pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1105862280439320578/Io6_j4nY_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lysandre 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@lysandrejik bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@lysandrejik's tweets](https://twitter.com/lysandrejik). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>263</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>207</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>55</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1bdqofbl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @lysandrejik's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1ofkc2ms) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1ofkc2ms/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/lysandrejik'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/lysandrejik
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Lysandre AI Bot </div> <div style="font-size: 15px; color: #657786">@lysandrejik bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @lysandrejik's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>263</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>207</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>55</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @lysandrejik's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/lysandrejik'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @lysandrejik's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>263</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>207</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>55</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @lysandrejik's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/lysandrejik'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @lysandrejik's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>263</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>207</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>55</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @lysandrejik's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/lysandrejik'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1366083605974278146/m7pIgdOU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">NaVi 🍩 🤖 AI Bot </div> <div style="font-size: 15px">@m3ghd00t bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@m3ghd00t's tweets](https://twitter.com/m3ghd00t). | Data | Quantity | | --- | --- | | Tweets downloaded | 373 | | Retweets | 36 | | Short tweets | 65 | | Tweets kept | 272 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3i0pmt9d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @m3ghd00t's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2napmh2m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2napmh2m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/m3ghd00t') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/m3ghd00t/1615491223976/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/m3ghd00t
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
NaVi AI Bot @m3ghd00t bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @m3ghd00t's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @m3ghd00t's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1339632609207435265/YYSXaoou_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">macalester updates 🤖 AI Bot </div> <div style="font-size: 15px">@macalester2go bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@macalester2go's tweets](https://twitter.com/macalester2go). | Data | Quantity | | --- | --- | | Tweets downloaded | 275 | | Retweets | 22 | | Short tweets | 22 | | Tweets kept | 231 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bcsrlxr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @macalester2go's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/46w5erag) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/46w5erag/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/macalester2go') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/macalester2go/1614114153026/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/macalester2go
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
macalester updates AI Bot @macalester2go bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @macalester2go's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @macalester2go's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1353481259243036675/p0Qi1eRw_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">⛅ Mace 💙 🤖 AI Bot </div> <div style="font-size: 15px">@macegrunow bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@macegrunow's tweets](https://twitter.com/macegrunow). | Data | Quantity | | --- | --- | | Tweets downloaded | 2411 | | Retweets | 75 | | Short tweets | 243 | | Tweets kept | 2093 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fgolmpgz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @macegrunow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/36bm7m7p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/36bm7m7p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/macegrunow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/macegrunow/1614105399144/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/macegrunow
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Mace AI Bot @macegrunow bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @macegrunow's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @macegrunow's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1329649525506666496/sQapN8A6_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">macintoxic 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@macintoxic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@macintoxic's tweets](https://twitter.com/macintoxic). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>505</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>18</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>486</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2limjtry/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @macintoxic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28maouqg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28maouqg/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/macintoxic'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/macintoxic/1608823720502/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/macintoxic
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">macintoxic AI Bot </div> <div style="font-size: 15px; color: #657786">@macintoxic bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @macintoxic's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>505</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>18</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>486</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @macintoxic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/macintoxic'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @macintoxic's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>505</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>18</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>486</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @macintoxic's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/macintoxic'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @macintoxic's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>505</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>18</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>486</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @macintoxic's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/macintoxic'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1417269904638681088/-hPhZh_I_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Official Office Hours Mascot</div> <div style="text-align: center; font-size: 14px;">@maddiebirds</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Official Office Hours Mascot. | Data | Official Office Hours Mascot | | --- | --- | | Tweets downloaded | 3164 | | Retweets | 925 | | Short tweets | 505 | | Tweets kept | 1734 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2nvjfva5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maddiebirds's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3m5l77r1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3m5l77r1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maddiebirds') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maddiebirds/1627067546895/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maddiebirds
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Official Office Hours Mascot @maddiebirds I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Official Office Hours Mascot. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maddiebirds's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1309345273064243200/1dHKCc5O_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">madison beer 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@madisonbeer bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@madisonbeer's tweets](https://twitter.com/madisonbeer). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3177</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>538</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>536</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2103</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2g46gvcd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @madisonbeer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/137vbt8a) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/137vbt8a/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/madisonbeer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/madisonbeer/1601279003769/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/madisonbeer
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">madison beer AI Bot </div> <div style="font-size: 15px; color: #657786">@madisonbeer bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @madisonbeer's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3177</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>538</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>536</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2103</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @madisonbeer's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/madisonbeer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @madisonbeer's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3177</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>538</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>536</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2103</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @madisonbeer's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/madisonbeer'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @madisonbeer's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3177</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>538</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>536</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2103</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @madisonbeer's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/madisonbeer'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/653486939291693056/KAJcW2mu_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">François Lagunas 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@madlag bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@madlag's tweets](https://twitter.com/madlag). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1426</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>258</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>56</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1112</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2ytuc1hc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @madlag's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1spl7804) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1spl7804/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/madlag'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/madlag/1601942869825/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/madlag
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">François Lagunas AI Bot </div> <div style="font-size: 15px; color: #657786">@madlag bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @madlag's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1426</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>258</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>56</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1112</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @madlag's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/madlag'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @madlag's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1426</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>258</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>56</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1112</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @madlag's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/madlag'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @madlag's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1426</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>258</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>56</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1112</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @madlag's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/madlag'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/892330899471249408/qhEwNbFn_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mads Ingwar 🤖 AI Bot </div> <div style="font-size: 15px">@madsingwar bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@madsingwar's tweets](https://twitter.com/madsingwar). | Data | Quantity | | --- | --- | | Tweets downloaded | 156 | | Retweets | 40 | | Short tweets | 8 | | Tweets kept | 108 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1s0nt02y/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @madsingwar's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/28oqcgnt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/28oqcgnt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/madsingwar') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/madsingwar/1616680761353/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/madsingwar
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Mads Ingwar AI Bot @madsingwar bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @madsingwar's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @madsingwar's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1296840938866843648/BDsClSWh_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mae Muller 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@maemuller_ bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maemuller_'s tweets](https://twitter.com/maemuller_). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1652</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>233</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>260</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1159</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2oc2ao4z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maemuller_'s tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/3msj8aw0) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/3msj8aw0/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/maemuller_'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maemuller_/1601316875770/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maemuller_
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mae Muller AI Bot </div> <div style="font-size: 15px; color: #657786">@maemuller_ bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @maemuller_'s tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1652</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>233</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>260</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1159</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @maemuller_'s tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/maemuller_'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @maemuller_'s tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1652</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>233</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>260</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1159</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @maemuller_'s tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/maemuller_'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @maemuller_'s tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1652</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>233</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>260</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1159</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @maemuller_'s tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/maemuller_'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362270962025193474/MLFEGk1W_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Terminally Offline Maeve 🤖 AI Bot </div> <div style="font-size: 15px">@maevewrapped bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maevewrapped's tweets](https://twitter.com/maevewrapped). | Data | Quantity | | --- | --- | | Tweets downloaded | 1689 | | Retweets | 1070 | | Short tweets | 89 | | Tweets kept | 530 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dgxqgeu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maevewrapped's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6qqivus5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6qqivus5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maevewrapped') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maevewrapped/1614118741662/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maevewrapped
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Terminally Offline Maeve AI Bot @maevewrapped bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maevewrapped's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maevewrapped's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1344838996451618823/2N_HeJ_S_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">maggie 🤖 AI Bot </div> <div style="font-size: 15px">@magggiegrace bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@magggiegrace's tweets](https://twitter.com/magggiegrace). | Data | Quantity | | --- | --- | | Tweets downloaded | 2038 | | Retweets | 1465 | | Short tweets | 82 | | Tweets kept | 491 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pm1ed53/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magggiegrace's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/en61v94q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/en61v94q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magggiegrace') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/magggiegrace/1617765763942/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/magggiegrace
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
maggie AI Bot @magggiegrace bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @magggiegrace's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @magggiegrace's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373658399234211840/Hp3lZcCF_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Maggie Westrum 🤖 AI Bot </div> <div style="font-size: 15px">@maggiewestrum bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maggiewestrum's tweets](https://twitter.com/maggiewestrum). | Data | Quantity | | --- | --- | | Tweets downloaded | 3095 | | Retweets | 18 | | Short tweets | 603 | | Tweets kept | 2474 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kbf97ul/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maggiewestrum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3aigi47u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3aigi47u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maggiewestrum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maggiewestrum/1616679780784/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maggiewestrum
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Maggie Westrum AI Bot @maggiewestrum bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maggiewestrum's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maggiewestrum's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1090357359782768640/ITPFaU3F_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Earvin Magic Johnson</div> <div style="text-align: center; font-size: 14px;">@magicjohnson</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Earvin Magic Johnson. | Data | Earvin Magic Johnson | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 103 | | Short tweets | 94 | | Tweets kept | 3053 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7g3n70f6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magicjohnson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/gdznqoo2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/gdznqoo2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magicjohnson') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/magicjohnson/1622838726917/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/magicjohnson
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Earvin Magic Johnson @magicjohnson I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Earvin Magic Johnson. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @magicjohnson's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/668872745329885184/67TNOs2A_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Magic Realism Bot</div> <div style="text-align: center; font-size: 14px;">@magicrealismbot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Magic Realism Bot. | Data | Magic Realism Bot | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 3250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nx0qvg7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @magicrealismbot's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9vq0074d) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9vq0074d/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/magicrealismbot') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/magicrealismbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Magic Realism Bot @magicrealismbot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Magic Realism Bot. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @magicrealismbot's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1365663213384306689/z56qfuub_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">森魔女子 🤖 AI Bot </div> <div style="font-size: 15px">@mahimikoumbral bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mahimikoumbral's tweets](https://twitter.com/mahimikoumbral). | Data | Quantity | | --- | --- | | Tweets downloaded | 3232 | | Retweets | 527 | | Short tweets | 444 | | Tweets kept | 2261 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1nu7xouj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mahimikoumbral's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/26ebz9gx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/26ebz9gx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mahimikoumbral') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mahimikoumbral/1617790085831/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mahimikoumbral
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
森魔女子 AI Bot @mahimikoumbral bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mahimikoumbral's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mahimikoumbral's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407382302573858820/zOHuS7hX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Malaa</div> <div style="text-align: center; font-size: 14px;">@malaamusic</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Malaa. | Data | Malaa | | --- | --- | | Tweets downloaded | 3112 | | Retweets | 935 | | Short tweets | 430 | | Tweets kept | 1747 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6389x1tl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @malaamusic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ospwn5x) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ospwn5x/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/malaamusic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/malaamusic
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Malaa @malaamusic I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Malaa. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @malaamusic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1302973092332023810/K9MureTy_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aušra Maldeikienė MEP 🇱🇹🇪🇺</div> <div style="text-align: center; font-size: 14px;">@maldeikiene</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Aušra Maldeikienė MEP 🇱🇹🇪🇺. | Data | Aušra Maldeikienė MEP 🇱🇹🇪🇺 | | --- | --- | | Tweets downloaded | 348 | | Retweets | 67 | | Short tweets | 6 | | Tweets kept | 275 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3jpvl32o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maldeikiene's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/r3wkvy29) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/r3wkvy29/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maldeikiene') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maldeikiene/1620507591239/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maldeikiene
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Aušra Maldeikienė MEP 🇱🇹🇪🇺 @maldeikiene I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Aušra Maldeikienė MEP 🇱🇹🇪🇺. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maldeikiene's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1338373366156197890/hbaF8lNG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Malahidael 🤖 AI Bot </div> <div style="font-size: 15px">@malleus_malefix bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@malleus_malefix's tweets](https://twitter.com/malleus_malefix). | Data | Quantity | | --- | --- | | Tweets downloaded | 609 | | Retweets | 294 | | Short tweets | 124 | | Tweets kept | 191 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/a1boc9ew/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @malleus_malefix's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2o1a1por) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2o1a1por/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/malleus_malefix') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/malleus_malefix/1614139090065/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/malleus_malefix
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Malahidael AI Bot @malleus\_malefix bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @malleus\_malefix's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @malleus\_malefix's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1475950695329275905/8MOXbfHE_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">FastCarMan24</div> <div style="text-align: center; font-size: 14px;">@man24car</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from FastCarMan24. | Data | FastCarMan24 | | --- | --- | | Tweets downloaded | 860 | | Retweets | 211 | | Short tweets | 159 | | Tweets kept | 490 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2oq7rh5p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @man24car's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/19d4nhfe) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/19d4nhfe/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/man24car') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/man24car/1644422772686/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/man24car
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT FastCarMan24 @man24car I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from FastCarMan24. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @man24car's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1418470587412799497/gBSI7W4h_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Jesse Juice ➐</div> <div style="text-align: center; font-size: 14px;">@mangoflavored7</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Jesse Juice ➐. | Data | Jesse Juice ➐ | | --- | --- | | Tweets downloaded | 3231 | | Retweets | 1119 | | Short tweets | 593 | | Tweets kept | 1519 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/14dgwgrj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mangoflavored7's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8901xdzv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8901xdzv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mangoflavored7') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mangoflavored7/1629132576214/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mangoflavored7
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Jesse Juice @mangoflavored7 I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Jesse Juice . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mangoflavored7's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1372537117851664384/JsnF6pj2_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Plenty Of Mangos 🤖 AI Bot </div> <div style="font-size: 15px">@mangosplenty bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mangosplenty's tweets](https://twitter.com/mangosplenty). | Data | Quantity | | --- | --- | | Tweets downloaded | 191 | | Retweets | 3 | | Short tweets | 35 | | Tweets kept | 153 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/o3qbnkkz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mangosplenty's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3parqdow) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3parqdow/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mangosplenty') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mangosplenty/1616726437854/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mangosplenty
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Plenty Of Mangos AI Bot @mangosplenty bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mangosplenty's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mangosplenty's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1433885777071542272/jdX_GZqT_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">manifest ∞</div> <div style="text-align: center; font-size: 14px;">@manifest</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from manifest ∞. | Data | manifest ∞ | | --- | --- | | Tweets downloaded | 322 | | Retweets | 8 | | Short tweets | 49 | | Tweets kept | 265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1k0oix65/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @manifest's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i4xbq399) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i4xbq399/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/manifest') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/manifest/1631851248039/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/manifest
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT manifest ∞ @manifest I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from manifest ∞. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @manifest's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343819225320869889/3mZbcw2s_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">myshko 🤖 AI Bot </div> <div style="font-size: 15px">@mara_phon bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mara_phon's tweets](https://twitter.com/mara_phon). | Data | Quantity | | --- | --- | | Tweets downloaded | 791 | | Retweets | 416 | | Short tweets | 54 | | Tweets kept | 321 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1v4mcbgk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mara_phon's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/34hpmtir) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/34hpmtir/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mara_phon') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mara_phon/1614148529619/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mara_phon
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
myshko AI Bot @mara\_phon bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mara\_phon's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mara\_phon's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349396217172799489/LuUmRRz1_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Marcelita 🤖 AI Bot </div> <div style="font-size: 15px">@marcethemartian bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@marcethemartian's tweets](https://twitter.com/marcethemartian). | Data | Quantity | | --- | --- | | Tweets downloaded | 1687 | | Retweets | 140 | | Short tweets | 138 | | Tweets kept | 1409 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3bvp516k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marcethemartian's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/af6dell3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/af6dell3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marcethemartian') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/marcethemartian/1612892811323/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/marcethemartian
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Marcelita AI Bot @marcethemartian bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @marcethemartian's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marcethemartian's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1140068991098064896/qVnSEy6-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">m witte 🤖 AI Bot </div> <div style="font-size: 15px">@margot_witte bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@margot_witte's tweets](https://twitter.com/margot_witte). | Data | Quantity | | --- | --- | | Tweets downloaded | 624 | | Retweets | 140 | | Short tweets | 50 | | Tweets kept | 434 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/20i2noy6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @margot_witte's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/365zpvpy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/365zpvpy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/margot_witte') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/margot_witte/1616721987175/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/margot_witte
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
m witte AI Bot @margot\_witte bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @margot\_witte's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @margot\_witte's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/882866421822361601/IDcw7Vqa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Supper Mario Broth 🤖 AI Bot </div> <div style="font-size: 15px">@mariobrothblog bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mariobrothblog's tweets](https://twitter.com/mariobrothblog). | Data | Quantity | | --- | --- | | Tweets downloaded | 2840 | | Retweets | 0 | | Short tweets | 0 | | Tweets kept | 2840 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19c6osvl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mariobrothblog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/327sfx1g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/327sfx1g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mariobrothblog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mariobrothblog/1614433919886/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mariobrothblog
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Supper Mario Broth AI Bot @mariobrothblog bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mariobrothblog's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mariobrothblog's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1379282705209298944/urpXm9nH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Cytus Player (Derogatory) 🤖 AI Bot </div> <div style="font-size: 15px">@mariomasta64 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mariomasta64's tweets](https://twitter.com/mariomasta64). | Data | Quantity | | --- | --- | | Tweets downloaded | 3246 | | Retweets | 316 | | Short tweets | 1139 | | Tweets kept | 1791 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1comzm6x/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mariomasta64's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2ru25bei) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2ru25bei/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mariomasta64') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mariomasta64/1617768807850/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mariomasta64
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Cytus Player (Derogatory) AI Bot @mariomasta64 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mariomasta64's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mariomasta64's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1511102924310544387/j6E29xq6_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mark</div> <div style="text-align: center; font-size: 14px;">@markiplier</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mark. | Data | Mark | | --- | --- | | Tweets downloaded | 3230 | | Retweets | 304 | | Short tweets | 388 | | Tweets kept | 2538 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3k0vje7m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markiplier's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6mne3h2w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6mne3h2w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/markiplier') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/markiplier/1654641978193/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/markiplier
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Mark @markiplier I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Mark. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @markiplier's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/903769803768217600/EKtan_aM_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">mark normand</div> <div style="text-align: center; font-size: 14px;">@marknorm</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from mark normand. | Data | mark normand | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 136 | | Short tweets | 522 | | Tweets kept | 2591 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25e2ma2z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marknorm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/17zjqoal) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/17zjqoal/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marknorm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/marknorm/1622488902602/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/marknorm
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT mark normand @marknorm I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from mark normand. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marknorm's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1275370980475535361/-rE0GU41_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Florian Markowetz is hiring</div> <div style="text-align: center; font-size: 14px;">@markowetzlab</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Florian Markowetz is hiring. | Data | Florian Markowetz is hiring | | --- | --- | | Tweets downloaded | 3202 | | Retweets | 1291 | | Short tweets | 169 | | Tweets kept | 1742 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2c3wml3u/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markowetzlab's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/934pj69i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/934pj69i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/markowetzlab') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/markowetzlab/1658408175946/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/markowetzlab
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Florian Markowetz is hiring @markowetzlab I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Florian Markowetz is hiring. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @markowetzlab's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287851691874717696/za-omADx_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">M⦁͘͜⦁̸̀͘⦁͘ P⦁̸̀͘⦁͏⦁͘͜⦁͟͞⦁⦁͘⦁͢͜͜⦁́ 🤖 AI Bot </div> <div style="font-size: 15px">@markprzepiora bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@markprzepiora's tweets](https://twitter.com/markprzepiora). | Data | Quantity | | --- | --- | | Tweets downloaded | 1093 | | Retweets | 55 | | Short tweets | 100 | | Tweets kept | 938 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2e9iu7ts/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markprzepiora's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/9mk8jcf5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/9mk8jcf5/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/markprzepiora') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/markprzepiora
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
M⦁͘͜⦁̸̀͘⦁͘ P⦁̸̀͘⦁͏⦁͘͜⦁͟͞⦁⦁͘⦁͢͜͜⦁́ AI Bot @markprzepiora bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @markprzepiora's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @markprzepiora's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337804992271450118/aeSiyC5n_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tor♎ 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@markvc5 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@markvc5's tweets](https://twitter.com/markvc5). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2921</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1575</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>149</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1197</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2raou1ci/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @markvc5's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3kkbyyk9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3kkbyyk9/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/markvc5'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/markvc5/1608362412479/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/markvc5
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tor AI Bot </div> <div style="font-size: 15px; color: #657786">@markvc5 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @markvc5's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2921</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1575</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>149</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1197</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @markvc5's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/markvc5'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @markvc5's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2921</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1575</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>149</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1197</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @markvc5's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/markvc5'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @markvc5's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2921</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1575</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>149</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1197</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @markvc5's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/markvc5'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1463196823728771079/wZc0m7cd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ajeng🦦</div> <div style="text-align: center; font-size: 14px;">@marsajal</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from ajeng🦦. | Data | ajeng🦦 | | --- | --- | | Tweets downloaded | 214 | | Retweets | 37 | | Short tweets | 41 | | Tweets kept | 136 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3kdiymty/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marsajal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lfk0v9ey) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lfk0v9ey/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marsajal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/marsajal/1657186931820/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/marsajal
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT ajeng @marsajal I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from ajeng. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marsajal's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1345479491100008453/Wel2-oal_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">marsienne 🤖 AI Bot </div> <div style="font-size: 15px">@marsiennex2 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@marsiennex2's tweets](https://twitter.com/marsiennex2). | Data | Quantity | | --- | --- | | Tweets downloaded | 2784 | | Retweets | 149 | | Short tweets | 186 | | Tweets kept | 2449 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1vuwgy1m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marsiennex2's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dge2u03) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dge2u03/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marsiennex2') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/marsiennex2/1616755451668/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/marsiennex2
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
marsienne AI Bot @marsiennex2 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @marsiennex2's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marsiennex2's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1358993374590750724/2DLIr0yk_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">nial 🤖 AI Bot </div> <div style="font-size: 15px">@marsneedsmilfs bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@marsneedsmilfs's tweets](https://twitter.com/marsneedsmilfs). | Data | Quantity | | --- | --- | | Tweets downloaded | 3159 | | Retweets | 1127 | | Short tweets | 633 | | Tweets kept | 1399 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/utrzu0cc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marsneedsmilfs's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1avwfygo) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1avwfygo/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marsneedsmilfs') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/marsneedsmilfs/1614121336301/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/marsneedsmilfs
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
nial AI Bot @marsneedsmilfs bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @marsneedsmilfs's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marsneedsmilfs's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1294998510111252481/aWjcu4yA_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Unsatisfied 👎🗣️ 🤖 AI Bot </div> <div style="font-size: 15px">@marx_is_pog bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@marx_is_pog's tweets](https://twitter.com/marx_is_pog). | Data | Quantity | | --- | --- | | Tweets downloaded | 2859 | | Retweets | 220 | | Short tweets | 137 | | Tweets kept | 2502 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6r831evb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marx_is_pog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/a2b02tyj) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/a2b02tyj/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marx_is_pog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/marx_is_pog
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Unsatisfied ️ AI Bot @marx\_is\_pog bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @marx\_is\_pog's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marx\_is\_pog's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1323823559182045184/Vqrrga8t_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Karl Marx</div> <div style="text-align: center; font-size: 14px;">@marxhaunting</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Karl Marx. | Data | Karl Marx | | --- | --- | | Tweets downloaded | 1287 | | Retweets | 16 | | Short tweets | 25 | | Tweets kept | 1246 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1zcjng5j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marxhaunting's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1nimlh0s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1nimlh0s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marxhaunting') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/marxhaunting/1625868274804/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/marxhaunting
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Karl Marx @marxhaunting I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Karl Marx. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marxhaunting's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359841989961928706/sudk-B8k_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mary-Ann Blätke 🤖 AI Bot </div> <div style="font-size: 15px">@maryannblaetke bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maryannblaetke's tweets](https://twitter.com/maryannblaetke). | Data | Quantity | | --- | --- | | Tweets downloaded | 1176 | | Retweets | 828 | | Short tweets | 32 | | Tweets kept | 316 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/21gtovj7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maryannblaetke's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dpwtpwt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dpwtpwt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maryannblaetke') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/maryannblaetke
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Mary-Ann Blätke AI Bot @maryannblaetke bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maryannblaetke's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maryannblaetke's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1348752588037042177/3CrVQslz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Stuff of Thot 🤖 AI Bot </div> <div style="font-size: 15px">@maryjackalope bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maryjackalope's tweets](https://twitter.com/maryjackalope). | Data | Quantity | | --- | --- | | Tweets downloaded | 3209 | | Retweets | 492 | | Short tweets | 388 | | Tweets kept | 2329 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2r158ehi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maryjackalope's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3l16ch7e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3l16ch7e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maryjackalope') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maryjackalope/1616627562795/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maryjackalope
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Stuff of Thot AI Bot @maryjackalope bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maryjackalope's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maryjackalope's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1412400542794539011/cnUXEkge_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/645703196602601472/2A41g0gW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Soup & SCOTTY</div> <div style="text-align: center; font-size: 14px;">@marylandmudflap-sniping_soup</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Soup & SCOTTY. | Data | Soup | SCOTTY | | --- | --- | --- | | Tweets downloaded | 3237 | 3245 | | Retweets | 106 | 146 | | Short tweets | 1287 | 327 | | Tweets kept | 1844 | 2772 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/u88yo4gm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @marylandmudflap-sniping_soup's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3dpmqtze) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3dpmqtze/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/marylandmudflap-sniping_soup') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/marylandmudflap-sniping_soup
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Soup & SCOTTY @marylandmudflap-sniping\_soup I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Soup & SCOTTY. Data: Tweets downloaded, Soup: 3237, SCOTTY: 3245 Data: Retweets, Soup: 106, SCOTTY: 146 Data: Short tweets, Soup: 1287, SCOTTY: 327 Data: Tweets kept, Soup: 1844, SCOTTY: 2772 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @marylandmudflap-sniping\_soup's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363994902477086720/ogxDd7IJ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mat Dryhurst 🤖 AI Bot </div> <div style="font-size: 15px">@matdryhurst bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@matdryhurst's tweets](https://twitter.com/matdryhurst). | Data | Quantity | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 290 | | Short tweets | 391 | | Tweets kept | 2566 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27kjan0j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matdryhurst's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10kdn4kk) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10kdn4kk/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/matdryhurst') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/matdryhurst/1616685071414/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/matdryhurst
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Mat Dryhurst AI Bot @matdryhurst bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @matdryhurst's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @matdryhurst's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/787317891867693061/isUFxFC1_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matei Zaharia</div> <div style="text-align: center; font-size: 14px;">@matei_zaharia</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matei Zaharia. | Data | Matei Zaharia | | --- | --- | | Tweets downloaded | 1497 | | Retweets | 713 | | Short tweets | 17 | | Tweets kept | 767 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mod3uxt/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matei_zaharia's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2squr71y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2squr71y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/matei_zaharia') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/matei_zaharia
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Matei Zaharia @matei\_zaharia I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Matei Zaharia. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @matei\_zaharia's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276880038273724419/1_35ZEMK_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Spike 🤖 AI Bot </div> <div style="font-size: 15px">@matspike bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@matspike's tweets](https://twitter.com/matspike). | Data | Quantity | | --- | --- | | Tweets downloaded | 3093 | | Retweets | 1674 | | Short tweets | 202 | | Tweets kept | 1217 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34dza007/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matspike's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/338q8sac) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/338q8sac/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/matspike') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/matspike/1616685057860/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/matspike
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matt Spike AI Bot @matspike bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @matspike's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @matspike's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1398242436082638855/mvzIZACg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">松本人志</div> <div style="text-align: center; font-size: 14px;">@matsu_bouzu</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from 松本人志. | Data | 松本人志 | | --- | --- | | Tweets downloaded | 808 | | Retweets | 30 | | Short tweets | 504 | | Tweets kept | 274 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/fwqkxzg7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matsu_bouzu's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1af81o1n) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1af81o1n/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/matsu_bouzu') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/matsu_bouzu/1630934852210/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/matsu_bouzu
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT 松本人志 @matsu\_bouzu I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from 松本人志. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @matsu\_bouzu's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1360971923178594310/5pSKGbGM_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt (Dadpleaseno) 🤖 AI Bot </div> <div style="font-size: 15px">@mattdadpleaseno bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mattdadpleaseno's tweets](https://twitter.com/mattdadpleaseno). | Data | Quantity | | --- | --- | | Tweets downloaded | 880 | | Retweets | 24 | | Short tweets | 525 | | Tweets kept | 331 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1syqc93v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattdadpleaseno's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/m25gkxjf) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/m25gkxjf/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattdadpleaseno') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mattdadpleaseno/1614219195879/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mattdadpleaseno
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matt (Dadpleaseno) AI Bot @mattdadpleaseno bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mattdadpleaseno's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mattdadpleaseno's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374217413009436676/g_aRaCDX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Segal 🤖 AI Bot </div> <div style="font-size: 15px">@mattdsegal bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mattdsegal's tweets](https://twitter.com/mattdsegal). | Data | Quantity | | --- | --- | | Tweets downloaded | 741 | | Retweets | 151 | | Short tweets | 37 | | Tweets kept | 553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7wyo68rg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattdsegal's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/10czmm6k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/10czmm6k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattdsegal') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mattdsegal/1616635550174/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mattdsegal
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matt Segal AI Bot @mattdsegal bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mattdsegal's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mattdsegal's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/966325945060732928/0Ua5xPMX_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matteo Salvini 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@matteosalvinimi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@matteosalvinimi's tweets](https://twitter.com/matteosalvinimi). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3247</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>16</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>62</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3169</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/mr7hblho/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matteosalvinimi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2tnq2vfo) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2tnq2vfo/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/matteosalvinimi'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/matteosalvinimi/1602235798303/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/matteosalvinimi
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matteo Salvini AI Bot </div> <div style="font-size: 15px; color: #657786">@matteosalvinimi bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @matteosalvinimi's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3247</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>16</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>62</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>3169</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @matteosalvinimi's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/matteosalvinimi'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @matteosalvinimi's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3247</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>16</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>62</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3169</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @matteosalvinimi's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/matteosalvinimi'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @matteosalvinimi's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3247</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>16</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>62</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>3169</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @matteosalvinimi's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/matteosalvinimi'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1211274521099096064/0i86noPZ_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew Gertz 🤖 AI Bot </div> <div style="font-size: 15px">@mattgertz bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mattgertz's tweets](https://twitter.com/mattgertz). | Data | Quantity | | --- | --- | | Tweets downloaded | 3243 | | Retweets | 526 | | Short tweets | 349 | | Tweets kept | 2368 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ugw7c1gs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattgertz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21ca35po) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21ca35po/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattgertz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/mattgertz
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matthew Gertz AI Bot @mattgertz bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mattgertz's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mattgertz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1257452619469139972/q_W0JwHi_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Hartman 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@matthartman bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@matthartman's tweets](https://twitter.com/matthartman). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3231</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>90</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>356</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2785</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1l57c9x9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matthartman's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2dv3da5o) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2dv3da5o/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/matthartman'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/matthartman
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Hartman AI Bot </div> <div style="font-size: 15px; color: #657786">@matthartman bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @matthartman's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3231</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>90</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>356</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2785</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @matthartman's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/matthartman'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @matthartman's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3231</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>90</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>356</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2785</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @matthartman's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/matthartman'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @matthartman's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3231</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>90</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>356</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2785</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @matthartman's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/matthartman'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1270959084800364545/XCi4h7Sq_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew Espinosa 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@matthewespinosa bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@matthewespinosa's tweets](https://twitter.com/matthewespinosa). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3144</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>302</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>563</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2279</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1xdrikmp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @matthewespinosa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2wsgnblm) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2wsgnblm/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/matthewespinosa'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/matthewespinosa/1601264652405/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/matthewespinosa
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthew Espinosa AI Bot </div> <div style="font-size: 15px; color: #657786">@matthewespinosa bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @matthewespinosa's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3144</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>302</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>563</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2279</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @matthewespinosa's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/matthewespinosa'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @matthewespinosa's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3144</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>302</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>563</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2279</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @matthewespinosa's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/matthewespinosa'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @matthewespinosa's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3144</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>302</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>563</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2279</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @matthewespinosa's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/matthewespinosa'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1359792499104047106/Wur41M8Q_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Jope 🤖 AI Bot </div> <div style="font-size: 15px">@mattjope bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mattjope's tweets](https://twitter.com/mattjope). | Data | Quantity | | --- | --- | | Tweets downloaded | 827 | | Retweets | 104 | | Short tweets | 95 | | Tweets kept | 628 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/8z6lpq25/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattjope's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2386axt1) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2386axt1/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattjope') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mattjope/1616749400584/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mattjope
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Matt Jope AI Bot @mattjope bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mattjope's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mattjope's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1277732268421906434/KJYCx1CW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Riddell</div> <div style="text-align: center; font-size: 14px;">@mattriddell</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Riddell. | Data | Matt Riddell | | --- | --- | | Tweets downloaded | 827 | | Retweets | 23 | | Short tweets | 16 | | Tweets kept | 788 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yyotcdp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattriddell's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bk39fpc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bk39fpc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattriddell') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mattriddell/1637315563420/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mattriddell
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Matt Riddell @mattriddell I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Matt Riddell. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mattriddell's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1199524193429311488/cjMo0rct_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Smethurst 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mattsmethurst bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mattsmethurst's tweets](https://twitter.com/mattsmethurst). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3214</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>357</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>316</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2541</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/15k0i4sh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattsmethurst's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3r714wr0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3r714wr0/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mattsmethurst'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mattsmethurst/1607666985272/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mattsmethurst
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matt Smethurst AI Bot </div> <div style="font-size: 15px; color: #657786">@mattsmethurst bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @mattsmethurst's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3214</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>357</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>316</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2541</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @mattsmethurst's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mattsmethurst'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mattsmethurst's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3214</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>357</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>316</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2541</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mattsmethurst's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mattsmethurst'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mattsmethurst's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3214</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>357</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>316</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2541</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mattsmethurst's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mattsmethurst'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1389695100045959168/WIluCszp_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Matt Walsh</div> <div style="text-align: center; font-size: 14px;">@mattwalshblog</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Matt Walsh. | Data | Matt Walsh | | --- | --- | | Tweets downloaded | 3240 | | Retweets | 716 | | Short tweets | 71 | | Tweets kept | 2453 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2gnxwrlk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mattwalshblog's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uvdejb5p) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uvdejb5p/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mattwalshblog') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mattwalshblog/1630167154915/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mattwalshblog
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Matt Walsh @mattwalshblog I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Matt Walsh. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mattwalshblog's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/653558348273569792/joxg8DZD_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mauricio Macri</div> <div style="text-align: center; font-size: 14px;">@mauriciomacri</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mauricio Macri. | Data | Mauricio Macri | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 115 | | Short tweets | 119 | | Tweets kept | 2984 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35gnv0cb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mauriciomacri's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3swdzpjx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3swdzpjx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mauriciomacri') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mauriciomacri/1621054685518/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mauriciomacri
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Mauricio Macri @mauriciomacri I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Mauricio Macri. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mauriciomacri's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1228330296480759809/VcT9cYtK_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Başkent153</div> <div style="text-align: center; font-size: 14px;">@mavimasa</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Başkent153. | Data | Başkent153 | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 0 | | Short tweets | 605 | | Tweets kept | 2645 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/k1bmfsp6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mavimasa's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21cd6mvi) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21cd6mvi/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mavimasa') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/mavimasa/1637221645468/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mavimasa
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Başkent153 @mavimasa I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Başkent153. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mavimasa's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/857777762219814912/5vBuo9nc_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Максим Кац</div> <div style="text-align: center; font-size: 14px;">@max_katz</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Максим Кац. | Data | Максим Кац | | --- | --- | | Tweets downloaded | 3244 | | Retweets | 647 | | Short tweets | 222 | | Tweets kept | 2375 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3oi3n76o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @max_katz's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3tmjrcbx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3tmjrcbx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/max_katz') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/max_katz/1621533774830/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/max_katz
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Максим Кац @max\_katz I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Максим Кац. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @max\_katz's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/798624742806876160/STnp5SZT_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Max Berggren 🐍🐼 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@maxberggren bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maxberggren's tweets](https://twitter.com/maxberggren). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3192</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>460</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>389</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2343</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/lkm0ejfr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxberggren's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/23wsd8m1) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/23wsd8m1/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/maxberggren'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/maxberggren
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Max Berggren AI Bot </div> <div style="font-size: 15px; color: #657786">@maxberggren bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @maxberggren's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3192</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>460</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>389</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2343</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @maxberggren's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/maxberggren'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @maxberggren's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3192</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>460</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>389</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2343</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @maxberggren's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/maxberggren'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @maxberggren's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3192</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>460</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>389</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2343</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @maxberggren's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/maxberggren'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1323696590947831810/4LwHUmkU_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1355219248998535169/aprSSrFr_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Maximilian Fleitmann & sahil</div> <div style="text-align: center; font-size: 14px;">@maxfleit-sahil</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Maximilian Fleitmann & sahil. | Data | Maximilian Fleitmann | sahil | | --- | --- | --- | | Tweets downloaded | 1161 | 3018 | | Retweets | 18 | 2505 | | Short tweets | 25 | 108 | | Tweets kept | 1118 | 405 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2mud364f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxfleit-sahil's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3v52vz1s) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3v52vz1s/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxfleit-sahil') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/maxfleit-sahil
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Maximilian Fleitmann & sahil @maxfleit-sahil I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Maximilian Fleitmann & sahil. Data: Tweets downloaded, Maximilian Fleitmann: 1161, sahil: 3018 Data: Retweets, Maximilian Fleitmann: 18, sahil: 2505 Data: Short tweets, Maximilian Fleitmann: 25, sahil: 108 Data: Tweets kept, Maximilian Fleitmann: 1118, sahil: 405 Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maxfleit-sahil's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1346734567953027072/TrXTS3wS_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Danny Wardle 🤖 AI Bot </div> <div style="font-size: 15px">@maximalworm bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maximalworm's tweets](https://twitter.com/maximalworm). | Data | Quantity | | --- | --- | | Tweets downloaded | 1866 | | Retweets | 260 | | Short tweets | 160 | | Tweets kept | 1446 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/38otzttr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maximalworm's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1pw0y6f7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1pw0y6f7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maximalworm') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maximalworm/1616645292013/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maximalworm
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Danny Wardle AI Bot @maximalworm bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maximalworm's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maximalworm's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1275903731398311937/8pm1wdZG_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">max graves 🤖 AI Bot </div> <div style="font-size: 15px">@maximumgraves bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maximumgraves's tweets](https://twitter.com/maximumgraves). | Data | Quantity | | --- | --- | | Tweets downloaded | 3218 | | Retweets | 325 | | Short tweets | 291 | | Tweets kept | 2602 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l1dcl8j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maximumgraves's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/oz4giyxt) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/oz4giyxt/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maximumgraves') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maximumgraves/1614354480803/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maximumgraves
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
max graves AI Bot @maximumgraves bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maximumgraves's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maximumgraves's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1317491990058180608/YN7KXJsg_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Max ⛅ 🤖 AI Bot </div> <div style="font-size: 15px">@maxisawesome538 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maxisawesome538's tweets](https://twitter.com/maxisawesome538). | Data | Quantity | | --- | --- | | Tweets downloaded | 3146 | | Retweets | 1273 | | Short tweets | 220 | | Tweets kept | 1653 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g94r4h6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxisawesome538's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uqp1d1g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uqp1d1g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxisawesome538') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maxisawesome538/1616858045601/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maxisawesome538
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Max AI Bot @maxisawesome538 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maxisawesome538's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maxisawesome538's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1044692450529476613/TEnp8FC5_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Max Noichl 🤖 AI Bot </div> <div style="font-size: 15px">@maxnoichl bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maxnoichl's tweets](https://twitter.com/maxnoichl). | Data | Quantity | | --- | --- | | Tweets downloaded | 920 | | Retweets | 407 | | Short tweets | 46 | | Tweets kept | 467 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3q42s8gg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxnoichl's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1hyybffc) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1hyybffc/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxnoichl') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maxnoichl/1616642867004/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maxnoichl
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Max Noichl AI Bot @maxnoichl bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maxnoichl's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maxnoichl's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1013952238501355520/PbL6SuNj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Maxwell A. Cameron 🤖 AI Bot </div> <div style="font-size: 15px">@maxwellacameron bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maxwellacameron's tweets](https://twitter.com/maxwellacameron). | Data | Quantity | | --- | --- | | Tweets downloaded | 2969 | | Retweets | 392 | | Short tweets | 182 | | Tweets kept | 2395 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k670nnb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maxwellacameron's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2hkatk9i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2hkatk9i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maxwellacameron') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maxwellacameron/1617251170563/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maxwellacameron
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Maxwell A. Cameron AI Bot @maxwellacameron bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maxwellacameron's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maxwellacameron's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1303741898155323395/kk5Da9Gz_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Æustin B-12 🍊 🤖 AI Bot </div> <div style="font-size: 15px">@maybeluncle bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@maybeluncle's tweets](https://twitter.com/maybeluncle). | Data | Quantity | | --- | --- | | Tweets downloaded | 436 | | Retweets | 23 | | Short tweets | 84 | | Tweets kept | 329 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2bgbf4jv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @maybeluncle's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/aqd96qwz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/aqd96qwz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/maybeluncle') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/maybeluncle/1617776294782/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/maybeluncle
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Æustin B-12 AI Bot @maybeluncle bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @maybeluncle's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @maybeluncle's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1273350748152008706/lrRFBCd-_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">MC HAMMER 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mchammer bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mchammer's tweets](https://twitter.com/mchammer). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3228</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1006</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1084</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1138</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/7qehxuzo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mchammer's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/cibgo2pn) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/cibgo2pn/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mchammer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://res.cloudinary.com/huggingtweets/image/upload/v1599931790/mchammer.jpg", "widget": [{"text": "My dream is"}]}
huggingtweets/mchammer
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">MC HAMMER AI Bot </div> <div style="font-size: 15px; color: #657786">@mchammer bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @mchammer's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3228</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1006</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>1084</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1138</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @mchammer's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mchammer'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mchammer's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3228</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1006</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1084</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1138</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mchammer's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mchammer'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mchammer's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3228</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1006</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>1084</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1138</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mchammer's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mchammer'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1346554246393638912/PxWiZCcv_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">SH</div> <div style="text-align: center; font-size: 14px;">@mchotpockets</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from SH. | Data | SH | | --- | --- | | Tweets downloaded | 424 | | Retweets | 17 | | Short tweets | 56 | | Tweets kept | 351 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/edn1rmpk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mchotpockets's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35s5y8it) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35s5y8it/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mchotpockets') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mchotpockets/1624472743719/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mchotpockets
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT SH @mchotpockets I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from SH. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mchotpockets's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1174977443641249792/VCg_utme_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michael McIntyre</div> <div style="text-align: center; font-size: 14px;">@mcintweet</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michael McIntyre. | Data | Michael McIntyre | | --- | --- | | Tweets downloaded | 1196 | | Retweets | 138 | | Short tweets | 34 | | Tweets kept | 1024 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35dkm3ec/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mcintweet's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20vszack) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20vszack/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mcintweet') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mcintweet/1623602161461/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mcintweet
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Michael McIntyre @mcintweet I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Michael McIntyre. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mcintweet's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/488767003910365185/XuiEhFC8_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michelle Finneran Dennedy 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mdennedy bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mdennedy's tweets](https://twitter.com/mdennedy). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3217</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1383</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>327</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1507</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2a1prekg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdennedy's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1gge9ffp) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1gge9ffp/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mdennedy'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/mdennedy
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michelle Finneran Dennedy AI Bot </div> <div style="font-size: 15px; color: #657786">@mdennedy bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @mdennedy's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3217</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1383</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>327</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1507</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @mdennedy's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mdennedy'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mdennedy's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3217</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1383</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>327</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1507</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mdennedy's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mdennedy'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mdennedy's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3217</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1383</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>327</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1507</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mdennedy's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mdennedy'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1017771143174983680/xZ4-ChFm_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Miryam de Lhoneux 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mdlhx bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mdlhx's tweets](https://twitter.com/mdlhx). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2408</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>272</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1923</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/2nt3ibgz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mdlhx's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1e6qg0mw) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1e6qg0mw/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mdlhx'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mdlhx/1600847599559/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mdlhx
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Miryam de Lhoneux AI Bot </div> <div style="font-size: 15px; color: #657786">@mdlhx bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @mdlhx's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2408</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>213</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>272</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1923</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @mdlhx's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mdlhx'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mdlhx's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2408</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>213</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>272</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1923</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mdlhx's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mdlhx'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mdlhx's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2408</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>213</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>272</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1923</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mdlhx's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mdlhx'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1399508942687031300/oKC9S0SX_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Meow-dow Faust 🐱</div> <div style="text-align: center; font-size: 14px;">@meadowfaust</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Meow-dow Faust 🐱. | Data | Meow-dow Faust 🐱 | | --- | --- | | Tweets downloaded | 3219 | | Retweets | 1168 | | Short tweets | 466 | | Tweets kept | 1585 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tn9zz5j/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @meadowfaust's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lbtjk2a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lbtjk2a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/meadowfaust') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/meadowfaust/1624484317195/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/meadowfaust
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Meow-dow Faust @meadowfaust I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Meow-dow Faust . Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @meadowfaust's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374353206898229249/p9ZaR7AU_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Solar Monk 🤖 AI Bot </div> <div style="font-size: 15px">@mechanical_monk bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mechanical_monk's tweets](https://twitter.com/mechanical_monk). | Data | Quantity | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 9 | | Short tweets | 540 | | Tweets kept | 2701 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3qymex3o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mechanical_monk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/15h2yysz) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/15h2yysz/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mechanical_monk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mechanical_monk/1616856045639/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mechanical_monk
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Solar Monk AI Bot @mechanical\_monk bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mechanical\_monk's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mechanical\_monk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1368512623034183686/SqccnbVI_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">chris 🤖 AI Bot </div> <div style="font-size: 15px">@mediocrechris bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mediocrechris's tweets](https://twitter.com/mediocrechris). | Data | Quantity | | --- | --- | | Tweets downloaded | 3054 | | Retweets | 1321 | | Short tweets | 167 | | Tweets kept | 1566 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7lzf7wr4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mediocrechris's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1mf39bti) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1mf39bti/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mediocrechris') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/mediocrechris
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
chris AI Bot @mediocrechris bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mediocrechris's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mediocrechris's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337800638655152129/lzyOrl2X_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jai 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@medyoantok bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@medyoantok's tweets](https://twitter.com/medyoantok). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3211</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>282</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>853</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2076</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/4tvjlrbh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @medyoantok's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/38pi42bb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/38pi42bb/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/medyoantok'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/medyoantok/1608377513234/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/medyoantok
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">jai AI Bot </div> <div style="font-size: 15px; color: #657786">@medyoantok bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @medyoantok's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3211</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>282</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>853</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2076</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @medyoantok's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/medyoantok'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @medyoantok's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3211</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>282</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>853</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2076</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @medyoantok's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/medyoantok'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @medyoantok's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3211</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>282</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>853</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2076</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @medyoantok's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/medyoantok'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1349329043343224832/WhPBEeDp_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Meekaale Brockman 🤖 AI Bot </div> <div style="font-size: 15px">@meekaale bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@meekaale's tweets](https://twitter.com/meekaale). | Data | Quantity | | --- | --- | | Tweets downloaded | 3245 | | Retweets | 194 | | Short tweets | 314 | | Tweets kept | 2737 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1y2n8q6q/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @meekaale's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wpx5ruy7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wpx5ruy7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/meekaale') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/meekaale
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Meekaale Brockman AI Bot @meekaale bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @meekaale's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @meekaale's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1252735857418698755/z57k2l8j_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">sewer man 🤖 AI Bot </div> <div style="font-size: 15px">@mehatescum bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mehatescum's tweets](https://twitter.com/mehatescum). | Data | Quantity | | --- | --- | | Tweets downloaded | 2909 | | Retweets | 682 | | Short tweets | 509 | | Tweets kept | 1718 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xnqvzfl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mehatescum's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/qs8o4r0a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/qs8o4r0a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mehatescum') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mehatescum/1617250023965/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mehatescum
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
sewer man AI Bot @mehatescum bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mehatescum's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mehatescum's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1103599131967123457/FnVa21bq_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Simon 🤖 AI Bot </div> <div style="font-size: 15px">@melee_monkey bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@melee_monkey's tweets](https://twitter.com/melee_monkey). | Data | Quantity | | --- | --- | | Tweets downloaded | 2584 | | Retweets | 278 | | Short tweets | 83 | | Tweets kept | 2223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ul7y1t6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melee_monkey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zl5ryef) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zl5ryef/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/melee_monkey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/melee_monkey/1614201280882/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/melee_monkey
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Simon AI Bot @melee\_monkey bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @melee\_monkey's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @melee\_monkey's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/905461232324542468/pmWvNFJl_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sergio I. Melnick 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@melnicksergio bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@melnicksergio's tweets](https://twitter.com/melnicksergio). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3189</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2694</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>110</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>385</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1tgvsv1m/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melnicksergio's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/24l036nj) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/24l036nj/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/melnicksergio'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/melnicksergio/1602256233745/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/melnicksergio
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Sergio I. Melnick AI Bot </div> <div style="font-size: 15px; color: #657786">@melnicksergio bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @melnicksergio's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>3189</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>2694</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>110</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>385</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @melnicksergio's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/melnicksergio'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @melnicksergio's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3189</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2694</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>110</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>385</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @melnicksergio's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/melnicksergio'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @melnicksergio's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>3189</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>2694</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>110</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>385</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @melnicksergio's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/melnicksergio'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1435429688831135746/t5TELThj_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">matthew</div> <div style="text-align: center; font-size: 14px;">@melspurgatory</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from matthew. | Data | matthew | | --- | --- | | Tweets downloaded | 3220 | | Retweets | 429 | | Short tweets | 541 | | Tweets kept | 2250 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29yvc0bm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @melspurgatory's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/w9infsn0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/w9infsn0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/melspurgatory') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/melspurgatory/1641573097526/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/melspurgatory
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT matthew @melspurgatory I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from matthew. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @melspurgatory's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1314538217920552960/kXXIde-t_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">🐮Seeking Alphas🐮 (college dropout) 🤖 AI Bot </div> <div style="font-size: 15px">@mentlelhospital bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mentlelhospital's tweets](https://twitter.com/mentlelhospital). | Data | Quantity | | --- | --- | | Tweets downloaded | 3172 | | Retweets | 916 | | Short tweets | 241 | | Tweets kept | 2015 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tyv3tpy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mentlelhospital's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1tq73mj0) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1tq73mj0/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mentlelhospital') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mentlelhospital/1617766795325/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mentlelhospital
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Seeking Alphas (college dropout) AI Bot @mentlelhospital bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mentlelhospital's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mentlelhospital's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1343769502916489216/lg5XnoAa_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Eths 🤖 AI Bot </div> <div style="font-size: 15px">@merry_eths bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@merry_eths's tweets](https://twitter.com/merry_eths). | Data | Quantity | | --- | --- | | Tweets downloaded | 796 | | Retweets | 35 | | Short tweets | 41 | | Tweets kept | 720 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26yei5rs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @merry_eths's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3a84bp6k) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3a84bp6k/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/merry_eths') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/merry_eths/1616933123793/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/merry_eths
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Eths AI Bot @merry\_eths bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @merry\_eths's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @merry\_eths's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1287118149394071552/mKhqMluH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mo 🤖 AI Bot </div> <div style="font-size: 15px">@messiah869 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@messiah869's tweets](https://twitter.com/messiah869). | Data | Quantity | | --- | --- | | Tweets downloaded | 2858 | | Retweets | 1271 | | Short tweets | 212 | | Tweets kept | 1375 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/243hchhz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @messiah869's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/221ghn2m) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/221ghn2m/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/messiah869') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/messiah869/1616676005506/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/messiah869
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Mo AI Bot @messiah869 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @messiah869's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @messiah869's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1323150543460577280/qH9qh3Hg_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">NikoTheMessiah</div> <div style="text-align: center; font-size: 14px;">@messiah_niko</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from NikoTheMessiah. | Data | NikoTheMessiah | | --- | --- | | Tweets downloaded | 3249 | | Retweets | 0 | | Short tweets | 1095 | | Tweets kept | 2154 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3hqsklu0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @messiah_niko's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fov69x9) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fov69x9/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/messiah_niko') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/messiah_niko/1623054570608/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/messiah_niko
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT NikoTheMessiah @messiah\_niko I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from NikoTheMessiah. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @messiah\_niko's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1172700745981988869/L6yS44ib_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Molly Gardner 🤖 AI Bot </div> <div style="font-size: 15px">@mgardner2000 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mgardner2000's tweets](https://twitter.com/mgardner2000). | Data | Quantity | | --- | --- | | Tweets downloaded | 114 | | Retweets | 20 | | Short tweets | 11 | | Tweets kept | 83 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6mhuilch/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mgardner2000's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/wimgfslg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/wimgfslg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mgardner2000') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mgardner2000/1616723022351/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mgardner2000
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Molly Gardner AI Bot @mgardner2000 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mgardner2000's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mgardner2000's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1249308412808171521/WNx765F8_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michelangelo Bucci 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@micbucci bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@micbucci's tweets](https://twitter.com/micbucci). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1559</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>248</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>52</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1259</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/198uon6g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @micbucci's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/f6humoq2) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/f6humoq2/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/micbucci'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/micbucci
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michelangelo Bucci AI Bot </div> <div style="font-size: 15px; color: #657786">@micbucci bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @micbucci's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>1559</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>248</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>52</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>1259</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @micbucci's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/micbucci'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @micbucci's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1559</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>248</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>52</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1259</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @micbucci's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/micbucci'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @micbucci's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>1559</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>248</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>52</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>1259</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @micbucci's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/micbucci'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1413939279127011331/dVGeqlNN_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1468996975404228610/Etj-urSz_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1471632802894389249/2ubdnotf_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Vyacheslav Pukhanov & Michael Drummey & oh no zach had a thought</div> <div style="text-align: center; font-size: 14px;">@michaeldrummey-theegaycomrade-vpukhanov</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Vyacheslav Pukhanov & Michael Drummey & oh no zach had a thought. | Data | Vyacheslav Pukhanov | Michael Drummey | oh no zach had a thought | | --- | --- | --- | --- | | Tweets downloaded | 308 | 3246 | 3248 | | Retweets | 50 | 231 | 55 | | Short tweets | 63 | 1133 | 640 | | Tweets kept | 195 | 1882 | 2553 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1udeu111/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaeldrummey-theegaycomrade-vpukhanov's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3h79hg6v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3h79hg6v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michaeldrummey-theegaycomrade-vpukhanov') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/michaeldrummey-theegaycomrade-vpukhanov/1641065423081/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/michaeldrummey-theegaycomrade-vpukhanov
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI CYBORG Vyacheslav Pukhanov & Michael Drummey & oh no zach had a thought @michaeldrummey-theegaycomrade-vpukhanov I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Vyacheslav Pukhanov & Michael Drummey & oh no zach had a thought. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @michaeldrummey-theegaycomrade-vpukhanov's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/556179314660478976/l_MadSiU_400x400.jpeg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michael Jackson 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@michaeljackson bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michaeljackson's tweets](https://twitter.com/michaeljackson). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2671</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>24</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2615</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3lg17rb5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaeljackson's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/lnx54cjj) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/lnx54cjj/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/michaeljackson'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/michaeljackson
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michael Jackson AI Bot </div> <div style="font-size: 15px; color: #657786">@michaeljackson bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @michaeljackson's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2671</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>24</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>32</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>2615</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @michaeljackson's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/michaeljackson'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @michaeljackson's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2671</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>24</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>32</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2615</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @michaeljackson's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/michaeljackson'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @michaeljackson's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2671</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>24</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>32</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>2615</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @michaeljackson's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/michaeljackson'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1275396462076022786/ZsFFlLrH_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michael Reeves 🤖 AI Bot </div> <div style="font-size: 15px">@michaelreeves bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michaelreeves's tweets](https://twitter.com/michaelreeves). | Data | Quantity | | --- | --- | | Tweets downloaded | 914 | | Retweets | 32 | | Short tweets | 142 | | Tweets kept | 740 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3prhwuuh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaelreeves's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1za8s10i) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1za8s10i/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michaelreeves') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/michaelreeves/1619288893486/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/michaelreeves
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Michael Reeves AI Bot @michaelreeves bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @michaelreeves's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @michaelreeves's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1340673217921474562/Igt314Ag_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michaël Trazzi 🤖 AI Bot </div> <div style="font-size: 15px">@michaeltrazzi bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michaeltrazzi's tweets](https://twitter.com/michaeltrazzi). | Data | Quantity | | --- | --- | | Tweets downloaded | 2029 | | Retweets | 116 | | Short tweets | 467 | | Tweets kept | 1446 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w9xuqn6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michaeltrazzi's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3bumahb8) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3bumahb8/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michaeltrazzi') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/michaeltrazzi/1616940766067/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/michaeltrazzi
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Michaël Trazzi AI Bot @michaeltrazzi bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @michaeltrazzi's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @michaeltrazzi's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1507471015110139906/T9rDVcLd_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Michelle Obama</div> <div style="text-align: center; font-size: 14px;">@michelleobama</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Michelle Obama. | Data | Michelle Obama | | --- | --- | | Tweets downloaded | 1932 | | Retweets | 439 | | Short tweets | 10 | | Tweets kept | 1483 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m7f8b6p/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michelleobama's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/200pdxti) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/200pdxti/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/michelleobama') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/michelleobama/1655133694921/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/michelleobama
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Michelle Obama @michelleobama I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Michelle Obama. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @michelleobama's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1055539020594380802/RDybDRUj_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michel Onfray 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@michelonfray4 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@michelonfray4's tweets](https://twitter.com/michelonfray4). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>483</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>222</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>88</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>173</td> </tr> </tbody> </table> [Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/18u5girs/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @michelonfray4's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/19hut7nl) for full transparency and reproducibility. At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/19hut7nl/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/michelonfray4'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets) <!--- random size file -->
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/michelonfray4/1601451731753/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/michelonfray4
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Michel Onfray AI Bot </div> <div style="font-size: 15px; color: #657786">@michelonfray4 bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @michelonfray4's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>483</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>222</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>88</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>173</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @michelonfray4's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/michelonfray4'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @michelonfray4's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>483</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>222</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>88</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>173</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @michelonfray4's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/michelonfray4'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @michelonfray4's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>483</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>222</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>88</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>173</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @michelonfray4's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/michelonfray4'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362790988356464645/TGSSbvT0_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Micky the cow 🤖 AI Bot </div> <div style="font-size: 15px">@micky_cow bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@micky_cow's tweets](https://twitter.com/micky_cow). | Data | Quantity | | --- | --- | | Tweets downloaded | 135 | | Retweets | 0 | | Short tweets | 15 | | Tweets kept | 120 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ugkdnx6z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @micky_cow's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2jfh2mjg) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2jfh2mjg/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/micky_cow') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
huggingtweets/micky_cow
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Micky the cow AI Bot @micky\_cow bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @micky\_cow's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @micky\_cow's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1419815374904770561/Qal6NB91_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Micky Rourk</div> <div style="text-align: center; font-size: 14px;">@mickyrourk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Micky Rourk. | Data | Micky Rourk | | --- | --- | | Tweets downloaded | 2139 | | Retweets | 194 | | Short tweets | 73 | | Tweets kept | 1872 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1buf25n4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mickyrourk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2thme21b) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2thme21b/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mickyrourk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mickyrourk/1627447046714/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mickyrourk
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Micky Rourk @mickyrourk I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Micky Rourk. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mickyrourk's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/894065467576508420/4iIvZzFO_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Micro Flash Fiction📖 🤖 AI Bot </div> <div style="font-size: 15px">@microflashfic bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@microflashfic's tweets](https://twitter.com/microflashfic). | Data | Quantity | | --- | --- | | Tweets downloaded | 3239 | | Retweets | 52 | | Short tweets | 226 | | Tweets kept | 2961 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3zjfyjpv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @microflashfic's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/v1kciboh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/v1kciboh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/microflashfic') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/microflashfic/1619506039830/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/microflashfic
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Micro Flash Fiction AI Bot @microflashfic bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @microflashfic's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @microflashfic's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1585617858184323072/Vy138ToA_400x400.png&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Microsoft</div> <div style="text-align: center; font-size: 14px;">@microsoft</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Microsoft. | Data | Microsoft | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 174 | | Short tweets | 811 | | Tweets kept | 2265 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wtsi24dv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @microsoft's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o8j42bpn) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o8j42bpn/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/microsoft') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/microsoft/1675170372180/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/microsoft
null
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AI BOT Microsoft @microsoft I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on tweets from Microsoft. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @microsoft's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1378530868378017792/n-7hu56m_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Medway 🤖 AI Bot </div> <div style="font-size: 15px">@midwaymedway bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@midwaymedway's tweets](https://twitter.com/midwaymedway). | Data | Quantity | | --- | --- | | Tweets downloaded | 2852 | | Retweets | 584 | | Short tweets | 273 | | Tweets kept | 1995 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ks2nkwdu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @midwaymedway's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3byueofy) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3byueofy/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/midwaymedway') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/midwaymedway/1617829571471/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/midwaymedway
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Medway AI Bot @midwaymedway bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @midwaymedway's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @midwaymedway's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1373820690214789123/mOik9-iZ_400x400.png')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">mild🍹 🤖 AI Bot </div> <div style="font-size: 15px">@miild90 bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@miild90's tweets](https://twitter.com/miild90). | Data | Quantity | | --- | --- | | Tweets downloaded | 909 | | Retweets | 48 | | Short tweets | 183 | | Tweets kept | 678 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3caxonuq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @miild90's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l2qd3070) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l2qd3070/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/miild90') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/miild90/1617751141528/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/miild90
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
mild AI Bot @miild90 bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @miild90's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @miild90's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1299026526999019520/erdLPGsC_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">mike insane 🤖 AI Bot </div> <div style="font-size: 15px">@mike_massive bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mike_massive's tweets](https://twitter.com/mike_massive). | Data | Quantity | | --- | --- | | Tweets downloaded | 434 | | Retweets | 67 | | Short tweets | 73 | | Tweets kept | 294 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/sk151pwp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mike_massive's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/rli832dd) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/rli832dd/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mike_massive') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mike_massive/1614095900280/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mike_massive
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
mike insane AI Bot @mike\_massive bot I was made with huggingtweets. Create your own bot based on your favorite user with the demo! How does it work? ----------------- The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. Training data ------------- The model was trained on @mike\_massive's tweets. Explore the data, which is tracked with W&B artifacts at every step of the pipeline. Training procedure ------------------ The model is based on a pre-trained GPT-2 which is fine-tuned on @mike\_massive's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. How to use ---------- You can use this model directly with a pipeline for text generation: Limitations and bias -------------------- The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. About ----- *Built by Boris Dayma* ![Follow](URL For more details, visit the project repository. ![GitHub stars](URL
[]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
<link rel="stylesheet" href="https://unpkg.com/@tailwindcss/typography@0.2.x/dist/typography.min.css"> <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1337423084370931712/DH7N-1BW_400x400.jpg')"> </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mike Pence 🤖 AI Bot </div> <div style="font-size: 15px; color: #657786">@mike_pence bot</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on [@mike_pence's tweets](https://twitter.com/mike_pence). <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2498</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1360</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>161</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>977</td> </tr> </tbody> </table> [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3npp9mjo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mike_pence's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2mumzor5) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2mumzor5/artifacts) is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mike_pence'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) <section class='prose'> For more details, visit the project repository. </section> [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/mike_pence/1612452533931/predictions.png", "widget": [{"text": "My dream is"}]}
huggingtweets/mike_pence
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<link rel="stylesheet" href="URL <style> @media (prefers-color-scheme: dark) { .prose { color: #E2E8F0 !important; } .prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; } } </style> <section class='prose'> <div> <div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL </div> <div style="margin-top: 8px; font-size: 19px; font-weight: 800">Mike Pence AI Bot </div> <div style="font-size: 15px; color: #657786">@mike_pence bot</div> </div> I was made with huggingtweets. Create your own bot based on your favorite user with the demo! ## How does it work? The model uses the following pipeline. !pipeline To understand how the model was developed, check the W&B report. ## Training data The model was trained on @mike_pence's tweets. <table style='border-width:0'> <thead style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #CBD5E0'> <th style='border-width:0'>Data</th> <th style='border-width:0'>Quantity</th> </tr> </thead> <tbody style='border-width:0'> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Tweets downloaded</td> <td style='border-width:0'>2498</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Retweets</td> <td style='border-width:0'>1360</td> </tr> <tr style='border-width:0 0 1px 0; border-color: #E2E8F0'> <td style='border-width:0'>Short tweets</td> <td style='border-width:0'>161</td> </tr> <tr style='border-width:0'> <td style='border-width:0'>Tweets kept</td> <td style='border-width:0'>977</td> </tr> </tbody> </table> Explore the data, which is tracked with W&B artifacts at every step of the pipeline. ## Training procedure The model is based on a pre-trained GPT-2 which is fine-tuned on @mike_pence's tweets. Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility. At the end of training, the final model is logged and versioned. ## Intended uses & limitations ### How to use You can use this model directly with a pipeline for text generation: <pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline generator = pipeline(<span style="color:#FF9800">'text-generation'</span>, model=<span style="color:#FF9800">'huggingtweets/mike_pence'</span>) generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre> ### Limitations and bias The model suffers from the same limitations and bias as GPT-2. In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* </section> ![Follow](URL <section class='prose'> For more details, visit the project repository. </section> ![GitHub stars](URL
[ "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mike_pence's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2498</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1360</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>161</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>977</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mike_pence's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mike_pence'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## How does it work?\n\nThe model uses the following pipeline.\n\n!pipeline\n\nTo understand how the model was developed, check the W&B report.", "## Training data\n\nThe model was trained on @mike_pence's tweets.\n\n<table style='border-width:0'>\n<thead style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>\n<th style='border-width:0'>Data</th>\n<th style='border-width:0'>Quantity</th>\n</tr>\n</thead>\n<tbody style='border-width:0'>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Tweets downloaded</td>\n<td style='border-width:0'>2498</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Retweets</td>\n<td style='border-width:0'>1360</td>\n</tr>\n<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>\n<td style='border-width:0'>Short tweets</td>\n<td style='border-width:0'>161</td>\n</tr>\n<tr style='border-width:0'>\n<td style='border-width:0'>Tweets kept</td>\n<td style='border-width:0'>977</td>\n</tr>\n</tbody>\n</table>\n\nExplore the data, which is tracked with W&B artifacts at every step of the pipeline.", "## Training procedure\n\nThe model is based on a pre-trained GPT-2 which is fine-tuned on @mike_pence's tweets.\n\nHyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.\n\nAt the end of training, the final model is logged and versioned.", "## Intended uses & limitations", "### How to use\n\nYou can use this model directly with a pipeline for text generation:\n\n<pre><code><span style=\"color:#03A9F4\">from</span> transformers <span style=\"color:#03A9F4\">import</span> pipeline\ngenerator = pipeline(<span style=\"color:#FF9800\">'text-generation'</span>,\n model=<span style=\"color:#FF9800\">'huggingtweets/mike_pence'</span>)\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>", "### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.", "## About\n\n*Built by Boris Dayma*\n\n</section>\n\n![Follow](URL\n\n<section class='prose'>\nFor more details, visit the project repository.\n</section>\n\n![GitHub stars](URL" ]