Dataset Viewer
Auto-converted to Parquet Duplicate
character
stringlengths
1
1
style
stringclasses
15 values
font
stringclasses
1 value
content_image
imagewidth (px)
128
128
target_image
imagewidth (px)
96
96
content_hash
stringlengths
8
8
target_hash
stringlengths
8
8
𦖑
1
NomNaTong-Regular
7f362c58
abfd68cf
1
NomNaTong-Regular
2d26c8cc
ac025eca
𠳒
1
NomNaTong-Regular
d95f410f
b6452b1c
𢢇
1
NomNaTong-Regular
3b277904
c9c4fb38
𡽫
1
NomNaTong-Regular
f8c6a3b1
462b6465
𬚸
1
NomNaTong-Regular
b20631c7
66c30630
𢚶
1
NomNaTong-Regular
5964404c
4546f40c
𡊰
1
NomNaTong-Regular
bbfbeba2
101234e5
𨕭
1
NomNaTong-Regular
6c6d7d69
66ad4429
𤎔
1
NomNaTong-Regular
118e4f85
496ee1c6
𢧚
1
NomNaTong-Regular
df022be2
d0037842
𢝙
1
NomNaTong-Regular
856dee7b
0d0ba012
𢀭
1
NomNaTong-Regular
df78afd5
931bd279
𨖅
1
NomNaTong-Regular
884f3349
2dfe0eac
𠄩
1
NomNaTong-Regular
f38ae45f
b16c05be
𨇜
1
NomNaTong-Regular
81fb1f58
c72b8363
𪽝
1
NomNaTong-Regular
56a81267
20d12f42
𥢆
1
NomNaTong-Regular
4b1f91d0
2d9bcf81
𨤰
1
NomNaTong-Regular
e86397ef
aaceea60
𫺓
1
NomNaTong-Regular
29a21966
4160bcf3
𦹳
1
NomNaTong-Regular
e48abf9a
a888a095
𡨸
1
NomNaTong-Regular
ebb246c3
0872d4d4
𠦳
1
NomNaTong-Regular
d4332fd5
d6bc39e1
1
NomNaTong-Regular
f2f01402
f9e6c906
𣘃
1
NomNaTong-Regular
333cf54a
bbc90cfe
𥩯
1
NomNaTong-Regular
80ec0a48
90b4f5c4
𠤆
1
NomNaTong-Regular
536de637
edfcb377
𡗉
1
NomNaTong-Regular
de5f44f4
11e0d8c9
𡥵
1
NomNaTong-Regular
03e29702
1e9b2899
𤾓
1
NomNaTong-Regular
fb016da4
4616092d
𫯳
1
NomNaTong-Regular
dac0ed70
bf9ea6a5
𥋳
1
NomNaTong-Regular
f2bd5879
0f6b3945
1
NomNaTong-Regular
0e829cc9
4f398814
𥇸
1
NomNaTong-Regular
467dca40
b53f711e
𥉫
1
NomNaTong-Regular
c51e1002
16092752
𢚸
1
NomNaTong-Regular
129e99cb
c112d8f9
𦬑
1
NomNaTong-Regular
74e77807
98fb5248
𤴬
1
NomNaTong-Regular
e02d0279
2c90156c
𠑬
1
NomNaTong-Regular
89820aeb
7e32e418
1
NomNaTong-Regular
8e570fa5
327ccea6
𠺥
1
NomNaTong-Regular
0785fb38
dbc24c21
𠴝
1
NomNaTong-Regular
e86e1b2d
662d66d7
𢁑
1
NomNaTong-Regular
ab226cf8
3bb2bf44
𦖑
2
NomNaTong-Regular
7f362c58
d99c6c5a
2
NomNaTong-Regular
2d26c8cc
dcf47ebb
𠳒
2
NomNaTong-Regular
d95f410f
caf0758f
𢢇
2
NomNaTong-Regular
3b277904
e06101b2
𡽫
2
NomNaTong-Regular
f8c6a3b1
23438547
𬚸
2
NomNaTong-Regular
b20631c7
cace8576
𢚶
2
NomNaTong-Regular
5964404c
3bf0c561
𡊰
2
NomNaTong-Regular
bbfbeba2
a62600d8
𨕭
2
NomNaTong-Regular
6c6d7d69
2042dce2
𤎔
2
NomNaTong-Regular
118e4f85
1dead6f7
𢧚
2
NomNaTong-Regular
df022be2
211734ff
𢝙
2
NomNaTong-Regular
856dee7b
10852d7c
𢀭
2
NomNaTong-Regular
df78afd5
8026b8c8
𨖅
2
NomNaTong-Regular
884f3349
509cb9a2
𠄩
2
NomNaTong-Regular
f38ae45f
5ce5e2e5
𨇜
2
NomNaTong-Regular
81fb1f58
4e28007e
𪽝
2
NomNaTong-Regular
56a81267
38fb21c8
𥢆
2
NomNaTong-Regular
4b1f91d0
5530280f
𨤰
2
NomNaTong-Regular
e86397ef
aeb3bf18
𫺓
2
NomNaTong-Regular
29a21966
742f6507
𦹳
2
NomNaTong-Regular
e48abf9a
a1f7b881
𡨸
2
NomNaTong-Regular
ebb246c3
15cff7a8
𠦳
2
NomNaTong-Regular
d4332fd5
19b3a0af
2
NomNaTong-Regular
f2f01402
48493b5c
𣘃
2
NomNaTong-Regular
333cf54a
60400f9b
𥩯
2
NomNaTong-Regular
80ec0a48
07e44c23
𠤆
2
NomNaTong-Regular
536de637
3cbe458e
𡗉
2
NomNaTong-Regular
de5f44f4
3d82c582
𡥵
2
NomNaTong-Regular
03e29702
8b3f0a40
𤾓
2
NomNaTong-Regular
fb016da4
b2c94a0a
𫯳
2
NomNaTong-Regular
dac0ed70
a1a114cd
𥋳
2
NomNaTong-Regular
f2bd5879
a78c4e7c
2
NomNaTong-Regular
0e829cc9
e0e769ac
𥇸
2
NomNaTong-Regular
467dca40
a2c922be
𥉫
2
NomNaTong-Regular
c51e1002
52afc6f3
𢚸
2
NomNaTong-Regular
129e99cb
8137d4b7
𦬑
2
NomNaTong-Regular
74e77807
b0c76f7a
𤴬
2
NomNaTong-Regular
e02d0279
5df0009d
𠑬
2
NomNaTong-Regular
89820aeb
f6cb85d2
2
NomNaTong-Regular
8e570fa5
19b0f1bd
𠺥
2
NomNaTong-Regular
0785fb38
9649d6b8
𠴝
2
NomNaTong-Regular
e86e1b2d
cc76f420
𢁑
2
NomNaTong-Regular
ab226cf8
0144f13e
𦖑
3
NomNaTong-Regular
7f362c58
8a5e69de
3
NomNaTong-Regular
2d26c8cc
c95bbfbc
𠳒
3
NomNaTong-Regular
d95f410f
363ceb74
𢢇
3
NomNaTong-Regular
3b277904
ab596697
𡽫
3
NomNaTong-Regular
f8c6a3b1
e4719c25
𬚸
3
NomNaTong-Regular
b20631c7
ed2337b7
𢚶
3
NomNaTong-Regular
5964404c
f8aa549a
𡊰
3
NomNaTong-Regular
bbfbeba2
11d188fe
𨕭
3
NomNaTong-Regular
6c6d7d69
d353bfe9
𤎔
3
NomNaTong-Regular
118e4f85
8c694b8c
𢧚
3
NomNaTong-Regular
df022be2
b0a0c98e
𢝙
3
NomNaTong-Regular
856dee7b
cef15bfb
𢀭
3
NomNaTong-Regular
df78afd5
9007beb6
𨖅
3
NomNaTong-Regular
884f3349
5cb3426b
End of preview. Expand in Data Studio

NomGenie: Font Diffusion for Sino-Nom Language

NomGenie is a specialized image-to-image dataset designed for font generation and style transfer within the Sino-Nom (Hán-Nôm) script system. This dataset facilitates the training of deep learning models—particularly Diffusion Models and GANs—to preserve the historical and structural integrity of Vietnamese Nom characters while applying diverse typographic styles.

Dataset Description

The dataset consists of paired images: a content image (representing the skeletal or standard structure of a character) and a target image (representing the character rendered in a specific artistic or historical font style).

Key Features

  • character: The specific Sino-Nom character represented.
  • style/font: Metadata identifying the aesthetic transformation applied.
  • content_image: The source glyph used as the structural reference.
  • target_image: The ground truth stylized glyph for model supervision.
  • Hashing: content_hash and target_hash are provided to ensure data integrity and assist in deduplication.

Dataset Structure

Data Splits

The dataset is organized into three distinct splits to support various training stages:

Split Examples Size Description
train_original 8,235 124.79 MB The full original training set.
train 5,172 79.72 MB A curated subset optimized for standard training.
val 318 4.48 MB Validation set for hyperparameter tuning and evaluation.

Quick Start

To use this dataset with the Hugging Face datasets library:

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("path/to/NomGenie")

# Access a training sample
sample = dataset['train'][0]
display(sample['content_image'])
display(sample['target_image'])

## Technical Details
- Task Category: image-to-image

- Languages: Vietnamese (vi), English (en)

- License: Apache 2.0

- Primary Use Case: Generative AI for cultural heritage preservation and digital typography.
Downloads last month
410

Models trained or fine-tuned on dzungpham/font-diffusion-generated-data