (break.points, orig.data, digits) {
labels = lapply(break.points,
function (i) round ((i * (max(orig.data) - min(orig.data))) + min(orig.data), digits ))
return (labels)
}
contour_mechanism_data_frame = function (mechanism, dataframe) {
data = dataframe %>% filter(Mechanism == mechanism)
data = data %>% mutate(Scaled.Temperature = (Temperature - min(Temperature))/(max(Temperature) - min(Temperature)), Scaled.NOx.Emissions = (NOx.Emissions - min(NOx.Emissions))/(max(NOx.Emissions) - min(NOx.Emissions)))
fld = with(data, interp(x = Scaled.Temperature, y = Scaled.NOx.Emissions, z = O3))
df = melt(fld$z, na.rm = TRUE)
names(df) = c("x", "y", "O3")
df$Temperature = fld$x[df$x]
df$NOx.Emissions = fld$y[df$y]
df$Mechanism = rep(mechanism, length(df$NOx))
return (df)
}
get_contour_data = function (run) {
filename = paste0("Temperature_", run, "_data.csv")
d = read.csv(filename)
data = lapply(mechanisms, contour_mechanism_data_frame, dataframe = d)
df = do.call("rbind", data)
df$Run = rep(paste("Temperature", run, "\nIsoprene Emissions"), length(df$NOx))
return(df)
}
get_slope_data = function (run) {
filename = paste0("Temperature_", run, "_data.csv")
d = read.csv(filename)
slopes = d %>% mutate(Scaled.NOx.Emissions = (NOx.Emissions - min(NOx.Emissions))/(max(NOx.Emissions) - min(NOx.Emissions))) %>%
select(-NOx.Emissions) %>%
group_by(Mechanism, Scaled.NOx.Emissions) %>%
do(model = lm(O3 ~ Temperature, data = .)) %>%
mutate(Slope = sprintf("%.1f", abs(summary(model)$coeff[2])), R2 = summary(model)$r.squared) %>%
select(-model)
slopes$Run = rep(paste("Temperature", run, "\nIsoprene Emissions"), length(slopes$Mechanism))
slopes$NOx.Start = slopes$Scaled.NOx.Emissions
NOx.End = as.data.frame(as.numeric(levels(factor(slopes$Scaled.NOx.Emissions))))
names(NOx.End) = c("NOx.End")
NOx.End = NOx.End %>% filter(NOx.End != 0)
NOx.End = rbind(NOx.End, Inf)
slopes$NOx.End = NOx.End$NOx.End
names(slopes) = c("Mechanism", "NOx.Emissions", "Slope", "R2", "Run", "NOx.Start", "NOx.End")
return(slopes)
}
runs = c("Dependent", "Independent")
mechanisms = c("CB05", "RADM2", "MCMv3.2", "MOZART-4", "CRIv2")
#O3 Contours
contour.data = lapply(runs, get_contour_data)
df = do.call("rbind", contour.data) #combining into 1 data frame
#m_O3-T
slopes.data = lapply(runs, get_slope_data)
slopes = do.call("rbind", slopes.data)
#labels
d = read.csv(file = "Temperature_Dependent_data.csv") %>% filter(Mechanism == "CB05") %>% mutate(Temperature.C = Temperature - 273)
temperature.break.points = seq(0, 1, 0.2)
temperature.labels = get.labels(temperature.break.points, d$Temperature.C, digits = 2)
NOx.Emissions.break.points = seq(0, 1, 0.2)
NOx.Emissions.labels = get.labels(NOx.Emissions.break.points, d$NOx.Emissions, digits = 2)
NOx.Emissions.labels = lapply(NOx.Emissions.labels, function (i) sprintf("%0.1e", i))
p = ggplot(df, aes(y = NOx.Emissions))
p = p + geom_rect(data = slopes, aes(xmin = 0, xmax = Inf, ymin = NOx.Start, ymax = NOx.End, fill = factor(Slope)))
p = p + stat_contour(aes(x = Temperature, z = O3, colour = ..level..), binwidth = 5)
p = p + facet_grid(Mechanism ~ Run)
p = p + scale_colour_gradient(low = "#cc6329", high = "#ef6638")
p = p + scale_fill_grey(limits = rev(levels(factor(slopes$Slope))), name = expression(bold(paste(m[O3-T]))))
p = p + xlab(expression(bold(paste("Temperature (", degree, "C)")))) + ylab("NOx Emissions (molecules cm-3 s-1)")
p = p + scale_x_continuous(breaks = temperature.break.points, labels = temperature.labels)
p = p + scale_y_continuous(breaks = NOx.Emissions.break.points, labels = NOx.Emissions.labels)
p = p + theme_tufte()
p = p + theme(axis.title = element_text(face = "bold"))
p = p + theme(strip.text = element_text(face = "bold"))
p = p + theme(strip.text.y = element_text(angle = 0))
#direct.label(p)
CairoPDF(file = "O3_contours_with_m.pdf", width = 7, height = 10)
print(direct.label(p, list('top.pieces', cex = 0.6)))
dev.off()
| 4,207 |
gpl-2.0
|
6fddda59f705933c16751b16ee78e4bd53204cab
|
MoBiodiv/MoBspatial
|
examples/Application3_EAR_aggregation.R
|
# R code to reproduce Fig. S2 in the article
# mobsim: An R package for the simulation and measurement of
# biodiversity across spatial scales
# Felix May
# October 17 2017
library(mobsim)
# set reference parameters
S0 <- 200
N0 <- 10000
cv0 <- 1
# parameters for scenarios with higher aggregation
sigma_high <- 0.05
sigma_low <- 0.01
# sampling areas for the evaluation of the endemics-area relationship (EAR)
p_area <- c(0.01,0.05,0.1,0.2,0.5,0.6,0.7,0.8,0.9,0.95,0.99,1.0)
# number of replicate simulations (1000 in the article)
nsim <- 100
# define matrices to store simulation output for the EAR
ear_random_mat <- matrix(NA, nrow = nsim, ncol = length(p_area))
ear_sigma_high_mat <- matrix(NA, nrow = nsim, ncol = length(p_area))
ear_sigma_low_mat <- matrix(NA, nrow = nsim, ncol = length(p_area))
ear_clust1_mat <- matrix(NA, nrow = nsim, ncol = length(p_area))
# run replicate simulations for all scenarios
for (i in 1:nsim){
# random
com_random <- sim_poisson_community(s_pool = S0, n_sim = N0, sad_coef = list(meanlog = 3, sdlog = 1))
divar1 <- divar(com_random, prop_area = p_area)
ear_random_mat[i, ] <- divar1$m_endemics
# sigma high
com_sigma_high <- sim_thomas_community(s_pool = S0, n_sim = N0, sigma = sigma_high,
sad_coef = list(meanlog = 3, sdlog = 1))
divar1 <- divar(com_sigma_high, prop_area = p_area)
ear_sigma_high_mat[i, ] <- divar1$m_endemics
# sigma low
com_sigma_low <- sim_thomas_community(s_pool = S0, n_sim = N0, sigma = sigma_low,
sad_coef = list(meanlog = 3, sdlog = 1))
divar1 <- divar(com_sigma_low, prop_area = p_area)
ear_sigma_low_mat[i, ] <- divar1$m_endemics
# one cluster per species
com_clust1 <- sim_thomas_community(s_pool = S0, n_sim = N0, sigma = sigma_high,
mother_points = 1,
sad_coef = list(meanlog = 3, sdlog = 1))
divar1 <- divar(com_clust1, prop_area = p_area)
ear_clust1_mat[i, ] <- divar1$m_endemics
}
# calculate means and 95% confidence intervals
ear_random_mean <- colMeans(ear_random_mat, na.rm = T)
ear_random_ci <- apply(ear_random_mat, MARGIN = 2, FUN = "quantile",
probs = c(0.025, 0.975), na.rm = T)
ear_sigma_high_mean <- colMeans(ear_sigma_high_mat, na.rm = T)
ear_sigma_high_ci <- apply(ear_sigma_high_mat, MARGIN = 2, FUN = "quantile",
probs = c(0.025, 0.975), na.rm = T)
ear_sigma_low_mean <- colMeans(ear_sigma_low_mat, na.rm = T)
ear_sigma_low_ci <- apply(ear_sigma_low_mat, MARGIN = 2, FUN = "quantile",
probs = c(0.025, 0.975), na.rm = T)
ear_clust1_mean <- colMeans(ear_clust1_mat, na.rm = T)
ear_clust1_ci <- apply(ear_clust1_mat, MARGIN = 2, FUN = "quantile",
probs = c(0.025, 0.975), na.rm = T)
# Create plot
png("FigS2_EAR.png", width = 5, height = 5, units = "in", res = 200)
par(las = 1, font.main = 1, cex.lab = 1.2, cex.main = 1.4)
plot(p_area, ear_random_mean, type = "n", las = 1,
xlab = "Proportion of area lost", ylab = "No. of species lost",
main = "Endemics area relationships")
polygon(c(p_area, rev(p_area)), c(ear_random_ci[1,], rev(ear_random_ci[2,])),
col = adjustcolor(1, alpha.f = 0.1), border = NA)
lines(p_area, ear_random_mean)
polygon(c(p_area, rev(p_area)), c(ear_sigma_high_ci[1,], rev(ear_sigma_high_ci[2,])),
col = adjustcolor(2, alpha.f = 0.1), border = NA)
lines(p_area, ear_sigma_high_mean, col = 2)
polygon(c(p_area, rev(p_area)), c(ear_sigma_low_ci[1,], rev(ear_sigma_low_ci[2,])),
col = adjustcolor(3, alpha.f = 0.1), border = NA)
lines(p_area, ear_sigma_low_mean, col = 3)
polygon(c(p_area, rev(p_area)),
c(ear_clust1_ci[1,], rev(ear_clust1_ci[2,])),
col = adjustcolor(4,alpha.f = 0.1), border = NA)
lines(p_area, ear_clust1_mean, col = 4)
legend("topleft",legend = c("Random","Large clusters",
"Small clusters","One large cluster"),
title = "Species distributions",
lwd = 2, col = 1:4)
dev.off()
| 4,150 |
gpl-3.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
krlmlr/r-source
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
rho-devel/rho
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
minux/R
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
2610ec21896dc44d63a9b7c3b1e6b541426da9e3
|
BEAST2-Dev/codonmodels
|
perftest/pipeline/EvolerUtils.R
|
# evolver
### evolver.out
# Note: evolver tree uses the same format as APE tree
#evo.out <- readLines(paste0("t",n.taxa,".out.txt"))
# return a list of true sequences at internal nodes simulated by evolver.
# list names are the internal node index.
getSeqsEvoOut <- function(out.file="ancestral.txt", n.taxa=NULL,
nod.name="node[0-9]+", genetic.code="universal") {
require(tidyverse)
evo.anc <- readLines(out.file)
# extract node map
nod.map <- evo.anc[grepl("[0-9]+\\.\\.[0-9]+", evo.anc)] # "33..34 34..35 "
# extract states
anc.tru <- evo.anc[grepl(paste0("^",nod.name), evo.anc)] # "^node[0-9]+"
if (!is.null(n.taxa)) stopifnot(length(anc.tru) == n.taxa-1)
nod.names <- gsub(paste0("^(",nod.name,").*"), "\\1", anc.tru) # "^(node[0-9]+).*"
seqs <- gsub(paste0("^(",nod.name,")\\s+(.*)"), "\\2", anc.tru) # "^(node[0-9]+)\\s+(.*)"
# rm spaces
seqs <- gsub("\\s+", "", seqs)
states <- lapply(seqs, seqToStates, genetic.code=genetic.code)
# internal nodes index
nod.idx <- gsub("^node", "", nod.names)
names(states) <- as.character(nod.idx)
# parse edges: parent node .. child
edges <- nod.map %>% str_split("\\s+") %>% unlist %>% enframe(name = NULL) %>%
# suppress warning becasue of blank spaces
separate(value, c("parent", "child"), fill="right") %>% drop_na
# branches == 2 * internal nodes
stopifnot(nrow(edges) == 2*length(states))
# add edges
states[["edges"]] <- edges
return(states)
}
| 1,492 |
lgpl-2.1
|
ffe69b4399e92ba696b8f08c652300325bc0b014
|
mtennekes/tmap
|
examples/tmap_format.R
|
# available formats
tmap_format()
# create option list to be used as a new format
World_small <- tmap_format("World")
World_small$scale <- 2
# add format
tmap_format_add(World_small, name = "World_small")
# observe that World_small is successfully added:
tmap_format()
data(World)
qtm(World, fill="HPI", format="World_small")
| 331 |
gpl-3.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
kmillar/cxxr
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
aviralg/R-dyntrace
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
krlmlr/cxxr
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
allr/r-instrumented
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
allr/timeR
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
kmillar/rho
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
787cb690ce0b0ecd96ae8bf6d4f0605b806116fb
|
jukiewiczm/renjin
|
test-packages/dataTest/R/generateData.R
|
generateData <- function() {
(1:8)^2
}
| 40 |
gpl-3.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
MouseGenomics/R
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
75b9bda139852e4d82422cb316601769e1b83266
|
pchmieli/h2o-3
|
h2o-r/tests/testdir_munging/exec/runit_eq2_slotAssign_basic.R
|
##
# Test: [<- & $<-
# Description: Select a dataset, select columns, change values in the column, re-assign col
##
#setupRandomSeed(1689636624)
test.basic.slot.assignment <- function() {
Log.info("Uploading iris data...")
hex <- h2o.importFile(locate("smalldata/iris/iris_wheader.csv"), "iris.hex")
oldVal <- hex[1,1]
Log.info("Changing the first element in the first column of iris")
Log.info("Initial value is: ")
Log.info(head(oldVal))
hex[1,1] <- 48
print(head(hex))
hex$sepal_len <- 90 # new column
print(head(hex))
}
doTest("EQ2 Tests: [<- and $<-", test.basic.slot.assignment)
| 619 |
apache-2.0
|
75b9bda139852e4d82422cb316601769e1b83266
|
madmax983/h2o-3
|
h2o-r/tests/testdir_munging/exec/runit_eq2_slotAssign_basic.R
|
##
# Test: [<- & $<-
# Description: Select a dataset, select columns, change values in the column, re-assign col
##
#setupRandomSeed(1689636624)
test.basic.slot.assignment <- function() {
Log.info("Uploading iris data...")
hex <- h2o.importFile(locate("smalldata/iris/iris_wheader.csv"), "iris.hex")
oldVal <- hex[1,1]
Log.info("Changing the first element in the first column of iris")
Log.info("Initial value is: ")
Log.info(head(oldVal))
hex[1,1] <- 48
print(head(hex))
hex$sepal_len <- 90 # new column
print(head(hex))
}
doTest("EQ2 Tests: [<- and $<-", test.basic.slot.assignment)
| 619 |
apache-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
ArunChauhan/cxxr
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
SurajGupta/r-source
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
Mouseomics/R
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
71c4978aaa94135074227729a1d4da375593bdd9
|
cxxr-devel/cxxr
|
src/library/methods/R/MethodsList.R
|
# File src/library/methods/R/MethodsList.R
# Part of the R package, https://www.R-project.org
#
# Copyright (C) 1995-2016 The R Core Team
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# A copy of the GNU General Public License is available at
# https://www.R-project.org/Licenses/
MethodsList <-
## Create a MethodsList object out of the arguments.
##
## Conceptually, this object is a named collection of methods to be
## dispatched when the (first) argument in a function call matches the
## class corresponding to one of the names. A final, unnamed element
## (i.e., with name `""') corresponds to the default method.
##
## The elements can be either a function, or another MethodsList. In
## the second case, this list implies dispatching on the second
## argument to the function using that list, given a selection of this
## element on the first argument. Thus, method dispatching on an
## arbitrary number of arguments is defined.
##
## MethodsList objects are used primarily to dispatch OOP-style
## methods and, in R, to emulate S4-style methods.
function(.ArgName, ...)
{
.MlistDeprecated("MethodsList()")
value <- makeMethodsList(list(...))
if(is.name(.ArgName)){}
else if(is.character(.ArgName) && length(.ArgName) == 1)
.ArgName <- as.name(.ArgName)
else stop("invalid first argument: should be the name of the first argument in the dispatch")
slot(value, "argument") <- .ArgName
value
}
makeMethodsList <- function(object, level=1)
{
.MlistDeprecated("makeMethodsList()")
mnames <- allNames(object)
if(.noMlists()) {
keep <- mnames %in% c("", "ANY")
mnames <- mnames[keep]
object <- object[keep]
}
value <- new("MethodsList")
i <- match("", mnames)
if(!is.na(i)) {
## convert to ANY
mnames[[i]] <- "ANY"
names(object) <- mnames
}
if(anyDuplicated(mnames))
stop(gettextf("duplicate element names in 'MethodsList' at level %d: %s",
level, paste("\"", unique(mnames[duplicated(mnames)]), "\"",
collapse=", ")), domain = NA)
for(i in seq_along(object)) {
eli <- object[[i]]
if(is(eli, "function")
|| is(eli, "MethodsList")) {}
else if(is(eli, "list") ||
is(eli, "named"))
object[[i]] <- Recall(eli, NULL, level+1)
else
stop(gettextf("element %d at level %d (class %s) cannot be interpreted as a function or named list",
i, level, dQuote(class(eli))),
domain = NA)
}
slot(value, "methods") <- object
value
}
SignatureMethod <-
## construct a MethodsList object containing (only) this method, corresponding
## to the signature; i.e., such that signature[[1L]] is the match for the first
## argument, signature[[2L]] for the second argument, and so on. The string
## "missing" means a match for a missing argument, and "ANY" means use this as the
## default setting at this level.
##
## The first argument is the argument names to be used for dispatch corresponding to
## the signatures.
function(names, signature, definition)
{
.MlistDeprecated("SignatureMethod()")
n <- length(signature)
if(n > length(names))
stop("arguments 'names' and 'signature' must have the same length")
if(n == 0)
return(definition)
Class <- signature[[n]]
name <- names[[n]]
m <- MethodsList(name)
slot(m, "methods")[[Class]] <- definition
slot(m, "argument") <- as.name(name)
SignatureMethod(names[-n], signature[-n], m)
}
insertMethod <-
## insert the definition `def' into the MethodsList object, `mlist', corresponding to
## the signature, and return the modified MethodsList.
function(mlist, signature, args, def, cacheOnly = FALSE)
{
.MlistDeprecated("insertMethod()")
if(.noMlists() && !identical(unique(signature), "ANY"))
return(mlist)
## Checks for assertions about valid calls.
## See rev. 1.17 for the code before the assertions added.
if(identical(args[1L], "...") && !identical(names(signature), "...")) {
if(identical(signature[[1L]], "ANY"))
stop(gettextf("inserting method with invalid signature matching argument '...' to class %s",
dQuote(signature[[1L]])),
domain = NA)
args <- args[-1L]
signature <- signature[-1L]
if(length(signature) == 0L)
return(mlist)
}
if(length(signature) == 0L)
stop("inserting method corresponding to empty signature")
if(!is(mlist, "MethodsList"))
stop(gettextf("inserting method into non-methods-list object (class %s)",
dQuote(.class1(mlist))),
domain = NA)
if(length(args) > 1 && !cacheOnly)
mlist <- balanceMethodsList(mlist, args)
Class <- signature[[1]]
methods <- if(cacheOnly) mlist@allMethods else mlist@methods
current <- methods[[Class]]
if(is(current, "MethodsList")) {
nextArg <- as.character(current@argument)
sigArgs <- args
n <- length(signature)
length(sigArgs) <- n
if(is.na(match(nextArg, sigArgs))) {
n <- match(nextArg, args) - n
if(is.na(n)) { ## not in args eitiher
n <- 1
args <- c(args, nextArg)
}
## make explicit the trailing ANY's needed
signature <- c(signature, rep("ANY", n))
}
}
if(length(signature) == 1) {
if(is.null(current)) {
if(!is.null(def))
methods[[Class]] <- def
## else, no change
}
else {
which <- match(Class, names(methods))
if(is.null(def))
## delete the method
methods <- methods[-which]
else
methods[[which]] <- def
}
}
else { ## recursively merge, initializing current if necessary
if(is.null(current))
current <- new("MethodsList", argument = as.name(args[2L]))
else if(is.function(current))
current <- new("MethodsList", argument = as.name(args[2L]),
methods = list(ANY = current))
methods[[Class]] <-
Recall(current, signature[-1L], args[-1L], def, cacheOnly)
}
mlist@allMethods <- methods
if(!cacheOnly)
mlist@methods <- methods
mlist
}
MethodsListSelect <-
## select the element of a MethodsList object corresponding to the
## actual arguments (as defined in the suppled environment),
## and return the object, extended to include that method if necessary.
##
## Works recursively. At each level finds an argument name from the current `mlist'
## object, and evaluates this argument (if it is not missing), then uses the
## class of the result to select an element of `mlist'. If such an element
## exists and is another `MethodsList' object, `MethodsListSelect' calls itself recursively
## to resolve using further arguments. Matching includes using a default selection or
## a method specifically linked to class `"missing"'. Once a function is found, it
## is returned as the value. If matching fails, NULL is returned.
function(f, env,
mlist = NULL,
fEnv = if(is(fdef, "genericFunction")) environment(fdef) else baseenv(),
finalDefault = finalDefaultMethod(mlist),
evalArgs = TRUE,
useInherited = TRUE, ## supplied when evalArgs is FALSE
fdef = getGeneric(f, where = env), # MUST BE SAFE FROM RECUSIVE METHOD SELECTION
resetAllowed = TRUE # FALSE when called from selectMethod, .findNextMethod
)
{
.MlistDeprecated("MethodsListSelect()")
if(!resetAllowed) # ensure we restore the real methods for this function
resetMlist <- .getMethodsForDispatch(fdef)
## look for call from C dispatch code during another call to MethodsListSelect
if(is.null(f)) {} # Recall, not from C
else {
fMethods <- .getMethodsForDispatch(fdef)
if(is.null(mlist) || (evalArgs && is.function(fMethods)))
mlist <- fMethods
}
resetNeeded <- .setIfBase(f, fdef, mlist) # quickly protect against recursion -- see Methods.R
if(resetNeeded) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
if(!is(mlist, "MethodsList")) {
if(is.function(mlist)) # call to f, inside MethodsListSelect
{on.exit(); return(mlist)}
if(is.null(f)) # recursive recall of MethodsListSelect
stop("invalid method sublist")
else if(!is.null(mlist)) # NULL => 1st call to genericFunction
stop(gettextf("%f is not a valid generic function: methods list was an object of class %s",
sQuote(f), dQuote(class(mlist))),
domain = NA)
}
if(!is.logical(useInherited))
stop(gettextf("%s must be TRUE, FALSE, or a named logical vector of those values; got an object of class %s",
sQuote("useInherited"),
dQuote(class(useInherited))),
domain = NA)
if(identical(mlist, .getMethodsForDispatch(fdef))) {
resetNeeded <- TRUE
## On the initial call:
## turn off any further method dispatch on this function, to avoid recursive
## loops if f is a function used in MethodsListSelect.
## TODO: Using namespaces in the methods package would eliminate the need for this
.setMethodsForDispatch(f, fdef, finalDefault)
if(is(mlist, "MethodsList")) {
on.exit(.setMethodsForDispatch(f, fdef, mlist))
}
}
argName <- slot(mlist, "argument")
arg <- NULL ## => don't use instance-specific inheritance
if(evalArgs) {
## check for missing argument. NB: S sense, not that of R base missing()
if(missingArg(argName, env, TRUE))
thisClass <- "missing"
else {
arg <- eval(as.name(argName), env) ## DO use instance-specific inheritance
if(missing(arg)) ## S3 weird R code? Bail out!
return(finalDefault)
thisClass <- .class1(arg)
}
}
else
thisClass <- get(as.character(argName), envir = env, inherits = FALSE)
if(identical(useInherited, TRUE) || identical(useInherited, FALSE))
thisInherit <- nextUseInherited <- useInherited
else {
which <- match(as.character(argName), names(useInherited))
if(is.na(which)) {
nextUseInherited <- useInherited
thisInherit <- TRUE
}
else {
thisInherit <- useInherited[[which]]
nextUseInherited <- useInherited[-which]
}
}
fromClass <- thisClass ## will mark the class actually providing the method
allMethods <- mlist@allMethods
which <- match(thisClass, names(allMethods))
inherited <- is.na(which)
selection <- if(inherited) NULL else allMethods[[which]]
if(!inherited) {
if(is(selection, "function")) {
if(is.null(f)) {
## An inherited method at the next level up.
## only the inherited method should be added
mlist <- .trimMlist(mlist, fromClass)
}
value <- mlist ## no change
}
else {
## recursive call with NULL function name, to allow search to fail &
## to suppress any reset actions.
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs, useInherited = nextUseInherited, fdef = fdef,
)
if(is(method, "EmptyMethodsList"))
value <- method
else {
mlist@allMethods[[which]] <- method
value <- mlist
}
}
}
if(inherited || is(value, "EmptyMethodsList")) {
## direct selection failed at this level or below
method <- NULL
if(thisInherit) {
allSelections <- inheritedSubMethodLists(arg, fromClass, mlist, env)
allClasses <- names(allSelections)
for(i in seq_along(allSelections)) {
selection <- allSelections[[i]]
fromClass <- allClasses[[i]]
if(is(selection, "function"))
method <- selection
else if(is(selection, "MethodsList")) {
## go on to try matching further arguments
method <- Recall(NULL, env, selection, finalDefault = finalDefault,
evalArgs = evalArgs,
useInherited = nextUseInherited, fdef = fdef)
if(is(method, "EmptyMethodsList"))
selection <- method ## recursive selection failed
}
if(!is(selection, "EmptyMethodsList"))
break
}
}
if((is.null(selection) || is(selection, "EmptyMethodsList"))
&& !is.null(f) && !is.null(finalDefault)) {
## only use the final default method after exhausting all
## other possibilities, at all levels.
method <- finalDefault
fromClass <- "ANY"
}
if(is.null(method) || is(method, "EmptyMethodsList"))
value <- emptyMethodsList(mlist, thisClass) ## nothing found
else {
method <- MethodAddCoerce(method, argName, thisClass, fromClass)
value <- .insertCachedMethods(mlist, as.character(argName), thisClass, fromClass,
method)
}
}
if(!is.null(f)) {
## top level
if(is(value, "EmptyMethodsList")) ## selection failed
value <- NULL
if(resetNeeded) {
on.exit() # cancel the restore of the original mlist
if(resetAllowed) {
if(is.null(value)) resetMlist <- mlist else resetMlist <- value
}
.setMethodsForDispatch(f, fdef, resetMlist)
if(dispatchIsInternal(fdef))
setPrimitiveMethods(f, finalDefault, "set", fdef, resetMlist)
}
}
value
}
emptyMethodsList <- function(mlist, thisClass = "ANY", sublist = list()) {
.MlistDeprecated("emptyMethodsList()")
sublist[thisClass] <- list(NULL)
new("EmptyMethodsList", argument = mlist@argument, sublist = sublist)
}
insertMethodInEmptyList <- function(mlist, def) {
.MlistDeprecated("insertMethodInEmptyList()")
value <- new("MethodsList", argument = mlist@argument)
sublist <- mlist@sublist
submethods <- sublist[[1L]]
if(is.null(submethods))
sublist[[1L]] <- def
else
sublist[[1L]] <- Recall(submethods, def)
value@allMethods <- sublist
value
}
finalDefaultMethod <-
## Return the default method from the generic (it may be NULL, a method object or a primitive.
## this previously searched in a MethodsList object. Once those are gone, the loop should
## be irrelevant except as an error check.
function(method)
{
repeat {
if(is.function(method) # <- somewhat liberal, but catches both methods and primitives
|| is.null(method))
break
if(is(method, "MethodsList")) {
.MlistDeprecated()
method <- slot(method, "methods")[["ANY"]]
} else
stop(gettextf(
"default method must be a method definition, a primitive or NULL: got an object of class %s",
dQuote(class(method))),
domain = NA)
}
method
}
inheritedSubMethodLists <-
## Utility function to match the object to the elements of a methods list.
##
## The function looks only for an inherited match, and only among
## the methods that are not themselves inherited. (Inherited methods when found are
## stored in the session copy of the methods list, but they themselves should not be
## used for finding inherited matches, because an erroneous match could be found depending
## on which methods were previously used. See the detailed discussion of methods.)
function(object, thisClass, mlist, ev)
{
.MlistDeprecated("inheritedSubMethodLists()")
methods <- slot(mlist, "methods")## only direct methods
defaultMethod <- methods[["ANY"]]## maybe NULL
classes <- names(methods)
value <- list()
if(.identC(thisClass, "missing")) {
## no superclasses for "missing"
}
else {
## search in the superclasses, but don't use inherited methods
## There are two cases: if thisClass is formally defined & unsealed, use its
## superclasses. Otherwise, look in the subclasses of those classes for
## which methods exist.
classDef <- getClassDef(thisClass, ev)
useSuperClasses <- !is.null(classDef) && !classDef@sealed
if(useSuperClasses) {
## for consistency, order the available methods by
## the ordering of the superclasses of thisClass
superClasses <- names(classDef@contains)
classes <- superClasses[!is.na(match(superClasses, classes))]
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
## TODO: There is potential bug here: If the is relation is conditional,
## we should not cache this selection. Needs another trick in the environment
## to FORCE no caching regardless of what happens elsewhere; e.g., storing a
## special object in .Class
if(is.null(object) || is(object, tryClass)) {
value[[tryClass]] <- methods[[tryClass]]
}
}
}
else {
for(which in seq_along(classes)) {
tryClass <- classes[[which]]
tryClassDef <- getClassDef(tryClass, ev)
if(!is.null(tryClassDef) &&
!is.na(match(thisClass, names(tryClassDef@subclasses))))
value[[tryClass]] <- methods[[which]]
}
}
}
if(!is.null(defaultMethod))
value[["ANY"]] <- defaultMethod
value
}
matchSignature <-
## Match the signature object (a partially or completely named subset of the
## arguments of `fun', and return a vector of all the classes in the order specified
## by the signature slot of the generic. The classes not specified by `signature
##' will be `"ANY"' in the value.
function(signature, fun, where = baseenv())
{
if(!is(fun, "genericFunction"))
stop(gettextf("trying to match a method signature to an object (of class %s) that is not a generic function",
dQuote(class(fun))),
domain = NA)
anames <- fun@signature
if(length(signature) == 0L)
return(character())
if(is(signature,"character")) {
pkgs <- packageSlot(signature) # includes case of "ObjectsWithPackage"
if(is.null(pkgs))
pkgs <- character(length(signature))
else if(length(pkgs) != length(signature))
stop("invalid 'package' slot or attribute, wrong length")
sigClasses <- as.character(signature)
}
else if(is(signature, "list")) {
sigClasses <- pkgs <- character(length(signature))
for(i in seq_along(signature)) {
cli <- signature[[i]]
if(is(cli, "classRepresentation")) {
sigClasses[[i]] <- cli@className
pkgs[[i]] <- cli@package
}
else if(is(cli, "character") && length(cli) == 1) {
sigClasses[[i]] <- cli
pkgi <- packageSlot(cli)
if(is.character(pkgi))
pkgs[[i]] <- pkgi
}
else
stop(gettextf("invalid element in a list for \"signature\" argument; element %d is neither a class definition nor a class name",
i), domain = NA)
}
}
else
stop(gettextf("trying to match a method signature of class %s; expects a list or a character vector",
dQuote(class(signature))),
domain = NA)
if(!identical(where, baseenv())) {
## fill in package information, warn about undefined classes
unknown <- !nzchar(pkgs)
for(i in seq_along(sigClasses)[unknown]) {
cli <- getClassDef(sigClasses[[i]], where)
if(!is.null(cli)) {
pkgs[[i]] <- cli@package
unknown[[i]] <- FALSE
}
}
if(any(unknown)) {
unknown <- unique(sigClasses[unknown])
## coerce(), i.e., setAs() may use *one* unknown class
MSG <- if(identical(as.vector(coerce@generic), "coerce") &&
length(unknown) == 1) message
else function(...) warning(..., call. = FALSE)
MSG(.renderSignature(fun@generic, signature),
sprintf(ngettext(length(unknown),
"no definition for class %s",
"no definition for classes %s"),
paste(dQuote(unknown), collapse = ", ")),
domain = NA)
}
}
signature <- as.list(signature)
if(length(sigClasses) != length(signature))
stop(gettextf("object to use as a method signature for function %s does not look like a legitimate signature (a vector of single class names): there were %d class names, but %d elements in the signature object",
sQuote(fun@generic),
length(sigClasses),
length(signature)),
domain = NA)
if(is.null(names(signature))) {
which <- seq_along(signature)
if(length(which) > length(anames))
stop(gettextf("more elements in the method signature (%d) than in the generic signature (%d) for function %s",
length(which), length(anames), sQuote(fun@generic)), domain = NA)
}
else {
## construct a function call with the same naming pattern &
## values as signature
sigList <- signature
for(i in seq_along(sigList))
sigList[[i]] <- c(sigClasses[[i]], pkgs[[i]])
fcall <- do.call("call", c("fun", sigList))
## match the call to the formal signature (usually the formal args)
if(identical(anames, formalArgs(fun)))
smatch <- match.call(fun, fcall)
else {
fmatch <- fun
ff <- as.list(anames); names(ff) <- anames
formals(fmatch, envir = environment(fun)) <- ff
smatch <- match.call(fmatch, fcall)
}
snames <- names(smatch)[-1L]
which <- match(snames, anames)
## Assertion: match.call has permuted the args into the order of formal args,
## and carried along the values. Get the supplied classes in that
## order, from the matched args in the call object.
if(anyNA(which))
stop(sprintf(ngettext(sum(is.na(which)),
"in the method signature for function %s invalid argument name in the signature: %s",
"in the method signature for function %s invalid argument names in the signature: %s"),
sQuote(fun@generic),
paste(snames[is.na(which)], collapse = ", ")),
domain = NA)
smatch <- smatch[-1]
for(i in seq_along(smatch)) {
eli <- smatch[[i]]
sigClasses[[i]] <- eli[[1]]
pkgs[[i]] <- eli[[2]]
}
}
n <- length(anames)
value <- rep("ANY", n)
valueP <- rep("methods", n)
names(value) <- anames
value[which] <- sigClasses
valueP[which] <- pkgs
unspec <- value == "ANY"
## remove the trailing unspecified classes
while(n > 1 && unspec[[n]])
n <- n-1
length(value) <- length(valueP) <- n
attr(value, "package") <- valueP
## <FIXME> Is there a reason (bootstrapping?) why this
## is not an actual object from class "signature"?
## See .MakeSignature() </FIXME>
value
}
showMlist <-
## Prints the contents of the MethodsList. If `includeDefs' the signatures and the
## corresponding definitions will be printed; otherwise, only the signatures.
##
## If `includeDefs' is `TRUE', the currently known inherited methods are included;
## otherwise, only the directly defined methods.
function(mlist, includeDefs = TRUE, inherited = TRUE, classes = NULL, useArgNames = TRUE,
printTo = stdout())
{
.MlistDeprecated("showMlist()")
if(identical(printTo, FALSE)) {
tmp <- tempfile()
con <- file(tmp, "w")
}
else
con <- printTo
object <- linearizeMlist(mlist, inherited)
methods <- object@methods
signatures <- object@classes
args <- object@arguments
if(!is.null(classes) && length(signatures)>0) {
keep <- !vapply(signatures, function(x, y) all(is.na(match(x, y))), NA, classes)
methods <- methods[keep]
signatures <- signatures[keep]
args <- args[keep]
}
if(length(methods) == 0)
cat(file=con, "<Empty Methods List>\n")
else {
n <- length(methods)
labels <- character(n)
if(useArgNames) {
for(i in 1L:n) {
sigi <- signatures[[i]]
labels[[i]] <- paste(args[[i]], " = \"", sigi, "\"",
sep = "", collapse = ", ")
}
}
else {
for(i in 1L:n)
labels[[i]] <- paste(signatures[[i]], collapse = ", ")
}
for(i in seq_along(methods)) {
cat(file=con, (if(includeDefs) "## Signature:" else ""), labels[[i]])
method <- methods[[i]]
if(includeDefs) {
cat(file=con, ":\n")
if(is(method, "MethodDefinition")) ## really an assertion
cat(file=con, deparse(method@.Data), sep="\n")
else
cat(file=con, deparse(method), sep="\n")
}
if(is(method, "MethodDefinition") &&
!identical(method@target, method@defined)) {
defFrom <- method@defined
cat(file = con, if(includeDefs) "##:" else "\n",
" (inherited from ",
paste(names(defFrom), " = \"", as.character(defFrom),
"\"", sep = "", collapse = ", "),
")", if(includeDefs) "\n", sep="")
}
cat(file=con, "\n")
}
}
if(identical(printTo, FALSE)) {
close(con)
value <- readLines(tmp)
unlink(tmp)
value
}
}
promptMethods <- function(f, filename = NULL, methods)
{
## Generate information in the style of 'prompt' for the methods of
## the generic named 'f'.
##
## 'filename' can be a logical or NA or the name of a file to print
## to. If it 'FALSE', the methods skeleton is returned, to be
## included in other printing (typically, the output from 'prompt').
escape <- function(txt) gsub("%", "\\\\%", txt)
packageString <- ""
fdef <- getGeneric(f)
if(!isGeneric(f, fdef=fdef))
stop(gettextf("no generic function found corresponding to %s",
sQuote(f)),
domain = NA)
if(missing(methods)) {
methods <- findMethods(fdef)
## try making packageString
where <- .genEnv(fdef, topenv(parent.frame()))
if(!identical(where, .GlobalEnv))
packageString <-
sprintf("in Package \\pkg{%s}", getPackageName(where))
}
fullName <- utils:::topicName("methods", f)
n <- length(methods)
labels <- character(n)
aliases <- character(n)
signatures <- findMethodSignatures(methods = methods, target=TRUE)
args <- colnames(signatures) # the *same* for all
for(i in seq_len(n)) {
sigi <- signatures[i, ]
labels[[i]] <-
sprintf("\\code{signature(%s)}",
paste(sprintf("%s = \"%s\"", args, escape(sigi)),
collapse = ", "))
aliases[[i]] <-
paste0("\\alias{",
utils:::topicName("method", c(f, signatures[i,])),
"}")
}
text <- paste0("\n\\item{", labels,
"}{\n%% ~~describe this method here~~\n}")
text <- c("\\section{Methods}{\n\\describe{", text, "}}")
aliasText <- c(paste0("\\alias{", escape(fullName), "}"), escape(aliases))
if(identical(filename, FALSE))
return(c(aliasText, text))
if(is.null(filename) || identical(filename, TRUE))
filename <- paste0(fullName, ".Rd")
Rdtxt <-
list(name = paste0("\\name{", fullName, "}"),
type = "\\docType{methods}",
aliases = aliasText,
## <FIXME>
## Title and description are ok as auto-generated: should
## they be flagged as such (via '~~' which are quite often
## left in by authors)?
title =
sprintf("\\title{ ~~ Methods for Function \\code{%s} %s ~~}",
f, packageString),
description =
paste0("\\description{\n ~~ Methods for function",
" \\code{", f, "} ",
sub("^in Package", "in package", packageString),
" ~~\n}"),
## </FIXME>
"section{Methods}" = text,
keywords = c("\\keyword{methods}",
"\\keyword{ ~~ other possible keyword(s) ~~ }"))
if(is.na(filename)) return(Rdtxt)
cat(unlist(Rdtxt), file = filename, sep = "\n")
.message("A shell of methods documentation has been written",
.fileDesc(filename), ".\n")
invisible(filename)
}
##' only called from showMlist() above, which has been deprecated in R 3.2.0 (Apr.2015):
linearizeMlist <-
## Undo the recursive nature of the methods list, making a list of
## function definitions, with the names of the list being the
## corresponding signatures (designed for printing; for looping over
## the methods, use `listFromMlist' instead).
##
## The function calls itself recursively. `prev' is the previously
## selected class names.
##
## If argument `classes' is provided, only signatures containing one
## of these classes will be included.
function(mlist, inherited = TRUE) {
methods <- mlist@methods
allMethods <- mlist@allMethods
if(inherited && length(allMethods) >= length(methods)) {
## anames <- names(allMethods)
## inh <- is.na(match(anames, names(methods)))
methods <- allMethods
}
preC <- function(y, x)c(x,y) # used with lapply below
cnames <- names(methods)
value <- list()
classes <- list()
arguments <- list()
argname <- as.character(mlist@argument)
for(i in seq_along(cnames)) {
mi <- methods[[i]]
if(is.function(mi)) {
value <- c(value, list(mi))
classes <- c(classes, list(cnames[[i]]))
arguments <- c(arguments, list(argname))
}
else if(is(mi, "MethodsList")) {
.MlistDeprecated()
mi <- Recall(mi, inherited)
value <- c(value, mi@methods)
classes <- c(classes, lapply(mi@classes, preC, cnames[[i]]))
arguments <- c(arguments, lapply(mi@arguments, preC, argname))
}
else
warning(gettextf("skipping methods list element %s of unexpected class %s\n\n",
paste(cnames[i], collapse = ", "),
dQuote(.class1(mi))),
domain = NA)
}
new("LinearMethodsList", methods = value, classes = classes, arguments = arguments)
}
print.MethodsList <- function(x, ...)
showMlist(x)
## In R's own code, this is *only* used in mergeMethods(), deprecated in R 3.2.0 (Apr.2015)
listFromMlist <-
## linearizes the MethodsList object into list(sigs, methods); `prefix' is the partial
## signature (a named list of classes) to be prepended to the signatures in this object.
##
## A utility function used to iterate over all the individual methods in the object.
function(mlist, prefix = list(), sigs. = TRUE, methods. = TRUE)
{
methodSlot <- slot(mlist, "methods")
mnames <- names(methodSlot)
argName <- as.character(slot(mlist, "argument"))
sigs <- list()
methods <- list()
for(i in seq_along(methodSlot)) {
thisMethod <- methodSlot[i]
thisClass <- mnames[[i]]
prefix[[argName]] <- thisClass
if(is.function(thisMethod)) {
if(sigs.) sigs <- c(sigs, list(prefix))
if(methods.) methods <- c(methods, list(thisMethod))
}
else {
more <- Recall(thisMethod, prefix)
if(sigs.) sigs <- c(sigs, more[[1]])
if(methods.) methods <- c(methods, more[[2]])
}
}
list(sigs, methods)
}
.insertCachedMethods <- function(mlist, argName, Class, fromClass, def) {
if(is(def, "MethodsList")) {
.MlistDeprecated()
## insert all the cached methods in def
newArg <- c(argName, as.character(def@argument))
newDefs <- def@allMethods
newSigs <- as.list(names(newDefs))
for(j in seq_along(newDefs))
mlist <- Recall(mlist, newArg, c(Class, newSigs[[j]]), fromClass,
newDefs[[j]])
}
else {
def <- .addMethodFrom(def, argName[1L], Class[1L], fromClass)
mlist <- insertMethod(mlist, Class, argName, def, TRUE)
}
mlist
}
.addMethodFrom <- function(def, arg, Class, fromClass) {
if(is(def, "MethodDefinition")) {
## eventually, we may enforce method definition objects
## If not, just leave raw functions alone (NextMethod won't work)
def@target[[arg]] <- Class
def@defined[[arg]] <- fromClass
}
def
}
## Define a trivial version of asMethodDefinition for bootstrapping.
## The real version requires several class definitions as well as
## methods for as<-
asMethodDefinition <- function(def, signature = list(.anyClassName), sealed = FALSE, fdef = def) {
if(is.primitive(def) || is(def, "MethodDefinition"))
def
else {
value = new("MethodDefinition")
value@.Data <- def
classes <- .MakeSignature(new("signature"), def, signature, fdef)
value@target <- classes
value@defined <- classes
value
}
}
.trimMlist <- function(mlist, fromClass) {
mlist@methods <- mlist@methods[fromClass]
mlist@allMethods <- mlist@allMethods[fromClass]
mlist
}
.noMlistsFlag <- TRUE
.noMlists <- function() {
## if this were to be dynamically variable, but
## it can't, IMO
## identical(getOption("noMlists"), TRUE)
## so instead
.noMlistsFlag
}
.MlistDepTable <- new.env()
.MlistDeprecated <- function(this = "<default>", instead) {
if(is.character(this)) {
if(exists(this, envir = .MlistDepTable, inherits = FALSE))
return()
else
assign(this, TRUE, envir = .MlistDepTable)
}
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is deprecated."
else if(is.character(this))
gettextf(
"%s, along with other use of the \"MethodsList\" metadata objects, is deprecated.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is deprecated.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList. (This warning is shown once per session.)")
base::.Deprecated(msg = msg)
}
.MlistDefunct <- function(this = "<default>", instead) {
msg <-
if(missing(this))
"Use of the \"MethodsList\" meta data objects is defunct."
else if(is.character(this))
gettextf("%s, along with other use of the \"MethodsList\" metadata objects, is defunct.",
dQuote(this))
else
gettextf("in %s: use of \"MethodsList\" metadata objects is defunct.",
deparse(this))
if(!missing(instead))
msg <- paste(msg, gettextf("use %s instead.", dQuote(instead)))
msg <- paste(msg, "see ?MethodsList.")
base::.Defunct(msg = msg)
}
| 36,574 |
gpl-2.0
|
8298e1ad0077132f653ef643f8a30877fe2cb5fe
|
DavidNovo/ExplorationsWithR
|
directoryManipulationAndReadingCSV.R
|
getwd()
setwd("C:/Users/ahall/Documents/GitHub/ExplorationsWithR")
reddit <- read.csv('reddit.csv')
table(reddit$employment.status)
'''
Employed full time Freelance
14814 1948
Not employed and not looking for work Not employed, but looking for work
682 2087
Retired Student
85 12987'
levels(reddit$age.range)
'''
[1] "18-24" "25-34" "35-44" "45-54" "55-64" "65 or Above" "Under 18"
'
levels(reddit$employment.status)
'''
[1] "Employed full time" "Freelance"
[3] "Not employed and not looking for work" "Not employed, but looking for work"
[5] "Retired" "Student"
'
'''
installing better graphic package
'
install.packages('ggplot2', dependencies = T)
library(ggplot2)
qplot(data=reddit, x= age.range)
| 1,142 |
apache-2.0
|
ba2b5389d065f40ced7fe778a7c2469363030c62
|
sebastianueckert/mirt
|
R/mirt.model.R
|
#' Specify model information
#'
#' The \code{mirt.model} function scans/reads user input to specify the
#' confirmatory model. Item locations must be used in the specifications if no
#' \code{itemnames} argument is supplied. This is called implicitly by estimation functions
#' when a string is passed to the \code{model} argument.
#'
#' Factors are first named and then specify which numerical items they affect
#' (i.e., where the slope is not equal to 0), separated either by commas or by
#' - to indicate a range of items. Products between factors may be specified
#' by enclosing the left hand term within brackets. To finish the declaration of
#' a model simply enter a blank line with only a carriage return (i.e., the
#' 'enter' or 'return' key), or instead read in an input version of the model syntax.
#' The associated slopes throughout the package label these coefficients as
#' \code{a1, a2, ..., ak}, where the associated number is assigned according to the
#' respective order of the defined factors.
#'
#' For example, if the syntax were
#'
#' \code{"G = 1-10
#' F = 1-5
#' A = 6-10"}
#'
#' then the \code{G} factor would be assigned the slopes \code{a1} for each item, \code{F} assigned
#' the slopes \code{a2}, and \code{A} assigned the slopes \code{a3}. The same principle applies to the
#' \code{\link{bfactor}} function whereby the slopes are automatically included for the specific factors
#' after the general factor structure has been assigned.
#'
#' There is an optional keyword for specifying the correlation between relationships between factors
#' called \code{COV}, and non-linear factor products can be included by enclosing the product
#' combination on the left hand side of the declaration (e.g., \code{(F1*F1)} would create a
#' quadratic factor for \code{F1}).
#'
#' The keywords \code{CONSTRAIN, CONSTRAINB, PRIOR, FIXED, FREE, START, UBOUND, LBOUND} can
#' be applied to specific sub-groups in multiple-group models by included square brackets before the
#' = sign, where groups are separated by commas. For example, to apply within-group equality
#' constraints to a group called "male", then specifying:
#'
#' \code{CONSTRAIN [male] = (1-5, a1)}
#'
#' is appropriate, while specifying the same constraints to the sub-groups
#' "male" and "female" would appear as
#'
#' \code{CONSTRAIN [male, female] = (1-5, a1)}
#'
#' For all other groups in the multi-group model, these within-group equality constraints would not appear. Therefore, these
#' bracketed group specifications are useful when modifying priors, starting values, between/within group equality constraints,
#' and so on when the specifications for each sub-group may differ.
#'
#' Finally, the keyword \code{GROUP} can be used to specify the group-level
#' hyper-parameter terms, such as the means and variance of the default Gaussian
#' distribution. For example, to set the starting value of the variance
#' parameter (\code{COV_11}) to 1.5:
#'
#' \code{START = (GROUP, COV_11, 1.5)}
#'
#' \describe{
#' \item{COV}{Specify the relationship between the latent factors.
#' Estimating a correlation between factors is declared by joining the two
#' factors with an asterisk (e.g., F1*F2), or with an asterisk between three or more factors
#' to estimate all the possible correlations (e.g., F1*F2*F3)}
#'
#' \item{MEAN}{A comma separated list specifying which latent factor means to freely estimate.
#' E.g., \code{MEAN = F1, F2} will free the latent means for factors F1 and F2}
#'
#' \item{CONSTRAIN}{A bracketed, comma separated list specifying equality constrains between items.
#' The input format is
#' \code{CONSTRAIN = (items, ..., parameterName(s)),
#' (items, ..., parameterName)}.
#'
#' For example, in a single group 10-item dichotomous tests, using the default 2PL model,
#' the first and last 5 item slopes (a1) can be constrained to be equal by using
#' \code{CONSTRAIN = (1-5, a1), (6-10, a1)}, or some combination
#' such as \code{CONSTRAIN = (1-3,4,5,a1), (6,7,8-10,a1)}.
#'
#' When constraining parameters to be equal across items with different parameter names, a
#' balanced bracketed vector must be supplied. E.g., setting the first slope for item 1 equal to
#' the second slope in item 3 would be \code{CONSTRAIN = (1, 3, a1, a2)}
#' }
#'
#' \item{CONSTRAINB}{A bracketed, comma separate list specifying equality constrains between groups.
#' The input format is \code{CONSTRAINB = (items, ..., parameterName),
#' (items, ..., parameterName)}.
#'
#' For example, in a two group 10-item dichotomous tests, using the default 2PL model, the first
#' 5 item slopes (a1) can be constrained to be equal across both groups by using
#' \code{CONSTRAINB = (1-5, a1)}, or some combination such as \code{CONSTRAINB = (1-3,4,5,a1)}}
#'
#' \item{PRIOR}{A bracketed, comma separate list specifying prior parameter distributions.
#' The input format is
#' \code{PRIOR = (items, ..., parameterName, priorType, val1, val2),
#' (items, ..., parameterName, priorType, val1, val2)}.
#' For example, in a single group 10-item dichotomous tests, using the default 2PL model,
#' defining a normal prior of N(0,2) for the first 5 item intercepts (d) can be defined by
#' \code{PRIOR = (1-5, d, norm, 0, 2)}
#'
#' Currently supported priors are of the form: \code{(items, norm, mean, sd)}
#' for the normal/Gaussian, \code{(items, lnorm, log_mean, log_sd)} for log-normal,
#' \code{(items, beta, alpha, beta)} for beta, and \code{(items, expbeta, alpha, beta)}
#' for the beta distribution after applying the
#' function \code{\link{plogis}} to the input value (note, this is specifically for applying a beta
#' prior to the lower-bound parameters in 3/4PL models)}
#'
#' \item{LBOUND}{A bracketed, comma separate list specifying lower bounds for estimated
#' parameters (used in optimizers such as \code{L-BFGS-B} and \code{nlminb}).
#' The input format is \code{LBOUND = (items, ..., parameterName, value),
#' (items, ..., parameterName, value)}.
#'
#' For example, in a single group 10-item dichotomous tests, using the 3PL model and
#' setting lower bounds for the 'g' parameters for the first 5 items to 0.2 is accomplished with
#' \code{LBOUND = (1-5, g, 0.2)}}
#'
#' \item{UBOUND}{same as LBOUND, but specifying upper bounds in estimated parameters}
#'
#' \item{START}{A bracketed, comma separate list specifying the starting values for individual parameters.
#' The input is of the form \code{(items, ..., parameterName, value)}. For instance, setting the 10th and
#' 12th to 15th item slope parameters (a1) to 1.0 is specified with \code{START = (10, 12-15, a1, 1.0)}
#'
#' For more hands on control of the starting values pass the argument \code{pars = 'values'} through
#' whatever estimation function is being used}
#'
#' \item{FIXED}{A bracketed, comma separate list specifying which parameters should be fixed at their
#' starting values (i.e., not freely estimated).
#' The input is of the form \code{(items, ..., parameterName)}. For instance, fixing the 10th and
#' 12th to 15th item slope parameters (a1) is accomplished with \code{FIXED = (10, 12-15, a1)}
#'
#' For more hands on control of the estimated values pass the argument \code{pars = 'values'} through
#' whatever estimation function is being used}
#'
#' \item{FREE}{Equivalent to the \code{FIXED} input, except that parameters are freely estimated instead
#' of fixed at their starting value}
#'
#' \item{NEXPLORE}{Number of exploratory factors to extract. Usually this is not required
#' because passing a numeric value to the \code{model} argument in the estimation function
#' will generate an exploratory factor analysis model, however if different start values,
#' priors, lower and upper bounds, etc, are desired then this input can be used}
#'
#' }
#'
#' @param input input for writing out the model syntax. Can either be a string declaration of
#' class character or the so-called Q-matrix or class \code{matrix} that specifies the model
#' either with integer or logical values. If the Q-matrix method
#' is chosen covariances terms can be specified with the \code{COV} input
#' @param itemnames a character vector or factor indicating the item names. If a data.frame or
#' matrix object is supplied the names will be extracted using \code{colnames(itemnames)}.
#' Supplying this input allows the syntax to be specified with the raw item names rather than
#' item locations
#' @param file a input specifying an external file that declares the input.
#' @param COV a symmetric, logical matrix used to declare which covariance terms are estimated
#' @param quiet logical argument passed to \code{scan()} to suppress console read message
#' @param ... additional arguments for \code{scan()}
#' @return Returns a model specification object to be used in
#' \code{\link{mirt}}, \code{\link{bfactor}}, \code{\link{multipleGroup}}, or
#' \code{\link{mixedmirt}}
#' @author Phil Chalmers \email{rphilip.chalmers@@gmail.com} and Alexander Robitzsch
#' @references
#' Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory
#' Package for the R Environment. \emph{Journal of Statistical Software, 48}(6), 1-29.
#' \doi{10.18637/jss.v048.i06}
#' @export mirt.model
#' @examples
#'
#' \dontrun{
#'
#' # interactively through the console (not run)
#' #model <- mirt.model()
#' # F1 = 1,2,3,4-10
#' # F2 = 10-20
#' # (F1*F2) = 1,2,3,4-10
#' # COV = F1*F2
#'
#'
#' #Or alternatively with a string input
#' s <- 'F1 = 1,2,3,4-10
#' F2 = 10-20
#' (F1*F2) = 1,2,3,4-10
#' COV = F1*F2'
#' model <- mirt.model(s)
#'
#' # strings can also be passed to the estimation functions directly,
#' # which silently calls mirt.model(). E.g., using the string above:
#' # mod <- mirt(data, s)
#'
#'
#' #Q-matrix specification
#' Q <- matrix(c(1,1,1,0,0,0,0,0,0,1,1,1), ncol=2, dimnames = list(NULL, c('Factor1', 'Factor2')))
#' COV <- matrix(c(FALSE, TRUE, TRUE, FALSE), 2)
#' model <- mirt.model(Q, COV=COV)
#'
#' ## constrain various items slopes and all intercepts in single group model to be equal,
#' # and use a log-normal prior for all the slopes
#' s <- 'F = 1-10
#' CONSTRAIN = (1-3, 5, 6, a1), (1-10, d)
#' PRIOR = (1-10, a1, lnorm, .2, .2)'
#' model <- mirt.model(s)
#'
#'
#' ## constrain various items slopes and intercepts across groups for use in multipleGroup(),
#' # and constrain first two slopes within 'group1' to be equal
#' s <- 'F = 1-10
#' CONSTRAIN = (1-2, a1)
#' CONSTRAINB = (1-3, 5, 6, a1), (1-10, d)'
#' model <- mirt.model(s)
#'
#'
#' ## specify model using raw item names
#' data(data.read, package = 'sirt')
#' dat <- data.read
#'
#' # syntax with variable names
#' mirtsyn2 <- "
#' F1 = A1,B2,B3,C4
#' F2 = A1-A4,C2,C4
#' MEAN = F1
#' COV = F1*F1, F1*F2
#' CONSTRAIN=(A2-A4,a2),(A3,C2,d)
#' PRIOR = (C3,A2-A4,a2,lnorm, .2, .2),(B3,d,norm,0,.0001)"
#' # create a mirt model
#' mirtmodel <- mirt.model(mirtsyn2, itemnames=dat)
#' # or equivalently:
#' # mirtmodel <- mirt.model(mirtsyn2, itemnames=colnames(dat))
#'
#' # mod <- mirt(dat , mirtmodel)
#'
#' }
mirt.model <- function(input = NULL, itemnames = NULL, file = "", COV = NULL, quiet = TRUE, ...)
{
# split_syn_string vectorized input
split_syn_string_vec <- function( syn, vecstr ){
for (vv in vecstr){
syn <- split_syn_string( syn , vv )
}
return(syn)
}
# cleans syntax in a vector from strings vv
split_syn_string <- function( syn , vv ){
syn <- as.list(syn )
syn.vv <- grep( vv , syn )
LL <- length(syn.vv)
if (LL>0){
for (ii in 1:LL){
ll <- syn.vv[ii]
syn.ll <- syn[[ll]]
syn[[ll]] <- split_conc( syn.ll , vv )
}
}
syn <- unlist(syn)
return(syn)
}
# splits a string syn.ll and concatanates it with string vv
split_conc <- function( syn.ll , vv ){
g1 <- strsplit( syn.ll , vv , perl=FALSE )[[1]]
Lg1 <- length(g1)
vec <- NULL
if (Lg1 == 1 ){ vec <- c( g1 , vv ) }
if (Lg1 > 1 ){
vec <- rep("" , Lg1 + (Lg1-1) )
vec[ seq( 1 , 2*Lg1 , 2 ) ] <- g1
vec[ seq( 2 , 2*Lg1 - 1 , 2 ) ] <- vv
Ls1 <- nchar(syn.ll)
if ( substring( syn.ll , Ls1 , Ls1 ) == vv ){
vec <- c( vec , vv )
}
}
return(vec)
}
remove_temp <- FALSE
if(!is.null(itemnames)){
# the following block of code and above functions were largely contributed by Alexander
# mirt syntax splitted
inputsyntax <- input
mirtsyn2 <- gsub( ";" , "\n" , input )
msyn0 <- strsplit( mirtsyn2 , c(" ") )[[1]]
syn <- msyn0
if (is.matrix(itemnames) || is.data.frame(itemnames)){
items <- colnames(itemnames)
} else items <- as.character(itemnames)
tmpmod <- mirt.model(input)
if(any(tmpmod$x[,1] %in% itemnames))
stop('Keywords and latent trait/class names must differ from colnames(data)',
call.=FALSE)
# admissible strings
vecstr <- c( "\n" , "\\(" , "=" , "-" , "," , "\\)" )
# process syntax
for (vv in vecstr){
syn <- split_syn_string( syn , vv )
}
# postprocess syntax
syn <- syn[ syn != "" ]
syn[ syn == "\\(" ] <- "("
syn[ syn == "\\)" ] <- ")"
# substitute variables by numbers
VV <- length(items)
useditems <- NULL
for (vv in 1:VV){
ind <- which( syn == items[vv] )
if (length(ind) > 0 ){
syn[ ind ] <- vv
useditems <- c( useditems , items[vv] )
}
}
syn <- paste0( syn , collapse="")
mirtmodel <- mirt.model(syn)
attr(mirtmodel, 'item_syntax') <- inputsyntax
return(mirtmodel)
} else {
if(is.matrix(input)){
fnames <- colnames(input)
if(is.null(fnames)) fnames <- paste0('F', 1:ncol(input))
string <- c()
vals <- 1:nrow(input)
input <- matrix(as.logical(input), nrow(input), ncol(input))
for(i in seq_len(ncol(input))){
tmp <- vals[input[,i]]
if(length(tmp) > 1L){
string <- c(string, paste(c(fnames[i], ' = ', paste0(tmp[-length(tmp)], ','),
tmp[length(tmp)], '\n'), collapse=''))
} else {
string <- c(string, paste(c(fnames[i], ' = ', tmp[length(tmp)], '\n'), collapse=''))
}
}
if(!is.null(COV) && any(COV)){
tmp <- outer(fnames, fnames, FUN=function(x, y) paste0(x, paste0('*', y)))
sel <- upper.tri(COV,TRUE) & COV
tmp <- tmp[sel]
if(length(tmp) > 1L){
string <- c(string, paste(c('COV = ', paste0(tmp[-length(tmp)], ','),
tmp[length(tmp)], '\n'), collapse=''))
} else {
string <- c(string, paste(c('COV = ', tmp[length(tmp)], '\n'), collapse=''))
}
}
input <- paste(string, collapse='')
}
if(!is.null(input)){
minput <- strsplit(input, '\\n')
for(j in length(minput[[1L]]):1L){
if(!grepl(pattern='=', minput[[1L]][j])){
minput[[1L]][j-1L] <- paste(minput[[1L]][j-1L], minput[[1L]][j])
minput[[1L]] <- minput[[1L]][-j]
}
}
file <- tempfile()
remove_temp <- TRUE
write.table(minput, file=file, row.names=FALSE, col.names=FALSE, quote=FALSE)
}
mod <- scan(file = file, what = list(type = "", pars = ""),
sep = "=", strip.white = TRUE, comment.char = "#", fill = TRUE, quiet=quiet, ...)
mod$pars <- gsub(' ', '', mod$pars)
if(remove_temp) unlink(file)
mod <- cbind(mod$type, mod$pars)
colnames(mod) <- c("Type","Parameters")
mod <- list(x = mod)
class(mod) <- 'mirt.model'
return(mod)
}
}
| 16,350 |
gpl-2.0
|
1219c5b3244a8546d7af5890cbfc19e8cd1969e9
|
cran/Zelig
|
tests/testthat/test-zelig.R
|
#### Integration tests for the Zelig estimate, set, sim, plot workflow ####
# FAIL TEST sim workflow -------------------------------------------------------
test_that('FAIL TEST sim method warning if insufficient inputs', {
z5 <- zls$new()
expect_output(z5$zelig(Fertility ~ Education, model="ls", data = swiss),
'Argument model is only valid for the Zelig wrapper, but not the Zelig method, and will be ignored.')
expect_warning(z5$sim(),
'No simulations drawn, likely due to insufficient inputs.')
expect_error(z5$graph(), 'No simulated quantities of interest found.')
})
# FAIL TEST ci.plot range > length = 1 -----------------------------------------
test_that('FAIL TEST ci.plot range > length = 1', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_warning(z$setrange(Education = 5),
'Only one fitted observation provided to setrange.\nConsider using setx instead.')
z$sim()
expect_error(z$graph(),
'Simulations for more than one fitted observation are required.')
expect_warning(z$setrange1(Education = 5),
'Only one fitted observation provided to setrange.\nConsider using setx instead.')
expect_error(z$graph(),
'Simulations for more than one fitted observation are required.')
})
# REQUIRE TEST for by estimation workflow --------------------------------------
test_that('REQUIRE TEST for by estimation workflow', {
# Majority Catholic dummy
swiss$maj_catholic <- cut(swiss$Catholic, breaks = c(0, 51, 100))
z5 <- zls$new()
z5$zelig(Fertility ~ Education, data = swiss, by = 'maj_catholic')
z5$setrange(Education = 5:15)
z5$sim()
expect_error(z5$graph(), NA)
})
# FAIL TEST for get_qi when applied to an object with no simulations ------------
test_that('FAIL TEST for get_qi when applied to an object with no simulations', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_error(z$get_qi(), 'No simulated quantities of interest found.')
})
# FAIL TEST for get_qi when unsupported qi supplied ----------------------------
test_that('FAIL TEST for get_qi when unsupported qi supplied', {
z5 <- zls$new()
z5$zelig(Fertility ~ Education, data = swiss)
z5$setrange(Education = 5:15)
z5$sim()
expect_error(z5$get_qi(qi = "fa", xvalue = "range"), 'qi must be ev or pv.')
})
# FAIL TEST for estimation model failure ---------------------------------------
test_that('FAIL TEST for estimation model failure', {
no_vary_df <- data.frame(y = rep(1, 10), x = rep(2, 10))
z <- zarima$new()
expect_error(z$zelig(y ~ x, data = no_vary_df),
'Dependent variable does not vary for at least one of the cases.')
expect_error(summary(z), 'Zelig model has not been estimated.')
})
# REQUIRE TEST for sim num argument --------------------------------------------
test_that('REQUIRE TEST for sim num argument', {
z5 <- zls$new()
z5$zelig(Fertility ~ Education, data = swiss)
z5$setx(Education = 5)
z5$sim()
expect_equal(length(z5$get_qi()), 1000)
z5$sim(num = 10) # Look into unexpected behaviour if sim order is reversed
expect_equal(length(z5$get_qi()), 10)
})
# REQUIRE TEST from_zelig_model returns expected fitted model object -----------------
test_that('REQUIRE TEST from_zelig_model returns expected fitted model object', {
z5 <- zls$new()
z5$zelig(Fertility ~ Education, data = swiss)
model_object <- z5$from_zelig_model()
expect_is(model_object, class = 'lm')
expect_equal(as.character(model_object$call[1]), 'lm')
})
# REQUIRE TEST from_zelig_model returns each fitted model object from mi -------------
test_that('REQUIRE TEST from_zelig_model returns each fitted model object from mi', {
set.seed(123)
n <- 100
x1 <- runif(n)
x2 <- runif(n)
y <- rnorm(n)
data.1 <- data.frame(y = y, x = x1)
data.2 <- data.frame(y = y, x = x2)
mi.out <- to_zelig_mi(data.1, data.2)
z.out <- zelig(y ~ x, model = "ls", data = mi.out)
model_list <- z.out$from_zelig_model()
expect_is(model_list, class = 'list')
expect_equal(as.character(model_list[[2]]$call[1]), 'lm')
})
# REQUIRE TEST functioning simparam with by and ATT ----------------------------
test_that('REQUIRE TEST functioning simparam with by and ATT', {
set.seed(123)
n <- 100
xx <- rbinom(n = n, size = 1, prob = 0.3)
zz <- runif(n)
ss <- runif(n)
rr <- rbinom(n, size = 1, prob = 0.5)
mypi <- 1/(1 + exp(-xx -3*zz -0.5))
yb <- rbinom(n, size = 1, prob = mypi)
data <- data.frame(rr, ss, xx, zz, yb)
zb.out <- zlogit$new()
zb.out$zelig(yb ~ xx + zz, data = data, by = "rr")
zb.out$ATT(treatment = "xx")
out <- zb.out$get_qi(qi = "ATT", xvalue = "TE")
expect_equal(length(out), 1000)
})
# REQUIRE TEST getters values and dimensions and plot does not fail-------------
test_that("REQUIRE TEST getters values and dimensions and plot does not fail",
{
set.seed(123)
n <- 1000
myseq <- 1:n
x <- myseq/n
y <- x + (-1)^(myseq) * 0.1
mydata <- data.frame(y = y, x = x)
mydata2 <- data.frame(y = y, x = x + 2)
z.out <- zelig(y ~ x, model = "ls", data = mydata)
expect_equivalent(round(as.numeric(z.out$get_coef()[[1]]), 2), c(0, 1))
expect_equivalent(length(z.out$get_predict()[[1]]), n)
expect_equivalent(length(z.out$get_fitted()[[1]]), n)
expect_equivalent(dim(z.out$get_vcov()[[1]]), c(2, 2))
z.out$setx(x = 0)
z.out$setx1(x = 1)
show.setx <- summary(z.out)
z.out$sim()
show.sim <- summary(z.out)
expect_equivalent(length(z.out$get_qi(qi = "ev", xvalue = "x")), n)
expect_equivalent(round(mean(z.out$get_qi(qi = "ev", xvalue = "x")),
2), 0)
expect_equivalent(length(z.out$get_qi(qi = "ev", xvalue = "x1")),
n)
expect_equivalent(round(mean(z.out$get_qi(qi = "ev", xvalue = "x1")),
2), 1)
expect_equivalent(length(z.out$get_qi(qi = "pv", xvalue = "x")), n)
expect_equivalent(round(mean(z.out$get_qi(qi = "pv", xvalue = "x")),
2), 0)
expect_equivalent(length(z.out$get_qi(qi = "pv", xvalue = "x1")),
n)
expect_equivalent(round(mean(z.out$get_qi(qi = "pv", xvalue = "x1")),
2), 1)
expect_equivalent(length(z.out$get_qi(qi = "fd", xvalue = "x1")),
n)
expect_equivalent(round(mean(z.out$get_qi(qi = "fd", xvalue = "x1")), 2), 1)
expect_false(show.setx[[1]])
expect_false(show.sim[[1]])
expect_true(is.null(plot(z.out)))
xseq <- seq(from = 0, to = 1, length = 10)
z.out$setrange(x = xseq)
z.out$sim()
expect_true(is.null(plot(z.out)))
myref <- capture.output(z.out$references())
expect_equivalent(substr(myref[1], 1, 11), "R Core Team")
set.seed(123)
boot.out <- zelig(y ~ x, model = "ls", bootstrap = 20, data = mydata)
expect_equivalent(round(as.numeric(boot.out$get_coef()[[1]]), 2),
c(0, 1))
show.boot <- summary(boot.out, bagging = TRUE)
expect_false(show.boot[[1]])
show.boot <- summary(boot.out, subset=2:3)
expect_false(show.boot[[1]])
set.seed(123)
mi.out <- zelig(y ~ x, model = "ls", data = mi(mydata, mydata2))
expect_equivalent(round(as.numeric(mi.out$get_coef()[[1]]), 2), c(0,
1))
expect_equivalent(round(as.numeric(mi.out$get_coef()[[2]]), 2), c(-2,
1))
expect_equivalent(length(mi.out$toJSON()), 1)
show.mi <- summary(mi.out)
expect_false(show.mi[[1]])
show.mi.subset <- summary(mi.out, subset = 1)
expect_false(show.mi.subset[[1]])
})
# REQUIRE TEST Binary QI's and ATT effects and BY argument-------------
test_that('REQUIRE TEST Binary QIs and ATT effects and BY argument', {
set.seed(123)
# Simulate data
n <- 100
xx <- rbinom(n = n, size = 1, prob = 0.5)
zz <- runif(n)
ss <- runif(n)
rr <- rbinom(n, size = 1, prob = 0.5)
mypi <- 1/ (1+exp(-xx -3*zz -0.5))
yb <- rbinom(n, size = 1, prob = mypi)
data <- data.frame(rr, ss, xx, zz, yb)
# Estimate Zelig Logit models
zb.out <- zlogit$new()
zb.out$zelig(yb ~ xx + zz, data=data, by="rr")
show.logit <- summary(zb.out)
expect_false(show.logit[[1]])
zb2.out <- zlogit$new()
zb2.out$zelig(yb ~ xx, data=data)
zb3.out <- zlogit$new()
zb3.out$zelig(yb ~ xx + zz, data=data)
x.high <- setx(zb.out, xx = quantile(data$xx, prob = 0.75))
x.low <- setx(zb.out, xx = quantile(data$xx, prob = 0.25))
s.out <- sim(zb.out, x = x.high, x1 = x.low)
show.logit <- summary(s.out)
expect_false(show.logit[[1]])
expect_true(is.null(plot(s.out)))
# Method to calculate ATT
zb.out$ATT(treatment = "xx")
# Getter to extract ATT
out <- zb.out$get_qi(qi="ATT", xvalue="TE")
expect_equal(length(out), 1000)
# Plot ROC
expect_true(is.null(rocplot(zb2.out, zb3.out)))
})
# REQUIRE TEST for get_names method----------------------------------------------
test_that('REQUIRE TEST for names field', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_is(z$get_names(), class = 'character')
expect_false(is.null(names(z)))
})
# REQUIRE TEST for get_residuals method -----------------------------------------
test_that('REQUIRE TEST for get_residuals method', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_is(z$get_residuals(), class = 'list')
expect_false(is.null(residuals(z)))
})
# REQUIRE TEST for get_df_residual method -----------------------------------------
test_that('REQUIRE TEST for get_df_residual method', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_equal(length(z$get_df_residual()), 1)
expect_equal(length(df.residual(z)), 1)
})
# REQUIRE TEST for get_model_data method ---------------------------------------
test_that('REQUIRE TEST for get_model_data method', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_is(z$get_model_data(), class = 'data.frame')
})
# REQUIRE TEST for get_pvalue method ---------------------------------------
test_that('REQUIRE TEST for get_pvalue', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_is(z$get_pvalue()[[1]], class = 'numeric')
expect_equal(z$get_pvalue()[[1]], get_pvalue(z)[[1]])
})
# REQUIRE TEST for get_se method ---------------------------------------
test_that('REQUIRE TEST for get_se', {
z <- zls$new()
z$zelig(Fertility ~ Education, data = swiss)
expect_is(z$get_se()[[1]], class = 'numeric')
expect_equal(z$get_se()[[1]], get_se(z)[[1]])
})
# REQUIRE TEST setx with logical covariates ------------------------------------
test_that('REQUIRE TEST setx with logical covariates', {
swiss$maj_catholic <- cut(swiss$Catholic, breaks = c(0, 51, 100))
swiss$maj_catholic_logical <- FALSE
swiss$maj_catholic_logical[swiss$maj_catholic == '(51,100]'] <- TRUE
z5l <- zls$new()
z5l$zelig(Fertility ~ Education + maj_catholic_logical, data = swiss)
z5l$setx(maj_catholic_logical = TRUE)
expect_is(z5l$setx.out$x, class = c("rowwise_df", "tbl_df", "tbl",
"data.frame"))
})
# REQUIRE TESTS for standard R methods with zelig models -----------------------
test_that('REQUIRE TESTS for standard R methods with zelig models', {
z5 <- zls$new()
z5$zelig(Fertility ~ Education, data = swiss)
expect_equal(length(coefficients(z5)), length(coef(z5)), 2)
expect_equal(nrow(vcov(z5)[[1]]), 2)
expect_equal(length(fitted(z5)[[1]]), 47)
expect_equal(length(predict(z5)[[1]]), 47)
})
| 11,702 |
gpl-2.0
|
ab36322908d899d1a33aedd0178faf0fd2c14e52
|
llattes/datasciencecoursera
|
Exploratory/Week3/plot1.R
|
plot1 <- function() {
require("RColorBrewer")
NEI <- readRDS("summarySCC_PM25.rds")
s1 <- subset(x = NEI, subset = NEI$year == 1999)
s2 <- subset(x = NEI, subset = NEI$year == 2002)
s3 <- subset(x = NEI, subset = NEI$year == 2005)
s4 <- subset(x = NEI, subset = NEI$year == 2008)
emissions_by_year = data.frame(c("1999", "2002", "2005", "2008"),
c(sum(s1$Emissions), sum(s2$Emissions), sum(s3$Emissions),
sum(s4$Emissions)), stringsAsFactors = FALSE)
colnames(emissions_by_year) <- c("Year", "Total_Emissions")
palette <- brewer.pal(4, "Blues")
png(filename = paste("plot1.png", sep = ""), width = 800, height = 600,
units = "px")
barplot(emissions_by_year$Total_Emissions, names.arg = emissions_by_year$Year,
col = palette, main = "PM2.5 emissions by year in the US",
xlab="Year", ylab="Total Emissions (in tons.)")
dev.off()
}
| 875 |
mit
|
31868c67c6eb1f1b19ef54ba61c3af389d1e0358
|
diegofernandes/servicemanager
|
plugins/feedbackDemo:1.0/feedbackDemo:1.0.R
|
#!/usr/bin/env Rscript
#
# Meccano IOT ServiceManager
#
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
library(RMySQL)
config.database.dbname <- Sys.getenv("MYSQL_DATABASE")
config.database.host <- Sys.getenv("MYSQL_HOST")
config.database.port <- as.numeric(Sys.getenv("MYSQL_PORT"))
config.database.user <- Sys.getenv("MYSQL_USER")
config.database.password <- Sys.getenv("MYSQL_PASSWORD")
print("Connecting to database...")
conn <- dbConnect(MySQL(),
dbname = config.database.dbname,
port = config.database.port,
host = config.database.host,
user = config.database.user,
password = config.database.password
)
summary(conn)
# Carregar dados de visitacao diaria do Redshift
print("Reading training data...")
rs <- dbSendQuery(conn, "select 'bad' as feedback, count(*) as votes from Facts where channel = 'feedback' and data = -100 union select 'average' as feedback, count(*) as votes from Facts where channel = 'feedback' and data = 50 union select 'good' as feedback, count(*) as votes from Facts where channel = 'feedback' and data = 100
")
v <- fetch(rs)
dbDisconnect(conn)
setwd("./assets/")
png('output.png')
mp <- barplot(v$votes,
names.arg = v$feedback,
xlab = "feedback",
ylab="number of votes (un.)",
col = c("firebrick", "goldenrod", "darkolivegreen3"))
text(mp, v$votes, labels = v$votes, pos = 1)
dev.off()
q()
| 2,042 |
gpl-3.0
|
9e25f12ce82a9d8bcdd048f5614b2796e31ed7eb
|
cheerzzh/R_for_Quantitative_Finance
|
rate-analysis/INR266/INR266_index.R
|
library(xts)
library(xtsExtra)
index <- read.csv('NSERO_index.csv',stringsAsFactors = FALSE)
# for currency first
data <- index
dates <- data$Date
rates <- data[,-1]
dates <- as.POSIXct(dates,format ="%m/%d/%Y")
t <- as.xts(rates, order.by = dates)
rate_name <- names(t)
span <- 0.08
tsoutliers <- function(x,plot=TRUE,span=0.1,name="",percentile = c(0.25,0.75),k=3,range = c(-1.1))
{
# x <- as.ts(x)
if(frequency(x)>1)
resid <- stl(x,s.window="periodic",robust=TRUE)$time.series[,3]
else
{
tt <- 1:length(x)
#resid <- residuals(loess(x ~ tt,span=span))
loe <- loess(x~tt, span = span)
pred <- predict(loe,tt,se=TRUE)
resid <- loe$residuals
}
# can adjust the parameters to control the outlier
resid.q <- quantile(resid,prob= percentile)
iqr <- diff(resid.q)
limits <- resid.q + k*iqr*range
score <- abs(pmin((resid-limits[1])/iqr,0) + pmax((resid - limits[2])/iqr,0))
indicator <- ifelse(score>0,1,0)
indi <- cbind(indicator,x)[,1]
if(plot)
{
custom.panel <- function(index,x,...) {
default.panel(index,x,...)
points(x=index(indi[indi == 1]),
y=x[,1][index(indi[indi == 1])],cex=0.9,pch=19,
col="blue")
#abline(v=index(indi[indi == 1]),col="grey")
}
newlist <- list(score = score, resid = resid,indicator = indicator)
plot.xts(x=cbind(x,fitted=loe$fitted,residual=loe$residuals),panel = custom.panel, screens = factor(1, 1), auto.legend = TRUE, main = paste("LOESS plot",rate_name[i],sep=" "))
cat("Number of outliers for ",name," is ", sum(indicator),"\n")
return(invisible(newlist))
}
else
return(list(score,resid,indicator))
}
jpeg(file = "INR266 index LOESS plot %d.jpeg",quality=100,width = 1200, height = 800,units = 'px', pointsize = 12)
indi <- rep(0,nrow(t)) # initialize the indicator vector
for (i in 1:ncol(t))
{
a <- tsoutliers(t[,i],name = rate_name[i],span=span, percentile = c(0.1,0.9),k=3,range=c(-0.85,1))
# if any col in one raw has 1, label this row as 1
indi <- indi | a$indicator
}
dev.off()
# combine result
indi <- cbind(indi,t)[,1]
num <- sum(indi)
per <-sum(indi)/nrow(t)
cat("\ntotal number of outliers is ", num)
cat("\npercentage of outliers is ",per)
# percenatge of potential outlier
jpeg(file = "INR266 index.jpeg",quality=100,width = 1200,height = 800,units = 'px', pointsize = 12)
# try to add points to show outlier
# index(indi[indi == 1]) get outlier
custom.panel <- function(index,x,...) {
default.panel(index,x,...)
abline(v=index(indi[indi == 1]),col=rgb(1,0,0,0.2),lwd=0.7)
usr <- par( "usr" )
text( usr[ 2 ], usr[ 4 ], paste("number of outliers: ",num,"\n","ratio: ",format(per,digits=4)), adj = c( 1, 1 ), col = "blue" ,cex=1.5)
}
plot.xts(t,main="INR266 index",panel = custom.panel)
dev.off()
# write the index into file
data <- cbind(indi,t)
data <- data.frame(date=index(data), coredata(data))
colnames(data)[2] <- "indicator"
colnames(data)[3] <- "Overnight"
write.csv(data, file = "INR266_index_outlier.csv",row.names=TRUE)
# single tenor, no need to compare across tenors
| 3,151 |
mit
|
9e25f12ce82a9d8bcdd048f5614b2796e31ed7eb
|
WealthCity/R_for_Quantitative_Finance
|
rate-analysis/INR266/INR266_index.R
|
library(xts)
library(xtsExtra)
index <- read.csv('NSERO_index.csv',stringsAsFactors = FALSE)
# for currency first
data <- index
dates <- data$Date
rates <- data[,-1]
dates <- as.POSIXct(dates,format ="%m/%d/%Y")
t <- as.xts(rates, order.by = dates)
rate_name <- names(t)
span <- 0.08
tsoutliers <- function(x,plot=TRUE,span=0.1,name="",percentile = c(0.25,0.75),k=3,range = c(-1.1))
{
# x <- as.ts(x)
if(frequency(x)>1)
resid <- stl(x,s.window="periodic",robust=TRUE)$time.series[,3]
else
{
tt <- 1:length(x)
#resid <- residuals(loess(x ~ tt,span=span))
loe <- loess(x~tt, span = span)
pred <- predict(loe,tt,se=TRUE)
resid <- loe$residuals
}
# can adjust the parameters to control the outlier
resid.q <- quantile(resid,prob= percentile)
iqr <- diff(resid.q)
limits <- resid.q + k*iqr*range
score <- abs(pmin((resid-limits[1])/iqr,0) + pmax((resid - limits[2])/iqr,0))
indicator <- ifelse(score>0,1,0)
indi <- cbind(indicator,x)[,1]
if(plot)
{
custom.panel <- function(index,x,...) {
default.panel(index,x,...)
points(x=index(indi[indi == 1]),
y=x[,1][index(indi[indi == 1])],cex=0.9,pch=19,
col="blue")
#abline(v=index(indi[indi == 1]),col="grey")
}
newlist <- list(score = score, resid = resid,indicator = indicator)
plot.xts(x=cbind(x,fitted=loe$fitted,residual=loe$residuals),panel = custom.panel, screens = factor(1, 1), auto.legend = TRUE, main = paste("LOESS plot",rate_name[i],sep=" "))
cat("Number of outliers for ",name," is ", sum(indicator),"\n")
return(invisible(newlist))
}
else
return(list(score,resid,indicator))
}
jpeg(file = "INR266 index LOESS plot %d.jpeg",quality=100,width = 1200, height = 800,units = 'px', pointsize = 12)
indi <- rep(0,nrow(t)) # initialize the indicator vector
for (i in 1:ncol(t))
{
a <- tsoutliers(t[,i],name = rate_name[i],span=span, percentile = c(0.1,0.9),k=3,range=c(-0.85,1))
# if any col in one raw has 1, label this row as 1
indi <- indi | a$indicator
}
dev.off()
# combine result
indi <- cbind(indi,t)[,1]
num <- sum(indi)
per <-sum(indi)/nrow(t)
cat("\ntotal number of outliers is ", num)
cat("\npercentage of outliers is ",per)
# percenatge of potential outlier
jpeg(file = "INR266 index.jpeg",quality=100,width = 1200,height = 800,units = 'px', pointsize = 12)
# try to add points to show outlier
# index(indi[indi == 1]) get outlier
custom.panel <- function(index,x,...) {
default.panel(index,x,...)
abline(v=index(indi[indi == 1]),col=rgb(1,0,0,0.2),lwd=0.7)
usr <- par( "usr" )
text( usr[ 2 ], usr[ 4 ], paste("number of outliers: ",num,"\n","ratio: ",format(per,digits=4)), adj = c( 1, 1 ), col = "blue" ,cex=1.5)
}
plot.xts(t,main="INR266 index",panel = custom.panel)
dev.off()
# write the index into file
data <- cbind(indi,t)
data <- data.frame(date=index(data), coredata(data))
colnames(data)[2] <- "indicator"
colnames(data)[3] <- "Overnight"
write.csv(data, file = "INR266_index_outlier.csv",row.names=TRUE)
# single tenor, no need to compare across tenors
| 3,151 |
mit
|
9e25f12ce82a9d8bcdd048f5614b2796e31ed7eb
|
jond3k/R_for_Quantitative_Finance
|
rate-analysis/INR266/INR266_index.R
|
library(xts)
library(xtsExtra)
index <- read.csv('NSERO_index.csv',stringsAsFactors = FALSE)
# for currency first
data <- index
dates <- data$Date
rates <- data[,-1]
dates <- as.POSIXct(dates,format ="%m/%d/%Y")
t <- as.xts(rates, order.by = dates)
rate_name <- names(t)
span <- 0.08
tsoutliers <- function(x,plot=TRUE,span=0.1,name="",percentile = c(0.25,0.75),k=3,range = c(-1.1))
{
# x <- as.ts(x)
if(frequency(x)>1)
resid <- stl(x,s.window="periodic",robust=TRUE)$time.series[,3]
else
{
tt <- 1:length(x)
#resid <- residuals(loess(x ~ tt,span=span))
loe <- loess(x~tt, span = span)
pred <- predict(loe,tt,se=TRUE)
resid <- loe$residuals
}
# can adjust the parameters to control the outlier
resid.q <- quantile(resid,prob= percentile)
iqr <- diff(resid.q)
limits <- resid.q + k*iqr*range
score <- abs(pmin((resid-limits[1])/iqr,0) + pmax((resid - limits[2])/iqr,0))
indicator <- ifelse(score>0,1,0)
indi <- cbind(indicator,x)[,1]
if(plot)
{
custom.panel <- function(index,x,...) {
default.panel(index,x,...)
points(x=index(indi[indi == 1]),
y=x[,1][index(indi[indi == 1])],cex=0.9,pch=19,
col="blue")
#abline(v=index(indi[indi == 1]),col="grey")
}
newlist <- list(score = score, resid = resid,indicator = indicator)
plot.xts(x=cbind(x,fitted=loe$fitted,residual=loe$residuals),panel = custom.panel, screens = factor(1, 1), auto.legend = TRUE, main = paste("LOESS plot",rate_name[i],sep=" "))
cat("Number of outliers for ",name," is ", sum(indicator),"\n")
return(invisible(newlist))
}
else
return(list(score,resid,indicator))
}
jpeg(file = "INR266 index LOESS plot %d.jpeg",quality=100,width = 1200, height = 800,units = 'px', pointsize = 12)
indi <- rep(0,nrow(t)) # initialize the indicator vector
for (i in 1:ncol(t))
{
a <- tsoutliers(t[,i],name = rate_name[i],span=span, percentile = c(0.1,0.9),k=3,range=c(-0.85,1))
# if any col in one raw has 1, label this row as 1
indi <- indi | a$indicator
}
dev.off()
# combine result
indi <- cbind(indi,t)[,1]
num <- sum(indi)
per <-sum(indi)/nrow(t)
cat("\ntotal number of outliers is ", num)
cat("\npercentage of outliers is ",per)
# percenatge of potential outlier
jpeg(file = "INR266 index.jpeg",quality=100,width = 1200,height = 800,units = 'px', pointsize = 12)
# try to add points to show outlier
# index(indi[indi == 1]) get outlier
custom.panel <- function(index,x,...) {
default.panel(index,x,...)
abline(v=index(indi[indi == 1]),col=rgb(1,0,0,0.2),lwd=0.7)
usr <- par( "usr" )
text( usr[ 2 ], usr[ 4 ], paste("number of outliers: ",num,"\n","ratio: ",format(per,digits=4)), adj = c( 1, 1 ), col = "blue" ,cex=1.5)
}
plot.xts(t,main="INR266 index",panel = custom.panel)
dev.off()
# write the index into file
data <- cbind(indi,t)
data <- data.frame(date=index(data), coredata(data))
colnames(data)[2] <- "indicator"
colnames(data)[3] <- "Overnight"
write.csv(data, file = "INR266_index_outlier.csv",row.names=TRUE)
# single tenor, no need to compare across tenors
| 3,151 |
mit
|
7e278e86677d18ee4d35325e6309d3be7ee7b4fa
|
bcgov/rcaaqs
|
tests/testthat/test-7_pm_caaqs.R
|
context("pm caaqs wrappers")
d1 <- readRDS("pm_raw1.rds")
d2 <- readRDS("pm_raw2.rds")
pm2.5_24h_caaqs_one <- NULL
pm2.5_24h_caaqs_mult <- NULL
pm2.5_annual_caaqs_one <- NULL
pm2.5_annual_caaqs_mult <- NULL
test_that("classes and extractors for pm2.5_24h", {
expect_message(pm2.5_24h_caaqs_one <<- pm_24h_caaqs(d1),
"Calculating PM 2.5 daily average")
expect_is(pm2.5_24h_caaqs_one, c("caaqs", "pm2.5_24h"))
expect_length(pm2.5_24h_caaqs_one, 4)
expect_named(pm2.5_24h_caaqs_one, c("daily_avg", "yearly_98", "three_yr_rolling", "caaqs"))
for (d in pm2.5_24h_caaqs_one) {
expect_is(d, "data.frame")
}
expect_is(get_caaqs(pm2.5_24h_caaqs_one), "data.frame")
expect_is(get_daily(pm2.5_24h_caaqs_one),"data.frame")
expect_is(get_yearly(pm2.5_24h_caaqs_one), "data.frame")
expect_is(get_three_yr_rolling(pm2.5_24h_caaqs_one), "data.frame")
saveRDS(pm2.5_24h_caaqs_one, "pm_24h_caaqs1.rds")
})
test_that("pm2.5_24h_caaqs single", {
caaqs <- get_caaqs(pm2.5_24h_caaqs_one)
expect_length(caaqs$caaqs, 3)
expect_true(all(is.na(caaqs$metric_value[caaqs$caaqs == "Insufficient Data"])))
expect_true(all(!is.na(caaqs$metric_value[caaqs$caaqs != "Insufficient Data"])))
expect_true(all(caaqs$caaqs[caaqs$metric_value <= get_std("pm2.5_24h")]
== "Achieved", na.rm = TRUE))
expect_true(all(caaqs$caaqs[caaqs$metric_value > get_std("pm2.5_24h")]
== "Not Achieved", na.rm = TRUE))
expect_length(get_caaqs(pm2.5_24h_caaqs_one), 10)
expect_length(get_daily(pm2.5_24h_caaqs_one), 6)
expect_length(get_yearly(pm2.5_24h_caaqs_one), 12)
expect_length(get_three_yr_rolling(pm2.5_24h_caaqs_one), 19)
})
test_that("pm2.5_24h_caaqs groups", {
expect_message(
pm2.5_24h_caaqs_mult <<- pm_24h_caaqs(d2, by = c("ems_id", "site")),
"Calculating PM 2.5 daily average"
)
caaqs <- get_caaqs(pm2.5_24h_caaqs_mult)
expect_length(caaqs$caaqs, 6)
expect_true(all(is.na(caaqs$metric_value[caaqs$caaqs == "Insufficient Data"])))
expect_true(all(!is.na(caaqs$metric_value[caaqs$caaqs != "Insufficient Data"])))
expect_true(all(caaqs$caaqs[caaqs$metric_value <= get_std("pm2.5_24h")]
== "Achieved", na.rm = TRUE))
expect_true(all(caaqs$caaqs[caaqs$metric_value > get_std("pm2.5_24h")]
== "Not Achieved", na.rm = TRUE))
expect_length(get_caaqs(pm2.5_24h_caaqs_mult), 12)
expect_length(get_daily(pm2.5_24h_caaqs_mult), 8)
expect_length(get_yearly(pm2.5_24h_caaqs_mult), 14)
expect_length(get_three_yr_rolling(pm2.5_24h_caaqs_mult), 21)
saveRDS(pm2.5_24h_caaqs_mult, "pm_24h_caaqs2.rds")
})
test_that("caaqs_management for pm2.5_24h", {
expect_is(pm2.5_24h_caaqs_one_mgmt <- caaqs_management(pm2.5_24h_caaqs_one),
"caaqs_mgmt")
expect_length(pm2.5_24h_caaqs_one_mgmt, 4)
expect_length(get_caaqs(pm2.5_24h_caaqs_one_mgmt), 13)
expect_length(get_daily(pm2.5_24h_caaqs_one_mgmt), 6)
expect_length(get_yearly(pm2.5_24h_caaqs_one_mgmt), 15)
expect_length(get_three_yr_rolling(pm2.5_24h_caaqs_one_mgmt), 22)
saveRDS(pm2.5_24h_caaqs_one_mgmt, "pm_24h_caaqs1_mgmt.rds")
})
test_that("caaqs_management for pm2.5_24h with groups", {
expect_is(pm2.5_24h_caaqs_mult_mgmt <- caaqs_management(pm2.5_24h_caaqs_mult),
"caaqs_mgmt")
expect_length(pm2.5_24h_caaqs_mult_mgmt, 4)
expect_length(get_caaqs(pm2.5_24h_caaqs_mult_mgmt), 15)
expect_length(get_daily(pm2.5_24h_caaqs_mult_mgmt), 8)
expect_length(get_yearly(pm2.5_24h_caaqs_mult_mgmt), 17)
expect_length(get_three_yr_rolling(pm2.5_24h_caaqs_mult_mgmt), 24)
saveRDS(pm2.5_24h_caaqs_mult_mgmt, "pm_24h_caaqs2_mgmt.rds")
})
test_that("classes and extractors for pm2.5_annual", {
expect_message(pm2.5_annual_caaqs_one <<- pm_annual_caaqs(d1),
"Calculating PM 2.5 daily average")
expect_is(pm2.5_annual_caaqs_one, c("caaqs", "pm2.5_annual"))
expect_length(pm2.5_annual_caaqs_one, 4)
expect_named(pm2.5_annual_caaqs_one, c("daily_avg", "yearly_avg", "three_yr_rolling", "caaqs"))
for (d in pm2.5_annual_caaqs_one) {
expect_is(d, "data.frame")
}
expect_is(get_caaqs(pm2.5_annual_caaqs_one), "data.frame")
expect_is(get_daily(pm2.5_annual_caaqs_one),"data.frame")
expect_is(get_yearly(pm2.5_annual_caaqs_one), "data.frame")
expect_is(get_three_yr_rolling(pm2.5_annual_caaqs_one), "data.frame")
saveRDS(pm2.5_annual_caaqs_one, "pm_annual_caaqs1.rds")
})
test_that("pm2.5_annual_caaqs single", {
caaqs <- get_caaqs(pm2.5_annual_caaqs_one)
expect_length(caaqs$caaqs, 3)
expect_true(all(is.na(caaqs$metric_value[caaqs$caaqs == "Insufficient Data"])))
expect_true(all(!is.na(caaqs$metric_value[caaqs$caaqs != "Insufficient Data"])))
expect_true(all(caaqs$caaqs[caaqs$metric_value <= get_std("pm2.5_annual")]
== "Achieved", na.rm = TRUE))
expect_true(all(caaqs$caaqs[caaqs$metric_value > get_std("pm2.5_annual")]
== "Not Achieved", na.rm = TRUE))
expect_length(get_caaqs(pm2.5_annual_caaqs_one), 10)
expect_length(get_daily(pm2.5_annual_caaqs_one), 6)
expect_length(get_yearly(pm2.5_annual_caaqs_one), 12)
expect_length(get_three_yr_rolling(pm2.5_annual_caaqs_one), 19)
})
test_that("pm2.5_annual_caaqs groups", {
expect_message(
pm2.5_annual_caaqs_mult <<- pm_annual_caaqs(d2, by = c("ems_id", "site")),
"Calculating PM 2.5 daily average"
)
caaqs <- get_caaqs(pm2.5_annual_caaqs_mult)
expect_length(caaqs$caaqs, 6)
expect_true(all(is.na(caaqs$metric_value[caaqs$caaqs == "Insufficient Data"])))
expect_true(all(!is.na(caaqs$metric_value[caaqs$caaqs != "Insufficient Data"])))
expect_true(all(caaqs$caaqs[caaqs$metric_value <= get_std("pm2.5_annual")]
== "Achieved", na.rm = TRUE))
expect_true(all(caaqs$caaqs[caaqs$metric_value > get_std("pm2.5_annual")]
== "Not Achieved", na.rm = TRUE))
expect_length(get_caaqs(pm2.5_annual_caaqs_mult), 12)
expect_length(get_daily(pm2.5_annual_caaqs_mult), 8)
expect_length(get_yearly(pm2.5_annual_caaqs_mult), 14)
expect_length(get_three_yr_rolling(pm2.5_annual_caaqs_mult), 21)
saveRDS(pm2.5_annual_caaqs_mult, "pm_annual_caaqs2.rds")
})
test_that("caaqs_management for pm2.5_annual", {
expect_is(pm2.5_annual_caaqs_one_mgmt <- caaqs_management(pm2.5_annual_caaqs_one),
"caaqs_mgmt")
expect_length(pm2.5_annual_caaqs_one_mgmt, 4)
expect_length(get_caaqs(pm2.5_annual_caaqs_one_mgmt), 13)
expect_length(get_daily(pm2.5_annual_caaqs_one_mgmt), 6)
expect_length(get_yearly(pm2.5_annual_caaqs_one_mgmt), 15)
expect_length(get_three_yr_rolling(pm2.5_annual_caaqs_one_mgmt), 22)
saveRDS(pm2.5_annual_caaqs_one_mgmt, "pm_annual_caaqs1_mgmt.rds")
})
test_that("caaqs_management for pm2.5_annual with groups", {
expect_is(pm2.5_annual_caaqs_mult_mgmt <- caaqs_management(pm2.5_annual_caaqs_mult),
"caaqs_mgmt")
expect_length(pm2.5_annual_caaqs_mult_mgmt, 4)
expect_length(get_caaqs(pm2.5_annual_caaqs_mult_mgmt), 15)
expect_length(get_daily(pm2.5_annual_caaqs_mult_mgmt), 8)
expect_length(get_yearly(pm2.5_annual_caaqs_mult_mgmt), 17)
expect_length(get_three_yr_rolling(pm2.5_annual_caaqs_mult_mgmt), 24)
saveRDS(pm2.5_annual_caaqs_mult_mgmt, "pm_annual_caaqs2_mgmt.rds")
})
| 7,261 |
apache-2.0
|
d487b1a6274d7949911e12d6011fd6ab3215d5ff
|
R-Lum/Luminescence
|
R/plot_AbanicoPlot.R
|
#' Function to create an Abanico Plot.
#'
#' A plot is produced which allows comprehensive presentation of data precision
#' and its dispersion around a central value as well as illustration of a
#' kernel density estimate, histogram and/or dot plot of the dose values.
#'
#' The Abanico Plot is a combination of the classic Radial Plot
#' (`plot_RadialPlot`) and a kernel density estimate plot (e.g
#' `plot_KDE`). It allows straightforward visualisation of data precision,
#' error scatter around a user-defined central value and the combined
#' distribution of the values, on the actual scale of the measured data (e.g.
#' seconds, equivalent dose, years). The principle of the plot is shown in
#' Galbraith & Green (1990). The function authors are thankful for the
#' thought provoking figure in this article.
#'
#' The semi circle (z-axis) of the classic Radial Plot is bent to a straight
#' line here, which actually is the basis for combining this polar (radial)
#' part of the plot with any other Cartesian visualisation method
#' (KDE, histogram, PDF and so on). Note that the plot allows displaying
#' two measures of distribution. One is the 2-sigma
#' bar, which illustrates the spread in value errors, and the other is the
#' polygon, which stretches over both parts of the Abanico Plot (polar and
#' Cartesian) and illustrates the actual spread in the values themselves.
#'
#' Since the 2-sigma-bar is a polygon, it can be (and is) filled with shaded
#' lines. To change density (lines per inch, default is 15) and angle (default
#' is 45 degrees) of the shading lines, specify these parameters. See
#' `?polygon()` for further help.
#'
#' The Abanico Plot supports other than the weighted mean as measure of
#' centrality. When it is obvious that the data
#' is not (log-)normally distributed, the mean (weighted or not) cannot be a
#' valid measure of centrality and hence central dose. Accordingly, the median
#' and the weighted median can be chosen as well to represent a proper measure
#' of centrality (e.g. `centrality = "median.weighted"`). Also
#' user-defined numeric values (e.g. from the central age model) can be used if
#' this appears appropriate.
#'
#' The proportion of the polar part and the cartesian part of the Abanico Plot
#' can be modified for display reasons (`plot.ratio = 0.75`). By default,
#' the polar part spreads over 75 \% and leaves 25 \% for the part that
#' shows the KDE graph.
#'
#'
#' A statistic summary, i.e. a collection of statistic measures of
#' centrality and dispersion (and further measures) can be added by specifying
#' one or more of the following keywords:
#'
#' - `"n"` (number of samples)
#' - `"mean"` (mean De value)
#' - `"median"` (median of the De values)
#' - `"sd.rel"` (relative standard deviation in percent)
#' - `"sd.abs"` (absolute standard deviation)
#' - `"se.rel"` (relative standard error)
#' - `"se.abs"` (absolute standard error)
#' - `"in.2s"` (percent of samples in 2-sigma range)
#' - `"kurtosis"` (kurtosis)
#' - `"skewness"` (skewness)
#'
#' **Note** that the input data for the statistic summary is sent to the function
#' `calc_Statistics()` depending on the log-option for the z-scale. If
#' `"log.z = TRUE"`, the summary is based on the logarithms of the input
#' data. If `"log.z = FALSE"` the linearly scaled data is used.
#'
#' **Note** as well, that `"calc_Statistics()"` calculates these statistic
#' measures in three different ways: `unweighted`, `weighted` and
#' `MCM-based` (i.e., based on Monte Carlo Methods). By default, the
#' MCM-based version is used. If you wish to use another method, indicate this
#' with the appropriate keyword using the argument `summary.method`.
#'
#' The optional parameter `layout` allows to modify the entire plot more
#' sophisticated. Each element of the plot can be addressed and its properties
#' can be defined. This includes font type, size and decoration, colours and
#' sizes of all plot items. To infer the definition of a specific layout style
#' cf. `get_Layout()` or type e.g., for the layout type `"journal"`
#' `get_Layout("journal")`. A layout type can be modified by the user by
#' assigning new values to the list object.
#'
#' It is possible for the z-scale to specify where ticks are to be drawn
#' by using the parameter `at`, e.g. `at = seq(80, 200, 20)`, cf. function
#' documentation of `axis`. Specifying tick positions manually overrides a
#' `zlim`-definition.
#'
#' @param data [data.frame] or [RLum.Results-class] object (**required**):
#' for `data.frame` two columns: De (`data[,1]`) and De error (`data[,2]`).
#' To plot several data sets in one plot the data sets must be provided as
#' `list`, e.g. `list(data.1, data.2)`.
#'
#' @param na.rm [logical] (*with default*):
#' exclude NA values from the data set prior to any further operations.
#'
#' @param log.z [logical] (*with default*):
#' Option to display the z-axis in logarithmic scale. Default is `TRUE`.
#'
#' @param z.0 [character] or [numeric]:
#' User-defined central value, used for centring of data. One out of `"mean"`,
#' `"mean.weighted"` and `"median"` or a numeric value (not its logarithm).
#' Default is `"mean.weighted"`.
#'
#' @param dispersion [character] (*with default*):
#' measure of dispersion, used for drawing the scatter polygon. One out of
#' - `"qr"` (quartile range),
#' - `"pnn"` (symmetric percentile range with `nn` the lower percentile, e.g.
#' - `"p05"` depicting the range between 5 and 95 %),
#' - `"sd"` (standard deviation) and
#' - `"2sd"` (2 standard deviations),
#'
#' The default is `"qr"`. Note that `"sd"` and `"2sd"` are only meaningful in
#' combination with `"z.0 = 'mean'"` because the unweighted mean is used to
#' centre the polygon.
#'
#' @param plot.ratio [numeric]:
#' Relative space, given to the radial versus the cartesian plot part,
#' default is `0.75`.
#'
#' @param rotate [logical]:
#' Option to turn the plot by 90 degrees.
#'
#' @param mtext [character]:
#' additional text below the plot title.
#'
#' @param summary [character] (*optional*):
#' add statistic measures of centrality and dispersion to the plot.
#' Can be one or more of several keywords. See details for available keywords.
#' Results differ depending on the log-option for the z-scale (see details).
#'
#' @param summary.pos [numeric] or [character] (*with default*):
#' optional position coordinates or keyword (e.g. `"topright"`) for the
#' statistical summary. Alternatively, the keyword `"sub"` may be
#' specified to place the summary below the plot header. However, this latter
#' option in only possible if `mtext` is not used.
#'
#' @param summary.method [character] (*with default*):
#' keyword indicating the method used to calculate the statistic summary.
#' One out of
#' - `"unweighted"`,
#' - `"weighted"` and
#' - `"MCM"`.
#'
#' See [calc_Statistics] for details.
#'
#' @param legend [character] vector (*optional*):
#' legend content to be added to the plot.
#'
#' @param legend.pos [numeric] or [character] (*with default*):
#' optional position coordinates or keyword (e.g. `"topright"`)
#' for the legend to be plotted.
#'
#' @param stats [character]:
#' additional labels of statistically important values in the plot.
#' One or more out of the following:
#' - `"min"`,
#' - `"max"`,
#' - `"median"`.
#'
#' @param rug [logical]:
#' Option to add a rug to the KDE part, to indicate the location of individual values.
#'
#' @param kde [logical]:
#' Option to add a KDE plot to the dispersion part, default is `TRUE`.
#'
#' @param hist [logical]:
#' Option to add a histogram to the dispersion part. Only meaningful when not
#' more than one data set is plotted.
#'
#' @param dots [logical]:
#' Option to add a dot plot to the dispersion part. If number of dots exceeds
#' space in the dispersion part, a square indicates this.
#'
#' @param boxplot [logical]:
#' Option to add a boxplot to the dispersion part, default is `FALSE`.
#'
#' @param y.axis [logical]: Option to hide standard y-axis labels and show 0 only.
#' Useful for data with small scatter. If you want to suppress the y-axis entirely
#' please use `yaxt == 'n'` (the standard [graphics::par] setting) instead.
#'
#' @param error.bars [logical]:
#' Option to show De-errors as error bars on De-points. Useful in combination
#' with `y.axis = FALSE, bar.col = "none"`.
#'
#' @param bar [numeric] (*with default*):
#' option to add one or more dispersion bars (i.e., bar showing the 2-sigma range)
#' centred at the defined values. By default a bar is drawn according to `"z.0"`.
#' To omit the bar set `"bar = FALSE"`.
#'
#' @param bar.col [character] or [numeric] (*with default*):
#' colour of the dispersion bar. Default is `"grey60"`.
#'
#' @param polygon.col [character] or [numeric] (*with default*):
#' colour of the polygon showing the data scatter. Sometimes this
#' polygon may be omitted for clarity. To disable it use `FALSE` or
#' `polygon = FALSE`. Default is `"grey80"`.
#'
#' @param line [numeric]:
#' numeric values of the additional lines to be added.
#'
#' @param line.col [character] or [numeric]:
#' colour of the additional lines.
#'
#' @param line.lty [integer]:
#' line type of additional lines
#'
#' @param line.label [character]:
#' labels for the additional lines.
#'
#' @param grid.col [character] or [numeric] (*with default*):
#' colour of the grid lines (originating at `[0,0]` and stretching to
#' the z-scale). To disable grid lines use `FALSE`. Default is `"grey"`.
#'
#' @param frame [numeric] (*with default*):
#' option to modify the plot frame type. Can be one out of
#' - `0` (no frame),
#' - `1` (frame originates at 0,0 and runs along min/max isochrons),
#' - `2` (frame embraces the 2-sigma bar),
#' - `3` (frame embraces the entire plot as a rectangle).
#'
#' Default is `1`.
#'
#' @param bw [character] (*with default*):
#' bin-width for KDE, choose a numeric value for manual setting.
#'
#' @param interactive [logical] (*with default*):
#' create an interactive abanico plot (requires the `'plotly'` package)
#'
#' @param ... Further plot arguments to pass (see [graphics::plot.default]). Supported are: `main`, `sub`, `ylab`, `xlab`, `zlab`, `zlim`, `ylim`, `cex`, `lty`, `lwd`, `pch`, `col`, `tck`, `tcl`, `at`, `breaks`. `xlab` must be a vector of length two, specifying the upper and lower x-axes labels.
#'
#' @return
#' returns a plot object and, optionally, a list with plot calculus data.
#'
#' @section Function version: 0.1.17
#'
#' @author
#' Michael Dietze, GFZ Potsdam (Germany)\cr
#' Sebastian Kreutzer, Institute of Geography, Heidelberg University (Germany)\cr
#' Inspired by a plot introduced by Galbraith & Green (1990)
#'
#' @seealso [plot_RadialPlot], [plot_KDE], [plot_Histogram], [plot_ViolinPlot]
#'
#' @references
#' Galbraith, R. & Green, P., 1990. Estimating the component ages
#' in a finite mixture. International Journal of Radiation Applications and
#' Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17 (3),
#' 197-206.
#'
#' Dietze, M., Kreutzer, S., Burow, C., Fuchs, M.C., Fischer, M., Schmidt, C., 2015.
#' The abanico plot: visualising chronometric data with individual standard errors.
#' Quaternary Geochronology. doi:10.1016/j.quageo.2015.09.003
#'
#' @examples
#'
#' ## load example data and recalculate to Gray
#' data(ExampleData.DeValues, envir = environment())
#' ExampleData.DeValues <- ExampleData.DeValues$CA1
#'
#' ## plot the example data straightforward
#' plot_AbanicoPlot(data = ExampleData.DeValues)
#'
#' ## now with linear z-scale
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' log.z = FALSE)
#'
#' ## now with output of the plot parameters
#' plot1 <- plot_AbanicoPlot(data = ExampleData.DeValues,
#' output = TRUE)
#' str(plot1)
#' plot1$zlim
#'
#' ## now with adjusted z-scale limits
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' zlim = c(10, 200))
#'
#' ## now with adjusted x-scale limits
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' xlim = c(0, 20))
#'
#' ## now with rug to indicate individual values in KDE part
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' rug = TRUE)
#'
#' ## now with a smaller bandwidth for the KDE plot
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' bw = 0.04)
#'
#' ## now with a histogram instead of the KDE plot
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' hist = TRUE,
#' kde = FALSE)
#'
#' ## now with a KDE plot and histogram with manual number of bins
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' hist = TRUE,
#' breaks = 20)
#'
#' ## now with a KDE plot and a dot plot
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' dots = TRUE)
#'
#' ## now with user-defined plot ratio
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' plot.ratio = 0.5)
#' ## now with user-defined central value
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' z.0 = 70)
#'
#' ## now with median as central value
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' z.0 = "median")
#'
#' ## now with the 17-83 percentile range as definition of scatter
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' z.0 = "median",
#' dispersion = "p17")
#'
#' ## now with user-defined green line for minimum age model
#' CAM <- calc_CentralDose(ExampleData.DeValues,
#' plot = FALSE)
#'
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' line = CAM,
#' line.col = "darkgreen",
#' line.label = "CAM")
#'
#' ## now create plot with legend, colour, different points and smaller scale
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' legend = "Sample 1",
#' col = "tomato4",
#' bar.col = "peachpuff",
#' pch = "R",
#' cex = 0.8)
#'
#' ## now without 2-sigma bar, polygon, grid lines and central value line
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' bar.col = FALSE,
#' polygon.col = FALSE,
#' grid.col = FALSE,
#' y.axis = FALSE,
#' lwd = 0)
#'
#' ## now with direct display of De errors, without 2-sigma bar
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' bar.col = FALSE,
#' ylab = "",
#' y.axis = FALSE,
#' error.bars = TRUE)
#'
#' ## now with user-defined axes labels
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' xlab = c("Data error (%)",
#' "Data precision"),
#' ylab = "Scatter",
#' zlab = "Equivalent dose [Gy]")
#'
#' ## now with minimum, maximum and median value indicated
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' stats = c("min", "max", "median"))
#'
#' ## now with a brief statistical summary as subheader
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' summary = c("n", "in.2s"))
#'
#' ## now with another statistical summary
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' summary = c("mean.weighted", "median"),
#' summary.pos = "topleft")
#'
#' ## now a plot with two 2-sigma bars for one data set
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' bar = c(30, 100))
#'
#' ## now the data set is split into sub-groups, one is manipulated
#' data.1 <- ExampleData.DeValues[1:30,]
#' data.2 <- ExampleData.DeValues[31:62,] * 1.3
#'
#' ## now a common dataset is created from the two subgroups
#' data.3 <- list(data.1, data.2)
#'
#' ## now the two data sets are plotted in one plot
#' plot_AbanicoPlot(data = data.3)
#'
#' ## now with some graphical modification
#' plot_AbanicoPlot(data = data.3,
#' z.0 = "median",
#' col = c("steelblue4", "orange4"),
#' bar.col = c("steelblue3", "orange3"),
#' polygon.col = c("steelblue1", "orange1"),
#' pch = c(2, 6),
#' angle = c(30, 50),
#' summary = c("n", "in.2s", "median"))
#'
#' ## create Abanico plot with predefined layout definition
#' plot_AbanicoPlot(data = ExampleData.DeValues,
#' layout = "journal")
#'
#' ## now with predefined layout definition and further modifications
#' plot_AbanicoPlot(
#' data = data.3,
#' z.0 = "median",
#' layout = "journal",
#' col = c("steelblue4", "orange4"),
#' bar.col = adjustcolor(c("steelblue3", "orange3"),
#' alpha.f = 0.5),
#' polygon.col = c("steelblue3", "orange3"))
#'
#' ## for further information on layout definitions see documentation
#' ## of function get_Layout()
#'
#' ## now with manually added plot content
#' ## create empty plot with numeric output
#' AP <- plot_AbanicoPlot(data = ExampleData.DeValues,
#' pch = NA,
#' output = TRUE)
#'
#' ## identify data in 2 sigma range
#' in_2sigma <- AP$data[[1]]$data.in.2s
#'
#' ## restore function-internal plot parameters
#' par(AP$par)
#'
#' ## add points inside 2-sigma range
#' points(x = AP$data[[1]]$precision[in_2sigma],
#' y = AP$data[[1]]$std.estimate.plot[in_2sigma],
#' pch = 16)
#'
#' ## add points outside 2-sigma range
#' points(x = AP$data[[1]]$precision[!in_2sigma],
#' y = AP$data[[1]]$std.estimate.plot[!in_2sigma],
#' pch = 1)
#'
#' @md
#' @export
plot_AbanicoPlot <- function(
data,
na.rm = TRUE,
log.z = TRUE,
z.0 = "mean.weighted",
dispersion = "qr",
plot.ratio = 0.75,
rotate = FALSE,
mtext,
summary,
summary.pos,
summary.method = "MCM",
legend,
legend.pos,
stats,
rug = FALSE,
kde = TRUE,
hist = FALSE,
dots = FALSE,
boxplot = FALSE,
y.axis = TRUE,
error.bars = FALSE,
bar,
bar.col,
polygon.col,
line,
line.col,
line.lty,
line.label,
grid.col,
frame = 1,
bw = "SJ",
interactive = FALSE,
...
) {
## check data and parameter consistency--------------------------------------
## Homogenise input data format
if(is(data, "list") == FALSE) {
data <- list(data)
}
## Check input data
for(i in 1:length(data)) {
if(is(data[[i]], "RLum.Results") == FALSE &
is(data[[i]], "data.frame") == FALSE) {
stop(paste("[plot_AbanicoPlot()] Input data format is neither",
"'data.frame' nor 'RLum.Results'"))
} else {
if(is(data[[i]], "RLum.Results"))
data[[i]] <- get_RLum(data[[i]], "data")
data[[i]] <- data[[i]][,c(1:2)]
}
}
## optionally, remove NA-values
if(na.rm == TRUE) {
for(i in 1:length(data)) {
n.NA <- sum(!complete.cases(data[[i]]))
if(n.NA == 1) {message(paste0("[plot_AbanicoPlot()] data set (",
i, "): 1 NA value excluded."))
} else if(n.NA > 1) {
message(paste0("[plot_AbanicoPlot()] data set (", i,"): ",
n.NA, " NA values excluded."))
}
data[[i]] <- na.exclude(data[[i]])
}
}
##AFTER NA removal, we should check the data set carefully again ...
##(1)
##check if there is still data left in the entire set
if(all(sapply(data, nrow) == 0)){
try(stop("[plot_AbanicoPlot()] Nothing plotted, your data set is empty!", call. = FALSE))
return(NULL)
}
##(2)
##check for sets with only 1 row or 0 rows at all
else if(any(sapply(data, nrow) <= 1)){
##select problematic sets and remove the entries from the list
NArm.id <- which(sapply(data, nrow) <= 1)
data[NArm.id] <- NULL
warning(paste0("[plot_AbanicoPlot()] Data sets ",
paste(NArm.id, collapse = ", "),
" are found to be empty or consisting of only 1 row. Sets removed!"))
rm(NArm.id)
##unfortunately, the data set might become now empty at all
if(length(data) == 0){
try(stop("[plot_AbanicoPlot()] After removing invalid entries, nothing is plotted!", call. = FALSE))
return(NULL)
}
}
## check for zero-error values
for(i in 1:length(data)) {
if(length(data[[i]]) < 2) {
stop("Data without errors cannot be displayed!")
}
if(sum(data[[i]][,2] == 0) > 0) {
data[[i]] <- data[[i]][data[[i]][,2] > 0,]
if(nrow(data[[i]]) < 1) {
stop("[plot_AbanicoPlot()] Data set contains only values with zero errors.", call. = FALSE)
}
warning("[plot_AbanicoPlot()] values with zero errors cannot be displayed and were removed!",call. = FALSE)
}
}
## save original plot parameters and restore them upon end or stop
par.old.full <- par(no.readonly = TRUE)
cex_old <- par()$cex
## this ensures par() is respected for several plots on one page
if(sum(par()$mfrow) == 2 & sum(par()$mfcol) == 2){
on.exit(par(par.old.full))
}
## check/set layout definitions
if("layout" %in% names(list(...))) {
layout = get_Layout(layout = list(...)$layout)
} else {
layout <- get_Layout(layout = "default")
}
if(missing(stats) == TRUE) {
stats <- numeric(0)
}
if(missing(bar) == TRUE) {
bar <- rep(TRUE, length(data))
}
if(missing(bar.col) == TRUE) {
bar.fill <- rep(x = rep(x = layout$abanico$colour$bar.fill,
length.out = length(data)), length(bar))
bar.line <- rep(rep(layout$abanico$colour$bar.line,
length.out = length(data)), length(bar))
} else {
bar.fill <- bar.col
bar.line <- NA
}
if(missing(polygon.col) == TRUE) {
polygon.fill <- rep(layout$abanico$colour$poly.fill,
length.out = length(data))
polygon.line <- rep(layout$abanico$colour$poly.line,
length.out = length(data))
} else {
polygon.fill <- polygon.col
polygon.line <- NA
}
if(missing(grid.col) == TRUE) {
grid.major <- layout$abanico$colour$grid.major
grid.minor <- layout$abanico$colour$grid.minor
} else {
if(length(grid.col) == 1) {
grid.major <- grid.col[1]
grid.minor <- grid.col[1]
} else {
grid.major <- grid.col[1]
grid.minor <- grid.col[2]
}
}
if(missing(summary) == TRUE) {
summary <- c("n", "in.2s")
}
if(missing(summary.pos) == TRUE) {
summary.pos <- "sub"
}
if(missing(mtext) == TRUE) {
mtext <- ""
}
## create preliminary global data set
De.global <- data[[1]][,1]
if(length(data) > 1) {
for(i in 2:length(data)) {
De.global <- c(De.global, data[[i]][,1])
}
}
## calculate major preliminary tick values and tick difference
extraArgs <- list(...)
if("zlim" %in% names(extraArgs)) {
limits.z <- extraArgs$zlim
} else {
z.span <- (mean(De.global) * 0.5) / (sd(De.global) * 100)
z.span <- ifelse(z.span > 1, 0.9, z.span)
limits.z <- c((ifelse(min(De.global) <= 0, 1.1, 0.9) - z.span) *
min(De.global),
(1.1 + z.span) * max(De.global))
}
if("at" %in% names(extraArgs)) {
ticks <- extraArgs$at
} else {
ticks <- round(pretty(limits.z, n = 5), 3)
}
if("breaks" %in% names(extraArgs)) {
breaks <- extraArgs$breaks
} else {
breaks <- "Sturges"
}
## check/set bw-parameter
for(i in 1:length(data)) {
bw.test <- try(density(x = data[[i]][,1],
bw = bw),
silent = TRUE)
if(grepl(pattern = "Error", x = bw.test[1]) == TRUE) {
bw <- "nrd0"
warning("[plot_AbanicoPlot()] Option for bw not possible. Set to nrd0!", call. = FALSE)
}
}
if ("fun" %in% names(extraArgs)) {
fun <- list(...)$fun
} else {
fun <- FALSE
}
## check for negative values, stop function, but do not stop
if(min(De.global) < 0) {
if("zlim" %in% names(extraArgs)) {
De.add <- abs(extraArgs$zlim[1])
} else {
## estimate delta De to add to all data
De.add <- min(10^ceiling(log10(abs(De.global))) * 10)
## optionally readjust delta De for extreme values
if(De.add <= abs(min(De.global))) {
De.add <- De.add * 10
}
}
} else {
De.add <- 0
}
## optionally add correction dose to data set and adjust error
if(log.z == TRUE) {
for(i in 1:length(data)) {
data[[i]][,1] <- data[[i]][,1] + De.add
}
De.global <- De.global + De.add
}
## calculate and append statistical measures --------------------------------
## z-values based on log-option
z <- lapply(1:length(data), function(x){
if(log.z == TRUE) {
log(data[[x]][,1])
} else {
data[[x]][,1]
}
})
if(is(z, "list") == FALSE) {
z <- list(z)
}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], z[[x]])
})
rm(z)
## calculate dispersion based on log-option
se <- lapply(1:length(data), function(x, De.add){
if(log.z == TRUE) {
if(De.add != 0) {
data[[x]][,2] <- data[[x]][,2] / (data[[x]][,1] + De.add)
} else {
data[[x]][,2] / data[[x]][,1]
}
} else {
data[[x]][,2]
}}, De.add = De.add)
if(is(se, "list") == FALSE) {
se <- list(se)
}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], se[[x]])
})
rm(se)
## calculate initial data statistics
stats.init <- list(NA)
for(i in 1:length(data)) {
stats.init[[length(stats.init) + 1]] <-
calc_Statistics(data = data[[i]][,3:4])
}
stats.init[[1]] <- NULL
## calculate central values
if(z.0 == "mean") {
z.central <- lapply(1:length(data), function(x){
rep(stats.init[[x]]$unweighted$mean,
length(data[[x]][,3]))})
} else if(z.0 == "median") {
z.central <- lapply(1:length(data), function(x){
rep(stats.init[[x]]$unweighted$median,
length(data[[x]][,3]))})
} else if(z.0 == "mean.weighted") {
z.central <- lapply(1:length(data), function(x){
rep(stats.init[[x]]$weighted$mean,
length(data[[x]][,3]))})
} else if(is.numeric(z.0) == TRUE) {
z.central <- lapply(1:length(data), function(x){
rep(ifelse(log.z == TRUE,
log(z.0),
z.0),
length(data[[x]][,3]))})
} else {
stop("Value for z.0 not supported!")
}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], z.central[[x]])})
rm(z.central)
## calculate precision
precision <- lapply(1:length(data), function(x){
1 / data[[x]][,4]})
if(is(precision, "list") == FALSE) {precision <- list(precision)}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], precision[[x]])})
rm(precision)
## calculate standardised estimate
std.estimate <- lapply(1:length(data), function(x){
(data[[x]][,3] - data[[x]][,5]) / data[[x]][,4]})
if(is(std.estimate, "list") == FALSE) {std.estimate <- list(std.estimate)}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], std.estimate[[x]])})
## append empty standard estimate for plotting
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], std.estimate[[x]])})
rm(std.estimate)
## append optional weights for KDE curve
if("weights" %in% names(extraArgs)) {
if(extraArgs$weights == TRUE) {
wgt <- lapply(1:length(data), function(x){
(1 / data[[x]][,2]) / sum(1 / data[[x]][,2]^2)
})
if(is(wgt, "list") == FALSE) {
wgt <- list(wgt)
}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], wgt[[x]])})
rm(wgt)
} else {
wgt <- lapply(1:length(data), function(x){
rep(x = 1, times = nrow(data[[x]])) /
sum(rep(x = 1, times = nrow(data[[x]])))
})
if(is(wgt, "list") == FALSE) {
wgt <- list(wgt)
}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], wgt[[x]])})
rm(wgt)
}
} else {
wgt <- lapply(1:length(data), function(x){
rep(x = 1, times = nrow(data[[x]])) /
sum(rep(x = 1, times = nrow(data[[x]])))
})
if(is(wgt, "list") == FALSE) {
wgt <- list(wgt)
}
data <- lapply(1:length(data), function(x) {
cbind(data[[x]], wgt[[x]])})
rm(wgt)
}
## generate global data set
data.global <- cbind(data[[1]],
rep(x = 1, times = nrow(data[[1]])))
colnames(data.global) <- rep("", 10)
if(length(data) > 1) {
for(i in 2:length(data)) {
data.add <- cbind(data[[i]],
rep(x = i, times = nrow(data[[i]])))
colnames(data.add) <- rep("", 10)
data.global <- rbind(data.global,
data.add)
}
}
## create column names
colnames(data.global) <- c("De",
"error",
"z",
"se",
"z.central",
"precision",
"std.estimate",
"std.estimate.plot",
"weights",
"data set")
## calculate global data statistics
stats.global <- calc_Statistics(data = data.global[,3:4])
## calculate global central value
if(z.0 == "mean") {
z.central.global <- stats.global$unweighted$mean
} else if(z.0 == "median") {
z.central.global <- stats.global$unweighted$median
} else if(z.0 == "mean.weighted") {
z.central.global <- stats.global$weighted$mean
} else if(is.numeric(z.0) == TRUE) {
z.central.global <- ifelse(log.z == TRUE,
log(z.0),
z.0)
} else {
stop("Value for z.0 not supported!")
}
## create column names
for(i in 1:length(data)) {
colnames(data[[i]]) <- c("De",
"error",
"z",
"se",
"z.central",
"precision",
"std.estimate",
"std.estimate.plot",
"weights")
}
## re-calculate standardised estimate for plotting
for(i in 1:length(data)) {
data[[i]][,8] <- (data[[i]][,3] - z.central.global) / data[[i]][,4]
}
data.global.plot <- data[[1]][,8]
if(length(data) > 1) {
for(i in 2:length(data)) {
data.global.plot <- c(data.global.plot, data[[i]][,8])
}
}
data.global[,8] <- data.global.plot
## print message for too small scatter
if(max(abs(1 / data.global[6])) < 0.02) {
small.sigma <- TRUE
message("[plot_AbanicoPlot()] Attention, small standardised estimate scatter. Toggle off y.axis?")
}
## read out additional arguments---------------------------------------------
extraArgs <- list(...)
main <- if("main" %in% names(extraArgs)) {
extraArgs$main
} else {
expression(paste(D[e], " distribution"))
}
sub <- if("sub" %in% names(extraArgs)) {
extraArgs$sub
} else {
""
}
if("xlab" %in% names(extraArgs)) {
if(length(extraArgs$xlab) != 2) {
if (length(extraArgs$xlab) == 3) {
xlab <- c(extraArgs$xlab[1:2], "Density")
} else {
stop("Argmuent xlab is not of length 2!")
}
} else {xlab <- c(extraArgs$xlab, "Density")}
} else {
xlab <- c(if(log.z == TRUE) {
"Relative standard error (%)"
} else {
"Standard error"
},
"Precision",
"Density")
}
ylab <- if("ylab" %in% names(extraArgs)) {
extraArgs$ylab
} else {
"Standardised estimate"
}
zlab <- if("zlab" %in% names(extraArgs)) {
extraArgs$zlab
} else {
expression(paste(D[e], " [Gy]"))
}
if("zlim" %in% names(extraArgs)) {
limits.z <- extraArgs$zlim
} else {
z.span <- (mean(data.global[,1]) * 0.5) / (sd(data.global[,1]) * 100)
z.span <- ifelse(z.span > 1, 0.9, z.span)
limits.z <- c((0.9 - z.span) * min(data.global[[1]]),
(1.1 + z.span) * max(data.global[[1]]))
}
if("xlim" %in% names(extraArgs)) {
limits.x <- extraArgs$xlim
} else {
limits.x <- c(0, max(data.global[,6]) * 1.05)
}
if(limits.x[1] != 0) {
limits.x[1] <- 0
warning("Lower x-axis limit not set to zero, issue corrected!")
}
if("ylim" %in% names(extraArgs)) {
limits.y <- extraArgs$ylim
} else {
y.span <- (mean(data.global[,1]) * 10) / (sd(data.global[,1]) * 100)
y.span <- ifelse(y.span > 1, 0.98, y.span)
limits.y <- c(-(1 + y.span) * max(abs(data.global[,7])),
(1 + y.span) * max(abs(data.global[,7])))
}
cex <- if("cex" %in% names(extraArgs)) {
extraArgs$cex
} else {
1
}
lty <- if("lty" %in% names(extraArgs)) {
extraArgs$lty
} else {
rep(rep(2, length(data)), length(bar))
}
lwd <- if("lwd" %in% names(extraArgs)) {
extraArgs$lwd
} else {
rep(rep(1, length(data)), length(bar))
}
pch <- if("pch" %in% names(extraArgs)) {
extraArgs$pch
} else {
rep(20, length(data))
}
if("col" %in% names(extraArgs)) {
bar.col <- extraArgs$col
kde.line <- extraArgs$col
kde.fill <- NA
value.dot <- extraArgs$col
value.bar <- extraArgs$col
value.rug <- extraArgs$col
summary.col <- extraArgs$col
centrality.col <- extraArgs$col
} else {
if(length(layout$abanico$colour$bar) == 1) {
bar.col <- 1:length(data)
} else {
bar.col <- layout$abanico$colour$bar.col
}
if(length(layout$abanico$colour$kde.line) == 1) {
kde.line <- 1:length(data)
} else {
kde.line <- layout$abanico$colour$kde.line
}
if(length(layout$abanico$colour$kde.fill) == 1) {
kde.fill <- rep(layout$abanico$colour$kde.fill, length(data))
} else {
kde.fill <- layout$abanico$colour$kde.fill
}
if(length(layout$abanico$colour$value.dot) == 1) {
value.dot <- 1:length(data)
} else {
value.dot <- layout$abanico$colour$value.dot
}
if(length(layout$abanico$colour$value.bar) == 1) {
value.bar <- 1:length(data)
} else {
value.bar <- layout$abanico$colour$value.bar
}
if(length(layout$abanico$colour$value.rug) == 1) {
value.rug <- 1:length(data)
} else {
value.rug <- layout$abanico$colour$value.rug
}
if(length(layout$abanico$colour$summary) == 1) {
summary.col <- 1:length(data)
} else {
summary.col <- layout$abanico$colour$summary
}
if(length(layout$abanico$colour$centrality) == 1) {
centrality.col <- rep(x = 1:length(data), times = length(bar))
} else {
centrality.col <- rep(x = layout$abanico$colour$centrality,
times = length(bar))
}
}
## update central line colour
centrality.col <- rep(centrality.col, length(bar))
tck <- if("tck" %in% names(extraArgs)) {
extraArgs$tck
} else {
NA
}
tcl <- if("tcl" %in% names(extraArgs)) {
extraArgs$tcl
} else {
-0.5
}
## define auxiliary plot parameters -----------------------------------------
## set space between z-axis and baseline of cartesian part
if(boxplot == TRUE) {
lostintranslation <- 1.03
} else {
lostintranslation <- 1.03
plot.ratio <- plot.ratio * 1.05
}
## create empty plot to update plot parameters
if(rotate == FALSE) {
plot(NA,
xlim = c(limits.x[1], limits.x[2] * (1 / plot.ratio)),
ylim = limits.y,
main = "",
sub = "",
xlab = "",
ylab = "",
xaxs = "i",
yaxs = "i",
frame.plot = FALSE,
axes = FALSE)
} else {
plot(NA,
xlim = limits.y,
ylim = c(limits.x[1], limits.x[2] * (1 / plot.ratio)),
main = "",
sub = "",
xlab = "",
ylab = "",
xaxs = "i",
yaxs = "i",
frame.plot = FALSE,
axes = FALSE)
}
## calculate conversion factor for plot coordinates
f <- 0
## calculate major and minor z-tick values
if("at" %in% names(extraArgs)) {
tick.values.major <- extraArgs$at
tick.values.minor <- extraArgs$at
} else {
tick.values.major <- signif(pretty(limits.z, n = 5), 3)
tick.values.minor <- signif(pretty(limits.z, n = 25), 3)
}
tick.values.major <- tick.values.major[tick.values.major >=
min(tick.values.minor)]
tick.values.major <- tick.values.major[tick.values.major <=
max(tick.values.minor)]
tick.values.major <- tick.values.major[tick.values.major >=
limits.z[1]]
tick.values.major <- tick.values.major[tick.values.major <=
limits.z[2]]
tick.values.minor <- tick.values.minor[tick.values.minor >=
limits.z[1]]
tick.values.minor <- tick.values.minor[tick.values.minor <=
limits.z[2]]
if(log.z == TRUE) {
tick.values.major[which(tick.values.major==0)] <- 1
tick.values.minor[which(tick.values.minor==0)] <- 1
tick.values.major <- log(tick.values.major)
tick.values.minor <- log(tick.values.minor)
}
## calculate z-axis radius
r <- max(sqrt((limits.x[2])^2 + (data.global[,7] * f)^2))
## create z-axes labels
if(log.z == TRUE) {
label.z.text <- signif(exp(tick.values.major), 3)
} else {
label.z.text <- signif(tick.values.major, 3)
}
## calculate node coordinates for semi-circle
ellipse.values <- c(min(ifelse(log.z == TRUE,
log(limits.z[1]),
limits.z[1]),
tick.values.major,
tick.values.minor),
max(ifelse(log.z == TRUE,
log(limits.z[2]),
limits.z[2]),
tick.values.major,
tick.values.minor))
## correct for unpleasant value
ellipse.values[ellipse.values == -Inf] <- 0
if(rotate == FALSE) {
ellipse.x <- r / sqrt(1 + f^2 * (ellipse.values - z.central.global)^2)
ellipse.y <- (ellipse.values - z.central.global) * ellipse.x
} else {
ellipse.y <- r / sqrt(1 + f^2 * (ellipse.values - z.central.global)^2)
ellipse.x <- (ellipse.values - z.central.global) * ellipse.y
}
ellipse <- cbind(ellipse.x, ellipse.y)
## calculate statistical labels
if(length(stats == 1)) {stats <- rep(stats, 2)}
stats.data <- matrix(nrow = 3, ncol = 3)
data.stats <- as.numeric(data.global[,1])
if("min" %in% stats == TRUE) {
stats.data[1, 3] <- data.stats[data.stats == min(data.stats)][1]
stats.data[1, 1] <- data.global[data.stats == stats.data[1, 3], 6][1]
stats.data[1, 2] <- data.global[data.stats == stats.data[1, 3], 8][1]
}
if("max" %in% stats == TRUE) {
stats.data[2, 3] <- data.stats[data.stats == max(data.stats)][1]
stats.data[2, 1] <- data.global[data.stats == stats.data[2, 3], 6][1]
stats.data[2, 2] <- data.global[data.stats == stats.data[2, 3], 8][1]
}
if("median" %in% stats == TRUE) {
stats.data[3, 3] <- data.stats[data.stats == quantile(data.stats, 0.5, type = 3)]
stats.data[3, 1] <- data.global[data.stats == stats.data[3, 3], 6][1]
stats.data[3, 2] <- data.global[data.stats == stats.data[3, 3], 8][1]
}
## re-calculate axes limits if necessary
if(rotate == FALSE) {
limits.z.x <- range(ellipse[,1])
limits.z.y <- range(ellipse[,2])
} else {
limits.z.x <- range(ellipse[,2])
limits.z.y <- range(ellipse[,1])
}
if(!("ylim" %in% names(extraArgs))) {
if(limits.z.y[1] < 0.66 * limits.y[1]) {
limits.y[1] <- 1.8 * limits.z.y[1]
}
if(limits.z.y[2] > 0.77 * limits.y[2]) {
limits.y[2] <- 1.3 * limits.z.y[2]
}
if(rotate == TRUE) {
limits.y <- c(-max(abs(limits.y)), max(abs(limits.y)))
}
}
if(!("xlim" %in% names(extraArgs))) {
if(limits.z.x[2] > 1.1 * limits.x[2]) {
limits.x[2] <- limits.z.x[2]
}
}
## calculate and paste statistical summary
De.stats <- matrix(nrow = length(data), ncol = 12)
colnames(De.stats) <- c("n",
"mean",
"median",
"kde.max",
"sd.abs",
"sd.rel",
"se.abs",
"se.rel",
"q.25",
"q.75",
"skewness",
"kurtosis")
for(i in 1:length(data)) {
statistics <- calc_Statistics(data[[i]])[[summary.method]]
statistics.2 <- calc_Statistics(data[[i]][,3:4])[[summary.method]]
De.stats[i,1] <- statistics$n
De.stats[i,2] <- statistics.2$mean
De.stats[i,3] <- statistics.2$median
De.stats[i,5] <- statistics$sd.abs
De.stats[i,6] <- statistics$sd.rel
De.stats[i,7] <- statistics$se.abs
De.stats[i,8] <- statistics$se.rel
De.stats[i,9] <- quantile(data[[i]][,1], 0.25)
De.stats[i,10] <- quantile(data[[i]][,1], 0.75)
De.stats[i,11] <- statistics$skewness
De.stats[i,12] <- statistics$kurtosis
## account for log.z-option
if(log.z == TRUE) {
De.stats[i,2:4] <- exp(De.stats[i,2:4])
}
## kdemax - here a little doubled as it appears below again
De.density <- try(density(x = data[[i]][,1],
kernel = "gaussian",
bw = bw,
from = limits.z[1],
to = limits.z[2]),
silent = TRUE)
if(inherits(De.density, "try-error")) {
De.stats[i,4] <- NA
} else {
De.stats[i,4] <- De.density$x[which.max(De.density$y)]
}
}
label.text = list(NA)
if(summary.pos[1] != "sub") {
n.rows <- length(summary)
for(i in 1:length(data)) {
stops <- paste(rep("\n", (i - 1) * n.rows), collapse = "")
summary.text <- character(0)
for(j in 1:length(summary)) {
summary.text <- c(summary.text,
paste(
"",
ifelse("n" %in% summary[j] == TRUE,
paste("n = ",
De.stats[i,1],
"\n",
sep = ""),
""),
ifelse("mean" %in% summary[j] == TRUE,
paste("mean = ",
round(De.stats[i,2], 2),
"\n",
sep = ""),
""),
ifelse("median" %in% summary[j] == TRUE,
paste("median = ",
round(De.stats[i,3], 2),
"\n",
sep = ""),
""),
ifelse("kde.max" %in% summary[j] == TRUE,
paste("kdemax = ",
round(De.stats[i,4], 2),
" \n ",
sep = ""),
""),
ifelse("sd.abs" %in% summary[j] == TRUE,
paste("abs. sd = ",
round(De.stats[i,5], 2),
"\n",
sep = ""),
""),
ifelse("sd.rel" %in% summary[j] == TRUE,
paste("rel. sd = ",
round(De.stats[i,6], 2), " %",
"\n",
sep = ""),
""),
ifelse("se.abs" %in% summary[j] == TRUE,
paste("se = ",
round(De.stats[i,7], 2),
"\n",
sep = ""),
""),
ifelse("se.rel" %in% summary[j] == TRUE,
paste("rel. se = ",
round(De.stats[i,8], 2), " %",
"\n",
sep = ""),
""),
ifelse("skewness" %in% summary[j] == TRUE,
paste("skewness = ",
round(De.stats[i,11], 2),
"\n",
sep = ""),
""),
ifelse("kurtosis" %in% summary[j] == TRUE,
paste("kurtosis = ",
round(De.stats[i,12], 2),
"\n",
sep = ""),
""),
ifelse("in.2s" %in% summary[j] == TRUE,
paste("in 2 sigma = ",
round(sum(data[[i]][,7] > -2 &
data[[i]][,7] < 2) /
nrow(data[[i]]) * 100 , 1),
" %",
sep = ""),
""),
sep = ""))
}
summary.text <- paste(summary.text, collapse = "")
label.text[[length(label.text) + 1]] <- paste(stops,
summary.text,
stops,
sep = "")
}
} else {
for(i in 1:length(data)) {
summary.text <- character(0)
for(j in 1:length(summary)) {
summary.text <- c(summary.text,
ifelse("n" %in% summary[j] == TRUE,
paste("n = ",
De.stats[i,1],
" | ",
sep = ""),
""),
ifelse("mean" %in% summary[j] == TRUE,
paste("mean = ",
round(De.stats[i,2], 2),
" | ",
sep = ""),
""),
ifelse("median" %in% summary[j] == TRUE,
paste("median = ",
round(De.stats[i,3], 2),
" | ",
sep = ""),
""),
ifelse("kde.max" %in% summary[j] == TRUE,
paste("kdemax = ",
round(De.stats[i,4], 2),
" | ",
sep = ""),
""),
ifelse("sd.abs" %in% summary[j] == TRUE,
paste("abs. sd = ",
round(De.stats[i,5], 2),
" | ",
sep = ""),
""),
ifelse("sd.rel" %in% summary[j] == TRUE,
paste("rel. sd = ",
round(De.stats[i,6], 2), " %",
" | ",
sep = ""),
""),
ifelse("se.abs" %in% summary[j] == TRUE,
paste("abs. se = ",
round(De.stats[i,7], 2),
" | ",
sep = ""),
""),
ifelse("se.rel" %in% summary[j] == TRUE,
paste("rel. se = ",
round(De.stats[i,8], 2), " %",
" | ",
sep = ""),
""),
ifelse("skewness" %in% summary[j] == TRUE,
paste("skewness = ",
round(De.stats[i,11], 2),
" | ",
sep = ""),
""),
ifelse("kurtosis" %in% summary[j] == TRUE,
paste("kurtosis = ",
round(De.stats[i,12], 2),
" | ",
sep = ""),
""),
ifelse("in.2s" %in% summary[j] == TRUE,
paste("in 2 sigma = ",
round(sum(data[[i]][,7] > -2 &
data[[i]][,7] < 2) /
nrow(data[[i]]) * 100 , 1),
" % | ",
sep = ""),
"")
)
}
summary.text <- paste(summary.text, collapse = "")
label.text[[length(label.text) + 1]] <- paste(
" ",
summary.text,
sep = "")
}
## remove outer vertical lines from string
for(i in 2:length(label.text)) {
label.text[[i]] <- substr(x = label.text[[i]],
start = 3,
stop = nchar(label.text[[i]]) - 3)
}
}
## remove dummy list element
label.text[[1]] <- NULL
if(rotate == FALSE) {
## convert keywords into summary placement coordinates
if(missing(summary.pos) == TRUE) {
summary.pos <- c(limits.x[1], limits.y[2])
summary.adj <- c(0, 1)
} else if(length(summary.pos) == 2) {
summary.pos <- summary.pos
summary.adj <- c(0, 1)
} else if(summary.pos[1] == "topleft") {
summary.pos <- c(limits.x[1], limits.y[2] - par()$cxy[2] * 1)
summary.adj <- c(0, 1)
} else if(summary.pos[1] == "top") {
summary.pos <- c(mean(limits.x), limits.y[2] - par()$cxy[2] * 1)
summary.adj <- c(0.5, 1)
} else if(summary.pos[1] == "topright") {
summary.pos <- c(limits.x[2], limits.y[2] - par()$cxy[2] * 1)
summary.adj <- c(1, 1)
} else if(summary.pos[1] == "left") {
summary.pos <- c(limits.x[1], mean(limits.y))
summary.adj <- c(0, 0.5)
} else if(summary.pos[1] == "center") {
summary.pos <- c(mean(limits.x), mean(limits.y))
summary.adj <- c(0.5, 0.5)
} else if(summary.pos[1] == "right") {
summary.pos <- c(limits.x[2], mean(limits.y))
summary.adj <- c(1, 0.5)
}else if(summary.pos[1] == "bottomleft") {
summary.pos <- c(limits.x[1], limits.y[1] + par()$cxy[2] * 3.5)
summary.adj <- c(0, 0)
} else if(summary.pos[1] == "bottom") {
summary.pos <- c(mean(limits.x), limits.y[1] + par()$cxy[2] * 3.5)
summary.adj <- c(0.5, 0)
} else if(summary.pos[1] == "bottomright") {
summary.pos <- c(limits.x[2], limits.y[1] + par()$cxy[2] * 3.5)
summary.adj <- c(1, 0)
}
## convert keywords into legend placement coordinates
if(missing(legend.pos) == TRUE) {
legend.pos <- c(limits.x[1], limits.y[2])
legend.adj <- c(0, 1)
} else if(length(legend.pos) == 2) {
legend.pos <- legend.pos
legend.adj <- c(0, 1)
} else if(legend.pos[1] == "topleft") {
legend.pos <- c(limits.x[1], limits.y[2])
legend.adj <- c(0, 1)
} else if(legend.pos[1] == "top") {
legend.pos <- c(mean(limits.x), limits.y[2])
legend.adj <- c(0.5, 1)
} else if(legend.pos[1] == "topright") {
legend.pos <- c(limits.x[2], limits.y[2])
legend.adj <- c(1, 1)
} else if(legend.pos[1] == "left") {
legend.pos <- c(limits.x[1], mean(limits.y))
legend.adj <- c(0, 0.5)
} else if(legend.pos[1] == "center") {
legend.pos <- c(mean(limits.x), mean(limits.y))
legend.adj <- c(0.5, 0.5)
} else if(legend.pos[1] == "right") {
legend.pos <- c(limits.x[2], mean(limits.y))
legend.adj <- c(1, 0.5)
} else if(legend.pos[1] == "bottomleft") {
legend.pos <- c(limits.x[1], limits.y[1])
legend.adj <- c(0, 0)
} else if(legend.pos[1] == "bottom") {
legend.pos <- c(mean(limits.x), limits.y[1])
legend.adj <- c(0.5, 0)
} else if(legend.pos[1] == "bottomright") {
legend.pos <- c(limits.x[2], limits.y[1])
legend.adj <- c(1, 0)
}
} else {
## convert keywords into summary placement coordinates
if(missing(summary.pos) == TRUE) {
summary.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, limits.x[1])
summary.adj <- c(0, 0)
} else if(length(summary.pos) == 2) {
summary.pos <- summary.pos
summary.adj <- c(0, 1)
} else if(summary.pos[1] == "topleft") {
summary.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, limits.x[2])
summary.adj <- c(0, 1)
} else if(summary.pos[1] == "top") {
summary.pos <- c(mean(limits.y), limits.x[2])
summary.adj <- c(0.5, 1)
} else if(summary.pos[1] == "topright") {
summary.pos <- c(limits.y[2], limits.x[2])
summary.adj <- c(1, 1)
} else if(summary.pos[1] == "left") {
summary.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, mean(limits.x))
summary.adj <- c(0, 0.5)
} else if(summary.pos[1] == "center") {
summary.pos <- c(mean(limits.y), mean(limits.x))
summary.adj <- c(0.5, 0.5)
} else if(summary.pos[1] == "right") {
summary.pos <- c(limits.y[2], mean(limits.x))
summary.adj <- c(1, 0.5)
}else if(summary.pos[1] == "bottomleft") {
summary.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, limits.x[1])
summary.adj <- c(0, 0)
} else if(summary.pos[1] == "bottom") {
summary.pos <- c(mean(limits.y), limits.x[1])
summary.adj <- c(0.5, 0)
} else if(summary.pos[1] == "bottomright") {
summary.pos <- c(limits.y[2], limits.x[1])
summary.adj <- c(1, 0)
}
## convert keywords into legend placement coordinates
if(missing(legend.pos) == TRUE) {
legend.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, limits.x[1])
legend.adj <- c(0, 0)
} else if(length(legend.pos) == 2) {
legend.pos <- legend.pos
legend.adj <- c(1, 0)
} else if(legend.pos[1] == "topleft") {
legend.pos <- c(limits.y[1] + par()$cxy[1] * 11, limits.x[2])
legend.adj <- c(1, 0)
} else if(legend.pos[1] == "top") {
legend.pos <- c(mean(limits.y), limits.x[2])
legend.adj <- c(1, 0.5)
} else if(legend.pos[1] == "topright") {
legend.pos <- c(limits.y[2], limits.x[2])
legend.adj <- c(1, 1)
} else if(legend.pos[1] == "left") {
legend.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, mean(limits.x))
legend.adj <- c(0.5, 0)
} else if(legend.pos[1] == "center") {
legend.pos <- c(mean(limits.y), mean(limits.x))
legend.adj <- c(0.5, 0.5)
} else if(legend.pos[1] == "right") {
legend.pos <- c(limits.y[2], mean(limits.x))
legend.adj <- c(0.5, 1)
} else if(legend.pos[1] == "bottomleft") {
legend.pos <- c(limits.y[1] + par()$cxy[1] * 7.5, limits.x[1])
legend.adj <- c(0, 0)
} else if(legend.pos[1] == "bottom") {
legend.pos <- c(mean(limits.y), limits.x[1])
legend.adj <- c(0, 0.5)
} else if(legend.pos[1] == "bottomright") {
legend.pos <- c(limits.y[2], limits.x[1])
legend.adj <- c(0, 1)
}
}
## define cartesian plot origins
if(rotate == FALSE) {
xy.0 <- c(min(ellipse[,1]) * lostintranslation, min(ellipse[,2]))
} else {
xy.0 <- c(min(ellipse[,1]), min(ellipse[,2]) * lostintranslation)
}
## calculate coordinates for dispersion polygon overlay
y.max.x <- 2 * limits.x[2] / max(data.global[6])
polygons <- matrix(nrow = length(data), ncol = 14)
for(i in 1:length(data)) {
if(dispersion == "qr") {
ci.lower <- quantile(data[[i]][,1], 0.25)
ci.upper <- quantile(data[[i]][,1], 0.75)
} else if(grepl(x = dispersion, pattern = "p") == TRUE) {
ci.plot <- as.numeric(strsplit(x = dispersion,
split = "p")[[1]][2])
ci.plot <- (100 - ci.plot) / 100
ci.lower <- quantile(data[[i]][,1], ci.plot)
ci.upper <- quantile(data[[i]][,1], 1 - ci.plot)
} else if(dispersion == "sd") {
if(log.z == TRUE) {
ci.lower <- exp(mean(log(data[[i]][,1])) - sd(log(data[[i]][,1])))
ci.upper <- exp(mean(log(data[[i]][,1])) + sd(log(data[[i]][,1])))
} else {
ci.lower <- mean(data[[i]][,1]) - sd(data[[i]][,1])
ci.upper <- mean(data[[i]][,1]) + sd(data[[i]][,1])
}
} else if(dispersion == "2sd") {
if(log.z == TRUE) {
ci.lower <- exp(mean(log(data[[i]][,1])) - 2 * sd(log(data[[i]][,1])))
ci.upper <- exp(mean(log(data[[i]][,1])) + 2 * sd(log(data[[i]][,1])))
} else {
ci.lower <- mean(data[[i]][,1]) - 2 * sd(data[[i]][,1])
ci.upper <- mean(data[[i]][,1]) + 2 * sd(data[[i]][,1])
}
} else {
stop("Measure of dispersion not supported.")
}
if(log.z == TRUE) {
ci.lower[which(ci.lower < 0)] <- 1
y.lower <- log(ci.lower)
y.upper <- log(ci.upper)
} else {
y.lower <- ci.lower
y.upper <- ci.upper
}
if(rotate == FALSE) {
polygons[i,1:7] <- c(limits.x[1],
limits.x[2],
xy.0[1],
par()$usr[2],
par()$usr[2],
xy.0[1],
limits.x[2])
polygons[i,8:14] <- c(0,
(y.upper - z.central.global) *
limits.x[2],
(y.upper - z.central.global) *
xy.0[1],
(y.upper - z.central.global) *
xy.0[1],
(y.lower - z.central.global) *
xy.0[1],
(y.lower - z.central.global) *
xy.0[1],
(y.lower - z.central.global) *
limits.x[2]
)
} else {
y.max <- par()$usr[4]
polygons[i,1:7] <- c(limits.x[1],
limits.x[2],
xy.0[2],
y.max,
y.max,
xy.0[2],
limits.x[2])
polygons[i,8:14] <- c(0,
(y.upper - z.central.global) *
limits.x[2],
(y.upper - z.central.global) *
xy.0[2],
(y.upper - z.central.global) *
xy.0[2],
(y.lower - z.central.global) *
xy.0[2],
(y.lower - z.central.global) *
xy.0[2],
(y.lower - z.central.global) *
limits.x[2]
)
}
}
## append information about data in confidence interval
for(i in 1:length(data)) {
data.in.2s <- rep(x = FALSE, times = nrow(data[[i]]))
data.in.2s[data[[i]][,8] > -2 & data[[i]][,8] < 2] <- TRUE
data[[i]] <- cbind(data[[i]], data.in.2s)
}
## calculate coordinates for 2-sigma bar overlay
if(bar[1] == TRUE) {
bars <- matrix(nrow = length(data), ncol = 8)
for(i in 1:length(data)) {
bars[i,1:4] <- c(limits.x[1],
limits.x[1],
ifelse("xlim" %in% names(extraArgs),
extraArgs$xlim[2] * 0.95,
max(data.global$precision)),
ifelse("xlim" %in% names(extraArgs),
extraArgs$xlim[2] * 0.95,
max(data.global$precision)))
bars[i,5:8] <- c(-2,
2,
(data[[i]][1,5] - z.central.global) *
bars[i,3] + 2,
(data[[i]][1,5] - z.central.global) *
bars[i,3] - 2)
}
} else {
bars <- matrix(nrow = length(bar), ncol = 8)
if(is.numeric(bar) == TRUE & log.z == TRUE) {
bar <- log(bar)
}
for(i in 1:length(bar)) {
bars[i,1:4] <- c(limits.x[1],
limits.x[1],
ifelse("xlim" %in% names(extraArgs),
extraArgs$xlim[2] * 0.95,
max(data.global$precision)),
ifelse("xlim" %in% names(extraArgs),
extraArgs$xlim[2] * 0.95,
max(data.global$precision)))
bars[i,5:8] <- c(-2,
2,
(bar[i] - z.central.global) *
bars[i,3] + 2,
(bar[i] - z.central.global) *
bars[i,3] - 2)
}
}
if (rotate == TRUE) {
bars <- matrix(bars[, rev(seq_len(ncol(bars)))], ncol = 8)
}
## calculate error bar coordinates
if(error.bars == TRUE) {
arrow.coords <- list(NA)
for(i in 1:length(data)) {
arrow.x1 <- data[[i]][,6]
arrow.x2 <- data[[i]][,6]
arrow.y1 <- data[[i]][,1] - data[[i]][,2]
arrow.y2 <- data[[i]][,1] + data[[i]][,2]
if(log.z == TRUE) {
arrow.y1 <- log(arrow.y1)
arrow.y2 <- log(arrow.y2)
}
arrow.coords[[length(arrow.coords) + 1]] <- cbind(
arrow.x1,
arrow.x2,
(arrow.y1 - z.central.global) * arrow.x1,
(arrow.y2 - z.central.global) * arrow.x1)
}
arrow.coords[[1]] <- NULL
}
## calculate KDE
KDE <- list(NA)
KDE.ext <- 0
KDE.bw <- numeric(0)
for(i in 1:length(data)) {
KDE.i <- density(x = data[[i]][,3],
kernel = "gaussian",
bw = bw,
from = ellipse.values[1],
to = ellipse.values[2],
weights = data[[i]]$weights)
KDE.xy <- cbind(KDE.i$x, KDE.i$y)
KDE.bw <- c(KDE.bw, KDE.i$bw)
KDE.ext <- ifelse(max(KDE.xy[,2]) < KDE.ext, KDE.ext, max(KDE.xy[,2]))
KDE.xy <- rbind(c(min(KDE.xy[,1]), 0), KDE.xy, c(max(KDE.xy[,1]), 0))
KDE[[length(KDE) + 1]] <- cbind(KDE.xy[,1], KDE.xy[,2])
}
KDE[1] <- NULL
## calculate mean KDE bandwidth
KDE.bw <- mean(KDE.bw, na.rm = TRUE)
## calculate max KDE value for labelling
KDE.max.plot <- numeric(length(data))
for(i in 1:length(data)) {
KDE.plot <- density(x = data[[i]][,1],
kernel = "gaussian",
bw = bw,
from = limits.z[1],
to = limits.z[2])
KDE.max.plot[i] <- max(KDE.plot$y)
}
KDE.max.plot <- max(KDE.max.plot, na.rm = TRUE)
## calculate histogram data without plotting
## create dummy list
hist.data <- list(NA)
for(i in 1:length(data)) {
hist.i <- hist(x = data[[i]][,3],
plot = FALSE,
breaks = breaks)
hist.data[[length(hist.data) + 1]] <- hist.i
}
## remove dummy list object
hist.data[[1]] <- NULL
## calculate maximum histogram bar height for normalisation
hist.max.plot <- numeric(length(data))
for(i in 1:length(data)) {
hist.max.plot <- ifelse(max(hist.data[[i]]$counts, na.rm = TRUE) >
hist.max.plot, max(hist.data[[i]]$counts,
na.rm = TRUE), hist.max.plot)
}
hist.max.plot <- max(hist.max.plot, na.rm = TRUE)
## normalise histogram bar height to KDE dimensions
for(i in 1:length(data)) {
hist.data[[i]]$density <- hist.data[[i]]$counts / hist.max.plot *
KDE.max.plot
}
## calculate boxplot data without plotting
## create dummy list
boxplot.data <- list(NA)
for(i in 1:length(data)) {
boxplot.i <- boxplot(x = data[[i]][,3],
plot = FALSE)
boxplot.data[[length(boxplot.data) + 1]] <- boxplot.i
}
## remove dummy list object
boxplot.data[[1]] <- NULL
## calculate line coordinates and further parameters
if(missing(line) == FALSE) {
## check if line parameters are R.Lum-objects
for(i in 1:length(line)) {
if(is.list(line) == TRUE) {
if(is(line[[i]], "RLum.Results")) {
line[[i]] <- as.numeric(get_RLum(object = line[[i]],
data.object = "summary")$de)
}
} else if(is(object = line, class2 = "RLum.Results")) {
line <- as.numeric(get_RLum(object = line,
data.object = "summary")$de)
}
}
## convert list to vector
if(is.list(line) == TRUE) {
line <- unlist(line)
}
if(log.z == TRUE) {
line <- log(line)
}
line.coords <- list(NA)
if(rotate == FALSE) {
for(i in 1:length(line)) {
line.x <- c(limits.x[1], min(ellipse[,1]), par()$usr[2])
line.y <- c(0,
(line[i] - z.central.global) * min(ellipse[,1]),
(line[i] - z.central.global) * min(ellipse[,1]))
line.coords[[length(line.coords) + 1]] <- rbind(line.x, line.y)
}
} else {
for(i in 1:length(line)) {
line.x <- c(limits.x[1], min(ellipse[,2]),y.max)
line.y <- c(0,
(line[i] - z.central.global) * min(ellipse[,2]),
(line[i] - z.central.global) * min(ellipse[,2]))
line.coords[[length(line.coords) + 1]] <- rbind(line.x, line.y)
}
}
line.coords[1] <- NULL
if(missing(line.col) == TRUE) {
line.col <- seq(from = 1, to = length(line.coords))
}
if(missing(line.lty) == TRUE) {
line.lty <- rep(1, length(line.coords))
}
if(missing(line.label) == TRUE) {
line.label <- rep("", length(line.coords))
}
}
## calculate rug coordinates
if(missing(rug) == FALSE) {
if(log.z == TRUE) {
rug.values <- log(De.global)
} else {
rug.values <- De.global
}
rug.coords <- list(NA)
if(rotate == FALSE) {
for(i in 1:length(rug.values)) {
rug.x <- c(xy.0[1] * (1 - 0.013 * (layout$abanico$dimension$rugl / 100)),
xy.0[1])
rug.y <- c((rug.values[i] - z.central.global) * min(ellipse[,1]),
(rug.values[i] - z.central.global) * min(ellipse[,1]))
rug.coords[[length(rug.coords) + 1]] <- rbind(rug.x, rug.y)
}
} else {
for(i in 1:length(rug.values)) {
rug.x <- c(xy.0[2] * (1 - 0.013 * (layout$abanico$dimension$rugl / 100)),
xy.0[2])
rug.y <- c((rug.values[i] - z.central.global) * min(ellipse[,2]),
(rug.values[i] - z.central.global) * min(ellipse[,2]))
rug.coords[[length(rug.coords) + 1]] <- rbind(rug.x, rug.y)
}
}
rug.coords[1] <- NULL
}
## Generate plot ------------------------------------------------------------
## determine number of subheader lines to shift the plot
if(length(summary) > 0 & summary.pos[1] == "sub") {
shift.lines <- (length(data) + 1) * layout$abanico$dimension$summary.line/100
} else {shift.lines <- 1}
## extract original plot parameters
bg.original <- par()$bg
on.exit(par(bg = bg.original), add = TRUE)
par(bg = layout$abanico$colour$background)
if(rotate == FALSE) {
## setup plot area
par(mar = c(4.5, 4.5, shift.lines + 1.5, 7),
xpd = TRUE,
cex = cex)
if(layout$abanico$dimension$figure.width != "auto" |
layout$abanico$dimension$figure.height != "auto") {
par(mai = layout$abanico$dimension$margin / 25.4,
pin = c(layout$abanico$dimension$figure.width / 25.4 -
layout$abanico$dimension$margin[2] / 25.4 -
layout$abanico$dimension$margin[4] / 25.4,
layout$abanico$dimension$figure.height / 25.4 -
layout$abanico$dimension$margin[1] / 25.4 -
layout$abanico$dimension$margin[3]/25.4))
}
## create empty plot
par(new = TRUE)
plot(NA,
xlim = c(limits.x[1], limits.x[2] * (1 / plot.ratio)),
ylim = limits.y,
main = "",
sub = sub,
xlab = "",
ylab = "",
xaxs = "i",
yaxs = "i",
frame.plot = FALSE,
axes = FALSE)
## add y-axis label
mtext(text = ylab,
at = mean(x = c(min(ellipse[,2]),
max(ellipse[,2])),
na.rm = TRUE),
# at = 0, ## BUG FROM VERSION 0.4.0, maybe removed in future
adj = 0.5,
side = 2,
line = 3 * layout$abanico$dimension$ylab.line / 100,
col = layout$abanico$colour$ylab,
family = layout$abanico$font.type$ylab,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ylab)[1],
cex = cex * layout$abanico$font.size$ylab/12)
## calculate upper x-axis label values
label.x.upper <- if(log.z == TRUE) {
as.character(round(1/axTicks(side = 1)[-1] * 100, 1))
} else {
as.character(round(1/axTicks(side = 1)[-1], 1))
}
# optionally, plot 2-sigma-bar
if(bar[1] != FALSE) {
for(i in 1:length(bar)) {
polygon(x = bars[i,1:4],
y = bars[i,5:8],
col = bar.fill[i],
border = bar.line[i])
}
}
## remove unwanted parts
polygon(x = c(par()$usr[2],
par()$usr[2],
par()$usr[2] * 2,
par()$usr[2] * 2),
y = c(min(ellipse[,2]) * 2,
max(ellipse[,2]) * 2,
max(ellipse[,2]) * 2,
min(ellipse[,2]) * 2),
col = bg.original,
lty = 0)
## optionally, plot dispersion polygon
if(polygon.fill[1] != "none") {
for(i in 1:length(data)) {
polygon(x = polygons[i,1:7],
y = polygons[i,8:14],
col = polygon.fill[i],
border = polygon.line[i])
}
}
## optionally, add minor grid lines
if(grid.minor != "none") {
for(i in 1:length(tick.values.minor)) {
lines(x = c(limits.x[1], min(ellipse[,1])),
y = c(0, (tick.values.minor[i] - z.central.global) *
min(ellipse[,1])),
col = grid.minor,
lwd = 1)
}
for(i in 1:length(tick.values.minor)) {
lines(x = c(xy.0[1], par()$usr[2]),
y = c((tick.values.minor[i] - z.central.global) *
min(ellipse[,1]),
(tick.values.minor[i] - z.central.global) *
min(ellipse[,1])),
col = grid.minor,
lwd = 1)
}
}
## optionally, add major grid lines
if(grid.major != "none") {
for(i in 1:length(tick.values.major)) {
lines(x = c(limits.x[1], min(ellipse[,1])),
y = c(0, (tick.values.major[i] - z.central.global) *
min(ellipse[,1])),
col = grid.major,
lwd = 1)
}
for(i in 1:length(tick.values.major)) {
lines(x = c(xy.0[1], par()$usr[2]),
y = c((tick.values.major[i] - z.central.global) *
min(ellipse[,1]),
(tick.values.major[i] - z.central.global) *
min(ellipse[,1])),
col = grid.major,
lwd = 1)
}
}
## optionally, plot lines for each bar
if(lwd[1] > 0 & lty[1] > 0 & bar[1] != FALSE & length(data) == 1) {
if(bar[1] == TRUE & length(bar) == 1) {
bar[1] <- z.central.global
}
for(i in 1:length(bar)) {
x2 <- r / sqrt(1 + f^2 * (
bar[i] - z.central.global)^2)
y2 <- (bar[i] - z.central.global) * x2
lines(x = c(limits.x[1], x2, xy.0[1], par()$usr[2]),
y = c(0, y2, y2, y2),
lty = lty[i],
lwd = lwd[i],
col = centrality.col[i])
}
} else if(lwd[1] > 0 & lty[1] > 0 & bar[1] != FALSE) {
for(i in 1:length(data)) {
z.line <- ifelse(test = is.numeric(bar[i]) == TRUE,
yes = bar[i],
no = data[[i]][1,5])
x2 <- r / sqrt(1 + f^2 * (
z.line - z.central.global)^2)
y2 <- (z.line - z.central.global) * x2
lines(x = c(limits.x[1], x2, xy.0[1], par()$usr[2]),
y = c(0, y2, y2, y2),
lty = lty[i],
lwd = lwd[i],
col = centrality.col[i])
}
}
## optionally add further lines
if(missing(line) == FALSE) {
for(i in 1:length(line)) {
lines(x = line.coords[[i]][1,1:3],
y = line.coords[[i]][2,1:3],
col = line.col[i],
lty = line.lty[i]
)
text(x = line.coords[[i]][1,3],
y = line.coords[[i]][2,3] + par()$cxy[2] * 0.3,
labels = line.label[i],
pos = 2,
col = line.col[i],
cex = cex * 0.9)
}
}
## add plot title
cex.old <- par()$cex
par(cex = layout$abanico$font.size$main / 12)
title(main = main,
family = layout$abanico$font.type$main,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$main)[1],
col.main = layout$abanico$colour$main,
line = shift.lines * layout$abanico$dimension$main / 100)
par(cex = cex.old)
## calculate lower x-axis (precision)
x.axis.ticks <- axTicks(side = 1)
x.axis.ticks <- x.axis.ticks[c(TRUE, x.axis.ticks <= limits.x[2])]
x.axis.ticks <- x.axis.ticks[x.axis.ticks <= max(ellipse[,1])]
## x-axis with lables and ticks
axis(side = 1,
at = x.axis.ticks,
col = layout$abanico$colour$xtck1,
col.axis = layout$abanico$colour$xtck1,
labels = NA,
tcl = -layout$abanico$dimension$xtcl1 / 200,
cex = cex)
axis(side = 1,
at = x.axis.ticks,
line = 2 * layout$abanico$dimension$xtck1.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck1,
family = layout$abanico$font.type$xtck1,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck1)[1],
col.axis = layout$abanico$colour$xtck1,
cex.axis = layout$abanico$font.size$xlab1/12)
## extend axis line to right side of the plot
lines(x = c(max(x.axis.ticks), max(ellipse[,1])),
y = c(limits.y[1], limits.y[1]),
col = layout$abanico$colour$xtck1)
## draw closing tick on right hand side
axis(side = 1,
tcl = -layout$abanico$dimension$xtcl1 / 200,
lwd = 0,
lwd.ticks = 1,
at = limits.x[2],
labels = FALSE,
col = layout$abanico$colour$xtck1)
axis(side = 1,
tcl = layout$abanico$dimension$xtcl2 / 200,
lwd = 0,
lwd.ticks = 1,
at = limits.x[2],
labels = FALSE,
col = layout$abanico$colour$xtck2)
## add lower axis label
mtext(xlab[2],
at = (limits.x[1] + max(ellipse[,1])) / 2,
side = 1,
line = 2.5 * layout$abanico$dimension$xlab1.line / 100,
col = layout$abanico$colour$xlab1,
family = layout$abanico$font.type$xlab1,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab1)[1],
cex = cex * layout$abanico$font.size$xlab1/12)
## add upper axis label
mtext(xlab[1],
at = (limits.x[1] + max(ellipse[,1])) / 2,
side = 1,
line = -3.5 * layout$abanico$dimension$xlab2.line / 100,
col = layout$abanico$colour$xlab2,
family = layout$abanico$font.type$xlab2,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab2)[1],
cex = cex * layout$abanico$font.size$xlab2/12)
## plot upper x-axis
axis(side = 1,
at = x.axis.ticks[-1],
col = layout$abanico$colour$xtck2,
col.axis = layout$abanico$colour$xtck2,
labels = NA,
tcl = layout$abanico$dimension$xtcl2 / 200,
cex = cex)
## remove first tick label (infinity)
label.x.upper <- label.x.upper[1:(length(x.axis.ticks) - 1)]
axis(side = 1,
at = x.axis.ticks[-1],
labels = label.x.upper,
line = -1 * layout$abanico$dimension$xtck2.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck2,
family = layout$abanico$font.type$xtck2,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck2)[1],
col.axis = layout$abanico$colour$xtck2,
cex.axis = layout$abanico$font.size$xlab2/12)
## plot y-axis
if(is.null(extraArgs$yaxt) || extraArgs$yaxt != "n"){
if(y.axis) {
char.height <- par()$cxy[2]
tick.space <- axisTicks(usr = limits.y, log = FALSE)
tick.space <- (max(tick.space) - min(tick.space)) / length(tick.space)
if(tick.space < char.height * 1.7) {
axis(side = 2,
tcl = -layout$abanico$dimension$ytcl / 200,
lwd = 1,
lwd.ticks = 1,
at = c(-2, 2),
labels = c("", ""),
las = 1,
col = layout$abanico$colour$ytck)
axis(side = 2,
at = 0,
tcl = 0,
line = 2 * layout$abanico$dimension$ytck.line / 100 - 2,
labels = paste("\u00B1", "2"),
las = 1,
family = layout$abanico$font.type$ytck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ytck)[1],
col.axis = layout$abanico$colour$ytck,
cex.axis = layout$abanico$font.size$ylab/12)
} else {
axis(side = 2,
at = seq(-2, 2, by = 2),
col = layout$abanico$colour$ytck,
col.axis = layout$abanico$colour$ytck,
labels = NA,
las = 1,
tcl = -layout$abanico$dimension$ytcl / 200,
cex = cex)
axis(side = 2,
at = seq(-2, 2, by = 2),
line = 2 * layout$abanico$dimension$ytck.line / 100 - 2,
lwd = 0,
las = 1,
col = layout$abanico$colour$ytck,
family = layout$abanico$font.type$ytck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ytck)[1],
col.axis = layout$abanico$colour$ytck,
cex.axis = layout$abanico$font.size$ylab/12)
}
} else {
axis(side = 2,
at = 0,
col = layout$abanico$colour$ytck,
col.axis = layout$abanico$colour$ytck,
labels = NA,
las = 1,
tcl = -layout$abanico$dimension$ytcl / 200,
cex = cex)
axis(side = 2,
at = 0,
line = 2 * layout$abanico$dimension$ytck.line / 100 - 2,
lwd = 0,
las = 1,
col = layout$abanico$colour$ytck,
family = layout$abanico$font.type$ytck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ytck)[1],
col.axis = layout$abanico$colour$ytck,
cex.axis = layout$abanico$font.size$ylab/12)
}
}
## plot minor z-ticks
for(i in 1:length(tick.values.minor)) {
lines(x = c(par()$usr[2],
(1 + 0.007 * cex * layout$abanico$dimension$ztcl / 100) *
par()$usr[2]),
y = c((tick.values.minor[i] - z.central.global) *
min(ellipse[,1]),
(tick.values.minor[i] - z.central.global) *
min(ellipse[,1])),
col = layout$abanico$colour$ztck)
}
## plot major z-ticks
for(i in 1:length(tick.values.major)) {
lines(x = c(par()$usr[2],
(1 + 0.015 * cex * layout$abanico$dimension$ztcl / 100) *
par()$usr[2]),
y = c((tick.values.major[i] - z.central.global) *
min(ellipse[,1]),
(tick.values.major[i] - z.central.global) *
min(ellipse[,1])),
col = layout$abanico$colour$ztck)
}
## plot z-axes
lines(ellipse, col = layout$abanico$colour$border)
lines(rep(par()$usr[2], nrow(ellipse)), ellipse[,2],
col = layout$abanico$colour$ztck)
## plot z-axis text
text(x = (1 + 0.04 * cex * layout$abanico$dimension$ztcl / 100) *
par()$usr[2],
y = (tick.values.major - z.central.global) * min(ellipse[,1]),
labels = label.z.text,
adj = 0,
family = layout$abanico$font.type$ztck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ztck)[1],
cex = cex * layout$abanico$font.size$ztck/12)
## plot z-label
mtext(text = zlab,
at = mean(x = c(min(ellipse[,2]),
max(ellipse[,2])),
na.rm = TRUE),
# at = 0, ## BUG from version 0.4.0, maybe removed in future
side = 4,
las = 3,
adj = 0.5,
line = 5 * layout$abanico$dimension$zlab.line / 100,
col = layout$abanico$colour$zlab,
family = layout$abanico$font.type$zlab,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$zlab)[1],
cex = cex * layout$abanico$font.size$zlab/12)
## plot values and optionally error bars
if(error.bars == TRUE) {
for(i in 1:length(data)) {
arrows(x0 = arrow.coords[[i]][,1],
x1 = arrow.coords[[i]][,2],
y0 = arrow.coords[[i]][,3],
y1 = arrow.coords[[i]][,4],
length = 0,
angle = 90,
code = 3,
col = value.bar[i])
}
}
for(i in 1:length(data)) {
points(data[[i]][,6][data[[i]][,6] <= limits.x[2]],
data[[i]][,8][data[[i]][,6] <= limits.x[2]],
col = value.dot[i],
pch = pch[i],
cex = layout$abanico$dimension$pch / 100)
}
## calculate KDE width
KDE.max <- 0
for(i in 1:length(data)) {
KDE.max <- ifelse(test = KDE.max < max(KDE[[i]][,2]),
yes = max(KDE[[i]][,2]),
no = KDE.max)
}
## optionally adjust KDE width for boxplot option
if(boxplot == TRUE) {
KDE.max <- 1.25 * KDE.max
}
KDE.scale <- (par()$usr[2] - xy.0[1]) / (KDE.max * 1.05)
## optionally add KDE plot
if(kde == TRUE) {
## plot KDE lines
for(i in 1:length(data)) {
polygon(x = xy.0[1] + KDE[[i]][,2] * KDE.scale,
y = (KDE[[i]][,1] - z.central.global) * min(ellipse[,1]),
col = kde.fill[i],
border = kde.line[i],
lwd = 1.7)
}
## plot KDE x-axis
axis(side = 1,
at = c(xy.0[1], par()$usr[2]),
col = layout$abanico$colour$xtck3,
col.axis = layout$abanico$colour$xtck3,
labels = NA,
tcl = -layout$abanico$dimension$xtcl3 / 200,
cex = cex)
axis(side = 1,
at = c(xy.0[1], par()$usr[2]),
labels = as.character(round(c(0, KDE.max.plot), 3)),
line = 2 * layout$abanico$dimension$xtck3.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck3,
family = layout$abanico$font.type$xtck3,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck3)[1],
col.axis = layout$abanico$colour$xtck3,
cex.axis = layout$abanico$font.size$xtck3/12)
mtext(text = paste(xlab[3],
" (bw ",
round(x = KDE.bw,
digits = 3),
")",
sep = ""),
at = (xy.0[1] + par()$usr[2]) / 2,
side = 1,
line = 2.5 * layout$abanico$dimension$xlab3.line / 100,
col = layout$abanico$colour$xlab3,
family = layout$abanico$font.type$xlab3,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab3)[1],
cex = cex * layout$abanico$font.size$xlab3/12)
}
## optionally add histogram or dot plot axis
if(hist == TRUE) {
axis(side = 1,
at = c(xy.0[1], par()$usr[2]),
labels = as.character(c(0, hist.max.plot)),
line = -1 * layout$abanico$dimension$xtck3.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck3,
family = layout$abanico$font.type$xtck3,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck3)[1],
col.axis = layout$abanico$colour$xtck3,
cex.axis = layout$abanico$font.size$xtck3/12)
## add label
mtext(text = "n",
at = (xy.0[1] + par()$usr[2]) / 2,
side = 1,
line = -3.5 * layout$abanico$dimension$xlab2.line / 100,
col = layout$abanico$colour$xlab2,
family = layout$abanico$font.type$xlab2,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab2)[1],
cex = cex * layout$abanico$font.size$xlab2/12)
## plot ticks
axis(side = 1,
at = c(xy.0[1], par()$usr[2]),
col = layout$abanico$colour$xtck2,
col.axis = layout$abanico$colour$xtck2,
labels = NA,
tcl = layout$abanico$dimension$xtcl2 / 200,
cex = cex)
## calculate scaling factor for histogram bar heights
hist.scale <- (par()$usr[2] - xy.0[1]) / (KDE.max.plot * 1.05)
## draw each bar for each data set
for(i in 1:length(data)) {
for(j in 1:length(hist.data[[i]]$density)) {
## calculate x-coordinates
hist.x.i <- c(xy.0[1],
xy.0[1],
xy.0[1] + hist.data[[i]]$density[j] * hist.scale,
xy.0[1] + hist.data[[i]]$density[j] * hist.scale)
## calculate y-coordinates
hist.y.i <- c((hist.data[[i]]$breaks[j] - z.central.global) *
min(ellipse[,1]),
(hist.data[[i]]$breaks[j + 1] - z.central.global) *
min(ellipse[,1]),
(hist.data[[i]]$breaks[j + 1] - z.central.global) *
min(ellipse[,1]),
(hist.data[[i]]$breaks[j] - z.central.global) *
min(ellipse[,1]))
## remove data out of z-axis range
hist.y.i <- ifelse(hist.y.i < min(ellipse[,2]),
min(ellipse[,2]),
hist.y.i)
hist.y.i <- ifelse(hist.y.i > max(ellipse[,2]),
max(ellipse[,2]),
hist.y.i)
## draw the bars
polygon(x = hist.x.i,
y = hist.y.i,
col = kde.fill[i],
border = kde.line[i])
}
}
}
## optionally add dot plot
if(dots == TRUE) {
for(i in 1:length(data)) {
for(j in 1:length(hist.data[[i]]$counts)) {
## calculate scaling factor for histogram bar heights
dots.distance <- (par()$usr[2] - (xy.0[1] + par()$cxy[1] * 0.4)) / hist.max.plot
dots.x.i <- seq(from = xy.0[1] + par()$cxy[1] * 0.4,
by = dots.distance,
length.out = hist.data[[i]]$counts[j])
dots.y.i <- rep((hist.data[[i]]$mids[j] - z.central.global) *
min(ellipse[,1]), length(dots.x.i))
## remove data out of z-axis range
dots.x.i <- dots.x.i[dots.y.i >= min(ellipse[,2]) &
dots.y.i <= max(ellipse[,2])]
dots.y.i <- dots.y.i[dots.y.i >= min(ellipse[,2]) &
dots.y.i <= max(ellipse[,2])]
if(max(c(0, dots.x.i), na.rm = TRUE) >= (par()$usr[2] -
par()$cxy[1] * 0.4)) {
dots.y.i <- dots.y.i[dots.x.i < (par()$usr[2] - par()$cxy[1] * 0.4)]
dots.x.i <- dots.x.i[dots.x.i < (par()$usr[2] - par()$cxy[1] * 0.4)]
pch.dots <- c(rep(20, max(length(dots.x.i) - 1),1), 15)
} else {
pch.dots <- rep(20, length(dots.x.i))
}
## plot points
points(x = dots.x.i,
y = dots.y.i,
pch = "|",
cex = 0.7 * cex,
col = kde.line[i])
}
}
}
## optionally add box plot
if(boxplot == TRUE) {
for(i in 1:length(data)) {
## draw median line
lines(x = c(xy.0[1] + KDE.max * 0.85, xy.0[1] + KDE.max * 0.95),
y = c((boxplot.data[[i]]$stats[3,1] - z.central.global) *
min(ellipse[,1]),
(boxplot.data[[i]]$stats[3,1] - z.central.global) *
min(ellipse[,1])),
lwd = 2,
col = kde.line[i])
## draw p25-p75-polygon
polygon(x = c(xy.0[1] + KDE.max * 0.85,
xy.0[1] + KDE.max * 0.85,
xy.0[1] + KDE.max * 0.95,
xy.0[1] + KDE.max * 0.95),
y = c((boxplot.data[[i]]$stats[2,1] - z.central.global) *
min(ellipse[,1]),
(boxplot.data[[i]]$stats[4,1] - z.central.global) *
min(ellipse[,1]),
(boxplot.data[[i]]$stats[4,1] - z.central.global) *
min(ellipse[,1]),
(boxplot.data[[i]]$stats[2,1] - z.central.global) *
min(ellipse[,1])),
border = kde.line[i])
## draw whiskers
lines(x = c(xy.0[1] + KDE.max * 0.9,
xy.0[1] + KDE.max * 0.9),
y = c((boxplot.data[[i]]$stats[2,1] - z.central.global) *
min(ellipse[,1]),
(boxplot.data[[i]]$stats[1,1] - z.central.global) *
min(ellipse[,1])),
col = kde.line[i])
lines(x = c(xy.0[1] + KDE.max * 0.87,
xy.0[1] + KDE.max * 0.93),
y = rep((boxplot.data[[i]]$stats[1,1] - z.central.global) *
min(ellipse[,1]), 2),
col = kde.line[i])
lines(x = c(xy.0[1] + KDE.max * 0.9,
xy.0[1] + KDE.max * 0.9),
y = c((boxplot.data[[i]]$stats[4,1] - z.central.global) *
min(ellipse[,1]),
(boxplot.data[[i]]$stats[5,1] - z.central.global) *
min(ellipse[,1])),
col = kde.line[i])
lines(x = c(xy.0[1] + KDE.max * 0.87,
xy.0[1] + KDE.max * 0.93),
y = rep((boxplot.data[[i]]$stats[5,1] - z.central.global) *
min(ellipse[,1]), 2),
col = kde.line[i])
## draw outlier points
points(x = rep(xy.0[1] + KDE.max * 0.9,
length(boxplot.data[[i]]$out)),
y = (boxplot.data[[i]]$out - z.central.global) *
min(ellipse[,1]),
cex = cex * 0.8,
col = kde.line[i])
}
}
## optionally add stats, i.e. min, max, median sample text
if(length(stats) > 0) {
text(x = stats.data[,1],
y = stats.data[,2],
pos = 2,
labels = round(stats.data[,3], 1),
family = layout$abanico$font.type$stats,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$stats)[1],
cex = cex * layout$abanico$font.size$stats/12,
col = layout$abanico$colour$stats)
}
## optionally add rug
if(rug == TRUE) {
for(i in 1:length(rug.coords)) {
lines(x = rug.coords[[i]][1,],
y = rug.coords[[i]][2,],
col = value.rug[data.global[i,10]])
}
}
## plot KDE base line
lines(x = c(xy.0[1], xy.0[1]),
y = c(min(ellipse[,2]), max(ellipse[,2])),
col = layout$abanico$colour$border)
## draw border around plot
if(frame == 1) {
polygon(x = c(limits.x[1], min(ellipse[,1]), par()$usr[2],
par()$usr[2], min(ellipse[,1])),
y = c(0, max(ellipse[,2]), max(ellipse[,2]),
min(ellipse[,2]), min(ellipse[,2])),
border = layout$abanico$colour$border,
lwd = 0.8)
} else if(frame == 2) {
polygon(x = c(limits.x[1], min(ellipse[,1]), par()$usr[2],
par()$usr[2], min(ellipse[,1]), limits.x[1]),
y = c(2, max(ellipse[,2]), max(ellipse[,2]),
min(ellipse[,2]), min(ellipse[,2]), -2),
border = layout$abanico$colour$border,
lwd = 0.8)
} else if(frame == 3) {
polygon(x = c(limits.x[1], par()$usr[2],
par()$usr[2], limits.x[1]),
y = c(max(ellipse[,2]), max(ellipse[,2]),
min(ellipse[,2]), min(ellipse[,2])),
border = layout$abanico$colour$border,
lwd = 0.8)
}
## optionally add legend content
if(!missing(legend)) {
## store and change font family
par.family <- par()$family
par(family = layout$abanico$font.type$legend)
legend(x = legend.pos[1],
y = 0.8 * legend.pos[2],
xjust = legend.adj[1],
yjust = legend.adj[2],
legend = legend,
pch = pch,
col = value.dot,
text.col = value.dot,
text.font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$legend)[1],
cex = cex * layout$abanico$font.size$legend/12,
bty = "n")
## restore font family
par(family = par.family)
}
## optionally add subheader text
mtext(text = mtext,
side = 3,
line = (shift.lines - 2) * layout$abanico$dimension$mtext / 100,
col = layout$abanico$colour$mtext,
family = layout$abanico$font.type$mtext,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$mtext)[1],
cex = cex * layout$abanico$font.size$mtext / 12)
## add summary content
for(i in 1:length(data)) {
if(summary.pos[1] != "sub") {
text(x = summary.pos[1],
y = summary.pos[2],
adj = summary.adj,
labels = label.text[[i]],
col = summary.col[i],
family = layout$abanico$font.type$summary,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$summary)[1],
cex = cex * layout$abanico$font.size$summary / 12)
} else {
if(mtext == "") {
mtext(side = 3,
line = (shift.lines- 1 - i) *
layout$abanico$dimension$summary / 100 ,
text = label.text[[i]],
col = summary.col[i],
family = layout$abanico$font.type$summary,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$summary)[1],
cex = cex * layout$abanico$font.size$summary / 12)
}
}
}
} else {
## setup plot area
par(mar = c(4, 4, shift.lines + 5, 4),
xpd = TRUE,
cex = cex)
if(layout$abanico$dimension$figure.width != "auto" |
layout$abanico$dimension$figure.height != "auto") {
par(mai = layout$abanico$dimension$margin / 25.4,
pin = c(layout$abanico$dimension$figure.width / 25.4 -
layout$abanico$dimension$margin[2] / 25.4 -
layout$abanico$dimension$margin[4] / 25.4,
layout$abanico$dimension$figure.height / 25.4 -
layout$abanico$dimension$margin[1] / 25.4 -
layout$abanico$dimension$margin[3]/25.4))
}
## create empty plot
par(new = TRUE)
plot(NA,
xlim = limits.y,
ylim = c(limits.x[1], limits.x[2] * (1 / plot.ratio)),
main = "",
sub = sub,
xlab = "",
ylab = "",
xaxs = "i",
yaxs = "i",
frame.plot = FALSE,
axes = FALSE)
## add y-axis label
mtext(text = ylab,
at = 0,
adj = 0.5,
side = 1,
line = 3 * layout$abanico$dimension$ylab.line / 100,
col = layout$abanico$colour$ylab,
family = layout$abanico$font.type$ylab,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ylab)[1],
cex = cex * layout$abanico$font.size$ylab/12)
## calculate upper x-axis label values
label.x.upper <- if(log.z == TRUE) {
as.character(round(1/axTicks(side = 2)[-1] * 100, 1))
} else {
as.character(round(1/axTicks(side = 2)[-1], 1))
}
# optionally, plot 2-sigma-bar
if(bar[1] != FALSE) {
for(i in 1:length(bar)) {
polygon(x = bars[i,1:4],
y = bars[i,5:8],
col = bar.fill[i],
border = bar.line[i])
}
}
## remove unwanted parts
polygon(y = c(par()$usr[2],
par()$usr[2],
par()$usr[2] * 2,
par()$usr[2] * 2),
x = c(min(ellipse[,2]) * 2,
max(ellipse[,2]) * 2,
max(ellipse[,2]) * 2,
min(ellipse[,2]) * 2),
col = bg.original,
lty = 0)
## optionally, plot dispersion polygon
if(polygon.fill[1] != "none") {
for(i in 1:length(data)) {
polygon(x = polygons[i,8:14],
y = polygons[i,1:7],
col = polygon.fill[i],
border = polygon.line[i])
}
}
## optionally, add minor grid lines
if(grid.minor != "none") {
for(i in 1:length(tick.values.minor)) {
lines(y = c(limits.x[1], min(ellipse[,1])),
x = c(0, (tick.values.minor[i] - z.central.global) * min(ellipse[,1])),
col = grid.minor,
lwd = 1)
}
for(i in 1:length(tick.values.minor)) {
lines(y = c(xy.0[2], par()$usr[2]),
x = c((tick.values.minor[i] - z.central.global) * min(ellipse[,1]),
(tick.values.minor[i] - z.central.global) * min(ellipse[,1])),
col = grid.minor,
lwd = 1)
}
}
## optionally, add major grid lines
if(grid.major != "none") {
for(i in 1:length(tick.values.major)) {
lines(y = c(limits.x[1], min(ellipse[,2])),
x = c(0, (tick.values.major[i] - z.central.global) * min(ellipse[,2])),
col = grid.major,
lwd = 1)
}
for(i in 1:length(tick.values.major)) {
lines(y = c(xy.0[2],y.max),
x = c((tick.values.major[i] - z.central.global) * min(ellipse[,2]),
(tick.values.major[i] - z.central.global) * min(ellipse[,2])),
col = grid.major,
lwd = 1)
}
}
## optionally, plot lines for each bar
if(lwd[1] > 0 & lty[1] > 0 & bar[1] != FALSE & length(data) == 1) {
if(bar[1] == TRUE & length(bar) == 1) {
bar[1] <- z.central.global
}
for(i in 1:length(bar)) {
x2 <- r / sqrt(1 + f^2 * (
bar[i] - z.central.global)^2)
y2 <- (bar[i] - z.central.global) * x2
lines(x = c(0, y2, y2, y2),
y = c(limits.x[1], x2, xy.0[2], par()$usr[4]),
lty = lty[i],
lwd = lwd[i],
col = centrality.col[i])
}
}
## optionally add further lines
if(missing(line) == FALSE) {
for(i in 1:length(line)) {
lines(y = line.coords[[i]][1,1:3],
x = line.coords[[i]][2,1:3],
col = line.col[i],
lty = line.lty[i]
)
text(y = line.coords[[i]][1,3],
x = line.coords[[i]][2,3] + par()$cxy[2] * 0.3,
labels = line.label[i],
pos = 2,
col = line.col[i],
cex = cex * 0.9)
}
}
## add plot title
cex.old <- par()$cex
par(cex = layout$abanico$font.size$main / 12)
title(main = main,
family = layout$abanico$font.type$main,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$main)[1],
col.main = layout$abanico$colour$main,
line = (shift.lines + 3.5) * layout$abanico$dimension$main / 100)
par(cex = cex.old)
## calculate lower x-axis (precision)
x.axis.ticks <- axTicks(side = 2)
x.axis.ticks <- x.axis.ticks[c(TRUE, x.axis.ticks <= limits.x[2])]
x.axis.ticks <- x.axis.ticks[x.axis.ticks <= max(ellipse[,2])]
## x-axis with lables and ticks
axis(side = 2,
at = x.axis.ticks,
col = layout$abanico$colour$xtck1,
col.axis = layout$abanico$colour$xtck1,
labels = NA,
tcl = -layout$abanico$dimension$xtcl1 / 200,
cex = cex)
axis(side = 2,
at = x.axis.ticks,
line = 2 * layout$abanico$dimension$xtck1.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck1,
family = layout$abanico$font.type$xtck1,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck1)[1],
col.axis = layout$abanico$colour$xtck1,
cex.axis = layout$abanico$font.size$xlab1/12)
## extend axis line to right side of the plot
lines(y = c(max(x.axis.ticks), max(ellipse[,2])),
x = c(limits.y[1], limits.y[1]),
col = layout$abanico$colour$xtck1)
## draw closing tick on right hand side
axis(side = 2,
tcl = -layout$abanico$dimension$xtcl1 / 200,
lwd = 0,
lwd.ticks = 1,
at = limits.x[2],
labels = FALSE,
col = layout$abanico$colour$xtck1)
axis(side = 2,
tcl = layout$abanico$dimension$xtcl2 / 200,
lwd = 0,
lwd.ticks = 1,
at = limits.x[2],
labels = FALSE,
col = layout$abanico$colour$xtck2)
## add lower axis label
mtext(xlab[2],
at = (limits.x[1] + max(ellipse[,2])) / 2,
side = 2,
line = 2.5 * layout$abanico$dimension$xlab1.line / 100,
col = layout$abanico$colour$xlab1,
family = layout$abanico$font.type$xlab1,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab1)[1],
cex = cex * layout$abanico$font.size$xlab1/12)
## add upper axis label
mtext(xlab[1],
at = (limits.x[1] + max(ellipse[,2])) / 2,
side = 2,
line = -3.5 * layout$abanico$dimension$xlab2.line / 100,
col = layout$abanico$colour$xlab2,
family = layout$abanico$font.type$xlab2,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab2)[1],
cex = cex * layout$abanico$font.size$xlab2/12)
## plot upper x-axis
axis(side = 2,
at = x.axis.ticks[-1],
col = layout$abanico$colour$xtck2,
col.axis = layout$abanico$colour$xtck2,
labels = NA,
tcl = layout$abanico$dimension$xtcl2 / 200,
cex = cex)
## remove first tick label (infinity)
label.x.upper <- label.x.upper[1:(length(x.axis.ticks) - 1)]
axis(side = 2,
at = x.axis.ticks[-1],
labels = label.x.upper,
line = -1 * layout$abanico$dimension$xtck2.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck2,
family = layout$abanico$font.type$xtck2,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck2)[1],
col.axis = layout$abanico$colour$xtck2,
cex.axis = layout$abanico$font.size$xlab2/12)
## plot y-axis
if(y.axis == TRUE) {
char.height <- par()$cxy[2]
tick.space <- axisTicks(usr = limits.y, log = FALSE)
tick.space <- (max(tick.space) - min(tick.space)) / length(tick.space)
if(tick.space < char.height * 1.7) {
axis(side = 1,
tcl = -layout$abanico$dimension$ytcl / 200,
lwd = 1,
lwd.ticks = 1,
at = c(-2, 2),
labels = c("", ""),
las = 1,
col = layout$abanico$colour$ytck)
axis(side = 1,
at = 0,
tcl = 0,
line = 2 * layout$abanico$dimension$ytck.line / 100 - 2,
labels = paste("\u00B1", "2"),
las = 1,
family = layout$abanico$font.type$ytck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ytck)[1],
col.axis = layout$abanico$colour$ytck,
cex.axis = layout$abanico$font.size$ylab/12)
} else {
axis(side = 1,
at = seq(-2, 2, by = 2),
col = layout$abanico$colour$ytck,
col.axis = layout$abanico$colour$ytck,
labels = NA,
las = 1,
tcl = -layout$abanico$dimension$ytcl / 200,
cex = cex)
axis(side = 1,
at = seq(-2, 2, by = 2),
line = 2 * layout$abanico$dimension$ytck.line / 100 - 2,
lwd = 0,
las = 1,
col = layout$abanico$colour$ytck,
family = layout$abanico$font.type$ytck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ytck)[1],
col.axis = layout$abanico$colour$ytck,
cex.axis = layout$abanico$font.size$ylab/12)
}
} else {
axis(side = 1,
at = 0,
col = layout$abanico$colour$ytck,
col.axis = layout$abanico$colour$ytck,
labels = NA,
las = 1,
tcl = -layout$abanico$dimension$ytcl / 200,
cex = cex)
axis(side = 1,
at = 0,
line = 2 * layout$abanico$dimension$ytck.line / 100 - 2,
lwd = 0,
las = 1,
col = layout$abanico$colour$ytck,
family = layout$abanico$font.type$ytck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ytck)[1],
col.axis = layout$abanico$colour$ytck,
cex.axis = layout$abanico$font.size$ylab/12)
}
## plot minor z-ticks
for(i in 1:length(tick.values.minor)) {
lines(y = c(par()$usr[4],
(1 + 0.015 * cex * layout$abanico$dimension$ztcl / 100) *
y.max),
x = c((tick.values.minor[i] - z.central.global) *
min(ellipse[,2]),
(tick.values.minor[i] - z.central.global) *
min(ellipse[,2])),
col = layout$abanico$colour$ztck)
}
## plot major z-ticks
for(i in 1:length(tick.values.major)) {
lines(y = c(par()$usr[4],
(1 + 0.03 * cex * layout$abanico$dimension$ztcl / 100) *
y.max),
x = c((tick.values.major[i] - z.central.global) *
min(ellipse[,2]),
(tick.values.major[i] - z.central.global) *
min(ellipse[,2])),
col = layout$abanico$colour$ztck)
}
## plot z-axes
lines(ellipse, col = layout$abanico$colour$border)
lines(y = rep(par()$usr[4], nrow(ellipse)),
x = ellipse[,1],
col = layout$abanico$colour$ztck)
## plot z-axis text
text(y = (1 + 0.06 * cex * layout$abanico$dimension$ztcl / 100) *
y.max,
x = (tick.values.major - z.central.global) * min(ellipse[,2]),
labels = label.z.text,
adj = 0.5,
family = layout$abanico$font.type$ztck,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$ztck)[1],
cex = cex * layout$abanico$font.size$ztck/12)
## plot z-label
mtext(text = zlab,
at = 0,
side = 3,
las = 1,
adj = 0.5,
line = 2.5 * layout$abanico$dimension$zlab.line / 100,
col = layout$abanico$colour$zlab,
family = layout$abanico$font.type$zlab,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$zlab)[1],
cex = cex * layout$abanico$font.size$zlab/12)
## plot values and optionally error bars
if(error.bars == TRUE) {
for(i in 1:length(data)) {
arrows(y0 = arrow.coords[[i]][,1],
y1 = arrow.coords[[i]][,2],
x0 = arrow.coords[[i]][,3],
x1 = arrow.coords[[i]][,4],
length = 0,
angle = 90,
code = 3,
col = value.bar[i])
}
}
for(i in 1:length(data)) {
points(y = data[[i]][,6][data[[i]][,6] <= limits.x[2]],
x = data[[i]][,8][data[[i]][,6] <= limits.x[2]],
col = value.dot[i],
pch = pch[i],
cex = layout$abanico$dimension$pch / 100)
}
## calculate KDE width
KDE.max <- 0
for(i in 1:length(data)) {
KDE.max <- ifelse(test = KDE.max < max(KDE[[i]][,2]),
yes = max(KDE[[i]][,2]),
no = KDE.max)
}
## optionally adjust KDE width for boxplot option
if(boxplot == TRUE) {
KDE.max <- 1.3 * KDE.max
}
KDE.scale <- (par()$usr[4] - xy.0[2]) / (KDE.max * 1.05)
## optionally add KDE plot
if(kde == TRUE) {
## plot KDE lines
for(i in 1:length(data)) {
polygon(y = xy.0[2] + KDE[[i]][,2] * KDE.scale,
x = (KDE[[i]][,1] - z.central.global) * min(ellipse[,2]),
col = kde.fill[i],
border = kde.line[i],
lwd = 1.7)
}
## plot KDE x-axis
axis(side = 2,
at = c(xy.0[2], y.max),
col = layout$abanico$colour$xtck3,
col.axis = layout$abanico$colour$xtck3,
labels = NA,
tcl = -layout$abanico$dimension$xtcl3 / 200,
cex = cex)
axis(side = 2,
at = c(xy.0[2], y.max),
labels = as.character(round(c(0, KDE.max.plot), 3)),
line = 2 * layout$abanico$dimension$xtck3.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck3,
family = layout$abanico$font.type$xtck3,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck3)[1],
col.axis = layout$abanico$colour$xtck3,
cex.axis = layout$abanico$font.size$xtck3/12)
mtext(text = paste(xlab[3],
" (bw ",
round(x = KDE.bw,
digits = 3),
")",
sep = ""),
at = (xy.0[2] + y.max) / 2,
side = 2,
line = 2.5 * layout$abanico$dimension$xlab3.line / 100,
col = layout$abanico$colour$xlab3,
family = layout$abanico$font.type$xlab3,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab3)[1],
cex = cex * layout$abanico$font.size$xlab3/12)
}
## optionally add histogram or dot plot axis
if(hist == TRUE) {
axis(side = 2,
at = c(xy.0[2], y.max),
labels = as.character(c(0, hist.max.plot)),
line = -1 * layout$abanico$dimension$xtck3.line / 100 - 2,
lwd = 0,
col = layout$abanico$colour$xtck3,
family = layout$abanico$font.type$xtck3,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xtck3)[1],
col.axis = layout$abanico$colour$xtck3,
cex.axis = layout$abanico$font.size$xtck3/12)
## add label
mtext(text = "n",
at = (xy.0[2] + y.max) / 2,
side = 2,
line = -3.5 * layout$abanico$dimension$xlab2.line / 100,
col = layout$abanico$colour$xlab2,
family = layout$abanico$font.type$xlab2,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$xlab2)[1],
cex = cex * layout$abanico$font.size$xlab2/12)
## plot ticks
axis(side = 2,
at = c(xy.0[2], y.max),
col = layout$abanico$colour$xtck2,
col.axis = layout$abanico$colour$xtck2,
labels = NA,
tcl = layout$abanico$dimension$xtcl2 / 200,
cex = cex)
## calculate scaling factor for histogram bar heights
hist.scale <- (par()$usr[4] - xy.0[2]) / (KDE.max.plot * 1.05)
## draw each bar for each data set
for(i in 1:length(data)) {
for(j in 1:length(hist.data[[i]]$density)) {
## calculate x-coordinates
hist.x.i <- c(xy.0[2],
xy.0[2],
xy.0[2] + hist.data[[i]]$density[j] * hist.scale,
xy.0[2] + hist.data[[i]]$density[j] * hist.scale)
## calculate y-coordinates
hist.y.i <- c((hist.data[[i]]$breaks[j] - z.central.global) *
min(ellipse[,2]),
(hist.data[[i]]$breaks[j + 1] - z.central.global) *
min(ellipse[,2]),
(hist.data[[i]]$breaks[j + 1] - z.central.global) *
min(ellipse[,2]),
(hist.data[[i]]$breaks[j] - z.central.global) *
min(ellipse[,2]))
## remove data out of z-axis range
hist.y.i <- ifelse(hist.y.i < min(ellipse[,1]),
min(ellipse[,1]),
hist.y.i)
hist.y.i <- ifelse(hist.y.i > max(ellipse[,1]),
max(ellipse[,1]),
hist.y.i)
## draw the bars
polygon(y = hist.x.i,
x = hist.y.i,
col = kde.fill[i],
border = kde.line[i])
}
}
}
## optionally add dot plot
if(dots == TRUE) {
for(i in 1:length(data)) {
for(j in 1:length(hist.data[[i]]$counts)) {
## calculate scaling factor for histogram bar heights
dots.distance <- (par()$usr[4] - (xy.0[2] + par()$cxy[1] * 0.4)) / hist.max.plot
dots.x.i <- seq(from = xy.0[2] + par()$cxy[2] * 0.4,
by = dots.distance,
length.out = hist.data[[i]]$counts[j])
dots.y.i <- rep((hist.data[[i]]$mids[j] - z.central.global) *
min(ellipse[,2]), length(dots.x.i))
## remove data out of z-axis range
dots.x.i <- dots.x.i[dots.y.i >= min(ellipse[,1]) &
dots.y.i <= max(ellipse[,1])]
dots.y.i <- dots.y.i[dots.y.i >= min(ellipse[,1]) &
dots.y.i <= max(ellipse[,1])]
if(max(c(0, dots.x.i), na.rm = TRUE) >= (par()$usr[4] -
par()$cxy[2] * 0.4)) {
dots.y.i <- dots.y.i[dots.x.i < (par()$usr[4] - par()$cxy[2] * 0.4)]
dots.x.i <- dots.x.i[dots.x.i < (par()$usr[4] - par()$cxy[2] * 0.4)]
pch.dots <- c(rep(20, length(dots.x.i) - 1), 15)
} else {
pch.dots <- rep(20, length(dots.x.i))
}
## plot points
points(y = dots.x.i,
x = dots.y.i,
pch = "-",
cex = 0.7 * cex,
col = kde.line[i])
}
}
}
## optionally add box plot
if(boxplot == TRUE) {
for(i in 1:length(data)) {
## draw median line
lines(x = c((boxplot.data[[i]]$stats[3,1] - z.central.global) *
min(ellipse[,2]),
(boxplot.data[[i]]$stats[3,1] - z.central.global) *
min(ellipse[,2])),
y = c(min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96),
lwd = 2,
col = kde.line[i])
## draw p25-p75-polygon
polygon(y = c(min(ellipse[,2]) + KDE.max * 0.91,
min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96,
xy.0[2] + KDE.max * 0.96),
x = c((boxplot.data[[i]]$stats[2,1] - z.central.global) *
min(ellipse[,2]),
(boxplot.data[[i]]$stats[4,1] - z.central.global) *
min(ellipse[,2]),
(boxplot.data[[i]]$stats[4,1] - z.central.global) *
min(ellipse[,2]),
(boxplot.data[[i]]$stats[2,1] - z.central.global) *
min(ellipse[,2])),
border = kde.line[i])
## draw whiskers
lines(y = rep(mean(c(min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96)), 2),
x = c((boxplot.data[[i]]$stats[2,1] - z.central.global) *
min(ellipse[,2]),
(boxplot.data[[i]]$stats[1,1] - z.central.global) *
min(ellipse[,2])),
col = kde.line[i])
lines(y = c(min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96),
x = rep((boxplot.data[[i]]$stats[1,1] - z.central.global) *
min(ellipse[,2]), 2),
col = kde.line[i])
lines(y = rep(mean(c(min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96)), 2),
x = c((boxplot.data[[i]]$stats[4,1] - z.central.global) *
min(ellipse[,2]),
(boxplot.data[[i]]$stats[5,1] - z.central.global) *
min(ellipse[,2])),
col = kde.line[i])
lines(y = c(min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96),
x = rep((boxplot.data[[i]]$stats[5,1] - z.central.global) *
min(ellipse[,2]), 2),
col = kde.line[i])
## draw outlier points
points(y = rep(mean(c(min(ellipse[,2]) + KDE.max * 0.91,
xy.0[2] + KDE.max * 0.96)),
length(boxplot.data[[i]]$out)),
x = (boxplot.data[[i]]$out - z.central.global) *
min(ellipse[,2]),
cex = cex * 0.8,
col = kde.line[i])
}
}
## optionally add stats, i.e. min, max, median sample text
if(length(stats) > 0) {
text(y = stats.data[,1],
x = stats.data[,2],
pos = 2,
labels = round(stats.data[,3], 1),
family = layout$abanico$font.type$stats,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$stats)[1],
cex = cex * layout$abanico$font.size$stats/12,
col = layout$abanico$colour$stats)
}
## optionally add rug
if(rug == TRUE) {
for(i in 1:length(rug.coords)) {
lines(y = rug.coords[[i]][1,],
x = rug.coords[[i]][2,],
col = value.rug[data.global[i,10]])
}
}
## plot KDE base line
lines(y = c(xy.0[2], xy.0[2]),
x = c(min(ellipse[,1]), max(ellipse[,1])),
col = layout$abanico$colour$border)
## draw border around plot
polygon(y = c(limits.x[1], min(ellipse[,2]), y.max,
y.max, min(ellipse[,2])),
x = c(0, max(ellipse[,1]), max(ellipse[,1]),
min(ellipse[,1]), min(ellipse[,1])),
border = layout$abanico$colour$border,
lwd = 0.8)
## optionally add legend content
if(missing(legend) == FALSE) {
## store and change font familiy
par.family <- par()$family
par(family = layout$abanico$font.type$legend)
legend(y = legend.pos[2],
x = 0.8 * legend.pos[1],
xjust = legend.adj[2],
yjust = legend.adj[1],
legend = legend,
pch = pch,
col = value.dot,
text.col = value.dot,
text.font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$legend)[1],
cex = cex * layout$abanico$font.size$legend/12,
bty = "n")
## restore font family
par(family = par.family)
}
## optionally add subheader text
mtext(text = mtext,
side = 3,
line = (shift.lines - 2 + 3.5) * layout$abanico$dimension$mtext / 100,
col = layout$abanico$colour$mtext,
family = layout$abanico$font.type$mtext,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$mtext)[1],
cex = cex * layout$abanico$font.size$mtext / 12)
## add summary content
for(i in 1:length(data)) {
if(summary.pos[1] != "sub") {
text(x = summary.pos[1],
y = summary.pos[2],
adj = summary.adj,
labels = label.text[[i]],
col = summary.col[i],
family = layout$abanico$font.type$summary,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$summary)[1],
cex = cex * layout$abanico$font.size$summary / 12)
} else {
if(mtext == "") {
mtext(side = 3,
line = (shift.lines - 1 + 3.5 - i) *
layout$abanico$dimension$summary / 100 ,
text = label.text[[i]],
col = summary.col[i],
family = layout$abanico$font.type$summary,
font = which(c("normal", "bold", "italic", "bold italic") ==
layout$abanico$font.deco$summary)[1],
cex = cex * layout$abanico$font.size$summary / 12)
}
}
}
}
##sTeve
if(fun & !interactive){sTeve()}
## create numeric output
plot.output <- list(xlim = limits.x,
ylim = limits.y,
zlim = limits.z,
polar.box = c(limits.x[1],
limits.x[2],
min(ellipse[,2]),
max(ellipse[,2])),
cartesian.box = c(xy.0[1],
par()$usr[2],
xy.0[2],
max(ellipse[,2])),
plot.ratio = plot.ratio,
data = data,
data.global = data.global,
KDE = KDE,
par = par(no.readonly = TRUE))
## INTERACTIVE PLOT ----------------------------------------------------------
if (interactive) {
if (!requireNamespace("plotly", quietly = TRUE))
stop("The interactive abanico plot requires the 'plotly' package. To install",
" this package run 'install.packages('plotly')' in your R console.",
call. = FALSE)
##cheat R check (global visible binding error)
x <- NA
y <- NA
## tidy data ----
data <- plot.output
kde <- data.frame(x = data$KDE[[1]][ ,2], y = data$KDE[[1]][ ,1])
# radial scatter plot ----
point.text <- paste0("Measured value:</br>",
data$data.global$De, " ± ", data$data.global$error,"</br>",
"P(",format(data$data.global$precision, digits = 2, nsmall = 1),", ",
format(data$data.global$std.estimate, digits = 2, nsmall = 1),")")
IAP <- plotly::plot_ly(data = data$data.global, x = precision, y = std.estimate,
type = "scatter", mode = "markers",
hoverinfo = "text", text = point.text,
name = "Points",
yaxis = "y")
ellipse <- as.data.frame(ellipse)
IAP <- plotly::add_trace(IAP, data = ellipse,
x = ellipse.x, y = ellipse.y,
hoverinfo = "none",
name = "z-axis (left)",
type = "scatter", mode = "lines",
line = list(color = "black",
width = 1),
yaxis = "y")
ellipse.right <- ellipse
ellipse.right$ellipse.x <- ellipse.right$ellipse.x * 1/0.75
IAP <- plotly::add_trace(IAP, data = ellipse.right,
x = ellipse.x, y = ellipse.y,
hoverinfo = "none",
name = "z-axis (right)",
type = "scatter", mode = "lines",
line = list(color = "black",
width = 1),
yaxis = "y")
# z-axis ticks
major.ticks.x <- c(data$xlim[2] * 1/0.75,
(1 + 0.015 * layout$abanico$dimension$ztcl / 100) *
data$xlim[2] * 1/0.75)
minor.ticks.x <- c(data$xlim[2] * 1/0.75,
(1 + 0.01 * layout$abanico$dimension$ztcl / 100) *
data$xlim[2] * 1/0.75)
major.ticks.y <- (tick.values.major - z.central.global) * min(ellipse[ ,1])
minor.ticks.y <- (tick.values.minor - z.central.global) * min(ellipse[ ,1])
# major z-tick lines
for (i in 1:length(major.ticks.y)) {
major.tick <- data.frame(x = major.ticks.x, y = rep(major.ticks.y[i], 2))
IAP <- plotly::add_trace(IAP, data = major.tick,
x = x, y = y, showlegend = FALSE,
hoverinfo = "none",
type = "scatter", mode = "lines",
line = list(color = "black",
width = 1),
yaxis = "y")
}
# minor z-tick lines
for (i in 1:length(minor.ticks.y)) {
minor.tick <- data.frame(x = minor.ticks.x, y = rep(minor.ticks.y[i], 2))
IAP <- plotly::add_trace(IAP, data = minor.tick,
hoverinfo = "none",
x = x, y = y, showlegend = FALSE,
type = "scatter", mode = "lines",
line = list(color = "black",
width = 1),
yaxis = "y")
}
# z-tick label
tick.text <- paste(" ", exp(tick.values.major))
tick.pos <- data.frame(x = major.ticks.x[2],
y = major.ticks.y)
IAP <- plotly::add_trace(IAP, data = tick.pos,
x = x, y = y, showlegend = FALSE,
text = tick.text, textposition = "right",
hoverinfo = "none",
type = "scatter", mode = "text",
yaxis = "y")
# Central Line ----
central.line <- data.frame(x = c(-100, data$xlim[2]*1/0.75), y = c(0, 0))
central.line.text <- paste0("Central value: ",
format(exp(z.central.global), digits = 2, nsmall = 1))
IAP <- plotly::add_trace(IAP, data = central.line,
x = x, y = y, name = "Central line",
type = "scatter", mode = "lines",
hoverinfo = "text", text = central.line.text,
yaxis = "y",
line = list(color = "black",
width = 0.5,
dash = 2))
# KDE plot ----
KDE.x <- xy.0[1] + KDE[[1]][ ,2] * KDE.scale
KDE.y <- (KDE[[1]][ ,1] - z.central.global) * min(ellipse[,1])
KDE.curve <- data.frame(x = KDE.x, y = KDE.y)
KDE.curve <- KDE.curve[KDE.curve$x != xy.0[1], ]
KDE.text <- paste0("Value:",
format(exp(KDE[[1]][ ,1]), digits = 2, nsmall = 1), "</br>",
"Density:",
format(KDE[[1]][ ,2], digits = 2, nsmall = 1))
IAP <- plotly::add_trace(IAP, data = KDE.curve,
hoverinfo = "text",
text = KDE.text,
x = x, y = y, name = "KDE",
type = "scatter", mode = "lines",
line = list(color = "red"),
yaxis = "y")
# set layout ----
IAP <- plotly::layout(IAP,
hovermode = "closest",
dragmode = "pan",
xaxis = list(range = c(data$xlim[1], data$xlim[2] * 1/0.65),
zeroline = FALSE,
showgrid = FALSE,
tickmode = "array",
tickvals = x.axis.ticks),
yaxis = list(range = data$ylim,
zeroline = FALSE,
showline = FALSE,
showgrid = FALSE,
tickmode = "array",
tickvals = c(-2, 0, 2)),
shapes = list(list(type = "rect", # 2 sigma bar
x0 = 0, y0 = -2,
x1 = bars[1,3], y1 = 2,
xref = "x", yref = "y",
fillcolor = "grey",
opacity = 0.2))
)
# show and return interactive plot ----
#print(plotly::subplot(IAP, IAP.kde))
print(IAP)
return(IAP)
}
## restore initial cex
par(cex = cex_old)
## create and return numeric output
invisible(plot.output)
}
| 133,270 |
gpl-3.0
|
99012a25ea6e6fa64c18b8b9fbec753c7a5186e9
|
paul4forest/forestproductsdemand
|
docs/all_products/draft with brew/knit_reports with brew.R
|
#
# Generate Reports for the different forest products using brew
#
# Inspired by
# http://botthoughts.wordpress.com/2012/05/17/generating-reports-for-different-data-sets-using-brew-and-knitr/
# I first used brew, but then used knitr only
library(knitr)
opts_knit$set(base.dir = './docs/all_products/') # Change the base dir where to save figures
#############
# Load data #
#############
load("enddata/EU27 sawnwood demand.rdata")
load("enddata/EU27 paper products demand.rdata")
load("enddata/EU27 roundwood demand.rdata")
# A function that create aggregate reports based on the agg dataframe and template
create.report <- function(dtf, dtfagg, report.name, path="./docs/all_products/"){
dtf <- dtf
dtfagg <- dtfagg
knit2html(paste0(path,"template.Rmd"),
paste0(path, report.name, ".html"),
options = c(markdownHTMLOptions(defaults=TRUE), "toc")
}
create.report(roundwood, rwdagg, "rwd")
create.report(sawnwood, swdagg, "swd")
create.report(paperProducts, ppagg, "pp")
### Content lost,
# See maybe in git history february 2014 or before
| 1,106 |
gpl-2.0
|
0d51cfbd8ec08ad2220a91b12fc8bc52d4d6fd99
|
jonathandfitzgerald/Viral-Texts-R
|
Wright Data.R
|
#Working with Wright Data
#make a list of all files
WRIGHT = list.files("data/wright-txt",full.names = TRUE)
#function to read them in
readWRIGHT = function(file) {
message(file)
text = paste(scan(file, sep="\n",what="raw",strip.white = TRUE),collapse = "/n")
WRIGHT = data.frame(filename=file,text=text,stringsAsFactors = FALSE)
return(WRIGHT)
}
#run the function
allWRIGHT = data.frame(filename=WRIGHT,stringsAsFactors=FALSE) %>%
group_by(filename) %>%
do(readWRIGHT(.$filename))
#remove everything above Full Text
allWRIGHT$text = gsub("/n", "", allWRIGHT$text)
#this removes line breaks
allWRIGHT$text = gsub("\r?\n|\r", "\\s", allWRIGHT$text)
allWRIGHT$text = gsub(".*?----FULL TEXT----", " ", allWRIGHT$text)
#sample 8 in an effort to get a smaller corpus
#allWRIGHT <- allWRIGHT[sample(1:nrow(allWRIGHT), 8,replace=FALSE),]
#convert text to string and chunk by character count. Convert to df
allWRIGHT_string = paste(unlist(allWRIGHT$text), collapse =" ")
allWRIGHT_string = substring(allWRIGHT_string,seq(1,nchar(allWRIGHT_string),2000),seq(2000,nchar(allWRIGHT_string),2000))
allWRIGHT2 = allWRIGHT_string %>% as.data.frame()
# Use Lincoln's update of tokenizers to chunk text
allWRIGHT2 = chunk_text(allWRIGHT$text, chunk_size = 300, doc_id = allWRIGHT$filename) %>% as_data_frame()
allWRIGHT2 = allWRIGHT2 %>% gather(id, text)
allWRIGHT2 = allWRIGHT2 %>% as.data.frame()
allWRIGHT2 = allWRIGHT2 %>% mutate(genre="fiction")
allWRIGHT2 = allWRIGHT2 %>% mutate(cluster=paste("wright",1:nrow(allWRIGHT2), sep = "_"))
names(allWRIGHT2)[names(allWRIGHT2)=="."] <- "text"
allWRIGHT2 = allWRIGHT2[,c("cluster","text","genre")]
allWRIGHT2 <- allWRIGHT2[sample(1:nrow(allWRIGHT2), 200,replace=FALSE),]
allWRIGHT2$text = allWRIGHT2$text %>% as.character()
#add genre column and convert filename to cluster
allWRIGHT = allWRIGHT %>% mutate(genre="fiction")
names(allWRIGHT)[names(allWRIGHT)=="filename"] <- "cluster"
allWRIGHT = allWRIGHT %>% as.data.frame()
#allWRIGHT <- allWRIGHT[sample(1:nrow(allWRIGHT), 8,replace=FALSE),]
#read in fiction found with "by"
allFiction = read.csv("data/fiction-with-by.csv", header=TRUE, fill = TRUE, sep = ",", row.names = NULL, stringsAsFactors = FALSE)
allFiction = allFiction %>% mutate(genre = "fiction")
allFiction = allFiction[,c("cluster","text","genre")]
#read in news
allNews = read.csv("output/genres/news.csv", header=TRUE, fill = TRUE, sep = ",", row.names = NULL, stringsAsFactors = FALSE)
names(allNews)[names(allNews)=="classified_genre"] <- "genre"
names(allNews)[names(allNews)=="Text"] <- "text"
allNews = allNews[,c("cluster","text","genre")]
allNews <- allNews[sample(1:nrow(allNews), 200,replace=FALSE),]
allNews$text = gsub("\r?\n|\r", "\\s", allNews$text)
#read in vignettes
allVignettes = read.csv("data/200vignettes.csv", header=TRUE, fill = TRUE, sep = ",", row.names = NULL, stringsAsFactors = FALSE)
allVignettes = allVignettes[,c("cluster","text","genre")]
allVignettes = allVignettes %>% mutate(genre="unknown")
#allVignettes <- allVignettes[sample(1:nrow(allNews), 75,replace=FALSE),]
allVignettes$text = gsub("\r?\n|\r", "\\s", allVignettes$text)
#combine above
allData = rbind(allWRIGHT2,allNews,allVignettes)
# What about vignettes classified against the general population of genres
allData <- rbind(allVignettes, newGenres_slim)
allData <- allData %>% mutate(cluster = as.character(cluster))
# LET'S COMPARE THE RESULTS WITH OTHER GENRES (ads, poetry)
#poetry
allPoetry = read.csv("data/genreClass-4-13-16.csv", header=TRUE, fill = TRUE, sep = ",", row.names = NULL, stringsAsFactors = FALSE)
allPoetry = allPoetry %>% filter(classified_genre == "poetry")
names(allPoetry)[names(allPoetry)=="classified_genre"] <- "genre"
names(allPoetry)[names(allPoetry)=="Text"] <- "text"
allPoetry = allPoetry[,c("cluster","text","genre")]
allPoetry = allPoetry %>% mutate(genre="unknown")
allPoetry <- allPoetry[sample(1:nrow(allNews), 200,replace=FALSE),]
#combine above
allData = rbind(allWRIGHT2,allNews,allPoetry)
#ads
allAds = read.csv("output/justAds-5-23-16.csv", header=TRUE, fill = TRUE, sep = ",", row.names = NULL, stringsAsFactors = FALSE)
allAds = allAds[,c("cluster","text","genre")]
allAds = allAds %>% mutate(genre="unknown")
allAds <- allAds[sample(1:nrow(allNews), 200,replace=FALSE),]
#combine above
allData = rbind(allWRIGHT2,allNews,allAds)
#Trying to find other fiction. Instead of reading in vignettes, read in everything
newData = beginData #from ClusterAnalysis.R
newData$cluster <- as.character(newData$cluster)
newData = newData %>% group_by(cluster) %>% slice(1)
newData = newData %>% mutate(genre="unknown")
newData = newData[,c("cluster","text","genre")]
newData = newData %>% as.data.frame()
#Sample data down to 5000
#newData <- newData[sample(1:nrow(newData), 5000,replace=FALSE),]
#combine above
allData = rbind(allWRIGHT2,allNews,allVignettes)
| 4,888 |
gpl-2.0
|
ccad15eb5a562b0d98e7d7d0a5a2eed595fc9f78
|
coolbutuseless/AuCensus2011
|
R/abs_files.R
|
#=============================================================================
# Code for general file pathnames, manipulation etc
#=============================================================================
#' Path to ABS DataPack CSV file
#'
#' \code{create_abs_filename} creates the path to a given ABS datapack file.
#'
#' MFC TODO: Describe exactly the file layout.
#' For now, root_dir = place where DataPack zip files were uncompressed to.
#'
#' @export
#' @param profile The short code for the profile. e.g. 'BCP' for Basic Community Profile.
#' @param table Table number including and suffix. e.g. 'B01', 'B08A'
#' @param level The level of the statistcal area: [AUS, CED, GCCSA, IARE, ILOC, IREG, LGA, POA, RA, SA1, SA2, SA3, SA4, SED, SLA, SOS, SOSR, SSC, STE, SUA, UCL]
#' @return Returns the full path to the CSV file containing the nominated data.
#' @examples
#' create_abs_filename('BCP', 'B46', 'AUS')
#'
create_abs_filename <- function(profile, table, level) {
root_dir <- file.path(Sys.getenv('HOME'), "projectsdata/ABS2011/DataPacks/")
if (level == 'AUS') {
abs_filename <- paste0(root_dir,
"2011_", profile, "_ALL_for_AUST_long-header/",
"2011 Census ", profile, " All Geographies for AUST/",
"/AUST/2011Census_", table, "_AUST_long.csv")
} else {
abs_filename <- paste0(root_dir,
"2011_", profile, "_ALL_for_AUST_long-header/",
"2011 Census ", profile, " All Geographies for AUST/",
level, "/AUST/2011Census_", table, "_AUST_", level, "_long.csv")
}
abs_filename
}
#' Load an ABS DataPack file
#'
#' Given a profile, table & level, read the relevant ABS data into a data.frame
#'
#' Because of the size of the data, many tables are split over multiple files and numbered
#' BxxA, BxxB, BxxC etc. Once a DataPack has over 200 columns (excluding the region_id column),
#' further columns are spilled into the next file.
#' \code{read_abs} will automatically read these multiple files and
#' merge the data into one really really wide data.frame
#'
#' @importFrom dplyr "%>%"
#' @export
#' @param profile The short code for the profile. e.g. 'BCP' for Basic Community Profile.
#' @param table Table number excluding suffix. e.g. 'B01', 'B08'
#' @param level The level of the statistcal area: [AUS, CED, GCCSA, IARE, ILOC, IREG, LGA, POA, RA, SA1, SA2, SA3, SA4, SED, SLA, SOS, SOSR, SSC, STE, SUA, UCL]
#' @param long If long==TRUE, then convert to long format, otherwise leave in wide format (default)
#' @return Returns a data.frame of the data.
#' @examples
#' read_abs('BCP', 'B46', 'AUS')
#'
read_abs <- function(profile, table, level, long=FALSE) {
# Find all the files that match the table name + wildcard
filename.glob <- create_abs_filename(profile, paste0(table, "*"), level)
filenames <- Sys.glob(filename.glob)
message(paste("Reading", length(filenames), "file(s) which make up Table", table))
# Read all those files
dfs <- lapply(filenames, readr::read_csv)
# inner_join them all by region_id
suppressMessages({
df <- Reduce(dplyr::inner_join, dfs)
})
if (long) {
# Convert from wide to long format.
df <- df %>% tidyr::gather(colname, count, -region_id) %>%
dplyr::mutate(colname = as.factor(as.character(colname)))
}
# Some codes redundantly have the level name as prefix, but nobody else does! So remove...
code_replacer <- c('CED', 'LGA', 'POA', 'RA', 'SED', 'SOS', 'SOSR', 'SSC', 'UCL')
if (level %in% code_replacer) {
df$region_id <- as.integer(stringr::str_replace(df$region_id, as.character(level), ''))
}
if (level %in% asgs.info$level) {
# Then we'll recode the region_id column to match the level name in the
# ASGS Shapefiles so that we can do datamerges without losing information
code_name <- asgs.info$code_name[asgs.info$level == level]
colnames(df)[1] <- code_name
}
df
}
| 4,101 |
mit
|
d58e7178a3b49ed65740a293c993e4e0fc8ad488
|
sbfnk/flusurvey
|
analysis/analysis_201112.R
|
library(data.table)
library(ggplot2)
library(reshape)
symptoms <- c("fever","chills","blocked.runny.nose","sneezing","sore.throat","cough","shortness.breath","headache","muscle.and.or.joint.pain","chest.pain","tired","loss.appetite","phlegm","watery.eyes","nausea","vomiting","diarrhoea","stomach.ache","other")
# compute the age in years from a birthdate (from) and the current date (to)
age_years <- function(from, to)
{
if (is.na(from) || is.na(to)) {
NA
} else {
lt <- as.POSIXlt(c(from, to))
age <- lt$year[2] - lt$year[1]
mons <- lt$mon + lt$mday/50
if(mons[2] < mons[1]) age <- age -1
age
}
}
logistic.regression.or.ci <- function(regress.out, level=0.95)
{
################################################################
# #
# This function takes the output from a glm #
# (logistic model) command in R and provides not #
# only the usual output from the summary command, but #
# adds confidence intervals for all coefficients and OR’s. #
# #
# This version accommodates multiple regression parameters #
# #
################################################################
usual.output <- summary(regress.out)
z.quantile <- qnorm(1-(1-level)/2)
number.vars <- length(regress.out$coefficients)
OR <- exp(regress.out$coefficients[-1])
temp.store.result <- matrix(rep(NA, number.vars*2), nrow=number.vars)
for(i in 1:number.vars)
{
temp.store.result[i,] <- summary(regress.out)$coefficients[i] +
c(-1, 1) * z.quantile * summary(regress.out)$coefficients[i+number.vars]
}
intercept.ci <- temp.store.result[1,]
slopes.ci <- temp.store.result[-1,]
OR.ci <- exp(slopes.ci)
output <- list(regression.table = usual.output, intercept.ci = intercept.ci,
slopes.ci = slopes.ci, OR=OR, OR.ci = OR.ci)
return(output)
}
# read tables
sf <- read.csv('epidb_weekly.csv', sep=',', header=T)
bf <- read.csv('epidb_intake.csv', sep=',', header=T)
# create translation table so that every participant gets a unique ID number
# (called global.id.number)
translation <- data.frame(global_id = unique(bf$global_id))
translation$number <- seq(1,nrow(translation))
# assign global id numbers
bf$global.id.number <- translation$number[match(bf$global_id,
translation$global_id)]
sf$global.id.number <- translation$number[match(sf$global_id,
translation$global_id)]
# put data in data tables (for the rolling join to be used later)
st <- data.table(sf)
bt <- data.table(bf)
bt$bid <- seq(1:nrow(bt))
rm(sf)
rm(bf)
setnames(bt, 2, "global_id.bg")
st$date <- as.Date(st$timestamp)
bt$date <- as.Date(bt$timestamp)
# rolling join of symptoms and background, by id number (first) and date
# (second)
setkey(st, global.id.number, date)
setkey(bt, global.id.number, date)
dt <- bt[st, roll=TRUE]
#cleanup (some participants have only a weekly survey, no background one)
dt <- dt[!is.na(country)]
rm(bt)
rm(st)
# set convenient names
setnames(dt, "Q0", "self")
setnames(dt, "Q1", "gender")
setnames(dt, "Q2", "birthmonth")
setnames(dt, "Q3", "postcode")
setnames(dt, "Q4", "occupation")
setnames(dt, "Q4b_0_open", "work.postcode")
setnames(dt, "Q4d_0", "no.education")
setnames(dt, "Q4d_1", "education.gcse")
setnames(dt, "Q4d_2", "education.alevels")
setnames(dt, "Q4d_3", "education.bsc")
setnames(dt, "Q4d_4", "education.msc")
setnames(dt, "Q4d_5", "education.stillin")
setnames(dt, "Q5_0", "frequent.contact.children")
setnames(dt, "Q5_1", "frequent.contact.elderly")
setnames(dt, "Q5_2", "frequent.contact.patients")
setnames(dt, "Q5_3", "frequent.contact.people")
setnames(dt, "Q6_0", "household.0.4")
setnames(dt, "Q6_0_open", "nb.household.0.4")
setnames(dt, "Q6_1", "household.5.18")
setnames(dt, "Q6_1_open", "nb.household.5.18")
setnames(dt, "Q6_2", "household.19.44")
setnames(dt, "Q6_2_open", "nb.household.19.44")
setnames(dt, "Q6_3", "household.45.64")
setnames(dt, "Q6_3_open", "nb.household.45.64")
setnames(dt, "Q6_4", "household.65+")
setnames(dt, "Q6_4_open", "nb.household.65+")
setnames(dt, "Q7", "transport")
setnames(dt, "Q7b", "howlong.transport")
setnames(dt, "Q9", "vaccine.last.year")
setnames(dt, "Q10", "vaccine.this.year")
setnames(dt, "Q10b_1_open", "date.vaccine")
setnames(dt, "Q10c_0", "why.vaccine.riskgroup")
setnames(dt, "Q10c_1", "why.vaccine.protected")
setnames(dt, "Q10c_2", "why.vaccine.protect.others")
setnames(dt, "Q10c_3", "why.vaccine.doctor")
setnames(dt, "Q10c_4", "why.vaccine.work.recommended")
setnames(dt, "Q10c_5", "why.vaccine.convenient")
setnames(dt, "Q10c_6", "why.vaccine.free")
setnames(dt, "Q10c_7", "why.vaccine.nomiss.work")
setnames(dt, "Q10c_8", "why.vaccine.always")
setnames(dt, "Q10c_9", "why.vaccine.other")
setnames(dt, "Q10d_0", "why.not.vaccine.notyet")
setnames(dt, "Q10d_1", "why.not.vaccine.notoffered")
setnames(dt, "Q10d_2", "why.not.vaccine.norisk")
setnames(dt, "Q10d_3", "why.not.vaccine.natural")
setnames(dt, "Q10d_4", "why.not.vaccine.noteffective")
setnames(dt, "Q10d_5", "why.not.vaccine.minor")
setnames(dt, "Q10d_6", "why.not.vaccine.unlikely")
setnames(dt, "Q10d_7", "why.not.vaccine.cause")
setnames(dt, "Q10d_8", "why.not.vaccine.side.effects")
setnames(dt, "Q10d_9", "why.not.vaccine.dont.like")
setnames(dt, "Q10d_10", "why.not.vaccine.unavailable")
setnames(dt, "Q10d_11", "why.not.vaccine.not.free")
setnames(dt, "Q10d_12", "why.not.vaccine.no.reason")
setnames(dt, "Q10d_13", "why.not.vaccine.doctor")
setnames(dt, "Q10d_14", "why.not.vaccine.other")
setnames(dt, "Q11_0", "norisk")
setnames(dt, "Q11_1", "risk.asthma")
setnames(dt, "Q11_2", "risk.diabetes")
setnames(dt, "Q11_3", "risk.lung")
setnames(dt, "Q11_4", "risk.heart")
setnames(dt, "Q11_5", "risk.kidney")
setnames(dt, "Q11_6", "risk.immune")
setnames(dt, "Q12", "pregnant")
setnames(dt, "Q13", "smoke")
setnames(dt, "Q14_1", "allergy.hayfever")
setnames(dt, "Q14_2", "allergy.dust")
setnames(dt, "Q14_3", "allergy.animals")
setnames(dt, "Q14_4", "allergy.other")
setnames(dt, "Q14_5", "allergy.none")
setnames(dt, "Q1_0", "no.symptoms")
setnames(dt, "Q1_1", "fever")
setnames(dt, "Q1_2", "chills")
setnames(dt, "Q1_3", "blocked.runny.nose")
setnames(dt, "Q1_4", "sneezing")
setnames(dt, "Q1_5", "sore.throat")
setnames(dt, "Q1_6", "cough")
setnames(dt, "Q1_7", "shortness.breath")
setnames(dt, "Q1_8", "headache")
setnames(dt, "Q1_9", "muscle.and.or.joint.pain")
setnames(dt, "Q1_10", "chest.pain")
setnames(dt, "Q1_11", "tired")
setnames(dt, "Q1_12", "loss.appetite")
setnames(dt, "Q1_13", "phlegm")
setnames(dt, "Q1_14", "watery.eyes")
setnames(dt, "Q1_15", "nausea")
setnames(dt, "Q1_16", "vomiting")
setnames(dt, "Q1_17", "diarrhoea")
setnames(dt, "Q1_18", "stomach.ache")
setnames(dt, "Q1_19", "other")
setnames(dt, "Q2.1", "same")
setnames(dt, "Q3_0_open", "symptoms.start.date")
setnames(dt, "Q4_0_open", "symptoms.end.date")
setnames(dt, "Q5", "symptoms.suddenly")
setnames(dt, "Q6_1_open.1", "fever.start")
setnames(dt, "Q6b.1", "fever.suddenly")
setnames(dt, "Q7_0", "visit.medical.service.no")
setnames(dt, "Q7_1", "visit.medical.service.gp")
setnames(dt, "Q7_2", "visit.medical.service.ae")
setnames(dt, "Q7_3", "visit.medical.service.hospital")
setnames(dt, "Q7_4", "visit.medical.service.other")
setnames(dt, "Q7_5", "visit.medical.service.appointment")
setnames(dt, "Q7b.1", "visit.medical.service.howsoon")
setnames(dt, "Q8_0", "contact.medical.service.no")
setnames(dt, "Q8_1", "contact.medical.service.gp.receptionist")
setnames(dt, "Q8_2", "contact.medical.service.gp.doctor")
setnames(dt, "Q8_3", "contact.medical.service.nhs")
setnames(dt, "Q8_5", "contact.medical.service.other")
setnames(dt, "Q9_0", "no.medication")
setnames(dt, "Q9_1", "medication.painkillers")
setnames(dt, "Q9_2", "medication.cough")
setnames(dt, "Q9_3", "medication.antiviral")
setnames(dt, "Q9_4", "medication.antibiotic")
setnames(dt, "Q9_5", "medication.other")
setnames(dt, "Q9_6", "medication.dontknow")
setnames(dt, "Q10.1", "alter.routine")
setnames(dt, "Q10c", "howlong.altered")
setnames(dt, "Q12_multi_row1_col1", "howmany.household.ili")
setnames(dt, "Q13_multi_row1_col1", "howmany.other.ili")
# assign some useful variables: ili yes/no, number of reports, symptoms start
# (as date), week of report, weight (for histograms later,
# i.e. 1/(number of reports that week), and birthdate
dt$ili <- ((dt$symptoms.suddenly == 0) &
(dt$fever == "t" | dt$tired == "t" | dt$headache == "t" |
dt$muscle.and.or.joint.pain =="t") &
(dt$sore.throat == "t" | dt$cough =="t" | dt$shortness.breath
=="t"))
dt$ili <- as.numeric(dt$ili)
dt$ili.notired <- ((dt$symptoms.suddenly == 0) &
(dt$fever == "t" | dt$headache == "t" |
dt$muscle.and.or.joint.pain =="t") &
(dt$sore.throat == "t" | dt$cough =="t" | dt$shortness.breath
=="t"))
dt$ili.notired <- as.numeric(dt$ili.notired)
dt$ili.fever <- ((dt$symptoms.suddenly == 0) &
(dt$fever == "t") &
(dt$sore.throat == "t" | dt$cough =="t" | dt$shortness.breath
=="t"))
dt$ili.fever <- as.numeric(dt$ili.fever)
freq <-
data.table(aggregate(dt$global.id.number,
by=list(dt$global.id.number),
length))
setkey(freq, Group.1)
dt <- dt[freq]
setnames(dt, "x", "nReports")
mindate <-
data.table(aggregate(dt$date,
by=list(dt$global.id.number),
min))
setkey(mindate, Group.1)
dt <- dt[mindate]
setnames(dt, "x", "mindate")
maxdate <-
data.table(aggregate(dt$date,
by=list(dt$global.id.number),
max))
setkey(maxdate, Group.1)
dt <- dt[maxdate]
setnames(dt, "x", "maxdate")
dt$symptoms.start <- as.Date(dt$symptoms.start, "%Y-%m-%d")
dt$week <- format(dt$date, format="%G-%W")
dt[dt$week=="2011-00"]$week <- "2011-52"
dt$weekweight <- 1/table(dt$week)[dt$week]
dt$birthdate <- as.Date(dt$birthmonth, "%Y/%M/%d")
# more variables to be used later
dt$norisk <- factor(dt$norisk)
dt$atrisk <- dt$norisk
levels(dt$atrisk) <- c(1,0)
dt$atrisk <- as.numeric(paste(dt$atrisk))
dt$age <- 0
dt$age <- apply(dt, 1, function(x) { age_years(as.Date(x["birthdate"]),
as.Date(x["date"]))})
dt$agegroup <- cut(dt$age, breaks=c(0,18,45,65, max(dt$age, na.rm=T)),
include.lowest=T, right=F)
dt$vaccine.date <- as.Date(dt$date.vaccine, "%Y/%m/%d")
dt$vaccine <- as.numeric(dt$vaccine.this.year==0 & (is.na(dt$vaccine.date) |
dt$vaccine.date <= dt$date))
dt$children <- as.numeric((dt$household.0.4 == "t" | dt$household.5.18 == "t"))
dt$symptoms.start.date <- as.Date(dt$symptoms.start.date, "%Y-%m-%d")
dt$symptoms.end.date <- as.Date(dt$symptoms.end.date, "%Y-%m-%d")
dt$symptoms.start.week <- format(dt$symptoms.start.date, format="%G-%W")
dt[dt$symptoms.start.week=="2011-00"]$symptoms.start.week <- "2011-52"
dt$ili.self <- (dt$Q11 == 0)
dt[is.na(ili.self)]$ili.self <- FALSE
dt$using.transport <- (dt$transport > 0)
# one-per-user table
# ds <- dt[!duplicated(dt$global.id.number)]
# one-per-background-survey table
ds <- dt[!duplicated(dt$bid)]
ds$ili <- FALSE
ds$nbili <- with(dt, aggregate(ili,
## list(global.id.number=global.id.number),
list(bid=bid),
sum))$x
ds$ili <- (ds$nbili > 0)
ds$vaccinated <- with(dt, aggregate(vaccine,
## list(global.id.number=global.id.number),
list(bid=bid),
sum))$x > 0
ds$nonili <- 1-ds$ili
ds$smoking <- ds$smoke %in% c(1,2,3)
ds$weight <- 0
for (i in 1:length(levels(factor(ds$country)))) {
ds[country==levels(factor(ds$country))[i]]$weight <-
1/nrow(ds[country==levels(factor(ds$country))[i]])
}
png("attack_rate.png")
ggplot(ds[ili==T], aes(x=country, fill=country, weight=weight))+
geom_bar(color="black")+
theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank(), title)+
scale_fill_brewer(palette="Set1")+
scale_y_continuous("attack rate", limits=c(0,1.01))+
opts(legend.position="none")
dev.off()
png("vaccination_coverage.png")
ggplot(ds[vaccinated==T], aes(x=country, fill=country, weight=weight))+
geom_bar(color="black")+
theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank(), title)+
scale_fill_brewer(palette="Set1")+
scale_y_continuous("vaccination coverage", limits=c(0,1.01))+
opts(legend.position="none")
dev.off()
ds$reweight <- 0
for (i in levels(factor(ds$country))) {
for (j in levels(factor(ds$agegroup))) {
ds[country==i & agegroup == j]$reweight <-
1/nrow(ds[country==i & agegroup==j])
}
}
png("vaccination_coverage_by_age.png")
ggplot(ds[vaccinated==T], aes(x=agegroup, fill=agegroup, weight=reweight))+
geom_bar()+
geom_bar(color="black", show_guide=F)+
facet_grid(.~country)+
theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank(),
axis.ticks = theme_blank(), axis.text.x = theme_blank(), axis.title.x =
theme_blank())+
scale_fill_brewer(name="age group", palette="Set1")+
scale_y_continuous("vaccination coverage", limits=c(0,1.01))
dev.off()
ds$reweight <- 0
for (i in levels(factor(ds$country))) {
for (j in levels(factor(ds$atrisk))) {
ds[country==i & atrisk == j & agegroup %in% levels(agegroup)[1:3]]$reweight <-
1/nrow(ds[country==i & atrisk == j & agegroup %in% levels(agegroup)[1:3]])
}
}
png("vaccination_coverage_by_risk.png")
ggplot(ds[vaccinated==T & agegroup %in% levels(agegroup)[1:3]],
aes(x=factor(atrisk), fill=factor(atrisk), weight=reweight))+
geom_bar()+
geom_bar(color="black", show_guide=F)+
facet_grid(.~country)+
theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank(),
axis.ticks = theme_blank(), axis.text.x = theme_blank(), axis.title.x =
theme_blank())+
scale_fill_brewer(name="Risk group", palette="Set1", labels=c("no", "yes"))+
scale_y_continuous("vaccination coverage", limits=c(0,1.01))
dev.off()
png("age_dist.png")
ggplot(ds, aes(x=country, fill=agegroup, weight=weight))+
geom_bar()+
geom_bar(color="black", show_guide=F)+
theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank(), title)+
scale_fill_brewer(name="age group", palette="Set1")+
scale_y_continuous("age distribution", limits=c(0,1.01))
dev.off()
vaccine_time <- data.frame()
for (country in levels(factor(ds$country))) {
vaccine_country <- data.frame(week=as.character(levels(factor(compare$week))),
elderly=0, risk=0, all=0, country=country)
for (i in 1:nrow(vaccine_country)) {
vaccine_week <- compare[week <= vaccine_country[i,]$week]
vaccine_country[i,]$all <-
nrow(compare[week == vaccine_country[i,]$week & country == country &
vaccine.this.year == 0]) /
nrow(compare[week == vaccine_country[i,]$week & country == country])
vaccine_country[i,]$elderly <-
nrow(compare[week == vaccine_country[i,]$week & country == country &
vaccine.this.year == 0 &
agegroup == levels(compare$agegroup)[4]]) /
nrow(compare[week == vaccine_country[i,]$week & country == country &
agegroup == levels(compare$agegroup)[4]])
vaccine_country[i,]$risk <-
nrow(compare[week == vaccine_country[i,]$week & country == country &
vaccine.this.year == 0 & atrisk == 1]) /
nrow(compare[week == vaccine_country[i,]$week & country == country &
atrisk == 1])
}
vaccine_time <- rbind(vaccine_time, vaccine_country)
}
ds$education <- ""
ds[no.education=="t"]$education <- "None"
ds[education.gcse=="t"]$education <- "Intermediate"
ds[education.alevels=="t"]$education <- "High school"
ds[education.bsc=="t"]$education <- "Bachelor"
ds[education.msc=="t"]$education <- "Higher"
ds[education.stillin=="t"]$education <- "Student"
ds$education <- factor(ds$education,
levels=levels(factor(ds$education))[c(1,3,2,4,5,6,7)])
ds$reweight <- 0
for (i in levels(factor(ds$country))) {
ds[country==i]$reweight <-
1/nrow(ds[education!="" & country==i])
}
png("education_dist.png")
ggplot(ds[education!=""], aes(x=country, fill=education, weight=reweight))+
geom_bar()+
geom_bar(color="black", show_guide=F)+
theme_bw(20)+
opts(panel.grid.major=theme_blank(),
panel.grid.minor=theme_blank(), title)+
scale_fill_brewer(palette="Set1")+
scale_y_continuous("education distribution")
dev.off()
countries <- data.frame(country=levels(factor(ds$country)), aru = 0, arv = 0,
ar = 0, efficacy = 0)
for (i in 1:nrow(countries)) {
countries[i,]$ar <-
nrow(ds[country == countries[i,]$country & ili == T]) /
nrow(ds[country == countries[i,]$country])
countries[i,]$aru <-
nrow(ds[country == countries[i,]$country & ili == T & vaccinated == F]) /
nrow(ds[country == countries[i,]$country & vaccinated == F])
countries[i,]$arv <-
nrow(ds[country == countries[i,]$country & ili == T & vaccinated == T]) /
nrow(ds[country == countries[i,]$country & vaccinated == T])
countries[i,]$efficacy <-
(countries[i,]$aru - countries[i,]$arv) / countries[i,]$aru * 100
}
# HPA stuff
peak <- dt[country=="uk" & date > "2012-02-25" & date < "2012-04-09" & age > 17]
peak <- peak[postcode!=""]
peak$postcode <- toupper(peak$postcode)
#peak$area <- toupper(sub("^([A-Za-z]+).+$", "\\1", peak$postcode))
postcodes <- data.table(read.csv("../postcodes.csv", header=F, sep=","))
setnames(postcodes, "V1", "postcode")
setnames(postcodes, "V2", "region")
postcodes[region=="W99999999"]$region <- "Wales"
postcodes[region=="E12000001"]$region <- "North East England"
postcodes[region=="E12000002"]$region <- "North West England"
postcodes[region=="E12000003"]$region <- "Yorkshire and the Humber"
postcodes[region=="E12000004"]$region <- "East Midlands"
postcodes[region=="E12000005"]$region <- "West Midlands"
postcodes[region=="E12000006"]$region <- "East of England"
postcodes[region=="E12000007"]$region <- "London"
postcodes[region=="E12000008"]$region <- "South East England"
postcodes[region=="E12000009"]$region <- "South West England"
postcodes[region=="L99999999"]$region <- "Channel Islands"
postcodes[region=="N99999999"]$region <- "Northern Ireland"
postcodes[region=="S99999999"]$region <- "Scotland"
postcodes$postcode <- as.character(postcodes$postcode)
peak <- join(peak,postcodes, by='postcode')
peak$region <- factor(peak$region)
peak <- peak[!(region %in% c("Scotland", "Channel Islands", "Northern Ireland"))]
setkey(peak, global.id.number)
nb.users.noclean <- nrow(peak[!duplicated(peak$global.id.number)])
# need to have reported in 3 intervals
peak1 <- peak[date < "2012-03-12"]
peak2 <- peak[date > "2012-03-10" & date < "2012-03-26"]
peak3 <- peak[date > "2012-03-25"]
max1date <- data.table(aggregate(peak1$date, by=list(peak1$global.id.number),
max))
setkey(max1date, Group.1)
peak <- peak[max1date]
setnames(peak, "x", "max1date")
min2date <- data.table(aggregate(peak2$date, by=list(peak2$global.id.number),
min))
setkey(min2date, Group.1)
peak <- peak[min2date]
setnames(peak, "x", "min2date")
max2date <- data.table(aggregate(peak2$date, by=list(peak2$global.id.number),
max))
setkey(max2date, Group.1)
peak <- peak[max2date]
setnames(peak, "x", "max2date")
min3date <- data.table(aggregate(peak3$date, by=list(peak3$global.id.number),
min))
setkey(min3date, Group.1)
peak <- peak[min3date]
setnames(peak, "x", "min3date")
maxdate <- data.table(aggregate(peak$date, by=list(peak$global.id.number),
min))
setkey(maxdate, Group.1)
peak <- peak[maxdate]
setnames(peak, "x", "maxdate")
peak$diff1 <- difftime(peak$min2date, peak$max1date, units='days')
peak$diff2 <- difftime(peak$min3date, peak$max2date, units='days')
peak <- peak[global.id.number %in%
intersect(
intersect(
peak[date < "2012-03-12"]$global.id.number,
peak[date > "2012-03-10" & date <
"2012-03-26"]$global.id.number),
peak[date > "2012-03-24"]$global.id.number)]
peak <- peak[diff1<16 & diff2 < 16]
peak.users <- peak[!duplicated(peak$global.id.number)]
nb.users.clean <- nrow(peak.users)
nb.users.noclean
nb.users.clean
nb.users.clean/nb.users.noclean # 0.5874409
# HPA definition
peak.users[is.na(fever.suddenly)]$fever.suddenly <- 1
peak$ili.hpa <- as.numeric(peak$fever.suddenly == 0 & peak$cough =="t")
peak[is.na(ili.hpa)]$ili.hpa <- 0
# remove the ones that were reported to have ended earlier or started later
peak[symptoms.start.date > "2012-04-08"]$ili <- 0
peak[symptoms.start.date > "2012-04-08"]$ili.hpa <- 0
peak[symptoms.end.date < "2012-02-26"]$ili <- 0
peak[symptoms.end.date < "2012-02-26"]$ili.hpa <- 0
nrow(peak.users[gender==0])/nrow(peak.users[gender==1]) # 0.7365269
nrow(peak.users[age < 25])/nrow(peak.users) # 0.02988506
nrow(peak.users[age > 24 & age < 45])/nrow(peak.users) # 0.3436782
nrow(peak.users[age > 44 & age < 65])/nrow(peak.users) # 0.4551724
nrow(peak.users[age > 64])/nrow(peak.users) # 0.1712644
table(peak.users$region) / nrow(peak.users)
table(peak.users$education.msc) / nrow(peak.users)
table(peak.users$education.bsc) / nrow(peak.users)
table(peak.users$education.alevels) / nrow(peak.users)
table(peak.users$education.gcse) / nrow(peak.users)
table(peak.users$no.education) / nrow(peak.users)
table(peak.users$occupation) / nrow(peak.users)
t <- rowSums(peak.users[,c(27,29,31,33,35),with=F], na.rm=T)
table(t[t>0])/length(t[t>0])
nrow(peak.users[age<65])
table(dt[(dt$global.id.number %in% peak.users$global.id.number) &
(!duplicated(dt$global.id.number)) &
(norisk == "f") &
(age < 65)
]$vaccine) /
nrow(dt[(dt$global.id.number %in% peak.users$global.id.number) &
(!duplicated(dt$global.id.number)) &
(norisk == "f") &
(age < 65)
])
table(dt[(dt$global.id.number %in% peak.users$global.id.number) &
(!duplicated(dt$global.id.number)) &
(age >= 65)
]$vaccine) /
nrow(dt[(dt$global.id.number %in% peak.users$global.id.number) &
(!duplicated(dt$global.id.number)) &
(age >= 65)
])
table(dt[(dt$global.id.number %in% peak.users$global.id.number) &
(!duplicated(dt$global.id.number)) &
(pregnant == 0)
]$vaccine) /
nrow(dt[(dt$global.id.number %in% peak.users$global.id.number) &
(!duplicated(dt$global.id.number)) &
(pregnant == 0)
])
table(peak.users[
(norisk == "f") &
(age < 65)
]$vaccine) /
nrow(peak.users[
(norisk == "f") &
(age < 65)
])
table(peak.users[
(age >= 65)
]$vaccine) /
nrow(peak.users[
(age >= 65)
])
table(peak.users[
(pregnant == 0)
]$vaccine) /
nrow(peak.users[
(pregnant == 0)
])
for (symptom in c("fever", "chills", "blocked.runny.nose", "sneezing",
"sore.throat", "cough", "shortness.breath", "headache",
"muscle.and.or.joint.pain", "chest.pain", "tired", "loss.appetite", "phlegm",
"watery.eyes", "nausea", "vomiting", "diarrhoea", "stomach.ache", "other")) {
peak.users$nb <- with(peak, aggregate((get(symptom) == "t"),
list(global.id.number=global.id.number),
sum))$x
peak.users <- peak.users[, which(!grepl(symptom, colnames(peak.users))), with=FALSE]
peak.users <- peak.users[,symptom:=(nb>0), with=F]
}
for (symptom in c("fever.suddenly")) {
peak <- peak[is.na(get(symptom)), symptom := -1, with=F]
peak.users$nb <- with(peak, aggregate((get(symptom) == 0),
list(global.id.number=global.id.number),
sum))$x
peak.users <- peak.users[, which(!grepl(symptom, colnames(peak.users))), with=FALSE]
peak.users <- peak.users[,symptom:=(nb>0), with=F]
}
for (change in c("visit.medical.service.no", "contact.medical.service.no",
"no.medication")) {
peak.users$nb <- with(peak, aggregate((get(change) == "t"),
list(global.id.number=global.id.number),
sum))$x
peak.users <- peak.users[, which(!grepl(change, colnames(peak.users))), with=FALSE]
peak.users <- peak.users[,change:=(nb>0), with=F]
}
for (change in c("alter.routine")) {
peak <- peak[is.na(get(change)), change := -1, with=F]
peak.users$nb <- with(peak, aggregate((get(change) > 0),
list(global.id.number=global.id.number),
sum))$x
peak.users <- peak.users[, which(!grepl(change, colnames(peak.users))), with=FALSE]
peak.users <- peak.users[,change:=(nb>0), with=F]
}
for (change in c("absent")) {
peak.users$nb <- with(peak, aggregate((get("alter.routine") == 1),
list(global.id.number=global.id.number),
sum))$x
peak.users <- peak.users[, which(!grepl(change, colnames(peak.users))), with=FALSE]
peak.users <- peak.users[,change:=(nb>0), with=F]
}
peak.users <- peak.users[, which(!grepl("nb", colnames(peak.users))), with=FALSE]
peak.users$ili <- FALSE
peak.users$nbili <- with(peak, aggregate(ili,
list(global.id.number=global.id.number),
sum))$x
peak.users$ili <- (peak.users$nbili > 0)
peak.users$ili.hpa <- FALSE
peak.users$nbili.hpa <- with(peak, aggregate(ili.hpa,
list(global.id.number=global.id.number),
sum))$x
peak.users$ili.hpa <- (peak.users$nbili.hpa > 0)
peak.users$ili.fever <- FALSE
peak.users$nbili.fever <- with(peak, aggregate(ili.fever,
list(global.id.number=global.id.number),
sum))$x
peak.users$ili.fever <- (peak.users$nbili.fever > 0)
peak$ili.self <- (peak$Q11 == 0)
peak[is.na(ili.self)]$ili.self <- FALSE
peak.users$ili.self <- FALSE
peak.users$nbili.self <- with(peak, aggregate(ili.self,
list(global.id.number=global.id.number),
sum))$x
peak.users$ili.self <- (peak.users$nbili.self > 0)
# self-reported ILI
table(peak.users$ili.self)
table(peak.users$ili.self)/nrow(peak.users)
table(peak.users[(norisk == "f") & (age < 65)]$ili.self)
table(peak.users[(norisk == "f") & (age < 65)]$ili.self) /
nrow(peak.users[(norisk == "f") & (age < 65)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili.self)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili.self) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili.self)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili.self) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)])
table(peak.users[(norisk == "f") & (age >= 65)]$ili.self)
table(peak.users[(norisk == "f") & (age >= 65)]$ili.self) /
nrow(peak.users[(norisk == "f") & (age >= 65)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili.self)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili.self) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili.self)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili.self) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)])
table(peak.users[pregnant == 0]$ili.self)
table(peak.users[pregnant == 0]$ili.self) /
nrow(peak.users[pregnant == 0])
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili.self)
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili.self) /
nrow(peak.users[pregnant == 0 & (vaccine == 1)])
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili.self)
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili.self) /
nrow(peak.users[pregnant == 0 & (vaccine == 0)])
peak.users$agegroup <- cut(peak.users$age, breaks=c(0,18,25,35,45,55,65,75,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
table(peak.users[ili.self==1]$agegroup)
table(peak.users[ili.self==1]$agegroup) / table(peak.users$agegroup)
table(peak.users[ili.self==1]$gender)
table(peak.users[ili.self==1]$gender) / table(peak.users$gender)
table(peak.users[ili.self==1]$cough)
table(peak.users[ili.self==1]$cough) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$sore.throat)
table(peak.users[ili.self==1]$sore.throat) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$muscle.and.or.joint.pain)
table(peak.users[ili.self==1]$muscle.and.or.joint.pain) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$fever.suddenly)
table(peak.users[ili.self==1]$fever.suddenly) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$shortness.breath)
table(peak.users[ili.self==1]$shortness.breath) / nrow(peak.users[ili.self==1])
table((peak.users[ili.self==1]$chills == TRUE |
peak.users[ili.self==1]$blocked.runny.nose == TRUE |
peak.users[ili.self==1]$sneezing == TRUE |
peak.users[ili.self==1]$headache == TRUE |
peak.users[ili.self==1]$chest.pain == TRUE |
peak.users[ili.self==1]$tired == TRUE |
peak.users[ili.self==1]$loss.appetite == TRUE |
peak.users[ili.self==1]$phlegm == TRUE |
peak.users[ili.self==1]$watery.eyes == TRUE |
peak.users[ili.self==1]$nausea == TRUE |
peak.users[ili.self==1]$vomiting == TRUE |
peak.users[ili.self==1]$diarrhoea == TRUE |
peak.users[ili.self==1]$stomach.ache == TRUE |
peak.users[ili.self==1]$other == TRUE |
(peak.users[ili.self==1]$fever == TRUE &
peak.users[ili.self==1]$fever.suddenly == FALSE)))
table((peak.users[ili.self==1]$chills == TRUE |
peak.users[ili.self==1]$blocked.runny.nose == TRUE |
peak.users[ili.self==1]$sneezing == TRUE |
peak.users[ili.self==1]$headache == TRUE |
peak.users[ili.self==1]$chest.pain == TRUE |
peak.users[ili.self==1]$tired == TRUE |
peak.users[ili.self==1]$loss.appetite == TRUE |
peak.users[ili.self==1]$phlegm == TRUE |
peak.users[ili.self==1]$watery.eyes == TRUE |
peak.users[ili.self==1]$nausea == TRUE |
peak.users[ili.self==1]$vomiting == TRUE |
peak.users[ili.self==1]$diarrhoea == TRUE |
peak.users[ili.self==1]$stomach.ache == TRUE |
peak.users[ili.self==1]$other == TRUE |
(peak.users[ili.self==1]$fever == TRUE &
peak.users[ili.self==1]$fever.suddenly == FALSE))) /
nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$no.medication)
table(peak.users[ili.self==1]$no.medication) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$visit.medical.service.no)
table(peak.users[ili.self==1]$visit.medical.service.no) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$contact.medical.service.no)
table(peak.users[ili.self==1]$contact.medical.service.no) / nrow(peak.users[ili.self==1])
table(peak.users[ili.self==1]$absent)
table(peak.users[ili.self==1]$absent) / nrow(peak.users[ili.self==1])
# HPA definition
table(peak.users$ili.hpa)
table(peak.users$ili.hpa)/nrow(peak.users)
table(peak.users[(norisk == "f") & (age < 65)]$ili.hpa)
table(peak.users[(norisk == "f") & (age < 65)]$ili.hpa) /
nrow(peak.users[(norisk == "f") & (age < 65)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili.hpa)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili.hpa) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili.hpa)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili.hpa) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)])
table(peak.users[(norisk == "f") & (age >= 65)]$ili.hpa)
table(peak.users[(norisk == "f") & (age >= 65)]$ili.hpa) /
nrow(peak.users[(norisk == "f") & (age >= 65)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili.hpa)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili.hpa) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili.hpa)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili.hpa) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)])
table(peak.users[pregnant == 0]$ili.hpa)
table(peak.users[pregnant == 0]$ili.hpa) /
nrow(peak.users[pregnant == 0])
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili.hpa)
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili.hpa) /
nrow(peak.users[pregnant == 0 & (vaccine == 1)])
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili.hpa)
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili.hpa) /
nrow(peak.users[pregnant == 0 & (vaccine == 0)])
peak.users$agegroup <- cut(peak.users$age, breaks=c(0,18,25,35,45,55,65,75,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
table(peak.users[ili.hpa==1]$agegroup)
table(peak.users[ili.hpa==1]$agegroup) / table(peak.users$agegroup)
table(peak.users[ili.hpa==1]$gender)
table(peak.users[ili.hpa==1]$gender) / table(peak.users$gender)
table(peak.users[ili.hpa==1]$cough)
table(peak.users[ili.hpa==1]$cough) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$sore.throat)
table(peak.users[ili.hpa==1]$sore.throat) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$muscle.and.or.joint.pain)
table(peak.users[ili.hpa==1]$muscle.and.or.joint.pain) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$fever.suddenly)
table(peak.users[ili.hpa==1]$fever.suddenly) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$shortness.breath)
table(peak.users[ili.hpa==1]$shortness.breath) / nrow(peak.users[ili.hpa==1])
table((peak.users[ili.hpa==1]$chills == TRUE |
peak.users[ili.hpa==1]$blocked.runny.nose == TRUE |
peak.users[ili.hpa==1]$sneezing == TRUE |
peak.users[ili.hpa==1]$headache == TRUE |
peak.users[ili.hpa==1]$chest.pain == TRUE |
peak.users[ili.hpa==1]$tired == TRUE |
peak.users[ili.hpa==1]$loss.appetite == TRUE |
peak.users[ili.hpa==1]$phlegm == TRUE |
peak.users[ili.hpa==1]$watery.eyes == TRUE |
peak.users[ili.hpa==1]$nausea == TRUE |
peak.users[ili.hpa==1]$vomiting == TRUE |
peak.users[ili.hpa==1]$diarrhoea == TRUE |
peak.users[ili.hpa==1]$stomach.ache == TRUE |
peak.users[ili.hpa==1]$other == TRUE |
(peak.users[ili.hpa==1]$fever == TRUE &
peak.users[ili.hpa==1]$fever.suddenly == FALSE)))
table((peak.users[ili.hpa==1]$chills == TRUE |
peak.users[ili.hpa==1]$blocked.runny.nose == TRUE |
peak.users[ili.hpa==1]$sneezing == TRUE |
peak.users[ili.hpa==1]$headache == TRUE |
peak.users[ili.hpa==1]$chest.pain == TRUE |
peak.users[ili.hpa==1]$tired == TRUE |
peak.users[ili.hpa==1]$loss.appetite == TRUE |
peak.users[ili.hpa==1]$phlegm == TRUE |
peak.users[ili.hpa==1]$watery.eyes == TRUE |
peak.users[ili.hpa==1]$nausea == TRUE |
peak.users[ili.hpa==1]$vomiting == TRUE |
peak.users[ili.hpa==1]$diarrhoea == TRUE |
peak.users[ili.hpa==1]$stomach.ache == TRUE |
peak.users[ili.hpa==1]$other == TRUE |
(peak.users[ili.hpa==1]$fever == TRUE &
peak.users[ili.hpa==1]$fever.suddenly == FALSE))) /
nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$no.medication)
table(peak.users[ili.hpa==1]$no.medication) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$visit.medical.service.no)
table(peak.users[ili.hpa==1]$visit.medical.service.no) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$contact.medical.service.no)
table(peak.users[ili.hpa==1]$contact.medical.service.no) / nrow(peak.users[ili.hpa==1])
table(peak.users[ili.hpa==1]$absent)
table(peak.users[ili.hpa==1]$absent) / nrow(peak.users[ili.hpa==1])
# ECDC
table(peak.users$ili)
table(peak.users$ili)/nrow(peak.users)
table(peak.users[(norisk == "f") & (age < 65)]$ili)
table(peak.users[(norisk == "f") & (age < 65)]$ili) /
nrow(peak.users[(norisk == "f") & (age < 65)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)])
table(peak.users[(norisk == "f") & (age >= 65)]$ili)
table(peak.users[(norisk == "f") & (age >= 65)]$ili) /
nrow(peak.users[(norisk == "f") & (age >= 65)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)])
table(peak.users[pregnant == 0]$ili)
table(peak.users[pregnant == 0]$ili) /
nrow(peak.users[pregnant == 0])
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili)
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili) /
nrow(peak.users[pregnant == 0 & (vaccine == 1)])
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili)
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili) /
nrow(peak.users[pregnant == 0 & (vaccine == 0)])
peak.users$agegroup <- cut(peak.users$age, breaks=c(0,18,25,35,45,55,65,75,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
table(peak.users[ili==1]$agegroup)
table(peak.users[ili==1]$agegroup) / table(peak.users$agegroup)
table(peak.users[ili==1]$gender)
table(peak.users[ili==1]$gender) / table(peak.users$gender)
table(peak.users[ili==1]$cough)
table(peak.users[ili==1]$cough) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$sore.throat)
table(peak.users[ili==1]$sore.throat) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$muscle.and.or.joint.pain)
table(peak.users[ili==1]$muscle.and.or.joint.pain) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$fever.suddenly)
table(peak.users[ili==1]$fever.suddenly) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$shortness.breath)
table(peak.users[ili==1]$shortness.breath) / nrow(peak.users[ili==1])
table((peak.users[ili==1]$chills == TRUE |
peak.users[ili==1]$blocked.runny.nose == TRUE |
peak.users[ili==1]$sneezing == TRUE |
peak.users[ili==1]$headache == TRUE |
peak.users[ili==1]$chest.pain == TRUE |
peak.users[ili==1]$tired == TRUE |
peak.users[ili==1]$loss.appetite == TRUE |
peak.users[ili==1]$phlegm == TRUE |
peak.users[ili==1]$watery.eyes == TRUE |
peak.users[ili==1]$nausea == TRUE |
peak.users[ili==1]$vomiting == TRUE |
peak.users[ili==1]$diarrhoea == TRUE |
peak.users[ili==1]$stomach.ache == TRUE |
peak.users[ili==1]$other == TRUE |
(peak.users[ili==1]$fever == TRUE &
peak.users[ili==1]$fever.suddenly == FALSE)))
table((peak.users[ili==1]$chills == TRUE |
peak.users[ili==1]$blocked.runny.nose == TRUE |
peak.users[ili==1]$sneezing == TRUE |
peak.users[ili==1]$headache == TRUE |
peak.users[ili==1]$chest.pain == TRUE |
peak.users[ili==1]$tired == TRUE |
peak.users[ili==1]$loss.appetite == TRUE |
peak.users[ili==1]$phlegm == TRUE |
peak.users[ili==1]$watery.eyes == TRUE |
peak.users[ili==1]$nausea == TRUE |
peak.users[ili==1]$vomiting == TRUE |
peak.users[ili==1]$diarrhoea == TRUE |
peak.users[ili==1]$stomach.ache == TRUE |
peak.users[ili==1]$other == TRUE |
(peak.users[ili==1]$fever == TRUE &
peak.users[ili==1]$fever.suddenly == FALSE))) /
nrow(peak.users[ili==1])
table(peak.users[ili==1]$no.medication)
table(peak.users[ili==1]$no.medication) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$visit.medical.service.no)
table(peak.users[ili==1]$visit.medical.service.no) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$contact.medical.service.no)
table(peak.users[ili==1]$contact.medical.service.no) / nrow(peak.users[ili==1])
table(peak.users[ili==1]$absent)
table(peak.users[ili==1]$absent) / nrow(peak.users[ili==1])
# ECDC + fever
table(peak.users$ili.fever)
table(peak.users$ili.fever)/nrow(peak.users)
table(peak.users[(norisk == "f") & (age < 65)]$ili.fever)
table(peak.users[(norisk == "f") & (age < 65)]$ili.fever) /
nrow(peak.users[(norisk == "f") & (age < 65)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili.fever)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)]$ili.fever) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili.fever)
table(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)]$ili.fever) /
nrow(peak.users[(norisk == "f") & (age < 65) & (vaccine == 0)])
table(peak.users[(norisk == "f") & (age >= 65)]$ili.fever)
table(peak.users[(norisk == "f") & (age >= 65)]$ili.fever) /
nrow(peak.users[(norisk == "f") & (age >= 65)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili.fever)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)]$ili.fever) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 1)])
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili.fever)
table(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)]$ili.fever) /
nrow(peak.users[(norisk == "f") & (age >= 65) & (vaccine == 0)])
table(peak.users[pregnant == 0]$ili.fever)
table(peak.users[pregnant == 0]$ili.fever) /
nrow(peak.users[pregnant == 0])
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili.fever)
table(peak.users[pregnant == 0 & (vaccine == 1)]$ili.fever) /
nrow(peak.users[pregnant == 0 & (vaccine == 1)])
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili.fever)
table(peak.users[pregnant == 0 & (vaccine == 0)]$ili.fever) /
nrow(peak.users[pregnant == 0 & (vaccine == 0)])
peak.users$agegroup <- cut(peak.users$age, breaks=c(0,18,25,35,45,55,65,75,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
table(peak.users[ili.fever==1]$agegroup)
table(peak.users[ili.fever==1]$agegroup) / table(peak.users$agegroup)
table(peak.users[ili.fever==1]$gender)
table(peak.users[ili.fever==1]$gender) / table(peak.users$gender)
table(peak.users[ili.fever==1]$cough)
table(peak.users[ili.fever==1]$cough) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$sore.throat)
table(peak.users[ili.fever==1]$sore.throat) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$muscle.and.or.joint.pain)
table(peak.users[ili.fever==1]$muscle.and.or.joint.pain) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$fever.suddenly)
table(peak.users[ili.fever==1]$fever.suddenly) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$shortness.breath)
table(peak.users[ili.fever==1]$shortness.breath) / nrow(peak.users[ili.fever==1])
table((peak.users[ili.fever==1]$chills == TRUE |
peak.users[ili.fever==1]$blocked.runny.nose == TRUE |
peak.users[ili.fever==1]$sneezing == TRUE |
peak.users[ili.fever==1]$headache == TRUE |
peak.users[ili.fever==1]$chest.pain == TRUE |
peak.users[ili.fever==1]$tired == TRUE |
peak.users[ili.fever==1]$loss.appetite == TRUE |
peak.users[ili.fever==1]$phlegm == TRUE |
peak.users[ili.fever==1]$watery.eyes == TRUE |
peak.users[ili.fever==1]$nausea == TRUE |
peak.users[ili.fever==1]$vomiting == TRUE |
peak.users[ili.fever==1]$diarrhoea == TRUE |
peak.users[ili.fever==1]$stomach.ache == TRUE |
peak.users[ili.fever==1]$other == TRUE |
(peak.users[ili.fever==1]$fever == TRUE &
peak.users[ili.fever==1]$fever.suddenly == FALSE)))
table((peak.users[ili.fever==1]$chills == TRUE |
peak.users[ili.fever==1]$blocked.runny.nose == TRUE |
peak.users[ili.fever==1]$sneezing == TRUE |
peak.users[ili.fever==1]$headache == TRUE |
peak.users[ili.fever==1]$chest.pain == TRUE |
peak.users[ili.fever==1]$tired == TRUE |
peak.users[ili.fever==1]$loss.appetite == TRUE |
peak.users[ili.fever==1]$phlegm == TRUE |
peak.users[ili.fever==1]$watery.eyes == TRUE |
peak.users[ili.fever==1]$nausea == TRUE |
peak.users[ili.fever==1]$vomiting == TRUE |
peak.users[ili.fever==1]$diarrhoea == TRUE |
peak.users[ili.fever==1]$stomach.ache == TRUE |
peak.users[ili.fever==1]$other == TRUE |
(peak.users[ili.fever==1]$fever == TRUE &
peak.users[ili.fever==1]$fever.suddenly == FALSE))) /
nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$no.medication)
table(peak.users[ili.fever==1]$no.medication) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$visit.medical.service.no)
table(peak.users[ili.fever==1]$visit.medical.service.no) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$contact.medical.service.no)
table(peak.users[ili.fever==1]$contact.medical.service.no) / nrow(peak.users[ili.fever==1])
table(peak.users[ili.fever==1]$absent)
table(peak.users[ili.fever==1]$absent) / nrow(peak.users[ili.fever==1])
peak.users$agegroup2 <- cut(peak.users$age, breaks=c(0,20,30,40,50,60,70,80,
max(dt$age, na.rm=T)), include.lowest=T, right=F)
# table(peak.users[ili.self==1 &
# absent==T]$agegroup2)/table(peak.users[ili.self==1]$agegroup2)
absent.age <- as.vector(table(peak.users[ili.self==1 &
absent==T]$agegroup2)/
table(peak.users[ili.self==1]$agegroup2))
absent.age[is.nan(absent.age)] <- 0
agegroup.absent <- data.table(age=levels(peak.users$agegroup2),
absent=absent.age)
png("absenteeism.png", width=640)
ggplot(agegroup.absent[-1], aes(x=age, y=absent*100, group=1))+ geom_line()+
theme_bw(20)+ opts(panel.grid.major=theme_blank(),
panel.grid.minor=theme_blank())+
scale_y_continuous("%", limits=c(0,80))
dev.off()
table(peak.users[vaccine==0]$ili.self)
table(peak.users[vaccine==1]$ili.self)
table(peak.users[vaccine==0]$ili.hpa)
table(peak.users[vaccine==1]$ili.hpa)
m <- data.table(melt(peak, measure.vars=c("ili.self", "ili.hpa")))
png("ili_date.png", width=640)
ggplot(m[value == 1 & symptoms.start.date>"2012-02-23"],
aes(x=symptoms.start.date, fill=variable))+ geom_histogram(binwidth=2,
position="dodge")+
scale_fill_brewer("ILI", labels=c("Self-reported", "HPA definition"),
palette="Set1")+ theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank())+
scale_y_continuous("Count")+ scale_x_date("Date")
dev.off()
png("ili_week.png", width=640)
ggplot(m[value == 1 & symptoms.start.date>"2012-02-23"],
aes(x=symptoms.start.date, fill=variable))+ geom_histogram(binwidth=7,
position="dodge")+
scale_fill_brewer("ILI", labels=c("Self-reported", "HPA definition"),
palette="Set1")+ theme_bw(20)+
opts(panel.grid.major=theme_blank(), panel.grid.minor=theme_blank())+
scale_y_continuous("Count")+ scale_x_date("Week", labels=c("",8,9,10,11,12,""))
dev.off()
# whole season
whole.users <- dt[!duplicated(dt$bid)]
whole.users$vaccinated <- with(dt, aggregate(vaccine,
## list(global.id.number=global.id.number),
list(bid=bid),
sum))$x > 0
for (symptom in c("fever", "chills", "blocked.runny.nose", "sneezing",
"sore.throat", "cough", "shortness.breath", "headache",
"muscle.and.or.joint.pain", "chest.pain", "tired", "loss.appetite", "phlegm",
"watery.eyes", "nausea", "vomiting", "diarrhoea", "stomach.ache", "other")) {
whole.users$nb <- with(dt, aggregate((get(symptom) == "t"),
list(bid=bid),
sum))$x
whole.users <- whole.users[, which(!grepl(symptom, colnames(whole.users))), with=FALSE]
whole.users <- whole.users[,symptom:=(nb>0), with=F]
}
for (symptom in c("fever.suddenly")) {
dt <- dt[is.na(get(symptom)), symptom := -1, with=F]
whole.users$nb <- with(dt, aggregate((get(symptom) == 0),
list(bid=bid),
sum))$x
whole.users <- whole.users[, which(!grepl(symptom, colnames(whole.users))), with=FALSE]
whole.users <- whole.users[,symptom:=(nb>0), with=F]
}
for (change in c("visit.medical.service.no", "contact.medical.service.no",
"no.medication")) {
whole.users$nb <- with(dt, aggregate((get(change) == "t"),
list(bid=bid),
sum))$x
whole.users <- whole.users[, which(!grepl(change, colnames(whole.users))), with=FALSE]
whole.users <- whole.users[,change:=(nb>0), with=F]
}
for (change in c("alter.routine")) {
dt <- dt[is.na(get(change)), change := -1, with=F]
whole.users$nb <- with(dt, aggregate((get(change) > 0),
list(bid=bid),
sum))$x
whole.users <- whole.users[, which(!grepl(change, colnames(whole.users))), with=FALSE]
whole.users <- whole.users[,change:=(nb>0), with=F]
}
for (change in c("absent")) {
whole.users$nb <- with(dt, aggregate((get("alter.routine") == 1),
list(bid=bid),
sum))$x
whole.users <- whole.users[, which(!grepl(change, colnames(whole.users))), with=FALSE]
whole.users <- whole.users[,change:=(nb>0), with=F]
}
whole.users <- whole.users[, which(!grepl("nb", colnames(whole.users))), with=FALSE]
whole.users$ili <- FALSE
whole.users$nbili <- with(dt, aggregate(ili,
list(bid=bid),
sum))$x
whole.users$ili <- (whole.users$nbili > 0)
whole.users$ili.fever <- FALSE
whole.users$nbili.fever <- with(dt, aggregate(ili.fever,
list(bid=bid),
sum))$x
whole.users$ili.fever <- (whole.users$nbili.fever > 0)
whole.users[is.na(ili.fever)]$ili.fever <- F
whole.users$ili.self <- FALSE
whole.users$nbili.self <- with(dt, aggregate(ili.self,
list(bid=bid),
sum))$x
whole.users$ili.self <- (whole.users$nbili.self > 0)
whole.users$agegroup2 <- cut(whole.users$age, breaks=c(0,20,30,40,50,60,70,80,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
whole.users$daycare <- (whole.users$Q6b>0)
whole.users[is.na(daycare)]$daycare <- F
whole.users$frequent.contact <- (whole.users$frequent.contact.children == "t" |
whole.users$frequent.contact.elderly == "t" |
whole.users$frequent.contact.people == "t")
whole.users$smoking <- whole.users$smoke %in% c(1,2,3)
# higher education etc
nrow(ds[country=="uk" & ili==T])/nrow(ds[country=="uk"])*100
nrow(ds[country=="uk" & ili==T & age < 20])/nrow(ds[country=="uk" & age < 20])*100
nrow(ds[country=="uk" & ili==T & age >= 20 & age < 45])/nrow(ds[country=="uk" & age >=20 & age < 45])*100
nrow(ds[country=="uk" & ili==T & age >= 45])/nrow(ds[country=="uk" & age >= 45])*100
nrow(ds[country=="uk" & ili==T & atrisk == 1])/nrow(ds[country=="uk" & atrisk == 1])*100
ds$vmsg <- with(dt2, aggregate(vmsg,
list(global.id.number=global.id.number),
sum))$x
ds$vm <- (ds$vmsg > 0)
nrow(ds[country=="uk" & ili==T & vm == 1])/nrow(ds[country=="uk"])*100
# active users
#dt$active <- (dt$nReports > 4 &
# cohorts
# exclude users with bad age
temp.data <- dt[!is.na(age)]
temp.data$agegroup <- factor(temp.data$agegroup)
temp.data <- temp.data[duplicated(dt$global.id.number)]
temp.data$newili <- temp.data$ili
temp.data$newili.notired <- temp.data$ili.notired
temp.data$newili.fever <- temp.data$ili.fever
temp.data[same==0, newili := 0]
temp.data[same==0, newili.notired := 0]
temp.data[same==0, newili.fever := 0]
levels(temp.data$agegroup) <- c("<18","18-44","45-64","65+")
r <- ftable(temp.data$vaccine, temp.data$atrisk, temp.data$children,
temp.data$agegroup, temp.data$week, temp.data$country,
temp.data$newili, row.vars=rev(1:6))
vaccination.raw.data <- data.frame(expand.grid(rev(attr(r, "row.vars"))),
unclass(r))
names(vaccination.raw.data) <- c("vaccinated","risk","children","agegroup","year-week","country","non_ili","ili")
write.csv(vaccination.raw.data, "cohorts_201112.raw", quote=F, row.names=F)
r <- ftable(temp.data$vaccine, temp.data$atrisk, temp.data$children,
temp.data$agegroup, temp.data$week, temp.data$country,
temp.data$newili.notired, row.vars=rev(1:6))
vaccination.raw.data <- data.frame(expand.grid(rev(attr(r, "row.vars"))),
unclass(r))
names(vaccination.raw.data) <- c("vaccinated","risk","children","agegroup","year-week","country","non_ili","ili")
write.csv(vaccination.raw.data, "cohorts_notired_201112.raw", quote=F, row.names=F)
r <- ftable(temp.data$vaccine, temp.data$atrisk, temp.data$children,
temp.data$agegroup, temp.data$week, temp.data$country,
temp.data$newili.fever, row.vars=rev(1:6))
vaccination.raw.data <- data.frame(expand.grid(rev(attr(r, "row.vars"))),
unclass(r))
names(vaccination.raw.data) <- c("vaccinated","risk","children","agegroup","year-week","country","non_ili","ili")
write.csv(vaccination.raw.data, "cohorts_fever_201112.raw", quote=F, row.names=F)
# GI stuff
dt$gi.or <- as.numeric(dt$diarrhoea == "t" | dt$vomiting == "t" | dt$nausea == "t")
dt$gi.and <- as.numeric(dt$diarrhoea == "t" & dt$vomiting == "t" & dt$nausea == "t")
dt$gi.or.novom <- as.numeric(dt$diarrhoea == "t" | dt$nausea == "t")
dt$gi.and.novom <- as.numeric(dt$diarrhoea == "t" & dt$nausea == "t")
dt$newgi.or <- dt$gi.or
dt$newgi.and <- dt$gi.and
dt$newgi.or.novom <- dt$gi.or.novom
dt$newgi.and.novom <- dt$gi.and.novom
dt[same==0, newgi.or := 0]
dt[same==0, newgi.and := 0]
dt[same==0, newgi.or.novom := 0]
dt[same==0, newgi.and.novom := 0]
r.or <- ftable(dt[country == "uk"]$week, dt[country=="uk"]$newgi.or,
row.vars=1)
r.and <- ftable(dt[country == "uk"]$week, dt[country=="uk"]$newgi.and,
row.vars=1)
r.or.novom <- ftable(dt[country == "uk"]$week, dt[country=="uk"]$newgi.or.novom,
row.vars=1)
r.and.novom <- ftable(dt[country == "uk"]$week, dt[country=="uk"]$newgi.and.novom,
row.vars=1)
gi.or.raw.data <- data.frame(expand.grid(rev(attr(r.or, "row.vars"))),
unclass(r.or))
gi.and.raw.data <- data.frame(expand.grid(rev(attr(r.and, "row.vars"))),
unclass(r.and))
gi.or.novom.raw.data <- data.frame(expand.grid(rev(attr(r.or.novom, "row.vars"))),
unclass(r.or.novom))
gi.and.novom.raw.data <- data.frame(expand.grid(rev(attr(r.and.novom, "row.vars"))),
unclass(r.and.novom))
names(gi.or.raw.data) <- c("Week", "nongi", "gi")
names(gi.and.raw.data) <- c("Week", "nongi", "gi")
names(gi.or.novom.raw.data) <- c("Week", "nongi", "gi")
names(gi.and.novom.raw.data) <- c("Week", "nongi", "gi")
gi.or.raw.data$gi.incidence <-
gi.or.raw.data$gi / (gi.or.raw.data$nongi + gi.or.raw.data$nongi)
gi.and.raw.data$gi.incidence <-
gi.and.raw.data$gi / (gi.and.raw.data$nongi + gi.and.raw.data$nongi)
gi.or.novom.raw.data$gi.incidence <-
gi.or.novom.raw.data$gi / (gi.or.novom.raw.data$nongi + gi.or.novom.raw.data$nongi)
gi.and.novom.raw.data$gi.incidence <-
gi.and.novom.raw.data$gi / (gi.and.novom.raw.data$nongi + gi.and.novom.raw.data$nongi)
gi.or.12 <- gi.or.raw.data[-c(1:3, 22:26),]
gi.and.12 <- gi.and.raw.data[-c(1:3, 22:26),]
gi.or.novom.12 <- gi.or.novom.raw.data[-c(1:3, 22:26),]
gi.and.novom.12 <- gi.and.novom.raw.data[-c(1:3, 22:26),]
write.csv(gi.or.12, "gi_or_201112.csv", quote=F, row.names=F)
write.csv(gi.and.12, "gi_and_201112.csv", quote=F, row.names=F)
write.csv(gi.or.novom.12, "gi_or_novom_201112.csv", quote=F, row.names=F)
write.csv(gi.and.novom.12, "gi_and_novom_201112.csv", quote=F, row.names=F)
# logistic regressions
whole.users$notvaccinated <- !(whole.users$vaccinated)
season <- logistic.regression.or.ci(glm(ili ~ notvaccinated + children +
agegroup + country +
frequent.contact + atrisk +
gender, data=whole.users,
family=binomial))
regressions <- data.table(yearweek=levels(factor(dt$week)))
setkey(regressions, yearweek)
for (variable in names(season$OR)) {
regressions <- regressions[,variable := 0.0,with=F]
regressions <- regressions[,paste(variable, ".ci.low", sep="") := 0.0,with=F]
regressions <- regressions[,paste(variable, ".ci.high", sep="") := 0.0,with=F]
}
for (thisweek in levels(factor(dt$week))) {
week.all <- dt[week == thisweek]
week.users <- week.all[!duplicated(week.all$bid)]
week.users$vaccinated <- with(week.all,
aggregate(vaccine,
## list(global.id.number=global.id.number),
list(bid=bid),
sum))$x > 0
for (symptom in c("fever", "chills", "blocked.runny.nose", "sneezing",
"sore.throat", "cough", "shortness.breath", "headache",
"muscle.and.or.joint.pain", "chest.pain", "tired", "loss.appetite", "phlegm",
"watery.eyes", "nausea", "vomiting", "diarrhoea", "stomach.ache", "other")) {
week.users$nb <- with(week.all,
aggregate((get(symptom) == "t"),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(symptom, colnames(week.users))), with=FALSE]
week.users <- week.users[,symptom:=(nb>0), with=F]
}
for (symptom in c("fever.suddenly")) {
week.all <- week.all[is.na(get(symptom)), symptom := -1, with=F]
week.users$nb <- with(week.all, aggregate((get(symptom) == 0),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(symptom, colnames(week.users))), with=FALSE]
week.users <- week.users[,symptom:=(nb>0), with=F]
}
for (change in c("visit.medical.service.no", "contact.medical.service.no",
"no.medication")) {
week.users$nb <- with(week.all, aggregate((get(change) == "t"),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(change, colnames(week.users))), with=FALSE]
week.users <- week.users[,change:=(nb>0), with=F]
}
for (change in c("alter.routine")) {
week.all <- week.all[is.na(get(change)), change := -1, with=F]
week.users$nb <- with(week.all, aggregate((get(change) > 0),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(change, colnames(week.users))), with=FALSE]
week.users <- week.users[,change:=(nb>0), with=F]
}
for (change in c("absent")) {
week.users$nb <- with(week.all, aggregate((get("alter.routine") == 1),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(change, colnames(week.users))), with=FALSE]
week.users <- week.users[,change:=(nb>0), with=F]
}
week.users <- week.users[, which(!grepl("nb", colnames(week.users))), with=FALSE]
week.users$ili <- FALSE
week.users$nbili <- with(week.all, aggregate(ili,
list(bid=bid),
sum))$x
week.users$ili <- (week.users$nbili > 0)
week.users$ili.fever <- FALSE
week.users$nbili.fever <- with(week.all, aggregate(ili.fever,
list(bid=bid),
sum))$x
week.users$ili.fever <- (week.users$nbili.fever > 0)
week.users <- week.users[is.na(ili.fever), "ili.fever" := F, with=F]
week.all$ili.self <- (week.all$Q11 == 0)
week.all[is.na(ili.self)]$ili.self <- FALSE
week.users$ili.self <- FALSE
week.users$nbili.self <- with(week.all, aggregate(ili.self,
list(bid=bid),
sum))$x
week.users$ili.self <- (week.users$nbili.self > 0)
week.users$agegroup2 <- cut(week.users$age, breaks=c(0,20,30,40,50,60,70,80,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
week.users$daycare <- (week.users$Q6b>0)
week.users[is.na(daycare)]$daycare <- F
week.users$frequent.contact <- (week.users$frequent.contact.children == "t" |
week.users$frequent.contact.elderly == "t" |
week.users$frequent.contact.people == "t")
week.users$smoking <- week.users$smoke %in% c(1,2,3)
week.users$notvaccinated <- !(week.users$vaccinated)
week.regression <-
logistic.regression.or.ci(glm(ili ~ notvaccinated + children +
agegroup + country +
frequent.contact + atrisk +
gender,
data=week.users, family=binomial))
for (i in 1:length(names(week.regression$OR))) {
# for (variable in names(week.regression$OR)) {
## regressions <- regressions[thisweek, variable :=
## week.regression$OR[[variable]], with=F]
regressions <- regressions[thisweek, names(week.regression$OR[i]) :=
week.regression$OR[[i]], with=F]
regressions <- regressions[thisweek, paste(names(week.regression$OR[i]), ".ci.low", sep="") :=
week.regression$OR.ci[i,1], with=F]
regressions <- regressions[thisweek, paste(names(week.regression$OR[i]), ".ci.high", sep="") :=
week.regression$OR.ci[i,2], with=F]
}
}
regressions$year <- as.numeric(substr(regressions$yearweek, 1, 4))
regressions$week <- as.numeric(substr(regressions$yearweek, 6, 7))
regressions$date <- as.Date(strptime(paste(regressions$year, regressions$week*7,sep=" "),format="%Y %j"))+5
for (variable in names(season$OR)) {
# filename <- gsub("[,\\[)]", "", gsub("\\]", "", names(season$OR)[1]))
pdf(paste(variable, "3.pdf", sep=""))
print(
ggplot(regressions[yearweek > "2011-45" & yearweek < "2012-14"], aes(x=date, y=get(variable)))+
geom_line()+
geom_errorbar(aes(ymin = get(paste(variable, ".ci.low", sep="")),
ymax = get(paste(variable, ".ci.high", sep=""))))+
geom_point(size=3, shape=21, fill="white")+
scale_y_continuous(name="Weekly odds ratio")+
theme_bw(30)+
scale_x_date(name="")+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank())+
geom_abline(intercept=1, slope=0)
)
dev.off()
png(paste(variable, "3.png", sep=""))
print(
ggplot(regressions[yearweek > "2011-45" & yearweek < "2012-14"], aes(x=date, y=get(variable)))+
geom_line()+
geom_errorbar(aes(ymin = get(paste(variable, ".ci.low", sep="")),
ymax = get(paste(variable, ".ci.high", sep=""))))+
geom_point(size=3, shape=21, fill="white")+
scale_y_continuous(name="Weekly odds ratio")+
theme_bw(30)+
scale_x_date(name="")+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank())+
geom_abline(intercept=1, slope=0)
)
dev.off()
}
# cumulative regressions
cregressions <- data.table(yearweek=levels(factor(dt$week)))
setkey(cregressions, yearweek)
for (variable in names(season$OR)) {
cregressions <- cregressions[,variable := 0.0,with=F]
}
for (thisweek in levels(factor(dt$week))) {
week.all <- dt[week <= thisweek]
week.users <- week.all[!duplicated(week.all$bid)]
week.users$vaccinated <- with(week.all,
aggregate(vaccine,
## list(global.id.number=global.id.number),
list(bid=bid),
sum))$x > 0
for (symptom in c("fever", "chills", "blocked.runny.nose", "sneezing",
"sore.throat", "cough", "shortness.breath", "headache",
"muscle.and.or.joint.pain", "chest.pain", "tired", "loss.appetite", "phlegm",
"watery.eyes", "nausea", "vomiting", "diarrhoea", "stomach.ache", "other")) {
week.users$nb <- with(week.all,
aggregate((get(symptom) == "t"),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(symptom, colnames(week.users))), with=FALSE]
week.users <- week.users[,symptom:=(nb>0), with=F]
}
for (symptom in c("fever.suddenly")) {
week.all <- week.all[is.na(get(symptom)), symptom := -1, with=F]
week.users$nb <- with(week.all, aggregate((get(symptom) == 0),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(symptom, colnames(week.users))), with=FALSE]
week.users <- week.users[,symptom:=(nb>0), with=F]
}
for (change in c("visit.medical.service.no", "contact.medical.service.no",
"no.medication")) {
week.users$nb <- with(week.all, aggregate((get(change) == "t"),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(change, colnames(week.users))), with=FALSE]
week.users <- week.users[,change:=(nb>0), with=F]
}
for (change in c("alter.routine")) {
week.all <- week.all[is.na(get(change)), change := -1, with=F]
week.users$nb <- with(week.all, aggregate((get(change) > 0),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(change, colnames(week.users))), with=FALSE]
week.users <- week.users[,change:=(nb>0), with=F]
}
for (change in c("absent")) {
week.users$nb <- with(week.all, aggregate((get("alter.routine") == 1),
list(bid=bid),
sum))$x
week.users <- week.users[, which(!grepl(change, colnames(week.users))), with=FALSE]
week.users <- week.users[,change:=(nb>0), with=F]
}
week.users <- week.users[, which(!grepl("nb", colnames(week.users))), with=FALSE]
week.users$ili <- FALSE
week.users$nbili <- with(week.all, aggregate(ili,
list(bid=bid),
sum))$x
week.users$ili <- (week.users$nbili > 0)
week.users$ili.fever <- FALSE
week.users$nbili.fever <- with(week.all, aggregate(ili.fever,
list(bid=bid),
sum))$x
week.users$ili.fever <- (week.users$nbili.fever > 0)
week.users[is.na(ili.fever)]$ili.fever <- F
week.all$ili.self <- (week.all$Q11 == 0)
week.all[is.na(ili.self)]$ili.self <- FALSE
week.users$ili.self <- FALSE
week.users$nbili.self <- with(week.all, aggregate(ili.self,
list(bid=bid),
sum))$x
week.users$ili.self <- (week.users$nbili.self > 0)
week.users$agegroup2 <- cut(week.users$age, breaks=c(0,20,30,40,50,60,70,80,
max(dt$age, na.rm=T)),
include.lowest=T, right=F)
week.users$daycare <- (week.users$Q6b>0)
week.users[is.na(daycare)]$daycare <- F
week.users$frequent.contact <- (week.users$frequent.contact.children == "t" |
week.users$frequent.contact.elderly == "t" |
week.users$frequent.contact.people == "t")
week.users$smoking <- week.users$smoke %in% c(1,2,3)
week.users$notvaccinated <- !(week.users$vaccinated)
week.regression <-
logistic.regression.or.ci(glm(ili ~ notvaccinated + children +
agegroup + country +
frequent.contact + atrisk +
gender,
data=week.users, family=binomial))
for (i in 1:length(names(week.regression$OR))) {
## for (variable in names(week.regression$OR)) {
## cregressions <- cregressions[thisweek, variable :=
## week.regression$OR[[variable]], with=F]
cregressions <- cregressions[thisweek, names(week.regression$OR[i]) :=
week.regression$OR[[i]], with=F]
cregressions <- cregressions[thisweek, paste(names(week.regression$OR[i]), ".ci.low", sep="") :=
week.regression$OR.ci[i,1], with=F]
cregressions <- cregressions[thisweek, paste(names(week.regression$OR[i]), ".ci.high", sep="") :=
week.regression$OR.ci[i,2], with=F]
}
}
cregressions$year <- as.numeric(substr(cregressions$yearweek, 1, 4))
cregressions$week <- as.numeric(substr(cregressions$yearweek, 6, 7))
cregressions$date <- as.Date(strptime(paste(cregressions$year, cregressions$week*7,sep=" "),format="%Y %j"))+5
for (variable in names(season$OR)) {
## filename <- gsub("[,\\[)]", "", gsub("\\]", "", variable))
## cat(filename, "\n")
pdf(paste("c_", variable, "3.pdf", sep=""))
print(
ggplot(cregressions[yearweek > "2011-45" & yearweek < "2012-14"], aes(x=date, y=get(variable)))+
geom_line()+
geom_errorbar(aes(ymin = get(paste(variable, ".ci.low", sep="")),
ymax = get(paste(variable, ".ci.high", sep=""))))+
geom_point(size=3, shape=21, fill="white")+
scale_y_continuous(name="Cumulative odds ratio")+
theme_bw(30)+
scale_x_date(name="")+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank())+
geom_abline(intercept=1, slope=0)
)
dev.off()
png(paste("c_", variable, "3.png", sep=""))
print(
ggplot(cregressions[yearweek > "2011-45" & yearweek < "2012-14"], aes(x=date, y=get(variable)))+
geom_line()+
geom_errorbar(aes(ymin = get(paste(variable, ".ci.low", sep="")),
ymax = get(paste(variable, ".ci.high", sep=""))))+
geom_point(size=3, shape=21, fill="white")+
scale_y_continuous(name="Cumulative odds ratio")+
theme_bw(30)+
scale_x_date(name="")+
theme(panel.grid.major=element_blank(),
panel.grid.minor=element_blank())+
geom_abline(intercept=1, slope=0)
)
dev.off()
}
# reporting delay distributions
dt$diffdays.onset <- as.numeric(as.Date(dt$timestamp.1)-as.Date(dt$symptoms.start.date))
pdf("onset_all_symptoms.pdf")
ggplot(dt[same != 0 & diffdays.onset>=0 & diffdays.onset < 57], aes(x = diffdays.onset, y=..density..)) + geom_histogram(binwidth=1) + scale_x_continuous("days between symptom onset and report")+ scale_y_continuous("proportion of all symptom reports")+ theme_bw()
dev.off()
pdf("onset_ili.pdf")
ggplot(dt[diffdays.onset>=0 & diffdays.onset < 57 & ili==T], aes(x = diffdays.onset, y=..density..)) + geom_histogram(binwidth=1) + scale_x_continuous("days between symptom onset and report")+ scale_y_continuous("proportion of symptom reports with ILI")+ theme_bw()
dev.off()
nrow(dt[diffdays.onset>7])/nrow(dt[diffdays.onset>=0])
nrow(dt[diffdays.onset>14])/nrow(dt[diffdays.onset>=0])
nrow(dt[diffdays.onset>21])/nrow(dt[diffdays.onset>=0])
nrow(dt[diffdays.onset>28])/nrow(dt[diffdays.onset>=0])
nrow(dt[diffdays.onset<0])/nrow(dt[!is.na(diffdays.onset)])
nrow(dt[same != 0 & diffdays.onset>7])/nrow(dt[same != 0 & diffdays.onset>=0])
nrow(dt[same != 0 & diffdays.onset>14])/nrow(dt[same != 0 & diffdays.onset>=0])
nrow(dt[same != 0 & diffdays.onset>21])/nrow(dt[same != 0 & diffdays.onset>=0])
nrow(dt[same != 0 & diffdays.onset>28])/nrow(dt[same != 0 & diffdays.onset>=0])
nrow(dt[same != 0 & diffdays.onset<0])/nrow(dt[same != 0 & !is.na(diffdays.onset)])
nrow(dt[ili==T & diffdays.onset>7])/nrow(dt[ili==T & diffdays.onset>=0])
nrow(dt[ili==T & diffdays.onset>14])/nrow(dt[ili==T & diffdays.onset>=0])
nrow(dt[ili==T & diffdays.onset>21])/nrow(dt[ili==T & diffdays.onset>=0])
nrow(dt[ili==T & diffdays.onset>28])/nrow(dt[ili==T & diffdays.onset>=0])
nrow(dt[ili==T & diffdays.onset<0])/nrow(dt[ili==T & !is.na(diffdays.onset)])
nrow(dt[ili.fever==T & diffdays.onset>7])/nrow(dt[ili.fever==T & diffdays.onset>=0])
nrow(dt[ili.fever==T & diffdays.onset>14])/nrow(dt[ili.fever==T & diffdays.onset>=0])
nrow(dt[ili.fever==T & diffdays.onset>21])/nrow(dt[ili.fever==T & diffdays.onset>=0])
nrow(dt[ili.fever==T & diffdays.onset>28])/nrow(dt[ili.fever==T & diffdays.onset>=0])
nrow(dt[ili.fever==T & diffdays.onset<0])/nrow(dt[ili.fever==T & !is.na(diffdays.onset)])
dt$diffdays.end <- as.numeric(as.Date(dt$timestamp.1)-as.Date(dt$symptoms.end.date))
pdf("end_all_symptoms.pdf")
ggplot(dt[diffdays.end>=0 & diffdays.end < 57], aes(x = diffdays.end, y=..density..)) + geom_histogram(binwidth=1) + scale_x_continuous("days between symptom end and report")+ scale_y_continuous("proportion of all symptom reports")+ theme_bw()
dev.off()
pdf("end_ili.pdf")
ggplot(dt[diffdays.end>=0 & diffdays.end < 57 & ili==T], aes(x = diffdays.end, y=..density..)) + geom_histogram(binwidth=1) + scale_x_continuous("days between symptom end and report")+ scale_y_continuous("proportion of symptom reports with ILI")+ theme_bw()
dev.off()
nrow(dt[diffdays.end>7])/nrow(dt[diffdays.end>=0])
nrow(dt[diffdays.end>14])/nrow(dt[diffdays.end>=0])
nrow(dt[diffdays.end>21])/nrow(dt[diffdays.end>=0])
nrow(dt[diffdays.end>28])/nrow(dt[diffdays.end>=0])
nrow(dt[diffdays.end<0])/nrow(dt[!is.na(diffdays.end)])
nrow(dt[ili==T & diffdays.end>7])/nrow(dt[ili==T & diffdays.end>=0])
nrow(dt[ili==T & diffdays.end>14])/nrow(dt[ili==T & diffdays.end>=0])
nrow(dt[ili==T & diffdays.end>21])/nrow(dt[ili==T & diffdays.end>=0])
nrow(dt[ili==T & diffdays.end>28])/nrow(dt[ili==T & diffdays.end>=0])
nrow(dt[ili==T & diffdays.end<0])/nrow(dt[ili==T & !is.na(diffdays.end)])
nrow(dt[ili.fever==T & diffdays.end>7])/nrow(dt[ili.fever==T & diffdays.end>=0])
nrow(dt[ili.fever==T & diffdays.end>14])/nrow(dt[ili.fever==T & diffdays.end>=0])
nrow(dt[ili.fever==T & diffdays.end>21])/nrow(dt[ili.fever==T & diffdays.end>=0])
nrow(dt[ili.fever==T & diffdays.end>28])/nrow(dt[ili.fever==T & diffdays.end>=0])
nrow(dt[ili.fever==T & diffdays.end<0])/nrow(dt[ili.fever==T & !is.na(diffdays.end)])
# add active user stuff
dt.short <-
dt[,c("week", "bid", "vaccine", "fever", "chills", "blocked.runny.nose",
"sneezing", "sore.throat", "cough", "shortness.breath", "headache",
"muscle.and.or.joint.pain", "chest.pain", "tired", "loss.appetite", "phlegm",
"watery.eyes", "nausea", "vomiting", "diarrhoea", "stomach.ache",
"other", "fever.suddenly", "visit.medical.service.no",
"contact.medical.service.no", "no.medication", "alter.routine",
"ili", "ili.fever", "ili.self", "age", "agegroup", "Q6b",
"frequent.contact.children", "frequent.contact.elderly",
"frequent.contact.people", "smoke", "atrisk", "date",
"symptoms.start.week", "same", "no.symptoms"),with=F]
dt.short$added.2week <- F
dt.short$added.3week <- F
lastrow <- nrow(dt.short)
dt2 <- dt.short
dt3 <- dt.short
counter <- 1
## dt2$date <- dt$date - 7
## dt2$week <- format(dt2$date, format="%G-%W")
for (i in 1:lastrow) {
## if (nrow(dt[bid == dt2[i]$bid & week == dt2[i]$week]) == 0) {
## if (is.na(dt[i]$symptoms.start.week) |
## dt[i]$symptoms.start.week != dt2[i]$week) {
## ## dt <- rbind(dt, dt[i])
## dt2 <- dt2[i, same:=0]
## dt2 <- dt2[i, date := dt[i]$date]
## dt2[newrow]$date <- as.Date(date.before)
## dt2[newrow]$week <- week.before
## dt2[newrow]$added.2week <- T
## counter <- counter + 1
## }
date.before <- dt.short[i]$date - 7
week.before <- format(date.before, format="%G-%W")
date.before.before <- dt.short[i]$date - 14
week.before.before <- format(date.before.before, format="%G-%W")
if (nrow(dt.short[bid == dt.short[i]$bid & week == week.before]) == 0) {
if (is.na(dt.short[i]$symptoms.start.week) |
dt.short[i]$symptoms.start.week != week.before) {
## dt <- rbind(dt, dt.short[i])
newrow <- counter
dt2[newrow] <- dt.short[i]
dt2 <- dt2[newrow, same := as.integer(0)]
dt2 <- dt2[newrow, date := as.integer(date.before)]
dt2 <- dt2[newrow, week := week.before]
dt2 <- dt2[newrow, added.2week := T]
counter <- counter + 1
}
if (nrow(dt.short[bid == dt.short[i]$bid & week == week.before.before]) == 0) {
if (is.na(dt.short[i]$symptoms.start.week) |
dt.short[i]$symptoms.start.week != week.before.before) {
if (is.na(dt.short[i]$symptoms.start.week) |
dt.short[i]$symptoms.start.week != week.before) {
## dt <- rbind(dt, dt.short[i])
## newrow <- nrow(dt)
newrow <- counter
dt2[newrow] <- dt.short[i]
dt2 <- dt2[newrow, same := as.integer(0)]
dt2 <- dt2[newrow, date := as.integer(date.before.before)]
dt2 <- dt2[newrow, week := week.before.before]
dt2 <- dt2[newrow, added.3week := T]
counter <- counter + 1
} else {
## dt <- rbind(dt, dt.short[i])
## newrow <- nrow(dt)
newrow <- counter
dt2[newrow] <- dt.short[i]
dt2 <- dt2[newrow, same := as.integer(0)]
dt2 <- dt2[newrow, date := as.integer(date.before.before)]
dt2 <- dt2[newrow, week := week.before.before]
dt2 <- dt2[newrow, no.symptoms := "t"]
dt2 <- dt2[newrow, symptoms := "f", with=F]
dt2 <- dt2[newrow, added.3week := T]
counter <- counter + 1
}
}
}
}
}
dt.added <- rbind(dt.short, dt2[1:(counter-1),])
dt.added[dt.added$week=="2011-00"]$week <- "2011-52"
incidence <-
data.table(expand.grid(
yearweek = levels(factor(dt.added$week)),
measure = c("realtime.report", "realtime.symptoms", "retrospective.symptoms"),
weeks = as.factor(seq(0, 3)),
def = c("ili", "self", "fever"),
value = 0.0
))
for (thisweek in levels(factor(dt.added$week))) {
week.all <- dt.added[week == thisweek]
week.all <- week.all[added.3week == F & added.2week == F]
week.users <- week.all[!duplicated(week.all$bid)]
incidence[yearweek == thisweek & weeks == 0 & def == "ili" & measure == "realtime.report"]$value <-
nrow(week.users[ili==1 & same != 0])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 0 & def == "self" & measure == "realtime.report"]$value <-
nrow(week.users[ili.self==1 & same!=0])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 0 & def == "fever" & measure == "realtime.report"]$value <-
nrow(week.users[ili.fever==1 & same!=0])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 1 & def == "ili" & measure == "realtime.symptoms"]$value <-
nrow(week.users[ili==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 1 & def == "self" & measure == "realtime.symptoms"]$value <-
nrow(week.users[ili.self==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 1 & def == "fever" & measure == "realtime.symptoms"]$value <-
nrow(week.users[ili.fever==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
week.all <- dt.added[(week == thisweek & (is.na(symptoms.start.week) | same == 0)) |
(symptoms.start.week == thisweek & same != 0)]
week.all <- week.all[added.3week == F & added.2week == F]
week.users <- week.all[!duplicated(week.all$bid)]
incidence[yearweek == thisweek & weeks == 1 & def == "ili" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 1 & def == "self" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili.self==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 1 & def == "fever" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili.fever==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
week.all <- dt.added[(week == thisweek & is.na(symptoms.start.week)) |
symptoms.start.week == thisweek]
week.all <- week.all[added.3week==F]
week.users <- week.all[!duplicated(week.all$bid)]
incidence[yearweek == thisweek & weeks == 2 & def == "ili" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 2 & def == "self" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili.self==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 2 & def == "fever" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili.fever==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
week.all <- dt.added[(week == thisweek & is.na(symptoms.start.week)) |
symptoms.start.week == thisweek]
week.users <- week.all[!duplicated(week.all$bid)]
incidence[yearweek == thisweek & weeks == 3 & def == "ili" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 3 & def == "self" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili.self==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
incidence[yearweek == thisweek & weeks == 3 & def == "fever" & measure == "retrospective.symptoms"]$value <-
nrow(week.users[ili.fever==1 & same != 0 & symptoms.start.week == thisweek])/nrow(week.users)
}
incidence <- incidence[as.character(yearweek) > "2011-45" & as.character(yearweek) < "2012-19"]
incidence$year <- as.numeric(substr(incidence$yearweek, 1, 4))
incidence$week <- as.numeric(substr(incidence$yearweek, 6, 7))
incidence$date <- as.Date(strptime(paste(incidence$year, incidence$week*7,sep=" "),format="%Y %j"))+5
incidence <- incidence[value > 0]
for (definition in unique(incidence$def)) {
pdf(paste("memory_", definition, ".pdf", sep=""), width=10)
print(
ggplot(droplevels(incidence[as.numeric(weeks) > 1 & measure == "retrospective.symptoms" & def==definition]), aes(x=date, y=value, group=weeks, color=weeks))+
geom_line()+
geom_point(size=3, shape=21, fill="white")+
scale_y_continuous(name="Weekly incidence")+
theme_bw(30)+
scale_x_date(name="")+
scale_color_brewer(palette="Set1")
)
dev.off()
pdf(paste("realtime_", definition, ".pdf", sep=""), width=10)
print(
ggplot(incidence[as.numeric(weeks) < 3 & def==definition], aes(x=date, y=value, group=measure, color=measure))+
geom_line()+
geom_point(size=3, shape=21, fill="white")+
scale_y_continuous(name="Weekly incidence")+
theme_bw(30)+
scale_x_date(name="")+
scale_color_brewer(palette="Set1")
)
dev.off()
}
| 85,926 |
gpl-2.0
|
b269d07226017fb21ef663ef82d19f0b6a74c0fb
|
arank/mxnet
|
R-package/R/rnn_model.R
|
is.param.name <- function(name) {
return (grepl('weight$', name) || grepl('bias$', name) ||
grepl('gamma$', name) || grepl('beta$', name) )
}
# Initialize parameters
mx.model.init.params.rnn <- function(symbol, input.shape, initializer, ctx) {
if (!is.mx.symbol(symbol)) stop("symbol need to be MXSymbol")
slist <- symbol$infer.shape(input.shape)
if (is.null(slist)) stop("Not enough information to get shapes")
arg.params <- mx.init.create(initializer, slist$arg.shapes, ctx, skip.unknown=TRUE)
aux.params <- mx.init.create(initializer, slist$aux.shapes, ctx, skip.unknown=FALSE)
return(list(arg.params=arg.params, aux.params=aux.params))
}
# Initialize the data iter
mx.model.init.iter.rnn <- function(X, y, batch.size, is.train) {
if (is.MXDataIter(X)) return(X)
shape <- dim(X)
if (is.null(shape)) {
num.data <- length(X)
} else {
ndim <- length(shape)
num.data <- shape[[ndim]]
}
if (is.null(y)) {
if (is.train) stop("Need to provide parameter y for training with R arrays.")
y <- c(1:num.data) * 0
}
batch.size <- min(num.data, batch.size)
return(mx.io.arrayiter(X, y, batch.size=batch.size, shuffle=is.train))
}
# set up rnn model with rnn cells
setup.rnn.model <- function(rnn.sym, ctx,
num.rnn.layer, seq.len,
num.hidden, num.embed, num.label,
batch.size, input.size,
init.states.name,
initializer=mx.init.uniform(0.01),
dropout=0) {
arg.names <- rnn.sym$arguments
input.shapes <- list()
for (name in arg.names) {
if (name %in% init.states.name) {
input.shapes[[name]] <- c(num.hidden, batch.size)
}
else if (grepl('data$', name) || grepl('label$', name) ) {
if (seq.len == 1) {
input.shapes[[name]] <- c(batch.size)
} else {
input.shapes[[name]] <- c(seq.len, batch.size)
}
}
}
params <- mx.model.init.params.rnn(rnn.sym, input.shapes, initializer, mx.cpu())
args <- input.shapes
args$symbol <- rnn.sym
args$ctx <- ctx
args$grad.req <- "add"
rnn.exec <- do.call(mx.simple.bind, args)
mx.exec.update.arg.arrays(rnn.exec, params$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(rnn.exec, params$aux.params, match.name=TRUE)
grad.arrays <- list()
for (name in names(rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(rnn.exec, grad.arrays, match.name=TRUE)
return (list(rnn.exec=rnn.exec, symbol=rnn.sym,
num.rnn.layer=num.rnn.layer, num.hidden=num.hidden,
seq.len=seq.len, batch.size=batch.size,
num.embed=num.embed))
}
calc.nll <- function(seq.label.probs, batch.size) {
nll = - sum(log(seq.label.probs)) / batch.size
return (nll)
}
get.label <- function(label, ctx) {
label <- as.array(label)
seq.len <- dim(label)[[1]]
batch.size <- dim(label)[[2]]
sm.label <- array(0, dim=c(seq.len*batch.size))
for (seqidx in 1:seq.len) {
sm.label[((seqidx-1)*batch.size+1) : (seqidx*batch.size)] <- label[seqidx,]
}
return (mx.nd.array(sm.label, ctx))
}
# training rnn model
train.rnn <- function (model, train.data, eval.data,
num.round, update.period,
init.states.name,
optimizer='sgd', ctx=mx.ctx.default(),
epoch.end.callback,
batch.end.callback,
verbose=TRUE,
...) {
m <- model
model <- list(symbol=model$symbol, arg.params=model$rnn.exec$ref.arg.arrays,
aux.params=model$rnn.exec$ref.aux.arrays)
seq.len <- m$seq.len
batch.size <- m$batch.size
num.rnn.layer <- m$num.rnn.layer
num.hidden <- m$num.hidden
opt <- mx.opt.create(optimizer, rescale.grad=(1/batch.size), ...)
updater <- mx.opt.get.updater(opt, m$rnn.exec$ref.arg.arrays)
epoch.counter <- 0
log.period <- max(as.integer(1000 / seq.len), 1)
last.perp <- 10000000.0
for (iteration in 1:num.round) {
nbatch <- 0
train.nll <- 0
# reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
tic <- Sys.time()
train.data$reset()
while (train.data$iter.next()) {
# set rnn input
rnn.input <- train.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=TRUE)
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
mx.exec.backward(m$rnn.exec)
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
# update epoch counter
epoch.counter <- epoch.counter + 1
if (epoch.counter %% update.period == 0) {
# the gradient of initial c and inital h should be zero
init.grad <- list()
for (name in init.states.name) {
init.grad[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, init.grad, match.name=TRUE)
arg.blocks <- updater(m$rnn.exec$ref.arg.arrays, m$rnn.exec$ref.grad.arrays)
mx.exec.update.arg.arrays(m$rnn.exec, arg.blocks, skip.null=TRUE)
grad.arrays <- list()
for (name in names(m$rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- m$rnn.exec$ref.grad.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, grad.arrays, match.name=TRUE)
}
train.nll <- train.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
if (!is.null(batch.end.callback)) {
batch.end.callback(iteration, nbatch, environment())
}
if ((epoch.counter %% log.period) == 0) {
message(paste0("Epoch [", epoch.counter,
"] Train: NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
}
}
train.data$reset()
# end of training loop
toc <- Sys.time()
message(paste0("Iter [", iteration,
"] Train: Time: ", as.numeric(toc - tic, units="secs"),
" sec, NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
if (!is.null(eval.data)) {
val.nll <- 0.0
# validation set, reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
eval.data$reset()
nbatch <- 0
while (eval.data$iter.next()) {
# set rnn input
rnn.input <- eval.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=FALSE)
# probability of each label class, used to evaluate nll
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
# transfer the states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
val.nll <- val.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
}
eval.data$reset()
perp <- exp(val.nll / nbatch)
message(paste0("Iter [", iteration,
"] Val: NLL=", val.nll / nbatch,
", Perp=", exp(val.nll / nbatch)))
}
# get the model out
epoch_continue <- TRUE
if (!is.null(epoch.end.callback)) {
epoch_continue <- epoch.end.callback(iteration, 0, environment(), verbose = verbose)
}
if (!epoch_continue) {
break
}
}
return (m)
}
# check data and translate data into iterator if data is array/matrix
check.data <- function(data, batch.size, is.train) {
if (!is.null(data) && !is.list(data) && !is.mx.dataiter(data)) {
stop("The dataset should be either a mx.io.DataIter or a R list")
}
if (is.list(data)) {
if (is.null(data$data) || is.null(data$label)){
stop("Please provide dataset as list(data=R.array, label=R.array)")
}
data <- mx.model.init.iter.rnn(data$data, data$label, batch.size=batch.size, is.train = is.train)
}
if (!is.null(data) && !data$iter.next()) {
data$reset()
if (!data$iter.next()) stop("Empty input")
}
return (data)
}
| 9,826 |
apache-2.0
|
b269d07226017fb21ef663ef82d19f0b6a74c0fb
|
EvanzzzZ/mxnet
|
R-package/R/rnn_model.R
|
is.param.name <- function(name) {
return (grepl('weight$', name) || grepl('bias$', name) ||
grepl('gamma$', name) || grepl('beta$', name) )
}
# Initialize parameters
mx.model.init.params.rnn <- function(symbol, input.shape, initializer, ctx) {
if (!is.mx.symbol(symbol)) stop("symbol need to be MXSymbol")
slist <- symbol$infer.shape(input.shape)
if (is.null(slist)) stop("Not enough information to get shapes")
arg.params <- mx.init.create(initializer, slist$arg.shapes, ctx, skip.unknown=TRUE)
aux.params <- mx.init.create(initializer, slist$aux.shapes, ctx, skip.unknown=FALSE)
return(list(arg.params=arg.params, aux.params=aux.params))
}
# Initialize the data iter
mx.model.init.iter.rnn <- function(X, y, batch.size, is.train) {
if (is.MXDataIter(X)) return(X)
shape <- dim(X)
if (is.null(shape)) {
num.data <- length(X)
} else {
ndim <- length(shape)
num.data <- shape[[ndim]]
}
if (is.null(y)) {
if (is.train) stop("Need to provide parameter y for training with R arrays.")
y <- c(1:num.data) * 0
}
batch.size <- min(num.data, batch.size)
return(mx.io.arrayiter(X, y, batch.size=batch.size, shuffle=is.train))
}
# set up rnn model with rnn cells
setup.rnn.model <- function(rnn.sym, ctx,
num.rnn.layer, seq.len,
num.hidden, num.embed, num.label,
batch.size, input.size,
init.states.name,
initializer=mx.init.uniform(0.01),
dropout=0) {
arg.names <- rnn.sym$arguments
input.shapes <- list()
for (name in arg.names) {
if (name %in% init.states.name) {
input.shapes[[name]] <- c(num.hidden, batch.size)
}
else if (grepl('data$', name) || grepl('label$', name) ) {
if (seq.len == 1) {
input.shapes[[name]] <- c(batch.size)
} else {
input.shapes[[name]] <- c(seq.len, batch.size)
}
}
}
params <- mx.model.init.params.rnn(rnn.sym, input.shapes, initializer, mx.cpu())
args <- input.shapes
args$symbol <- rnn.sym
args$ctx <- ctx
args$grad.req <- "add"
rnn.exec <- do.call(mx.simple.bind, args)
mx.exec.update.arg.arrays(rnn.exec, params$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(rnn.exec, params$aux.params, match.name=TRUE)
grad.arrays <- list()
for (name in names(rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(rnn.exec, grad.arrays, match.name=TRUE)
return (list(rnn.exec=rnn.exec, symbol=rnn.sym,
num.rnn.layer=num.rnn.layer, num.hidden=num.hidden,
seq.len=seq.len, batch.size=batch.size,
num.embed=num.embed))
}
calc.nll <- function(seq.label.probs, batch.size) {
nll = - sum(log(seq.label.probs)) / batch.size
return (nll)
}
get.label <- function(label, ctx) {
label <- as.array(label)
seq.len <- dim(label)[[1]]
batch.size <- dim(label)[[2]]
sm.label <- array(0, dim=c(seq.len*batch.size))
for (seqidx in 1:seq.len) {
sm.label[((seqidx-1)*batch.size+1) : (seqidx*batch.size)] <- label[seqidx,]
}
return (mx.nd.array(sm.label, ctx))
}
# training rnn model
train.rnn <- function (model, train.data, eval.data,
num.round, update.period,
init.states.name,
optimizer='sgd', ctx=mx.ctx.default(),
epoch.end.callback,
batch.end.callback,
verbose=TRUE,
...) {
m <- model
model <- list(symbol=model$symbol, arg.params=model$rnn.exec$ref.arg.arrays,
aux.params=model$rnn.exec$ref.aux.arrays)
seq.len <- m$seq.len
batch.size <- m$batch.size
num.rnn.layer <- m$num.rnn.layer
num.hidden <- m$num.hidden
opt <- mx.opt.create(optimizer, rescale.grad=(1/batch.size), ...)
updater <- mx.opt.get.updater(opt, m$rnn.exec$ref.arg.arrays)
epoch.counter <- 0
log.period <- max(as.integer(1000 / seq.len), 1)
last.perp <- 10000000.0
for (iteration in 1:num.round) {
nbatch <- 0
train.nll <- 0
# reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
tic <- Sys.time()
train.data$reset()
while (train.data$iter.next()) {
# set rnn input
rnn.input <- train.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=TRUE)
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
mx.exec.backward(m$rnn.exec)
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
# update epoch counter
epoch.counter <- epoch.counter + 1
if (epoch.counter %% update.period == 0) {
# the gradient of initial c and inital h should be zero
init.grad <- list()
for (name in init.states.name) {
init.grad[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, init.grad, match.name=TRUE)
arg.blocks <- updater(m$rnn.exec$ref.arg.arrays, m$rnn.exec$ref.grad.arrays)
mx.exec.update.arg.arrays(m$rnn.exec, arg.blocks, skip.null=TRUE)
grad.arrays <- list()
for (name in names(m$rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- m$rnn.exec$ref.grad.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, grad.arrays, match.name=TRUE)
}
train.nll <- train.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
if (!is.null(batch.end.callback)) {
batch.end.callback(iteration, nbatch, environment())
}
if ((epoch.counter %% log.period) == 0) {
message(paste0("Epoch [", epoch.counter,
"] Train: NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
}
}
train.data$reset()
# end of training loop
toc <- Sys.time()
message(paste0("Iter [", iteration,
"] Train: Time: ", as.numeric(toc - tic, units="secs"),
" sec, NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
if (!is.null(eval.data)) {
val.nll <- 0.0
# validation set, reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
eval.data$reset()
nbatch <- 0
while (eval.data$iter.next()) {
# set rnn input
rnn.input <- eval.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=FALSE)
# probability of each label class, used to evaluate nll
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
# transfer the states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
val.nll <- val.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
}
eval.data$reset()
perp <- exp(val.nll / nbatch)
message(paste0("Iter [", iteration,
"] Val: NLL=", val.nll / nbatch,
", Perp=", exp(val.nll / nbatch)))
}
# get the model out
epoch_continue <- TRUE
if (!is.null(epoch.end.callback)) {
epoch_continue <- epoch.end.callback(iteration, 0, environment(), verbose = verbose)
}
if (!epoch_continue) {
break
}
}
return (m)
}
# check data and translate data into iterator if data is array/matrix
check.data <- function(data, batch.size, is.train) {
if (!is.null(data) && !is.list(data) && !is.mx.dataiter(data)) {
stop("The dataset should be either a mx.io.DataIter or a R list")
}
if (is.list(data)) {
if (is.null(data$data) || is.null(data$label)){
stop("Please provide dataset as list(data=R.array, label=R.array)")
}
data <- mx.model.init.iter.rnn(data$data, data$label, batch.size=batch.size, is.train = is.train)
}
if (!is.null(data) && !data$iter.next()) {
data$reset()
if (!data$iter.next()) stop("Empty input")
}
return (data)
}
| 9,826 |
apache-2.0
|
2e37573308cf9e18ec830699b4cd866cbb53debe
|
NickSalkowski/HALICON_2015_Reporting_Presentation
|
run_rmarkdown_html.R
|
iris_split <- split(
x = iris[-5],
f = iris$Species)
system.time({
for (i in names(iris_split)) {
rmarkdown::render(
"iris_markdown.Rmd",
output_file = paste0(i, ".html"),
output_dir = "rmarkdown_html",
params = list(species = i),
quiet = TRUE)
}
})
list.files("rmarkdown_html")
| 322 |
mit
|
b269d07226017fb21ef663ef82d19f0b6a74c0fb
|
lxn2/mxnet
|
R-package/R/rnn_model.R
|
is.param.name <- function(name) {
return (grepl('weight$', name) || grepl('bias$', name) ||
grepl('gamma$', name) || grepl('beta$', name) )
}
# Initialize parameters
mx.model.init.params.rnn <- function(symbol, input.shape, initializer, ctx) {
if (!is.mx.symbol(symbol)) stop("symbol need to be MXSymbol")
slist <- symbol$infer.shape(input.shape)
if (is.null(slist)) stop("Not enough information to get shapes")
arg.params <- mx.init.create(initializer, slist$arg.shapes, ctx, skip.unknown=TRUE)
aux.params <- mx.init.create(initializer, slist$aux.shapes, ctx, skip.unknown=FALSE)
return(list(arg.params=arg.params, aux.params=aux.params))
}
# Initialize the data iter
mx.model.init.iter.rnn <- function(X, y, batch.size, is.train) {
if (is.MXDataIter(X)) return(X)
shape <- dim(X)
if (is.null(shape)) {
num.data <- length(X)
} else {
ndim <- length(shape)
num.data <- shape[[ndim]]
}
if (is.null(y)) {
if (is.train) stop("Need to provide parameter y for training with R arrays.")
y <- c(1:num.data) * 0
}
batch.size <- min(num.data, batch.size)
return(mx.io.arrayiter(X, y, batch.size=batch.size, shuffle=is.train))
}
# set up rnn model with rnn cells
setup.rnn.model <- function(rnn.sym, ctx,
num.rnn.layer, seq.len,
num.hidden, num.embed, num.label,
batch.size, input.size,
init.states.name,
initializer=mx.init.uniform(0.01),
dropout=0) {
arg.names <- rnn.sym$arguments
input.shapes <- list()
for (name in arg.names) {
if (name %in% init.states.name) {
input.shapes[[name]] <- c(num.hidden, batch.size)
}
else if (grepl('data$', name) || grepl('label$', name) ) {
if (seq.len == 1) {
input.shapes[[name]] <- c(batch.size)
} else {
input.shapes[[name]] <- c(seq.len, batch.size)
}
}
}
params <- mx.model.init.params.rnn(rnn.sym, input.shapes, initializer, mx.cpu())
args <- input.shapes
args$symbol <- rnn.sym
args$ctx <- ctx
args$grad.req <- "add"
rnn.exec <- do.call(mx.simple.bind, args)
mx.exec.update.arg.arrays(rnn.exec, params$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(rnn.exec, params$aux.params, match.name=TRUE)
grad.arrays <- list()
for (name in names(rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(rnn.exec, grad.arrays, match.name=TRUE)
return (list(rnn.exec=rnn.exec, symbol=rnn.sym,
num.rnn.layer=num.rnn.layer, num.hidden=num.hidden,
seq.len=seq.len, batch.size=batch.size,
num.embed=num.embed))
}
calc.nll <- function(seq.label.probs, batch.size) {
nll = - sum(log(seq.label.probs)) / batch.size
return (nll)
}
get.label <- function(label, ctx) {
label <- as.array(label)
seq.len <- dim(label)[[1]]
batch.size <- dim(label)[[2]]
sm.label <- array(0, dim=c(seq.len*batch.size))
for (seqidx in 1:seq.len) {
sm.label[((seqidx-1)*batch.size+1) : (seqidx*batch.size)] <- label[seqidx,]
}
return (mx.nd.array(sm.label, ctx))
}
# training rnn model
train.rnn <- function (model, train.data, eval.data,
num.round, update.period,
init.states.name,
optimizer='sgd', ctx=mx.ctx.default(),
epoch.end.callback,
batch.end.callback,
verbose=TRUE,
...) {
m <- model
model <- list(symbol=model$symbol, arg.params=model$rnn.exec$ref.arg.arrays,
aux.params=model$rnn.exec$ref.aux.arrays)
seq.len <- m$seq.len
batch.size <- m$batch.size
num.rnn.layer <- m$num.rnn.layer
num.hidden <- m$num.hidden
opt <- mx.opt.create(optimizer, rescale.grad=(1/batch.size), ...)
updater <- mx.opt.get.updater(opt, m$rnn.exec$ref.arg.arrays)
epoch.counter <- 0
log.period <- max(as.integer(1000 / seq.len), 1)
last.perp <- 10000000.0
for (iteration in 1:num.round) {
nbatch <- 0
train.nll <- 0
# reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
tic <- Sys.time()
train.data$reset()
while (train.data$iter.next()) {
# set rnn input
rnn.input <- train.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=TRUE)
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
mx.exec.backward(m$rnn.exec)
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
# update epoch counter
epoch.counter <- epoch.counter + 1
if (epoch.counter %% update.period == 0) {
# the gradient of initial c and inital h should be zero
init.grad <- list()
for (name in init.states.name) {
init.grad[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, init.grad, match.name=TRUE)
arg.blocks <- updater(m$rnn.exec$ref.arg.arrays, m$rnn.exec$ref.grad.arrays)
mx.exec.update.arg.arrays(m$rnn.exec, arg.blocks, skip.null=TRUE)
grad.arrays <- list()
for (name in names(m$rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- m$rnn.exec$ref.grad.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, grad.arrays, match.name=TRUE)
}
train.nll <- train.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
if (!is.null(batch.end.callback)) {
batch.end.callback(iteration, nbatch, environment())
}
if ((epoch.counter %% log.period) == 0) {
message(paste0("Epoch [", epoch.counter,
"] Train: NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
}
}
train.data$reset()
# end of training loop
toc <- Sys.time()
message(paste0("Iter [", iteration,
"] Train: Time: ", as.numeric(toc - tic, units="secs"),
" sec, NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
if (!is.null(eval.data)) {
val.nll <- 0.0
# validation set, reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
eval.data$reset()
nbatch <- 0
while (eval.data$iter.next()) {
# set rnn input
rnn.input <- eval.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=FALSE)
# probability of each label class, used to evaluate nll
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
# transfer the states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
val.nll <- val.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
}
eval.data$reset()
perp <- exp(val.nll / nbatch)
message(paste0("Iter [", iteration,
"] Val: NLL=", val.nll / nbatch,
", Perp=", exp(val.nll / nbatch)))
}
# get the model out
epoch_continue <- TRUE
if (!is.null(epoch.end.callback)) {
epoch_continue <- epoch.end.callback(iteration, 0, environment(), verbose = verbose)
}
if (!epoch_continue) {
break
}
}
return (m)
}
# check data and translate data into iterator if data is array/matrix
check.data <- function(data, batch.size, is.train) {
if (!is.null(data) && !is.list(data) && !is.mx.dataiter(data)) {
stop("The dataset should be either a mx.io.DataIter or a R list")
}
if (is.list(data)) {
if (is.null(data$data) || is.null(data$label)){
stop("Please provide dataset as list(data=R.array, label=R.array)")
}
data <- mx.model.init.iter.rnn(data$data, data$label, batch.size=batch.size, is.train = is.train)
}
if (!is.null(data) && !data$iter.next()) {
data$reset()
if (!data$iter.next()) stop("Empty input")
}
return (data)
}
| 9,826 |
apache-2.0
|
b269d07226017fb21ef663ef82d19f0b6a74c0fb
|
Ldpe2G/mxnet
|
R-package/R/rnn_model.R
|
is.param.name <- function(name) {
return (grepl('weight$', name) || grepl('bias$', name) ||
grepl('gamma$', name) || grepl('beta$', name) )
}
# Initialize parameters
mx.model.init.params.rnn <- function(symbol, input.shape, initializer, ctx) {
if (!is.mx.symbol(symbol)) stop("symbol need to be MXSymbol")
slist <- symbol$infer.shape(input.shape)
if (is.null(slist)) stop("Not enough information to get shapes")
arg.params <- mx.init.create(initializer, slist$arg.shapes, ctx, skip.unknown=TRUE)
aux.params <- mx.init.create(initializer, slist$aux.shapes, ctx, skip.unknown=FALSE)
return(list(arg.params=arg.params, aux.params=aux.params))
}
# Initialize the data iter
mx.model.init.iter.rnn <- function(X, y, batch.size, is.train) {
if (is.MXDataIter(X)) return(X)
shape <- dim(X)
if (is.null(shape)) {
num.data <- length(X)
} else {
ndim <- length(shape)
num.data <- shape[[ndim]]
}
if (is.null(y)) {
if (is.train) stop("Need to provide parameter y for training with R arrays.")
y <- c(1:num.data) * 0
}
batch.size <- min(num.data, batch.size)
return(mx.io.arrayiter(X, y, batch.size=batch.size, shuffle=is.train))
}
# set up rnn model with rnn cells
setup.rnn.model <- function(rnn.sym, ctx,
num.rnn.layer, seq.len,
num.hidden, num.embed, num.label,
batch.size, input.size,
init.states.name,
initializer=mx.init.uniform(0.01),
dropout=0) {
arg.names <- rnn.sym$arguments
input.shapes <- list()
for (name in arg.names) {
if (name %in% init.states.name) {
input.shapes[[name]] <- c(num.hidden, batch.size)
}
else if (grepl('data$', name) || grepl('label$', name) ) {
if (seq.len == 1) {
input.shapes[[name]] <- c(batch.size)
} else {
input.shapes[[name]] <- c(seq.len, batch.size)
}
}
}
params <- mx.model.init.params.rnn(rnn.sym, input.shapes, initializer, mx.cpu())
args <- input.shapes
args$symbol <- rnn.sym
args$ctx <- ctx
args$grad.req <- "add"
rnn.exec <- do.call(mx.simple.bind, args)
mx.exec.update.arg.arrays(rnn.exec, params$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(rnn.exec, params$aux.params, match.name=TRUE)
grad.arrays <- list()
for (name in names(rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(rnn.exec, grad.arrays, match.name=TRUE)
return (list(rnn.exec=rnn.exec, symbol=rnn.sym,
num.rnn.layer=num.rnn.layer, num.hidden=num.hidden,
seq.len=seq.len, batch.size=batch.size,
num.embed=num.embed))
}
calc.nll <- function(seq.label.probs, batch.size) {
nll = - sum(log(seq.label.probs)) / batch.size
return (nll)
}
get.label <- function(label, ctx) {
label <- as.array(label)
seq.len <- dim(label)[[1]]
batch.size <- dim(label)[[2]]
sm.label <- array(0, dim=c(seq.len*batch.size))
for (seqidx in 1:seq.len) {
sm.label[((seqidx-1)*batch.size+1) : (seqidx*batch.size)] <- label[seqidx,]
}
return (mx.nd.array(sm.label, ctx))
}
# training rnn model
train.rnn <- function (model, train.data, eval.data,
num.round, update.period,
init.states.name,
optimizer='sgd', ctx=mx.ctx.default(),
epoch.end.callback,
batch.end.callback,
verbose=TRUE,
...) {
m <- model
model <- list(symbol=model$symbol, arg.params=model$rnn.exec$ref.arg.arrays,
aux.params=model$rnn.exec$ref.aux.arrays)
seq.len <- m$seq.len
batch.size <- m$batch.size
num.rnn.layer <- m$num.rnn.layer
num.hidden <- m$num.hidden
opt <- mx.opt.create(optimizer, rescale.grad=(1/batch.size), ...)
updater <- mx.opt.get.updater(opt, m$rnn.exec$ref.arg.arrays)
epoch.counter <- 0
log.period <- max(as.integer(1000 / seq.len), 1)
last.perp <- 10000000.0
for (iteration in 1:num.round) {
nbatch <- 0
train.nll <- 0
# reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
tic <- Sys.time()
train.data$reset()
while (train.data$iter.next()) {
# set rnn input
rnn.input <- train.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=TRUE)
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
mx.exec.backward(m$rnn.exec)
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
# update epoch counter
epoch.counter <- epoch.counter + 1
if (epoch.counter %% update.period == 0) {
# the gradient of initial c and inital h should be zero
init.grad <- list()
for (name in init.states.name) {
init.grad[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, init.grad, match.name=TRUE)
arg.blocks <- updater(m$rnn.exec$ref.arg.arrays, m$rnn.exec$ref.grad.arrays)
mx.exec.update.arg.arrays(m$rnn.exec, arg.blocks, skip.null=TRUE)
grad.arrays <- list()
for (name in names(m$rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- m$rnn.exec$ref.grad.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, grad.arrays, match.name=TRUE)
}
train.nll <- train.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
if (!is.null(batch.end.callback)) {
batch.end.callback(iteration, nbatch, environment())
}
if ((epoch.counter %% log.period) == 0) {
message(paste0("Epoch [", epoch.counter,
"] Train: NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
}
}
train.data$reset()
# end of training loop
toc <- Sys.time()
message(paste0("Iter [", iteration,
"] Train: Time: ", as.numeric(toc - tic, units="secs"),
" sec, NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
if (!is.null(eval.data)) {
val.nll <- 0.0
# validation set, reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
eval.data$reset()
nbatch <- 0
while (eval.data$iter.next()) {
# set rnn input
rnn.input <- eval.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=FALSE)
# probability of each label class, used to evaluate nll
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
# transfer the states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
val.nll <- val.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
}
eval.data$reset()
perp <- exp(val.nll / nbatch)
message(paste0("Iter [", iteration,
"] Val: NLL=", val.nll / nbatch,
", Perp=", exp(val.nll / nbatch)))
}
# get the model out
epoch_continue <- TRUE
if (!is.null(epoch.end.callback)) {
epoch_continue <- epoch.end.callback(iteration, 0, environment(), verbose = verbose)
}
if (!epoch_continue) {
break
}
}
return (m)
}
# check data and translate data into iterator if data is array/matrix
check.data <- function(data, batch.size, is.train) {
if (!is.null(data) && !is.list(data) && !is.mx.dataiter(data)) {
stop("The dataset should be either a mx.io.DataIter or a R list")
}
if (is.list(data)) {
if (is.null(data$data) || is.null(data$label)){
stop("Please provide dataset as list(data=R.array, label=R.array)")
}
data <- mx.model.init.iter.rnn(data$data, data$label, batch.size=batch.size, is.train = is.train)
}
if (!is.null(data) && !data$iter.next()) {
data$reset()
if (!data$iter.next()) stop("Empty input")
}
return (data)
}
| 9,826 |
apache-2.0
|
b269d07226017fb21ef663ef82d19f0b6a74c0fb
|
coder-james/mxnet
|
R-package/R/rnn_model.R
|
is.param.name <- function(name) {
return (grepl('weight$', name) || grepl('bias$', name) ||
grepl('gamma$', name) || grepl('beta$', name) )
}
# Initialize parameters
mx.model.init.params.rnn <- function(symbol, input.shape, initializer, ctx) {
if (!is.mx.symbol(symbol)) stop("symbol need to be MXSymbol")
slist <- symbol$infer.shape(input.shape)
if (is.null(slist)) stop("Not enough information to get shapes")
arg.params <- mx.init.create(initializer, slist$arg.shapes, ctx, skip.unknown=TRUE)
aux.params <- mx.init.create(initializer, slist$aux.shapes, ctx, skip.unknown=FALSE)
return(list(arg.params=arg.params, aux.params=aux.params))
}
# Initialize the data iter
mx.model.init.iter.rnn <- function(X, y, batch.size, is.train) {
if (is.MXDataIter(X)) return(X)
shape <- dim(X)
if (is.null(shape)) {
num.data <- length(X)
} else {
ndim <- length(shape)
num.data <- shape[[ndim]]
}
if (is.null(y)) {
if (is.train) stop("Need to provide parameter y for training with R arrays.")
y <- c(1:num.data) * 0
}
batch.size <- min(num.data, batch.size)
return(mx.io.arrayiter(X, y, batch.size=batch.size, shuffle=is.train))
}
# set up rnn model with rnn cells
setup.rnn.model <- function(rnn.sym, ctx,
num.rnn.layer, seq.len,
num.hidden, num.embed, num.label,
batch.size, input.size,
init.states.name,
initializer=mx.init.uniform(0.01),
dropout=0) {
arg.names <- rnn.sym$arguments
input.shapes <- list()
for (name in arg.names) {
if (name %in% init.states.name) {
input.shapes[[name]] <- c(num.hidden, batch.size)
}
else if (grepl('data$', name) || grepl('label$', name) ) {
if (seq.len == 1) {
input.shapes[[name]] <- c(batch.size)
} else {
input.shapes[[name]] <- c(seq.len, batch.size)
}
}
}
params <- mx.model.init.params.rnn(rnn.sym, input.shapes, initializer, mx.cpu())
args <- input.shapes
args$symbol <- rnn.sym
args$ctx <- ctx
args$grad.req <- "add"
rnn.exec <- do.call(mx.simple.bind, args)
mx.exec.update.arg.arrays(rnn.exec, params$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(rnn.exec, params$aux.params, match.name=TRUE)
grad.arrays <- list()
for (name in names(rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(rnn.exec, grad.arrays, match.name=TRUE)
return (list(rnn.exec=rnn.exec, symbol=rnn.sym,
num.rnn.layer=num.rnn.layer, num.hidden=num.hidden,
seq.len=seq.len, batch.size=batch.size,
num.embed=num.embed))
}
calc.nll <- function(seq.label.probs, batch.size) {
nll = - sum(log(seq.label.probs)) / batch.size
return (nll)
}
get.label <- function(label, ctx) {
label <- as.array(label)
seq.len <- dim(label)[[1]]
batch.size <- dim(label)[[2]]
sm.label <- array(0, dim=c(seq.len*batch.size))
for (seqidx in 1:seq.len) {
sm.label[((seqidx-1)*batch.size+1) : (seqidx*batch.size)] <- label[seqidx,]
}
return (mx.nd.array(sm.label, ctx))
}
# training rnn model
train.rnn <- function (model, train.data, eval.data,
num.round, update.period,
init.states.name,
optimizer='sgd', ctx=mx.ctx.default(),
epoch.end.callback,
batch.end.callback,
verbose=TRUE,
...) {
m <- model
model <- list(symbol=model$symbol, arg.params=model$rnn.exec$ref.arg.arrays,
aux.params=model$rnn.exec$ref.aux.arrays)
seq.len <- m$seq.len
batch.size <- m$batch.size
num.rnn.layer <- m$num.rnn.layer
num.hidden <- m$num.hidden
opt <- mx.opt.create(optimizer, rescale.grad=(1/batch.size), ...)
updater <- mx.opt.get.updater(opt, m$rnn.exec$ref.arg.arrays)
epoch.counter <- 0
log.period <- max(as.integer(1000 / seq.len), 1)
last.perp <- 10000000.0
for (iteration in 1:num.round) {
nbatch <- 0
train.nll <- 0
# reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
tic <- Sys.time()
train.data$reset()
while (train.data$iter.next()) {
# set rnn input
rnn.input <- train.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=TRUE)
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
mx.exec.backward(m$rnn.exec)
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
# update epoch counter
epoch.counter <- epoch.counter + 1
if (epoch.counter %% update.period == 0) {
# the gradient of initial c and inital h should be zero
init.grad <- list()
for (name in init.states.name) {
init.grad[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, init.grad, match.name=TRUE)
arg.blocks <- updater(m$rnn.exec$ref.arg.arrays, m$rnn.exec$ref.grad.arrays)
mx.exec.update.arg.arrays(m$rnn.exec, arg.blocks, skip.null=TRUE)
grad.arrays <- list()
for (name in names(m$rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- m$rnn.exec$ref.grad.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, grad.arrays, match.name=TRUE)
}
train.nll <- train.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
if (!is.null(batch.end.callback)) {
batch.end.callback(iteration, nbatch, environment())
}
if ((epoch.counter %% log.period) == 0) {
message(paste0("Epoch [", epoch.counter,
"] Train: NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
}
}
train.data$reset()
# end of training loop
toc <- Sys.time()
message(paste0("Iter [", iteration,
"] Train: Time: ", as.numeric(toc - tic, units="secs"),
" sec, NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
if (!is.null(eval.data)) {
val.nll <- 0.0
# validation set, reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
eval.data$reset()
nbatch <- 0
while (eval.data$iter.next()) {
# set rnn input
rnn.input <- eval.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=FALSE)
# probability of each label class, used to evaluate nll
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
# transfer the states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
val.nll <- val.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
}
eval.data$reset()
perp <- exp(val.nll / nbatch)
message(paste0("Iter [", iteration,
"] Val: NLL=", val.nll / nbatch,
", Perp=", exp(val.nll / nbatch)))
}
# get the model out
epoch_continue <- TRUE
if (!is.null(epoch.end.callback)) {
epoch_continue <- epoch.end.callback(iteration, 0, environment(), verbose = verbose)
}
if (!epoch_continue) {
break
}
}
return (m)
}
# check data and translate data into iterator if data is array/matrix
check.data <- function(data, batch.size, is.train) {
if (!is.null(data) && !is.list(data) && !is.mx.dataiter(data)) {
stop("The dataset should be either a mx.io.DataIter or a R list")
}
if (is.list(data)) {
if (is.null(data$data) || is.null(data$label)){
stop("Please provide dataset as list(data=R.array, label=R.array)")
}
data <- mx.model.init.iter.rnn(data$data, data$label, batch.size=batch.size, is.train = is.train)
}
if (!is.null(data) && !data$iter.next()) {
data$reset()
if (!data$iter.next()) stop("Empty input")
}
return (data)
}
| 9,826 |
apache-2.0
|
b269d07226017fb21ef663ef82d19f0b6a74c0fb
|
apaleyes/mxnet
|
R-package/R/rnn_model.R
|
is.param.name <- function(name) {
return (grepl('weight$', name) || grepl('bias$', name) ||
grepl('gamma$', name) || grepl('beta$', name) )
}
# Initialize parameters
mx.model.init.params.rnn <- function(symbol, input.shape, initializer, ctx) {
if (!is.mx.symbol(symbol)) stop("symbol need to be MXSymbol")
slist <- symbol$infer.shape(input.shape)
if (is.null(slist)) stop("Not enough information to get shapes")
arg.params <- mx.init.create(initializer, slist$arg.shapes, ctx, skip.unknown=TRUE)
aux.params <- mx.init.create(initializer, slist$aux.shapes, ctx, skip.unknown=FALSE)
return(list(arg.params=arg.params, aux.params=aux.params))
}
# Initialize the data iter
mx.model.init.iter.rnn <- function(X, y, batch.size, is.train) {
if (is.MXDataIter(X)) return(X)
shape <- dim(X)
if (is.null(shape)) {
num.data <- length(X)
} else {
ndim <- length(shape)
num.data <- shape[[ndim]]
}
if (is.null(y)) {
if (is.train) stop("Need to provide parameter y for training with R arrays.")
y <- c(1:num.data) * 0
}
batch.size <- min(num.data, batch.size)
return(mx.io.arrayiter(X, y, batch.size=batch.size, shuffle=is.train))
}
# set up rnn model with rnn cells
setup.rnn.model <- function(rnn.sym, ctx,
num.rnn.layer, seq.len,
num.hidden, num.embed, num.label,
batch.size, input.size,
init.states.name,
initializer=mx.init.uniform(0.01),
dropout=0) {
arg.names <- rnn.sym$arguments
input.shapes <- list()
for (name in arg.names) {
if (name %in% init.states.name) {
input.shapes[[name]] <- c(num.hidden, batch.size)
}
else if (grepl('data$', name) || grepl('label$', name) ) {
if (seq.len == 1) {
input.shapes[[name]] <- c(batch.size)
} else {
input.shapes[[name]] <- c(seq.len, batch.size)
}
}
}
params <- mx.model.init.params.rnn(rnn.sym, input.shapes, initializer, mx.cpu())
args <- input.shapes
args$symbol <- rnn.sym
args$ctx <- ctx
args$grad.req <- "add"
rnn.exec <- do.call(mx.simple.bind, args)
mx.exec.update.arg.arrays(rnn.exec, params$arg.params, match.name=TRUE)
mx.exec.update.aux.arrays(rnn.exec, params$aux.params, match.name=TRUE)
grad.arrays <- list()
for (name in names(rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(rnn.exec, grad.arrays, match.name=TRUE)
return (list(rnn.exec=rnn.exec, symbol=rnn.sym,
num.rnn.layer=num.rnn.layer, num.hidden=num.hidden,
seq.len=seq.len, batch.size=batch.size,
num.embed=num.embed))
}
calc.nll <- function(seq.label.probs, batch.size) {
nll = - sum(log(seq.label.probs)) / batch.size
return (nll)
}
get.label <- function(label, ctx) {
label <- as.array(label)
seq.len <- dim(label)[[1]]
batch.size <- dim(label)[[2]]
sm.label <- array(0, dim=c(seq.len*batch.size))
for (seqidx in 1:seq.len) {
sm.label[((seqidx-1)*batch.size+1) : (seqidx*batch.size)] <- label[seqidx,]
}
return (mx.nd.array(sm.label, ctx))
}
# training rnn model
train.rnn <- function (model, train.data, eval.data,
num.round, update.period,
init.states.name,
optimizer='sgd', ctx=mx.ctx.default(),
epoch.end.callback,
batch.end.callback,
verbose=TRUE,
...) {
m <- model
model <- list(symbol=model$symbol, arg.params=model$rnn.exec$ref.arg.arrays,
aux.params=model$rnn.exec$ref.aux.arrays)
seq.len <- m$seq.len
batch.size <- m$batch.size
num.rnn.layer <- m$num.rnn.layer
num.hidden <- m$num.hidden
opt <- mx.opt.create(optimizer, rescale.grad=(1/batch.size), ...)
updater <- mx.opt.get.updater(opt, m$rnn.exec$ref.arg.arrays)
epoch.counter <- 0
log.period <- max(as.integer(1000 / seq.len), 1)
last.perp <- 10000000.0
for (iteration in 1:num.round) {
nbatch <- 0
train.nll <- 0
# reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
tic <- Sys.time()
train.data$reset()
while (train.data$iter.next()) {
# set rnn input
rnn.input <- train.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=TRUE)
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
mx.exec.backward(m$rnn.exec)
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
# update epoch counter
epoch.counter <- epoch.counter + 1
if (epoch.counter %% update.period == 0) {
# the gradient of initial c and inital h should be zero
init.grad <- list()
for (name in init.states.name) {
init.grad[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, init.grad, match.name=TRUE)
arg.blocks <- updater(m$rnn.exec$ref.arg.arrays, m$rnn.exec$ref.grad.arrays)
mx.exec.update.arg.arrays(m$rnn.exec, arg.blocks, skip.null=TRUE)
grad.arrays <- list()
for (name in names(m$rnn.exec$ref.grad.arrays)) {
if (is.param.name(name))
grad.arrays[[name]] <- m$rnn.exec$ref.grad.arrays[[name]]*0
}
mx.exec.update.grad.arrays(m$rnn.exec, grad.arrays, match.name=TRUE)
}
train.nll <- train.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
if (!is.null(batch.end.callback)) {
batch.end.callback(iteration, nbatch, environment())
}
if ((epoch.counter %% log.period) == 0) {
message(paste0("Epoch [", epoch.counter,
"] Train: NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
}
}
train.data$reset()
# end of training loop
toc <- Sys.time()
message(paste0("Iter [", iteration,
"] Train: Time: ", as.numeric(toc - tic, units="secs"),
" sec, NLL=", train.nll / nbatch,
", Perp=", exp(train.nll / nbatch)))
if (!is.null(eval.data)) {
val.nll <- 0.0
# validation set, reset states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
eval.data$reset()
nbatch <- 0
while (eval.data$iter.next()) {
# set rnn input
rnn.input <- eval.data$value()
mx.exec.update.arg.arrays(m$rnn.exec, rnn.input, match.name=TRUE)
mx.exec.forward(m$rnn.exec, is.train=FALSE)
# probability of each label class, used to evaluate nll
seq.label.probs <- mx.nd.choose.element.0index(m$rnn.exec$ref.outputs[["sm_output"]], get.label(m$rnn.exec$ref.arg.arrays[["label"]], ctx))
# transfer the states
init.states <- list()
for (name in init.states.name) {
init.states[[name]] <- m$rnn.exec$ref.arg.arrays[[name]]*0
}
mx.exec.update.arg.arrays(m$rnn.exec, init.states, match.name=TRUE)
val.nll <- val.nll + calc.nll(as.array(seq.label.probs), batch.size)
nbatch <- nbatch + seq.len
}
eval.data$reset()
perp <- exp(val.nll / nbatch)
message(paste0("Iter [", iteration,
"] Val: NLL=", val.nll / nbatch,
", Perp=", exp(val.nll / nbatch)))
}
# get the model out
epoch_continue <- TRUE
if (!is.null(epoch.end.callback)) {
epoch_continue <- epoch.end.callback(iteration, 0, environment(), verbose = verbose)
}
if (!epoch_continue) {
break
}
}
return (m)
}
# check data and translate data into iterator if data is array/matrix
check.data <- function(data, batch.size, is.train) {
if (!is.null(data) && !is.list(data) && !is.mx.dataiter(data)) {
stop("The dataset should be either a mx.io.DataIter or a R list")
}
if (is.list(data)) {
if (is.null(data$data) || is.null(data$label)){
stop("Please provide dataset as list(data=R.array, label=R.array)")
}
data <- mx.model.init.iter.rnn(data$data, data$label, batch.size=batch.size, is.train = is.train)
}
if (!is.null(data) && !data$iter.next()) {
data$reset()
if (!data$iter.next()) stop("Empty input")
}
return (data)
}
| 9,826 |
apache-2.0
|
ae1f8e9efef828088fee8eee45ea07a4d32b1902
|
ccwang002/2014-China-RConf-Interactive-Vis
|
R_proj/play_grid.R
|
library(grid)
grid.newpage()
pushViewport(plotViewport(c(5, 4, 2, 2)))
pushViewport(dataViewport(
pressure$temperature,
pressure$pressure,
name="plotRegion"
))
grid.points(pressure$temperature,
pressure$pressure,
name="dataSymbols")
grid.rect(gp=gpar(fill=0))
grid.xaxis()
grid.yaxis()
grid.edit("dataSymbols", pch=10)
upViewport(1)
grid.rect(gp=gpar(lty="dashed", fill=0, lwd=4))
upViewport(1)
grid.rect(gp=gpar(lty="dotted", fill=0, lwd=4))
downViewport("plotRegion")
grid.text(
"Pressure (mm Hg)\nversus\nTemperature (Celsius)",
just="right",
x=unit(250, "native"), y=unit(600, "native")
)
| 633 |
mit
|
16b957f66af5a09820a39dcf89e49bbc0008cbff
|
kingaa/pomp
|
tests/R_v_C.R
|
options(digits=3)
png(filename="R_v_C-%02d.png",res=100)
## ----packages------------------------------------------------------------
library(pomp)
library(ggplot2)
## ----seed,echo=FALSE-----------------------------------------------------
set.seed(56300069)
## ----R1------------------------------------------------------------------
simulate(times=1:100,t0=0,
params=c(K=1,r=0.1,sigma=0.1,tau=0.1,X.0=1),
rprocess=discrete_time(
step.fun=function (X,r,K,sigma,...,delta.t) {
eps <- exp(rnorm(n=1,mean=0,sd=sigma))
S <- exp(-r*delta.t)
c(X=K^(1-S)*X^S*eps)
},
delta.t=1
),
rmeasure=function (X, tau, ...) {
c(Y=rlnorm(n=1,meanlog=log(X),sdlog=tau))
},
dmeasure=function (tau, X, Y, ..., log) {
dlnorm(x=Y,meanlog=log(X),sdlog=tau,log=log)
},
partrans=parameter_trans(
toEst=function(r,K,sigma,tau,X.0,...){
log(c(r=r,K=K,sigma=sigma,tau=tau,X.0=X.0))
},
fromEst=function(r,K,sigma,tau,X.0,...){
exp(c(r=r,K=K,sigma=sigma,tau=tau,X.0=X.0))
}
)
) -> gompertz
## ----R2------------------------------------------------------------------
gompertz %>%
as.data.frame() %>%
melt(id="time") %>%
ggplot(aes(x=time,y=value,color=variable))+
geom_line()+
labs(y="X, Y")+
theme_bw()
## ----C1------------------------------------------------------------------
simulate(times=0:100,t0=0,
params=c(K=1,r=0.1,sigma=0.1,tau=0.1,X.0=1),
dmeasure=Csnippet("
lik = dlnorm(Y,log(X),tau,give_log);"
),
rmeasure=Csnippet("
Y = rlnorm(log(X),tau);"
),
rprocess=discrete_time(
step.fun=Csnippet("
double S = exp(-r*dt);
double logeps = (sigma > 0.0) ? rnorm(0,sigma) : 0.0;
X = pow(K,(1-S))*pow(X,S)*exp(logeps);"
),
delta.t=1
),
partrans=parameter_trans(log=c("r","K","sigma","tau","X.0")),
paramnames=c("r","K","sigma","X.0","tau"),
obsnames="Y",
statenames="X"
) -> Gompertz
## ----params--------------------------------------------------------------
p <- parmat(coef(Gompertz),4)
p["X.0",] <- c(0.5,0.9,1.1,1.5)
## ----sim1----------------------------------------------------------------
simulate(Gompertz,params=p,format="data.frame") %>%
ggplot(aes(x=time,y=X,group=.id,color=.id))+
geom_line()+
guides(color="none")+
theme_bw()+
labs(title="Gompertz model",subtitle="stochastic simulations")
## ----pf1-----------------------------------------------------------------
pf <- replicate(n=10,pfilter(Gompertz,Np=500))
logmeanexp(sapply(pf,logLik),se=TRUE)
## ----comparison----------------------------------------------------------
system.time(simulate(gompertz,nsim=10000,format="arrays"))
system.time(simulate(Gompertz,nsim=10000,format="arrays"))
system.time(pfilter(gompertz,Np=1000))
system.time(pfilter(Gompertz,Np=1000))
dev.off()
| 2,788 |
gpl-3.0
|
6a7a22d0fcbd272672d047acea67ac1955d7e81f
|
ReproducibleQM/sapsuckRz
|
prism_weather_data_pull.R
|
##Download weather data from PRISM and pull weather data for individual sites
#created on:5/17/2017
#created by: Chad Zirbel
#pull in coordinates for all sites
location<-read.csv("counties+coordinates2.csv")
#install and load packages
#install.packages("prism")
library(prism)
#pull max and min temp and precipitation
type=c("tmax","tmin","ppt")
#download daily prism data from 2003-2016
for(i in 1:3){
var <- paste("weather", i, sep = "")
assign(var, get_prism_dailys(type=type[i], minDate = "2003-01-01", maxDate = "2016-01-01", keepZip=T))
}
#function to pull data from specific locations
prism_cut <- function(location,prismfile){
meta_d <- unlist(prism_md(prism_data[,1],returnDate=T))
meta_names <- as.matrix(unlist(prism_md(prism_data[,1])))
param_name <- do.call(rbind,strsplit(meta_names,"-"))[,3]
pstack <- prism_stack(prism_data[,1])
data <- unlist(extract(pstack,cbind(location$LONG,location$LAT),nrow=1,buffer=10))
data <- as.data.frame(data)
data$date <- as.Date(meta_d)
data$param<-param_name
data$siteid<-location$SITEID
return(data)}
#load in the prism data files
prism_data<-ls_prism_data(absPath=T)
#pull the data
weather_data<-prism_cut(location,prism_data[,1])
| 1,230 |
mpl-2.0
|
702aa7237898dd8dd41030edb2676f609f8e0332
|
mem48/glider
|
Gavin/forGavin.R
|
# Simple File to get Gavin Started
# Step 1: Get R set up correctly
library(igraph) # Load in the igraph library if it is not available use install.packages("igraph")
# Step 2: Read in the data
graph = readRDS("twitterNetwork.Rds") #Read the file called twitterNetwork and make it a variaible called graph
# Step 3: Let’s find out some basics about this graph
gorder(graph) # How many verticies does it have?
ecount(graph) # How many edges does it have?
# Step 4: Make a smaller graph by removing some of the low degree vertices
graph.trim = delete.vertices(graph, which(degree(graph)<=10))
# Notice that we have created a new graph called graph.trim
gorder(graph.trim) # Reduced the oerde by about a factor of 10
# Step 5: Calculate some statistics for each vertex, this will take a minute or two
V(graph.trim)$degree.total <- degree(graph.trim, mode = "total") # Total Degree
V(graph.trim)$degree.in <- degree(graph.trim, mode = "in") # Degree In
V(graph.trim)$degree.out <- degree(graph.trim, mode = "out") # Degree Out
V(graph.trim)$strength.total <- strength(graph.trim, mode = "total") # Total Strength
V(graph.trim)$strength.in <- strength(graph.trim, mode = "in") # Strength in
V(graph.trim)$strength.out <- strength(graph.trim, mode = "out") # strength out
V(graph.trim)$between <- betweenness(graph.trim) # betweeness centrality
V(graph.trim)$closeness <- closeness(graph.trim) # closeness centrality
V(graph.trim)$eigenvector <- eigen_centrality(graph.trim, directed = TRUE, scale = FALSE, weights = E(graph.trim)$weight)$vector #eigenvector centrality
V(graph.trim)$PageRank <- page_rank(graph.trim, directed = TRUE, damping = 0.85, weights = E(graph.trim)$weight)$vector #page rank centrality
# Step 6: Let’s export those results as a table so we can see them
vert = as_data_frame(graph.trim, what="vertices")
# Now click on the table icon next to vertices in the environment tab
# on the right side of the screen to view the table
# Notice that you can sort using the arrows on each column
# This is where the excel spreadsheets come from
# We can also save the results and view them in excel
write.csv(vert,"verticies.csv", row.names = FALSE)
# A CSV file will be saved in the same folder as the Rproj file
# CSV files can be opened in Excel
# Step 7: Let’s draw a graph to look at
# Step 7a: First, we need a much smaller graph with only a few hundred vertices
graph.toDraw = delete.vertices(graph.trim, which(V(graph.trim)$strength.in <= 800))
# Notice the different syntax for accessing the variables that we created
# whereas before we had to calculate the degree within the delete.verticies function
# We have already calculated the strenght.in and can access it via V(graph.trim)$strength.in
gorder(graph.toDraw) # Now only have a few hundred vertices
# Step 7b: We can plot graphs witin R
plot(graph.toDraw)
# But the defaults are often not very clear and it is slow to draw large complex graphs
# SO let make a pretty graph
#Step 7c: Let colour the vertices based on one of the variables we have calculated
# to do this we define a colour scale and the add a new colour variable to the graph
c_scale = colorRamp(c('blue','cyan','yellow','red')) #Define a colour scale from blue to red
# Now for each vertex assing a colour
V(graph.toDraw)$color = apply(c_scale(V(graph.toDraw)$between / max(V(graph.toDraw)$between, na.rm = T)), 1, function(x) rgb(x[1]/255,x[2]/255,x[3]/255) )
# Not that we have normaised the betweeness centralisty score on a 0-1 scale by dividing by the max(imum) value
#Step 7d: Draw the graph and export it as a SVG File
#SVG file can be opened in web browsers and graphic programmes
# I found Microsoft Edge on windows 10 to be very quick at opening SVG files
#Create High Resolution Plots
svg(filename="gavindemo.svg", # Set the name of the file
width=25, # Set width and height of the graph
height=25,
pointsize=10) # Set the font size of the text labels
par(mar = c(1,1,1,1)) # Defines the bounds for the graph, don't change
plot(graph.toDraw,
edge.width = E(graph.toDraw)$weight/ 20, # Set the widths of the edges
vertex.size = V(graph.toDraw)$strength.total / 1000 , # Set the size of the vertex
edge.arrow.size = 0.2, # set the size of the arrows on the edges
edge.curved=0.2, # Set how curved the edges are
vertex.color = V(graph.toDraw)$color, #Use the colour schemes defined above
vertex.frame.color = V(graph.toDraw)$color,
vertex.label.family= "Helvetica", #Label font
vertex.label.color = "black", # Label font colour
layout = layout_nicely, #Which layout algorithm to use see http://igraph.org/r/doc/layout_.html
rescale = TRUE, #Scale graph to fit
axes = FALSE); dev.off() # Don't show XY axis
| 4,758 |
gpl-3.0
|
c83e9d2bc29c7eda47c2a4c5301493fb74c9bac2
|
leomaranhao/dataScience9week4
|
ui.R
|
library(shiny)
library(leaflet)
shinyUI(pageWithSidebar(
headerPanel("Insurance Direct Premium in Brazil"),
sidebarPanel(
selectInput("Segment", "Choose the Segment:",
choices = c("Auto" = "Auto",
"Multiple Peril" = "Compreensivos",
"DPVAT - Mandatory Personal Injury caused by Motor Vehicle" = "DPVAT",
"Financial" = "Financeiros",
"Extended Guarantee" = "Garantia Estendida",
"Major Risks" = "Grandes Riscos",
"Housing" = "Habitacional",
"Maritime/Aircraft" = "Maritmos/Aeronauticos",
"Microinsurance" = "Microsseguros",
"Equity - Other" = "Patrimoniais - Outros",
"Life" = "Pessoas",
"Civil Liability" = "RC",
"Crop/Cattle/Florest/Fish" = "Rural",
"Transportation" = "Transporte",
"Redeemable Life Insurance" = "VGBL")),
selectInput("Year", "Choose the year:",
choices = as.character(c(2005 : 2015))),
h4("Instructions"),
tags$ul(
tags$li("Direct premiums are the total premiums received by an
insurance company before taking into account reinsurance ceded.
The growth of direct premiums represent the growth of a company’s
insurance business."),
tags$li("Here we have the direct premiums of brazilian companies by
brazilian states from 2005 up to 2015. The different lines of business were
aggregated into what we called \"Segments\". The premiums are
billions of brazilian Reais (R$), roughly 1 US$ = 3.37 R$
in 12-09-2016."),
tags$li("Just select a segment and a year and the application will
generate the percentage distribution of premiums per brazilian
states and a table with the values themselves.")
),
h4("Links"),
a(href="https://github.com/leomaranhao/dataScience9week4", "server.R and ui.R ")
),
mainPanel(
h3("Percentage distribuition of Direct Premium in Brazil"),
leafletOutput("plotSaida"),
h3("Direct Premiums per State"),
htmlOutput("tabela")
)
))
| 2,456 |
apache-2.0
|
b573359b4ff774c67a6621af5c5d11e9efd5b8b2
|
oursu/Gem_code
|
data_processing/RNAseq/scripts/DEgenes_fromCufflinks.R
|
#====
args=commandArgs(trailingOnly=TRUE)
DE_FILE=args[1]
SIG=as.numeric(args[2])
FPKMmin=as.numeric(args[3])
out=args[4]
EXPRESSED=args[5]
#Produce a set of upregulated genes, and a set of downregulated genes
#Get data
de_data=read.table(DE_FILE,header=TRUE)
#Function for picking DE genes
pick_DE_genes=function(qvalueThresh,foldChange,FPKMmin,FPKMdiff,data){
OKFoldChange=which(abs(data$log2.fold_change.)>=log(foldChange,2))
OKFPKMmin=union(which(data$value_1>=FPKMmin),which(data$value_2>=FPKMmin))
OKFPKMdiff=which(abs(data$value_1-data$value_2)>=FPKMdiff)
OKqvalue=which(data$q_value<=qvalueThresh)
#For DE, keep only OK genes
OKtestgenes=which(as.character(data$status)=='OK')
DEidx=intersect(OKqvalue,intersect(OKFPKMdiff,intersect(OKFPKMmin,OKFoldChange)))
#Hits:
DEgene_data=data[DEidx,]
#split into up and downreg
columns_of_interest=c('gene','log2.fold_change.',
'value_1','value_2')
deGenes=list()
deGenes[['up']]=DEgene_data[which(as.numeric(as.character(DEgene_data[,'log2.fold_change.']))>0),columns_of_interest]
deGenes[['down']]=DEgene_data[which(as.numeric(as.character(DEgene_data[,'log2.fold_change.']))<0),columns_of_interest]
return(deGenes)
}
#Get DE genes
DE_genes=pick_DE_genes(SIG,1.5,FPKMmin,1,de_data)
print(DE_genes)
write.table(DE_genes[['up']],file=paste(out,'.UpReg.txt',sep=''),quote=F,row.names=F,col.names=T,sep='\t')
write.table(DE_genes[['down']],file=paste(out,'.DownReg.txt',sep=''),quote=F,row.names=F,col.names=T,sep='\t')
write.table(rbind(DE_genes[['down']],DE_genes[['up']]),file=paste(out,'.UpAndDownReg.txt',sep=''),quote=F,row.names=F,col.names=T,sep='\t')
#also write the genes that are expressed
OKFPKMmin=union(which(de_data$value_1>=FPKMmin),which(de_data$value_2>=FPKMmin))
write.table(de_data[OKFPKMmin,'gene'],file=EXPRESSED,quote=F,row.names=F,col.names=T,sep='\t')
| 1,896 |
bsd-3-clause
|
c7b44baf51c184796a12eb6a1b668f4510f006e2
|
advnturecaptlst/kaggle_archive
|
avito/avito.R
|
# coding: utf-8
#__author__ = 'IPM'
# Required Libraries
library(data.table)
library(readr)
library(caret)
library(stringdist)
# Read in data
location <- fread("~/Documents/kaggle/avito/input/Location.csv")
itemPairsTest <- fread("~/Documents/kaggle/avito/input/ItemPairs_test.csv")
itemPairsTrain <- fread("~/Documents/kaggle/avito/input/ItemPairs_train.csv")
itemInfoTest <- read_csv("~/Documents/kaggle/avito/input/ItemInfo_test.csv")
itemInfoTrain <- read_csv("~/Documents/kaggle/avito/input/ItemInfo_train.csv")
itemInfoTest <- data.table(itemInfoTest)
itemInfoTrain <- data.table(itemInfoTrain)
setkey(location, locationID)
setkey(itemInfoTrain, itemID)
setkey(itemInfoTest, itemID)
# Drop unused factors
dropAndNumChar <- function(itemInfo){
itemInfo[, ':=' (ncharTitle = nchar(title),
ncharDescription = nchar(description),
description = NULL,
images_array = NULL,
attrsJSON = NULL)]
}
dropAndNumChar(itemInfoTest)
dropAndNumChar(itemInfoTrain)
# Merge
mergeInfo <- function(itemPairs, itemInfo){
# merge on itemID_1
setkey(itemPairs, itemID_1)
itemPairs <- itemInfo[itemPairs]
setnames(itemPairs, names(itemInfo), paste0(names(itemInfo), "_1"))
# merge on itemID_2
setkey(itemPairs, itemID_2)
itemPairs <- itemInfo[itemPairs]
setnames(itemPairs, names(itemInfo), paste0(names(itemInfo), "_2"))
# merge on locationID_1
setkey(itemPairs, locationID_1)
itemPairs <- location[itemPairs]
setnames(itemPairs, names(location), paste0(names(location), "_1"))
# merge on locationID_2
setkey(itemPairs, locationID_2)
itemPairs <- location[itemPairs]
setnames(itemPairs, names(location), paste0(names(location), "_2"))
return(itemPairs)
}
itemPairsTrain <- mergeInfo(itemPairsTrain, itemInfoTrain)
itemPairsTest <- mergeInfo(itemPairsTest, itemInfoTest)
rm(list=c("itemInfoTest", "itemInfoTrain", "location"))
# Create features
matchPair <- function(x, y){
ifelse(is.na(x), ifelse(is.na(y), 3, 2), ifelse(is.na(y), 2, ifelse(x==y, 1, 4)))
}
createFeatures <- function(itemPairs){
itemPairs[, ':=' (locationMatch = matchPair(locationID_1, locationID_2),
locationID_1 = NULL,
locationID_2 = NULL,
regionMatch = matchPair(regionID_1, regionID_2),
regionID_1 = NULL,
regionID_2 = NULL,
metroMatch = matchPair(metroID_1, metroID_2),
metroID_1 = NULL,
metroID_2 = NULL,
categoryID_1 = NULL,
categoryID_2 = NULL,
priceMatch = matchPair(price_1, price_2),
priceDiff = pmax(price_1/price_2, price_2/price_1),
priceMin = pmin(price_1, price_2, na.rm=TRUE),
priceMax = pmax(price_1, price_2, na.rm=TRUE),
price_1 = NULL,
price_2 = NULL,
titleStringDist = stringdist(title_1, title_2, method = "jw"),
titleStringDist2 = (stringdist(title_1, title_2, method = "lcs") /
pmax(ncharTitle_1, ncharTitle_2, na.rm=TRUE)),
title_1 = NULL,
title_2 = NULL,
titleCharDiff = pmax(ncharTitle_1/ncharTitle_2, ncharTitle_2/ncharTitle_1),
titleCharMin = pmin(ncharTitle_1, ncharTitle_2, na.rm=TRUE),
titleCharMax = pmax(ncharTitle_1, ncharTitle_2, na.rm=TRUE),
ncharTitle_1 = NULL,
ncharTitle_2 = NULL,
descriptionCharDiff = pmax(ncharDescription_1/ncharDescription_2, ncharDescription_2/ncharDescription_1),
descriptionCharMin = pmin(ncharDescription_1, ncharDescription_2, na.rm=TRUE),
descriptionCharMax = pmax(ncharDescription_1, ncharDescription_2, na.rm=TRUE),
ncharDescription_1 = NULL,
ncharDescription_2 = NULL,
distance = sqrt((lat_1-lat_2)^2+(lon_1-lon_2)^2),
lat_1 = NULL,
lat_2 = NULL,
lon_1 = NULL,
lon_2 = NULL,
itemID_1 = NULL,
itemID_2 = NULL)]
itemPairs[, ':=' (priceDiff = ifelse(is.na(priceDiff), 0, priceDiff),
priceMin = ifelse(is.na(priceMin), 0, priceMin),
priceMax = ifelse(is.na(priceMax), 0, priceMax),
titleStringDist = ifelse(is.na(titleStringDist), 0, titleStringDist),
titleStringDist2 = ifelse(is.na(titleStringDist2) | titleStringDist2 == Inf, 0, titleStringDist2))]
}
createFeatures(itemPairsTest)
createFeatures(itemPairsTrain)
library(xgboost)
maxTrees <- 500
shrinkage <- 0.1
gamma <- 2
depth <- 8
minChildWeight <- 49
colSample <- 0.85
subSample <- 0.85
earlyStopRound <- 10
modelVars <- names(itemPairsTrain)[which(!(names(itemPairsTrain) %in% c("isDuplicate", "generationMethod", "foldId")))]
itemPairsTest <- data.frame(itemPairsTest)
itemPairsTrain <- data.frame(itemPairsTrain)
set.seed(13)
#cat(dim(itemPairsTrain))
#itemPairsTrain <- itemPairsTrain[sample(nrow(itemPairsTrain), 500000), ]
# Matrix
dtrain <- xgb.DMatrix(as.matrix(itemPairsTrain[, modelVars]), label=itemPairsTrain$isDuplicate)
dtest <- xgb.DMatrix(as.matrix(itemPairsTest[, modelVars]))
# xgboost cross-validated
set.seed(13)
#xgbCV <- xgb.cv(params=list(max_depth=depth,
# eta=shrinkage,
# gamma=gamma,
# colsample_bytree=colSample,
# min_child_weight=minChildWeight,
# subsample=subSample,
# objective="binary:logistic"),
# data=dtrain,
# nrounds=maxTrees,
# eval_metric ="auc",
# nfold=4,
# stratified=TRUE,
# early.stop.round=earlyStopRound)
#numTrees <- min(which(xgbCV$test.auc.mean==max(xgbCV$test.auc.mean)))
xgbResult <- xgboost(params=list(max_depth=depth,
eta=shrinkage,
gamma=gamma,
colsample_bytree=colSample,
min_child_weight=minChildWeight),
data=dtrain,
nrounds=maxTrees,
objective="binary:logistic",
eval_metric="auc")
testPreds <- predict(xgbResult, dtest)
submission <- data.frame(id=itemPairsTest$id, probability=testPreds)
write.csv(submission, file="submission_r_v2.csv",row.names=FALSE)
| 6,768 |
apache-2.0
|
01064a6146e8eb6672cb3c97eacc5bcc4efbe052
|
javierluraschi/sparkworker
|
R/worker_apply.R
|
spark_worker_apply <- function(sc) {
hostContextId <- invoke_method(sc, FALSE, "Handler", "getHostContext")
log("retrieved worker context id ", hostContextId)
context <- structure(
class = c("spark_jobj", "worker_jobj"),
list(
id = hostContextId,
connection = sc
)
)
log("retrieved worker context")
length <- worker_invoke(context, "getSourceArrayLength")
log("found ", length, " rows")
data <- worker_invoke(context, "getSourceArraySeq")
log("retrieved ", length(data), " rows")
closureRaw <- worker_invoke(context, "getClosure")
closure <- unserialize(closureRaw)
columnNames <- worker_invoke(context, "getColumns")
data <- lapply(data, function(e) {
names(e) <- columnNames
e
})
data <- if (length(formals(closure)) > 0)
lapply(data, closure)
else
lapply(data, function(e) {
closure()
})
if (!identical(typeof(data[[1]]), "list")) {
data <- lapply(data, function(e) list(e))
}
worker_invoke(context, "setResultArraySeq", data)
log("updated ", length(data), " rows")
spark_split <- worker_invoke(context, "finish")
log("finished apply")
}
spark_worker_collect <- function(sc) {
collected <- invoke_static(sc, "sparklyr.Utils", "collect", sdf, separator$regexp)
transformed <- lapply(collected, function(e) {
sdf_deserialize_column(e, sc)
})
}
| 1,366 |
apache-2.0
|
e6b4137c27603998b86d43e3751a211436cdf420
|
nstauffer/aim.analysis
|
R/benchmarking.R
|
#' Apply benchmarks to data
#' @description Using data that has unique identifier and indicator value variables, apply benchmarks. The benchmarks are applied to the data based on the benchmark group(s) that the data belong to, which may already be assigned in the data or may be added with a benchmark group lookup table.
#' @param data Data frame or spatial * data frame. The data to be benchmarked. Must contain the variable(s) in \code{idvars} as unique identifiers. May be "wide" or "long" data. If wide, then each indicator name should be a variable name. If long, then the indicator names and values should be in variables named \code{"indicator_var"} and \code{"value"}.
#' @param idvars Character string or vecor of character strings. The names of the variable(s) in \code{data} which serve as unique identifiers.
#' @param benchmark_group_var Optional character string. The name of the variable that holds the benchmark group memberships. If \code{NULL} then it defaults to the variable in \code{benchmark_group_lut} that is not in \code{idvars}. Defaults to \code{NULL}.
#' @param benchmark_group_lut Optional data frame. The lookup table used to assign benchmark group membership to \code{data}. Must contain all of the variables in \code{idvar} and one additional variable with the benchmark group memberships.
#' @param benchmarks Data frame. The benchmarks in the format produced by \code{read.benchmarks()}. If the benchmark group membership variable in other data frames is not \code{"Benchmark.Group"} then it must be renamed here.
#' @param verbose Logical. If \code{TRUE} then the function will generate additional messages as it executes.
#' @return A long data frame of each point/benchmarked indicator combination with the assigned condition category.
#' @export
apply_benchmarks <- function(data,
idvars,
benchmark_group_var = NULL,
benchmark_group_lut = NULL,
benchmarks,
verbose = FALSE) {
if (grepl(class(data)[1], pattern = "^Spatial.*DataFrame$")) {
data <- data@data
} else if (class(data) != "data.frame") {
stop("data must either be a data frame or a spatial data frame.")
}
idvars <- c(idvars, benchmark_group_var)
missing_idvars <- idvars[!(idvars %in% names(data))]
if (length(missing_idvars) > 0) {
stop(paste0("The following variables are missing from data: ", paste(missing_idvars, collapse = ", ")))
}
if (class(benchmarks) != "data.frame") {
stop("Benchmarks must be a data frame.")
}
if (!is.null(benchmark_group_var)) {
if (!(benchmark_group_var %in% names(benchmarks)) & !("Benchmark.Group" %in% names(benchmarks))) {
stop(paste0("The variable ", benchmark_group_var, "does not appear in the data frame benchmarks"))
} else {
if (verbose) {
message(paste0("Adding the contents of benchmarks[['Benchmark.Group']] to benchmarks[['", benchmark_group_var, "']]"))
}
benchmarks[[benchmark_group_var]] <- benchmarks[["Benchmark.Group"]]
}
}
if (is.null(benchmark_group_var) & is.null(benchmark_group_lut)) {
stop("Either benchmark_group_var or benchmark_group_lut must not be NULL")
} else if (!is.null(benchmark_group_var) & !is.null(benchmark_group_lut)) {
if (verbose) {
message("Both a benchmark variable and a benchmark group lookup table have been provided. Assuming that the benchmark_group_var is in the lookup table and will be applied to the data from there.")
}
if (!(benchmark_group_var) %in% names(benchmark_group_lut)) {
stop(paste0("The variable ", benchmark_group_var, " does not appear in the names of benchmark_group_lut"))
}
} else if (!is.null(benchmark_group_var) & is.null(benchmark_group_lut)) {
if (!(benchmark_group_var) %in% names(data)) {
stop(paste0("The variable ", benchmark_group_var, " does not appear in the names of data. Did you mean to supply a lookup table as well?"))
}
}
if (!is.null(benchmark_group_lut)) {
common_vars_benchmarks <- names(table(c(names(benchmarks), names(benchmark_group_lut))))[table(c(names(benchmarks), names(benchmark_group_lut))) > 1]
if (length(common_vars_benchmarks) < 1) {
stop("There are no variables in common between benchmark_group_lut and benchmarks")
}
if (!is.null(benchmark_group_var)) {
if (verbose) {
message("Removing existing benchmark group variable from data to replace with values from lookup table.")
}
data <- data[, names(data)[!(names(data %in% benchmark_group_var))]]
}
common_vars <- names(table(c(names(data), names(benchmark_group_lut))))[table(c(names(data), names(benchmark_group_lut))) > 1]
if (verbose) {
message(paste0("Joining data and benchmark group lut by the variable(s): ", paste(common_vars, collapse = ", ")))
}
data_grouped <- merge(x = data,
y = benchmark_group_lut,
by = common_vars)
} else {
data_grouped <- data
}
if (verbose) {
message("Applying benchmarks")
}
# Get the benchmarks merged to the points
indicator_lut <- indicator.lookup()
names(indicator_lut) <- c("indicator_var", "indicator_name")
benchmarks <- merge(x = benchmarks,
y = indicator_lut,
by.x = "Indicator",
by.y = "indicator_name")
eval_vars <- names(benchmarks)[grepl(names(benchmarks), pattern = "^evalstring\\d+$")]
idvars <- c(idvars, "Benchmark.Group")
# Make the data tall
if (!all(c("indicator", "value") %in% names(data_grouped))) {
indicator_vars_present <- names(data_grouped)[names(data_grouped) %in% indicator_lut[["indicator_var"]]]
data_tall <- tidyr::pivot_longer(data = data_grouped[, c(idvars, indicator_vars_present)],
cols = tidyselect::one_of(indicator_vars_present),
names_to = "indicator",
values_to = "value")
} else {
data_tall <- data
}
data_benchmarked <- merge(x = data_tall,
y = benchmarks,
by.x = c("indicator", "Benchmark.Group", "Reporting.Unit"),
by.y = c("indicator_var", "Benchmark.Group", "Reporting.Unit"))
benchmark_vector <- sapply(X = 1:nrow(data_benchmarked),
data = data_benchmarked,
eval_vars = eval_vars,
FUN = function(X, data, eval_vars){
all(sapply(X = eval_vars,
data = data[X, ],
FUN = function(X, data){
evalstring <- gsub(data[[X]][1],
pattern = "(x){1}",
replacement = data[["value"]])
eval(parse(text = evalstring))
}))
})
output <- data_benchmarked[benchmark_vector, c(idvars, "indicator", "Condition.Category")]
return(output)
}
#' Apply benchmarks to data
#' @description Using data that has unique identifier and indicator value variables, apply benchmarks. The benchmarks are applied to the data based on the benchmark group(s) that the data belong to, which may already be assigned in the data or may be added with a benchmark group lookup table.
#' @param data Data frame or spatial * data frame. The data to be benchmarked. Must contain the variable(s) in \code{idvars} as unique identifiers. May be "wide" or "long" data. If wide, then each indicator name should be a variable name. If long, then the indicator names and values should be in variables named \code{"indicator_var"} and \code{"value"}.
#' @param idvars Character string or vecor of character strings. The names of the variable(s) in \code{data} which serve as unique identifiers.
#' @param benchmark_group_var Optional character string. The name of the variable that holds the benchmark group memberships. If \code{NULL} then it defaults to the variable in \code{benchmark_group_lut} that is not in \code{idvars}. Defaults to \code{NULL}.
#' @param benchmark_group_lut Optional data frame. The lookup table used to assign benchmark group membership to \code{data}. Must contain all of the variables in \code{idvar} and one additional variable with the benchmark group memberships.
#' @param benchmarks Data frame. The benchmarks in the format produced by \code{read.benchmarks()}. If the benchmark group membership variable in other data frames is not \code{"Benchmark.Group"} then it must be renamed here.
#' @param verbose Logical. If \code{TRUE} then the function will generate additional messages as it executes.
#' @param tdat_version Version of TerrADat used in the analysis for use in \code{indicator lookup()}. Defaults to \code{"2"}.
#' @return A long data frame of each point/benchmarked indicator combination with the assigned condition category.
#' @export
apply_benchmarks <- function(data,
idvars,
benchmark_group_var = NULL,
benchmark_group_lut = NULL,
benchmarks,
verbose = FALSE,
tdat_version = "2") {
if (grepl(class(data)[1], pattern = "^Spatial.*DataFrame$")) {
data <- data@data
} else if (class(data) != "data.frame") {
stop("data must either be a data frame or a spatial data frame.")
}
idvars <- c(idvars, benchmark_group_var)
missing_idvars <- idvars[!(idvars %in% names(data))]
if (length(missing_idvars) > 0) {
stop(paste0("The following variables are missing from data: ", paste(missing_idvars, collapse = ", ")))
}
if (class(benchmarks) != "data.frame") {
stop("Benchmarks must be a data frame.")
}
if (!is.null(benchmark_group_var)) {
if (!(benchmark_group_var %in% names(benchmarks)) & !("Benchmark.Group" %in% names(benchmarks))) {
stop(paste0("The variable ", benchmark_group_var, "does not appear in the data frame benchmarks"))
} else {
if (verbose) {
message(paste0("Adding the contents of benchmarks[['Benchmark.Group']] to benchmarks[['", benchmark_group_var, "']]"))
}
benchmarks[[benchmark_group_var]] <- benchmarks[["Benchmark.Group"]]
}
}
if (is.null(benchmark_group_var) & is.null(benchmark_group_lut)) {
stop("Either benchmark_group_var or benchmark_group_lut must not be NULL")
} else if (!is.null(benchmark_group_var) & !is.null(benchmark_group_lut)) {
if (verbose) {
message("Both a banchmark variable and a benchmark group lookup table have been provided. Assuming that the benchmark_group_var is in the lookup table and will be applied to the data from there.")
}
if (!(benchmark_group_var) %in% names(benchmark_group_lut)) {
stop(paste0("The variable ", benchmark_group_var, " does not appear in the names of benchmark_group_lut"))
}
} else if (!is.null(benchmark_group_var) & is.null(benchmark_group_lut)) {
if (!(benchmark_group_var) %in% names(data)) {
stop(paste0("The variable ", benchmark_group_var, " does not appear in the names of data. Did you mean to supply a lookup table as well?"))
}
}
if (!is.null(benchmark_group_lut)) {
common_vars_benchmarks <- names(table(c(names(benchmarks), names(benchmark_group_lut))))[table(c(names(benchmarks), names(benchmark_group_lut))) > 1]
if (length(common_vars_benchmarks) < 1) {
stop("There are no variables in common between benchmark_group_lut and benchmarks")
}
if (!is.null(benchmark_group_var)) {
if (verbose) {
message("Removing existing benchmark group variable from data to replace with values from lookup table.")
}
data <- data[, names(data)[!(names(data %in% benchmark_group_var))]]
}
common_vars <- names(table(c(names(data), names(benchmark_group_lut))))[table(c(names(data), names(benchmark_group_lut))) > 1]
if (verbose) {
message(paste0("Joining data and benchmark group lut by the variable(s): ", paste(common_vars, collapse = ", ")))
}
data_grouped <- merge(x = data,
y = benchmark_group_lut,
by = common_vars)
} else {
data_grouped <- data
}
if (verbose) {
message("Applying benchmarks")
}
# Get the benchmarks merged to the points
indicator_lut <- indicator.lookup(tdat_version)
names(indicator_lut) <- c("indicator_var", "indicator_name")
benchmarks <- merge(x = benchmarks,
y = indicator_lut,
by.x = "Indicator",
by.y = "indicator_name")
eval_vars <- names(benchmarks)[grepl(names(benchmarks), pattern = "^evalstring\\d+$")]
idvars <- c(idvars, "Benchmark.Group")
# Make the data tall
if (!all(c("indicator", "value") %in% names(data_grouped))) {
indicator_vars_present <- names(data_grouped)[names(data_grouped) %in% indicator_lut[["indicator_var"]]]
data_tall <- tidyr::pivot_longer(data = data_grouped[, c(idvars, indicator_vars_present)],
cols = tidyselect::one_of(indicator_vars_present),
names_to = "indicator",
values_to = "value")
} else {
data_tall <- data
}
data_benchmarked <- merge(x = data_tall,
y = benchmarks,
by.x = c("indicator", "Benchmark.Group", "Reporting.Unit"),
by.y = c("indicator_var", "Benchmark.Group", "Reporting.Unit"))
benchmark_vector <- sapply(X = 1:nrow(data_benchmarked),
data = data_benchmarked,
eval_vars = eval_vars,
FUN = function(X, data, eval_vars){
all(sapply(X = eval_vars,
data = data[X, ],
FUN = function(X, data){
evalstring <- gsub(data[[X]][1],
pattern = "(x){1}",
replacement = data[["value"]])
eval(parse(text = evalstring))
}))
})
output <- data_benchmarked[benchmark_vector, c(idvars, "indicator", "Condition.Category")]
return(output)
}
| 14,838 |
mit
|
704c733d011782b8795068569284f0400ecc1e5b
|
aknight1-uva/jasp-desktop
|
JASP-Engine/JASP/R/ttestpairedsamples.R
|
#
# Copyright (C) 2013-2015 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
TTestPairedSamples <- function(dataset = NULL, options, perform = "run",
callback = function(...) 0, ...) {
state <- .retrieveState()
## call the common initialization function
init <- .initializeTTest(dataset, options, perform, type = 'paired')
results <- init[["results"]]
dataset <- init[["dataset"]]
## call the specific paired T-Test functions
results[["ttest"]] <- .ttestPairedSamples(dataset, options, perform)
descriptivesTable <- .ttestPairedSamplesDescriptives(dataset, options, perform)
shapiroWilk <- .ttestPairedNormalityTest(dataset, options, perform)
results[["assumptionChecks"]] <- list(shapiroWilk = shapiroWilk, title = "Assumption Checks")
keep <- NULL
## if the user wants descriptive plots, s/he shall get them!
if (options$descriptivesPlots) {
plotTitle <- ifelse(length(options$pairs) > 1, "Descriptives Plots", "Descriptives Plot")
descriptivesPlots <- .pairedSamplesTTestDescriptivesPlot(dataset, options, perform)
if (!is.null(descriptivesPlots[[1]][["obj"]])){
keep <- unlist(lapply(descriptivesPlots, function(x) x[["data"]]),NULL)
}
results[["descriptives"]] <- list(descriptivesTable = descriptivesTable,
title = "Descriptives",
descriptivesPlots = list(collection = descriptivesPlots,
title = plotTitle))
} else {
results[["descriptives"]] <- list(descriptivesTable = descriptivesTable, title = "Descriptives")
}
## return the results object
if (perform == "init") {
return(list(results=results, status="inited"))
} else {
return(list(results=results, status="complete",
state = list(options = options, results = results),
keep = keep))
}
}
.ttestPairedSamples <- function(dataset, options, perform) {
ttest <- list()
## what does the user want? what does s/he really want??
wantsEffect <- options$effectSize
wantsDifference <- options$meanDifference
wantsConfidenceMeanDiff <- (options$meanDiffConfidenceIntervalCheckbox && options$meanDifference)
wantsConfidenceEffSize <- (options$effSizeConfidenceIntervalCheckbox && options$effectSize)
percentConfidenceMeanDiff <- options$meanDiffConfidenceIntervalPercent
percentConfidenceEffSize <- options$effSizeConfidenceIntervalPercent
wantsStudents <- options$students
wantsWilcox <- options$wilcoxonSignedRank
allTests <- c(wantsStudents, wantsWilcox)
onlyTest <- sum(allTests) == 1
## setup table for paired t-test results
fields <- list(list(name = "v1", type = "string", title = ""),
list(name = "sep", type = "separator", title = ""),
list(name = "v2", type = "string", title = ""),
list(name = "df", type = "integer"),
list(name = "p", type = "number", format = "dp:3;p:.001"))
footnotes <- .newFootnotes()
title <- "Paired Samples T-Test"
## get the right statistics for the table and, if only one test type, add footnote
if (wantsWilcox && onlyTest) {
testname <- "Wilcoxon signed-rank test"
testTypeFootnote <- paste0(testname, ".")
.addFootnote(footnotes, symbol = "<em>Note.</em>", text = testTypeFootnote)
testStat <- "W"
## additionally, Wilcoxon's test doesn't have degrees of freedoms
fields <- fields[-4]
nameOfLocationParameter <- "Hodges-Lehmann Estimate"
nameOfEffectSize <- "Rank-Biserial Correlation"
} else if (wantsStudents && onlyTest) {
testname <- "Student's t-test"
testTypeFootnote <- paste0(testname, ".")
.addFootnote(footnotes, symbol = "<em>Note.</em>", text = testTypeFootnote)
testStat <- "t"
nameOfLocationParameter <- "Mean Difference"
nameOfEffectSize <- "Cohen's d"
} else {
testStat <- "Statistic"
nameOfLocationParameter <- "Location Parameter"
nameOfEffectSize <- "Effect Size"
}
ttest[["title"]] <- title
## if only conducting Student's, the table should have "t" as column name
## for the test statistic when doing only Wilcoxon's, the name should be "V";
## when doing both, it should be "statistic"
fields <- append(fields, list(list(name = testStat,
type = "number", format = "sf:4;dp:3")), 3)
## if the user wants all tests, add a column called "Test"
if (sum(allTests) == 2) {
fields <- append(fields, list(list(name = "test",
type = "string", title = "Test")), 3)
}
if (options$VovkSellkeMPR) {
.addFootnote(footnotes, symbol = "\u002A", text = "Vovk-Sellke Maximum
<em>p</em>-Ratio: Based on the <em>p</em>-value, the maximum
possible odds in favor of H\u2081 over H\u2080 equals
1/(-e <em>p</em> log(<em>p</em>)) for <em>p</em> \u2264 .37
(Sellke, Bayarri, & Berger, 2001).")
fields[[length(fields) + 1]] <- list(name = "VovkSellkeMPR",
title = "VS-MPR\u002A",
type = "number",
format = "sf:4;dp:3")
}
if (wantsDifference) {
fields[[length(fields) + 1]] <- list(name = "md", title = nameOfLocationParameter,
type = "number", format = "sf:4;dp:3")
if(wantsStudents) {
fields[[length(fields) + 1]] <- list(name = "sed", title = "SE Difference",
type = "number", format = "sf:4;dp:3")
}
if (wantsWilcox && wantsStudents) {
.addFootnote(footnotes, symbol = "<em>Note.</em>", text = "For the Student t-test,
location parameter is given by mean difference <em>d</em>; for the Wilcoxon test,
effect size is given by the Hodges-Lehmann estimate.")
}
}
if (wantsConfidenceMeanDiff) {
interval <- 100 * percentConfidenceMeanDiff
title <- paste0(interval, "% CI for ", nameOfLocationParameter)
fields[[length(fields) + 1]] <- list(name = "lowerCIlocationParameter", type = "number",
format = "sf:4;dp:3", title = "Lower",
overTitle = title)
fields[[length(fields) + 1]] <- list(name = "upperCIlocationParameter", type = "number",
format = "sf:4;dp:3", title = "Upper",
overTitle = title)
}
if (wantsEffect) {
fields[[length(fields) + 1]] <- list(name = "d", title = nameOfEffectSize,
type = "number", format = "sf:4;dp:3")
if (wantsWilcox && wantsStudents) {
.addFootnote(footnotes, symbol = "<em>Note.</em>", text = "For the Student t-test,
effect size is given by Cohen's <em>d</em>; for the Wilcoxon test,
effect size is given by the matched rank biserial correlation.")
}
}
if (wantsConfidenceEffSize) {
interval <- 100 * percentConfidenceEffSize
title <- paste0(interval, "% CI for ", nameOfEffectSize)
fields[[length(fields) + 1]] <- list(name = "lowerCIeffectSize", type = "number",
format = "sf:4;dp:3", title = "Lower",
overTitle = title)
fields[[length(fields) + 1]] <- list(name = "upperCIeffectSize", type = "number",
format = "sf:4;dp:3", title = "Upper",
overTitle = title)
}
ttest[["schema"]] <- list(fields = fields)
#########################
## check the directionality
if (options$hypothesis == "groupOneGreater") {
direction <- "greater"
message <- "All tests, hypothesis is measurement one greater than measurement two."
.addFootnote(footnotes, symbol = "<em>Note.</em>", text = message)
} else if (options$hypothesis == "groupTwoGreater") {
direction <- "less"
message <- "All tests, hypothesis is measurement one less than measurement two."
.addFootnote(footnotes, symbol = "<em>Note.</em>", text = message)
} else {
direction <- "two.sided"
}
rowNo <- 1
ttest.rows <- list() # for each pair and each test, save stuff in there
whichTests <- list("1" = wantsStudents, "2" = wantsWilcox)
## add a row for each variable, even before we are conducting tests
for (pair in options$pairs) {
ttest.rows[[length(ttest.rows) + 1]] <- list(v1 = pair[[1]],
sep = '-',
v2 = pair[[2]])
}
## for each pair, run the checked tests and update the table
for (pair in options$pairs) {
p1 <- pair[[1]]
p2 <- pair[[2]]
errors <- .hasErrors(dataset, perform, message = 'short', type = c('observations', 'variance', 'infinity'),
all.target = c(p1, p2),
observations.amount = '< 2')
row <- list(v1 = "", sep = "", v2 = "")
## test is a number, indicating which tests should be run
for (test in seq_len(length(whichTests))) {
currentTest <- whichTests[[test]]
## don't run a test the user doesn't want
if (!currentTest) {
next
}
if (!identical(errors, FALSE)) {
errorMessage <- errors$message
} else {
errorMessage <- NULL
}
if (perform == "run") {
row.footnotes <- NULL
if (p1 != "" && p2 != "") {
c1 <- dataset[[ .v(p1) ]]
c2 <- dataset[[ .v(p2) ]]
df <- na.omit(data.frame(c1 = c1, c2 = c2))
c1 <- df$c1
c2 <- df$c2
n <- length(c1)
if(is.null(errorMessage)){
result <- try(silent = FALSE, expr = {
## if Wilcox box is ticked, run a paired wilcoxon signed rank test
if (test == 2) {
res <- stats::wilcox.test(c1, c2, paired = TRUE,
conf.level = percentConfidenceMeanDiff, conf.int = TRUE,
alternative = direction)
maxw <- (n*(n+1))/2
d <- as.numeric((res$statistic/maxw) * 2 - 1)
wSE <- sqrt((n*(n+1)*(2*n+1))/6) /2
mrSE <- sqrt(wSE^2 * 4 * (1/maxw^2))
# zSign <- (ww$statistic - ((n*(n+1))/4))/wSE
zmbiss <- atanh(d)
d <- .clean(d)
if(direction == "two.sided") {
confIntEffSize <- sort(c(tanh(zmbiss + qnorm((1-percentConfidenceEffSize)/2)*mrSE), tanh(zmbiss + qnorm((1+percentConfidenceEffSize)/2)*mrSE)))
}else if (direction == "less") {
confIntEffSize <- sort(c(-Inf, tanh(zmbiss + qnorm(percentConfidenceEffSize)*mrSE)))
}else if (direction == "greater") {
confIntEffSize <- sort(c(tanh(zmbiss + qnorm((1-percentConfidenceEffSize))*mrSE), Inf))
}
## else run a simple paired t-test
} else {
res <- stats::t.test(c1, c2, paired = TRUE, conf.level = percentConfidenceMeanDiff,
alternative = direction)
df <- ifelse(is.null(res$parameter), "", as.numeric(res$parameter))
d <- .clean(mean(c1 - c2) / sd(c1 - c2))
t <- as.numeric(res$statistic)
confIntEffSize <- c(0,0)
if (wantsConfidenceEffSize) {
signT <- sign(t)
t <- abs(t)
if(direction == "two.sided") {
end1 <- t
while( pt(q=t,df=df,ncp=end1) > (1-percentConfidenceEffSize)/2 ) {
end1 <- end1 + abs(end1)
}
ncp1 <- uniroot(function(x) (1-percentConfidenceEffSize)/2-pt(q=t,df=df,ncp=x),
c(2*t-end1,end1))$root
end2 <- t
while( pt(q=t,df=df,ncp=end2) < (1+percentConfidenceEffSize)/2 ) {
end2 <- end2 - abs(t)
}
ncp2 <- uniroot(function(x) (1+percentConfidenceEffSize)/2-pt(q=t,df=df,ncp=x),
c(end2,2*t-end2))$root
confIntEffSize <- sort(c(ncp1/sqrt(df)* signT,ncp2/sqrt(df)* signT))
} else if (direction == "greater") {
end1 <- t
while( pt(q=t,df=df,ncp=end1) > (1-percentConfidenceEffSize) ) {
end1 <- end1 + abs(end1)
}
ncp1 <- uniroot(function(x) (1-percentConfidenceEffSize)-pt(q=t,df=df,ncp=x),
c(2*t-end1,end1))$root
confIntEffSize <- sort(c(ncp1/sqrt(df)* signT, Inf))
}else if(direction == "less") {
end2 <- t
while( pt(q=t,df=df,ncp=end2) < percentConfidenceEffSize ) {
end2 <- end2 - abs(t)
}
ncp2 <- uniroot(function(x) percentConfidenceEffSize-pt(q=t,df=df,ncp=x),
c(end2,2*t-end2))$root
confIntEffSize <- sort(c(ncp2/sqrt(df)* signT, -Inf))
}
t <- t * signT
}
}
## don't use a return statement in expressions
## ... it will take ages to debug :)
res
})
## if testing raised an error, we extract information from it
if (class(result) != "try-error") {
## same for all tests
p <- as.numeric(result$p.value)
stat <- .clean(as.numeric(result$statistic))
sed <- .clean(sd(c1 - c2) / sqrt(length(c1)))
# num <- sqrt(sd(c1)^2 + sd(c2)^2 - 2 * cov(c1, c2))
# d <- .clean(mean(c1) - mean(c2) / num)
m <- as.numeric(result$estimate)
ciLow <- ifelse(direction == "less", .clean(-Inf),
as.numeric(result$conf.int[1]))
ciUp <- ifelse(direction == "greater", .clean(Inf),
as.numeric(result$conf.int[2]))
ciLowEffSize = .clean(as.numeric(confIntEffSize[1]))
ciUpEffSize = .clean(as.numeric(confIntEffSize[2]))
## paired t-test has it, wilcox doesn't!
df <- ifelse(is.null(result$parameter), "", as.numeric(result$parameter))
sed <- ifelse(is.null(result$parameter), "", sed)
# add things to the intermediate results object
row <- list(df = df, p = p, md = m, d = d,
lowerCIlocationParameter = ciLow, upperCIlocationParameter = ciUp,
lowerCIeffectSize = ciLowEffSize, upperCIeffectSize = ciUpEffSize,
sed = sed, .footnotes = row.footnotes)
if (options$VovkSellkeMPR){
row[["VovkSellkeMPR"]] <- .VovkSellkeMPR(p)
}
row[[testStat]] <- stat
## however, if there has been an error
## find out which and log it as a footnote
} else if (isTryError(result)) {
errorMessage <- .extractErrorMessage(result)
}
}
if (!is.null(errorMessage)){
index <- .addFootnote(footnotes, errorMessage)
row.footnotes <- list(t = list(index))
## since an error occured, we could not extract information
row <- list(df = "", p = "", md = "",
d = "", lowerCI = "", upperCI = "",
sed = "", .footnotes = row.footnotes)
row[[testStat]] <- .clean(NaN)
}
} else {
## if p1 or p2 are undefined (empty string), also show an empty table
row <- list(df = "", p = "", md = "", d = "",
lowerCI = "", upperCI = "", sed = "")
row[[testStat]] <- ""
}
}
## if this is the first test / row for specific variables, add variable names
## since we have only two tests, the first test always will be an odd number
isFirst <- (rowNo %% 2 == 1 && sum(allTests) == 2) || (sum(allTests) == 1)
row[["v1"]] <- ifelse(isFirst, p1, "")
row[["sep"]] <- ifelse(isFirst, "-", "")
row[["v2"]] <- ifelse(isFirst, p2, "")
## if the user wants both tests, change the columns such that there is
## one called "Test" and "statistic" to differentiate Student's from Wilcoxon
if (!isFirst) {
row[["test"]] <- "Wilcoxon"
ttest.rows[[rowNo - 1]][["test"]] <- "Student"
}
ttest.rows[[rowNo]] <- row
rowNo <- rowNo + 1
}
}
## if no test was conducted
if (length(ttest.rows) == 0) {
ttest.rows[[1]] <- list()
}
ttest[["data"]] <- ttest.rows
ttest[["footnotes"]] <- as.list(footnotes)
ttest
}
.ttestPairedSamplesDescriptives <- function(dataset, options, perform) {
if (!options$descriptives) return(NULL)
descriptives <- list(title = "Descriptives")
fields <- list(
list(name = "v", title = "", type = "string"),
list(name = "N", type = "integer"),
list(name = "mean", title = "Mean", type = "number", format = "sf:4;dp:3"),
list(name = "sd", title = "SD", type = "number", format = "sf:4;dp:3"),
list(name = "se", title = "SE", type = "number", format = "sf:4;dp:3")
)
descriptives[["schema"]] <- list(fields = fields)
descriptives.results <- list()
desc.vars <- unique(unlist(options$pairs))
desc.vars <- desc.vars[desc.vars != ""]
for (var in desc.vars) {
row <- list(v = var)
if (perform == "run") {
dat <- na.omit(dataset[[ .v(var) ]])
n <- .clean(as.numeric(length(dat)))
m <- .clean(as.numeric(mean(dat, na.rm = TRUE)))
std <- .clean(as.numeric(sd(dat, na.rm = TRUE)))
if (is.numeric(std)) {
se <- .clean(as.numeric(std/sqrt(n)))
} else {
se <- .clean(NaN)
}
row[["N"]] <- n
row[["mean"]] <- m
row[["sd"]] <- std
row[["se"]] <- se
}
descriptives.results[[length(descriptives.results) + 1]] <- row
}
descriptives[["data"]] <- descriptives.results
descriptives
}
.ttestPairedNormalityTest <- function(dataset, options, perform) {
if (!options$normalityTests) return(NULL)
normalityTests <- list(title = "Test of Normality (Shapiro-Wilk)")
normalityTests[["cases"]] <- I(options$variables)
fields <- list(
list(name = "v1", type = "string", title = ""),
list(name = "sep", type = "separator", title = ""),
list(name = "v2", type = "string", title = ""),
list(name = "W", title = "W", type = "number", format = "sf:4;dp:3"),
list(name = "p", title = "p", type = "number", format = "dp:3;p:.001")
)
normalityTests[["schema"]] <- list(fields = fields)
footnotes <- .newFootnotes()
normalityTests.results <- list()
.addFootnote(footnotes, symbol = "<em>Note.</em>",
text = "Significant results suggest a deviation from normality.")
pairs <- options$pairs
if (length(pairs) == 0) {
pairs[[1]] <- list(".", ".")
}
for (pair in pairs) {
p1 <- pair[[1]]
p2 <- pair[[2]]
if (perform == "run" && length(options$pairs) > 0 && p1 != p2) {
c1 <- dataset[[ .v(p1) ]]
c2 <- dataset[[ .v(p2) ]]
data <- na.omit(c1 - c2)
row.footnotes <- NULL
error <- FALSE
errors <- .hasErrors(dataset, perform, message = 'short', type = c('observations', 'variance', 'infinity'),
all.target = c(p1, p2),
observations.amount = c('< 3', '> 5000'))
if (!identical(errors, FALSE)) {
errorMessage <- errors$message
foot.index <- .addFootnote(footnotes, errorMessage)
row.footnotes <- list(W = list(foot.index), p = list(foot.index))
error <- TRUE
}
if (!error) {
r <- stats::shapiro.test(data)
W <- .clean(as.numeric(r$statistic))
p <- .clean(r$p.value)
newGroup <- length(normalityTests.results) == 0
result <- list(v1 = p1, sep = "-", v2 = p2,
W = W, p = p, .isNewGroup = newGroup)
} else {
newGroup <- length(normalityTests.results) == 0
result <- list(v1 = p1, sep = "-", v2 = p2, W = "NaN",
p = "NaN", .isNewGroup = newGroup,
.footnotes = row.footnotes)
}
} else {
newGroup <- length(normalityTests.results) == 0
result <- list(v1 = p1, sep = "-", v2 = p2,
W = ".", p = ".", .isNewGroup = newGroup)
}
normalityTests.results[[length(normalityTests.results) + 1]] <- result
}
normalityTests[["data"]] <- normalityTests.results
normalityTests[["footnotes"]] <- as.list(footnotes)
normalityTests
}
.pairedSamplesTTestDescriptivesPlot <- function(dataset, options, perform) {
if (!options$descriptivesPlots) return(NULL)
descriptivesPlotList <- list()
base_breaks_x <- function(x) {
b <- unique(as.numeric(x))
d <- data.frame(y = -Inf, yend = -Inf, x = min(b), xend = max(b))
list(ggplot2::geom_segment(data = d, ggplot2::aes(x = x, y = y, xend = xend,
yend = yend), inherit.aes = FALSE, size = 1))
}
base_breaks_y <- function(x) {
ci.pos <- c(x[, "dependent"] - x[, "ci"], x[, "dependent"] + x[, "ci"])
b <- pretty(ci.pos)
d <- data.frame(x = -Inf, xend = -Inf, y = min(b), yend = max(b))
list(ggplot2::geom_segment(data = d, ggplot2::aes(x = x, y = y, xend = xend,
yend = yend), inherit.aes = FALSE, size = 1), ggplot2::scale_y_continuous(breaks = c(min(b),
max(b))))
}
for (i in .indices(options$pairs)) {
pair <- options$pairs[[i]]
descriptivesPlot <- list(title = paste(pair, collapse=" - "))
descriptivesPlot[["width"]] <- options$plotWidth
descriptivesPlot[["height"]] <- options$plotHeight
descriptivesPlot[["custom"]] <- list(width = "plotWidth", height = "plotHeight")
if (perform == "run" && pair[[1]] != "" && pair[[2]] != "") {
c1 <- dataset[[ .v(pair[[1]]) ]]
c2 <- dataset[[ .v(pair[[2]]) ]]
###
errors <- .hasErrors(dataset, perform, message = 'short', type = c('observations', 'variance', 'infinity'),
all.target = c(pair[[1]], pair[[2]]),
observations.amount = '< 2')
if (!identical(errors, FALSE)) {
errorMessage <- errors$message
descriptivesPlot[["data"]] <- ""
descriptivesPlot[["error"]] <- list(error="badData", errorMessage=errorMessage)
} else {
####
data <- data.frame(id = rep(1:length(c1), 2), dependent = c(c1, c2),
groupingVariable = c(rep(paste("1.", pair[[1]], sep = ""), length(c1)),
rep(paste("2.", pair[[2]], sep = ""), length(c2))))
summaryStat <- .summarySEwithin(data, measurevar = "dependent", withinvars = "groupingVariable",
idvar = "id", conf.interval = options$descriptivesPlotsConfidenceInterval,
na.rm = TRUE, .drop = FALSE)
pd <- ggplot2::position_dodge(0.2)
p <- ggplot2::ggplot(summaryStat, ggplot2::aes(x = groupingVariable,
y = dependent, group = 1)) + ggplot2::geom_errorbar(ggplot2::aes(ymin = ciLower,
ymax = ciUpper), colour = "black", width = 0.2, position = pd) +
ggplot2::geom_line(position = pd, size = 0.7) + ggplot2::geom_point(position = pd,
size = 4) + ggplot2::ylab(NULL) + ggplot2::xlab(NULL) + ggplot2::theme_bw() +
ggplot2::theme(panel.grid.minor = ggplot2::element_blank(), plot.title = ggplot2::element_text(size = 18),
panel.grid.major = ggplot2::element_blank(), axis.title.x = ggplot2::element_text(size = 18,
vjust = -0.2), axis.title.y = ggplot2::element_text(size = 18, vjust = -1),
axis.text.x = ggplot2::element_text(size = 15), axis.text.y = ggplot2::element_text(size = 15),
panel.background = ggplot2::element_rect(fill = "transparent", colour = NA),
plot.background = ggplot2::element_rect(fill = "transparent", colour = NA),
legend.background = ggplot2::element_rect(fill = "transparent", colour = NA),
panel.border = ggplot2::element_blank(), axis.line = ggplot2::element_blank(),
legend.key = ggplot2::element_blank(), legend.title = ggplot2::element_text(size = 12),
legend.text = ggplot2::element_text(size = 12), axis.ticks = ggplot2::element_line(size = 0.5),
axis.ticks.margin = grid::unit(1, "mm"), axis.ticks.length = grid::unit(3, "mm"),
plot.margin = grid::unit(c(0.5, 0, 0.5, 0.5), "cm")) + base_breaks_y(summaryStat) +
base_breaks_x(summaryStat$groupingVariable) + ggplot2::scale_x_discrete(labels = c(pair[[1]], pair[[2]]))
imgObj <- .writeImage(width = options$plotWidth,
height = options$plotHeight,
plot = p)
descriptivesPlot[["data"]] <- imgObj[["png"]]
descriptivesPlot[["obj"]] <- imgObj[["obj"]]
}
descriptivesPlot[["convertible"]] <- TRUE
descriptivesPlot[["status"]] <- "complete"
}
descriptivesPlotList[[i]] <- descriptivesPlot
}
descriptivesPlotList
}
| 23,983 |
agpl-3.0
|
14b18753e84ef8cd9c34e7260ca947fed24fcb54
|
gxa/gxa
|
atlas-loader/src/main/resources/R/htsProcessPipeline.R
|
esetToTextFile = function(infname, outfname) {
require(Biobase)
objnames = load(infname);
expressions = exprs(get(objnames[1]));
dimensionnames = dimnames(expressions);
write(c("scanref", dimensionnames$sample), file = outfname,
ncolumns = length(dimensionnames$sample) + 1, sep = "\t");
write.table(expressions, file = outfname, sep = "\t",
quote = FALSE, row.names = TRUE, col.names = FALSE, append = TRUE)
}
| 456 |
apache-2.0
|
e0041886b136b25aa50aa3b65c921f6b1f188d06
|
cran/TIMP
|
R/calcD.R
|
"calcD" <- function (kincoeffs, times, cstart, rsmatrix, smatrix) {
## contributed by David Nicolaides <dnicolaides@accelrys.com>
## in modified form, along with other options for 2nd order modeling
ns <- length(cstart)
np <- length(kincoeffs)
## we need to pass our kinetic model the stoichiometry matrices,
## as well as the kinetic coefficients
parms <- c(rsmatrix, smatrix, kincoeffs, ns, np)
Model <- function(times, conc, parms) {
## get s-matrices as matrices first
rsm <- rsmatrix
dim(rsm) <- c(ns, np)
rsm <- t(rsm)
sm <- smatrix
dim(sm) <- c(ns, np)
sm <- t(sm)
## now calculate the nu vectors
nu <- rep(0,np)
## Note: R correctly handles 0^0 (= 1)
for (j in 1:np) {
nu[j] <- kincoeffs[j]*prod(conc^rsm[j,])
}
## then calculate the sums over the nu variables to get the derivatives
result <- rep(0,ns)
for (j in 1:np) {
result <- result + sm[j,]*nu[j]
}
list(result)
}
c.temp <- lsoda(y=cstart,times=times,func=Model,parms=parms)
c.temp <- c.temp[,-1]
colnames(c.temp) <- vector()
c.temp
}
| 1,159 |
gpl-2.0
|
4bd8d8dcd35daf0c16b9ce1329f6dddf4897c75e
|
princelab/metriculator
|
r_install.R
|
#!/usr/bin/env Rscript
install.packages('Rserve')
install.packages('beanplot')
| 79 |
mit
|
0e2fdf2b6c3198ad5c9e73d1ee388bb1af073aa4
|
lmweber/cytometry-clustering-comparison
|
run_methods/run_SWIFT.R
|
# How to run SWIFT
# Not available in R, so follow steps below instead:
# Requires: Matlab, Statistics Toolbox, Parallel Computing Toolbox
# 1. Copy FCS file into a temporary directory; results files will be saved in the same
# directory.
# 2. Run SWIFT graphical interface from Matlab by typing "swift_main" in command window.
# 3. After graphical interface opens, select FCS file to import data. Note that SWIFT
# will automatically perform an arcsinh transform, so the FCS file should not be
# transformed already.
# 4. Enter parameters and click to continue.
# 5. After SWIFT completes, cluster labels will be saved in the file
# "<original_filename>.Cluster_Output.txt" in the input directory. Cluster labels are in
# the "MergeCluster" column.
###################
### SUBSAMPLING ###
###################
# SWIFT requires subsampling for some data sets due to runtime. Use code below to
# subsample and save true population labels.
# note: use non-transformed data files
library(flowCore)
# load data
DATA_DIR <- "../../../benchmark_data_sets"
files <- list(
Levine_32dim = file.path(DATA_DIR, "Levine_32dim/data/Levine_32dim_notransform.fcs"),
Levine_13dim = file.path(DATA_DIR, "Levine_13dim/data/Levine_13dim_notransform.fcs"),
Samusik_01 = file.path(DATA_DIR, "Samusik/data/Samusik_01_notransform.fcs"),
Samusik_all = file.path(DATA_DIR, "Samusik/data/Samusik_all_notransform.fcs"),
Nilsson_rare = file.path(DATA_DIR, "Nilsson_rare/data/Nilsson_rare_notransform.fcs"),
Mosmann_rare = file.path(DATA_DIR, "Mosmann_rare/data/Mosmann_rare_notransform.fcs"),
FlowCAP_ND = file.path(DATA_DIR, "FlowCAP_ND/data/FlowCAP_ND.fcs"),
FlowCAP_WNV = file.path(DATA_DIR, "FlowCAP_WNV/data/FlowCAP_WNV.fcs")
)
is_FlowCAP <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE)
data <- vector("list", length(files))
names(data) <- names(files)
for (i in 1:length(data)) {
f <- files[[i]]
if (!is_FlowCAP[i]) {
data[[i]] <- flowCore::exprs(flowCore::read.FCS(f, transformation = FALSE, truncate_max_range = FALSE))
} else {
smp <- flowCore::exprs(flowCore::read.FCS(f, transformation = FALSE, truncate_max_range = FALSE))
smp <- smp[, "sample"]
d <- flowCore::read.FCS(f, transformation = FALSE, truncate_max_range = FALSE)
d <- flowCore::split(d, smp)
data[[i]] <- lapply(d, function(s) flowCore::exprs(s))
}
}
# subsampling for data sets with excessive runtime (> 6 hrs on laptop)
ix_subsample <- c(1, 4)
n_sub <- c(100000, NA, NA, 100000, NA, NA)
for (i in ix_subsample) {
if (!is_FlowCAP[i]) {
set.seed(123)
data[[i]] <- data[[i]][sample(1:nrow(data[[i]]), n_sub[i]), ]
# save subsampled data sets in FCS format with population labels
files_sub_i <- paste0("../../results/auto/SWIFT/", names(data)[i], "_notransform_subsampled.fcs")
flowCore::write.FCS(flowCore::flowFrame(data[[i]]), filename = files_sub_i)
}
}
##############################################
### FIX ERROR FOR FLOW CYTOMETRY DATA SETS ###
##############################################
# Some of the non-marker columns (forward scatter etc) included in the flow cytometry
# data sets (Nilsson_rare, Mosmann_rare) appear to cause an error while trying to load
# the data into SWIFT. To fix this, save data sets containing marker columns only.
# indices of protein marker columns
marker_cols <- list(
Levine_32dim = 5:36,
Levine_13dim = 1:13,
Samusik_01 = 9:47,
Samusik_all = 9:47,
Nilsson_rare = c(5:7, 9:18),
Mosmann_rare = c(7:9, 11:21),
FlowCAP_ND = 3:12,
FlowCAP_WNV = 3:8
)
sapply(marker_cols, length)
# subset and save data files: protein marker columns only
for (i in c(5, 6)) {
data[[i]] <- data[[i]][, marker_cols[[i]]]
files_i <- paste0("../../results/auto/SWIFT/", names(data)[i], "_notransform_markers_only.fcs")
flowCore::write.FCS(flowCore::flowFrame(data[[i]]), filename = files_i)
}
| 3,932 |
mit
|
9fcb746f0e3e27fef594eb7ac1fee2254d8d5f0e
|
nxdao2000/pis2
|
tests/ou2-is2.R
|
library(pis2)
library(coda)
library(lattice)
pompExample(ou2)
Nmcmc<-100
NP<-1000
dprior.ou2 <- function (params, log, ...) {
f <- sum(dunif(params,min=coef(ou2)-1,max=coef(ou2)+1,log=TRUE))
if (log) f else exp(f)
}
p.truth <- coef(ou2)
guess2 <- guess1 <- p.truth
guess1[c('x1.0','x2.0','alpha.2','alpha.3')] <- 0.8*guess1[c('x1.0','x2.0','alpha.2','alpha.3')]
set.seed(123)
f1 <- pmcmc(
pomp(ou2,dprior=dprior.ou2),
start=guess1,
Nmcmc=Nmcmc,
rw.sd=c(alpha.2=0.02,alpha.3=0.02),
Np=NP,
max.fail=100,
verbose=FALSE
)
set.seed(123)
f2 <- pmif(
pomp(ou2,dprior=dprior.ou2),
start=guess1,
Nmcmc=Nmcmc,
rw.sd=c(alpha.2=0.02,alpha.3=0.02),
Np=NP,
cooling.type="geometric",
cooling.factor=1,
method="pmif",
lag=0,
max.fail=100,
verbose=FALSE
)
set.seed(123)
f3 <- pmif2(
pomp(ou2,dprior=dprior.ou2),
start=guess1,
Nmcmc=Nmcmc,
rw.sd=c(alpha.2=0.02,alpha.3=0.02),
Np=NP,
cooling.type="geometric",
cooling.factor=1,
method="pmif2",
ic.lag=100,
var.factor=1,
lag=0,
max.fail=100,
verbose=FALSE
)
set.seed(123)
f4 <- pmif3(
pomp(ou2,dprior=dprior.ou2),
start=guess1,
Nmcmc=Nmcmc,
rw.sd=c(alpha.2=0.02,alpha.3=0.02),
Np=NP,
cooling.type="geometric",
cooling.factor=1,
method="pmif3",
ic.lag=100,
var.factor=1,
lag=1,
max.fail=100,
verbose=FALSE
)
set.seed(123)
f5 <- pmif4(
pomp(ou2,dprior=dprior.ou2),
start=guess1,
Nmcmc=Nmcmc,
rw.sd=c(alpha.2=0.02,alpha.3=0.02),
Np=NP,
cooling.type="geometric",
cooling.factor=1,
method="pmif4",
ic.lag=100,
var.factor=1,
lag=1,
max.fail=100,
verbose=FALSE
)
pdf(file="ou2-pmcmc.pdf")
result<-mcmc.list(coda::mcmc(conv.rec(f1))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f2))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f3))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f4))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f5))[,c("alpha.3","alpha.2","loglik")])
save(
result,
file="ou2-10000.rda",compress='xz')
plot(conv.rec(f1,c("alpha.2","alpha.3","loglik")))
plot(conv.rec(f2,c("alpha.2","alpha.3","loglik")))
plot(conv.rec(f3,c("alpha.2","alpha.3","loglik")))
plot(conv.rec(f4,c("alpha.2","alpha.3","loglik")))
plot(conv.rec(f5,c("alpha.2","alpha.3","loglik")))
dev.off()
pdf(file="ou2-pmcmc1.pdf")
result<-mcmc.list(coda::mcmc(conv.rec(f1))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f2))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f3))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f4))[,c("alpha.3","alpha.2","loglik")],coda::mcmc(conv.rec(f5))[,c("alpha.3","alpha.2","loglik")])
xyplot(result)
densityplot(result)
qqmath(result, start = (Nmcmc/2))
acfplot(result)
plot(result, trace = TRUE, density = TRUE, smooth = FALSE, auto.layout = TRUE)
dev.off()
| 2,890 |
gpl-2.0
|
008c415357f23b8897440b22f687b7b9f4a92d57
|
michathoma/flywalkr
|
R/response_per_pulse.R
|
#' Calculate mean net displacement per odor pulse.
#'
#' Calculate mean response per odor pulse in a given experiment. Can be used to check data for adaptation/habituation effects.
#' Response is defined as the net displacement within 4s after odor encounter.
#'
#' @param object a \code{data.frame} as produced by \code{read.esm}
#' @return a \code{data.frame}
#' @export
response_per_pulse<-function(object){
data.short <- data.frame(cbind(object[, 1:3], object[, 104:144]))
data.clean <- data.short[!apply(is.na(data.short), 1, any),]
after <- apply(data.clean[, 4:44], 1, sum, na.rm = T)
after <- (-0.1 * after)
resp.frame <- data.frame(cbind(data.clean[, 1:3], after))
testframe <- data.frame()
for (i in 1:dim(resp.frame)[1]){
flypulse <- subset(resp.frame, pulse == resp.frame$pulse[i] & odour == resp.frame$odour[i])
n <- dim(flypulse)[1]
test.frame <- data.frame(flypulse[1, 2], flypulse[1, 3], n, mean(flypulse$after))
testframe <- rbind(testframe, test.frame)
testframe <- unique(testframe)
}
colnames(testframe) <- c("odor", "pulse", "n", "response")
write.table(testframe, file = "responses", sep = ",", row.names = F)
return(testframe)
}
| 1,199 |
mit
|
77665e3c0fabf04e9bf97bb0925b498a6272ed26
|
aWhereAPI/aWhere-R-Library
|
R/grid-functions.R
|
#' Get aWhere GridX from longitude coordinate(s)
#'
#'
#' @param longitude one more more longitude coordinates
#'
#' @return A vector of GridX values
#'
#' @examples getGridX(-90)
#'
getGridX <- function(longitude) {
MaxLon <- 180
MinLon <- -180
MaxGridX <- 2160
MinGridX <- -2160
gridX <- (longitude / ((MaxLon - MinLon) / 2)) * ((MaxGridX - MinGridX) / 2)
gridX[which(gridX > 0)] <- ceiling(gridX[which(gridX > 0)])
gridX[which(gridX < 0)] <- floor(gridX[which(gridX < 0)])
return (gridX)
}
#' Get aWhere GridY from latitude coordinate(s)
#'
#'
#' @param latitude one or more latitudes coordinates
#'
#' @return A vector of GridY values
#'
#' @examples getGridY(-90)
#'
getGridY <- function(latitude) {
MaxLat <- 90
MinLat <- -90
MaxGridY <- 1080
MinGridY <- -1080
gridY <- (latitude / ((MaxLat - MinLat) / 2)) * ((MaxGridY - MinGridY) / 2)
gridY[which(gridY > 0)] <- ceiling(gridY[which(gridY > 0)])
gridY[which(gridY < 0)] <- floor(gridY[which(gridY < 0)])
return (gridY)
}
getLongitude <- function(gridX) {
MaxLon = 180
MinLon = -180
MaxGridX = 2160
MinGridX = -2160
differenceLon <- (MaxLon - MinLon)/2
gridX[which(gridX < 0)] <- ((differenceLon/MaxGridX) * gridX[which(gridX < 0)]) + (differenceLon/(MaxGridX*2))
gridX[which(gridX > 0)] <- ((differenceLon/MaxGridX) * gridX[which(gridX > 0)]) - (differenceLon/(MaxGridX*2))
return (gridX)
}
getLatitude <- function(gridY) {
MaxLat = 90
MinLat = -90
MaxGridY = 1080
MinGridY = -1080
differenceLat <- (MaxLat - MinLat)/2
gridY[which(gridY < 0)] <- ((differenceLat/MaxGridY) * gridY[which(gridY < 0)]) + (differenceLat/(MaxGridY*2))
gridY[which(gridY > 0)] <- ((differenceLat/MaxGridY) * gridY[which(gridY > 0)]) - (differenceLat/(MaxGridY*2))
return (gridY)
}
| 1,807 |
mit
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.