Dataset Viewer
Auto-converted to Parquet Duplicate
sample_id
stringlengths
15
15
population
stringclasses
7 values
region
stringclasses
5 values
is_SSA
bool
2 classes
is_reference_panel
bool
2 classes
sex
stringclasses
1 value
age
int64
18
80
age_at_menarche
float64
9.06
17.6
parity_category
stringclasses
4 values
parity_total
int64
0
8
age_at_first_birth
float64
12
38.4
βŒ€
breastfeeding_duration_months
float64
0.01
42.2
βŒ€
menopause_age
float64
40.1
59.9
βŒ€
is_postmenopausal
bool
2 classes
RH_SAMPLE_00001
SSA_West
West
true
false
Female
49
13.711532
1-2
2
21.69737
12.166376
48.644106
true
RH_SAMPLE_00002
SSA_West
West
true
false
Female
33
14.494984
0
0
null
null
null
false
RH_SAMPLE_00003
SSA_West
West
true
false
Female
54
15.260801
1-2
2
13.929995
25.618119
52.097422
true
RH_SAMPLE_00004
SSA_West
West
true
false
Female
56
13.2681
0
0
null
null
51.735621
true
RH_SAMPLE_00005
SSA_West
West
true
false
Female
22
12.523364
5+
7
15.502129
19.812314
null
false
RH_SAMPLE_00006
SSA_West
West
true
false
Female
29
13.206916
3-4
4
18.973905
17.724698
null
false
RH_SAMPLE_00007
SSA_West
West
true
false
Female
47
14.998279
5+
5
14.225507
16.718245
51.048228
false
RH_SAMPLE_00008
SSA_West
West
true
false
Female
41
13.884722
1-2
1
20.652947
33.526284
47.256424
false
RH_SAMPLE_00009
SSA_West
West
true
false
Female
45
11.556692
3-4
3
16.077019
21.561965
53.257965
false
RH_SAMPLE_00010
SSA_West
West
true
false
Female
35
15.347591
0
0
null
null
null
false
RH_SAMPLE_00011
SSA_West
West
true
false
Female
56
16.069527
3-4
3
14.102443
27.319068
43.984217
true
RH_SAMPLE_00012
SSA_West
West
true
false
Female
54
12.593996
1-2
1
18.427142
13.91526
49.467593
true
RH_SAMPLE_00013
SSA_West
West
true
false
Female
46
14.704395
5+
8
16.509322
13.514769
47.071216
false
RH_SAMPLE_00014
SSA_West
West
true
false
Female
59
13.970801
3-4
4
16.598479
7.735443
50.760038
true
RH_SAMPLE_00015
SSA_West
West
true
false
Female
51
12.422751
3-4
3
16.731671
15.072597
49.959516
true
RH_SAMPLE_00016
SSA_West
West
true
false
Female
35
16.329239
3-4
3
20.076555
10.493305
null
false
RH_SAMPLE_00017
SSA_West
West
true
false
Female
49
12.153192
5+
5
24.189622
30.164316
50.678456
false
RH_SAMPLE_00018
SSA_West
West
true
false
Female
33
13.662138
5+
5
24.377176
21.788496
null
false
RH_SAMPLE_00019
SSA_West
West
true
false
Female
56
12.822424
3-4
3
23.140917
20.579497
44.229798
true
RH_SAMPLE_00020
SSA_West
West
true
false
Female
44
12.390881
1-2
1
19.622017
17.980698
51.83114
false
RH_SAMPLE_00021
SSA_West
West
true
false
Female
43
13.594563
1-2
2
17.928418
39.271954
47.806534
false
RH_SAMPLE_00022
SSA_West
West
true
false
Female
37
12.416004
3-4
3
13.841392
22.767377
null
false
RH_SAMPLE_00023
SSA_West
West
true
false
Female
60
11.213635
1-2
2
14.946245
18.71224
51.313621
true
RH_SAMPLE_00024
SSA_West
West
true
false
Female
43
16.264845
5+
6
16.828724
15.780778
47.35508
false
RH_SAMPLE_00025
SSA_West
West
true
false
Female
40
14.48888
3-4
3
25.747938
23.495876
46.469968
false
RH_SAMPLE_00026
SSA_West
West
true
false
Female
41
13.059954
1-2
2
14.083661
12.954292
47.725362
false
RH_SAMPLE_00027
SSA_West
West
true
false
Female
51
14.319536
3-4
4
23.141627
24.178809
49.251331
true
RH_SAMPLE_00028
SSA_West
West
true
false
Female
49
14.453551
1-2
1
20.309913
14.965929
49.30408
false
RH_SAMPLE_00029
SSA_West
West
true
false
Female
50
13.643552
0
0
null
null
52.313375
false
RH_SAMPLE_00030
SSA_West
West
true
false
Female
50
14.49849
0
0
null
null
48.173954
true
RH_SAMPLE_00031
SSA_West
West
true
false
Female
71
13.629315
1-2
2
18.410713
36.709041
50.046569
true
RH_SAMPLE_00032
SSA_West
West
true
false
Female
40
14.040294
3-4
4
21.280817
25.604115
50.144674
false
RH_SAMPLE_00033
SSA_West
West
true
false
Female
39
14.741028
0
0
null
null
null
false
RH_SAMPLE_00034
SSA_West
West
true
false
Female
35
13.839719
5+
8
21.683713
15.575248
null
false
RH_SAMPLE_00035
SSA_West
West
true
false
Female
52
12.638448
3-4
4
21.482786
15.222517
48.085527
true
RH_SAMPLE_00036
SSA_West
West
true
false
Female
59
13.244064
3-4
4
17.96904
20.595774
49.321117
true
RH_SAMPLE_00037
SSA_West
West
true
false
Female
44
12.963563
5+
8
12.686783
19.765709
48.093302
false
RH_SAMPLE_00038
SSA_West
West
true
false
Female
35
14.00255
1-2
1
17.500644
20.385842
null
false
RH_SAMPLE_00039
SSA_West
West
true
false
Female
35
14.784088
3-4
3
17.53757
26.316308
null
false
RH_SAMPLE_00040
SSA_West
West
true
false
Female
53
12.05907
0
0
null
null
49.472639
true
RH_SAMPLE_00041
SSA_West
West
true
false
Female
54
13.03706
3-4
3
17.761806
23.698591
47.201097
true
RH_SAMPLE_00042
SSA_West
West
true
false
Female
52
14.133298
3-4
3
18.835895
15.628321
46.066789
true
RH_SAMPLE_00043
SSA_West
West
true
false
Female
37
14.744155
0
0
null
null
null
false
RH_SAMPLE_00044
SSA_West
West
true
false
Female
48
10.603665
0
0
null
null
47.093714
true
RH_SAMPLE_00045
SSA_West
West
true
false
Female
46
13.204352
3-4
3
18.574774
20.01998
45.815481
true
RH_SAMPLE_00046
SSA_West
West
true
false
Female
48
11.5382
5+
8
19.916576
18.112434
49.560773
false
RH_SAMPLE_00047
SSA_West
West
true
false
Female
55
11.295348
3-4
4
19.484218
32.841965
49.522439
true
RH_SAMPLE_00048
SSA_West
West
true
false
Female
48
12.368797
1-2
2
20.304124
21.161352
45.72016
true
RH_SAMPLE_00049
SSA_West
West
true
false
Female
53
11.537108
5+
5
23.149344
21.476087
51.939892
true
RH_SAMPLE_00050
SSA_West
West
true
false
Female
46
14.715371
3-4
4
19.585924
28.242437
51.089672
false
RH_SAMPLE_00051
SSA_West
West
true
false
Female
48
14.397894
3-4
3
18.392939
20.287636
49.345986
false
RH_SAMPLE_00052
SSA_West
West
true
false
Female
53
14.90155
5+
5
18.761511
12.770993
51.515302
true
RH_SAMPLE_00053
SSA_West
West
true
false
Female
28
12.6306
5+
7
24.546346
27.059842
null
false
RH_SAMPLE_00054
SSA_West
West
true
false
Female
41
14.189384
3-4
4
24.998132
25.813006
47.25135
false
RH_SAMPLE_00055
SSA_West
West
true
false
Female
39
11.819877
5+
8
18.832393
12.426371
null
false
RH_SAMPLE_00056
SSA_West
West
true
false
Female
37
14.014303
0
0
null
null
null
false
RH_SAMPLE_00057
SSA_West
West
true
false
Female
42
14.136798
3-4
3
20.898534
18.01257
48.201354
false
RH_SAMPLE_00058
SSA_West
West
true
false
Female
63
12.861274
0
0
null
null
48.658283
true
RH_SAMPLE_00059
SSA_West
West
true
false
Female
35
15.146932
5+
8
16.783843
3.474028
null
false
RH_SAMPLE_00060
SSA_West
West
true
false
Female
57
14.753411
5+
6
17.233846
18.511117
53.391579
true
RH_SAMPLE_00061
SSA_West
West
true
false
Female
25
13.691893
3-4
3
20.48266
19.144616
null
false
RH_SAMPLE_00062
SSA_West
West
true
false
Female
41
13.031571
1-2
2
21.990378
19.430769
50.025618
false
RH_SAMPLE_00063
SSA_West
West
true
false
Female
47
14.200848
5+
6
15.59518
16.162374
48.776894
false
RH_SAMPLE_00064
SSA_West
West
true
false
Female
52
14.294649
5+
6
17.207965
18.852825
51.884151
true
RH_SAMPLE_00065
SSA_West
West
true
false
Female
54
12.866267
1-2
2
14.764022
23.900444
49.015803
true
RH_SAMPLE_00066
SSA_West
West
true
false
Female
55
12.715146
1-2
2
15.985339
15.950042
53.256757
true
RH_SAMPLE_00067
SSA_West
West
true
false
Female
41
13.59093
5+
5
20.205256
20.787993
48.455103
false
RH_SAMPLE_00068
SSA_West
West
true
false
Female
39
14.49787
5+
8
15.443585
28.829466
null
false
RH_SAMPLE_00069
SSA_West
West
true
false
Female
55
13.070478
3-4
3
18.492017
25.986771
51.121393
true
RH_SAMPLE_00070
SSA_West
West
true
false
Female
43
13.193536
3-4
3
17.281086
16.751788
50.730705
false
RH_SAMPLE_00071
SSA_West
West
true
false
Female
30
13.400979
3-4
3
21.541484
18.11835
null
false
RH_SAMPLE_00072
SSA_West
West
true
false
Female
31
15.410544
5+
7
16.900067
15.147465
null
false
RH_SAMPLE_00073
SSA_West
West
true
false
Female
34
12.915851
3-4
3
19.430111
16.249752
null
false
RH_SAMPLE_00074
SSA_West
West
true
false
Female
51
11.305646
1-2
1
17.098936
19.655696
42.683449
true
RH_SAMPLE_00075
SSA_West
West
true
false
Female
47
13.389982
5+
6
17.750168
27.166379
54.368524
false
RH_SAMPLE_00076
SSA_West
West
true
false
Female
53
11.226665
5+
8
19.437164
13.681365
54.54679
false
RH_SAMPLE_00077
SSA_West
West
true
false
Female
40
13.552227
1-2
2
23.778141
20.903714
50.70091
false
RH_SAMPLE_00078
SSA_West
West
true
false
Female
47
12.599042
5+
5
25.560928
24.798126
50.323605
false
RH_SAMPLE_00079
SSA_West
West
true
false
Female
53
12.328352
3-4
4
14.92692
11.597661
47.823339
true
RH_SAMPLE_00080
SSA_West
West
true
false
Female
41
15.845389
3-4
4
16.977403
11.157828
49.734092
false
RH_SAMPLE_00081
SSA_West
West
true
false
Female
50
13.694415
0
0
null
null
52.232123
false
RH_SAMPLE_00082
SSA_West
West
true
false
Female
37
13.263094
3-4
3
16.898083
24.222255
null
false
RH_SAMPLE_00083
SSA_West
West
true
false
Female
41
12.891322
5+
7
19.206411
25.767238
44.788803
false
RH_SAMPLE_00084
SSA_West
West
true
false
Female
40
12.222101
1-2
2
14.67021
18.558813
48.376109
false
RH_SAMPLE_00085
SSA_West
West
true
false
Female
31
15.071621
1-2
2
19.905024
17.785996
null
false
RH_SAMPLE_00086
SSA_West
West
true
false
Female
51
13.66046
3-4
3
22.580204
20.20614
44.557468
true
RH_SAMPLE_00087
SSA_West
West
true
false
Female
39
11.438637
5+
6
24.385313
24.581599
null
false
RH_SAMPLE_00088
SSA_West
West
true
false
Female
45
12.7372
1-2
1
22.084357
14.318177
46.44532
false
RH_SAMPLE_00089
SSA_West
West
true
false
Female
51
12.580865
5+
6
22.578017
27.269828
49.502321
true
RH_SAMPLE_00090
SSA_West
West
true
false
Female
50
14.724626
3-4
4
13.537402
16.973214
47.081218
true
RH_SAMPLE_00091
SSA_West
West
true
false
Female
53
12.741616
3-4
4
20.860052
31.291543
44.323961
true
RH_SAMPLE_00092
SSA_West
West
true
false
Female
44
11.954718
5+
7
19.605821
16.251322
51.797226
false
RH_SAMPLE_00093
SSA_West
West
true
false
Female
40
13.254063
1-2
1
21.869171
20.88744
47.051342
false
RH_SAMPLE_00094
SSA_West
West
true
false
Female
44
13.824335
3-4
3
18.27696
17.925599
52.27495
false
RH_SAMPLE_00095
SSA_West
West
true
false
Female
25
13.799856
5+
8
20.376942
17.961137
null
false
RH_SAMPLE_00096
SSA_West
West
true
false
Female
28
14.748391
3-4
4
26.810103
22.860617
null
false
RH_SAMPLE_00097
SSA_West
West
true
false
Female
29
14.337226
1-2
1
18.223625
22.765463
null
false
RH_SAMPLE_00098
SSA_West
West
true
false
Female
33
14.125411
1-2
2
19.926552
18.222665
null
false
RH_SAMPLE_00099
SSA_West
West
true
false
Female
50
13.107775
5+
7
17.376479
26.804643
50.329653
false
RH_SAMPLE_00100
SSA_West
West
true
false
Female
34
13.864478
3-4
4
16.636603
15.188788
null
false
End of preview. Expand in Data Studio

SSA Reproductive History Dataset (Women, Multi-ancestry, Synthetic)

Dataset summary

This dataset provides a synthetic reproductive history cohort of 10,000 women across multiple ancestry groups with a focus on sub-Saharan Africa (SSA). It includes:

  • Age at menarche.
  • Parity and parity category.
  • Age at first birth (for parous women).
  • Breastfeeding duration (aggregate months, for parous women).
  • Menopausal age and postmenopausal status.

Distributions are informed by LMIC menarche/menopause literature, DHS fertility data, and SSA breastfeeding analyses, but all individuals are synthetic and non-identifiable.

Cohort design

Sample size and populations

  • Total N: 10,000 synthetic women.

  • Populations:

    • SSA_West: 2,000
    • SSA_East: 2,000
    • SSA_Central: 1,500
    • SSA_Southern: 1,500
    • AAW (African American women): 1,500
    • EUR (European reference): 1,000
    • EAS (East Asian reference): 500
  • Age: 18–80 years, with population-specific means and SDs reflecting adult cohorts (e.g., slightly older ages in EUR/AAW).

Population labels align with other Electric Sheep Africa datasets, enabling integrated analyses (e.g., pairing reproductive history with body composition, CV metrics, or genomics).

Reproductive history variables

Age at menarche

  • Variable: age_at_menarche (years).
  • Modeled as a normal distribution with means by population:
    • SSA: ~13.2–13.5 years.
    • AAW: ~12.7 years.
    • EUR: ~12.5 years.
    • EAS: ~12.2 years.

These values are guided by:

  • Systematic reviews of age at menarche in LMICs and global analyses, which report global means around 12–13 years with regional variation.
  • SSA-focused studies suggesting slightly later menarche in some African populations compared with high-income settings.

Values are truncated between 9 and 18 years and constrained to fall before current age.

Parity and age at first birth

Variables:

  • parity_category – one of:
    • 0 (nulliparous)
    • 1-2
    • 3-4
    • 5+
  • parity_total – integer number of live births (0, or sampled within category range).
  • age_at_first_birth – age at first live birth (years) for parous women only (null for parity 0).

Design anchors:

  • SSA populations have higher fractions in 3-4 and 5+ parity categories and lower nulliparity, consistent with DHS patterns.
  • AAW, EUR, EAS have higher 0 and 1-2 parity and lower high-parity fractions.
  • Mean age_at_first_birth by population approximates:
    • SSA: ~19–20 years.
    • AAW: ~23 years.
    • EUR: ~28 years.
    • EAS: ~27 years.

These values reflect DHS fertility patterns in SSA and later childbearing in high-income settings. Ages at first birth are truncated to lie between 12 and 45 years and must precede current age.

Breastfeeding duration

Variables:

  • breastfeeding_duration_months – approximate total months of any breastfeeding across all births, defined for parous women only.

Per-population means (months):

  • SSA_West/East/Central/Southern: ~19–22 months.
  • AAW: ~14 months.
  • EUR: ~12 months.
  • EAS: ~16 months.

These are guided by SSA breastfeeding meta-analyses showing median any-breastfeeding durations around 18–24 months in many SSA settings, with shorter durations in some high-income populations. Values are truncated between 0 and 48 months.

Menopausal age and status

Variables:

  • menopause_age – modeled natural menopausal age (years), populated for women aged β‰₯40 years (null for younger women).
  • is_postmenopausal – boolean flag indicating whether the woman is postmenopausal at the time of observation.

Per-population mean ages at menopause are set around:

  • SSA: ~49.5–50.0 years.
  • AAW/EUR/EAS: ~50.5–51.0 years.

These values are guided by:

  • Global reviews indicating mean natural menopause around 50–52 years.
  • High-income cohort data (e.g., Treloar et al.) targeting ~50–51 years.

Synthetic is_postmenopausal is derived consistently: women with age >= menopause_age are almost always marked True.

File and schema

reproductive_history_data.parquet / reproductive_history_data.csv

One row per synthetic woman with:

  • Demographics / ancestry

    • sample_id
    • population – SSA_West, SSA_East, SSA_Central, SSA_Southern, AAW, EUR, EAS.
    • region – SSA subregion or Non_SSA.
    • is_SSA – boolean.
    • is_reference_panel – True for AAW/EUR/EAS.
    • sex – Female.
    • age – 18–80 years.
  • Reproductive milestones

    • age_at_menarche – age at menarche (years).
    • parity_category – 0, 1-2, 3-4, 5+.
    • parity_total – integer total live births.
    • age_at_first_birth – age at first live birth (years) for parous women; null for parity_total == 0.
    • breastfeeding_duration_months – total months of any breastfeeding, defined for parous women; null for parity_total == 0.
    • menopause_age – modeled menopausal age (years) for women aged β‰₯40 at observation; null for younger women.
    • is_postmenopausal – boolean.

Generation

The dataset is generated with:

  • reproductive_history/scripts/generate_reproductive_history.py

using configuration in:

  • reproductive_history/configs/reproductive_history_config.yaml

and literature curated in:

  • reproductive_history/docs/LITERATURE_INVENTORY.csv

Key modeling logic:

  1. Sample table – ages per population drawn from truncated normal distributions.
  2. Age at menarche – sampled by population with age-appropriate truncation and forced to precede current age.
  3. Parity – parity category sampled from population-specific distributions, then integer parity derived from category.
  4. Age at first birth – sampled only for parous women and truncated to be plausible and < current age.
  5. Breastfeeding duration – sampled only for parous women, with per-population means.
  6. Menopausal age and status – sampled for women age β‰₯40; is_postmenopausal derived based on a comparison of current age and menopause age.

Validation

Validation follows the GENOMICS Synthetic Data Playbook and is implemented in:

  • reproductive_history/scripts/validate_reproductive_history.py

Checks include:

  • C01–C02 – Sample size and population counts
    • Confirm N = 10,000 and per-pop counts match config within acceptable deviation.
  • C03 – Mean age at menarche by population
    • Compare observed means to config targets.
  • C04 – Parity category distributions by population
    • Compare observed parity category frequencies to config.
  • C05 – Mean age at first birth (parous women)
    • Validate mean by population.
  • C06 – Mean breastfeeding duration (parous women)
    • Validate mean by population.
  • C07 – Menopausal age distribution and status consistency
    • Check mean menopause age by population and that women with age >= menopause_age are typically postmenopausal.
  • C08 – Missingness in key variables (conditional)
    • Treat age_at_first_birth and breastfeeding_duration_months as required only for parous women; menopause_age as required only for women aged 40+.

The validator writes:

  • reproductive_history/output/validation_report.md

For the released version, all checks completed with an overall status of PASS.

Intended use

This dataset is intended for:

  • Methods development in reproductive epidemiology, e.g., modeling relationships between menarche, parity, breastfeeding, menopause, and disease risk.
  • Teaching and demonstration of reproductive life-course variables in SSA and comparison populations.
  • Benchmarking tools that require realistic but non-identifiable reproductive history data.

It is not suitable for:

  • Clinical decision-making or counseling.
  • Direct estimation of real-world prevalence or trends.
  • Individual-level inference.

All records are synthetic.

Ethical considerations

  • No real patient data are used.
  • Population labels are for simulation and methodologic realism only.
  • Analyses should be interpreted as methodological demonstrations rather than definitive statements about any specific country or group.

License

  • License: CC BY-NC 4.0.
  • Free to use for non-commercial research, education, and methods development with attribution.

Citation

If you use this dataset, please cite:

Electric Sheep Africa. "SSA Reproductive History Dataset (Women, Multi-ancestry, Synthetic)." Hugging Face Datasets.

and, as appropriate, cite the underlying literature used to inform the design (e.g., LMIC menarche timing reviews, DHS fertility analyses, SSA breastfeeding duration studies, and menopause age reviews).

Downloads last month
27