ID
int64
1
1.07k
Comment
stringlengths
8
1.13k
Code
stringlengths
10
4.28k
Label
stringclasses
4 values
Source
stringlengths
21
21
File
stringlengths
4
82
601
Coding past experiences into binary variables
data <- data %>% mutate_at(vars("graphic_exp":"attentioncheck_exp"), list(buc = bucketing_experienced)) %>% glimpse
Data Variable
https://osf.io/3aryn/
3VariableCreation.R
602
Coding behaviors into binary variables 0 unselected, 1 selected
data <- data %>% mutate_at(vars("behavior_donation":"behavior_none"), list(bin = binary.behavior)) %>% glimpse
Data Variable
https://osf.io/3aryn/
3VariableCreation.R
603
Creating a combined race/ethnicity variable
data <- data %>% mutate(race.eth = case_when(hispanic == "Yes" ~ "Hispanic or Latinx", race == "Caucasian/White" & hispanic == "No" ~ "White, Non-Latinx", race == "Black or African-American" & hispanic == "No" ~ "Black, Non-Latinx", race == "Asian" & hispanic == "No" ~ "Asian", race == "Multi-Racial" & hispanic == "No" ~ "Multi-Racial", TRUE ~ "Other Races/Ethnicities"))
Data Variable
https://osf.io/3aryn/
3VariableCreation.R
604
correlations between csd_mean and averaged csds for Big Five traits (not mentioned in the text):
psych::corr.test( df2$e_csd,df2$csd_mean_e ) psych::corr.test( df2$a_csd,df2$csd_mean_a ) psych::corr.test( df2$pa_csd,df2$csd_mean_pa ) psych::corr.test( df2$na_csd,df2$csd_mean_na )
Data Variable
https://osf.io/tajd9/
Flux_MainDataAnalyses.R
605
Participants could select all response options that applied to them in any given situation. Here, we create one dummy variable for every response option.
for (i in 1:length(survey$interacting_by)) { v <- unlist(strsplit(survey$interacting_by[i], ",")) if (is.element("1", v)) { survey$TiP[i] <- 1 } if (is.element("2", v)) { survey$ToP[i] <- 1 } if (is.element("3", v)) { survey$TM[i] <- 1 } if (is.element("4", v)) { survey$ChattingWHATSAPP[i] <- 1 } if (is.element("5", v)) { survey$ChattingDATING[i] <- 1 } if (is.element("6", v)) { survey$Emailing[i] <- 1 } if (is.element("7", v)) { survey$Videochatting[i] <- 1 } if (is.element("8", v)) { survey$Facebook[i] <- 1 } if (is.element("9", v)) { survey$Instagram[i] <- 1 } if (is.element("10", v)) { survey$Snapchat[i] <- 1 } if (is.element("11", v)) { survey$Twitter[i] <- 1 } if (is.element("12", v)) { survey$OTHER[i] <- 1 } if (is.element("0", v)) { survey$NoInteraction[i] <- 1 } if (is.element("999", v)) { survey$SKIP[i] <- 1 } } for (i in 1:length(survey$interacting_people)){ v <- unlist(strsplit(survey$interacting_people[i], ",")) if (is.element("1", v)) { survey$Classmates[i] <- 1 } if (is.element("2", v)) { survey$Coworkers[i] <- 1 } if (is.element("3", v)) { survey$Family[i] <- 1 } if (is.element("4", v)) { survey$Friends[i] <- 1 } if (is.element("5", v)) { survey$Roommates[i] <- 1 } if (is.element("6", v)) { survey$Significant_other[i] <- 1 } if (is.element("7", v)) { survey$Strangers[i] <- 1 } if (is.element("8", v)) { survey$OTHER2[i] <- 1 } if (is.element("999", v)) { survey$SKIP2[i] <- 1 } }
Data Variable
https://osf.io/nxyh3/
Data_Prep_S1S2.R
606
Rescore so high values are what we expect to be positive predictors (e.g. female 2 male 1)
df$Nationality2 <- df$Nationality df$Nationality2 <- as.integer(df$Nationality2 %in% "Dutch") df$Nationality2[df$Nationality2==0] <- 2 df$Nationality2[df$Nationality2==1] <- 0 df$Nationality2[df$Nationality2==2] <- 1 # Dutch=0 (36), Rest=1 (44) count(df$Nationality2) df$RelationshipStatus2 <- df$RelationshipStatus df$RelationshipStatus2 <- recode(df$RelationshipStatus2, "3" = 2) df$RelationshipStatus2[df$RelationshipStatus2==2] <- 0 # Partnered=0 (30), Single=1 (50) count(df$RelationshipStatus2) df$Gender2 <- df$Gender # df$Gender2[df$Gender2==3] <- NA # code 1 nonbinary participant as NA for this to avoid 3 levels df$Gender2[df$Gender2==1] <- 0 df$Gender2[df$Gender2==2] <- 1 # men=0 (19), women=1 (60), 1 NA count(df$Gender2) df$WorkStatus2 <- df$WorkStatus df$WorkStatus2[df$WorkStatus2==2] <- 0 # 54no, 26yes count(df$WorkStatus2) df$MentalHealth2 <- as.numeric(df$MentalHealth) df$MentalHealth2[df$MentalHealth2==1] <- 0 df$MentalHealth2[df$MentalHealth2==2] <- 1 # healthy=0 (59), history=1 (17), 4 NA count(df$MentalHealth2) df$selfefficacy_pre2 <- df$selfefficacy_pre*-1 # reverse code
Data Variable
https://osf.io/mvdpe/
4. Compare pre-post.R
607
Rating Means and Standard Deviations of Conditions Unspecified Rating
round(mean(unspecified$rating), 2) round(sd(unspecified$rating), 2)
Statistical Test
https://osf.io/9tnmv/
Exp4_buddhist_post.R
608
Save and export image as .eps (8.18 x 4.88 inch)
if(saveFigures) cairo_ps(file = '../R_Output/Images/AccuracyPerProject_Revision.eps', onefile = TRUE, fallback_resolution = 600, width = 8.18, height = 4.88) par(cex.main = 2.2, mar = c(5, 5.5, 2, 2) + 0.1, mgp = c(3, 1, 0), cex.lab = 2, font.lab = 1, cex.axis = 1.6, bty = 'n', las = 1) plot(x = c(.5, .8), y = c(0, 50), type = 'n', xlab = expression(paste("Accuracy Rate ", omega, " (in %)")), ylab = 'Density', main = '', axes = FALSE) axis(2, lwd.tick = 0, labels = FALSE) axis(1, at = seq(.5, .8, by = .05), labels = seq(50, 80, by = 5)) d <- lapply(split(df$omega, df$condition), density) Map(function(dens, col) polygon(dens, col = col), dens = d, col = figureColors[['cols.transparent']]) text(.64,44.5,'Laypeople\n(Evidence)', cex = 1.3) text(.55,44.5,'Laypeople\n(Description)', cex = 1.3) text(.621,25,'Experts\nML2', cex = 1.3) text(.75,25, 'Experts\nSSRP', cex = 1.3) graphics.off()
Visualization
https://osf.io/x72cy/
ExploratoryAnalyses.R
609
function to calculate AUC
groupAUC.description <- pnorm(description.mud / sqrt(2)) # signal distribution has sigma = 1 quantile(groupAUC.description, c(0.025, 0.5, 0.975)) groupAUC.evidence <- pnorm(evidence.mud / sqrt(2)) # signal distribution has sigma = 1 quantile(groupAUC.evidence, c(0.025, 0.5, 0.975))
Statistical Modeling
https://osf.io/x72cy/
ExploratoryAnalyses.R
610
get relevant information compute mode of signal distribution
estimate_mode <- function(x) { d <- density(x) d$x[which.max(d$y)] } modeD <- estimate_mode(mud) medianC <- median(muc) empiricalLambda <- (0.5*modeD) + medianC
Statistical Modeling
https://osf.io/x72cy/
ExploratoryAnalyses.R
611
compute CIs for each value of lambda
probD <- quantile(mud, probs = probs) for (i in seq_len(nPoints)){ c <- lambdas[i] - (0.5 * probD) qph[i, ] <- pnorm((0.5 * probD) - c) }
Statistical Test
https://osf.io/x72cy/
ExploratoryAnalyses.R
612
get the posterior distributions of the intercepts, transformed to rate scale
post.description <- inv_logit_scaled(posterior_samples(m.studies, 'b_intercept'))[,1] post.evidence <- inv_logit_scaled(posterior_samples(m.studies, 'b_intercept') + posterior_samples(m.studies, 'b_conditionDescriptionPlusEvidence'))[,1]
Statistical Modeling
https://osf.io/x72cy/
ExploratoryAnalyses.R
613
add the observed average accuracy per study and per condition
fit$obs.accuracy <- c(aggregate(dat$guessed.correctly, list(condition = dat$condition), mean)[,'x'], aggregate(dat$guessed.correctly, list(study = dat$study, condition = dat$condition), mean)[,'x'])
Data Variable
https://osf.io/x72cy/
ExploratoryAnalyses.R
614
Create a binary trial type variable 0 Go, 1 No Go
sart$trial_type <- sart$code sart$trial_type[sart$code == 3] <- NA sart$trial_type <- as.factor(sart$trial_type-1)
Data Variable
https://osf.io/7vbtr/
Gyurkovics_Stafford_Levita_analyses.R
615
Calculate Go RT coefficient of variation (CV) to index intraindividual variability
sartsub$go_cv <- sartsub$gosd / sartsub$gomean sart <- merge(sart, sartsub[,c(1,5,6,9)], by = "subid")
Statistical Test
https://osf.io/7vbtr/
Gyurkovics_Stafford_Levita_analyses.R
616
Add CSE variables to the MW probe data set
probes <- merge(probes, cse_wide[,c("subid","cse","ce","csez","cez")], by = "subid")
Data Variable
https://osf.io/7vbtr/
Gyurkovics_Stafford_Levita_analyses.R
617
read in, display, and summarize 'csv' data
data_raw <- read.table("osylv_spaceuse_raw.csv", header = T, sep =",") head(data_raw)
Data Variable
https://osf.io/3bpn6/
osylv_sitecomparison.R
618
Add collumns with delta distance and delta time
tracks <- tracks %>% group_by(id) %>% mutate(time_diff = difftime(dt, lag(dt, n = 1L), units = "min"), delta_x = x_utm - lag(x_utm, n = 1L), delta_y = y_utm - lag(y_utm, n = 1L), dist = sqrt(delta_x^2+delta_y^2))
Data Variable
https://osf.io/3bpn6/
osylv_sitecomparison.R
619
boxplot of maximum dist per id
maxdist_plot <- ggplot(daily_perid, aes(x= sex, y=max_dist_perid, fill = sex)) + theme_bw(20) + geom_boxplot(aes(fill = sex), outlier.shape = NA) + labs(y = "Longest movement (m)") + geom_jitter(aes(fill=sex), position=position_jitterdodge(0.2), shape = 21, size = 4, alpha=0.4) + facet_wrap(~site, labeller = labeller( site=c(can ="Natural site", oto = "Enclosures"))) + scale_x_discrete(labels= c("F", "M")) + theme(legend.position= "none", axis.title.x = element_blank(), axis.ticks.x = element_blank(), axis.text.x = element_text(color = "black", size = 18), aspect.ratio = 3) + ylim(0, 25) # excludes one male point at >40m from Canande maxdist_plot
Visualization
https://osf.io/3bpn6/
osylv_sitecomparison.R
620
centering a variable to a range from 0.5 to 0.5
center <- function(x) { minimum <- min(x) maximum <- max(x) return((x - (minimum + maximum)/2)/(maximum - minimum)) }
Data Variable
https://osf.io/9qbwv/
helper.R
621
keep only data from 2003 onwards (because fid started in 2003)
survival <- subset(survival, year >2002)
Data Variable
https://osf.io/3wy58/
bivariate_model_winter_revision.R
622
identify influenial points (e.g., cooksD > 6/n)
influential_obs <- as.numeric(names(cooksD)[(cooksD > (6/n))])
Statistical Modeling
https://osf.io/3bpn6/
all_navigation_models.R
623
function serves to plot all important information what is plotted can be modified by whatplot argument first predict value line second confidence interval third points fourth axis fifth summary of the end point sixth corresponding line
nice.plot<-function(X=describe$generation,Y,maxY,minY=0,col,whatplot=c(T,T,T,T,T,T),ofset=0,name="",labs=c(minY,ifelse(explarge==T,signif(maxY,nsignif),maxY)),span=0.18,end=length(X),roundrep=0,nsignif=3,percentual=F,explarge=F,labrep=ifelse(explarge==T,signif((ci[,1][newend]*(maxY-minY)+minY),nsignif),ifelse(percentual==T,paste(round((ci[,1][newend]*(maxY-minY)+minY)*100,roundrep),"%",sep=""),round((ci[,1][newend]*(maxY-minY)+minY),roundrep))),cextext=1,lwdmain=2,mtextcex=1,firstax=-0.3,smooth=F){ col.li<-col col.ci<-paste(col,"20",sep="") col.po<-paste(col,"33",sep="") Y<-(Y-minY)/(maxY-minY) if(whatplot[3]==T){ points(X[1:end],Y[1:end],col=col.po,pch=16) } tryCatch({ lo <- loess(Y~X,degree=1,span=span) newX <- seq(min(X),max(X), length.out=1000) ci = cbind( predict(lo, data.frame(X=newX)), predict(lo, data.frame(X=newX))+ predict(lo, data.frame(X=newX), se=TRUE)$se.fit*qnorm(1-.05/2), predict(lo, data.frame(X=newX))- predict(lo, data.frame(X=newX), se=TRUE)$se.fit*qnorm(1-.05/2) ) }, error = function(e){ print("warning: loess returned error, original values instead of loess smoothed curved are visualized") newX <- X ci = cbind(Y,Y,Y) }) newend<-which.min(abs(newX-end)) if(smooth==F){ newY <- approx(Y,n=1000)$y ci <- cbind(newY,newY,newY) } if(whatplot[1]==T){ lines(newX[1:newend], ci[,1][1:newend], lwd=lwdmain,col=col.li) } if(whatplot[2]==T){ if(smooth==T){ polygon(c(newX[1:newend],rev(newX[1:newend])), c(ci[,2][1:newend],rev(ci[,3][1:newend])), col=col.ci,border=NA) } } if(whatplot[4]==T){ par(mgp=c(3,ofset+firstax,ofset+firstax-0.2)) axis(2,at=c(0,1),lab=c("",""),col=col.li,col.axis=col.li,tck=-0.008) mtext(name,2,line=ofset+firstax,col=col.li,cex=mtextcex) mtext(labs,at=c(0,1),2,line=ofset+firstax,col=col.li,cex=mtextcex) } xtext<-par("usr")[2]-(par("usr")[2]-par("usr")[1])/50 if(whatplot[5]==T){ text(xtext,ci[,1][newend],labrep,col=col.li,xpd=T,pos=4,cex=cextext) } if(whatplot[6]==T){ lines(c(0,xtext),rep(ci[,1][newend],2),col=col.li,lty=3,xpd=T) } }
Visualization
https://osf.io/pvyhe/
visualize_niceplot.R
624
We draw a lollipop diagram to illustrate color distribution
par(ps = PS, mar = c(5, 5, 4, 2) + 0.1) plot(x = graphData$colour, y = graphData$Beach, type = "p", col = col_beach, ylim = c(0, 65), xlab = "Colour", ylab = "Proportion [%]", pch = PCH, xaxt = "n", cex = SS) axis(1, at = seq(1, 6, by = 1), labels = c("White", "Beige", "Grey", "Yellow", "Red", "Black")) par(ps = PS, new = TRUE, mar = c(5, 5, 4, 2) + 0.1) plot(x = graphData$colour, y = graphData$Wreck, type = "p", col = col_wreck, ylim = c(0, 65), axes = FALSE, xlab = "", ylab = "", pch = PCH, cex = SS) arrows(x0 = graphData$colour, x1 = graphData$colour, y0 = graphData$Beach, y1 = graphData$Wreck, angle = 90, length = 0, ) legend("topright", legend = c("Beach", "Wreck"), fill = c(col_beach, col_wreck), bty = "n")
Visualization
https://osf.io/9jxzs/
03_analysis_color.R
625
Extract model statistics Extract coefficients and std errors
model_coefs <- glmm_list %>% plyr::ldply(.fun = tidy) %>% subset(group == 'fixed') %>% droplevels
Statistical Modeling
https://osf.io/x8vyw/
03_glmm_analysis.R
626
Regression test for funnel plot asymmetry
res <- rma(Z_value,Z_var, data=data1, measure = "ZCOR", method = "ML") regtest(res, predictor = "vi")
Visualization
https://osf.io/kpe75/
analysis.R
627
build a new matrix that includes the formatted correlations and their significance stars
Rnew <- matrix(Rformatted, ncol = ncol(x)) rownames(Rnew) <- colnames(x) colnames(Rnew) <- paste(colnames(x), "", sep =" ")
Data Variable
https://osf.io/6jmke/
custom_functions.R
628
CLEAR ENVIRONMENT function to clear the environment after running a script while keeping important objects use clear_environment: add store_to_keep variable with list variables;; tip: include a variable with curr_env
clear_environment <- function(keep, # vector with variable-names to be excluded from cleaning all=ls(envir=pos.to.env(1))){ rm(list = all[! all %in% keep], envir = pos.to.env(1)) }
Data Variable
https://osf.io/6jmke/
custom_functions.R
629
boxplot visualizing the differences between the three languages
par(mfrow = c(1,1)) boxplot(ReadRate ~ Language, data = joint.read_rate, main = "Reading rate, words/minute")
Visualization
https://osf.io/ex9fj/
RCode_Final_24Feb20.R
630
zscore RSES T1 and T2
df2$RSES1Z <- (df2$RSES1 - mean(df2$RSES1))/sd(df2$RSES1) df2$RSES2Z <- (df2$RSES2 - mean(df2$RSES2, na.rm = TRUE))/sd(df2$RSES2, na.rm = TRUE)
Statistical Test
https://osf.io/9jzfr/
20180513Study3Analysis.R
631
ANALYSES Does Att Valence differ across Sections, OA Practice, and Level?
mod_attvalence <- lmer(Att~Level*Section*OAPractice+(1|Responder_ID), df_attvalence) summary(mod_attvalence) anova(mod_attvalence) eta_sq(mod_attvalence, partial = TRUE)
Data Variable
https://osf.io/qbgct/
code_analyses.R
632
Create variable Past_Future from Item.
df_use$Past_Future <- recode(df_use$Item, P1Use01 = "In the past 12 months",P1Use02 = "In the following 12 months", P2Use01 = "In the past 12 months",P2Use02 = "In the following 12 months", P3Use01 = "In the past 12 months",P3Use02 = "In the following 12 months", P4Use01 = "In the past 12 months",P4Use02 = "In the following 12 months", P5Use01 = "In the past 12 months",P5Use02 = "In the following 12 months")
Data Variable
https://osf.io/qbgct/
code_analyses.R
633
Calculate average level of Att across Perspectives.
df_use_attvalence$Att <- rowMeans(df_use_attvalence[,c('Att_DailyLife', 'Att_ResearchField', 'Att_PublicSociety')], na.rm=TRUE)
Data Variable
https://osf.io/qbgct/
code_analyses.R
634
Formula and family specification In our case, setting `k 4` and `bs 'cr'` in the mgcv::s() smooth term is not overly restrictive (checked by running the frequentist mgcv::gam() function for each existing activity index in turn, thereby varying arguments `k` and `bs`, and then checking the summary() of the resulting fits), but in a future (prospective) study, the mgcv::s() settings need to be checked again:
C_formula <- as.formula(paste(voutc, "~", paste0("s(", vactidx_i, ", k = 4, bs = 'cr')"))) C_family <- cumulative(link = "logit", link_disc = "log", threshold = "flexible")
Statistical Modeling
https://osf.io/emwgp/
comparison_smooth.R
635
display relationships between WVSES and associated variables
ggplot(df11, aes(WVSES, SE)) + geom_jitter() ggplot(df11, aes(WVSES, SISE)) + geom_jitter() ggplot(df11, aes(WVSES, ANX)) + geom_jitter() ggplot(df11, aes(WVSES, AVO)) + geom_jitter() ggplot(df11, aes(WVSES, LIFE)) + geom_jitter() ggplot(df11, aes(WVSES, EXTRA)) + geom_jitter() ggplot(df11, aes(WVSES, AGREE)) + geom_jitter() ggplot(df11, aes(WVSES, CON)) + geom_jitter() ggplot(df11, aes(WVSES, NEUR)) + geom_jitter() ggplot(df11, aes(WVSES, OPEN)) + geom_jitter() ggplot(df11, aes(WVSES, SSTA)) + geom_jitter() ggplot(df11, aes(WVSES, SINC)) + geom_jitter() ggplot(df11, aes(WVSES, MDS)) + geom_jitter()
Visualization
https://osf.io/9jzfr/
20180714Study1analysisscript.R
636
take RSES and run confirmatory factor analysis
RSESdata <- data.frame(df11$SE1, df11$SE2, df11$SE3, df11$SE4, df11$SE5, df11$SE6, df11$SE7, df11$SE8, df11$SE9, df11$SE10) singleF.model <- 'SE =~ df11.SE1 + df11.SE2 + df11.SE3 + df11.SE4 + df11.SE5 + df11.SE6 + df11.SE7 + df11.SE8 + df11.SE9 + df11.SE10'
Statistical Modeling
https://osf.io/9jzfr/
20180714Study1analysisscript.R
637
pivot authorlevel data to "longer" authorarticlelevel dataframe
article_author_level <- author_level %>% dplyr::select(FirstName_MI_LastName_str, full_name.kap, Article.1.Code.kap, Article.2.Code.kap, Article.3.Code.kap, Article.4.Code.kap, Article.5.Code.kap, Article.6.Code.kap, Article.7.Code.kap, Article.8.Code.kap, Article.9.Code.kap, Article.10.Code.kap, Gender.apsa, R_E.apsa, PhD.Year, PhD.Institution) %>% pivot_longer(cols = -c(FirstName_MI_LastName_str, full_name.kap, Gender.apsa, R_E.apsa, PhD.Year, PhD.Institution), values_to = "article_title", names_to = "names") %>% subset(article_title != "NA") %>% relocate(article_title)
Data Variable
https://osf.io/uhma8/
mmcpsr_author_data.R
638
authorlevel count and proportion for all race / ethnic identity categories
summary_race_ethnicity_author <- article_author_level %>% dplyr::select(-c(article_title, names)) %>% distinct() %>% summarize(count = c(sum(white, na.rm = TRUE), sum(black, na.rm = TRUE), sum(east_asian, na.rm = TRUE), sum(south_asian, na.rm = TRUE), sum(latino, na.rm = TRUE), sum(mena, na.rm = TRUE), sum(native, na.rm = TRUE), sum(pacific, na.rm = TRUE), sum(other, na.rm = TRUE))) summary_race_ethnicity_author <- summary_race_ethnicity_author %>% mutate(race_ethnicity = c("White", "Black", "East Asian", "South Asian", "Hispanic or Latino", "Middle Eastern / Arab", "Native", "Pacific Islander", "Other")) %>% mutate(proportion = round(count / sum(count), 2)) %>% dplyr::select(race_ethnicity, count, proportion)
Data Variable
https://osf.io/uhma8/
mmcpsr_author_data.R
639
Convert `candidate_page` to a factor. (Facilitates data visualizations and exploration).
elxn2015$candidate_page <- factor(elxn2015$candidate_page, levels = c("Harper", "Trudeau", "Mulcair"))
Visualization
https://osf.io/3fnjq/
facebook_pages.R
640
Timestamps are initially encoded as factors. Convert them to POSIXct format to avoid errors. Dates and times are separated and saved as two new variables;; namely, `date_published` and `time_published`. `date_published` must be converted back to POSIXct format. `Time_published` is left as a character string as this format proves easier to work with when plotting timerelated data.
elxn2015$created_time <- anytime(elxn2015$created_time, tz = "America/Los_Angeles") elxn2015$date_published <- as.POSIXct(format(elxn2015$created_time, "%Y-%m-%d")) elxn2015$time_published <- format(elxn2015$created_time, "%H:%M:%S")
Data Variable
https://osf.io/3fnjq/
facebook_pages.R
641
Create a new variable from `date_published` to indicate the month each post was published.
elxn2015$month_published <- as.POSIXct(elxn2015$date_published, format="%H:%M:%S") elxn2015$month_published <- format(elxn2015$month_published, "%B")
Data Variable
https://osf.io/3fnjq/
facebook_pages.R
642
`month_published` is converted to a factor with three levels such that values are chronologically ordered.
elxn2015$month_published <- factor(elxn2015$month_published, levels = c("August", "September","October"))
Data Variable
https://osf.io/3fnjq/
facebook_pages.R
643
Ensure consistent data types across data sets. IDs are appropriately treated as characters rather than numeric.
Facebook_Pages$id <- as.character(Facebook_Pages$id) Facebook_Pages$likes_count <- as.double(Facebook_Pages$likes_count) Facebook_Pages$comments_count <- as.double(Facebook_Pages$comments_count) Facebook_Pages$shares_count <- as.double(Facebook_Pages$shares_count)
Data Variable
https://osf.io/3fnjq/
facebook_pages.R
644
run random and fixed effects analyses on the data and calculate confidence intervals for the variables corresponding to heterogeneity (I2, H2 and T2). slab contains a vector of study names to display on the plot.
res <- rma(measure = "MD", m1i = m2,m2i = m1, sd1i = sd2, sd2i = sd1, n1i = n2, n2i = n1, weights = as.numeric(weights.r), slab = c("Mc1", "Mc2", "Mi1", "Mi2", "Mi3", "Mi4", "Mi5", "Mi6", "Mi7", "Mi8" ), method = "DL") res.f <- rma(measure = "MD", m1i = m2,m2i = m1, sd1i = sd2, sd2i = sd1, n1i = n2, n2i = n1, weights = weights.f, method = "FE") con <- confint(res)
Statistical Test
https://osf.io/gwn4y/
ESCI_forest_plot.R
645
2. Transform precision into partial correlations for interpretation
pr2pc <- function(K) { D.Prec = diag(diag(K)^(-.5)) R <- diag(2,dim(K)[1])-D.Prec%*%K%*%D.Prec colnames(R) <- colnames(K) rownames(R) <- rownames(K) return(R) }
Data Variable
https://osf.io/xjm6z/
AuxiliaryFunctions.R
646
4. BDgraph extract posterior distribution for estimates
extractposterior <- function(fit, data, method = c("ggm", "gcgm"), not.cont){ m <- length(fit$all_graphs) k <- 30000 n <- nrow(data) p <- ncol(data) j <- 1 densities <- rep(0, k)
Statistical Modeling
https://osf.io/xjm6z/
AuxiliaryFunctions.R
647
objects to store graph centrality measures
degree <- matrix(0, nrow = len, ncol = p) betweenness <- matrix(0, nrow = len, ncol = p) closeness <- matrix(0, nrow = len, ncol = p)
Data Variable
https://osf.io/xjm6z/
AuxiliaryFunctions.R
648
create token named "twitter_token"
twitter_token <- create_token( app = appname, consumer_key = key, consumer_secret = secret, access_token = access_token, access_secret = access_secret)
Data Variable
https://osf.io/yc8b5/
get_tweets.R
649
mean/sd ratings of targets and decoys by condition
tapply(dat.long$rating, list(dat.long$condition, dat.long$target), mean) tapply(dat.long$rating, list(dat.long$condition, dat.long$target), function(x) sd(x)/sqrt(length(x)))
Data Variable
https://osf.io/eg6w5/
experiment1b_analyses.R
650
mean difference between candidates in each condition
round(s[s$target == 'envy.target' & s$condition == 'Baseline', "emmean"] - s[s$target == 'pity.target' & s$condition == 'Baseline', "emmean"],3) round(s[s$target == 'envy.target' & s$condition == 'PityAD', "emmean"] - s[s$target == 'pity.target' & s$condition == 'PityAD', "emmean"],3) round(s[s$target == 'envy.target' & s$condition == 'PityC', "emmean"] - s[s$target == 'pity.target' & s$condition == 'PityC', "emmean"],3) round(s[s$target == 'envy.target' & s$condition == 'EnvyAD', "emmean"] - s[s$target == 'pity.target' & s$condition == 'EnvyAD', "emmean"],3) round(s[s$target == 'envy.target' & s$condition == 'EnvyC', "emmean"] - s[s$target == 'pity.target' & s$condition == 'EnvyC', "emmean"],3)
Statistical Modeling
https://osf.io/eg6w5/
experiment1b_analyses.R
651
regression for difference between social/nonsocial
b = glmer(choice ~ pchoice1*social + opchoice2*social + opchoice1 + pchoice2 + (1 + pchoice1 + opchoice2 + opchoice1 + pchoice2 |code),family = 'binomial',data[data$opponent == 1,] ,control = glmerControl(optimizer="bobyqa", tolPwrss = 1e-10, optCtrl = list(maxfun = 60000))) b = glmer(choice ~ pchoice1*social + opchoice2*social + opchoice1 + pchoice2 + (1 + pchoice1 + opchoice2 + opchoice1 + pchoice2 |code),family = 'binomial',data[data$opponent == 0,] ,control = glmerControl(optimizer="bobyqa", tolPwrss = 1e-10, optCtrl = list(maxfun = 60000)))
Statistical Modeling
https://osf.io/2yq8a/
figure2.R
652
Principal component analysis with correlation matrix
pca <- prcomp(d[, -whi], scale. = T)
Statistical Modeling
https://osf.io/8fzns/
2_Conditioning_Recode.R
653
Make stacked figure of costs by age
stack <- lapply(pe.list.hadza_male, colMeans, na.rm=T) stacks <- as.data.frame(do.call(rbind, stack)) names(stacks) <- c(male.acts, "climbing") stacks$age <- age_seq stacks$Processing <- stacks$light_processing + stacks$other_out_of_camp + stacks$pounding_baobab stack_plot_male <- stacks %>% select(-nonsubsistence, -resting, -light_processing, -other_out_of_camp, -pounding_baobab) %>% gather(key="act", value="cost", carry_firewood_water:climbing, Processing) male_stack_hadza <- ggplot(stack_plot_male, aes(x=age, y=cost, fill=act)) + geom_area() + scale_fill_manual(name="Activity", labels=c("Firewood and water collection", "Chopping", "Climbing", "Eating", "Manufacture", "Food processing", "Walking (during foraging)"), values = brewer.pal(7, "Set1")) + labs(x="Age (years)", y="Energy cost (kcal/day)") + theme_classic(base_size=16) + ggtitle("Hadza: Men") + lims(y=c(0, 750)) stack <- lapply(pe.list.hadza_female, colMeans, na.rm=T) stacks <- as.data.frame(do.call(rbind, stack)) names(stacks) <- female.acts stacks$age <- age_seq stacks$Processing <- stacks$light_processing + stacks$other_out_of_camp + stacks$pounding_baobab stack_plot_female <- stacks %>% select(-nonsubsistence, -resting, -light_processing, -other_out_of_camp, -pounding_baobab) %>% gather(key="act", value="cost", carry_firewood_water:digging, Processing) fhcols <- brewer.pal(8, "Set1")[c(1,2,4,5,6,7)] fhcols[2] <- "#33CCFF" female_stack_hadza <- ggplot(stack_plot_female, aes(x=age, y=cost, fill=act)) + geom_area() + scale_fill_manual(name="Activity", labels=c("Firewood and water collection", "Digging", "Eating", "Manufacture", "Food processing", "Walking (during foraging)"), values = fhcols) + labs(x="Age (years)", y="Energy cost (kcal/day)") + theme_classic(base_size=16) + ggtitle("Hadza: Women") + lims(y=c(0, 750))
Visualization
https://osf.io/92e6c/
hadza_combine_data.R
654
create centered age^2 variable for quadratic LGCM
qscale <- 100 rndhrs_subset <- rndhrs_subset %>% mutate(CAGE2_T4 = CAGE_T4^2 / qscale, CAGE2_T5 = CAGE_T5^2 / qscale, CAGE2_T6 = CAGE_T6^2 / qscale, CAGE2_T7 = CAGE_T7^2 / qscale, CAGE2_T8 = CAGE_T8^2 / qscale, CAGE2_T9 = CAGE_T9^2 / qscale, CAGE2_T10 = CAGE_T10^2 / qscale, CAGE2_T11 = CAGE_T11^2 / qscale )
Statistical Modeling
https://osf.io/3uyjt/
preprocessing_hrs.R
655
put.pvalue Function to put the pvalues accoridng to the journals guidelines
put.pvalue=function(p){ sapply(p, function(x){ if (is.na(x)){pc="NA"} else if (x<0.0001){pc="<0.0001"} else if (0.0001<=x & x<0.001){pc <- sprintf("%.4f", x)} else if (0.049<=x & x<0.05) {pc <- sprintf("%.3f", floor(x*1000)/1000)} else if (0.001<=x & x<0.1){pc <- sprintf("%.3f", x)} else if (0.1<=x){pc <- sprintf("%.2f", x)} return(pc) }) }
Data Variable
https://osf.io/dr8gy/
RCS_plot_LogisticCox.R
656
wald.test Function to perform Wald test in logistic or Cox model
wald.test <- function(model, ntest){ d <- length(ntest) a <- t(coefficients(model)[ntest]) mat <- vcov(model)[ntest,ntest] value <- as.numeric(a%*%solve(mat)%*%t(a)) pvalue <- pchisq(value, df=d, lower.tail=F) return(list(value=value, df=d, pvalue=pvalue)) }
Statistical Test
https://osf.io/dr8gy/
RCS_plot_LogisticCox.R
657
Function to change pvalues in the stat table with the ones from the model
update_table <- function(mymod) { modsum <- summary(mymod) p <- modsum$coefficients[, "Pr(>|t|)"] p <- as.vector(p) p <- pvalr(p, sig.limit = .001, digits = 3) p }
Statistical Modeling
https://osf.io/z6nm8/
Stats_figures_JBTxECT.R
658
Plot KM Curve
tiff("PRAD_KM Curve.tiff", units = "in", width=8, height=6, res=300) ggsurvplot(fit1, D2, risk.table=TRUE, palette = "jco", pval=TRUE, conf.int=FALSE, surv.median.line="hv", ylab= "Survival Probability (%)", xlab= "Time (months)", legend.title = "TX GROUP", pval.coord=c(10,0.25)) dev.off()
Visualization
https://osf.io/srbcf/
R_KMCurveCode.R
659
now iterate through each participant, take that PP's data frame and add z scores for RT afterwards, add that PP's data frame to the empty data frame to recreate the main df including z scores
for (aPP in unique(excl2Exp$PP)){ dat <- excl2Exp[excl2Exp$PP == aPP,] dat$zScore <- scale(dat$RespRT, scale = TRUE) excl2Exp2 <- rbind(excl2Exp2, dat) }
Data Variable
https://osf.io/g8kbu/
dataAnalysisRewardAppsExperiment.R
660
ttest on subset 1 (n6/sex/group)
p_6m6f = t.test(measure ~ group, data=simdata6each_sub1)$p.value #using 6 each sex, t-tests
Statistical Test
https://osf.io/6q73b/
SubgroupStatsSimulationV5.R
661
box and whisker plot for refined factor scores convert dataframe of factor scores and cluster membership to long form
KClusterScores.long <- KClusterScores %>% pivot_longer(c(Sensory, CognitiveDemand, ThreatToSelf, CrossSettings, Safety, States), names_to = c("Factor")) KClusterScores.long$Factor <- factor(KClusterScores.long$Factor, levels = c("Sensory", "CognitiveDemand", "ThreatToSelf", "CrossSettings", "Safety", "States"))
Visualization
https://osf.io/2j47e/
Figures.R
662
box and whisker plot for nonrefined factor (scale) scores convert dataframe of factor scores and cluster membership to long form
scale.KClusterScores.long <- scale.KClusterScores %>% pivot_longer(c(Sensory, CognitiveDemand, ThreatToSelf, CrossSettings, Safety, States), names_to = c("Factor")) scale.KClusterScores.long$Factor <- factor(scale.KClusterScores.long$Factor, levels = c("Sensory", "CognitiveDemand", "ThreatToSelf", "CrossSettings", "Safety", "States"))
Visualization
https://osf.io/2j47e/
Figures.R
663
calculate logrank Zstatistics assuming balanced risk set (in OE, E is always 0.5)
zs <- sapply(1:(CureVobs1 + CureVobs0), function(n) (sum(CureVobs1s[1:n]) - n/2)/sqrt(n/4))
Statistical Test
https://osf.io/d9jny/
Ter Schure (2021) R code ALL-IN meta-analysis paper.R
664
Statistics check distributions check normal distribution of PSE's
qqnorm(AllPSEs$Tennis.thre) shapiro.test(AllPSEs$Tennis.thre) # p < .01, qqnorm(AllPSEs$SoccerD.thre) shapiro.test(AllPSEs$SoccerD.thre) # p = .14, qqnorm(AllPSEs$SoccerI.thre) shapiro.test(AllPSEs$SoccerI.thre) # p < .01 qqnorm(AllPSEs$Coin.thre) shapiro.test(AllPSEs$Coin.thre) # p = .04
Statistical Test
https://osf.io/8fw3b/
QPsyAnalyse.R
665
TEST 1: wilcoxon's signed rank test for direct/ indirect trials
(TestID <- wilcox.test(EffectDirect, EffectIndirect, paired = TRUE))
Statistical Test
https://osf.io/8fw3b/
QPsyAnalyse.R
666
add a column with "time_interval" : either 9:00;;13:00;;17:00;;21:00 for this, check the $created column and depending on which interval it is in, create a new column with mutate
df_ESM_data_analysis = df_ESM_data_analysis %>% mutate( time_interval = case_when( format(created,"%H:%M") >= param_timepoints[1] & format(created,"%H:%M") < param_timepoints[2] ~ param_timepoints[1], format(created,"%H:%M") >= param_timepoints[2] & format(created,"%H:%M") < param_timepoints[3] ~ param_timepoints[2], format(created,"%H:%M") >= param_timepoints[3] & format(created,"%H:%M") < param_timepoints[4] ~ param_timepoints[3], format(created,"%H:%M") >= param_timepoints[4] & format(created,"%H:%M") < param_t_end ~ param_timepoints[4], ) )
Data Variable
https://osf.io/dngyk/
ESM-RUM_R_code.R
667
first find the duplicates according to n_obs and time_interval
df_ESM_data_analysis = df_ESM_data_analysis %>% arrange(session, created) %>% group_by(session, n_obs, time_interval) %>% mutate(num_dups = n(), dup_id = row_number()) %>% ungroup() %>%
Data Variable
https://osf.io/dngyk/
ESM-RUM_R_code.R
668
plot perseverance as a function of n_obs for each subject
gdat <- groupedData(perseverance ~ n_obs | session, data=df_ESM_data_analysis_noNAnoOutliers) plot(gdat)
Visualization
https://osf.io/dngyk/
ESM-RUM_R_code.R
669
put alpha together with descriptive statistics
questionnaire_stats <- bind_cols(questionnaires_stats, scores_alpha) %>% dplyr::select(-name, -vars)
Data Variable
https://osf.io/dngyk/
ESM-RUM_R_code.R
670
Correlation plot (colors on top, numbers on bottom) JUST MEANS (aggregated within person)
corrplot(means, p.mat = res2$p, insig = "label_sig", sig.level = c(.001, .01, .05), pch.cex = .9, pch.col = "gray", method = "color", tl.col = "black", tl.cex = 1, cl.offset = 0.25, cl.cex = 0.75) corrplot(means, method="number", col = "black", add = TRUE, cl.pos = "n", tl.pos = "n", type = "lower", number.cex = .60, number.digits = 2, tl.col = "black", cl.offset = 4)
Visualization
https://osf.io/dngyk/
ESM-RUM_R_code.R
671
Independence test: two ways (HSIC or Nonlinear corr) HSIC
if (independence == "hsic") { hsic.p <- dhsic.test(ry, rx, method = "gamma", kernel = "gaussian")$p.value pval[i] <- hsic.p }
Statistical Test
https://osf.io/qwr69/
nGFS.R
672
Correlation table (only with complete cases so takes out data from single parent)
means <- cor(mean_data_mat[,c(2:12)], use = "complete.obs") # Correlation matrix res2 <- cor.mtest(mean_data_mat[,c(2:12)], conf.level = .95, use = "complete.obs") # p-values
Data Variable
https://osf.io/dngyk/
ESM-RUM_R_code.R
673
EXCLUDE PPN WITH RT < or > 3 SD
max_sd_rt <- print(mean(data.rt.check$rt)+3*sd(data.rt.check$rt)) ppn.exclude.rt <- print(filter(data.rt.check, rt >= max_sd_rt)$ppn)
Data Variable
https://osf.io/c8vfj/
Analysis_Imitation_and_Token.R
674
Calculate and plot difference between the distributions
postDiff <- forModel2plotA$b_cfaInequality_nat - forModel2plotB$b_cfaSocial_control_nat %>% as.data.frame() ggplot(postDiff, aes(.)) + geom_histogram(bins = 100, color = "black", fill = "lightgray") quantile(postDiff, c(0.025, 0.975)) #So 95% confidence interval of the difference lies above 0
Visualization
https://osf.io/2sguf/
US attitude code.R
675
Exclude participants with accuracy less than 0.8
d_lowAcc = CQ_acc %>% filter(accuracy < 0.8) d = d[!d$Subject %in% d_lowAcc$Subject,] rm(list=ls()[! ls() %in% c("d")])
Data Variable
https://osf.io/cd5r8/
R_Code_Fang_Wu.R
676
check the correlation between even and oddnumbered sets Pearson
print(corr.test(person$ConditionOr_even, person$ConditionOr_odd), short = FALSE) KH_Correct(-.09) #.16 print(corr.test(person$ConditionOr_even, person$ConditionOr_odd), short = FALSE) KH_Correct(-.11) #.20
Statistical Test
https://osf.io/cd5r8/
R_Code_Fang_Wu.R
677
model criticism (remove data points with abs(standardized residuals) over 2.5)
de_trim<- de[abs(scale(resid(m_de)))<2.5,] do_trim<- do[abs(scale(resid(m_do)))<2.5,] m_de_mc = blmer(-1/Reaction.Time ~ Condition + (1+Condition|Subject) + (1+Condition|ItemNo), data = de_trim, control=lmerControl(optimizer = "nloptwrap", optCtrl = list(algorithm = "NLOPT_LN_NELDERMEAD", maxit = 2e5))) m_do_mc = blmer(-1/Reaction.Time ~ Condition + (1+Condition|Subject) + (1+Condition|ItemNo), data = do_trim, control=lmerControl(optimizer = "nloptwrap", optCtrl = list(algorithm = "NLOPT_LN_NELDERMEAD", maxit = 2e5)))
Statistical Modeling
https://osf.io/cd5r8/
R_Code_Fang_Wu.R
678
Add new ParentIndex column in trialSummary and fill with NA
trialSummary[,"ParentIndex"] <- NA
Data Variable
https://osf.io/42nyv/
Eye tracking_pre-processing_R1.R
679
Lookup the parent row index of the stimulus string in s.data and insert it for social
for(k in 1:length(trialSummary$Stimulus)){ trialSummary$ParentIndex[k] <- which(s.data$Stimulus == trialSummary$Stimulus[k])[1] } trialSummary$AgeGroup <- s.info[i,3] trialSummary$Sex <- s.info[i,4] trialSummary$ID <- i
Data Variable
https://osf.io/42nyv/
Eye tracking_pre-processing_R1.R
680
Fixation Count custom mean function: mean of fixation count left and right eye (if only ONE eye contains 0.0 > no averaging) https://stackoverflow.com/questions/45998419/aggregategroupmeanswhileignoringzerosunless0istheonlyvalue
meanSubset.FixCount = aggregate(Fixation.Count~Stimulus+AOI.Name, data=s.data, FUN=(function(x){ifelse(sum(x==0)>0 & sum(x !=0) >0, mean(x[x>0]), mean(x))}))
Data Variable
https://osf.io/42nyv/
Eye tracking_pre-processing_R1.R
681
3) CALCULATION OF ESTIMATED MARGINAL MEANS Tests for differences in response to jargon and get data for plots
at_jarg <- list(Jargon = c("Less", "More"), TrvlAdv_Atten = "Cons", BackgrYrsOfExp = "6-10 yrs", BackgrDaysPerYr = "11-20 days", BullUseType = "D", cut = "3|4") grid_jarg <- ref_grid(clmm_underjar, mode = "exc.prob", at = at_jarg) (emm_jarg <- emmeans(grid_jarg, specs = pairwise ~ Jargon, by = "BackgrAvTraining")) plot_jarg <- summary(emm_jarg$emmeans) cont_jarg <- summary(emm_jarg$contrasts)
Statistical Test
https://osf.io/aczx5/
220423_Fig06_Under_JargExpl.R
682
create data frame for mean acceptrate (%) per participant, per effortlevel in 'young' group
d.young.effort.1 <- filter(d, Group == 'Young') %>% group_by(ID, Agent, Effort) %>% summarise(m = mean(Choice)*100)
Data Variable
https://osf.io/guqrm/
Reproduce_figures_prosocial_ageing.R
683
create data frame reflecting mean accept rate (%) per participant at each rewardlevel in 'old' group
d.reward.old.1 <- filter(d, Group == 'Old') %>% group_by(ID, Agent, Reward) %>% summarise(m = mean(Choice)*100)
Data Variable
https://osf.io/guqrm/
Reproduce_figures_prosocial_ageing.R
684
create data frame reflecting overall mean accept rate (%) and SE at each rewardlevel in 'old' group
d.reward.old.2 <- d.reward.old.1 %>% group_by(Agent, Reward) %>% summarise(SE = std.error(m), M = mean(m, na.rm = T))
Data Variable
https://osf.io/guqrm/
Reproduce_figures_prosocial_ageing.R
685
Welch's oneway ANOVA
anova_dehyd = df_dehyd %>% welch_anova_test(dehyd ~ cond) anova_dist_ran = df_dist_ran %>% welch_anova_test(dist ~ cond) anova_run_time = df_run_time %>% welch_anova_test(time ~ cond) anova_heat_time = df_heat_time %>% welch_anova_test(time ~ cond) anova_tcmax = df_tcmax %>% welch_anova_test(tcmax ~ cond) anova_tcmin = df_tcmin %>% welch_anova_test(tcmin ~ cond) anova_duration = df_duration %>% welch_anova_test(duration ~ cond) anova_thermal_load = df_thermal_load %>% welch_anova_test(thermal_load ~ cond) anova_heat_time = df_heat_time %>% welch_anova_test(heat_time ~ cond)
Statistical Test
https://osf.io/n5ahf/
Table1_analysis.R
686
Function to generate the true value for the Diamond Ratio
true.ratio <- function(n1, n2, tau, delta){ v <- (n1 + n2)/(n1*n2) + delta^2/2/(n1 + n2) j <- 1 - 3/(4*(n1 + n2 - 2) - 1) v.g <- (j^2)*v w <- 1/v.g w.star <- 1/(v.g + tau^2) var.fixed <- 1/sum(w) var.random <- 1/sum(w.star) sqrt(var.random/var.fixed) }
Statistical Modeling
https://osf.io/gwn4y/
Simulations_line_plots.R
687
lmer model for dimorphism
Lat.ML<-lmer(Latency.cen~Sex+scale(Mass, scale = F)+ Generation+Pop+Stage+Injured+scale(Temp, scale = F)+ scale(Time, scale = F)+JDate_dev+(1|Sire)+(1|Dam),data=Data) summary(Lat.ML) drop1(Lat.ML) OF.ML<-lmer(sqrt(OF.Dist)~Sex+scale(Mass, scale = F)+ Generation+Pop+Stage+Injured+scale(Temp, scale = F)+ scale(Time, scale = F)+JDate_dev+(1|Sire)+(1|Dam),data=Data) summary(OF.ML) drop1(OF.ML) AP.ML<-lmer(sqrt(AP.Dist)~Sex+scale(Mass, scale = F)+ Generation+Pop+Stage+Injured+scale(Temp, scale = F)+ scale(Time, scale = F)+JDate_dev+(1|Sire)+(1|Dam),data=Data) summary(AP.ML) drop1(AP.ML) Lat.ML<-lmer(Latency.Cens~Sex+Mass+Generation+Pop+Stage+Injured+Temp+ Time+JDate_dev+(1|Sire)+(1|Dam),data=Data) summary(Lat.ML) drop1(Lat.ML) OF.ML<-lmer(OF.Dist~Sex+Mass+Generation+Pop+Stage+Injured+Temp+ Time+JDate_dev+(1|Sire)+(1|Dam),data=Data) summary(OF.ML) drop1(OF.ML) AP.ML<-lmer(AP.Dist~Sex+Mass+Generation+Pop+Stage+Injured+Temp+ Time+JDate_dev+(1|Sire)+(1|Dam),data=Data) summary(AP.ML) drop1(AP.ML)
Statistical Modeling
https://osf.io/pnug5/
3.Ginteger_CrossSex_Tables&Figures.R
688
return the lastN characters of a string
fn$lastN<-function(string, n){ l<-nchar(string) result<-substr(string,l-n+1,l) result }
Data Variable
https://osf.io/xwp2d/
generic.r
689
Linear mixed effects model for reproduction bias
mod_full <- lmer(Prct_Bias ~ ContextC*(GMSI_Gen_Z + OrderC*Distort) + (1|Subject), data=dat2)
Statistical Modeling
https://osf.io/wxgm5/
Exp2_tapping.R
690
Extra function MM to inchconversion for plot
MMtoInch <- function(MM) { z <- MM / 25.4 return(z) }
Visualization
https://osf.io/3w8eg/
All_Figures.R
691
plot mean force (+/ SE) at each effortlevel in old group AND show individual data points
plot.force.old.2 <- ggplot(d.force.old, aes(x = Effort, y = m)) + geom_point(aes(group = Agent, color = Agent), position = position_dodge(width = 0.3), alpha = 0.4, shape = 1, size = 0.5) + geom_errorbar(data = d.force.old.summary, aes(group = Agent, color = Agent, ymin = m - SE, ymax = m + SE), position = position_dodge(0.02), alpha = 1, width = 0.2) + geom_line(data = d.force.old.summary, aes(group = Agent, color = Agent), position = position_dodge(0.02)) + scale_x_continuous(name = 'Effort level', breaks = seq(2, 6, 1)) + scale_y_continuous(name = 'Force exerted (normalised AUC)', breaks = seq(0.0, 1.0, 0.2)) + scale_color_brewer(palette = 'Set1') + coord_cartesian(xlim = c(2, 6), ylim = c(0.30, 1.0)) + theme_classic() + theme(legend.position = c(0.9, 0.15)) + theme(axis.text=element_text(size = 11), axis.title=element_text(size = 13)) plot.force.old.2 ggsave(filename = 'plot_force_old_v2.pdf', plot.force.old.2, height = 5, width = 4)
Visualization
https://osf.io/guqrm/
Reproduce_figures_prosocial_ageing.R
692
plot mean force (no SE) at each effortlevel in old group AND show individual data points
plot.force.old.3 <- ggplot(d.force.old, aes(x = Effort, y = m, group = Agent, color = Agent, fill = Agent)) + geom_point(data = d.force.old, aes(group = Agent, color = Agent), position = position_dodge(width = 0.3), alpha = 0.4, shape = 1, size = 0.5) + geom_smooth(method = 'lm', alpha = 0.3, size = 0.6, se = F) + coord_cartesian(xlim = c(2, 6), ylim = c(0.35, 0.9)) + scale_x_continuous(name = 'Effort level', breaks = seq(2, 6, 1)) + scale_y_continuous(name = 'Force exerted (normalised AUC)', breaks = seq(0, 1.0, 0.2)) + scale_color_brewer(palette = 'Set1') + scale_fill_brewer(palette = 'Set1') + theme_classic() + theme(legend.position = c(0.9, 0.15)) + theme(axis.text=element_text(size = 11), axis.title=element_text(size = 13)) plot.force.old.3 ggsave(filename = 'plot_force_old_v3.pdf', plot.force.old.3, height = 5, width = 4)
Visualization
https://osf.io/guqrm/
Reproduce_figures_prosocial_ageing.R
693
bootstrap modindices of item residual covariances
cfa.csurf.bl.full.1.boot <- bootstrapLavaan(cfa.csurf.bl.full.1, R = 5000, FUN = function(x) {modindices(x)$mi}, verbose = TRUE) cfa.csurf.bl.full.1.boot <- data.frame(cfa.csurf.bl.full.1.boot) cfa.csurf.fu1.full.1.boot <- bootstrapLavaan(cfa.csurf.fu1.full.1, R = 5000, FUN = function(x) {modindices(x)$mi}, verbose = TRUE) cfa.csurf.fu1.full.1.boot <- data.frame(cfa.csurf.fu1.full.1.boot) cfa.csurf.bl.deponly.1.boot <- bootstrapLavaan(cfa.csurf.bl.deponly.1, R = 5000, FUN = function(x) {modindices(x)$mi}, verbose = TRUE) cfa.csurf.bl.deponly.1.boot <- data.frame(cfa.csurf.bl.deponly.1.boot) cfa.csurf.fu1.deponly.1.boot <- bootstrapLavaan(cfa.csurf.fu1.deponly.1, R = 5000, FUN = function(x) {modindices(x)$mi}, verbose = TRUE) cfa.csurf.fu1.deponly.1.boot <- data.frame(cfa.csurf.fu1.deponly.1.boot)
Statistical Modeling
https://osf.io/a6tuw/
OnlinesupplementaryR-scriptc-surfsamples.R
694
recode played hours into numeric (if multiple numbers, choose the first one)
mydf$Hours <- as.numeric(stri_extract_first_regex(mydf$Hours, "[0-9]+"))
Data Variable
https://osf.io/vnbxk/
GamingStudy_PreProcessing.R
695
recode streamed hours into numeric (if multiple numbers, choose the first one)
mydf$streams <- as.numeric(stri_extract_first_regex(mydf$streams, "[0-9]+"))
Data Variable
https://osf.io/vnbxk/
GamingStudy_PreProcessing.R
696
recode narcisiim scale into numeric (if multiple numbers, choose the first one)
mydf$Narcissism <- as.numeric(stri_extract_first_regex(mydf$Narcissism, "[0-9]+"))
Data Variable
https://osf.io/vnbxk/
GamingStudy_PreProcessing.R
697
Display and rank games by frequency
tGames <- as.data.frame(table(data_main$Game)) View(tGames[order(tGames$Freq, decreasing = TRUE), ])
Visualization
https://osf.io/vnbxk/
GamingStudy_PreProcessing.R
698
Display and rank residence country by frequency
tResidence <- as.data.frame(table(data_main$Residence)) View(tResidence[order(tResidence$Freq, decreasing = TRUE), ])
Data Variable
https://osf.io/vnbxk/
GamingStudy_PreProcessing.R
699
Display and rank country of birth by frequency
tBirth <- as.data.frame(table(data_main$Birthplace)) View(tBirth[order(tBirth$Freq, decreasing = TRUE), ])
Data Variable
https://osf.io/vnbxk/
GamingStudy_PreProcessing.R
700
Loop to downsample data based on minimum time between points Time parameter is set in "while(diff < time in minutes)"
trajectory_dsmpl <- data.frame() ids <- unique(trajectory.df$id) for(i in ids) { traj = subset(trajectory.df, trajectory.df$id == i) for(i in 1:nrow(traj)) { diff <- difftime(traj$dt[i+1], traj$dt[i], units = "mins") if(is.na(diff)) {break} while(diff < 15) { traj <- traj[-(i+1),] diff <- difftime(traj$dt[i+1], traj$dt[i], units = "mins") if(is.na(diff)) {break} } } trajectory_dsmpl <- bind_rows(trajectory_dsmpl, traj) } trajectory_dsmpl <- trajectory_dsmpl %>% group_by(id) %>% mutate(time_diff = difftime(dt, lag(dt, n = 1L), units = "min"), delta_x = x_utm - lag(x_utm, n = 1L), delta_y = y_utm - lag(y_utm, n = 1L), dist = sqrt(delta_x^2+delta_y^2))
Data Variable
https://osf.io/3bpn6/
os_homing_dataproc.R