pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1449201367080386564/GllCx8JB_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1461790972392656898/e1248oRI_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1457045233783701504/fnjAg6lH_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Sinner & Hσɳҽყ & Anthropos & VacuumF</div> <div style="text-align: center; font-size: 14px;">@hel_ql-shahdashrf_-sinnerslayerr-witheredstrings</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Sinner & Hσɳҽყ & Anthropos & VacuumF. | Data | Sinner | Hσɳҽყ | Anthropos | VacuumF | | --- | --- | --- | --- | --- | | Tweets downloaded | 403 | 3240 | 1088 | 379 | | Retweets | 296 | 135 | 376 | 1 | | Short tweets | 3 | 734 | 77 | 12 | | Tweets kept | 104 | 2371 | 635 | 366 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2fhsvt3r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hel_ql-shahdashrf_-sinnerslayerr-witheredstrings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2kjvpfsa) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2kjvpfsa/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hel_ql-shahdashrf_-sinnerslayerr-witheredstrings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hel_ql-shahdashrf_-sinnerslayerr-witheredstrings/1638286821619/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hel_ql-shahdashrf_-sinnerslayerr-witheredstrings
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Sinner & Hσɳҽყ & Anthropos & VacuumF @hel\_ql-shahdashrf\_-sinnerslayerr-witheredstrings I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Sinner & Hσɳҽყ & Anthropos & VacuumF. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hel\_ql-shahdashrf\_-sinnerslayerr-witheredstrings's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1297708843338792961/PDO5peCc_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hælviðja 🤖 AI Bot </div> <div style="font-size: 15px">@helvegyr bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@helvegyr's tweets](https://twitter.com/helvegyr). | Data | Quantity | | --- | --- | | Tweets downloaded | 918 | | Retweets | 247 | | Short tweets | 128 | | Tweets kept | 543 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yujyvhf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @helvegyr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2b3wkz7n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2b3wkz7n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/helvegyr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/helvegyr/1617747025824/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/helvegyr
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Hælviðja AI Bot @helvegyr bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @helvegyr's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @helvegyr's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/808229217662095360/BD1WatwO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Henning Lobin 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@henninglobin bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@henninglobin's tweets](https://twitter.com/henninglobin). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>928</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>147</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>15</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>766</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/admmx96c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @henninglobin's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/f3vjyvag) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/f3vjyvag/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/henninglobin'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/henninglobin/1603610850998/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/henninglobin
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Henning Lobin AI Bot </div> <div style="font-size: 15px; color: #657786">@henninglobin bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @henninglobin's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>928</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>147</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>15</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>766</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @henninglobin's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/henninglobin'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @henninglobin's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>928</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>147</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>15</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>766</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @henninglobin's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/henninglobin'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @henninglobin's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>928</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>147</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>15</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>766</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @henninglobin's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/henninglobin'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1326613852264554505/oUJcW0om_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Harry 🤖 AI Bot </div> <div style="font-size: 15px">@henry_krahn bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@henry_krahn's tweets](https://twitter.com/henry_krahn). | Data | Quantity | | --- | --- | | Tweets downloaded | 265 | | Retweets | 33 | | Short tweets | 17 | | Tweets kept | 215 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24hpwp4r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @henry_krahn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/33v3umfr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/33v3umfr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/henry_krahn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/henry_krahn/1616683594066/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/henry_krahn
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Harry AI Bot @henry\_krahn bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @henry\_krahn's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @henry\_krahn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359326778456563721/_7YgZYJo_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fraser Allison 🤖 AI Bot </div> <div style="font-size: 15px">@heresathought bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@heresathought's tweets](https://twitter.com/heresathought). | Data | Quantity | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 508 | | Short tweets | 137 | | Tweets kept | 2569 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/do20a494/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heresathought's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ko0kukna) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ko0kukna/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heresathought') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/heresathought/1616728810188/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/heresathought
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fraser Allison AI Bot @heresathought bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @heresathought's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @heresathought's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1233052680190296064/zcbLKhOR_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Claire</div> <div style="text-align: center; font-size: 14px;">@herialc</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Claire. | Data | Claire | | --- | --- | | Tweets downloaded | 539 | | Retweets | 219 | | Short tweets | 27 | | Tweets kept | 293 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bop9va7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @herialc's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10twdkn3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10twdkn3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/herialc') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/herialc
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Claire @herialc I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Claire. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @herialc's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1364393973331021830/i7JjvUhX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ash 🫀</div> <div style="text-align: center; font-size: 14px;">@hey_ash21</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ash 🫀. | Data | ash 🫀 | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 193 | | Short tweets | 132 | | Tweets kept | 2917 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tujmcza/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hey_ash21's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pwdhn6q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pwdhn6q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hey_ash21') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/hey_ash21/1640924344980/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hey_ash21
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ash @hey\_ash21 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ash . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hey\_ash21's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1416877970132672512/942NnDJA_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Arav</div> <div style="text-align: center; font-size: 14px;">@heyarav</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Arav. | Data | Arav | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 411 | | Short tweets | 786 | | Tweets kept | 2049 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n441q7z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heyarav's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s8u4vm6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s8u4vm6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heyarav') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/heyarav
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Arav @heyarav I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Arav. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @heyarav's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365367887003721736/UxsAH5mJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Emily A. Heydon 🤖 AI Bot </div> <div style="font-size: 15px">@heydonemily bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@heydonemily's tweets](https://twitter.com/heydonemily). | Data | Quantity | | --- | --- | | Tweets downloaded | 3212 | | Retweets | 1146 | | Short tweets | 91 | | Tweets kept | 1975 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/xiwslr2e/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heydonemily's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1uwkh4ab) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1uwkh4ab/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heydonemily') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/heydonemily/1616700113796/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/heydonemily
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Emily A. Heydon AI Bot @heydonemily bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @heydonemily's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @heydonemily's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344095133348876294/ehT8yba2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">i'm alice 🤖 AI Bot </div> <div style="font-size: 15px">@heyimheroic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@heyimheroic's tweets](https://twitter.com/heyimheroic). | Data | Quantity | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 250 | | Short tweets | 317 | | Tweets kept | 2638 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1oztcf0g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @heyimheroic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3t922fvw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3t922fvw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/heyimheroic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/heyimheroic/1614216737501/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/heyimheroic
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
i'm alice AI Bot @heyimheroic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @heyimheroic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @heyimheroic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1383312391962718211/ppzzt2V__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">HIDEKI NAGANUMA|CEO OF FUNKY FRESH BEATS 🤖 AI Bot </div> <div style="font-size: 15px">@hideki_naganuma bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hideki_naganuma's tweets](https://twitter.com/hideki_naganuma). | Data | Quantity | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 1186 | | Short tweets | 208 | | Tweets kept | 1833 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1766c7eg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hideki_naganuma's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13aynk8e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13aynk8e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hideki_naganuma') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hideki_naganuma/1619655487401/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hideki_naganuma
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
HIDEKI NAGANUMA|CEO OF FUNKY FRESH BEATS AI Bot @hideki\_naganuma bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hideki\_naganuma's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hideki\_naganuma's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/914211724412166144/Bf2Yij9b_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1409559937445990403/9bkJBvX9_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HIDEO_KOJIMA & jamar "mad dog of ny" majima 🇵🇸</div> <div style="text-align: center; font-size: 14px;">@hideo_kojima_en-rxmaybike</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HIDEO_KOJIMA & jamar "mad dog of ny" majima 🇵🇸. | Data | HIDEO_KOJIMA | jamar "mad dog of ny" majima 🇵🇸 | | --- | --- | --- | | Tweets downloaded | 3228 | 3166 | | Retweets | 2656 | 1404 | | Short tweets | 29 | 432 | | Tweets kept | 543 | 1330 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3nd0jitx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hideo_kojima_en-rxmaybike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3digtvss) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3digtvss/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hideo_kojima_en-rxmaybike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hideo_kojima_en-rxmaybike/1630345229826/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hideo_kojima_en-rxmaybike
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG HIDEO\_KOJIMA & jamar "mad dog of ny" majima 🇵🇸 @hideo\_kojima\_en-rxmaybike I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from HIDEO\_KOJIMA & jamar "mad dog of ny" majima 🇵🇸. Data: Tweets downloaded, HIDEO\_KOJIMA: 3228, jamar "mad dog of ny" majima 🇵🇸: 3166 Data: Retweets, HIDEO\_KOJIMA: 2656, jamar "mad dog of ny" majima 🇵🇸: 1404 Data: Short tweets, HIDEO\_KOJIMA: 29, jamar "mad dog of ny" majima 🇵🇸: 432 Data: Tweets kept, HIDEO\_KOJIMA: 543, jamar "mad dog of ny" majima 🇵🇸: 1330 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hideo\_kojima\_en-rxmaybike's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/561876312/mv_scaled1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">michael vassar 🤖 AI Bot </div> <div style="font-size: 15px">@hifrommichaelv bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hifrommichaelv's tweets](https://twitter.com/hifrommichaelv). | Data | Quantity | | --- | --- | | Tweets downloaded | 3214 | | Retweets | 1354 | | Short tweets | 75 | | Tweets kept | 1785 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/m2fhvkor/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hifrommichaelv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28nb63ty) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28nb63ty/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hifrommichaelv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hifrommichaelv/1617763230584/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hifrommichaelv
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
michael vassar AI Bot @hifrommichaelv bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hifrommichaelv's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hifrommichaelv's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1270094301104680960/HEi6H4Pw_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hanne Oberman 🤖 AI Bot </div> <div style="font-size: 15px">@hioberman bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hioberman's tweets](https://twitter.com/hioberman). | Data | Quantity | | --- | --- | | Tweets downloaded | 981 | | Retweets | 429 | | Short tweets | 94 | | Tweets kept | 458 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dpu5ftug/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hioberman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ilrmnch) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ilrmnch/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hioberman') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hioberman/1616690765391/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hioberman
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Hanne Oberman AI Bot @hioberman bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hioberman's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hioberman's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/646595746905620480/oeKI14gB_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ひろゆき, Hiroyuki Nishimura</div> <div style="text-align: center; font-size: 14px;">@hirox246</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ひろゆき, Hiroyuki Nishimura. | Data | ひろゆき, Hiroyuki Nishimura | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 288 | | Short tweets | 2002 | | Tweets kept | 956 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1fs862rv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hirox246's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ktc28kc0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ktc28kc0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hirox246') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/hirox246/1648473171015/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hirox246
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ひろゆき, Hiroyuki Nishimura @hirox246 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ひろゆき, Hiroyuki Nishimura. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hirox246's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1323296791060729856/knWLBrkl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">HISTORY 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@history bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@history's tweets](https://twitter.com/history). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3204</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>202</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>83</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2919</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2p707drp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @history's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dvbo5tvs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dvbo5tvs/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/history'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/history/1605859215676/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/history
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">HISTORY AI Bot </div> <div style="font-size: 15px; color: #657786">@history bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @history's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3204</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>202</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>83</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2919</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @history's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/history'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @history's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3204</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>202</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>83</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2919</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @history's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/history'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @history's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3204</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>202</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>83</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2919</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @history's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/history'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1431060400171270149/X2agCkD0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">(心) !!!Ma-tin Korii!!! Uwa~😃!!!</div> <div style="text-align: center; font-size: 14px;">@histronicmonstr</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from (心) !!!Ma-tin Korii!!! Uwa~😃!!!. | Data | (心) !!!Ma-tin Korii!!! Uwa~😃!!! | | --- | --- | | Tweets downloaded | 3203 | | Retweets | 97 | | Short tweets | 488 | | Tweets kept | 2618 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sdp3pm6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @histronicmonstr's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ms6e48p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ms6e48p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/histronicmonstr') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/histronicmonstr/1642568219493/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/histronicmonstr
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT (心) !!!Ma-tin Korii!!! Uwa~!!! @histronicmonstr I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from (心) !!!Ma-tin Korii!!! Uwa~!!!. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @histronicmonstr's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1268450577341657088/f3pXCs4x_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1272832254625054720/wG_4whEd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">IO Interactive & HITMAN 3</div> <div style="text-align: center; font-size: 14px;">@hitman-iointeractive</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from IO Interactive & HITMAN 3. | Data | IO Interactive | HITMAN 3 | | --- | --- | --- | | Tweets downloaded | 3249 | 3240 | | Retweets | 96 | 305 | | Short tweets | 232 | 136 | | Tweets kept | 2921 | 2799 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/truv7g0r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hitman-iointeractive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zg9zf52) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zg9zf52/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hitman-iointeractive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hitman-iointeractive/1625121312417/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hitman-iointeractive
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG IO Interactive & HITMAN 3 @hitman-iointeractive I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from IO Interactive & HITMAN 3. Data: Tweets downloaded, IO Interactive: 3249, HITMAN 3: 3240 Data: Retweets, IO Interactive: 96, HITMAN 3: 305 Data: Short tweets, IO Interactive: 232, HITMAN 3: 136 Data: Tweets kept, IO Interactive: 2921, HITMAN 3: 2799 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hitman-iointeractive's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1291727686100856835/ysb2E82s_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Hong Kong Baptist University</div> <div style="text-align: center; font-size: 14px;">@hkbaptistu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Hong Kong Baptist University. | Data | Hong Kong Baptist University | | --- | --- | | Tweets downloaded | 1160 | | Retweets | 197 | | Short tweets | 18 | | Tweets kept | 945 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4cn0io1a/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hkbaptistu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jh09nx1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jh09nx1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hkbaptistu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hkbaptistu/1635142126298/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hkbaptistu
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Hong Kong Baptist University @hkbaptistu I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Hong Kong Baptist University. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hkbaptistu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1347573675621449728/oPWI_p4T_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hannah McGregor 🤖 AI Bot </div> <div style="font-size: 15px">@hkpmcgregor bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hkpmcgregor's tweets](https://twitter.com/hkpmcgregor). | Data | Quantity | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 1100 | | Short tweets | 209 | | Tweets kept | 1908 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1y9wddzb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hkpmcgregor's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hvz5ytm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hvz5ytm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hkpmcgregor') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hkpmcgregor/1616779321544/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hkpmcgregor
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Hannah McGregor AI Bot @hkpmcgregor bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hkpmcgregor's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hkpmcgregor's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1302727397343744000/YV7WHWZj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">eric 🤖 AI Bot </div> <div style="font-size: 15px">@hmtodayiwill bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hmtodayiwill's tweets](https://twitter.com/hmtodayiwill). | Data | Quantity | | --- | --- | | Tweets downloaded | 1431 | | Retweets | 257 | | Short tweets | 367 | | Tweets kept | 807 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/149i7nkl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hmtodayiwill's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ypieu4o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ypieu4o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hmtodayiwill') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hmtodayiwill/1614138459981/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hmtodayiwill
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
eric AI Bot @hmtodayiwill bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hmtodayiwill's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hmtodayiwill's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1408277423498698752/aUTHbyW2_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Moe Chi Minh</div> <div style="text-align: center; font-size: 14px;">@hochimeme1</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Moe Chi Minh. | Data | Moe Chi Minh | | --- | --- | | Tweets downloaded | 3242 | | Retweets | 55 | | Short tweets | 484 | | Tweets kept | 2703 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21ljhxlm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hochimeme1's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vctf4ad) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vctf4ad/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hochimeme1') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hochimeme1/1625861211819/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hochimeme1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Moe Chi Minh @hochimeme1 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Moe Chi Minh. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hochimeme1's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378566172946395136/MdKVnvRJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ridderhoff 🤖 AI Bot </div> <div style="font-size: 15px">@hoffridder bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hoffridder's tweets](https://twitter.com/hoffridder). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 16 | | Short tweets | 443 | | Tweets kept | 2791 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1piyzy7v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hoffridder's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/365i3db0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/365i3db0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hoffridder') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hoffridder/1617780877643/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hoffridder
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
ridderhoff AI Bot @hoffridder bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hoffridder's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hoffridder's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1048600400843218944/fmCS2j9__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">grace 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@hollagrace_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hollagrace_'s tweets](https://twitter.com/hollagrace_). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3047</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>358</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>147</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2542</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3c7c1ng9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hollagrace_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bmkelco) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bmkelco/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hollagrace_'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hollagrace_/1608309713968/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hollagrace_
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">grace AI Bot </div> <div style="font-size: 15px; color: #657786">@hollagrace_ bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @hollagrace_'s tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3047</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>358</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>147</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2542</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @hollagrace_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hollagrace_'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @hollagrace_'s tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3047</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>358</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>147</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2542</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @hollagrace_'s tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/hollagrace_'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @hollagrace_'s tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3047</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>358</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>147</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2542</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @hollagrace_'s tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/hollagrace_'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1342621593470709760/MIC3BVyY_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sezen Spessa 🤖 AI Bot </div> <div style="font-size: 15px">@hollidayspessa bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hollidayspessa's tweets](https://twitter.com/hollidayspessa). | Data | Quantity | | --- | --- | | Tweets downloaded | 3217 | | Retweets | 1140 | | Short tweets | 359 | | Tweets kept | 1718 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/16l4tber/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hollidayspessa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29lkodgj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29lkodgj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hollidayspessa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hollidayspessa/1617877088770/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hollidayspessa
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Sezen Spessa AI Bot @hollidayspessa bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hollidayspessa's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hollidayspessa's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1384242089097981952/vhV-3M06_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">martian</div> <div style="text-align: center; font-size: 14px;">@holocenite</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from martian. | Data | martian | | --- | --- | | Tweets downloaded | 3236 | | Retweets | 270 | | Short tweets | 250 | | Tweets kept | 2716 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/37xmwiih/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @holocenite's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1zuygzmm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1zuygzmm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/holocenite') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/holocenite/1629695532486/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/holocenite
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT martian @holocenite I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from martian. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @holocenite's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374800966726324228/RMC8cB-D_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">sn8rl sn8rl gr8wl gr8wl grrrrrrrr 8ark grrrrrrrr 🤖 AI Bot </div> <div style="font-size: 15px">@homehousesys bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@homehousesys's tweets](https://twitter.com/homehousesys). | Data | Quantity | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 32 | | Short tweets | 634 | | Tweets kept | 2578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ep0ywdr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @homehousesys's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14mt5icw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14mt5icw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/homehousesys') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/homehousesys/1616643362209/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/homehousesys
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
sn8rl sn8rl gr8wl gr8wl grrrrrrrr 8ark grrrrrrrr AI Bot @homehousesys bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @homehousesys's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @homehousesys's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1385156301194366977/bNgzDBDI_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Honey Singh</div> <div style="text-align: center; font-size: 14px;">@honeytech</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Honey Singh. | Data | Honey Singh | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 473 | | Short tweets | 422 | | Tweets kept | 2352 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/i4rpk84l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @honeytech's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1r4kueus) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1r4kueus/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/honeytech') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/honeytech/1628523497653/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/honeytech
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Honey Singh @honeytech I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Honey Singh. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @honeytech's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374823579129417735/LbS7YP1t_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">RealTalkDoe 🤖 AI Bot </div> <div style="font-size: 15px">@horniestdoe bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@horniestdoe's tweets](https://twitter.com/horniestdoe). | Data | Quantity | | --- | --- | | Tweets downloaded | 801 | | Retweets | 265 | | Short tweets | 82 | | Tweets kept | 454 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2eqcovty/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @horniestdoe's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1667e2ri) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1667e2ri/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/horniestdoe') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/horniestdoe/1616726630751/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/horniestdoe
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
RealTalkDoe AI Bot @horniestdoe bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @horniestdoe's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @horniestdoe's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417892518981738502/Qb2SoLGO_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">horsey</div> <div style="text-align: center; font-size: 14px;">@horse1350</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from horsey. | Data | horsey | | --- | --- | | Tweets downloaded | 1783 | | Retweets | 26 | | Short tweets | 352 | | Tweets kept | 1405 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gpy0wuu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @horse1350's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fgwh8u1y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fgwh8u1y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/horse1350') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/horse1350/1627251450034/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/horse1350
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT horsey @horse1350 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from horsey. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @horse1350's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/465259768542539776/EMUR-g7P_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hoshi Risu 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@hoshirisu bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hoshirisu's tweets](https://twitter.com/hoshirisu). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>837</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>38</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>112</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>687</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/y5x4tdgg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hoshirisu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/17kog9ej) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/17kog9ej/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hoshirisu'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/hoshirisu
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hoshi Risu AI Bot </div> <div style="font-size: 15px; color: #657786">@hoshirisu bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @hoshirisu's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>837</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>38</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>112</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>687</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @hoshirisu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hoshirisu'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @hoshirisu's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>837</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>38</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>112</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>687</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @hoshirisu's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/hoshirisu'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @hoshirisu's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>837</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>38</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>112</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>687</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @hoshirisu's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/hoshirisu'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1322637724470358022/ccOsLDPE_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">checking my mcdouble for nanochips & HUSSY2K.</div> <div style="text-align: center; font-size: 14px;">@hostagekiller-suicidepussy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from checking my mcdouble for nanochips & HUSSY2K.. | Data | checking my mcdouble for nanochips | HUSSY2K. | | --- | --- | --- | | Tweets downloaded | 3226 | 3193 | | Retweets | 107 | 847 | | Short tweets | 1124 | 389 | | Tweets kept | 1995 | 1957 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1k8e9itd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hostagekiller-suicidepussy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dor6qtfm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dor6qtfm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hostagekiller-suicidepussy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/hostagekiller-suicidepussy/1643315062963/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hostagekiller-suicidepussy
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG checking my mcdouble for nanochips & HUSSY2K. @hostagekiller-suicidepussy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from checking my mcdouble for nanochips & HUSSY2K.. Data: Tweets downloaded, checking my mcdouble for nanochips: 3226, HUSSY2K.: 3193 Data: Retweets, checking my mcdouble for nanochips: 107, HUSSY2K.: 847 Data: Short tweets, checking my mcdouble for nanochips: 1124, HUSSY2K.: 389 Data: Tweets kept, checking my mcdouble for nanochips: 1995, HUSSY2K.: 1957 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hostagekiller-suicidepussy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">HUSSY2K.</div> <div style="text-align: center; font-size: 14px;">@hostagekiller</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from HUSSY2K.. | Data | HUSSY2K. | | --- | --- | | Tweets downloaded | 3186 | | Retweets | 819 | | Short tweets | 395 | | Tweets kept | 1972 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/u2hpg02v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hostagekiller's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tx11pqs) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tx11pqs/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hostagekiller') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/hostagekiller/1641809138009/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hostagekiller
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT HUSSY2K. @hostagekiller I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from HUSSY2K.. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hostagekiller's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1354914190532734976/Ggf6iWRU_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">hotwifekatrina</div> <div style="text-align: center; font-size: 14px;">@hotwifekatrina</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from hotwifekatrina. | Data | hotwifekatrina | | --- | --- | | Tweets downloaded | 287 | | Retweets | 48 | | Short tweets | 56 | | Tweets kept | 183 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1g7ptepk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotwifekatrina's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23zr3ecx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23zr3ecx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotwifekatrina') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hotwifekatrina/1629228959695/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hotwifekatrina
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT hotwifekatrina @hotwifekatrina I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from hotwifekatrina. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hotwifekatrina's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1118856595964776448/nywdsbgX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vegas QOS Hotwife ❤</div> <div style="text-align: center; font-size: 14px;">@hotwifeofohiolv</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vegas QOS Hotwife ❤. | Data | Vegas QOS Hotwife ❤ | | --- | --- | | Tweets downloaded | 3039 | | Retweets | 1671 | | Short tweets | 557 | | Tweets kept | 811 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2lckgzdc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hotwifeofohiolv's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3fvzdk4w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3fvzdk4w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hotwifeofohiolv') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/hotwifeofohiolv
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Vegas QOS Hotwife @hotwifeofohiolv I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Vegas QOS Hotwife . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hotwifeofohiolv's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364729653802405890/echyRi6H_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kirisame 🤖 AI Bot </div> <div style="font-size: 15px">@hourousha0153 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hourousha0153's tweets](https://twitter.com/hourousha0153). | Data | Quantity | | --- | --- | | Tweets downloaded | 890 | | Retweets | 170 | | Short tweets | 81 | | Tweets kept | 639 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/iceps8s5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hourousha0153's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17k39m43) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17k39m43/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hourousha0153') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hourousha0153/1617910460279/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hourousha0153
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Kirisame AI Bot @hourousha0153 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hourousha0153's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hourousha0153's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1379216330897960962/5J3athoG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">kefu 🤖 AI Bot </div> <div style="font-size: 15px">@hugebraingenius bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hugebraingenius's tweets](https://twitter.com/hugebraingenius). | Data | Quantity | | --- | --- | | Tweets downloaded | 3234 | | Retweets | 302 | | Short tweets | 632 | | Tweets kept | 2300 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2z5ko2pc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hugebraingenius's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/30pn15mh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/30pn15mh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hugebraingenius') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hugebraingenius/1617764388784/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hugebraingenius
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
kefu AI Bot @hugebraingenius bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hugebraingenius's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hugebraingenius's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1207495020472946688/JpslG4UC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Huma Imtiaz</div> <div style="text-align: center; font-size: 14px;">@humaimtiaz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Huma Imtiaz. | Data | Huma Imtiaz | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 1693 | | Short tweets | 132 | | Tweets kept | 1415 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2j0qtwr6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @humaimtiaz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36ubm36c) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36ubm36c/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/humaimtiaz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/humaimtiaz/1620515052161/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/humaimtiaz
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Huma Imtiaz @humaimtiaz I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Huma Imtiaz. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @humaimtiaz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1380079614823817216/q_HrSVt9_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Russ is Rejecting the Fae's 💮ffer 🤖 AI Bot </div> <div style="font-size: 15px">@humanisque bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@humanisque's tweets](https://twitter.com/humanisque). | Data | Quantity | | --- | --- | | Tweets downloaded | 242 | | Retweets | 2 | | Short tweets | 6 | | Tweets kept | 234 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/197xo6fl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @humanisque's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/clqbbcsq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/clqbbcsq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/humanisque') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/humanisque/1618428842746/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/humanisque
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Russ is Rejecting the Fae's ffer AI Bot @humanisque bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @humanisque's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @humanisque's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1203475963499208706/kzGQ2awX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">sneaky Pete 🤖 AI Bot </div> <div style="font-size: 15px">@humantestkit bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@humantestkit's tweets](https://twitter.com/humantestkit). | Data | Quantity | | --- | --- | | Tweets downloaded | 3204 | | Retweets | 239 | | Short tweets | 506 | | Tweets kept | 2459 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mm8bbeg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @humantestkit's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2t4jqmz8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2t4jqmz8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/humantestkit') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/humantestkit
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
sneaky Pete AI Bot @humantestkit bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @humantestkit's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @humantestkit's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357037242615758851/F5EjIdMo_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">luka 🤖 AI Bot </div> <div style="font-size: 15px">@hunny6ee bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hunny6ee's tweets](https://twitter.com/hunny6ee). | Data | Quantity | | --- | --- | | Tweets downloaded | 2972 | | Retweets | 1793 | | Short tweets | 220 | | Tweets kept | 959 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jkrci9f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hunny6ee's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/23lopask) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/23lopask/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hunny6ee') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hunny6ee/1614119084449/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hunny6ee
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
luka AI Bot @hunny6ee bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hunny6ee's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hunny6ee's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1187512590882234368/l8HygRq2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Harriet Hunt🛰 🤖 AI Bot </div> <div style="font-size: 15px">@hunt_harriet bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hunt_harriet's tweets](https://twitter.com/hunt_harriet). | Data | Quantity | | --- | --- | | Tweets downloaded | 323 | | Retweets | 88 | | Short tweets | 34 | | Tweets kept | 201 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3uci64x8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hunt_harriet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8nvimjk4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8nvimjk4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hunt_harriet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hunt_harriet/1617775620856/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hunt_harriet
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Harriet Hunt AI Bot @hunt\_harriet bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hunt\_harriet's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hunt\_harriet's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/787524910771937280/BdktBoUY_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nita Strauss</div> <div style="text-align: center; font-size: 14px;">@hurricanenita</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nita Strauss. | Data | Nita Strauss | | --- | --- | | Tweets downloaded | 3227 | | Retweets | 533 | | Short tweets | 340 | | Tweets kept | 2354 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24f5ya67/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hurricanenita's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16bfnlvq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16bfnlvq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hurricanenita') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/hurricanenita
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Nita Strauss @hurricanenita I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Nita Strauss. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hurricanenita's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1410198055534710787/MWQhi2jp_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404094020150693888/LQnyM5vj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Nocodepiper & HUSTLE & CONQUER</div> <div style="text-align: center; font-size: 14px;">@hustlenconquer-nocodepiper</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Nocodepiper & HUSTLE & CONQUER. | Data | Nocodepiper | HUSTLE & CONQUER | | --- | --- | --- | | Tweets downloaded | 1652 | 2721 | | Retweets | 281 | 19 | | Short tweets | 259 | 240 | | Tweets kept | 1112 | 2462 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/vdyvbiis/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hustlenconquer-nocodepiper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sltkk6jw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sltkk6jw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hustlenconquer-nocodepiper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hustlenconquer-nocodepiper/1625647094650/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hustlenconquer-nocodepiper
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Nocodepiper & HUSTLE & CONQUER @hustlenconquer-nocodepiper I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Nocodepiper & HUSTLE & CONQUER. Data: Tweets downloaded, Nocodepiper: 1652, HUSTLE & CONQUER: 2721 Data: Retweets, Nocodepiper: 281, HUSTLE & CONQUER: 19 Data: Short tweets, Nocodepiper: 259, HUSTLE & CONQUER: 240 Data: Tweets kept, Nocodepiper: 1112, HUSTLE & CONQUER: 2462 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hustlenconquer-nocodepiper's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/504912656256352256/swrUCKHO_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hu Xijin 胡锡进 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@huxijin_gt bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@huxijin_gt's tweets](https://twitter.com/huxijin_gt). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2167</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>14</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2149</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3s1czwb3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @huxijin_gt's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3h7d51hp) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3h7d51hp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/huxijin_gt'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/huxijin_gt/1603826688877/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/huxijin_gt
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hu Xijin 胡锡进 AI Bot </div> <div style="font-size: 15px; color: #657786">@huxijin_gt bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @huxijin_gt's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2167</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>14</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2149</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @huxijin_gt's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/huxijin_gt'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @huxijin_gt's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2167</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>14</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2149</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @huxijin_gt's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/huxijin_gt'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @huxijin_gt's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2167</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>14</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2149</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @huxijin_gt's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/huxijin_gt'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1315573755066961920/I3tZCUi1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hogeschool van Amsterdam (HvA) 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@hva bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hva's tweets](https://twitter.com/hva). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>840</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>94</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2307</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2esbwpsa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hva's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/xbh9gr6f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/xbh9gr6f/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hva'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hva/1606144762147/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hva
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Hogeschool van Amsterdam (HvA) AI Bot </div> <div style="font-size: 15px; color: #657786">@hva bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @hva's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3241</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>840</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>94</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2307</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @hva's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/hva'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @hva's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3241</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>840</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>94</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2307</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @hva's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/hva'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @hva's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3241</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>840</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>94</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2307</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @hva's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/hva'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373354229457358852/X7iF3Jlj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">heavens 🤖 AI Bot </div> <div style="font-size: 15px">@hvvvvns bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hvvvvns's tweets](https://twitter.com/hvvvvns). | Data | Quantity | | --- | --- | | Tweets downloaded | 2113 | | Retweets | 256 | | Short tweets | 246 | | Tweets kept | 1611 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36ntic3w/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hvvvvns's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/22lkz20i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/22lkz20i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hvvvvns') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hvvvvns/1616688397614/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hvvvvns
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
heavens AI Bot @hvvvvns bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hvvvvns's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hvvvvns's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1275064805/wrist3_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">what is proctoring if not surveillance persevering 🤖 AI Bot </div> <div style="font-size: 15px">@hypervisible bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hypervisible's tweets](https://twitter.com/hypervisible). | Data | Quantity | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 1259 | | Short tweets | 756 | | Tweets kept | 1217 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ig2xg6o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hypervisible's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t0vlj1u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t0vlj1u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hypervisible') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hypervisible/1617240985210/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hypervisible
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
what is proctoring if not surveillance persevering AI Bot @hypervisible bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hypervisible's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hypervisible's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1290728570541625344/3WjJbLDD_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ᴊᴀᴋᴇ 🤖 AI Bot </div> <div style="font-size: 15px">@hypogolic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@hypogolic's tweets](https://twitter.com/hypogolic). | Data | Quantity | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 843 | | Short tweets | 232 | | Tweets kept | 2165 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/n67xr7jp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @hypogolic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uzjvv38k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uzjvv38k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/hypogolic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/hypogolic/1618114859275/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/hypogolic
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
ᴊᴀᴋᴇ AI Bot @hypogolic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @hypogolic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @hypogolic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1161880961904103427/JVRYr0AS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Kirook 🤖 AI Bot </div> <div style="font-size: 15px">@i_am_kirook bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@i_am_kirook's tweets](https://twitter.com/i_am_kirook). | Data | Quantity | | --- | --- | | Tweets downloaded | 3036 | | Retweets | 2210 | | Short tweets | 98 | | Tweets kept | 728 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/eha93a65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @i_am_kirook's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1oalyp1r) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1oalyp1r/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/i_am_kirook') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/i_am_kirook/1614143839460/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/i_am_kirook
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Kirook AI Bot @i\_am\_kirook bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @i\_am\_kirook's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @i\_am\_kirook's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1404915017703575558/05H2noyT_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">🍮CC🍮</div> <div style="text-align: center; font-size: 14px;">@i_apx_86</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 🍮CC🍮. | Data | 🍮CC🍮 | | --- | --- | | Tweets downloaded | 701 | | Retweets | 391 | | Short tweets | 22 | | Tweets kept | 288 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2xwg9l0v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @i_apx_86's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/11srzptq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/11srzptq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/i_apx_86') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/i_apx_86/1625887532973/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/i_apx_86
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT CC @i\_apx\_86 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from CC. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @i\_apx\_86's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365378781330903044/IM1reWEI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">ben 🇺🇳🇮🇹🇺🇲 🤖 AI Bot </div> <div style="font-size: 15px">@i_like_flags bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@i_like_flags's tweets](https://twitter.com/i_like_flags). | Data | Quantity | | --- | --- | | Tweets downloaded | 360 | | Retweets | 7 | | Short tweets | 53 | | Tweets kept | 300 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1j4eszm8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @i_like_flags's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24d5pyin) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24d5pyin/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/i_like_flags') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/i_like_flags/1616728238672/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/i_like_flags
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
ben 🇺🇳🇮🇹🇺🇲 AI Bot @i\_like\_flags bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @i\_like\_flags's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @i\_like\_flags's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1268449773406822400/hVJx4jei_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Fabio Tollon 🤖 AI Bot </div> <div style="font-size: 15px">@i_run_i_think bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@i_run_i_think's tweets](https://twitter.com/i_run_i_think). | Data | Quantity | | --- | --- | | Tweets downloaded | 185 | | Retweets | 35 | | Short tweets | 14 | | Tweets kept | 136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1b5v8pky/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @i_run_i_think's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1v3tivge) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1v3tivge/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/i_run_i_think') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/i_run_i_think/1616778591703/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/i_run_i_think
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Fabio Tollon AI Bot @i\_run\_i\_think bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @i\_run\_i\_think's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @i\_run\_i\_think's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1371138320026177536/FzLPlrhM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aaron</div> <div style="text-align: center; font-size: 14px;">@iamaaronwill</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aaron. | Data | Aaron | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 102 | | Short tweets | 1332 | | Tweets kept | 1811 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/necnw243/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamaaronwill's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2500hrd9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2500hrd9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamaaronwill') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/iamaaronwill/1622081352140/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/iamaaronwill
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Aaron @iamaaronwill I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aaron. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @iamaaronwill's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357775700497948679/acPCcD9Q_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">alkhemik 🤖 AI Bot </div> <div style="font-size: 15px">@iamalkhemik bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@iamalkhemik's tweets](https://twitter.com/iamalkhemik). | Data | Quantity | | --- | --- | | Tweets downloaded | 3197 | | Retweets | 1001 | | Short tweets | 671 | | Tweets kept | 1525 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8ifxsghs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamalkhemik's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2duh440l) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2duh440l/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamalkhemik') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/iamalkhemik/1614122211615/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/iamalkhemik
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
alkhemik AI Bot @iamalkhemik bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @iamalkhemik's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @iamalkhemik's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1541590121102905345/jxbNo0z0_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Cardi B</div> <div style="text-align: center; font-size: 14px;">@iamcardib</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Cardi B. | Data | Cardi B | | --- | --- | | Tweets downloaded | 3073 | | Retweets | 1500 | | Short tweets | 348 | | Tweets kept | 1225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r25kkt8t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamcardib's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ay08pnd6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ay08pnd6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamcardib') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/iamcardib/1663110443917/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/iamcardib
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Cardi B @iamcardib I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Cardi B. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @iamcardib's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1178631635606151168/yIlrcg4o_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">I Am Devloper</div> <div style="text-align: center; font-size: 14px;">@iamdevloper</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from I Am Devloper. | Data | I Am Devloper | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 190 | | Short tweets | 233 | | Tweets kept | 2821 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k1120ro/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamdevloper's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wr63mia) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wr63mia/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamdevloper') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/iamdevloper/1634677176847/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/iamdevloper
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT I Am Devloper @iamdevloper I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from I Am Devloper. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @iamdevloper's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343196052518809601/qsUS49cF_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cakemari 🤖 AI Bot </div> <div style="font-size: 15px">@iamhajimari bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@iamhajimari's tweets](https://twitter.com/iamhajimari). | Data | Quantity | | --- | --- | | Tweets downloaded | 2998 | | Retweets | 2288 | | Short tweets | 150 | | Tweets kept | 560 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mxyxqgz3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamhajimari's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/291hg7nk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/291hg7nk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iamhajimari') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/iamhajimari/1617794068954/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/iamhajimari
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cakemari AI Bot @iamhajimari bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @iamhajimari's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @iamhajimari's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318511011117199362/htNsviXp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Shah Rukh Khan 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@iamsrk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@iamsrk's tweets](https://twitter.com/iamsrk). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3215</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>62</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>275</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2878</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2x5ax455/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iamsrk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ky58mqoc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ky58mqoc/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/iamsrk'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/iamsrk
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Shah Rukh Khan AI Bot </div> <div style="font-size: 15px; color: #657786">@iamsrk bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @iamsrk's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3215</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>62</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>275</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2878</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @iamsrk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/iamsrk'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @iamsrk's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3215</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>62</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>275</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2878</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @iamsrk's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/iamsrk'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @iamsrk's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3215</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>62</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>275</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2878</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @iamsrk's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/iamsrk'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1318561335144255493/nFRJb6rV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ëen 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ian_thefemale bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ian_thefemale's tweets](https://twitter.com/ian_thefemale). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3176</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1505</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>237</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1434</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/68w7ljwn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ian_thefemale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1gt4fg11) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1gt4fg11/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ian_thefemale'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ian_thefemale/1603890036259/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ian_thefemale
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ëen AI Bot </div> <div style="font-size: 15px; color: #657786">@ian_thefemale bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @ian_thefemale's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3176</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1505</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>237</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1434</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @ian_thefemale's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ian_thefemale'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ian_thefemale's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3176</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1505</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>237</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1434</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ian_thefemale's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ian_thefemale'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ian_thefemale's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3176</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1505</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>237</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1434</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ian_thefemale's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ian_thefemale'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1377721815158636546/0b6X62GA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">bsdtetris 🤖 AI Bot </div> <div style="font-size: 15px">@ianmileschungus bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ianmileschungus's tweets](https://twitter.com/ianmileschungus). | Data | Quantity | | --- | --- | | Tweets downloaded | 883 | | Retweets | 139 | | Short tweets | 223 | | Tweets kept | 521 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32raehk9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ianmileschungus's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jh3if9e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jh3if9e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ianmileschungus') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ianmileschungus/1617756969045/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ianmileschungus
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
bsdtetris AI Bot @ianmileschungus bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ianmileschungus's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ianmileschungus's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1476303212672131074/kuPm3Cvp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ibai</div> <div style="text-align: center; font-size: 14px;">@ibaillanos</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ibai. | Data | Ibai | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 28 | | Short tweets | 669 | | Tweets kept | 2553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qyv6lsf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ibaillanos's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cxnkmkg6/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ibaillanos') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ibaillanos/1641753367000/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ibaillanos
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Ibai @ibaillanos I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Ibai. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ibaillanos's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1299164565662507008/TKlwtwO-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ethereal AnarchoPansexual Chanda Prescod-Weinstein 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ibjiyongi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ibjiyongi's tweets](https://twitter.com/ibjiyongi). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>884</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>352</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1967</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2anzzpiv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ibjiyongi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/250irlis) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/250irlis/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ibjiyongi'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ibjiyongi/1607118906119/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ibjiyongi
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ethereal AnarchoPansexual Chanda Prescod-Weinstein AI Bot </div> <div style="font-size: 15px; color: #657786">@ibjiyongi bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @ibjiyongi's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>884</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>352</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1967</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @ibjiyongi's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ibjiyongi'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ibjiyongi's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3203</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>884</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>352</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1967</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ibjiyongi's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ibjiyongi'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ibjiyongi's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3203</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>884</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>352</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1967</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ibjiyongi's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ibjiyongi'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419130410659889153/F2F8J5kC_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ابن ڪربلاء 🇮🇶🇵🇸</div> <div style="text-align: center; font-size: 14px;">@ibnalrafidayn</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ابن ڪربلاء 🇮🇶🇵🇸. | Data | ابن ڪربلاء 🇮🇶🇵🇸 | | --- | --- | | Tweets downloaded | 3178 | | Retweets | 1679 | | Short tweets | 153 | | Tweets kept | 1346 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23d16tk6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ibnalrafidayn's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2rkhf7a3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2rkhf7a3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ibnalrafidayn') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ibnalrafidayn/1627278946427/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ibnalrafidayn
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ابن ڪربلاء 🇮🇶🇵🇸 @ibnalrafidayn I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ابن ڪربلاء 🇮🇶🇵🇸. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ibnalrafidayn's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1129436437219168257/eYJ-Fjl9_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Comm Sci 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ica_csab bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ica_csab's tweets](https://twitter.com/ica_csab). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1867</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>947</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>888</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qqqm6bwp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ica_csab's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oqp0es9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oqp0es9/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ica_csab'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ica_csab/1609602488446/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ica_csab
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Comm Sci AI Bot </div> <div style="font-size: 15px; color: #657786">@ica_csab bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @ica_csab's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1867</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>947</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>888</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @ica_csab's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ica_csab'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ica_csab's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1867</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>947</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>32</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>888</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ica_csab's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ica_csab'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ica_csab's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1867</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>947</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>32</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>888</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ica_csab's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ica_csab'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370399025007038473/mzizrEEw_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">IJ 🤖 AI Bot </div> <div style="font-size: 15px">@icelynjennings bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@icelynjennings's tweets](https://twitter.com/icelynjennings). | Data | Quantity | | --- | --- | | Tweets downloaded | 1229 | | Retweets | 177 | | Short tweets | 87 | | Tweets kept | 965 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2hv39q4l/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @icelynjennings's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ryzf24a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ryzf24a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/icelynjennings') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/icelynjennings/1617750835324/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/icelynjennings
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
IJ AI Bot @icelynjennings bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @icelynjennings's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @icelynjennings's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/875446048998789125/iVF4liQA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">IDPH 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@idph bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@idph's tweets](https://twitter.com/idph). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3199</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>686</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>39</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2474</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/awgsk010/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @idph's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/dkm56a09) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/dkm56a09/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/idph'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/idph
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">IDPH AI Bot </div> <div style="font-size: 15px; color: #657786">@idph bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @idph's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3199</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>686</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>39</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2474</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @idph's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/idph'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @idph's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3199</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>686</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>39</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2474</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @idph's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/idph'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @idph's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3199</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>686</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>39</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2474</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @idph's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/idph'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/936385475966853122/aupJEMFs_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">dr talking lion 🤖 AI Bot </div> <div style="font-size: 15px">@ifalioncould bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ifalioncould's tweets](https://twitter.com/ifalioncould). | Data | Quantity | | --- | --- | | Tweets downloaded | 2009 | | Retweets | 128 | | Short tweets | 216 | | Tweets kept | 1665 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e4hxlqen/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ifalioncould's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2vgstw4b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2vgstw4b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ifalioncould') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ifalioncould/1616645565200/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ifalioncould
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
dr talking lion AI Bot @ifalioncould bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ifalioncould's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ifalioncould's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329448584626974720/7cCcJO2d_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">stone☭ 🤖 AI Bot </div> <div style="font-size: 15px">@ifuckedgod bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ifuckedgod's tweets](https://twitter.com/ifuckedgod). | Data | Quantity | | --- | --- | | Tweets downloaded | 3117 | | Retweets | 537 | | Short tweets | 499 | | Tweets kept | 2081 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/32yc8gvh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ifuckedgod's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1p7n8iap) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1p7n8iap/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ifuckedgod') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ifuckedgod/1616795037889/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ifuckedgod
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
stone AI Bot @ifuckedgod bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ifuckedgod's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ifuckedgod's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/2538946114/xiveugt78rc97y1dasxf_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Igor Brigadir 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@igorbrigadir bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@igorbrigadir's tweets](https://twitter.com/igorbrigadir). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3223</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>467</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2553</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3ojr6cz9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @igorbrigadir's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1ccw9bid) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1ccw9bid/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/igorbrigadir'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/igorbrigadir/1602255688129/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/igorbrigadir
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Igor Brigadir AI Bot </div> <div style="font-size: 15px; color: #657786">@igorbrigadir bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @igorbrigadir's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3223</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>203</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>467</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2553</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @igorbrigadir's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/igorbrigadir'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @igorbrigadir's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3223</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>203</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>467</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2553</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @igorbrigadir's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/igorbrigadir'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @igorbrigadir's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3223</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>203</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>467</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2553</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @igorbrigadir's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/igorbrigadir'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/52435623/igor_400x400.JPG')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Igor Carron 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@igorcarron bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@igorcarron's tweets](https://twitter.com/igorcarron). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3182</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2986</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>50</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>146</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2xrk7m5z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @igorcarron's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/kfaaogij) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/kfaaogij/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/igorcarron'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/igorcarron/1601975366019/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/igorcarron
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Igor Carron AI Bot </div> <div style="font-size: 15px; color: #657786">@igorcarron bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @igorcarron's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3182</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2986</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>50</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>146</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @igorcarron's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/igorcarron'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @igorcarron's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3182</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2986</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>50</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>146</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @igorcarron's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/igorcarron'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @igorcarron's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3182</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2986</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>50</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>146</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @igorcarron's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/igorcarron'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1436764466868273159/z-bXRwzQ_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Scientist</div> <div style="text-align: center; font-size: 14px;">@ihavesexhourly</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Scientist. | Data | Scientist | | --- | --- | | Tweets downloaded | 3205 | | Retweets | 841 | | Short tweets | 621 | | Tweets kept | 1743 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2qyzrpd8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ihavesexhourly's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m2o7mtpw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m2o7mtpw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ihavesexhourly') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ihavesexhourly/1631841194880/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ihavesexhourly
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Scientist @ihavesexhourly I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Scientist. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ihavesexhourly's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1448859687449862147/frVD6mW3_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">juju 💰</div> <div style="text-align: center; font-size: 14px;">@ihyjuju</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from juju 💰. | Data | juju 💰 | | --- | --- | | Tweets downloaded | 3248 | | Retweets | 1 | | Short tweets | 478 | | Tweets kept | 2769 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n82hqbg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ihyjuju's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t6rclcz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t6rclcz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ihyjuju') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ihyjuju/1640741515385/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ihyjuju
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT juju @ihyjuju I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from juju . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ihyjuju's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1179205017020063744/WnOlftVe_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">¯\_(ツ)_/¯</div> <div style="text-align: center; font-size: 14px;">@ijustbluemyself</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ¯\_(ツ)_/¯. | Data | ¯\_(ツ)_/¯ | | --- | --- | | Tweets downloaded | 3224 | | Retweets | 250 | | Short tweets | 982 | | Tweets kept | 1992 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qgmk16ox/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ijustbluemyself's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2yq2ve7k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2yq2ve7k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ijustbluemyself') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ijustbluemyself/1625279746808/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ijustbluemyself
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ¯\\_(ツ)\_/¯ @ijustbluemyself I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ¯\_(ツ)\_/¯. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ijustbluemyself's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/2429657879/vq8ux7qvn4ljg9oh7zzu_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Iván Díaz 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@ildiazm bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ildiazm's tweets](https://twitter.com/ildiazm). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>574</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>72</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>490</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3cn99ecb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ildiazm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/167ssmah) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/167ssmah/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ildiazm'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/ildiazm
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Iván Díaz AI Bot </div> <div style="font-size: 15px; color: #657786">@ildiazm bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @ildiazm's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>574</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>72</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>12</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>490</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @ildiazm's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/ildiazm'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ildiazm's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>574</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>72</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>12</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>490</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ildiazm's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ildiazm'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @ildiazm's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>574</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>72</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>12</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>490</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @ildiazm's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/ildiazm'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365435709981532165/v6Dv3nvt_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Banon 🤖 AI Bot </div> <div style="font-size: 15px">@ilike_birds bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ilike_birds's tweets](https://twitter.com/ilike_birds). | Data | Quantity | | --- | --- | | Tweets downloaded | 1017 | | Retweets | 39 | | Short tweets | 337 | | Tweets kept | 641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21wt3y4x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ilike_birds's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g2q8s1w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g2q8s1w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ilike_birds') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ilike_birds/1617813434047/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ilike_birds
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Banon AI Bot @ilike\_birds bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ilike\_birds's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ilike\_birds's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1370460588334268419/h0Y0-Ny__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">IllinoisJones 🤖 AI Bot </div> <div style="font-size: 15px">@iljone bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@iljone's tweets](https://twitter.com/iljone). | Data | Quantity | | --- | --- | | Tweets downloaded | 337 | | Retweets | 6 | | Short tweets | 99 | | Tweets kept | 232 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l85ym1p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @iljone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uzsj96o) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uzsj96o/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/iljone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/iljone/1616774453050/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/iljone
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
IllinoisJones AI Bot @iljone bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @iljone's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @iljone's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1247219435338756099/wUX8KxD4_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Josh Cherry 🌱 🤖 AI Bot </div> <div style="font-size: 15px">@ilovelucilius bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ilovelucilius's tweets](https://twitter.com/ilovelucilius). | Data | Quantity | | --- | --- | | Tweets downloaded | 331 | | Retweets | 42 | | Short tweets | 9 | | Tweets kept | 280 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ztd1uk0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ilovelucilius's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gbbrvx4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gbbrvx4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ilovelucilius') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ilovelucilius/1616644679483/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ilovelucilius
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Josh Cherry AI Bot @ilovelucilius bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ilovelucilius's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ilovelucilius's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1425684733753626624/q521TgTG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ilya Sutskever</div> <div style="text-align: center; font-size: 14px;">@ilyasut</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ilya Sutskever. | Data | Ilya Sutskever | | --- | --- | | Tweets downloaded | 852 | | Retweets | 474 | | Short tweets | 39 | | Tweets kept | 339 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y41t187f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ilyasut's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2slwglzj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2slwglzj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ilyasut') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/ilyasut/1653408370188/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ilyasut
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Ilya Sutskever @ilyasut I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Ilya Sutskever. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ilyasut's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1356115782606852103/lawv78Xb_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Brown Timothée Chalamet 🤖 AI Bot </div> <div style="font-size: 15px">@imaginary_bi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imaginary_bi's tweets](https://twitter.com/imaginary_bi). | Data | Quantity | | --- | --- | | Tweets downloaded | 1204 | | Retweets | 189 | | Short tweets | 72 | | Tweets kept | 943 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3srr04nu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imaginary_bi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3773072h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3773072h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imaginary_bi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imaginary_bi/1614117239005/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imaginary_bi
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Brown Timothée Chalamet AI Bot @imaginary\_bi bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @imaginary\_bi's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imaginary\_bi's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1354295229654958081/FUhOGuYV_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ace 🤖 AI Bot </div> <div style="font-size: 15px">@imcummingonline bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imcummingonline's tweets](https://twitter.com/imcummingonline). | Data | Quantity | | --- | --- | | Tweets downloaded | 914 | | Retweets | 88 | | Short tweets | 218 | | Tweets kept | 608 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2yh36yxx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imcummingonline's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nnnr0u8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nnnr0u8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imcummingonline') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imcummingonline/1617770513198/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imcummingonline
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Ace AI Bot @imcummingonline bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @imcummingonline's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imcummingonline's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1397711387380617219/Hzreffrt_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Contra</div> <div style="text-align: center; font-size: 14px;">@imgrimevil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Contra. | Data | Contra | | --- | --- | | Tweets downloaded | 3238 | | Retweets | 669 | | Short tweets | 582 | | Tweets kept | 1987 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1kn7qqp8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imgrimevil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fjaoumhd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fjaoumhd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imgrimevil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imgrimevil/1627251988335/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imgrimevil
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Contra @imgrimevil I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Contra. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imgrimevil's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1289653820071522304/cdikNvkG_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jack Rudd 🇹🇹 🏳️‍⚧️</div> <div style="text-align: center; font-size: 14px;">@imjackrudd</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jack Rudd 🇹🇹 🏳️‍⚧️. | Data | Jack Rudd 🇹🇹 🏳️‍⚧️ | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 55 | | Short tweets | 327 | | Tweets kept | 2864 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g5589wt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imjackrudd's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/eyywpszu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/eyywpszu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imjackrudd') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imjackrudd/1632871893609/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imjackrudd
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Jack Rudd 🇹🇹 ️‍️ @imjackrudd I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Jack Rudd 🇹🇹 ️‍️. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imjackrudd's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363904099922677762/CZEhI56N_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Luca 🤖 AI Bot </div> <div style="font-size: 15px">@imjustluca bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imjustluca's tweets](https://twitter.com/imjustluca). | Data | Quantity | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 379 | | Short tweets | 261 | | Tweets kept | 2578 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ap66ek7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imjustluca's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1qfi3jgq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1qfi3jgq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imjustluca') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imjustluca/1614160603911/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imjustluca
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Luca AI Bot @imjustluca bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @imjustluca's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imjustluca's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298909619721388035/1v9WJxu7_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jaelynn 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@imjustuhgrl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imjustuhgrl's tweets](https://twitter.com/imjustuhgrl). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3236</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>15</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>512</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2709</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/4phdk9xl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imjustuhgrl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/22432rm3) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/22432rm3/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/imjustuhgrl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imjustuhgrl/1601318938681/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imjustuhgrl
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jaelynn AI Bot </div> <div style="font-size: 15px; color: #657786">@imjustuhgrl bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @imjustuhgrl's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3236</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>15</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>512</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2709</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @imjustuhgrl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/imjustuhgrl'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @imjustuhgrl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3236</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>15</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>512</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2709</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @imjustuhgrl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/imjustuhgrl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @imjustuhgrl's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3236</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>15</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>512</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2709</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @imjustuhgrl's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/imjustuhgrl'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1371650533111529472/0wqXcosZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">gabagol cawfee 🤖 AI Bot </div> <div style="font-size: 15px">@immarxistonline bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@immarxistonline's tweets](https://twitter.com/immarxistonline). | Data | Quantity | | --- | --- | | Tweets downloaded | 3226 | | Retweets | 340 | | Short tweets | 732 | | Tweets kept | 2154 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3f3uoi57/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @immarxistonline's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tynoxd5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tynoxd5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/immarxistonline') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/immarxistonline/1617769482090/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/immarxistonline
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
gabagol cawfee AI Bot @immarxistonline bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @immarxistonline's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @immarxistonline's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276507373260214275/RZ9iZEmJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Immersive Kind 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@immersivekind bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@immersivekind's tweets](https://twitter.com/immersivekind). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>435</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>171</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>260</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bh9dpmh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @immersivekind's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ovh81f8f) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ovh81f8f/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/immersivekind'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/immersivekind
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">The Immersive Kind AI Bot </div> <div style="font-size: 15px; color: #657786">@immersivekind bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @immersivekind's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>435</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>171</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>4</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>260</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @immersivekind's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/immersivekind'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @immersivekind's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>435</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>171</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>260</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @immersivekind's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/immersivekind'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @immersivekind's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>435</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>171</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>4</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>260</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @immersivekind's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/immersivekind'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1297793420094607360/3hhcM4L2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🇨🇦📎 🤖 AI Bot </div> <div style="font-size: 15px">@imnotseto bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imnotseto's tweets](https://twitter.com/imnotseto). | Data | Quantity | | --- | --- | | Tweets downloaded | 342 | | Retweets | 15 | | Short tweets | 50 | | Tweets kept | 277 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33rcvwm6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imnotseto's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35wya1gp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35wya1gp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imnotseto') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imnotseto/1614213422097/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imnotseto
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
🇨🇦 AI Bot @imnotseto bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @imnotseto's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imnotseto's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1335360624646295552/kaAOgc0s_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">imo !!! 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@imogenloisfox bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imogenloisfox's tweets](https://twitter.com/imogenloisfox). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2473</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>883</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>219</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1371</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2dm16o1m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imogenloisfox's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ectjmyn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ectjmyn/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/imogenloisfox'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imogenloisfox/1608309297782/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imogenloisfox
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">imo !!! AI Bot </div> <div style="font-size: 15px; color: #657786">@imogenloisfox bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @imogenloisfox's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2473</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>883</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>219</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1371</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @imogenloisfox's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/imogenloisfox'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @imogenloisfox's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2473</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>883</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>219</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1371</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @imogenloisfox's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/imogenloisfox'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @imogenloisfox's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2473</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>883</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>219</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1371</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @imogenloisfox's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/imogenloisfox'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1319291252718759938/q2NdOiAb_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Robert Yi 🐳</div> <div style="text-align: center; font-size: 14px;">@imrobertyi</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Robert Yi 🐳. | Data | Robert Yi 🐳 | | --- | --- | | Tweets downloaded | 1353 | | Retweets | 61 | | Short tweets | 130 | | Tweets kept | 1162 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cmckdcz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imrobertyi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/fi24mvdb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/fi24mvdb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imrobertyi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imrobertyi/1631652694998/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imrobertyi
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Robert Yi @imrobertyi I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Robert Yi . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imrobertyi's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1327751099336552449/R5srCw96_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">carson 🤖 AI Bot </div> <div style="font-size: 15px">@imscribbledude bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@imscribbledude's tweets](https://twitter.com/imscribbledude). | Data | Quantity | | --- | --- | | Tweets downloaded | 2286 | | Retweets | 458 | | Short tweets | 252 | | Tweets kept | 1576 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2eyhb2dr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @imscribbledude's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1t0me7sm) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1t0me7sm/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/imscribbledude') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/imscribbledude/1614102197502/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/imscribbledude
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
carson AI Bot @imscribbledude bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @imscribbledude's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @imscribbledude's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/706481670090690563/LXli4ovR_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew Incantalupo 🤖 AI Bot </div> <div style="font-size: 15px">@incantalupo bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@incantalupo's tweets](https://twitter.com/incantalupo). | Data | Quantity | | --- | --- | | Tweets downloaded | 1738 | | Retweets | 36 | | Short tweets | 61 | | Tweets kept | 1641 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/12pm0jbi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @incantalupo's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3vnxuapw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3vnxuapw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/incantalupo') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/incantalupo/1616711390839/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/incantalupo
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matthew Incantalupo AI Bot @incantalupo bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @incantalupo's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @incantalupo's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/581592941124153346/5nfUJyU2_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/561419401145376768/7OIwxUCC_400x400.jpeg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1190256978007904257/TsXH7_nP_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Charmeuse & Sad Socrates & Vincent Van Gone</div> <div style="text-align: center; font-size: 14px;">@incharmuese-sadsocrates-vvangone</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Charmeuse & Sad Socrates & Vincent Van Gone. | Data | Charmeuse | Sad Socrates | Vincent Van Gone | | --- | --- | --- | --- | | Tweets downloaded | 3238 | 3197 | 3233 | | Retweets | 1165 | 40 | 1054 | | Short tweets | 248 | 161 | 266 | | Tweets kept | 1825 | 2996 | 1913 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/13ochftk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @incharmuese-sadsocrates-vvangone's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/173sb7ob) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/173sb7ob/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/incharmuese-sadsocrates-vvangone') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/incharmuese-sadsocrates-vvangone/1635521727120/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/incharmuese-sadsocrates-vvangone
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Charmeuse & Sad Socrates & Vincent Van Gone @incharmuese-sadsocrates-vvangone I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Charmeuse & Sad Socrates & Vincent Van Gone. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @incharmuese-sadsocrates-vvangone's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1357846260934352899/EWTPeA8__400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">indi 🍔 🤖 AI Bot </div> <div style="font-size: 15px">@indiburger bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@indiburger's tweets](https://twitter.com/indiburger). | Data | Quantity | | --- | --- | | Tweets downloaded | 3104 | | Retweets | 712 | | Short tweets | 372 | | Tweets kept | 2020 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3emok4ku/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @indiburger's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rpeuqv5y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rpeuqv5y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/indiburger') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/indiburger/1614096163881/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/indiburger
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
indi AI Bot @indiburger bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @indiburger's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @indiburger's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1298927466074046464/rYBDt889_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Алексей Целищев 🤖 AI Bot </div> <div style="font-size: 15px">@infernocav bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@infernocav's tweets](https://twitter.com/infernocav). | Data | Quantity | | --- | --- | | Tweets downloaded | 129 | | Retweets | 8 | | Short tweets | 16 | | Tweets kept | 105 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fbjwvhg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @infernocav's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/cxwbz9yp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/cxwbz9yp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/infernocav') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/infernocav/1616656950369/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/infernocav
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Алексей Целищев AI Bot @infernocav bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @infernocav's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @infernocav's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346117150621257728/FeSBhcrN_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">RIP TO THE VILLIAN 🤖 AI Bot </div> <div style="font-size: 15px">@infinitedodge bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@infinitedodge's tweets](https://twitter.com/infinitedodge). | Data | Quantity | | --- | --- | | Tweets downloaded | 2774 | | Retweets | 1524 | | Short tweets | 123 | | Tweets kept | 1127 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qerz9onf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @infinitedodge's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2gw3u22x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2gw3u22x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/infinitedodge') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/infinitedodge/1614135156383/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/infinitedodge
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
RIP TO THE VILLIAN AI Bot @infinitedodge bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @infinitedodge's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @infinitedodge's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/542050723521773568/XfMb_pUx_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">infosec_dominatrix 🤖 AI Bot </div> <div style="font-size: 15px">@infosec_domme bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@infosec_domme's tweets](https://twitter.com/infosec_domme). | Data | Quantity | | --- | --- | | Tweets downloaded | 542 | | Retweets | 64 | | Short tweets | 57 | | Tweets kept | 421 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s8mwvc2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @infosec_domme's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qb5k1m0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qb5k1m0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/infosec_domme') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/infosec_domme/1616349133246/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/infosec_domme
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
infosec\_dominatrix AI Bot @infosec\_domme bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @infosec\_domme's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @infosec\_domme's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1122970155204730882/KMOOjnGR_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Ingrida Šimonytė</div> <div style="text-align: center; font-size: 14px;">@ingridasimonyte</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Ingrida Šimonytė. | Data | Ingrida Šimonytė | | --- | --- | | Tweets downloaded | 283 | | Retweets | 17 | | Short tweets | 10 | | Tweets kept | 256 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vod103u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ingridasimonyte's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2xm136ry) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2xm136ry/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ingridasimonyte') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ingridasimonyte/1620506733305/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ingridasimonyte
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Ingrida Šimonytė @ingridasimonyte I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Ingrida Šimonytė. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ingridasimonyte's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346164467130884098/8w4pqpbj_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">borghisattva 🤖 AI Bot </div> <div style="font-size: 15px">@ingroupist bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@ingroupist's tweets](https://twitter.com/ingroupist). | Data | Quantity | | --- | --- | | Tweets downloaded | 154 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 154 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fl5icybp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @ingroupist's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/218gj8om) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/218gj8om/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/ingroupist') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/ingroupist/1616685344882/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/ingroupist
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
borghisattva AI Bot @ingroupist bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @ingroupist's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @ingroupist's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1403059590481289216/dqLJI_-U_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">INHALING MY SHEET OF SUN</div> <div style="text-align: center; font-size: 14px;">@inhalingmy</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from INHALING MY SHEET OF SUN. | Data | INHALING MY SHEET OF SUN | | --- | --- | | Tweets downloaded | 2647 | | Retweets | 0 | | Short tweets | 838 | | Tweets kept | 1809 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/r1ksmwi2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @inhalingmy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2e1lrid4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2e1lrid4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/inhalingmy') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/inhalingmy/1631843035059/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/inhalingmy
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT INHALING MY SHEET OF SUN @inhalingmy I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from INHALING MY SHEET OF SUN. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @inhalingmy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]