dzungpham/font-diffusion-weights
Image-to-Image
•
Updated
•
171
•
1
character
stringlengths 1
1
| style
stringclasses 15
values | font
stringclasses 1
value | content_image
imagewidth (px) 128
128
| target_image
imagewidth (px) 96
96
| content_hash
stringlengths 8
8
| target_hash
stringlengths 8
8
|
|---|---|---|---|---|---|---|
𦖑
|
1
|
NomNaTong-Regular
|
7f362c58
|
abfd68cf
|
||
㛪
|
1
|
NomNaTong-Regular
|
2d26c8cc
|
ac025eca
|
||
𠳒
|
1
|
NomNaTong-Regular
|
d95f410f
|
b6452b1c
|
||
𢢇
|
1
|
NomNaTong-Regular
|
3b277904
|
c9c4fb38
|
||
𡽫
|
1
|
NomNaTong-Regular
|
f8c6a3b1
|
462b6465
|
||
𬚸
|
1
|
NomNaTong-Regular
|
b20631c7
|
66c30630
|
||
𢚶
|
1
|
NomNaTong-Regular
|
5964404c
|
4546f40c
|
||
𡊰
|
1
|
NomNaTong-Regular
|
bbfbeba2
|
101234e5
|
||
𨕭
|
1
|
NomNaTong-Regular
|
6c6d7d69
|
66ad4429
|
||
𤎔
|
1
|
NomNaTong-Regular
|
118e4f85
|
496ee1c6
|
||
𢧚
|
1
|
NomNaTong-Regular
|
df022be2
|
d0037842
|
||
𢝙
|
1
|
NomNaTong-Regular
|
856dee7b
|
0d0ba012
|
||
𢀭
|
1
|
NomNaTong-Regular
|
df78afd5
|
931bd279
|
||
𨖅
|
1
|
NomNaTong-Regular
|
884f3349
|
2dfe0eac
|
||
𠄩
|
1
|
NomNaTong-Regular
|
f38ae45f
|
b16c05be
|
||
𨇜
|
1
|
NomNaTong-Regular
|
81fb1f58
|
c72b8363
|
||
𪽝
|
1
|
NomNaTong-Regular
|
56a81267
|
20d12f42
|
||
𥢆
|
1
|
NomNaTong-Regular
|
4b1f91d0
|
2d9bcf81
|
||
𨤰
|
1
|
NomNaTong-Regular
|
e86397ef
|
aaceea60
|
||
𫺓
|
1
|
NomNaTong-Regular
|
29a21966
|
4160bcf3
|
||
𦹳
|
1
|
NomNaTong-Regular
|
e48abf9a
|
a888a095
|
||
𡨸
|
1
|
NomNaTong-Regular
|
ebb246c3
|
0872d4d4
|
||
𠦳
|
1
|
NomNaTong-Regular
|
d4332fd5
|
d6bc39e1
|
||
㤕
|
1
|
NomNaTong-Regular
|
f2f01402
|
f9e6c906
|
||
𣘃
|
1
|
NomNaTong-Regular
|
333cf54a
|
bbc90cfe
|
||
𥩯
|
1
|
NomNaTong-Regular
|
80ec0a48
|
90b4f5c4
|
||
𠤆
|
1
|
NomNaTong-Regular
|
536de637
|
edfcb377
|
||
𡗉
|
1
|
NomNaTong-Regular
|
de5f44f4
|
11e0d8c9
|
||
𡥵
|
1
|
NomNaTong-Regular
|
03e29702
|
1e9b2899
|
||
𤾓
|
1
|
NomNaTong-Regular
|
fb016da4
|
4616092d
|
||
𫯳
|
1
|
NomNaTong-Regular
|
dac0ed70
|
bf9ea6a5
|
||
𥋳
|
1
|
NomNaTong-Regular
|
f2bd5879
|
0f6b3945
|
||
咹
|
1
|
NomNaTong-Regular
|
0e829cc9
|
4f398814
|
||
𥇸
|
1
|
NomNaTong-Regular
|
467dca40
|
b53f711e
|
||
𥉫
|
1
|
NomNaTong-Regular
|
c51e1002
|
16092752
|
||
𢚸
|
1
|
NomNaTong-Regular
|
129e99cb
|
c112d8f9
|
||
𦬑
|
1
|
NomNaTong-Regular
|
74e77807
|
98fb5248
|
||
𤴬
|
1
|
NomNaTong-Regular
|
e02d0279
|
2c90156c
|
||
𠑬
|
1
|
NomNaTong-Regular
|
89820aeb
|
7e32e418
|
||
䟜
|
1
|
NomNaTong-Regular
|
8e570fa5
|
327ccea6
|
||
𠺥
|
1
|
NomNaTong-Regular
|
0785fb38
|
dbc24c21
|
||
𠴝
|
1
|
NomNaTong-Regular
|
e86e1b2d
|
662d66d7
|
||
𢁑
|
1
|
NomNaTong-Regular
|
ab226cf8
|
3bb2bf44
|
||
𦖑
|
2
|
NomNaTong-Regular
|
7f362c58
|
d99c6c5a
|
||
㛪
|
2
|
NomNaTong-Regular
|
2d26c8cc
|
dcf47ebb
|
||
𠳒
|
2
|
NomNaTong-Regular
|
d95f410f
|
caf0758f
|
||
𢢇
|
2
|
NomNaTong-Regular
|
3b277904
|
e06101b2
|
||
𡽫
|
2
|
NomNaTong-Regular
|
f8c6a3b1
|
23438547
|
||
𬚸
|
2
|
NomNaTong-Regular
|
b20631c7
|
cace8576
|
||
𢚶
|
2
|
NomNaTong-Regular
|
5964404c
|
3bf0c561
|
||
𡊰
|
2
|
NomNaTong-Regular
|
bbfbeba2
|
a62600d8
|
||
𨕭
|
2
|
NomNaTong-Regular
|
6c6d7d69
|
2042dce2
|
||
𤎔
|
2
|
NomNaTong-Regular
|
118e4f85
|
1dead6f7
|
||
𢧚
|
2
|
NomNaTong-Regular
|
df022be2
|
211734ff
|
||
𢝙
|
2
|
NomNaTong-Regular
|
856dee7b
|
10852d7c
|
||
𢀭
|
2
|
NomNaTong-Regular
|
df78afd5
|
8026b8c8
|
||
𨖅
|
2
|
NomNaTong-Regular
|
884f3349
|
509cb9a2
|
||
𠄩
|
2
|
NomNaTong-Regular
|
f38ae45f
|
5ce5e2e5
|
||
𨇜
|
2
|
NomNaTong-Regular
|
81fb1f58
|
4e28007e
|
||
𪽝
|
2
|
NomNaTong-Regular
|
56a81267
|
38fb21c8
|
||
𥢆
|
2
|
NomNaTong-Regular
|
4b1f91d0
|
5530280f
|
||
𨤰
|
2
|
NomNaTong-Regular
|
e86397ef
|
aeb3bf18
|
||
𫺓
|
2
|
NomNaTong-Regular
|
29a21966
|
742f6507
|
||
𦹳
|
2
|
NomNaTong-Regular
|
e48abf9a
|
a1f7b881
|
||
𡨸
|
2
|
NomNaTong-Regular
|
ebb246c3
|
15cff7a8
|
||
𠦳
|
2
|
NomNaTong-Regular
|
d4332fd5
|
19b3a0af
|
||
㤕
|
2
|
NomNaTong-Regular
|
f2f01402
|
48493b5c
|
||
𣘃
|
2
|
NomNaTong-Regular
|
333cf54a
|
60400f9b
|
||
𥩯
|
2
|
NomNaTong-Regular
|
80ec0a48
|
07e44c23
|
||
𠤆
|
2
|
NomNaTong-Regular
|
536de637
|
3cbe458e
|
||
𡗉
|
2
|
NomNaTong-Regular
|
de5f44f4
|
3d82c582
|
||
𡥵
|
2
|
NomNaTong-Regular
|
03e29702
|
8b3f0a40
|
||
𤾓
|
2
|
NomNaTong-Regular
|
fb016da4
|
b2c94a0a
|
||
𫯳
|
2
|
NomNaTong-Regular
|
dac0ed70
|
a1a114cd
|
||
𥋳
|
2
|
NomNaTong-Regular
|
f2bd5879
|
a78c4e7c
|
||
咹
|
2
|
NomNaTong-Regular
|
0e829cc9
|
e0e769ac
|
||
𥇸
|
2
|
NomNaTong-Regular
|
467dca40
|
a2c922be
|
||
𥉫
|
2
|
NomNaTong-Regular
|
c51e1002
|
52afc6f3
|
||
𢚸
|
2
|
NomNaTong-Regular
|
129e99cb
|
8137d4b7
|
||
𦬑
|
2
|
NomNaTong-Regular
|
74e77807
|
b0c76f7a
|
||
𤴬
|
2
|
NomNaTong-Regular
|
e02d0279
|
5df0009d
|
||
𠑬
|
2
|
NomNaTong-Regular
|
89820aeb
|
f6cb85d2
|
||
䟜
|
2
|
NomNaTong-Regular
|
8e570fa5
|
19b0f1bd
|
||
𠺥
|
2
|
NomNaTong-Regular
|
0785fb38
|
9649d6b8
|
||
𠴝
|
2
|
NomNaTong-Regular
|
e86e1b2d
|
cc76f420
|
||
𢁑
|
2
|
NomNaTong-Regular
|
ab226cf8
|
0144f13e
|
||
𦖑
|
3
|
NomNaTong-Regular
|
7f362c58
|
8a5e69de
|
||
㛪
|
3
|
NomNaTong-Regular
|
2d26c8cc
|
c95bbfbc
|
||
𠳒
|
3
|
NomNaTong-Regular
|
d95f410f
|
363ceb74
|
||
𢢇
|
3
|
NomNaTong-Regular
|
3b277904
|
ab596697
|
||
𡽫
|
3
|
NomNaTong-Regular
|
f8c6a3b1
|
e4719c25
|
||
𬚸
|
3
|
NomNaTong-Regular
|
b20631c7
|
ed2337b7
|
||
𢚶
|
3
|
NomNaTong-Regular
|
5964404c
|
f8aa549a
|
||
𡊰
|
3
|
NomNaTong-Regular
|
bbfbeba2
|
11d188fe
|
||
𨕭
|
3
|
NomNaTong-Regular
|
6c6d7d69
|
d353bfe9
|
||
𤎔
|
3
|
NomNaTong-Regular
|
118e4f85
|
8c694b8c
|
||
𢧚
|
3
|
NomNaTong-Regular
|
df022be2
|
b0a0c98e
|
||
𢝙
|
3
|
NomNaTong-Regular
|
856dee7b
|
cef15bfb
|
||
𢀭
|
3
|
NomNaTong-Regular
|
df78afd5
|
9007beb6
|
||
𨖅
|
3
|
NomNaTong-Regular
|
884f3349
|
5cb3426b
|
NomGenie is a specialized image-to-image dataset designed for font generation and style transfer within the Sino-Nom (Hán-Nôm) script system. This dataset facilitates the training of deep learning models—particularly Diffusion Models and GANs—to preserve the historical and structural integrity of Vietnamese Nom characters while applying diverse typographic styles.
The dataset consists of paired images: a content image (representing the skeletal or standard structure of a character) and a target image (representing the character rendered in a specific artistic or historical font style).
content_hash and target_hash are provided to ensure data integrity and assist in deduplication.The dataset is organized into three distinct splits to support various training stages:
| Split | Examples | Size | Description |
|---|---|---|---|
| train_original | 8,235 | 124.79 MB | The full original training set. |
| train | 5,172 | 79.72 MB | A curated subset optimized for standard training. |
| val | 318 | 4.48 MB | Validation set for hyperparameter tuning and evaluation. |
To use this dataset with the Hugging Face datasets library:
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("path/to/NomGenie")
# Access a training sample
sample = dataset['train'][0]
display(sample['content_image'])
display(sample['target_image'])
## Technical Details
- Task Category: image-to-image
- Languages: Vietnamese (vi), English (en)
- License: Apache 2.0
- Primary Use Case: Generative AI for cultural heritage preservation and digital typography.