Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: b7532d53-6bb1-4ad9-9b55-73d9562996b5)')
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
objects
dict
{ "bbox": [ [ 709, 227, 1657, 3572 ] ], "categories": [ 5 ] }
{ "bbox": [ [ 24, 18, 1476, 3619 ] ], "categories": [ 1 ] }
{ "bbox": [ [ 35, 220, 2933, 1145 ] ], "categories": [ 14 ] }
{ "bbox": [ [ 11, 20, 516, 1259 ] ], "categories": [ 1 ] }
{ "bbox": [ [ 5, 12, 362, 869 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 106, 79, 3409, 1502 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 727, 449, 1926.06, 2527 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 49, 1727, 2924, 1307 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 35, 220, 2933, 1145 ] ], "categories": [ 14 ] }
{ "bbox": [ [ 11, 564, 1278, 532 ] ], "categories": [ 1 ] }
{ "bbox": [ [ 30, 539, 1151, 470 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 1491, 744, 797.02, 1659 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 25, 52, 1504, 3502 ] ], "categories": [ 10 ] }
{ "bbox": [ [ 120, 128, 3583, 1507 ] ], "categories": [ 13 ] }
{ "bbox": [ [ 402, 180, 2311.1, 2841 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 43, 83, 3609, 1558 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 182, 133, 3483, 1491 ] ], "categories": [ 10 ] }
{ "bbox": [ [ 1041, 35, 1388, 2906 ] ], "categories": [ 10 ] }
{ "bbox": [ [ 236, 1982, 1288.885, 1085.704 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 103, 168, 2925, 1242 ] ], "categories": [ 22 ] }
{ "bbox": [ [ 28, 160, 3038, 1313 ] ], "categories": [ 21 ] }
{ "bbox": [ [ 8, 18, 526, 1273 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 16, 1630, 2218, 2021 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 23, 16, 3085, 1354 ] ], "categories": [ 5 ] }
{ "bbox": [ [ 96, 174, 2902, 1188 ] ], "categories": [ 18 ] }
{ "bbox": [ [ 12, 34, 463, 223.71 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 37, 193, 2629, 1247 ] ], "categories": [ 4 ] }
{ "bbox": [ [ 717, 902, 2390, 1043 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 172, 64, 2782, 1231 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 22, 10, 1377, 581 ] ], "categories": [ 10 ] }
{ "bbox": [ [ 72, 52, 3393, 1462 ] ], "categories": [ 3 ] }
{ "bbox": [ [ 602, 888, 2680, 1182 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 133, 49, 3862, 1678 ] ], "categories": [ 11 ] }
{ "bbox": [ [ 103, 168, 2925, 1242 ] ], "categories": [ 22 ] }
{ "bbox": [ [ 103, 168, 2925, 1242 ] ], "categories": [ 22 ] }
{ "bbox": [ [ 516, 1580, 1971, 847 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 43, 145, 2980, 1283 ] ], "categories": [ 17 ] }
{ "bbox": [ [ 72, 52, 3393, 1462 ] ], "categories": [ 3 ] }
{ "bbox": [ [ 0, 66, 4032, 1751 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 1739, 855, 2094, 2142 ] ], "categories": [ 11 ] }
{ "bbox": [ [ 276, 1050, 1137.703, 1591.303 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 627, 889, 2764, 1215 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 10, 10, 526, 215 ] ], "categories": [ 11 ] }
{ "bbox": [ [ 116, 103, 2819, 1221 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 17, 112, 1262, 500 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 172, 64, 2782, 1231 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 923, 0, 2251.06, 2841 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 2, 3, 1198, 485 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 85, 1240, 2712, 1383 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 807, 987, 2192, 947 ] ], "categories": [ 10 ] }
{ "bbox": [ [ 235, 59, 904, 364 ] ], "categories": [ 11 ] }
{ "bbox": [ [ 1744, 42, 1476.04, 2935 ] ], "categories": [ 3 ] }
{ "bbox": [ [ 43, 145, 2980, 1283 ] ], "categories": [ 17 ] }
{ "bbox": [ [ 32, 66, 2946, 1252 ] ], "categories": [ 15 ] }
{ "bbox": [ [ 53, 1154, 2544, 1048 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 34, 78, 3018, 1274 ] ], "categories": [ 19 ] }
{ "bbox": [ [ 470, 1812, 1459.36, 640.17 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 43, 83, 3609, 1558 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 118, 931, 1657.633, 1784.637 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 96, 174, 2902, 1188 ] ], "categories": [ 18 ] }
{ "bbox": [ [ 220, 1566, 1033.52, 1176.806 ] ], "categories": [ 4 ] }
{ "bbox": [ [ 99, 123, 3479, 1524 ] ], "categories": [ 0 ] }
{ "bbox": [ [ 45, 82, 1206, 511 ] ], "categories": [ 1 ] }
{ "bbox": [ [ 95, 190, 1135, 477 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 895, 758, 1082, 2501 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 665, 1214, 1448.003, 1850.809 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 95, 113, 2950, 1282 ] ], "categories": [ 16 ] }
{ "bbox": [ [ 32, 66, 2946, 1252 ] ], "categories": [ 15 ] }
{ "bbox": [ [ 116, 103, 2819, 1221 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 26, 29, 1721, 735 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 120, 128, 3583, 1507 ] ], "categories": [ 13 ] }
{ "bbox": [ [ 193, 1219, 2693, 1145 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 53, 73, 3052, 1317 ] ], "categories": [ 4 ] }
{ "bbox": [ [ 72, 52, 3393, 1462 ] ], "categories": [ 3 ] }
{ "bbox": [ [ 321, 679, 3311, 1448 ] ], "categories": [ 3 ] }
{ "bbox": [ [ 133, 49, 3862, 1678 ] ], "categories": [ 11 ] }
{ "bbox": [ [ 23, 16, 3085, 1354 ] ], "categories": [ 5 ] }
{ "bbox": [ [ 516, 2528, 1791, 759 ] ], "categories": [ 3 ] }
{ "bbox": [ [ 824, 1268, 1407, 808 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 86, 1378, 2849, 1225 ] ], "categories": [ 8 ] }
{ "bbox": [ [ 1304, 1528, 1711.548, 1768.933 ] ], "categories": [ 2 ] }
{ "bbox": [ [ 35, 135, 958, 385 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 28, 160, 3038, 1313 ] ], "categories": [ 21 ] }
{ "bbox": [ [ 182, 133, 3483, 1491 ] ], "categories": [ 10 ] }
{ "bbox": [ [ 103, 168, 2925, 1242 ] ], "categories": [ 22 ] }
{ "bbox": [ [ 10, 59, 1032, 416 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 125, 593, 1660.04, 707 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 96, 174, 2902, 1188 ] ], "categories": [ 18 ] }
{ "bbox": [ [ 172, 64, 2782, 1231 ] ], "categories": [ 9 ] }
{ "bbox": [ [ 6, 13, 1192, 486 ] ], "categories": [ 1 ] }
{ "bbox": [ [ 43, 145, 2980, 1283 ] ], "categories": [ 17 ] }
{ "bbox": [ [ 58, 193, 2910, 1210 ] ], "categories": [ 23 ] }
{ "bbox": [ [ 58, 193, 2910, 1210 ] ], "categories": [ 23 ] }
{ "bbox": [ [ 7, 104, 1875, 815 ] ], "categories": [ 6 ] }
{ "bbox": [ [ 88, 88, 2922, 1256 ] ], "categories": [ 20 ] }
{ "bbox": [ [ 103, 168, 2925, 1242 ] ], "categories": [ 22 ] }
{ "bbox": [ [ 34, 78, 3018, 1274 ] ], "categories": [ 19 ] }
{ "bbox": [ [ 85, 118, 3603, 1540 ] ], "categories": [ 13 ] }
{ "bbox": [ [ 561, 1695, 1811, 780 ] ], "categories": [ 7 ] }
{ "bbox": [ [ 525, 1460, 1272.071, 2124.762 ] ], "categories": [ 4 ] }
End of preview.

USD Side Detection Dataset (Front/Back)

A refined COCO-format dataset for detecting US Dollar currency and classifying whether the front or back side is visible.

Dataset Summary

  • Total Images: 3,618
  • Total Annotations: 3,746
  • Format: COCO + HuggingFace JSONL
  • Classes: 24 (denominations × front/back × authentic/counterfeit)
  • Classification Accuracy: 100% (all Front/Back classified)
Split Images Annotations
Train 2,671 2,738
Valid 597 627
Test 350 381

Class Mapping (24 classes)

ID Class ID Class
0 100USD-Back 12 Counterfeit 100 USD Back
1 100USD-Front 13 Counterfeit 100 USD Front
2 10USD-Back 14 Counterfeit 10USD Back
3 10USD-Front 15 Counterfeit 10USD Front
4 1USD-Back 16 Counterfeit 1USD Back
5 1USD-Front 17 Counterfeit 1USD Front
6 20USD-Back 18 Counterfeit 20USD Back
7 20USD-Front 19 Counterfeit 20USD Front
8 50USD-Back 20 Counterfeit 50USD Back
9 50USD-Front 21 Counterfeit 50USD Front
10 5USD-Back 22 Counterfeit 5USD Back
11 5USD-Front 23 Counterfeit 5USD Front

Breakdown:

  • 12 Regular USD: Front/Back for $1, $5, $10, $20, $50, $100
  • 12 Counterfeit USD: Front/Back for $1, $5, $10, $20, $50, $100

Note: All $2 bills and generic annotations removed - only Front/Back classified data remains.

Annotation Refinement

This dataset was refined using Roboflow's usd-classification/1 model:

Phase 1: Regular USD ✅

  • Reclassified 2,236 generic labels to Front/Back variants
  • 97% success rate

Phase 2: Counterfeit USD ✅

  • Reclassified 943 counterfeit annotations across all splits (train/valid/test)
  • 97.8% success rate (269/275 in valid/test, 674/762 in train)
  • Only 13 annotations remain generic (SSL errors during classification)

Phase 3: Data Cleaning ✅

  • Removed 289 $2 bill annotations (146 regular + 143 counterfeit)
  • Reason: Model lacks "two-front"/"two-back" classes, generalization only 75% accurate

Final Statistics

  • 3,746 annotations - 100% classified to Front/Back
  • 24 classes - 12 regular + 12 counterfeit
  • 0 $2 bills (all 289 removed - 146 regular + 143 counterfeit)

Usage

from datasets import load_dataset

dataset = load_dataset("ebowwa/usd-side-coco-annotations")

Or download directly and extract for use with YOLO/RF-DETR training.

Source

Original dataset from Roboflow - "Front/Back of USD 2" project.

Refined using automated Roboflow classification API with incremental saving for fault tolerance.

License

MIT

Downloads last month
1