pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.2385 - eval_wer: 1.0 - eval_runtime: 145.9952 - eval_samples_per_second: 11.507 - eval_steps_per_second: 1.438 - epoch: 0.25 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
juanhebert/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-base-timit-demo-colab This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 3.2385 - eval_wer: 1.0 - eval_runtime: 145.9952 - eval_samples_per_second: 11.507 - eval_steps_per_second: 1.438 - epoch: 0.25 - step: 200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
[ "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 3.2385\n- eval_wer: 1.0\n- eval_runtime: 145.9952\n- eval_samples_per_second: 11.507\n- eval_steps_per_second: 1.438\n- epoch: 0.25\n- step: 200", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 5\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-base-timit-demo-colab\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on the None dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 3.2385\n- eval_wer: 1.0\n- eval_runtime: 145.9952\n- eval_samples_per_second: 11.507\n- eval_steps_per_second: 1.438\n- epoch: 0.25\n- step: 200", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 5\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.11.3\n- Pytorch 1.10.0+cu111\n- Datasets 1.18.3\n- Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-indonesia This model is a fine-tuned version of [juanhebert/wav2vec2-indonesia](https://huggingface.co/juanhebert/wav2vec2-indonesia) on the commonvoice "id" dataset. It achieves the following results on the evaluation set: - Loss: 3.0727 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 5 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 2.8744 | 0.68 | 200 | 3.0301 | 1.0 | | 2.868 | 1.36 | 400 | 3.0727 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-indonesia", "results": []}]}
juanhebert/wav2vec2-indonesia
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-indonesia ================== This model is a fine-tuned version of juanhebert/wav2vec2-indonesia on the commonvoice "id" dataset. It achieves the following results on the evaluation set: * Loss: 3.0727 * Wer: 1.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 5 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 2 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 5\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 2\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-thai-test This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7728 - eval_wer: 0.9490 - eval_runtime: 678.2819 - eval_samples_per_second: 3.226 - eval_steps_per_second: 0.404 - epoch: 2.56 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-thai-test", "results": []}]}
juierror/wav2vec2-large-xls-r-thai-test
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-large-xls-r-thai-test This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.7728 - eval_wer: 0.9490 - eval_runtime: 678.2819 - eval_samples_per_second: 3.226 - eval_steps_per_second: 0.404 - epoch: 2.56 - step: 600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 5 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
[ "# wav2vec2-large-xls-r-thai-test\n\nThis model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.7728\n- eval_wer: 0.9490\n- eval_runtime: 678.2819\n- eval_samples_per_second: 3.226\n- eval_steps_per_second: 0.404\n- epoch: 2.56\n- step: 600", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 400\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-large-xls-r-thai-test\n\nThis model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.7728\n- eval_wer: 0.9490\n- eval_runtime: 678.2819\n- eval_samples_per_second: 3.226\n- eval_steps_per_second: 0.404\n- epoch: 2.56\n- step: 600", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 400\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.15.0\n- Pytorch 1.10.0+cu111\n- Datasets 1.17.0\n- Tokenizers 0.10.3" ]
text-generation
transformers
# Harry Potter DialogGPT Model
{"tags": ["conversational"]}
julianolf/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Harry Potter DialogGPT Model
[ "# Harry Potter DialogGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Harry Potter DialogGPT Model" ]
audio-to-audio
asteroid
## Asteroid model `mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean` ♻️ Imported from https://zenodo.org/record/3903795#.X8pMBRNKjUI This model was trained by Manuel Pariente using the wham/DPRNN recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the sep_clean task of the WHAM! dataset. ### Demo: How to use in Asteroid ```python # coming soon ``` ### Training config - data: - mode: min - nondefault_nsrc: None - sample_rate: 8000 - segment: 2.0 - task: sep_clean - train_dir: data/wav8k/min/tr - valid_dir: data/wav8k/min/cv - filterbank: - kernel_size: 16 - n_filters: 64 - stride: 8 - main_args: - exp_dir: exp/train_dprnn_ks16/ - help: None - masknet: - bidirectional: True - bn_chan: 128 - chunk_size: 100 - dropout: 0 - hid_size: 128 - hop_size: 50 - in_chan: 64 - mask_act: sigmoid - n_repeats: 6 - n_src: 2 - out_chan: 64 - optim: - lr: 0.001 - optimizer: adam - weight_decay: 1e-05 - positional arguments: - training: - batch_size: 6 - early_stop: True - epochs: 200 - gradient_clipping: 5 - half_lr: True - num_workers: 6 #### Results - `si_sdr`: 18.227683982688003 - `si_sdr_imp`: 18.22883576588251 - `sdr`: 18.617789605060587 - `sdr_imp`: 18.466745426438173 - `sir`: 29.22773720052717 - `sir_imp`: 29.07669302190474 - `sar`: 19.116352171914485 - `sar_imp`: -130.06009796503054 - `stoi`: 0.9722025377865715 - `stoi_imp`: 0.23415680987800583 ### Citing Asteroid ```BibTex @inproceedings{Pariente2020Asteroid, title={Asteroid: the {PyTorch}-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, booktitle={Proc. Interspeech}, } ``` Or on arXiv: ```bibtex @misc{pariente2020asteroid, title={Asteroid: the PyTorch-based audio source separation toolkit for researchers}, author={Manuel Pariente and Samuele Cornell and Joris Cosentino and Sunit Sivasankaran and Efthymios Tzinis and Jens Heitkaemper and Michel Olvera and Fabian-Robert Stöter and Mathieu Hu and Juan M. Martín-Doñas and David Ditter and Ariel Frank and Antoine Deleforge and Emmanuel Vincent}, year={2020}, eprint={2005.04132}, archivePrefix={arXiv}, primaryClass={eess.AS} } ```
{"license": "cc-by-sa-4.0", "tags": ["audio-to-audio", "asteroid", "audio", "audio-source-separation"], "datasets": ["wham", "sep_clean"]}
julien-c/DPRNNTasNet-ks16_WHAM_sepclean
null
[ "asteroid", "pytorch", "audio-to-audio", "audio", "audio-source-separation", "dataset:wham", "dataset:sep_clean", "arxiv:2005.04132", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2005.04132" ]
[]
TAGS #asteroid #pytorch #audio-to-audio #audio #audio-source-separation #dataset-wham #dataset-sep_clean #arxiv-2005.04132 #license-cc-by-sa-4.0 #has_space #region-us
## Asteroid model 'mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean' ️ Imported from URL This model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset. ### Demo: How to use in Asteroid ### Training config - data: - mode: min - nondefault_nsrc: None - sample_rate: 8000 - segment: 2.0 - task: sep_clean - train_dir: data/wav8k/min/tr - valid_dir: data/wav8k/min/cv - filterbank: - kernel_size: 16 - n_filters: 64 - stride: 8 - main_args: - exp_dir: exp/train_dprnn_ks16/ - help: None - masknet: - bidirectional: True - bn_chan: 128 - chunk_size: 100 - dropout: 0 - hid_size: 128 - hop_size: 50 - in_chan: 64 - mask_act: sigmoid - n_repeats: 6 - n_src: 2 - out_chan: 64 - optim: - lr: 0.001 - optimizer: adam - weight_decay: 1e-05 - positional arguments: - training: - batch_size: 6 - early_stop: True - epochs: 200 - gradient_clipping: 5 - half_lr: True - num_workers: 6 #### Results - 'si_sdr': 18.227683982688003 - 'si_sdr_imp': 18.22883576588251 - 'sdr': 18.617789605060587 - 'sdr_imp': 18.466745426438173 - 'sir': 29.22773720052717 - 'sir_imp': 29.07669302190474 - 'sar': 19.116352171914485 - 'sar_imp': -130.06009796503054 - 'stoi': 0.9722025377865715 - 'stoi_imp': 0.23415680987800583 ### Citing Asteroid Or on arXiv:
[ "## Asteroid model 'mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean'\n\n️ Imported from URL\n\nThis model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.", "### Demo: How to use in Asteroid", "### Training config\n\n- data:\n\t- mode: min\n\t- nondefault_nsrc: None\n\t- sample_rate: 8000\n\t- segment: 2.0\n\t- task: sep_clean\n\t- train_dir: data/wav8k/min/tr\n\t- valid_dir: data/wav8k/min/cv\n- filterbank:\n\t- kernel_size: 16\n\t- n_filters: 64\n\t- stride: 8\n- main_args:\n\t- exp_dir: exp/train_dprnn_ks16/\n\t- help: None\n- masknet:\n\t- bidirectional: True\n\t- bn_chan: 128\n\t- chunk_size: 100\n\t- dropout: 0\n\t- hid_size: 128\n\t- hop_size: 50\n\t- in_chan: 64\n\t- mask_act: sigmoid\n\t- n_repeats: 6\n\t- n_src: 2\n\t- out_chan: 64\n- optim:\n\t- lr: 0.001\n\t- optimizer: adam\n\t- weight_decay: 1e-05\n- positional arguments:\n- training:\n\t- batch_size: 6\n\t- early_stop: True\n\t- epochs: 200\n\t- gradient_clipping: 5\n\t- half_lr: True\n\t- num_workers: 6", "#### Results\n\n- 'si_sdr': 18.227683982688003\n- 'si_sdr_imp': 18.22883576588251\n- 'sdr': 18.617789605060587\n- 'sdr_imp': 18.466745426438173\n- 'sir': 29.22773720052717\n- 'sir_imp': 29.07669302190474\n- 'sar': 19.116352171914485\n- 'sar_imp': -130.06009796503054\n- 'stoi': 0.9722025377865715\n- 'stoi_imp': 0.23415680987800583", "### Citing Asteroid\n\n\n\nOr on arXiv:" ]
[ "TAGS\n#asteroid #pytorch #audio-to-audio #audio #audio-source-separation #dataset-wham #dataset-sep_clean #arxiv-2005.04132 #license-cc-by-sa-4.0 #has_space #region-us \n", "## Asteroid model 'mpariente/DPRNNTasNet(ks=16)_WHAM!_sepclean'\n\n️ Imported from URL\n\nThis model was trained by Manuel Pariente using the wham/DPRNN recipe in Asteroid. It was trained on the sep_clean task of the WHAM! dataset.", "### Demo: How to use in Asteroid", "### Training config\n\n- data:\n\t- mode: min\n\t- nondefault_nsrc: None\n\t- sample_rate: 8000\n\t- segment: 2.0\n\t- task: sep_clean\n\t- train_dir: data/wav8k/min/tr\n\t- valid_dir: data/wav8k/min/cv\n- filterbank:\n\t- kernel_size: 16\n\t- n_filters: 64\n\t- stride: 8\n- main_args:\n\t- exp_dir: exp/train_dprnn_ks16/\n\t- help: None\n- masknet:\n\t- bidirectional: True\n\t- bn_chan: 128\n\t- chunk_size: 100\n\t- dropout: 0\n\t- hid_size: 128\n\t- hop_size: 50\n\t- in_chan: 64\n\t- mask_act: sigmoid\n\t- n_repeats: 6\n\t- n_src: 2\n\t- out_chan: 64\n- optim:\n\t- lr: 0.001\n\t- optimizer: adam\n\t- weight_decay: 1e-05\n- positional arguments:\n- training:\n\t- batch_size: 6\n\t- early_stop: True\n\t- epochs: 200\n\t- gradient_clipping: 5\n\t- half_lr: True\n\t- num_workers: 6", "#### Results\n\n- 'si_sdr': 18.227683982688003\n- 'si_sdr_imp': 18.22883576588251\n- 'sdr': 18.617789605060587\n- 'sdr_imp': 18.466745426438173\n- 'sir': 29.22773720052717\n- 'sir_imp': 29.07669302190474\n- 'sar': 19.116352171914485\n- 'sar_imp': -130.06009796503054\n- 'stoi': 0.9722025377865715\n- 'stoi_imp': 0.23415680987800583", "### Citing Asteroid\n\n\n\nOr on arXiv:" ]
token-classification
transformers
# EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ## Training Details - current checkpoint: 566000 - machine name: `galinette` ![](https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png) ## Example pipeline ```python from transformers import TokenClassificationPipeline, pipeline MODEL_PATH = "./models/EsperBERTo-small-pos/" nlp = pipeline( "ner", model=MODEL_PATH, tokenizer=MODEL_PATH, ) # or instantiate a TokenClassificationPipeline directly. nlp("Mi estas viro kej estas tago varma.") # {'entity': 'PRON', 'score': 0.9979867339134216, 'word': ' Mi'} # {'entity': 'VERB', 'score': 0.9683094620704651, 'word': ' estas'} # {'entity': 'VERB', 'score': 0.9797462821006775, 'word': ' estas'} # {'entity': 'NOUN', 'score': 0.8509314060211182, 'word': ' tago'} # {'entity': 'ADJ', 'score': 0.9996201395988464, 'word': ' varma'} ```
{"language": "eo", "thumbnail": "https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png", "widget": [{"text": "Mi estas viro kej estas tago varma."}]}
julien-c/EsperBERTo-small-pos
null
[ "transformers", "pytorch", "jax", "onnx", "safetensors", "roberta", "token-classification", "eo", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "eo" ]
TAGS #transformers #pytorch #jax #onnx #safetensors #roberta #token-classification #eo #autotrain_compatible #endpoints_compatible #region-us
# EsperBERTo: RoBERTa-like Language model trained on Esperanto Companion model to blog post URL ## Training Details - current checkpoint: 566000 - machine name: 'galinette' ![](URL ## Example pipeline
[ "# EsperBERTo: RoBERTa-like Language model trained on Esperanto\n\nCompanion model to blog post URL", "## Training Details\n\n- current checkpoint: 566000\n- machine name: 'galinette'\n\n\n![](URL", "## Example pipeline" ]
[ "TAGS\n#transformers #pytorch #jax #onnx #safetensors #roberta #token-classification #eo #autotrain_compatible #endpoints_compatible #region-us \n", "# EsperBERTo: RoBERTa-like Language model trained on Esperanto\n\nCompanion model to blog post URL", "## Training Details\n\n- current checkpoint: 566000\n- machine name: 'galinette'\n\n\n![](URL", "## Example pipeline" ]
fill-mask
transformers
# EsperBERTo: RoBERTa-like Language model trained on Esperanto **Companion model to blog post https://huggingface.co/blog/how-to-train** 🔥 ## Training Details - current checkpoint: 566000 - machine name: `galinette` ![](https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png) ## Example pipeline ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="julien-c/EsperBERTo-small", tokenizer="julien-c/EsperBERTo-small" ) fill_mask("Jen la komenco de bela <mask>.") # This is the beginning of a beautiful <mask>. # => # { # 'score':0.06502299010753632 # 'sequence':'<s> Jen la komenco de bela vivo.</s>' # 'token':1099 # } # { # 'score':0.0421181358397007 # 'sequence':'<s> Jen la komenco de bela vespero.</s>' # 'token':5100 # } # { # 'score':0.024884626269340515 # 'sequence':'<s> Jen la komenco de bela laboro.</s>' # 'token':1570 # } # { # 'score':0.02324388362467289 # 'sequence':'<s> Jen la komenco de bela tago.</s>' # 'token':1688 # } # { # 'score':0.020378097891807556 # 'sequence':'<s> Jen la komenco de bela festo.</s>' # 'token':4580 # } ```
{"language": "eo", "thumbnail": "https://huggingface.co/blog/assets/01_how-to-train/EsperBERTo-thumbnail-v2.png", "widget": [{"text": "Jen la komenco de bela <mask>."}, {"text": "Uno du <mask>"}, {"text": "Jen fini\u011das bela <mask>."}]}
julien-c/EsperBERTo-small
null
[ "transformers", "pytorch", "jax", "safetensors", "roberta", "fill-mask", "eo", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "eo" ]
TAGS #transformers #pytorch #jax #safetensors #roberta #fill-mask #eo #autotrain_compatible #endpoints_compatible #has_space #region-us
# EsperBERTo: RoBERTa-like Language model trained on Esperanto Companion model to blog post URL ## Training Details - current checkpoint: 566000 - machine name: 'galinette' ![](URL ## Example pipeline
[ "# EsperBERTo: RoBERTa-like Language model trained on Esperanto\n\nCompanion model to blog post URL", "## Training Details\n\n- current checkpoint: 566000\n- machine name: 'galinette'\n\n\n![](URL", "## Example pipeline" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #roberta #fill-mask #eo #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# EsperBERTo: RoBERTa-like Language model trained on Esperanto\n\nCompanion model to blog post URL", "## Training Details\n\n- current checkpoint: 566000\n- machine name: 'galinette'\n\n\n![](URL", "## Example pipeline" ]
fill-mask
transformers
## How to build a dummy model ```python from transformers BertConfig, BertForMaskedLM, BertTokenizer, TFBertForMaskedLM SMALL_MODEL_IDENTIFIER = "julien-c/bert-xsmall-dummy" DIRNAME = "./bert-xsmall-dummy" config = BertConfig(10, 20, 1, 1, 40) model = BertForMaskedLM(config) model.save_pretrained(DIRNAME) tf_model = TFBertForMaskedLM.from_pretrained(DIRNAME, from_pt=True) tf_model.save_pretrained(DIRNAME) # Slightly different for tokenizer. # tokenizer = BertTokenizer.from_pretrained(DIRNAME) # tokenizer.save_pretrained() ```
{}
julien-c/bert-xsmall-dummy
null
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
## How to build a dummy model
[ "## How to build a dummy model" ]
[ "TAGS\n#transformers #pytorch #tf #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n", "## How to build a dummy model" ]
feature-extraction
transformers
# Distilbert, used as a Feature Extractor
{"tags": ["feature-extraction"], "widget": [{"text": "Hello world"}]}
julien-c/distilbert-feature-extraction
null
[ "transformers", "pytorch", "distilbert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us
# Distilbert, used as a Feature Extractor
[ "# Distilbert, used as a Feature Extractor" ]
[ "TAGS\n#transformers #pytorch #distilbert #feature-extraction #endpoints_compatible #has_space #region-us \n", "# Distilbert, used as a Feature Extractor" ]
text-classification
transformers
## distilbert-sagemaker-1609802168 Trained from SageMaker HuggingFace extension. Fine-tuned from [distilbert-base-uncased](/distilbert-base-uncased) on [imdb](/datasets/imdb) 🔥 #### Eval | key | value | | --- | ----- | | eval_loss | 0.19187863171100616 | | eval_accuracy | 0.9259 | | eval_f1 | 0.9272173656811707 | | eval_precision | 0.9147286821705426 | | eval_recall | 0.9400517825134436 | | epoch | 1.0 |
{"tags": ["sagemaker"], "datasets": ["imdb"]}
julien-c/distilbert-sagemaker-1609802168
null
[ "transformers", "pytorch", "distilbert", "text-classification", "sagemaker", "dataset:imdb", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #sagemaker #dataset-imdb #autotrain_compatible #endpoints_compatible #region-us
distilbert-sagemaker-1609802168 ------------------------------- Trained from SageMaker HuggingFace extension. Fine-tuned from distilbert-base-uncased on imdb #### Eval
[ "#### Eval" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #sagemaker #dataset-imdb #autotrain_compatible #endpoints_compatible #region-us \n", "#### Eval" ]
null
null
in the editor i only change this line Example of a hf.co repo containing signed commits. hello tabs
{}
julien-c/dummy-for-flat
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
in the editor i only change this line Example of a URL repo containing signed commits. hello tabs
[]
[ "TAGS\n#region-us \n" ]
fill-mask
transformers
## Dummy model used for unit testing and CI ```python import json import os from transformers import RobertaConfig, RobertaForMaskedLM, TFRobertaForMaskedLM DIRNAME = "./dummy-unknown" config = RobertaConfig(10, 20, 1, 1, 40) model = RobertaForMaskedLM(config) model.save_pretrained(DIRNAME) tf_model = TFRobertaForMaskedLM.from_pretrained(DIRNAME, from_pt=True) tf_model.save_pretrained(DIRNAME) # Tokenizer: vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] vocab_file = os.path.join(DIRNAME, "vocab.json") merges_file = os.path.join(DIRNAME, "merges.txt") with open(vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) ```
{"tags": ["ci"]}
julien-c/dummy-unknown
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "ci", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #jax #roberta #fill-mask #ci #autotrain_compatible #endpoints_compatible #region-us
## Dummy model used for unit testing and CI
[ "## Dummy model used for unit testing and CI" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roberta #fill-mask #ci #autotrain_compatible #endpoints_compatible #region-us \n", "## Dummy model used for unit testing and CI" ]
null
fasttext
## FastText model for language identification #### ♻️ Imported from https://fasttext.cc/docs/en/language-identification.html > [1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification ```bibtex @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` > [2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models ```bibtex @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{\'e}gou, H{\'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ```
{"language": "multilingual", "license": "cc-by-sa-4.0", "library_name": "fasttext", "tags": ["fasttext"], "datasets": ["wikipedia", "tatoeba", "setimes"], "inference": false}
julien-c/fasttext-language-id
null
[ "fasttext", "multilingual", "dataset:wikipedia", "dataset:tatoeba", "dataset:setimes", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "multilingual" ]
TAGS #fasttext #multilingual #dataset-wikipedia #dataset-tatoeba #dataset-setimes #license-cc-by-sa-4.0 #has_space #region-us
## FastText model for language identification #### ️ Imported from URL > [1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification > [2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, URL: Compressing text classification models
[ "## FastText model for language identification", "#### ️ Imported from URL\n\n> [1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification\n\n\n\n> [2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, URL: Compressing text classification models" ]
[ "TAGS\n#fasttext #multilingual #dataset-wikipedia #dataset-tatoeba #dataset-setimes #license-cc-by-sa-4.0 #has_space #region-us \n", "## FastText model for language identification", "#### ️ Imported from URL\n\n> [1] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification\n\n\n\n> [2] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, URL: Compressing text classification models" ]
token-classification
flair
## Flair NER model `de-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/de-ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "Mein Name ist Julien, ich lebe zurzeit in Paris, ich arbeite bei Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-de-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
{"language": "de", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "inference": false}
julien-c/flair-de-ner
null
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "de", "dataset:conll2003", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "de" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #region-us
## Flair NER model 'de-ner-conll03-v0.4.pt' Imported from URL ### Demo: How to use in Flair yields the following output: > 'Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .' ### Thanks @stefan-it for the Flair integration ️
[ "## Flair NER model 'de-ner-conll03-v0.4.pt'\n\nImported from URL", "### Demo: How to use in Flair\n\n\n\nyields the following output:\n\n> 'Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .'", "### Thanks @stefan-it for the Flair integration ️" ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #de #dataset-conll2003 #region-us \n", "## Flair NER model 'de-ner-conll03-v0.4.pt'\n\nImported from URL", "### Demo: How to use in Flair\n\n\n\nyields the following output:\n\n> 'Mein Name ist Julien <S-PER> , ich lebe zurzeit in Paris <S-LOC> , ich arbeite bei Hugging <B-ORG> Face <E-ORG> , Inc <S-ORG> .'", "### Thanks @stefan-it for the Flair integration ️" ]
token-classification
flair
## Flair NER model `en-ner-conll03-v0.4.pt` Imported from https://nlp.informatik.hu-berlin.de/resources/models/ner/ ### Demo: How to use in Flair ```python from flair.data import Sentence from flair.models import SequenceTagger sentence = Sentence( "My name is Julien, I currently live in Paris, I work at Hugging Face, Inc." ) tagger = SequenceTagger.load("julien-c/flair-ner") # predict NER tags tagger.predict(sentence) # print sentence with predicted tags print(sentence.to_tagged_string()) ``` yields the following output: > `My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .` ### Thanks [@stefan-it](https://huggingface.co/stefan-it) for the Flair integration ❤️ 🔥
{"language": "en", "tags": ["flair", "token-classification", "sequence-tagger-model"], "datasets": ["conll2003"], "inference": false}
julien-c/flair-ner
null
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:conll2003", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #region-us
## Flair NER model 'en-ner-conll03-v0.4.pt' Imported from URL ### Demo: How to use in Flair yields the following output: > 'My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .' ### Thanks @stefan-it for the Flair integration ️
[ "## Flair NER model 'en-ner-conll03-v0.4.pt'\n\nImported from URL", "### Demo: How to use in Flair\n\n\n\nyields the following output:\n\n> 'My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .'", "### Thanks @stefan-it for the Flair integration ️" ]
[ "TAGS\n#flair #pytorch #token-classification #sequence-tagger-model #en #dataset-conll2003 #region-us \n", "## Flair NER model 'en-ner-conll03-v0.4.pt'\n\nImported from URL", "### Demo: How to use in Flair\n\n\n\nyields the following output:\n\n> 'My name is Julien <S-PER> , I currently live in Paris <S-LOC> , I work at Hugging <B-LOC> Face <E-LOC> .'", "### Thanks @stefan-it for the Flair integration ️" ]
image-classification
transformers
# hotdog-not-hotdog Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### hot dog ![hot dog](images/hot_dog.jpg) #### not hot dog ![miscellaneous](images/miscellaneous.jpg)
{"tags": ["image-classification", "huggingpics"], "metrics": ["accuracy"]}
julien-c/hotdog-not-hotdog
null
[ "transformers", "pytorch", "tensorboard", "coreml", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #coreml #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
# hotdog-not-hotdog Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### hot dog !hot dog #### not hot dog !miscellaneous
[ "# hotdog-not-hotdog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### hot dog\n\n!hot dog", "#### not hot dog\n\n!miscellaneous" ]
[ "TAGS\n#transformers #pytorch #tensorboard #coreml #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# hotdog-not-hotdog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### hot dog\n\n!hot dog", "#### not hot dog\n\n!miscellaneous" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.loss.ave` ♻️ Imported from https://zenodo.org/record/4381098/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Training ![](./exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/attn_loss.png) ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["jsut"], "inference": false}
julien-c/kan-bayashi-jsut_tts_train_tacotron2
null
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "ja" ]
TAGS #espnet #audio #text-to-speech #ja #dataset-jsut #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.URL' ️ Imported from URL This model was trained by kan-bayashi using jsut/tts1 recipe in espnet. ### Training ![](./exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/attn_loss.png) ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.URL'\n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using jsut/tts1 recipe in espnet.", "### Training\n\n![](./exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/attn_loss.png)", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #ja #dataset-jsut #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent_train.URL'\n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using jsut/tts1 recipe in espnet.", "### Training\n\n![](./exp/tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_accent/images/attn_loss.png)", "### Citing ESPnet\n\n\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ♻️ Imported from https://zenodo.org/record/3963886/ This model was trained by kan-bayashi using jsut/tts1 recipe in [espnet](https://github.com/espnet/espnet/). Model id: `kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_train.loss.best` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "ja", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["jsut"], "inference": false}
julien-c/kan-bayashi-jsut_tts_train_tacotron2_ja
null
[ "espnet", "audio", "text-to-speech", "ja", "dataset:jsut", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "ja" ]
TAGS #espnet #audio #text-to-speech #ja #dataset-jsut #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ️ Imported from URL This model was trained by kan-bayashi using jsut/tts1 recipe in espnet. Model id: 'kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_train.URL' ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 TTS model \n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using jsut/tts1 recipe in espnet.\n\nModel id: \n'kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_train.URL'", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #ja #dataset-jsut #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model \n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using jsut/tts1 recipe in espnet.\n\nModel id: \n'kan-bayashi/jsut_tts_train_tacotron2_raw_phn_jaconv_pyopenjtalk_train.URL'", "### Citing ESPnet\n\n\n\nor arXiv:" ]
text-to-speech
espnet
## ESPnet2 TTS model ### `kan-bayashi/csmsc_tacotron2` ♻️ Imported from https://zenodo.org/record/3969118 This model was trained by kan-bayashi using csmsc/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["csmsc"], "widget": [{"text": "\u8bf7\u60a8\u8bf4\u5f97\u6162\u4e9b\u597d\u5417"}]}
julien-c/kan-bayashi_csmsc_tacotron2
null
[ "espnet", "audio", "text-to-speech", "zh", "dataset:csmsc", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "zh" ]
TAGS #espnet #audio #text-to-speech #zh #dataset-csmsc #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## ESPnet2 TTS model ### 'kan-bayashi/csmsc_tacotron2' ️ Imported from URL This model was trained by kan-bayashi using csmsc/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## ESPnet2 TTS model", "### 'kan-bayashi/csmsc_tacotron2'\n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using csmsc/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #text-to-speech #zh #dataset-csmsc #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## ESPnet2 TTS model", "### 'kan-bayashi/csmsc_tacotron2'\n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using csmsc/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
text-to-speech
espnet
## Example ESPnet2 TTS model ### `kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.loss.best` ♻️ Imported from https://zenodo.org/record/3989498#.X90RlOlKjkM This model was trained by kan-bayashi using ljspeech/tts1 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Training config See full config in [`config.yaml`](./config.yaml) ```yaml config: conf/tuning/train_tacotron2.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/tts_train_tacotron2_raw ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "text-to-speech"], "datasets": ["ljspeech"], "widget": [{"text": "Hello, how are you doing?"}]}
julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train
null
[ "espnet", "audio", "text-to-speech", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #text-to-speech #en #dataset-ljspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 TTS model ### 'kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL' ️ Imported from URL This model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv: ### Training config See full config in 'URL'
[ "## Example ESPnet2 TTS model", "### 'kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
[ "TAGS\n#espnet #audio #text-to-speech #en #dataset-ljspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 TTS model", "### 'kan-bayashi/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train.URL'\n\n️ Imported from URL\n\nThis model was trained by kan-bayashi using ljspeech/tts1 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:", "### Training config\n\nSee full config in 'URL'" ]
automatic-speech-recognition
espnet
## Example ESPnet2 ASR model ### `kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.acc.best` ♻️ Imported from https://zenodo.org/record/3957940#.X90XNelKjkM This model was trained by kamo-naoyuki using mini_an4 recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```python # coming soon ``` ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } @inproceedings{hayashi2020espnet, title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit}, author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu}, booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={7654--7658}, year={2020}, organization={IEEE} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "en", "license": "cc-by-4.0", "tags": ["espnet", "audio", "automatic-speech-recognition"], "datasets": ["ljspeech"]}
julien-c/mini_an4_asr_train_raw_bpe_valid
null
[ "espnet", "audio", "automatic-speech-recognition", "en", "dataset:ljspeech", "arxiv:1804.00015", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1804.00015" ]
[ "en" ]
TAGS #espnet #audio #automatic-speech-recognition #en #dataset-ljspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us
## Example ESPnet2 ASR model ### 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL' ️ Imported from URL This model was trained by kamo-naoyuki using mini_an4 recipe in espnet. ### Demo: How to use in ESPnet2 ### Citing ESPnet or arXiv:
[ "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using mini_an4 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
[ "TAGS\n#espnet #audio #automatic-speech-recognition #en #dataset-ljspeech #arxiv-1804.00015 #license-cc-by-4.0 #region-us \n", "## Example ESPnet2 ASR model", "### 'kamo-naoyuki/mini_an4_asr_train_raw_bpe_valid.URL'\n\n️ Imported from URL\n\nThis model was trained by kamo-naoyuki using mini_an4 recipe in espnet.", "### Demo: How to use in ESPnet2", "### Citing ESPnet\n\n\n\nor arXiv:" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 2.9150 - Accuracy: 0.2662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.0528 | 0.44 | 1000 | 3.0265 | 0.2223 | | 2.9836 | 0.89 | 2000 | 2.9263 | 0.2332 | | 2.7409 | 1.33 | 3000 | 2.9041 | 0.2533 | | 2.7905 | 1.77 | 4000 | 2.8763 | 0.2606 | | 2.4359 | 2.22 | 5000 | 2.9072 | 0.2642 | | 2.4507 | 2.66 | 6000 | 2.9230 | 0.2644 | ### Framework versions - Transformers 4.7.0.dev0 - Pytorch 1.8.1+cu102 - Datasets 1.8.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated-from-trainer"], "datasets": ["julien-c/reactiongif"], "metrics": ["accuracy"]}
julien-c/reactiongif-roberta
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated-from-trainer", "dataset:julien-c/reactiongif", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #safetensors #roberta #text-classification #generated-from-trainer #dataset-julien-c/reactiongif #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
model ===== This model is a fine-tuned version of distilroberta-base on an unkown dataset. It achieves the following results on the evaluation set: * Loss: 2.9150 * Accuracy: 0.2662 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.7.0.dev0 * Pytorch 1.8.1+cu102 * Datasets 1.8.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.7.0.dev0\n* Pytorch 1.8.1+cu102\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #safetensors #roberta #text-classification #generated-from-trainer #dataset-julien-c/reactiongif #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.7.0.dev0\n* Pytorch 1.8.1+cu102\n* Datasets 1.8.0\n* Tokenizers 0.10.3" ]
null
null
<style> @import url('https://fonts.googleapis.com/css2?family=Roboto+Slab:wght@900&family=Rokkitt:wght@900&display=swap'); .text1 { position: absolute; top: 3vh; left: calc(50% - 50vh); } .text2 { position: absolute; bottom: 4vh; left: 50%; } .retro { font-family: "Roboto Slab"; font-size: 13vh; display: block; color: #000; text-shadow: -0.5vh 0 #8800aa, 0 0.5vh #8800aa, 0.5vh 0 #aa0088, 0 -0.5vh #aa0088; } </style> <div class="text1"> <span class="retro">RETRO</span> </div> <div class="text2"> <span class="retro">WAVE</span> </div> <script type="module"> import * as THREE from "https://cdn.jsdelivr.net/npm/three@0.123.0/build/three.module.js"; import { OrbitControls } from "https://cdn.jsdelivr.net/npm/three@0.123.0/examples/jsm/controls/OrbitControls.js"; import { TWEEN } from "https://cdn.jsdelivr.net/npm/three@0.123.0/examples/jsm/libs/tween.module.min.js"; let scene = new THREE.Scene(); let camera = new THREE.PerspectiveCamera(60, innerWidth / innerHeight, 1, 100); camera.position.set(-5, 10, 20); let renderer = new THREE.WebGLRenderer({antialias: true}); renderer.setSize(innerWidth, innerHeight); document.querySelector("div.prose").appendChild(renderer.domElement); const textureCube = generateCubeMap(); let controls = new OrbitControls(camera, renderer.domElement); controls.enableZoom = false; controls.enablePan = false; controls.enableKeys = false; let square = new THREE.GridHelper(20, 1, 0xaaaaff, 0xaaaff); square.position.y = 0.01; scene.add(square); let grid = new THREE.GridHelper(20, 10, "magenta", "magenta"); console.log(grid.geometry.attributes.position.count); let moveable = []; for(let i = 0; i < grid.geometry.attributes.position.count / 4; i++){ moveable.push(1, 1, 0, 0); } console.log(moveable.length) grid.geometry.setAttribute("moveable", new THREE.Float32BufferAttribute(moveable, 1)); let uniforms = { time: {value: 0}, speed: {value: 1}, size: {value: 20} } grid.material.onBeforeCompile = shader => { shader.uniforms.time = uniforms.time; shader.uniforms.speed = uniforms.speed; shader.uniforms.size = uniforms.size; shader.vertexShader = ` uniform float time; uniform float speed; uniform float size; attribute float moveable; ${shader.vertexShader} `.replace( `#include <begin_vertex>`, `#include <begin_vertex> if (floor(moveable + 0.1) > 0.5){ float start = size * -0.5; float zPos = mod( (position.z - start) + (time * speed), size) + start; transformed.z = zPos; } ` ); console.log(shader.vertexShader) } scene.add(grid); // palm let base = new THREE.Object3D(); let baseSpline = new THREE.CatmullRomCurve3([ new THREE.Vector2(), new THREE.Vector2(3, 0), new THREE.Vector2(2.5, -7), new THREE.Vector2(-4, -6), new THREE.Vector2(-4.8, 0) ], true, "catmullrom", 0.1); let baseG = new THREE.ExtrudeBufferGeometry(new THREE.Shape(baseSpline.getPoints(50)), {depth: 0.2, bevelEnabled: true, bevelThickness: 0.8, bevelSize: 0.2}); let baseObject = new THREE.Mesh(baseG, new THREE.MeshBasicMaterial({color: "magenta", wireframe: false, envMap: textureCube})); base.add(baseObject); scene.add(base); let phalanxes = []; let f1 = createFinger(new THREE.Object3D(), 0.8, false); // pinky let f2 = createFinger(new THREE.Object3D(), 0.95, false); // ring let f3 = createFinger(new THREE.Object3D(), 1, false); // middle let f4 = createFinger(new THREE.Object3D(), 0.95, false); // index let f5Base = new THREE.Object3D(); let f5 = createFinger(new THREE.Object3D(), 0.75, true); // thumb f5Base.add(f5); base.add(f1, f2, f3, f4, f5Base); f1.position.set( -4, 0.2, 0); f2.position.set( -2, 0.2, 0); f3.position.set( 0, 0.2, 0); f4.position.set( 2, 0.2, 0); f5Base.position.set( 3, -3, 0); f5Base.rotation.set( 0, 0, THREE.MathUtils.degToRad(-60)); f5Base.updateMatrixWorld(); let g = createPhalanxGeom(1, 3); let m = new THREE.MeshBasicMaterial({color: "aqua", wireframe: false, envMap: textureCube}); let o = new THREE.InstancedMesh(g, m, phalanxes.length); phalanxes.forEach( (ph, i) => { ph.updateMatrixWorld(); o.setMatrixAt(i, ph.matrixWorld); }) scene.add(o); window.addEventListener( 'resize', onWindowResize, false ); let t = new TWEEN.Tween({value: Math.PI * 0.075}) .to({value: Math.PI * 0.45}, 4000) .easing(TWEEN.Easing.Quadratic.InOut) .repeat(Infinity) .yoyo(true) .onUpdate(val => { phalanxes.forEach((ph, i) => { ph.rotation.x = val.value; ph.updateMatrixWorld(); o.setMatrixAt(i, ph.matrixWorld) }); o.instanceMatrix.needsUpdate = true; }); t.start(); let clock = new THREE.Clock(); renderer.setAnimationLoop(() => { let t = clock.getElapsedTime(); TWEEN.update(); uniforms.time.value = t; base.rotation.x = (Math.sin(t * 0.125) * 0.5 + 0.5) * -Math.PI * 0.5; base.rotation.y = -t * 0.125; renderer.render(scene, camera); }); function onWindowResize() { camera.aspect = innerWidth / innerHeight; camera.updateProjectionMatrix(); renderer.setSize( innerWidth, innerHeight ); } function createFinger(phalanx, scale, isThumb){ phalanxes.push(phalanx); let current = phalanx; for(let i = 0; i < (isThumb ? 1 : 2); i++){ let p = new THREE.Object3D(); p.position.y = 3; p.scale.setScalar(0.85); current.add(p); phalanxes.push(p); current = p; } phalanx.scale.setScalar(scale); return phalanx; } function createPhalanxGeom(R, L){ let r = R * 0.85; let R1 = R - r; let a = Math.asin(R1 / L); let path = new THREE.Path(); path.absarc(0, 0, R, Math.PI * 1.5, a); path.absarc(0, L, r, a, Math.PI * 0.5); let pts = path.getPoints(5); let g = new THREE.LatheBufferGeometry(pts); return g; } function generateCubeMap(){ let images = []; let c = document.createElement("canvas"); c.width = 4; c.height = c.width; let ctx = c.getContext("2d"); for(let i= 0; i < 6;i++){ ctx.fillStyle = "#fff"; ctx.fillRect(0, 0, c.width, c.height); for(let j = 0; j < (c.width * c.height) / 2; j++){ ctx.fillStyle = Math.random() < 0.5 ? "#f0f" : "#40f"; ctx.fillRect( Math.floor(Math.random() * c.width), Math.floor(Math.random() * c.height), 2, 1 ); } images.push(c.toDataURL()); } let cm = new THREE.CubeTextureLoader().load(images); console.log(cm); return cm; } </script>
{}
julien-c/roberta-threejs
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
<style> @import url('URL .text1 { position: absolute; top: 3vh; left: calc(50% - 50vh); } .text2 { position: absolute; bottom: 4vh; left: 50%; } .retro { font-family: "Roboto Slab"; font-size: 13vh; display: block; color: #000; text-shadow: -0.5vh 0 #8800aa, 0 0.5vh #8800aa, 0.5vh 0 #aa0088, 0 -0.5vh #aa0088; } </style> <div class="text1"> <span class="retro">RETRO</span> </div> <div class="text2"> <span class="retro">WAVE</span> </div> <script type="module"> import * as THREE from "URL import { OrbitControls } from "URL import { TWEEN } from "URL let scene = new THREE.Scene(); let camera = new THREE.PerspectiveCamera(60, innerWidth / innerHeight, 1, 100); URL(-5, 10, 20); let renderer = new THREE.WebGLRenderer({antialias: true}); renderer.setSize(innerWidth, innerHeight); document.querySelector("URL").appendChild(renderer.domElement); const textureCube = generateCubeMap(); let controls = new OrbitControls(camera, renderer.domElement); controls.enableZoom = false; controls.enablePan = false; controls.enableKeys = false; let square = new THREE.GridHelper(20, 1, 0xaaaaff, 0xaaaff); square.position.y = 0.01; URL(square); let grid = new THREE.GridHelper(20, 10, "magenta", "magenta"); URL(URL); let moveable = []; for(let i = 0; i < URL / 4; i++){ URL(1, 1, 0, 0); } URL(URL) grid.geometry.setAttribute("moveable", new THREE.Float32BufferAttribute(moveable, 1)); let uniforms = { time: {value: 0}, speed: {value: 1}, size: {value: 20} } grid.material.onBeforeCompile = shader => { URL = URL; URL = URL; URL = URL; shader.vertexShader = ' uniform float time; uniform float speed; uniform float size; attribute float moveable; ${shader.vertexShader} '.replace( '#include <begin_vertex>', '#include <begin_vertex> if (floor(moveable + 0.1) > 0.5){ float start = size * -0.5; float zPos = mod( (position.z - start) + (time * speed), size) + start; transformed.z = zPos; } ' ); URL(shader.vertexShader) } URL(grid); // palm let base = new THREE.Object3D(); let baseSpline = new THREE.CatmullRomCurve3([ new THREE.Vector2(), new THREE.Vector2(3, 0), new THREE.Vector2(2.5, -7), new THREE.Vector2(-4, -6), new THREE.Vector2(-4.8, 0) ], true, "catmullrom", 0.1); let baseG = new THREE.ExtrudeBufferGeometry(new THREE.Shape(baseSpline.getPoints(50)), {depth: 0.2, bevelEnabled: true, bevelThickness: 0.8, bevelSize: 0.2}); let baseObject = new THREE.Mesh(baseG, new THREE.MeshBasicMaterial({color: "magenta", wireframe: false, envMap: textureCube})); URL(baseObject); URL(base); let phalanxes = []; let f1 = createFinger(new THREE.Object3D(), 0.8, false); // pinky let f2 = createFinger(new THREE.Object3D(), 0.95, false); // ring let f3 = createFinger(new THREE.Object3D(), 1, false); // middle let f4 = createFinger(new THREE.Object3D(), 0.95, false); // index let f5Base = new THREE.Object3D(); let f5 = createFinger(new THREE.Object3D(), 0.75, true); // thumb URL(f5); URL(f1, f2, f3, f4, f5Base); URL( -4, 0.2, 0); URL( -2, 0.2, 0); URL( 0, 0.2, 0); URL( 2, 0.2, 0); URL( 3, -3, 0); URL( 0, 0, THREE.MathUtils.degToRad(-60)); f5Base.updateMatrixWorld(); let g = createPhalanxGeom(1, 3); let m = new THREE.MeshBasicMaterial({color: "aqua", wireframe: false, envMap: textureCube}); let o = new THREE.InstancedMesh(g, m, URL); phalanxes.forEach( (ph, i) => { ph.updateMatrixWorld(); o.setMatrixAt(i, ph.matrixWorld); }) URL(o); window.addEventListener( 'resize', onWindowResize, false ); let t = new TWEEN.Tween({value: Math.PI * 0.075}) .to({value: Math.PI * 0.45}, 4000) .easing(TWEEN.Easing.Quadratic.InOut) .repeat(Infinity) .yoyo(true) .onUpdate(val => { phalanxes.forEach((ph, i) => { ph.rotation.x = URL; ph.updateMatrixWorld(); o.setMatrixAt(i, ph.matrixWorld) }); o.instanceMatrix.needsUpdate = true; }); t.start(); let clock = new THREE.Clock(); renderer.setAnimationLoop(() => { let t = clock.getElapsedTime(); URL(); URL = t; base.rotation.x = (URL(t * 0.125) * 0.5 + 0.5) * -Math.PI * 0.5; base.rotation.y = -t * 0.125; URL(scene, camera); }); function onWindowResize() { URL = innerWidth / innerHeight; camera.updateProjectionMatrix(); renderer.setSize( innerWidth, innerHeight ); } function createFinger(phalanx, scale, isThumb){ URL(phalanx); let current = phalanx; for(let i = 0; i < (isThumb ? 1 : 2); i++){ let p = new THREE.Object3D(); p.position.y = 3; p.scale.setScalar(0.85); URL(p); URL(p); current = p; } URL.setScalar(scale); return phalanx; } function createPhalanxGeom(R, L){ let r = R * 0.85; let R1 = R - r; let a = URL(R1 / L); let path = new THREE.Path(); URL(0, 0, R, Math.PI * 1.5, a); URL(0, L, r, a, Math.PI * 0.5); let pts = path.getPoints(5); let g = new THREE.LatheBufferGeometry(pts); return g; } function generateCubeMap(){ let images = []; let c = document.createElement("canvas"); c.width = 4; c.height = c.width; let ctx = c.getContext("2d"); for(let i= 0; i < 6;i++){ ctx.fillStyle = "#fff"; ctx.fillRect(0, 0, c.width, c.height); for(let j = 0; j < (c.width * c.height) / 2; j++){ ctx.fillStyle = URL() < 0.5 ? "#f0f" : "#40f"; ctx.fillRect( URL(URL() * c.width), URL(URL() * c.height), 2, 1 ); } URL(c.toDataURL()); } let cm = new THREE.CubeTextureLoader().load(images); URL(cm); return cm; } </script>
[]
[ "TAGS\n#region-us \n" ]
null
null
## Dummy model containing only Tensorboard traces from multiple different experiments
{}
julien-c/tensorboard-traces
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tensorboard #region-us
## Dummy model containing only Tensorboard traces from multiple different experiments
[ "## Dummy model containing only Tensorboard traces\n\nfrom multiple different experiments" ]
[ "TAGS\n#tensorboard #region-us \n", "## Dummy model containing only Tensorboard traces\n\nfrom multiple different experiments" ]
image-classification
timm
# `dpn92` from `rwightman/pytorch-image-models` From [`rwightman/pytorch-image-models`](https://github.com/rwightman/pytorch-image-models): ``` """ PyTorch implementation of DualPathNetworks Based on original MXNet implementation https://github.com/cypw/DPNs with many ideas from another PyTorch implementation https://github.com/oyam/pytorch-DPNs. This implementation is compatible with the pretrained weights from cypw's MXNet implementation. Hacked together by / Copyright 2020 Ross Wightman """ ``` ## Model description [Dual Path Networks](https://arxiv.org/abs/1707.01629) ## Intended uses & limitations You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head to fine-tune it on a downstream task (another classification task with different labels, image segmentation or object detection, to name a few). ### How to use You can use this model with the usual factory method in `timm`: ```python import PIL import timm import torch model = timm.create_model("julien-c/timm-dpn92") img = PIL.Image.open(path_to_an_image) img = img.convert("RGB") config = model.default_cfg if isinstance(config["input_size"], tuple): img_size = config["input_size"][-2:] else: img_size = config["input_size"] transform = timm.data.transforms_factory.transforms_imagenet_eval( img_size=img_size, interpolation=config["interpolation"], mean=config["mean"], std=config["std"], ) input_tensor = transform(cat_img) input_tensor = input_tensor.unsqueeze(0) # ^ batch size = 1 with torch.no_grad(): output = model(input_tensor) probs = output.squeeze(0).softmax(dim=0) ``` ### Limitations and bias The training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will probably not generalize well on drawings or images containing multiple objects with different labels. The training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or models created by fine-tuning this model will work better on images picturing scenes from these countries (see [this paper](https://arxiv.org/abs/1906.02659) for examples). More generally, [recent research](https://arxiv.org/abs/2010.15052) has shown that even models trained in an unsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in the training images. ## Training data This model was pretrained on [ImageNet](http://www.image-net.org/), a dataset consisting of 14 millions of hand-annotated images with 1,000 categories. ## Training procedure To be completed ### Preprocessing To be completed ## Evaluation results To be completed ### BibTeX entry and citation info ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` and ```bibtex @misc{chen2017dual, title={Dual Path Networks}, author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng}, year={2017}, eprint={1707.01629}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "apache-2.0", "tags": ["image-classification", "timm", "dpn"], "datasets": ["imagenet"]}
julien-c/timm-dpn92
null
[ "timm", "pytorch", "image-classification", "dpn", "dataset:imagenet", "arxiv:1707.01629", "arxiv:1906.02659", "arxiv:2010.15052", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1707.01629", "1906.02659", "2010.15052" ]
[]
TAGS #timm #pytorch #image-classification #dpn #dataset-imagenet #arxiv-1707.01629 #arxiv-1906.02659 #arxiv-2010.15052 #license-apache-2.0 #region-us
# 'dpn92' from 'rwightman/pytorch-image-models' From 'rwightman/pytorch-image-models': ## Model description Dual Path Networks ## Intended uses & limitations You can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head to fine-tune it on a downstream task (another classification task with different labels, image segmentation or object detection, to name a few). ### How to use You can use this model with the usual factory method in 'timm': ### Limitations and bias The training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will probably not generalize well on drawings or images containing multiple objects with different labels. The training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or models created by fine-tuning this model will work better on images picturing scenes from these countries (see this paper for examples). More generally, recent research has shown that even models trained in an unsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in the training images. ## Training data This model was pretrained on ImageNet, a dataset consisting of 14 millions of hand-annotated images with 1,000 categories. ## Training procedure To be completed ### Preprocessing To be completed ## Evaluation results To be completed ### BibTeX entry and citation info and
[ "# 'dpn92' from 'rwightman/pytorch-image-models'\n\nFrom 'rwightman/pytorch-image-models':", "## Model description\n\nDual Path Networks", "## Intended uses & limitations\n\nYou can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head\nto fine-tune it on a downstream task (another classification task with different labels, image segmentation or\nobject detection, to name a few).", "### How to use\n\nYou can use this model with the usual factory method in 'timm':", "### Limitations and bias\n\nThe training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will\nprobably not generalize well on drawings or images containing multiple objects with different labels.\n\nThe training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or\nmodels created by fine-tuning this model will work better on images picturing scenes from these countries (see \nthis paper for examples).\n\nMore generally, recent research has shown that even models trained in an\nunsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in\nthe training images.", "## Training data\n\nThis model was pretrained on ImageNet, a dataset consisting of 14 millions of\nhand-annotated images with 1,000 categories.", "## Training procedure\n\nTo be completed", "### Preprocessing\n\nTo be completed", "## Evaluation results\n\nTo be completed", "### BibTeX entry and citation info\n\n\n\nand" ]
[ "TAGS\n#timm #pytorch #image-classification #dpn #dataset-imagenet #arxiv-1707.01629 #arxiv-1906.02659 #arxiv-2010.15052 #license-apache-2.0 #region-us \n", "# 'dpn92' from 'rwightman/pytorch-image-models'\n\nFrom 'rwightman/pytorch-image-models':", "## Model description\n\nDual Path Networks", "## Intended uses & limitations\n\nYou can use the raw model to classify images along the 1,000 ImageNet labels, but you can also change its head\nto fine-tune it on a downstream task (another classification task with different labels, image segmentation or\nobject detection, to name a few).", "### How to use\n\nYou can use this model with the usual factory method in 'timm':", "### Limitations and bias\n\nThe training images in the dataset are usually photos clearly representing one of the 1,000 labels. The model will\nprobably not generalize well on drawings or images containing multiple objects with different labels.\n\nThe training images in the dataset come mostly from the US (45.4%) and Great Britain (7.6%). As such the model or\nmodels created by fine-tuning this model will work better on images picturing scenes from these countries (see \nthis paper for examples).\n\nMore generally, recent research has shown that even models trained in an\nunsupervised fashion on ImageNet (i.e. without using the labels) will pick up racial and gender bias represented in\nthe training images.", "## Training data\n\nThis model was pretrained on ImageNet, a dataset consisting of 14 millions of\nhand-annotated images with 1,000 categories.", "## Training procedure\n\nTo be completed", "### Preprocessing\n\nTo be completed", "## Evaluation results\n\nTo be completed", "### BibTeX entry and citation info\n\n\n\nand" ]
voice-activity-detection
null
## Example pyannote-audio Voice Activity Detection model ### `pyannote.audio.models.segmentation.PyanNet` ♻️ Imported from https://github.com/pyannote/pyannote-audio-hub This model was trained by @hbredin. ### Demo: How to use in pyannote-audio ```python from pyannote.audio.core.inference import Inference model = Inference('julien-c/voice-activity-detection', device='cuda') model({ "audio": "TheBigBangTheory.wav" }) ``` ### Citing pyannote-audio ```BibTex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ``` or ```bibtex @inproceedings{Lavechin2020, author = {Marvin Lavechin and Marie-Philippe Gill and Ruben Bousbib and Herv\'{e} Bredin and Leibny Paola Garcia-Perera}, title = {{End-to-end Domain-Adversarial Voice Activity Detection}}, year = {2020}, url = {https://arxiv.org/abs/1910.10655}, } ```
{"license": "mit", "tags": ["pyannote", "audio", "voice-activity-detection"], "datasets": ["dihard"], "inference": false}
julien-c/voice-activity-detection
null
[ "pytorch", "pyannote", "audio", "voice-activity-detection", "dataset:dihard", "arxiv:1910.10655", "license:mit", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1910.10655" ]
[]
TAGS #pytorch #pyannote #audio #voice-activity-detection #dataset-dihard #arxiv-1910.10655 #license-mit #region-us
## Example pyannote-audio Voice Activity Detection model ### 'URL.segmentation.PyanNet' ️ Imported from URL This model was trained by @hbredin. ### Demo: How to use in pyannote-audio ### Citing pyannote-audio or
[ "## Example pyannote-audio Voice Activity Detection model", "### 'URL.segmentation.PyanNet'\n\n️ Imported from URL\n\nThis model was trained by @hbredin.", "### Demo: How to use in pyannote-audio", "### Citing pyannote-audio\n\n\n\nor" ]
[ "TAGS\n#pytorch #pyannote #audio #voice-activity-detection #dataset-dihard #arxiv-1910.10655 #license-mit #region-us \n", "## Example pyannote-audio Voice Activity Detection model", "### 'URL.segmentation.PyanNet'\n\n️ Imported from URL\n\nThis model was trained by @hbredin.", "### Demo: How to use in pyannote-audio", "### Citing pyannote-audio\n\n\n\nor" ]
tabular-classification
sklearn
## Wine Quality classification ### A Simple Example of Scikit-learn Pipeline > Inspired by https://towardsdatascience.com/a-simple-example-of-pipeline-in-machine-learning-with-scikit-learn-e726ffbb6976 by Saptashwa Bhattacharyya ### How to use ```python from huggingface_hub import hf_hub_url, cached_download import joblib import pandas as pd REPO_ID = "julien-c/wine-quality" FILENAME = "sklearn_model.joblib" model = joblib.load(cached_download( hf_hub_url(REPO_ID, FILENAME) )) # model is a `sklearn.pipeline.Pipeline` ``` #### Get sample data from this repo ```python data_file = cached_download( hf_hub_url(REPO_ID, "winequality-red.csv") ) winedf = pd.read_csv(data_file, sep=";") X = winedf.drop(["quality"], axis=1) Y = winedf["quality"] print(X[:3]) ``` | | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur dioxide | total sulfur dioxide | density | pH | sulphates | alcohol | |---:|----------------:|-------------------:|--------------:|-----------------:|------------:|----------------------:|-----------------------:|----------:|-----:|------------:|----------:| | 0 | 7.4 | 0.7 | 0 | 1.9 | 0.076 | 11 | 34 | 0.9978 | 3.51 | 0.56 | 9.4 | | 1 | 7.8 | 0.88 | 0 | 2.6 | 0.098 | 25 | 67 | 0.9968 | 3.2 | 0.68 | 9.8 | | 2 | 7.8 | 0.76 | 0.04 | 2.3 | 0.092 | 15 | 54 | 0.997 | 3.26 | 0.65 | 9.8 | #### Get your prediction ```python labels = model.predict(X[:3]) # [5, 5, 5] ``` #### Eval ```python model.score(X, Y) # 0.6616635397123202 ``` ### 🍷 Disclaimer No red wine was drunk (unfortunately) while training this model 🍷
{"tags": ["tabular-classification", "sklearn"], "datasets": ["wine-quality", "lvwerra/red-wine"], "widget": [{"structuredData": {"fixed_acidity": [7.4, 7.8, 10.3], "volatile_acidity": [0.7, 0.88, 0.32], "citric_acid": [0, 0, 0.45], "residual_sugar": [1.9, 2.6, 6.4], "chlorides": [0.076, 0.098, 0.073], "free_sulfur_dioxide": [11, 25, 5], "total_sulfur_dioxide": [34, 67, 13], "density": [0.9978, 0.9968, 0.9976], "pH": [3.51, 3.2, 3.23], "sulphates": [0.56, 0.68, 0.82], "alcohol": [9.4, 9.8, 12.6]}}]}
julien-c/wine-quality
null
[ "sklearn", "joblib", "tabular-classification", "dataset:wine-quality", "dataset:lvwerra/red-wine", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #sklearn #joblib #tabular-classification #dataset-wine-quality #dataset-lvwerra/red-wine #has_space #region-us
Wine Quality classification --------------------------- ### A Simple Example of Scikit-learn Pipeline > > Inspired by URL by Saptashwa Bhattacharyya > > > ### How to use #### Get sample data from this repo #### Get your prediction #### Eval ### Disclaimer No red wine was drunk (unfortunately) while training this model
[ "### A Simple Example of Scikit-learn Pipeline\n\n\n\n> \n> Inspired by URL by Saptashwa Bhattacharyya\n> \n> \n>", "### How to use", "#### Get sample data from this repo", "#### Get your prediction", "#### Eval", "### Disclaimer\n\n\nNo red wine was drunk (unfortunately) while training this model" ]
[ "TAGS\n#sklearn #joblib #tabular-classification #dataset-wine-quality #dataset-lvwerra/red-wine #has_space #region-us \n", "### A Simple Example of Scikit-learn Pipeline\n\n\n\n> \n> Inspired by URL by Saptashwa Bhattacharyya\n> \n> \n>", "### How to use", "#### Get sample data from this repo", "#### Get your prediction", "#### Eval", "### Disclaimer\n\n\nNo red wine was drunk (unfortunately) while training this model" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 16622767 ## Validation Metrics - Loss: 0.20029613375663757 - Accuracy: 0.9256 - Precision: 0.9090909090909091 - Recall: 0.9466984884645983 - AUC: 0.979257749523025 - F1: 0.9275136399064692 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-imdb-demo-hf-16622767 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622767", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622767", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["juliensimon/autonlp-data-imdb-demo-hf"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
juliensimon/autonlp-imdb-demo-hf-16622767
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:juliensimon/autonlp-data-imdb-demo-hf", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-imdb-demo-hf #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 16622767 ## Validation Metrics - Loss: 0.20029613375663757 - Accuracy: 0.9256 - Precision: 0.9090909090909091 - Recall: 0.9466984884645983 - AUC: 0.979257749523025 - F1: 0.9275136399064692 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 16622767", "## Validation Metrics\n\n- Loss: 0.20029613375663757\n- Accuracy: 0.9256\n- Precision: 0.9090909090909091\n- Recall: 0.9466984884645983\n- AUC: 0.979257749523025\n- F1: 0.9275136399064692", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-imdb-demo-hf #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 16622767", "## Validation Metrics\n\n- Loss: 0.20029613375663757\n- Accuracy: 0.9256\n- Precision: 0.9090909090909091\n- Recall: 0.9466984884645983\n- AUC: 0.979257749523025\n- F1: 0.9275136399064692", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 16622775 ## Validation Metrics - Loss: 0.18653589487075806 - Accuracy: 0.9408 - Precision: 0.9537643207855974 - Recall: 0.9272076372315036 - AUC: 0.985847396174344 - F1: 0.9402985074626865 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-imdb-demo-hf-16622775 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-imdb-demo-hf-16622775", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["juliensimon/autonlp-data-imdb-demo-hf"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
juliensimon/autonlp-imdb-demo-hf-16622775
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:juliensimon/autonlp-data-imdb-demo-hf", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roberta #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-imdb-demo-hf #autotrain_compatible #endpoints_compatible #has_space #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 16622775 ## Validation Metrics - Loss: 0.18653589487075806 - Accuracy: 0.9408 - Precision: 0.9537643207855974 - Recall: 0.9272076372315036 - AUC: 0.985847396174344 - F1: 0.9402985074626865 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 16622775", "## Validation Metrics\n\n- Loss: 0.18653589487075806\n- Accuracy: 0.9408\n- Precision: 0.9537643207855974\n- Recall: 0.9272076372315036\n- AUC: 0.985847396174344\n- F1: 0.9402985074626865", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-imdb-demo-hf #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 16622775", "## Validation Metrics\n\n- Loss: 0.18653589487075806\n- Accuracy: 0.9408\n- Precision: 0.9537643207855974\n- Recall: 0.9272076372315036\n- AUC: 0.985847396174344\n- F1: 0.9402985074626865", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 31447312 - CO2 Emissions (in grams): 206.46626351359515 ## Validation Metrics - Loss: 1.1907752752304077 - Rouge1: 55.9215 - Rouge2: 30.7724 - RougeL: 53.185 - RougeLsum: 53.3353 - Gen Len: 15.1236 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/juliensimon/autonlp-reuters-summarization-31447312 ```
{"language": "en", "tags": "autonlp", "datasets": ["juliensimon/autonlp-data-reuters-summarization"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 206.46626351359515}
juliensimon/autonlp-reuters-summarization-31447312
null
[ "transformers", "pytorch", "safetensors", "pegasus", "text2text-generation", "autonlp", "en", "dataset:juliensimon/autonlp-data-reuters-summarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #pegasus #text2text-generation #autonlp #en #dataset-juliensimon/autonlp-data-reuters-summarization #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 31447312 - CO2 Emissions (in grams): 206.46626351359515 ## Validation Metrics - Loss: 1.1907752752304077 - Rouge1: 55.9215 - Rouge2: 30.7724 - RougeL: 53.185 - RougeLsum: 53.3353 - Gen Len: 15.1236 ## Usage You can use cURL to access this model:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 31447312\n- CO2 Emissions (in grams): 206.46626351359515", "## Validation Metrics\n\n- Loss: 1.1907752752304077\n- Rouge1: 55.9215\n- Rouge2: 30.7724\n- RougeL: 53.185\n- RougeLsum: 53.3353\n- Gen Len: 15.1236", "## Usage\n\nYou can use cURL to access this model:" ]
[ "TAGS\n#transformers #pytorch #safetensors #pegasus #text2text-generation #autonlp #en #dataset-juliensimon/autonlp-data-reuters-summarization #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 31447312\n- CO2 Emissions (in grams): 206.46626351359515", "## Validation Metrics\n\n- Loss: 1.1907752752304077\n- Rouge1: 55.9215\n- Rouge2: 30.7724\n- RougeL: 53.185\n- RougeLsum: 53.3353\n- Gen Len: 15.1236", "## Usage\n\nYou can use cURL to access this model:" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18753417 - CO2 Emissions (in grams): 112.75546781635975 ## Validation Metrics - Loss: 0.9065971970558167 - Accuracy: 0.6680274633512711 - Macro F1: 0.5384854358272774 - Micro F1: 0.6680274633512711 - Weighted F1: 0.6414749238882866 - Macro Precision: 0.6744495173269196 - Micro Precision: 0.6680274633512711 - Weighted Precision: 0.6634090047492259 - Macro Recall: 0.5078466493896978 - Micro Recall: 0.6680274633512711 - Weighted Recall: 0.6680274633512711 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-song-lyrics-18753417 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-song-lyrics-18753417", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-song-lyrics-18753417", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": ["autonlp"], "datasets": ["juliensimon/autonlp-data-song-lyrics"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 112.75546781635975}
juliensimon/autonlp-song-lyrics-18753417
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "autonlp", "en", "dataset:juliensimon/autonlp-data-song-lyrics", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #bert #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-song-lyrics #co2_eq_emissions #autotrain_compatible #endpoints_compatible #has_space #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18753417 - CO2 Emissions (in grams): 112.75546781635975 ## Validation Metrics - Loss: 0.9065971970558167 - Accuracy: 0.6680274633512711 - Macro F1: 0.5384854358272774 - Micro F1: 0.6680274633512711 - Weighted F1: 0.6414749238882866 - Macro Precision: 0.6744495173269196 - Micro Precision: 0.6680274633512711 - Weighted Precision: 0.6634090047492259 - Macro Recall: 0.5078466493896978 - Micro Recall: 0.6680274633512711 - Weighted Recall: 0.6680274633512711 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 18753417\n- CO2 Emissions (in grams): 112.75546781635975", "## Validation Metrics\n\n- Loss: 0.9065971970558167\n- Accuracy: 0.6680274633512711\n- Macro F1: 0.5384854358272774\n- Micro F1: 0.6680274633512711\n- Weighted F1: 0.6414749238882866\n- Macro Precision: 0.6744495173269196\n- Micro Precision: 0.6680274633512711\n- Weighted Precision: 0.6634090047492259\n- Macro Recall: 0.5078466493896978\n- Micro Recall: 0.6680274633512711\n- Weighted Recall: 0.6680274633512711", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #safetensors #bert #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-song-lyrics #co2_eq_emissions #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 18753417\n- CO2 Emissions (in grams): 112.75546781635975", "## Validation Metrics\n\n- Loss: 0.9065971970558167\n- Accuracy: 0.6680274633512711\n- Macro F1: 0.5384854358272774\n- Micro F1: 0.6680274633512711\n- Weighted F1: 0.6414749238882866\n- Macro Precision: 0.6744495173269196\n- Micro Precision: 0.6680274633512711\n- Weighted Precision: 0.6634090047492259\n- Macro Recall: 0.5078466493896978\n- Micro Recall: 0.6680274633512711\n- Weighted Recall: 0.6680274633512711", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18753423 - CO2 Emissions (in grams): 55.552987716859484 ## Validation Metrics - Loss: 0.913820743560791 - Accuracy: 0.654110224531453 - Macro F1: 0.5327761649415296 - Micro F1: 0.654110224531453 - Weighted F1: 0.6339481529454227 - Macro Precision: 0.6799297267808116 - Micro Precision: 0.654110224531453 - Weighted Precision: 0.6533459269990771 - Macro Recall: 0.49907494605289154 - Micro Recall: 0.654110224531453 - Weighted Recall: 0.654110224531453 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/juliensimon/autonlp-song-lyrics-18753423 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("juliensimon/autonlp-song-lyrics-18753423", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("juliensimon/autonlp-song-lyrics-18753423", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["juliensimon/autonlp-data-song-lyrics"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 55.552987716859484}
juliensimon/autonlp-song-lyrics-18753423
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "en", "dataset:juliensimon/autonlp-data-song-lyrics", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-song-lyrics #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18753423 - CO2 Emissions (in grams): 55.552987716859484 ## Validation Metrics - Loss: 0.913820743560791 - Accuracy: 0.654110224531453 - Macro F1: 0.5327761649415296 - Micro F1: 0.654110224531453 - Weighted F1: 0.6339481529454227 - Macro Precision: 0.6799297267808116 - Micro Precision: 0.654110224531453 - Weighted Precision: 0.6533459269990771 - Macro Recall: 0.49907494605289154 - Micro Recall: 0.654110224531453 - Weighted Recall: 0.654110224531453 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 18753423\n- CO2 Emissions (in grams): 55.552987716859484", "## Validation Metrics\n\n- Loss: 0.913820743560791\n- Accuracy: 0.654110224531453\n- Macro F1: 0.5327761649415296\n- Micro F1: 0.654110224531453\n- Weighted F1: 0.6339481529454227\n- Macro Precision: 0.6799297267808116\n- Micro Precision: 0.654110224531453\n- Weighted Precision: 0.6533459269990771\n- Macro Recall: 0.49907494605289154\n- Micro Recall: 0.654110224531453\n- Weighted Recall: 0.654110224531453", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #en #dataset-juliensimon/autonlp-data-song-lyrics #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Multi-class Classification\n- Model ID: 18753423\n- CO2 Emissions (in grams): 55.552987716859484", "## Validation Metrics\n\n- Loss: 0.913820743560791\n- Accuracy: 0.654110224531453\n- Macro F1: 0.5327761649415296\n- Micro F1: 0.654110224531453\n- Weighted F1: 0.6339481529454227\n- Macro Precision: 0.6799297267808116\n- Micro Precision: 0.654110224531453\n- Weighted Precision: 0.6533459269990771\n- Macro Recall: 0.49907494605289154\n- Micro Recall: 0.654110224531453\n- Weighted Recall: 0.654110224531453", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
Distilbert model fine-tuned on English language product reviews A notebook for Amazon SageMaker is available in the 'code' subfolder.
{"language": ["en"], "tags": ["distilbert", "sentiment-analysis"], "datasets": ["generated_reviews_enth"]}
juliensimon/reviews-sentiment-analysis
null
[ "transformers", "pytorch", "safetensors", "distilbert", "text-classification", "sentiment-analysis", "en", "dataset:generated_reviews_enth", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #safetensors #distilbert #text-classification #sentiment-analysis #en #dataset-generated_reviews_enth #autotrain_compatible #endpoints_compatible #has_space #region-us
Distilbert model fine-tuned on English language product reviews A notebook for Amazon SageMaker is available in the 'code' subfolder.
[]
[ "TAGS\n#transformers #pytorch #safetensors #distilbert #text-classification #sentiment-analysis #en #dataset-generated_reviews_enth #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.1-squad-finetuned-covbiobert This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.3959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 486 | 0.3787 | | 0.161 | 2.0 | 972 | 0.3959 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "biobert-base-cased-v1.1-squad-finetuned-covbiobert", "results": []}]}
juliusco/biobert-base-cased-v1.1-squad-finetuned-covbiobert
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
biobert-base-cased-v1.1-squad-finetuned-covbiobert ================================================== This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1-squad on the covid\_qa\_deepset dataset. It achieves the following results on the evaluation set: * Loss: 0.3959 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.10.0+cu102 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # biobert-base-cased-v1.1-squad-finetuned-covdrobert This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1-squad](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1-squad) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.3959 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 486 | 0.3787 | | 0.161 | 2.0 | 972 | 0.3959 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "biobert-base-cased-v1.1-squad-finetuned-covdrobert", "results": []}]}
juliusco/biobert-base-cased-v1.1-squad-finetuned-covdrobert
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
biobert-base-cased-v1.1-squad-finetuned-covdrobert ================================================== This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.1-squad on the covid\_qa\_deepset dataset. It achieves the following results on the evaluation set: * Loss: 0.3959 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.10.0+cu102 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-covdistilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the covid_qa_deepset dataset. It achieves the following results on the evaluation set: - Loss: 0.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 457 | 0.5125 | | 0.5146 | 2.0 | 914 | 0.4843 | | 0.2158 | 3.0 | 1371 | 0.4492 | | 0.1639 | 4.0 | 1828 | 0.4760 | | 0.1371 | 5.0 | 2285 | 0.4844 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu102 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "distilbert-base-uncased-finetuned-covdistilbert", "results": []}]}
juliusco/distilbert-base-uncased-finetuned-covdistilbert
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-covdistilbert =============================================== This model is a fine-tuned version of distilbert-base-uncased on the covid\_qa\_deepset dataset. It achieves the following results on the evaluation set: * Loss: 0.4844 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.10.0+cu102 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu102\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.3672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.1755 | 1.0 | 11066 | 1.1177 | | 0.9004 | 2.0 | 22132 | 1.1589 | | 0.6592 | 3.0 | 33198 | 1.2326 | | 0.4823 | 4.0 | 44264 | 1.3672 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
juliusco/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.3672 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 4 ### Training results ### Framework versions * Transformers 4.19.4 * Pytorch 1.11.0+cu113 * Datasets 2.2.2 * Tokenizers 0.12.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.19.4\n* Pytorch 1.11.0+cu113\n* Datasets 2.2.2\n* Tokenizers 0.12.1" ]
[ "TAGS\n#transformers #pytorch #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4", "### Training results", "### Framework versions\n\n\n* Transformers 4.19.4\n* Pytorch 1.11.0+cu113\n* Datasets 2.2.2\n* Tokenizers 0.12.1" ]
fill-mask
transformers
# https://github.com/JunnYu/ChineseBert_pytorch # ChineseBert_pytorch 本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。 ```python pretrained_tokenizer_name = "junnyu/ChineseBERT-base" tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_tokenizer_name) ``` # Paper **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/pdf/2106.16038.pdf)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* # Install ```bash pip install chinesebert or pip install git+https://github.com/JunnYu/ChineseBert_pytorch.git ``` # Usage ```python import torch from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig pretrained_model_name = "junnyu/ChineseBERT-base" tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_model_name) chinese_bert = ChineseBertForMaskedLM.from_pretrained(pretrained_model_name) text = "北京是[MASK]国的首都。" inputs = tokenizer(text, return_tensors="pt") print(inputs) maskpos = 4 with torch.no_grad(): o = chinese_bert(**inputs) value, index = o.logits.softmax(-1)[0, maskpos].topk(10) pred_tokens = tokenizer.convert_ids_to_tokens(index.tolist()) pred_values = value.tolist() outputs = [] for t, p in zip(pred_tokens, pred_values): outputs.append(f"{t}|{round(p,4)}") print(outputs) # base ['中|0.711', '我|0.2488', '祖|0.016', '法|0.0057', '美|0.0048', '全|0.0042', '韩|0.0015', '英|0.0011', '两|0.0008', '王|0.0006'] # large ['中|0.8341', '我|0.1479', '祖|0.0157', '全|0.0007', '国|0.0005', '帝|0.0001', '该|0.0001', '法|0.0001', '一|0.0001', '咱|0.0001'] ``` # Reference https://github.com/ShannonAI/ChineseBert
{"language": "zh", "tags": ["glycebert"], "inference": false}
junnyu/ChineseBERT-base
null
[ "transformers", "pytorch", "bert", "fill-mask", "glycebert", "zh", "arxiv:2106.16038", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2106.16038" ]
[ "zh" ]
TAGS #transformers #pytorch #bert #fill-mask #glycebert #zh #arxiv-2106.16038 #autotrain_compatible #region-us
# URL # ChineseBert_pytorch 本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。 # Paper ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* # Install # Usage # Reference URL
[ "# URL", "# ChineseBert_pytorch\n本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。", "# Paper\nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*", "# Install", "# Usage", "# Reference\nURL" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #glycebert #zh #arxiv-2106.16038 #autotrain_compatible #region-us \n", "# URL", "# ChineseBert_pytorch\n本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。", "# Paper\nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*", "# Install", "# Usage", "# Reference\nURL" ]
fill-mask
transformers
# https://github.com/JunnYu/ChineseBert_pytorch # ChineseBert_pytorch 本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。 ```python pretrained_tokenizer_name = "junnyu/ChineseBERT-large" tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_tokenizer_name) ``` # Paper **[ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information](https://arxiv.org/pdf/2106.16038.pdf)** *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* # Install ```bash pip install chinesebert or pip install git+https://github.com/JunnYu/ChineseBert_pytorch.git ``` # Usage ```python import torch from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig pretrained_model_name = "junnyu/ChineseBERT-large" tokenizer = ChineseBertTokenizerFast.from_pretrained(pretrained_model_name ) chinese_bert = ChineseBertForMaskedLM.from_pretrained(pretrained_model_name) text = "北京是[MASK]国的首都。" inputs = tokenizer(text, return_tensors="pt") print(inputs) maskpos = 4 with torch.no_grad(): o = chinese_bert(**inputs) value, index = o.logits.softmax(-1)[0, maskpos].topk(10) pred_tokens = tokenizer.convert_ids_to_tokens(index.tolist()) pred_values = value.tolist() outputs = [] for t, p in zip(pred_tokens, pred_values): outputs.append(f"{t}|{round(p,4)}") print(outputs) # base ['中|0.711', '我|0.2488', '祖|0.016', '法|0.0057', '美|0.0048', '全|0.0042', '韩|0.0015', '英|0.0011', '两|0.0008', '王|0.0006'] # large ['中|0.8341', '我|0.1479', '祖|0.0157', '全|0.0007', '国|0.0005', '帝|0.0001', '该|0.0001', '法|0.0001', '一|0.0001', '咱|0.0001'] ``` # Reference https://github.com/ShannonAI/ChineseBert
{"language": "zh", "tags": ["glycebert"], "inference": false}
junnyu/ChineseBERT-large
null
[ "transformers", "pytorch", "bert", "fill-mask", "glycebert", "zh", "arxiv:2106.16038", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2106.16038" ]
[ "zh" ]
TAGS #transformers #pytorch #bert #fill-mask #glycebert #zh #arxiv-2106.16038 #autotrain_compatible #region-us
# URL # ChineseBert_pytorch 本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。 # Paper ChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information *Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li* # Install # Usage # Reference URL
[ "# URL", "# ChineseBert_pytorch\n本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。", "# Paper\nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*", "# Install", "# Usage", "# Reference\nURL" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #glycebert #zh #arxiv-2106.16038 #autotrain_compatible #region-us \n", "# URL", "# ChineseBert_pytorch\n本项目主要自定义了tokenization_chinesebert_fast.py文件中的ChineseBertTokenizerFast代码。从而可以从huggingface.co调用。", "# Paper\nChineseBERT: Chinese Pretraining Enhanced by Glyph and Pinyin Information \n*Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang Ao, Qing He, Fei Wu and Jiwei Li*", "# Install", "# Usage", "# Reference\nURL" ]
fill-mask
transformers
https://github.com/alibaba-research/ChineseBLUE
{}
junnyu/bert_chinese_mc_base
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us
URL
[]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #autotrain_compatible #endpoints_compatible #region-us \n" ]
null
transformers
https://github.com/PaddlePaddle/Research/tree/master/KG/eHealth
{}
junnyu/eHealth_pytorch
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #endpoints_compatible #region-us
URL
[]
[ "TAGS\n#transformers #pytorch #bert #endpoints_compatible #region-us \n" ]
null
transformers
# 一、 个人在openwebtext数据集上训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |Metrics|MCC|Acc|Acc|Spearman|Acc|Acc|Acc|Acc|| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 62.5W - GPU RTX3090 - 训练时间总共耗费2.5天 # 四、 使用 ```python import torch from transformers.models.electra import ElectraModel, ElectraTokenizer tokenizer = ElectraTokenizer.from_pretrained("junnyu/electra_small_discriminator") model = ElectraModel.from_pretrained("junnyu/electra_small_discriminator") inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) print(outputs[0].shape) ```
{"language": "en", "license": "mit", "tags": ["pytorch", "electra"], "datasets": ["openwebtext"], "thumbnail": "https://github.com/junnyu"}
junnyu/electra_small_discriminator
null
[ "transformers", "pytorch", "electra", "pretraining", "en", "dataset:openwebtext", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #electra #pretraining #en #dataset-openwebtext #license-mit #endpoints_compatible #region-us
一、 个人在openwebtext数据集上训练得到的electra-small模型 ========================================= 二、 复现结果(dev dataset) ==================== 三、 训练细节 ======= * 数据集 openwebtext * 训练batch\_size 256 * 学习率lr 5e-4 * 最大句子长度max\_seqlen 128 * 训练total step 62.5W * GPU RTX3090 * 训练时间总共耗费2.5天 四、 使用 =====
[]
[ "TAGS\n#transformers #pytorch #electra #pretraining #en #dataset-openwebtext #license-mit #endpoints_compatible #region-us \n" ]
fill-mask
transformers
# 一、 个人在openwebtext数据集上训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-Small-OWT (this)**| 55.82 |89.67|87.0|86.96|89.28|80.08|87.50|66.07|80.30| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 62.5W - GPU RTX3090 - 训练时间总共耗费2.5天 # 四、 使用 ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="junnyu/electra_small_generator", tokenizer="junnyu/electra_small_generator" ) print( fill_mask("HuggingFace is creating a [MASK] that the community uses to solve NLP tasks.") ) ```
{"language": "en", "license": "mit", "tags": ["pytorch", "electra", "masked-lm"], "datasets": ["openwebtext"], "thumbnail": "https://github.com/junnyu"}
junnyu/electra_small_generator
null
[ "transformers", "pytorch", "electra", "fill-mask", "masked-lm", "en", "dataset:openwebtext", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #electra #fill-mask #masked-lm #en #dataset-openwebtext #license-mit #autotrain_compatible #endpoints_compatible #region-us
一、 个人在openwebtext数据集上训练得到的electra-small模型 ========================================= 二、 复现结果(dev dataset) ==================== 三、 训练细节 ======= * 数据集 openwebtext * 训练batch\_size 256 * 学习率lr 5e-4 * 最大句子长度max\_seqlen 128 * 训练total step 62.5W * GPU RTX3090 * 训练时间总共耗费2.5天 四、 使用 =====
[]
[ "TAGS\n#transformers #pytorch #electra #fill-mask #masked-lm #en #dataset-openwebtext #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
fill-mask
transformers
## 介绍 Pretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task. 在13g的clue corpus small数据集上进行的预训练,使用了`Whole Mask LM` 和 `SOP` 任务 训练逻辑参考了这里。https://github.com/PaddlePaddle/PaddleNLP/tree/develop/examples/language_model/ernie-1.0 ## 训练细节: - paddlepaddle+paddlenlp - V100 x 4 - batch size 256 - max_seq_len 512 - max_lr 0.0001 - min_lr 0.00001 - weight_decay 0.01 - grad_clip 1.0 - 总共训练的句子```128*30w + 256*15w + 256*14.5w + 256*46.5w + 256*17w = 27648w``` - 约等于512 batch size, 100w步条件下的54% 最终loss: ```python [2022-02-05 16:05:59,067] [ INFO] - global step 170100, loss: 2.651634932, lm_loss: 2.603405, sop_loss: 0.048229, speed: 1.06 steps/s, ips: 271.68 seqs/s, learning rate: 6.66465e-05, loss_scaling: 137438.96875, num_good_steps: 356, num_bad_steps: 0 [2022-02-05 16:07:28,227] [ INFO] - global step 170200, loss: 2.822231531, lm_loss: 2.662831, sop_loss: 0.159401, speed: 1.12 steps/s, ips: 287.13 seqs/s, learning rate: 6.66263e-05, loss_scaling: 137438.96875, num_good_steps: 59, num_bad_steps: 0 [2022-02-05 16:08:57,346] [ INFO] - global step 170300, loss: 2.710968971, lm_loss: 2.673646, sop_loss: 0.037323, speed: 1.12 steps/s, ips: 287.26 seqs/s, learning rate: 6.66061e-05, loss_scaling: 137438.96875, num_good_steps: 159, num_bad_steps: 0 [2022-02-05 16:10:26,698] [ INFO] - global step 170400, loss: 2.867662907, lm_loss: 2.619032, sop_loss: 0.248631, speed: 1.12 steps/s, ips: 286.51 seqs/s, learning rate: 6.65859e-05, loss_scaling: 137438.96875, num_good_steps: 259, num_bad_steps: 0 [2022-02-05 16:11:55,714] [ INFO] - global step 170500, loss: 3.158756495, lm_loss: 2.953678, sop_loss: 0.205079, speed: 1.12 steps/s, ips: 287.59 seqs/s, learning rate: 6.65657e-05, loss_scaling: 137438.96875, num_good_steps: 359, num_bad_steps: 0 [2022-02-05 16:13:24,869] [ INFO] - global step 170600, loss: 2.860815048, lm_loss: 2.754750, sop_loss: 0.106064, speed: 1.12 steps/s, ips: 287.14 seqs/s, learning rate: 6.65455e-05, loss_scaling: 137438.96875, num_good_steps: 33, num_bad_steps: 0 ``` ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, BertTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = BertTokenizer.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_base_wwm_cluecorpussmall") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||人||气||阳||雨]很好,我[想||就||要||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0", "paddlepaddle"], "widget": [{"text": "\u4eca\u5929[MASK]\u5f88\u597d\uff0c\u6211\u60f3\u53bb\u516c\u56ed\u73a9\uff01"}]}
junnyu/roformer_base_wwm_cluecorpussmall
null
[ "transformers", "pytorch", "roformer", "fill-mask", "tf2.0", "paddlepaddle", "zh", "arxiv:2104.09864", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09864" ]
[ "zh" ]
TAGS #transformers #pytorch #roformer #fill-mask #tf2.0 #paddlepaddle #zh #arxiv-2104.09864 #autotrain_compatible #endpoints_compatible #region-us
## 介绍 Pretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task. 在13g的clue corpus small数据集上进行的预训练,使用了'Whole Mask LM' 和 'SOP' 任务 训练逻辑参考了这里。URL ## 训练细节: - paddlepaddle+paddlenlp - V100 x 4 - batch size 256 - max_seq_len 512 - max_lr 0.0001 - min_lr 0.00001 - weight_decay 0.01 - grad_clip 1.0 - 总共训练的句子 - 约等于512 batch size, 100w步条件下的54% 最终loss: ### tf版本 URL ### pytorch版本+tf2.0版本 URL ## pytorch使用 ## 引用 Bibtex:
[ "## 介绍\nPretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task.\n在13g的clue corpus small数据集上进行的预训练,使用了'Whole Mask LM' 和 'SOP' 任务\n\n训练逻辑参考了这里。URL", "## 训练细节:\n- paddlepaddle+paddlenlp\n- V100 x 4\n- batch size 256\n- max_seq_len 512 \n- max_lr 0.0001\n- min_lr 0.00001\n- weight_decay 0.01\n- grad_clip 1.0\n- 总共训练的句子\n- 约等于512 batch size, 100w步条件下的54%\n\n最终loss:", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#transformers #pytorch #roformer #fill-mask #tf2.0 #paddlepaddle #zh #arxiv-2104.09864 #autotrain_compatible #endpoints_compatible #region-us \n", "## 介绍\nPretrained model on 13G Chinese corpus(clue corpus small). Masked language modeling(MLM) and sentence order prediction(SOP) are used as training task.\n在13g的clue corpus small数据集上进行的预训练,使用了'Whole Mask LM' 和 'SOP' 任务\n\n训练逻辑参考了这里。URL", "## 训练细节:\n- paddlepaddle+paddlenlp\n- V100 x 4\n- batch size 256\n- max_seq_len 512 \n- max_lr 0.0001\n- min_lr 0.00001\n- weight_decay 0.01\n- grad_clip 1.0\n- 总共训练的句子\n- 约等于512 batch size, 100w步条件下的54%\n\n最终loss:", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## 引用\n\nBibtex:" ]
null
paddlenlp
## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我想去公园玩!" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "widget": [{"text": "\u4eca\u5929[MASK]\u5f88\u597d\uff0c\u6211\u60f3\u53bb\u516c\u56ed\u73a9\uff01"}]}
junnyu/roformer_chinese_base
null
[ "paddlenlp", "pytorch", "tf", "jax", "paddlepaddle", "roformer", "tf2.0", "zh", "arxiv:2104.09864", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09864" ]
[ "zh" ]
TAGS #paddlenlp #pytorch #tf #jax #paddlepaddle #roformer #tf2.0 #zh #arxiv-2104.09864 #has_space #region-us
## 介绍 ### tf版本 URL ### pytorch版本+tf2.0版本 URL ## pytorch使用 ## tensorflow2.0使用 ## 引用 Bibtex:
[ "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#paddlenlp #pytorch #tf #jax #paddlepaddle #roformer #tf2.0 #zh #arxiv-2104.09864 #has_space #region-us \n", "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
null
paddlenlp
## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_base") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_base") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天||气||都||风||人]很好,我[想||要||就||也||还]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "widget": [{"text": "\u4eca\u5929[MASK]\u5f88\u597d\uff0c\u6211\u60f3\u53bb\u516c\u56ed\u73a9\uff01"}]}
junnyu/roformer_chinese_char_base
null
[ "paddlenlp", "pytorch", "tf", "jax", "paddlepaddle", "roformer", "tf2.0", "zh", "arxiv:2104.09864", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09864" ]
[ "zh" ]
TAGS #paddlenlp #pytorch #tf #jax #paddlepaddle #roformer #tf2.0 #zh #arxiv-2104.09864 #has_space #region-us
## 介绍 ### tf版本 URL ### pytorch版本+tf2.0版本 URL ## pytorch使用 ## tensorflow2.0使用 ## 引用 Bibtex:
[ "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#paddlenlp #pytorch #tf #jax #paddlepaddle #roformer #tf2.0 #zh #arxiv-2104.09864 #has_space #region-us \n", "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
fill-mask
transformers
## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_char_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_char_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0: 今天[也||都||又||还||我]很好,我[就||想||去||也||又]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "widget": [{"text": "\u4eca\u5929[MASK]\u5f88\u597d\uff0c\u6211\u60f3\u53bb\u516c\u56ed\u73a9\uff01"}]}
junnyu/roformer_chinese_char_small
null
[ "transformers", "pytorch", "tf", "jax", "roformer", "fill-mask", "tf2.0", "zh", "arxiv:2104.09864", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09864" ]
[ "zh" ]
TAGS #transformers #pytorch #tf #jax #roformer #fill-mask #tf2.0 #zh #arxiv-2104.09864 #autotrain_compatible #endpoints_compatible #has_space #region-us
## 介绍 ### tf版本 URL ### pytorch版本+tf2.0版本 URL ## pytorch使用 ## tensorflow2.0使用 ## 引用 Bibtex:
[ "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roformer #fill-mask #tf2.0 #zh #arxiv-2104.09864 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
text-generation
transformers
# 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "inference": false}
junnyu/roformer_chinese_sim_char_base
null
[ "transformers", "pytorch", "roformer", "text-generation", "tf2.0", "zh", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #region-us
# 安装 - pip install roformer==0.4.3 # 使用
[ "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
[ "TAGS\n#transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #region-us \n", "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
text-generation
transformers
# 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "inference": false}
junnyu/roformer_chinese_sim_char_ft_base
null
[ "transformers", "pytorch", "roformer", "text-generation", "tf2.0", "zh", "autotrain_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #has_space #region-us
# 安装 - pip install roformer==0.4.3 # 使用
[ "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
[ "TAGS\n#transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #has_space #region-us \n", "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
text-generation
transformers
# 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "inference": false}
junnyu/roformer_chinese_sim_char_ft_small
null
[ "transformers", "pytorch", "roformer", "text-generation", "tf2.0", "zh", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #region-us
# 安装 - pip install roformer==0.4.3 # 使用
[ "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
[ "TAGS\n#transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #region-us \n", "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
text-generation
transformers
# 安装 - pip install roformer==0.4.3 # 使用 ```python import torch import numpy as np from roformer import RoFormerForCausalLM, RoFormerConfig from transformers import BertTokenizer device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') pretrained_model = "junnyu/roformer_chinese_sim_char_base" tokenizer = BertTokenizer.from_pretrained(pretrained_model) config = RoFormerConfig.from_pretrained(pretrained_model) config.is_decoder = True config.eos_token_id = tokenizer.sep_token_id config.pooler_activation = "linear" model = RoFormerForCausalLM.from_pretrained(pretrained_model, config=config) model.to(device) model.eval() def gen_synonyms(text, n=100, k=20): ''''含义: 产生sent的n个相似句,然后返回最相似的k个。 做法:用seq2seq生成,并用encoder算相似度并排序。 ''' # 寻找所有相似的句子 r = [] inputs1 = tokenizer(text, return_tensors="pt") for _ in range(n): inputs1.to(device) output = tokenizer.batch_decode(model.generate(**inputs1, top_p=0.95, do_sample=True, max_length=128), skip_special_tokens=True)[0].replace(" ","").replace(text, "") # 去除空格,去除原始text文本。 r.append(output) # 对相似的句子进行排序 r = [i for i in set(r) if i != text and len(i) > 0] r = [text] + r inputs2 = tokenizer(r, padding=True, return_tensors="pt") with torch.no_grad(): inputs2.to(device) outputs = model(**inputs2) Z = outputs.pooler_output.cpu().numpy() Z /= (Z**2).sum(axis=1, keepdims=True)**0.5 argsort = np.dot(Z[1:], -Z[0]).argsort() return [r[i + 1] for i in argsort[:k]] out = gen_synonyms("广州和深圳哪个好?") print(out) # ['深圳和广州哪个好?', # '广州和深圳哪个好', # '深圳和广州哪个好', # '深圳和广州哪个比较好。', # '深圳和广州哪个最好?', # '深圳和广州哪个比较好', # '广州和深圳那个比较好', # '深圳和广州哪个更好?', # '深圳与广州哪个好', # '深圳和广州,哪个比较好', # '广州与深圳比较哪个好', # '深圳和广州哪里比较好', # '深圳还是广州比较好?', # '广州和深圳哪个地方好一些?', # '广州好还是深圳好?', # '广州好还是深圳好呢?', # '广州与深圳哪个地方好点?', # '深圳好还是广州好', # '广州好还是深圳好', # '广州和深圳哪个城市好?'] ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "inference": false}
junnyu/roformer_chinese_sim_char_small
null
[ "transformers", "pytorch", "roformer", "text-generation", "tf2.0", "zh", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #region-us
# 安装 - pip install roformer==0.4.3 # 使用
[ "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
[ "TAGS\n#transformers #pytorch #roformer #text-generation #tf2.0 #zh #autotrain_compatible #region-us \n", "# 安装\n- pip install roformer==0.4.3", "# 使用" ]
fill-mask
transformers
## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/roformer ### pytorch版本+tf2.0版本 https://github.com/JunnYu/RoFormer_pytorch ## pytorch使用 ```python import torch from transformers import RoFormerForMaskedLM, RoFormerTokenizer text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(pt_outputs_sentence) # pytorch: 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## tensorflow2.0使用 ```python import tensorflow as tf from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small") tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small") tf_inputs = tokenizer(text, return_tensors="tf") tf_outputs = tf_model(**tf_inputs, training=False).logits[0] tf_outputs_sentence = "tf2.0: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens( tf.math.top_k(tf_outputs[i], k=5)[1]) tf_outputs_sentence += "[" + "||".join(tokens) + "]" else: tf_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(tf_outputs_sentence) # tf2.0 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。 ``` ## 引用 Bibtex: ```tex @misc{su2021roformer, title={RoFormer: Enhanced Transformer with Rotary Position Embedding}, author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu}, year={2021}, eprint={2104.09864}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": "zh", "tags": ["roformer", "pytorch", "tf2.0"], "widget": [{"text": "\u4eca\u5929[MASK]\u5f88\u597d\uff0c\u6211\u60f3\u53bb\u516c\u56ed\u73a9\uff01"}]}
junnyu/roformer_chinese_small
null
[ "transformers", "pytorch", "tf", "jax", "roformer", "fill-mask", "tf2.0", "zh", "arxiv:2104.09864", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09864" ]
[ "zh" ]
TAGS #transformers #pytorch #tf #jax #roformer #fill-mask #tf2.0 #zh #arxiv-2104.09864 #autotrain_compatible #endpoints_compatible #has_space #region-us
## 介绍 ### tf版本 URL ### pytorch版本+tf2.0版本 URL ## pytorch使用 ## tensorflow2.0使用 ## 引用 Bibtex:
[ "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#transformers #pytorch #tf #jax #roformer #fill-mask #tf2.0 #zh #arxiv-2104.09864 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "## 介绍", "### tf版本 \nURL", "### pytorch版本+tf2.0版本\nURL", "## pytorch使用", "## tensorflow2.0使用", "## 引用\n\nBibtex:" ]
null
null
# paddle paddle版本的RoFormer # 需要安装最新的paddlenlp `pip install git+https://github.com/PaddlePaddle/PaddleNLP.git` ## 预训练模型转换 预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整): 1. 从huggingface.co获取roformer模型权重 2. 设置参数运行convert.py代码 3. 例子: 假设我想转换https://huggingface.co/junnyu/roformer_chinese_base 权重 - (1)首先下载 https://huggingface.co/junnyu/roformer_chinese_base/tree/main 中的pytorch_model.bin文件,假设我们存入了`./roformer_chinese_base/pytorch_model.bin` - (2)运行convert.py ```bash python convert.py \ --pytorch_checkpoint_path ./roformer_chinese_base/pytorch_model.bin \ --paddle_dump_path ./roformer_chinese_base/model_state.pdparams ``` - (3)最终我们得到了转化好的权重`./roformer_chinese_base/model_state.pdparams` ## 预训练MLM测试 ### test_mlm.py ```python import paddle import argparse from paddlenlp.transformers import RoFormerForPretraining, RoFormerTokenizer def test_mlm(text, model_name): model = RoFormerForPretraining.from_pretrained(model_name) model.eval() tokenizer = RoFormerTokenizer.from_pretrained(model_name) tokens = ["[CLS]"] text_list = text.split("[MASK]") for i,t in enumerate(text_list): tokens.extend(tokenizer.tokenize(t)) if i==len(text_list)-1: tokens.extend(["[SEP]"]) else: tokens.extend(["[MASK]"]) input_ids_list = tokenizer.convert_tokens_to_ids(tokens) input_ids = paddle.to_tensor([input_ids_list]) with paddle.no_grad(): pd_outputs = model(input_ids)[0][0] pd_outputs_sentence = "paddle: " for i, id in enumerate(input_ids_list): if id == tokenizer.convert_tokens_to_ids(["[MASK]"])[0]: tokens = tokenizer.convert_ids_to_tokens(pd_outputs[i].topk(5)[1].tolist()) pd_outputs_sentence += "[" + "||".join(tokens) + "]" else: pd_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True) ) print(pd_outputs_sentence) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="roformer-chinese-base", type=str, help="Pretrained roformer name or path." ) parser.add_argument( "--text", default="今天[MASK]很好,我想去公园玩!", type=str, help="MLM text." ) args = parser.parse_args() test_mlm(text=args.text, model_name=args.model_name) ``` ### 输出 ```bash python test_mlm.py --model_name roformer-chinese-base --text 今天[MASK]很好,我想去公园玩! # paddle: 今天[天气||天||阳光||太阳||空气]很好,我想去公园玩! python test_mlm.py --model_name roformer-chinese-base --text 北京是[MASK]的首都! # paddle: 北京是[中国||谁||中华人民共和国||我们||中华民族]的首都! python test_mlm.py --model_name roformer-chinese-char-base --text 今天[MASK]很好,我想去公园玩! # paddle: 今天[天||气||都||风||人]很好,我想去公园玩! python test_mlm.py --model_name roformer-chinese-char-base --text 北京是[MASK]的首都! # paddle: 北京是[谁||我||你||他||国]的首都! ```
{}
junnyu/roformer_paddle
null
[ "paddlepaddle", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #paddlepaddle #region-us
# paddle paddle版本的RoFormer # 需要安装最新的paddlenlp 'pip install git+URL ## 预训练模型转换 预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整): 1. 从huggingface.co获取roformer模型权重 2. 设置参数运行convert.py代码 3. 例子: 假设我想转换https://URL 权重 - (1)首先下载 URL 中的pytorch_model.bin文件,假设我们存入了'./roformer_chinese_base/pytorch_model.bin' - (2)运行convert.py - (3)最终我们得到了转化好的权重'./roformer_chinese_base/model_state.pdparams' ## 预训练MLM测试 ### test_mlm.py ### 输出
[ "# paddle paddle版本的RoFormer", "# 需要安装最新的paddlenlp\n'pip install git+URL", "## 预训练模型转换\n\n预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整):\n\n1. 从huggingface.co获取roformer模型权重\n2. 设置参数运行convert.py代码\n3. 例子:\n 假设我想转换https://URL 权重\n - (1)首先下载 URL 中的pytorch_model.bin文件,假设我们存入了'./roformer_chinese_base/pytorch_model.bin'\n - (2)运行convert.py\n \n - (3)最终我们得到了转化好的权重'./roformer_chinese_base/model_state.pdparams'", "## 预训练MLM测试", "### test_mlm.py", "### 输出" ]
[ "TAGS\n#paddlepaddle #region-us \n", "# paddle paddle版本的RoFormer", "# 需要安装最新的paddlenlp\n'pip install git+URL", "## 预训练模型转换\n\n预训练模型可以从 huggingface/transformers 转换而来,方法如下(适用于roformer模型,其他模型按情况调整):\n\n1. 从huggingface.co获取roformer模型权重\n2. 设置参数运行convert.py代码\n3. 例子:\n 假设我想转换https://URL 权重\n - (1)首先下载 URL 中的pytorch_model.bin文件,假设我们存入了'./roformer_chinese_base/pytorch_model.bin'\n - (2)运行convert.py\n \n - (3)最终我们得到了转化好的权重'./roformer_chinese_base/model_state.pdparams'", "## 预训练MLM测试", "### test_mlm.py", "### 输出" ]
feature-extraction
transformers
# 一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-RoFormer-Small-OWT (this)**|55.76|90.45|87.3|86.64|89.61|81.17|88.85|62.71|80.31| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 50W - GPU RTX3090 - 训练时间总共耗费55h # 四、wandb日志 - [**预训练日志**](https://wandb.ai/junyu/electra_rotary_small_pretrain?workspace=user-junyu) - [**GLUE微调日志**](https://wandb.ai/junyu/electra_rotary_glue_100?workspace=user-junyu) # 五、 使用 ```python import torch from transformers import ElectraTokenizer,RoFormerModel tokenizer = ElectraTokenizer.from_pretrained("junnyu/roformer_small_discriminator") model = RoFormerModel.from_pretrained("junnyu/roformer_small_discriminator") inputs = tokenizer("Beijing is the capital of China.", return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) print(outputs[0].shape) ```
{"language": "en", "license": "mit", "tags": ["pytorch", "electra", "roformer", "rotary position embedding"], "datasets": ["openwebtext"], "thumbnail": "https://github.com/junnyu"}
junnyu/roformer_small_discriminator
null
[ "transformers", "pytorch", "roformer", "feature-extraction", "electra", "rotary position embedding", "en", "dataset:openwebtext", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roformer #feature-extraction #electra #rotary position embedding #en #dataset-openwebtext #license-mit #endpoints_compatible #has_space #region-us
一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型 ===================================================================== 二、 复现结果(dev dataset) ==================== 三、 训练细节 ======= * 数据集 openwebtext * 训练batch\_size 256 * 学习率lr 5e-4 * 最大句子长度max\_seqlen 128 * 训练total step 50W * GPU RTX3090 * 训练时间总共耗费55h 四、wandb日志 ========= * 预训练日志 * GLUE微调日志 五、 使用 =====
[]
[ "TAGS\n#transformers #pytorch #roformer #feature-extraction #electra #rotary position embedding #en #dataset-openwebtext #license-mit #endpoints_compatible #has_space #region-us \n" ]
fill-mask
transformers
# 一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型 # 二、 复现结果(dev dataset) |Model|CoLA|SST|MRPC|STS|QQP|MNLI|QNLI|RTE|Avg.| |---|---|---|---|---|---|---|---|---|---| |ELECTRA-Small-OWT(original)|56.8|88.3|87.4|86.8|88.3|78.9|87.9|68.5|80.36| |**ELECTRA-RoFormer-Small-OWT (this)**|55.76|90.45|87.3|86.64|89.61|81.17|88.85|62.71|80.31| # 三、 训练细节 - 数据集 openwebtext - 训练batch_size 256 - 学习率lr 5e-4 - 最大句子长度max_seqlen 128 - 训练total step 50W - GPU RTX3090 - 训练时间总共耗费55h # 四、wandb日志 - [**预训练日志**](https://wandb.ai/junyu/electra_rotary_small_pretrain?workspace=user-junyu) - [**GLUE微调日志**](https://wandb.ai/junyu/electra_rotary_glue_100?workspace=user-junyu) # 五、 使用 ```python import torch from transformers import ElectraTokenizer,RoFormerForMaskedLM text = "Beijing is the capital of [MASK]." tokenizer = ElectraTokenizer.from_pretrained("junnyu/roformer_small_generator") pt_model = RoFormerForMaskedLM.from_pretrained( "junnyu/roformer_small_generator") pt_inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): pt_outputs = pt_model(**pt_inputs).logits[0] pt_outputs_sentence = "pytorch: " for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1]) pt_outputs_sentence += "[" + "||".join(tokens) + "]" else: pt_outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))+" " print(pt_outputs_sentence) # pytorch: beijing is the capital of [china||beijing||taiwan||india||shanghai]. ```
{"language": "en", "license": "mit", "tags": ["pytorch", "electra", "masked-lm", "rotary position embedding"], "datasets": ["openwebtext"], "thumbnail": "https://github.com/junnyu", "widget": [{"text": "Paris is the [MASK] of France."}]}
junnyu/roformer_small_generator
null
[ "transformers", "pytorch", "roformer", "fill-mask", "electra", "masked-lm", "rotary position embedding", "en", "dataset:openwebtext", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #roformer #fill-mask #electra #masked-lm #rotary position embedding #en #dataset-openwebtext #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us
一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型 ===================================================================== 二、 复现结果(dev dataset) ==================== 三、 训练细节 ======= * 数据集 openwebtext * 训练batch\_size 256 * 学习率lr 5e-4 * 最大句子长度max\_seqlen 128 * 训练total step 50W * GPU RTX3090 * 训练时间总共耗费55h 四、wandb日志 ========= * 预训练日志 * GLUE微调日志 五、 使用 =====
[]
[ "TAGS\n#transformers #pytorch #roformer #fill-mask #electra #masked-lm #rotary position embedding #en #dataset-openwebtext #license-mit #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
fill-mask
transformers
https://github.com/dbiir/UER-py/wiki/Modelzoo 中的 MixedCorpus+BertEncoder(large)+MlmTarget https://share.weiyun.com/5G90sMJ Pre-trained on mixed large Chinese corpus. The configuration file is bert_large_config.json ## 引用 ```tex @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```
{"language": "zh", "tags": ["bert", "pytorch"], "widget": [{"text": "\u5df4\u9ece\u662f[MASK]\u56fd\u7684\u9996\u90fd\u3002"}]}
junnyu/uer_large
null
[ "transformers", "pytorch", "bert", "fill-mask", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #bert #fill-mask #zh #autotrain_compatible #endpoints_compatible #region-us
URL 中的 MixedCorpus+BertEncoder(large)+MlmTarget URL Pre-trained on mixed large Chinese corpus. The configuration file is bert_large_config.json ## 引用
[ "## 引用" ]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #zh #autotrain_compatible #endpoints_compatible #region-us \n", "## 引用" ]
fill-mask
transformers
## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/WoBERT ### pytorch版本 https://github.com/JunnYu/WoBERT_pytorch ## 安装(主要为了安装WoBertTokenizer) 注意:transformers版本需要>=4.7.0 WoBertTokenizer的实现与RoFormerTokenizer是一样的,因此使用RoFormerTokenizer就可以了 ## 使用 ```python import torch from transformers import BertForMaskedLM as WoBertForMaskedLM from transformers import RoFormerTokenizer as WoBertTokenizer pretrained_model_or_path_list = [ "junnyu/wobert_chinese_plus_base", "junnyu/wobert_chinese_base" ] for path in pretrained_model_or_path_list: text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = WoBertTokenizer.from_pretrained(path) model = WoBertForMaskedLM.from_pretrained(path) inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits[0] outputs_sentence = "" for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1]) outputs_sentence += "[" + "||".join(tokens) + "]" else: outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # RoFormer 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 # PLUS WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||打算||准备||就]去公园玩。 # WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||就||准备||也]去公园玩。 ``` ## 引用 Bibtex: ```tex @techreport{zhuiyiwobert, title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI}, author={Jianlin Su}, year={2020}, url="https://github.com/ZhuiyiTechnology/WoBERT", } ```
{"language": "zh", "tags": ["wobert"]}
junnyu/wobert_chinese_base
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "wobert", "zh", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #jax #bert #fill-mask #wobert #zh #autotrain_compatible #endpoints_compatible #region-us
## 介绍 ### tf版本 URL ### pytorch版本 URL ## 安装(主要为了安装WoBertTokenizer) 注意:transformers版本需要>=4.7.0 WoBertTokenizer的实现与RoFormerTokenizer是一样的,因此使用RoFormerTokenizer就可以了 ## 使用 ## 引用 Bibtex:
[ "## 介绍", "### tf版本 \nURL", "### pytorch版本 \nURL", "## 安装(主要为了安装WoBertTokenizer)\n注意:transformers版本需要>=4.7.0\nWoBertTokenizer的实现与RoFormerTokenizer是一样的,因此使用RoFormerTokenizer就可以了", "## 使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #wobert #zh #autotrain_compatible #endpoints_compatible #region-us \n", "## 介绍", "### tf版本 \nURL", "### pytorch版本 \nURL", "## 安装(主要为了安装WoBertTokenizer)\n注意:transformers版本需要>=4.7.0\nWoBertTokenizer的实现与RoFormerTokenizer是一样的,因此使用RoFormerTokenizer就可以了", "## 使用", "## 引用\n\nBibtex:" ]
fill-mask
transformers
## 介绍 ### tf版本 https://github.com/ZhuiyiTechnology/WoBERT ### pytorch版本 https://github.com/JunnYu/WoBERT_pytorch ## 安装(主要为了安装WoBertTokenizer) ```bash pip install git+https://github.com/JunnYu/WoBERT_pytorch.git ``` ## 使用 ```python import torch from transformers import BertForMaskedLM as WoBertForMaskedLM from wobert import WoBertTokenizer pretrained_model_or_path_list = [ "junnyu/wobert_chinese_plus_base", "junnyu/wobert_chinese_base" ] for path in pretrained_model_or_path_list: text = "今天[MASK]很好,我[MASK]去公园玩。" tokenizer = WoBertTokenizer.from_pretrained(path) model = WoBertForMaskedLM.from_pretrained(path) inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs).logits[0] outputs_sentence = "" for i, id in enumerate(tokenizer.encode(text)): if id == tokenizer.mask_token_id: tokens = tokenizer.convert_ids_to_tokens(outputs[i].topk(k=5)[1]) outputs_sentence += "[" + "||".join(tokens) + "]" else: outputs_sentence += "".join( tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True)) print(outputs_sentence) # RoFormer 今天[天气||天||心情||阳光||空气]很好,我[想||要||打算||准备||喜欢]去公园玩。 # PLUS WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||打算||准备||就]去公园玩。 # WoBERT 今天[天气||阳光||天||心情||空气]很好,我[想||要||就||准备||也]去公园玩。 ``` ## 引用 Bibtex: ```tex @techreport{zhuiyiwobert, title={WoBERT: Word-based Chinese BERT model - ZhuiyiAI}, author={Jianlin Su}, year={2020}, url="https://github.com/ZhuiyiTechnology/WoBERT", } ```
{"language": "zh", "tags": ["wobert"], "inference": false}
junnyu/wobert_chinese_plus_base
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "wobert", "zh", "autotrain_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "zh" ]
TAGS #transformers #pytorch #jax #bert #fill-mask #wobert #zh #autotrain_compatible #has_space #region-us
## 介绍 ### tf版本 URL ### pytorch版本 URL ## 安装(主要为了安装WoBertTokenizer) ## 使用 ## 引用 Bibtex:
[ "## 介绍", "### tf版本 \nURL", "### pytorch版本 \nURL", "## 安装(主要为了安装WoBertTokenizer)", "## 使用", "## 引用\n\nBibtex:" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #wobert #zh #autotrain_compatible #has_space #region-us \n", "## 介绍", "### tf版本 \nURL", "### pytorch版本 \nURL", "## 安装(主要为了安装WoBertTokenizer)", "## 使用", "## 引用\n\nBibtex:" ]
null
null
Text Emotion Recognition using RoBERTa-base
{}
junxtjx/roberta-base_TER
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
Text Emotion Recognition using RoBERTa-base
[]
[ "TAGS\n#region-us \n" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_finetuning_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.8284 - F1: 0.8818 - Combined Score: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert_finetuning_test", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8284313725490197, "name": "Accuracy"}, {"type": "f1", "value": 0.8817567567567567, "name": "F1"}]}]}]}
junzai/demo
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# bert_finetuning_test This model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.8284 - F1: 0.8818 - Combined Score: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0
[ "# bert_finetuning_test\n\nThis model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4023\n- Accuracy: 0.8284\n- F1: 0.8818\n- Combined Score: 0.8551", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# bert_finetuning_test\n\nThis model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4023\n- Accuracy: 0.8284\n- F1: 0.8818\n- Combined Score: 0.8551", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.11.0" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert_finetuning_test This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.8284 - F1: 0.8818 - Combined Score: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert_finetuning_test", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8284313725490197, "name": "Accuracy"}, {"type": "f1", "value": 0.8817567567567567, "name": "F1"}]}]}]}
junzai/demotest
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# bert_finetuning_test This model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.8284 - F1: 0.8818 - Combined Score: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.11.0
[ "# bert_finetuning_test\n\nThis model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4023\n- Accuracy: 0.8284\n- F1: 0.8818\n- Combined Score: 0.8551", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# bert_finetuning_test\n\nThis model is a fine-tuned version of bert-base-uncased on the GLUE MRPC dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.4023\n- Accuracy: 0.8284\n- F1: 0.8818\n- Combined Score: 0.8551", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1.0", "### Training results", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.0\n- Tokenizers 0.11.0" ]
text-classification
transformers
## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly.
{"language": "en", "license": "mit", "tags": ["go-emotion", "text-classification", "pytorch"], "datasets": ["go_emotions"], "metrics": ["f1"], "widget": [{"text": "Thanks for giving advice to the people who need it! \ud83d\udc4c\ud83d\ude4f"}]}
justin871030/bert-base-uncased-goemotions-ekman-finetuned
null
[ "transformers", "pytorch", "bert", "go-emotion", "text-classification", "en", "dataset:go_emotions", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #go-emotion #text-classification #en #dataset-go_emotions #license-mit #endpoints_compatible #region-us
## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly.
[ "## Model Description\n1. Based on the uncased BERT pretrained model with a linear output layer.\n2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.\n3. Did label smoothing while training.\n4. Used weighted loss and focal loss to help the cases which trained badly." ]
[ "TAGS\n#transformers #pytorch #bert #go-emotion #text-classification #en #dataset-go_emotions #license-mit #endpoints_compatible #region-us \n", "## Model Description\n1. Based on the uncased BERT pretrained model with a linear output layer.\n2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.\n3. Did label smoothing while training.\n4. Used weighted loss and focal loss to help the cases which trained badly." ]
text-classification
transformers
## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of `Macro F1` - 70% ## Tutorial Link - [GitHub](https://github.com/justin871030/GoEmotions)
{"language": "en", "license": "mit", "tags": ["go-emotion", "text-classification", "pytorch"], "datasets": ["go_emotions"], "metrics": ["f1"], "widget": [{"text": "Thanks for giving advice to the people who need it! \ud83d\udc4c\ud83d\ude4f"}]}
justin871030/bert-base-uncased-goemotions-group-finetuned
null
[ "transformers", "pytorch", "bert", "go-emotion", "text-classification", "en", "dataset:go_emotions", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #go-emotion #text-classification #en #dataset-go_emotions #license-mit #endpoints_compatible #region-us
## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of 'Macro F1' - 70% ## Tutorial Link - GitHub
[ "## Model Description\n1. Based on the uncased BERT pretrained model with a linear output layer.\n2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.\n3. Did label smoothing while training.\n4. Used weighted loss and focal loss to help the cases which trained badly.", "## Results\nBest Result of 'Macro F1' - 70%", "## Tutorial Link\n- GitHub" ]
[ "TAGS\n#transformers #pytorch #bert #go-emotion #text-classification #en #dataset-go_emotions #license-mit #endpoints_compatible #region-us \n", "## Model Description\n1. Based on the uncased BERT pretrained model with a linear output layer.\n2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.\n3. Did label smoothing while training.\n4. Used weighted loss and focal loss to help the cases which trained badly.", "## Results\nBest Result of 'Macro F1' - 70%", "## Tutorial Link\n- GitHub" ]
text-classification
transformers
## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of `Macro F1` - 53% ## Tutorial Link - [GitHub](https://github.com/justin871030/GoEmotions)
{"language": "en", "license": "mit", "tags": ["go-emotion", "text-classification", "pytorch"], "datasets": ["go_emotions"], "metrics": ["f1"], "widget": [{"text": "Thanks for giving advice to the people who need it! \ud83d\udc4c\ud83d\ude4f"}]}
justin871030/bert-base-uncased-goemotions-original-finetuned
null
[ "transformers", "pytorch", "bert", "go-emotion", "text-classification", "en", "dataset:go_emotions", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #go-emotion #text-classification #en #dataset-go_emotions #license-mit #endpoints_compatible #region-us
## Model Description 1. Based on the uncased BERT pretrained model with a linear output layer. 2. Added several commonly-used emoji and tokens to the special token list of the tokenizer. 3. Did label smoothing while training. 4. Used weighted loss and focal loss to help the cases which trained badly. ## Results Best Result of 'Macro F1' - 53% ## Tutorial Link - GitHub
[ "## Model Description\n1. Based on the uncased BERT pretrained model with a linear output layer.\n2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.\n3. Did label smoothing while training.\n4. Used weighted loss and focal loss to help the cases which trained badly.", "## Results\nBest Result of 'Macro F1' - 53%", "## Tutorial Link\n- GitHub" ]
[ "TAGS\n#transformers #pytorch #bert #go-emotion #text-classification #en #dataset-go_emotions #license-mit #endpoints_compatible #region-us \n", "## Model Description\n1. Based on the uncased BERT pretrained model with a linear output layer.\n2. Added several commonly-used emoji and tokens to the special token list of the tokenizer.\n3. Did label smoothing while training.\n4. Used weighted loss and focal loss to help the cases which trained badly.", "## Results\nBest Result of 'Macro F1' - 53%", "## Tutorial Link\n- GitHub" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets This model is a fine-tuned version of [justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets](https://huggingface.co/justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets) which was finetuned by using [this google fact check](https://huggingface.co/datasets/justinqbui/covid_fact_checked_google_api) ~3k dataset size and webscraped data from [polifact covid info](https://huggingface.co/datasets/justinqbui/covid_fact_checked_polifact) ~ 1200 dataset size and ~1200 tweets pulled from the CDC with tweets containing the words covid or vaccine. It achieves the following results on the evaluation set (20% from the dataset randomly shuffled and selected to serve as a test set): - Validation Loss: 0.267367 - Accuracy: 91.1370% To use the model, use the inference API. Alternatively, to run locally ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("justinqbui/bertweet-covid-vaccine-tweets-finetuned") model = AutoModelForSequenceClassification.from_pretrained("justinqbui/bertweet-covid-vaccine-tweets-finetuned") ``` ## Model description This model is a fine-tuned version of pretrained version [justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets](https://huggingface.co/justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets). Click on [this](https://huggingface.co/justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets) to see how the pre-training was done. This model was fine-tuned with a dataset of ~5500. A web scraper was used to scrape polifact and a script was used to pull from the google fact check API. Because ~80% of both these datasets were either false or misleading, I pulled about ~1200 tweets from the CDC related to covid and labelled them as true. ~30% of this dataset is considered true and the rest false or misleading. Please see the published datasets above for more detailed information. The tokenizer requires the emoji library to be installed. ``` !pip install nltk emoji ``` ## Intended uses & limitations The intended use of this model is to detect if the contents of a covid tweet is potentially false or misleading. This model is not an end all be all. It has many limitations. For example, if someone makes a post containing an image, but has attached a satirical image, this model would not be able to distinguish this. If a user links a website, the tokenizer allocates a special token for links, meaning the contents of the linked website is completely lost. If someone tweets a reply, this model can't look at the parent tweets, and will lack context. This model's dataset relies on the crowd-sourcing annotations being accurate. This data is only accurate of up until early December 2021. For example, it probably wouldn't do very ell with tweets regarded the new omicron variant. Example true inputs: ``` Covid vaccines are safe and effective. -> 97% true Vaccinations are safe and help prevent covid. -> 97% true ``` Example false inputs: ``` Covid vaccines will kill you. -> 97% false covid vaccines make you infertile. -> 97% false ``` ## Training and evaluation data This model was finetuned by using [this google fact check](https://huggingface.co/datasets/justinqbui/covid_fact_checked_google_api) ~3k dataset size and webscraped data from [polifact covid info](https://huggingface.co/datasets/justinqbui/covid_fact_checked_polifact) ~ 1200 dataset size and ~1200 tweets pulled from the CDC with tweets containing the words covid or vaccine. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-5 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - ### Training results | Training Loss | Epoch | Validation Loss | Accuracy | |:-------------:|:-----:|:---------------:|:--------:| | 0.435500 | 1.0 | 0.401900 | 0.906893 | | 0.309700 | 2.0 | 0.265500 | 0.907789 | | 0.266200 | 3.0 | 0.216500 | 0.911370 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"model-index": [{"name": "bertweet-covid--vaccine-tweets-finetuned", "results": []}]}
justinqbui/bertweet-covid-vaccine-tweets-finetuned
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #has_space #region-us
bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets ============================================================== This model is a fine-tuned version of justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets which was finetuned by using this google fact check ~3k dataset size and webscraped data from polifact covid info ~ 1200 dataset size and ~1200 tweets pulled from the CDC with tweets containing the words covid or vaccine. It achieves the following results on the evaluation set (20% from the dataset randomly shuffled and selected to serve as a test set): * Validation Loss: 0.267367 * Accuracy: 91.1370% To use the model, use the inference API. Alternatively, to run locally Model description ----------------- This model is a fine-tuned version of pretrained version justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets. Click on this to see how the pre-training was done. This model was fine-tuned with a dataset of ~5500. A web scraper was used to scrape polifact and a script was used to pull from the google fact check API. Because ~80% of both these datasets were either false or misleading, I pulled about ~1200 tweets from the CDC related to covid and labelled them as true. ~30% of this dataset is considered true and the rest false or misleading. Please see the published datasets above for more detailed information. The tokenizer requires the emoji library to be installed. Intended uses & limitations --------------------------- The intended use of this model is to detect if the contents of a covid tweet is potentially false or misleading. This model is not an end all be all. It has many limitations. For example, if someone makes a post containing an image, but has attached a satirical image, this model would not be able to distinguish this. If a user links a website, the tokenizer allocates a special token for links, meaning the contents of the linked website is completely lost. If someone tweets a reply, this model can't look at the parent tweets, and will lack context. This model's dataset relies on the crowd-sourcing annotations being accurate. This data is only accurate of up until early December 2021. For example, it probably wouldn't do very ell with tweets regarded the new omicron variant. Example true inputs: Example false inputs: Training and evaluation data ---------------------------- This model was finetuned by using this google fact check ~3k dataset size and webscraped data from polifact covid info ~ 1200 dataset size and ~1200 tweets pulled from the CDC with tweets containing the words covid or vaccine. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-5 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 * ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-5\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n*", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-5\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n*", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets This model is a further pre-trained version of [vinai/bertweet-covid19-base-uncased](https://huggingface.co/vinai/bertweet-covid19-base-uncased) on masked language modeling using [a kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets) with tweets up until early December. It achieves the following results on the evaluation set (15% from the dataset randomly selected to serve as a test set): - Loss: 1.5089 - Perplexity: 4.64 To use the model, use the inference API. Alternatively, to run locally ``` from transformers import pipeline model = "justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets" pipe = pipeline("fill-mask", model = model) seq = "covid vaccines are <mask> and effective" pipe(seq) ``` ## Model description This model is a further pretrained version of bertweet, which both follow objectives in the [RoBERTa paper](https://arxiv.org/pdf/1907.11692.pdf). While bertweet was only trained with 23M tweets until September, 2020, this model was further pre-trained using 300k tweets with #CovidVaccine. The tokenizer requires the emoji library to be installed. ``` !pip install nltk emoji ``` ## Intended uses & limitations The intended use of this model is for fine-tuning on a downstream task on tasks that are closely related to covid and covid vaccines. This model has many potential biases and limitations, since the model is trained on public tweets, it is bound to recreate biases that people tweet. In order to load the model and tokenizer, run ``` from transformers import AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets") model = AutoModelForMaskedLM.from_pretrained("justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets") ``` ## Training and evaluation data This model was further pre-trained on 300k tweets containing #covidvaccines from this [kaggle dataset](https://www.kaggle.com/kaushiksuresh147/covidvaccine-tweets). The evaluation set was 15% of the tweets that were held out from the training data. ## Training procedure See the training notebook found [here](). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.5775 | 1.0 | 8931 | 1.5852 | | 1.5715 | 2.0 | 17862 | 1.5701 | | 1.5394 | 3.0 | 26793 | 1.5089 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets", "results": []}]}
justinqbui/bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets
null
[ "transformers", "pytorch", "tensorboard", "roberta", "fill-mask", "generated_from_trainer", "arxiv:1907.11692", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1907.11692" ]
[]
TAGS #transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us
bertweet-covid19-base-uncased-pretraining-covid-vaccine-tweets ============================================================== This model is a further pre-trained version of vinai/bertweet-covid19-base-uncased on masked language modeling using a kaggle dataset with tweets up until early December. It achieves the following results on the evaluation set (15% from the dataset randomly selected to serve as a test set): * Loss: 1.5089 * Perplexity: 4.64 To use the model, use the inference API. Alternatively, to run locally Model description ----------------- This model is a further pretrained version of bertweet, which both follow objectives in the RoBERTa paper. While bertweet was only trained with 23M tweets until September, 2020, this model was further pre-trained using 300k tweets with #CovidVaccine. The tokenizer requires the emoji library to be installed. Intended uses & limitations --------------------------- The intended use of this model is for fine-tuning on a downstream task on tasks that are closely related to covid and covid vaccines. This model has many potential biases and limitations, since the model is trained on public tweets, it is bound to recreate biases that people tweet. In order to load the model and tokenizer, run Training and evaluation data ---------------------------- This model was further pre-trained on 300k tweets containing #covidvaccines from this kaggle dataset. The evaluation set was 15% of the tweets that were held out from the training data. Training procedure ------------------ See the training notebook found here. ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.13.0 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #fill-mask #generated_from_trainer #arxiv-1907.11692 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.13.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 27366103 - CO2 Emissions (in grams): 32.912881644048 ## Validation Metrics - Loss: 0.18175844848155975 - Accuracy: 0.9437683592110785 - Precision: 0.9416809605488851 - Recall: 0.8459167950693375 - AUC: 0.9815242330050846 - F1: 0.8912337662337663 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/jwuthri/autonlp-shipping_status_2-27366103 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("jwuthri/autonlp-shipping_status_2-27366103", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "unk", "tags": "autonlp", "datasets": ["jwuthri/autonlp-data-shipping_status_2"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 32.912881644048}
jwuthri/autonlp-shipping_status_2-27366103
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autonlp", "unk", "dataset:jwuthri/autonlp-data-shipping_status_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "unk" ]
TAGS #transformers #pytorch #distilbert #text-classification #autonlp #unk #dataset-jwuthri/autonlp-data-shipping_status_2 #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 27366103 - CO2 Emissions (in grams): 32.912881644048 ## Validation Metrics - Loss: 0.18175844848155975 - Accuracy: 0.9437683592110785 - Precision: 0.9416809605488851 - Recall: 0.8459167950693375 - AUC: 0.9815242330050846 - F1: 0.8912337662337663 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 27366103\n- CO2 Emissions (in grams): 32.912881644048", "## Validation Metrics\n\n- Loss: 0.18175844848155975\n- Accuracy: 0.9437683592110785\n- Precision: 0.9416809605488851\n- Recall: 0.8459167950693375\n- AUC: 0.9815242330050846\n- F1: 0.8912337662337663", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #autonlp #unk #dataset-jwuthri/autonlp-data-shipping_status_2 #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 27366103\n- CO2 Emissions (in grams): 32.912881644048", "## Validation Metrics\n\n- Loss: 0.18175844848155975\n- Accuracy: 0.9437683592110785\n- Precision: 0.9416809605488851\n- Recall: 0.8459167950693375\n- AUC: 0.9815242330050846\n- F1: 0.8912337662337663", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en-j-run This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9189 - Mae: 0.4634 ## Model description Trained following the MLT Tokyo Transformers workshop run by huggingface. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2327 | 1.0 | 235 | 1.0526 | 0.6341 | | 0.9943 | 2.0 | 470 | 0.9189 | 0.4634 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en-j-run", "results": []}]}
jx88/xlm-roberta-base-finetuned-marc-en-j-run
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us
xlm-roberta-base-finetuned-marc-en-j-run ======================================== This model is a fine-tuned version of xlm-roberta-base on the amazon\_reviews\_multi dataset. It achieves the following results on the evaluation set: * Loss: 0.9189 * Mae: 0.4634 Model description ----------------- Trained following the MLT Tokyo Transformers workshop run by huggingface. Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.14.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.14.0\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4716 - Matthews Correlation: 0.5579 ## Model description More information needed ## Intended uses & limitations ```python from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("jxuhf/roberta-base-finetuned-cola") ``` More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4981 | 1.0 | 535 | 0.5162 | 0.5081 | | 0.314 | 2.0 | 1070 | 0.4716 | 0.5579 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model_index": [{"name": "roberta-base-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.557882735147727}}]}]}
jxuhf/roberta-base-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:glue", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-glue #license-mit #autotrain_compatible #endpoints_compatible #region-us
roberta-base-finetuned-cola =========================== This model is a fine-tuned version of roberta-base on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.4716 * Matthews Correlation: 0.5579 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.9.0 * Pytorch 1.9.0+cu102 * Datasets 1.10.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-glue #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
Labels Twitter biographies on [Openness](https://en.wikipedia.org/wiki/Openness_to_experience), strongly related to intellectual curiosity. Intuitive: Associated with higher intellectual curiosity Sensing: Associated with lower intellectual curiosity Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
{}
k-partha/curiosity_bert_bio
null
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2109.06402", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2109.06402" ]
[]
TAGS #transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us
Labels Twitter biographies on Openness, strongly related to intellectual curiosity. Intuitive: Associated with higher intellectual curiosity Sensing: Associated with lower intellectual curiosity Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the paper.
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
Rates Twitter biographies on decision-making preference: Thinking or Feeling. Roughly corresponds to [agreeableness.](https://en.wikipedia.org/wiki/Agreeableness) Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Remember that models employ pure statistical reasoning (and may consequently make no sense sometimes.) Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
{}
k-partha/decision_bert_bio
null
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2109.06402", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2109.06402" ]
[]
TAGS #transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us
Rates Twitter biographies on decision-making preference: Thinking or Feeling. Roughly corresponds to agreeableness. Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Remember that models employ pure statistical reasoning (and may consequently make no sense sometimes.) Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the paper.
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
Rates Twitter biographies on decision-making preference: Judging (focused, goal-oriented decision strategy) or Prospecting (open-ended, explorative strategy). Roughly corresponds to [conscientiousness](https://en.wikipedia.org/wiki/Conscientiousness) Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
{}
k-partha/decision_style_bert_bio
null
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2109.06402", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2109.06402" ]
[]
TAGS #transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us
Rates Twitter biographies on decision-making preference: Judging (focused, goal-oriented decision strategy) or Prospecting (open-ended, explorative strategy). Roughly corresponds to conscientiousness Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the paper.
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
Classifies Twitter biographies as either introverts or extroverts. Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Barack Obama: Extrovert; Ellen DeGeneres: Extrovert; Naomi Osaka: Introvert Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the [paper](https://arxiv.org/abs/2109.06402).
{}
k-partha/extrabert_bio
null
[ "transformers", "pytorch", "bert", "text-classification", "arxiv:2109.06402", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2109.06402" ]
[]
TAGS #transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us
Classifies Twitter biographies as either introverts or extroverts. Go to your Twitter profile, copy your biography and paste in the inference widget, remove any URLs and press hit! Trained on self-described personality labels. Interpret as a continuous score, not as a discrete label. Have fun! Barack Obama: Extrovert; Ellen DeGeneres: Extrovert; Naomi Osaka: Introvert Note: Performance on inputs other than Twitter biographies [the training data source] is not verified. For further details and expected performance, read the paper.
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #arxiv-2109.06402 #autotrain_compatible #endpoints_compatible #region-us \n" ]
fill-mask
transformers
Копия модели https://huggingface.co/cointegrated/rubert-tiny. Чисто для теста!
{"language": ["ru", "en"], "license": "mit", "tags": ["russian", "fill-mask", "pretraining", "embeddings", "masked-lm", "tiny"], "widget": [{"text": "\u041c\u0438\u043d\u0438\u0430\u0442\u044e\u0440\u043d\u0430\u044f \u043c\u043e\u0434\u0435\u043b\u044c \u0434\u043b\u044f [MASK] \u0440\u0430\u0437\u043d\u044b\u0445 \u0437\u0430\u0434\u0430\u0447."}]}
k0t1k/test
null
[ "transformers", "pytorch", "bert", "pretraining", "russian", "fill-mask", "embeddings", "masked-lm", "tiny", "ru", "en", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru", "en" ]
TAGS #transformers #pytorch #bert #pretraining #russian #fill-mask #embeddings #masked-lm #tiny #ru #en #license-mit #endpoints_compatible #region-us
Копия модели URL Чисто для теста!
[]
[ "TAGS\n#transformers #pytorch #bert #pretraining #russian #fill-mask #embeddings #masked-lm #tiny #ru #en #license-mit #endpoints_compatible #region-us \n" ]
null
null
>tr|Q8ZR27|Q8ZR27_SALTY Putative glycerol dehydrogenase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=ybdH PE=3 SV=1 MNHTEIRVVTGPANYFSHAGSLERLTDFFTPEQLSHAVWVYGERAIAAARPYLPEAFERA GAKHLPFTGHCSERHVAQLAHACNDDRQVVIGVGGGALLDTAKALARRLALPFVAIPTIA ATCAAWTPLSVWYNDAGQALQFEIFDDANFLVLVEPRIILQAPDDYLLAGIGDTLAKWYE AVVLAPQPETLPLTVRLGINSACAIRDLLLDSSEQALADKQQRRLTQAFCDVVDAIIAGG GMVGGLGERYTRVAAAHAVHNGLTVLPQTEKFLHGTKVAYGILVQSALLGQDDVLAQLIT AYRRFHLPARLSELDVDIHNTAEIDRVIAHTLRPVESIHYLPVTLTPDTLRAAFEKVEFF RI
{}
k948181/ybdH-1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
>tr|Q8ZR27|Q8ZR27_SALTY Putative glycerol dehydrogenase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=ybdH PE=3 SV=1 MNHTEIRVVTGPANYFSHAGSLERLTDFFTPEQLSHAVWVYGERAIAAARPYLPEAFERA GAKHLPFTGHCSERHVAQLAHACNDDRQVVIGVGGGALLDTAKALARRLALPFVAIPTIA ATCAAWTPLSVWYNDAGQALQFEIFDDANFLVLVEPRIILQAPDDYLLAGIGDTLAKWYE AVVLAPQPETLPLTVRLGINSACAIRDLLLDSSEQALADKQQRRLTQAFCDVVDAIIAGG GMVGGLGERYTRVAAAHAVHNGLTVLPQTEKFLHGTKVAYGILVQSALLGQDDVLAQLIT AYRRFHLPARLSELDVDIHNTAEIDRVIAHTLRPVESIHYLPVTLTPDTLRAAFEKVEFF RI
[]
[ "TAGS\n#region-us \n" ]
token-classification
transformers
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 557515810 - CO2 Emissions (in grams): 2.96638567287195 ## Validation Metrics - Loss: 0.12897901237010956 - Accuracy: 0.9713212700580403 - Precision: 0.9475614228089475 - Recall: 0.96274217585693 - F1: 0.9550914803178709 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_new_5k-557515810 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_new_5k-557515810", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_new_5k-557515810", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["kSaluja/autonlp-data-tele_new_5k"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 2.96638567287195}
kSaluja/autonlp-tele_new_5k-557515810
null
[ "transformers", "pytorch", "bert", "token-classification", "autonlp", "en", "dataset:kSaluja/autonlp-data-tele_new_5k", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #token-classification #autonlp #en #dataset-kSaluja/autonlp-data-tele_new_5k #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 557515810 - CO2 Emissions (in grams): 2.96638567287195 ## Validation Metrics - Loss: 0.12897901237010956 - Accuracy: 0.9713212700580403 - Precision: 0.9475614228089475 - Recall: 0.96274217585693 - F1: 0.9550914803178709 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 557515810\n- CO2 Emissions (in grams): 2.96638567287195", "## Validation Metrics\n\n- Loss: 0.12897901237010956\n- Accuracy: 0.9713212700580403\n- Precision: 0.9475614228089475\n- Recall: 0.96274217585693\n- F1: 0.9550914803178709", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #autonlp #en #dataset-kSaluja/autonlp-data-tele_new_5k #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 557515810\n- CO2 Emissions (in grams): 2.96638567287195", "## Validation Metrics\n\n- Loss: 0.12897901237010956\n- Accuracy: 0.9713212700580403\n- Precision: 0.9475614228089475\n- Recall: 0.96274217585693\n- F1: 0.9550914803178709", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
token-classification
transformers
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 585716433 - CO2 Emissions (in grams): 2.379476355147211 ## Validation Metrics - Loss: 0.15210922062397003 - Accuracy: 0.9724770642201835 - Precision: 0.950836820083682 - Recall: 0.9625838333921638 - F1: 0.9566742676723382 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kSaluja/autonlp-tele_red_data_model-585716433 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kSaluja/autonlp-tele_red_data_model-585716433", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["kSaluja/autonlp-data-tele_red_data_model"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 2.379476355147211}
kSaluja/autonlp-tele_red_data_model-585716433
null
[ "transformers", "pytorch", "bert", "token-classification", "autonlp", "en", "dataset:kSaluja/autonlp-data-tele_red_data_model", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #token-classification #autonlp #en #dataset-kSaluja/autonlp-data-tele_red_data_model #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 585716433 - CO2 Emissions (in grams): 2.379476355147211 ## Validation Metrics - Loss: 0.15210922062397003 - Accuracy: 0.9724770642201835 - Precision: 0.950836820083682 - Recall: 0.9625838333921638 - F1: 0.9566742676723382 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 585716433\n- CO2 Emissions (in grams): 2.379476355147211", "## Validation Metrics\n\n- Loss: 0.15210922062397003\n- Accuracy: 0.9724770642201835\n- Precision: 0.950836820083682\n- Recall: 0.9625838333921638\n- F1: 0.9566742676723382", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #autonlp #en #dataset-kSaluja/autonlp-data-tele_red_data_model #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Entity Extraction\n- Model ID: 585716433\n- CO2 Emissions (in grams): 2.379476355147211", "## Validation Metrics\n\n- Loss: 0.15210922062397003\n- Accuracy: 0.9724770642201835\n- Precision: 0.950836820083682\n- Recall: 0.9625838333921638\n- F1: 0.9566742676723382", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-generation
transformers
#wanda bot go reeeeeeeeeeeeeeeeeeeeee
{"tags": ["conversational"]}
kaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaot1k/DialoGPT-small-Wanda
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#wanda bot go reeeeeeeeeeeeeeeeeeeeee
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
fill-mask
transformers
# Reference extraction in patents This repository contains a finetuned BERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
{}
kaesve/BERT_patent_reference_extraction
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:2101.01039", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2101.01039" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-2101.01039 #autotrain_compatible #endpoints_compatible #region-us
# Reference extraction in patents This repository contains a finetuned BERT model that can extract references to scientific literature from patents. See URL and URL for more information.
[ "# Reference extraction in patents\r\n\r\nThis repository contains a finetuned BERT model that can extract references to scientific literature from patents.\r\n\r\nSee URL and URL for more information." ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-2101.01039 #autotrain_compatible #endpoints_compatible #region-us \n", "# Reference extraction in patents\r\n\r\nThis repository contains a finetuned BERT model that can extract references to scientific literature from patents.\r\n\r\nSee URL and URL for more information." ]
fill-mask
transformers
# Reference extraction in patents This repository contains a finetuned BioBERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
{}
kaesve/BioBERT_patent_reference_extraction
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:2101.01039", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2101.01039" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-2101.01039 #autotrain_compatible #endpoints_compatible #region-us
# Reference extraction in patents This repository contains a finetuned BioBERT model that can extract references to scientific literature from patents. See URL and URL for more information.
[ "# Reference extraction in patents\r\n\r\nThis repository contains a finetuned BioBERT model that can extract references to scientific literature from patents.\r\n\r\nSee URL and URL for more information." ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-2101.01039 #autotrain_compatible #endpoints_compatible #region-us \n", "# Reference extraction in patents\r\n\r\nThis repository contains a finetuned BioBERT model that can extract references to scientific literature from patents.\r\n\r\nSee URL and URL for more information." ]
null
transformers
# Reference extraction in patents This repository contains a finetuned SciBERT model that can extract references to scientific literature from patents. See https://github.com/kaesve/patent-citation-extraction and https://arxiv.org/abs/2101.01039 for more information.
{}
kaesve/SciBERT_patent_reference_extraction
null
[ "transformers", "pytorch", "arxiv:2101.01039", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2101.01039" ]
[]
TAGS #transformers #pytorch #arxiv-2101.01039 #endpoints_compatible #region-us
# Reference extraction in patents This repository contains a finetuned SciBERT model that can extract references to scientific literature from patents. See URL and URL for more information.
[ "# Reference extraction in patents\r\n\r\nThis repository contains a finetuned SciBERT model that can extract references to scientific literature from patents.\r\n\r\nSee URL and URL for more information." ]
[ "TAGS\n#transformers #pytorch #arxiv-2101.01039 #endpoints_compatible #region-us \n", "# Reference extraction in patents\r\n\r\nThis repository contains a finetuned SciBERT model that can extract references to scientific literature from patents.\r\n\r\nSee URL and URL for more information." ]
text-generation
transformers
#Radion DialoGPT Model
{"tags": ["conversational"]}
kagennotsuki/DialoGPT-medium-radion
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Radion DialoGPT Model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1639 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2291 | 1.0 | 5533 | 1.1581 | | 0.9553 | 2.0 | 11066 | 1.1249 | | 0.7767 | 3.0 | 16599 | 1.1639 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
kaggleodin/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of distilbert-base-uncased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.1639 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
Welcome! This is the model built for the sentiment analysis on the STEM course reviews at UCLA. - Author: Kaixin Wang - Email: kaixinwang@g.ucla.edu - Time Updated: March 2022
{"language": ["Python"], "tags": ["sentiment analysis", "STEM", "text classification"], "thumbnail": "url to a thumbnail used in social sharing"}
kaixinwang/NLP
null
[ "transformers", "tf", "distilbert", "text-classification", "sentiment analysis", "STEM", "text classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "Python" ]
TAGS #transformers #tf #distilbert #text-classification #sentiment analysis #STEM #text classification #autotrain_compatible #endpoints_compatible #has_space #region-us
Welcome! This is the model built for the sentiment analysis on the STEM course reviews at UCLA. - Author: Kaixin Wang - Email: kaixinwang@g.URL - Time Updated: March 2022
[]
[ "TAGS\n#transformers #tf #distilbert #text-classification #sentiment analysis #STEM #text classification #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
null
null
# KakaoBrain project KoGPT KakaoBrain's Pre-Trained Language Models. * KakaoBrain project KoGPT (Korean Generative Pre-trained Transformer) * [https://github.com/kakaobrain/kogpt](https://github.com/kakaobrain/kogpt) * [https://huggingface.co/kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) ## Model Descriptions ### KoGPT6B-ryan1.5b * [\[huggingface\]\[kakaobrain/kogpt\]\[KoGPT6B-ryan1.5b\]](https://huggingface.co/kakaobrain/kogpt/tree/KoGPT6B-ryan1.5b) * [\[huggingface\]\[kakaobrain/kogpt\]\[KoGPT6B-ryan1.5b-float16\]](https://huggingface.co/kakaobrain/kogpt/tree/KoGPT6B-ryan1.5b-float16) | Hyperparameter | Value | |:---------------------|--------------:| | \\(n_{parameters}\\) | 6,166,502,400 | | \\(n_{layers}\\) | 28 | | \\(d_{model}\\) | 4,096 | | \\(d_{ff}\\) | 16,384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2,048 | | \\(n_{vocab}\\) | 64,512 | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | 64 | ## Hardware requirements ### KoGPT6B-ryan1.5b #### GPU The following is the recommended minimum GPU hardware guidance for a handful of example KoGPT. * `32GB GPU RAM` in the required minimum memory size ### KoGPT6B-ryan1.5b-float16 #### GPU The following is the recommended minimum GPU hardware guidance for a handful of example KoGPT. * half-precision requires NVIDIA GPUS based on Volta, Turing or Ampere * `16GB GPU RAM` in the required minimum memory size ## Usage ### prompt ```bash python -m kogpt --help usage: KoGPT inference [-h] [--model MODEL] [--revision {KoGPT6B-ryan1.5b}] [--device {cpu,cuda}] [-d] KakaoBrain Korean(hangul) Generative Pre-Training Model optional arguments: -h, --help show this help message and exit --model MODEL huggingface repo (default:kakaobrain/kogpt) --revision {KoGPT6B-ryan1.5b} --device {cpu,cuda} (default:cuda) -d, --debug ``` ```bash python -m kogpt prompt> 인간처럼 생각하고, 행동하는 '지능'을 통해 인류가 이제까지 풀지 못했던 temperature(0.8)> max_length(128)> 64 인간처럼 생각하고, 행동하는 '지능'을 통해 인류가 이제까지 풀지 못했던 문제의 해답을 찾을 수 있을 것이다. 과학기술이 고도로 발달한 21세기를 살아갈 우리 아이들에게 가장 필요한 것은 사고력 훈련이다. 사고력 훈련을 통해, 세상 prompt> ... ``` ### python ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( 'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', # or float32 version: revision=KoGPT6B-ryan1.5b bos_token='[BOS]', eos_token='[EOS]', unk_token='[UNK]', pad_token='[PAD]', mask_token='[MASK]' ) model = AutoModelForCausalLM.from_pretrained( 'kakaobrain/kogpt', revision='KoGPT6B-ryan1.5b-float16', # or float32 version: revision=KoGPT6B-ryan1.5b pad_token_id=tokenizer.eos_token_id, torch_dtype='auto', low_cpu_mem_usage=True ).to(device='cuda', non_blocking=True) _ = model.eval() prompt = '인간처럼 생각하고, 행동하는 \'지능\'을 통해 인류가 이제까지 풀지 못했던' with torch.no_grad(): tokens = tokenizer.encode(prompt, return_tensors='pt').to(device='cuda', non_blocking=True) gen_tokens = model.generate(tokens, do_sample=True, temperature=0.8, max_length=64) generated = tokenizer.batch_decode(gen_tokens)[0] print(generated) # print: 인간처럼 생각하고, 행동하는 '지능'을 통해 인류가 이제까지 풀지 못했던 문제의 해답을 찾을 수 있을 것이다. 과학기술이 고도로 발달한 21세기를 살아갈 우리 아이들에게 가장 필요한 것은 사고력 훈련이다. 사고력 훈련을 통해, 세상 ``` ## Experiments ### In-context Few-Shots | Models | #params | NSMC (Acc.) | YNAT (F1) | KLUE-STS (F1) | |:--------------|--------:|------------:|----------:|--------------:| | HyperCLOVA[1] | 1.3B | 83.9 | 58.7 | 60.9 | | HyperCLOVA[1] | 6.9B | 83.8 | 67.5 | 59.3 | | HyperCLOVA[1] | 13.0B | 87.9 | 67.9 | 60.0 | | HyperCLOVA[1] | 39.0B | 88.0 | 71.4 | 61.6 | | HyperCLOVA[1] | 82.0B | **88.2** | 72.7 | **65.1** | | **Ours** | 6.0B | 87.8 | **78.0** | 64.3 | ### Finetuning / P-Tuning We have been reported to have issues(https://github.com/kakaobrain/kogpt/issues/17) with our downstream evaluation. The previously published performance evaluation table was deleted because it was difficult to see it as a fair comparison because the comparison target algorithm was different and the performance measurement method could not be confirmed. You can refer to the above issue link for the existing performance evaluation table and troubleshooting results. ## Limitations KakaoBrain `KoGPT` was trained on `ryan dataset`, a dataset known to contain profanity, lewd, political changed, and other harsh language. Therefore, `KoGPT` can generate socially unacceptable texts. As with all language models, It is difficult to predict in advance how `KoGPT` will response to particular prompts and offensive content without warning. Primarily Korean: `KoGPT` is primarily trained on Korean texts, and is best for classifying, searching, summarizing or generating such texts. `KoGPT` by default perform worse on inputs that are different from the data distribution it is trained on, including non-Korean as well as specific dialects of Korean that are not well represented in the training data. [comment]: <> (If abnormal or socially unacceptable text is generated during testing, please send a "prompt" and the "generated text" to [kogpt-report@kakaobrain.com]&#40;mailto:kogpt-report@kakaobrain.com&#41;. ) 카카오브레인 `KoGPT`는 욕설, 음란, 정치적 내용 및 기타 거친 언어에 대한 처리를 하지 않은 `ryan dataset`으로 학습하였습니다. 따라서 `KoGPT`는 사회적으로 용인되지 않은 텍스트를 생성할 수 있습니다. 다른 언어 모델과 마찬가지로 특정 프롬프트와 공격적인 콘텐츠에 어떠한 결과를 생성할지 사전에 파악하기 어렵습니다. `KoGPT`는 주로 한국어 텍스트로 학습을 하였으며 이러한 텍스트를 분류, 검색, 요약 또는 생성하는데 가장 적합합니다. 기본적으로 `KoGPT`는 학습 데이터에 잘 나타나지 않는 방언뿐만아니라 한국어가 아닌 경우와 같이 학습 데이터에서 발견하기 어려운 입력에서 좋지 않은 성능을 보입니다. [comment]: <> (테스트중에 발생한 비정상적인 혹은 사회적으로 용인되지 않는 텍스트가 생성된 경우 [kogpt-report@kakaobrain.com]&#40;mailto:kogpt-report@kakaobrain.com&#41;로 "prompt"와 "생성된 문장"을 함께 보내주시기 바랍니다.) ## Citation If you apply this library or model to any project and research, please cite our code: ``` @misc{kakaobrain2021kogpt, title = {KoGPT: KakaoBrain Korean(hangul) Generative Pre-trained Transformer}, author = {Ildoo Kim and Gunsoo Han and Jiyeon Ham and Woonhyuk Baek}, year = {2021}, howpublished = {\url{https://github.com/kakaobrain/kogpt}}, } ``` ## Contact This is released as an open source in the hope that it will be helpful to many research institutes and startups for research purposes. We look forward to contacting us from various places who wish to cooperate with us. [contact@kakaobrain.com](mailto:contact@kakaobrain.com) ## License The `source code` of KakaoBrain `KoGPT` are licensed under [Apache 2.0](LICENSE.apache-2.0) License. The `pretrained wieghts` of KakaoBrain `KoGPT` are licensed under [CC-BY-NC-ND 4.0 License](https://creativecommons.org/licenses/by-nc-nd/4.0/) License. 카카오브레인 `KoGPT`의 `소스코드(source code)`는 [Apache 2.0](LICENSE.apache-2.0) 라이선스 하에 공개되어 있습니다. 카카오브레인 `KoGPT`의 `사전학습된 가중치(pretrained weights)`는 [CC-BY-NC-ND 4.0 라이선스](https://creativecommons.org/licenses/by-nc-nd/4.0/) 라이선스 하에 공개되어 있습니다. 모델 및 코드, 사전학습된 가중치를 사용할 경우 라이선스 내용을 준수해 주십시오. 라이선스 전문은 [Apache 2.0](LICENSE.apache-2.0), [LICENSE.cc-by-nc-nd-4.0](LICENSE.cc-by-nc-nd-4.0) 파일에서 확인하실 수 있습니다. ## References [1] [HyperCLOVA](https://arxiv.org/abs/2109.04650): Kim, Boseop, et al. "What changes can large-scale language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained transformers." arXiv preprint arXiv:2109.04650 (2021).
{"language": "ko", "license": "cc-by-nc-nd-4.0", "tags": ["KakaoBrain", "KoGPT", "GPT", "GPT3"]}
kakaobrain/kogpt
null
[ "KakaoBrain", "KoGPT", "GPT", "GPT3", "ko", "arxiv:2104.09864", "arxiv:2109.04650", "license:cc-by-nc-nd-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2104.09864", "2109.04650" ]
[ "ko" ]
TAGS #KakaoBrain #KoGPT #GPT #GPT3 #ko #arxiv-2104.09864 #arxiv-2109.04650 #license-cc-by-nc-nd-4.0 #has_space #region-us
KakaoBrain project KoGPT ======================== KakaoBrain's Pre-Trained Language Models. * KakaoBrain project KoGPT (Korean Generative Pre-trained Transformer) + URL + URL Model Descriptions ------------------ ### KoGPT6B-ryan1.5b * [[huggingface][kakaobrain/kogpt][KoGPT6B-ryan1.5b]](URL * [[huggingface][kakaobrain/kogpt][KoGPT6B-ryan1.5b-float16]](URL Hardware requirements --------------------- ### KoGPT6B-ryan1.5b #### GPU The following is the recommended minimum GPU hardware guidance for a handful of example KoGPT. * '32GB GPU RAM' in the required minimum memory size ### KoGPT6B-ryan1.5b-float16 #### GPU The following is the recommended minimum GPU hardware guidance for a handful of example KoGPT. * half-precision requires NVIDIA GPUS based on Volta, Turing or Ampere * '16GB GPU RAM' in the required minimum memory size Usage ----- ### prompt ### python Experiments ----------- ### In-context Few-Shots ### Finetuning / P-Tuning We have been reported to have issues(URL with our downstream evaluation. The previously published performance evaluation table was deleted because it was difficult to see it as a fair comparison because the comparison target algorithm was different and the performance measurement method could not be confirmed. You can refer to the above issue link for the existing performance evaluation table and troubleshooting results. Limitations ----------- KakaoBrain 'KoGPT' was trained on 'ryan dataset', a dataset known to contain profanity, lewd, political changed, and other harsh language. Therefore, 'KoGPT' can generate socially unacceptable texts. As with all language models, It is difficult to predict in advance how 'KoGPT' will response to particular prompts and offensive content without warning. Primarily Korean: 'KoGPT' is primarily trained on Korean texts, and is best for classifying, searching, summarizing or generating such texts. 'KoGPT' by default perform worse on inputs that are different from the data distribution it is trained on, including non-Korean as well as specific dialects of Korean that are not well represented in the training data. 카카오브레인 'KoGPT'는 욕설, 음란, 정치적 내용 및 기타 거친 언어에 대한 처리를 하지 않은 'ryan dataset'으로 학습하였습니다. 따라서 'KoGPT'는 사회적으로 용인되지 않은 텍스트를 생성할 수 있습니다. 다른 언어 모델과 마찬가지로 특정 프롬프트와 공격적인 콘텐츠에 어떠한 결과를 생성할지 사전에 파악하기 어렵습니다. 'KoGPT'는 주로 한국어 텍스트로 학습을 하였으며 이러한 텍스트를 분류, 검색, 요약 또는 생성하는데 가장 적합합니다. 기본적으로 'KoGPT'는 학습 데이터에 잘 나타나지 않는 방언뿐만아니라 한국어가 아닌 경우와 같이 학습 데이터에서 발견하기 어려운 입력에서 좋지 않은 성능을 보입니다. If you apply this library or model to any project and research, please cite our code: Contact ------- This is released as an open source in the hope that it will be helpful to many research institutes and startups for research purposes. We look forward to contacting us from various places who wish to cooperate with us. contact@URL License ------- The 'source code' of KakaoBrain 'KoGPT' are licensed under Apache 2.0 License. The 'pretrained wieghts' of KakaoBrain 'KoGPT' are licensed under CC-BY-NC-ND 4.0 License License. 카카오브레인 'KoGPT'의 '소스코드(source code)'는 Apache 2.0 라이선스 하에 공개되어 있습니다. 카카오브레인 'KoGPT'의 '사전학습된 가중치(pretrained weights)'는 CC-BY-NC-ND 4.0 라이선스 라이선스 하에 공개되어 있습니다. 모델 및 코드, 사전학습된 가중치를 사용할 경우 라이선스 내용을 준수해 주십시오. 라이선스 전문은 Apache 2.0, URL-by-nc-nd-4.0 파일에서 확인하실 수 있습니다. References ---------- [1] HyperCLOVA: Kim, Boseop, et al. "What changes can large-scale language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained transformers." arXiv preprint arXiv:2109.04650 (2021).
[ "### KoGPT6B-ryan1.5b\n\n\n* [[huggingface][kakaobrain/kogpt][KoGPT6B-ryan1.5b]](URL\n* [[huggingface][kakaobrain/kogpt][KoGPT6B-ryan1.5b-float16]](URL\n\n\n\nHardware requirements\n---------------------", "### KoGPT6B-ryan1.5b", "#### GPU\n\n\nThe following is the recommended minimum GPU hardware guidance for a handful of example KoGPT.\n\n\n* '32GB GPU RAM' in the required minimum memory size", "### KoGPT6B-ryan1.5b-float16", "#### GPU\n\n\nThe following is the recommended minimum GPU hardware guidance for a handful of example KoGPT.\n\n\n* half-precision requires NVIDIA GPUS based on Volta, Turing or Ampere\n* '16GB GPU RAM' in the required minimum memory size\n\n\nUsage\n-----", "### prompt", "### python\n\n\nExperiments\n-----------", "### In-context Few-Shots", "### Finetuning / P-Tuning\n\n\nWe have been reported to have issues(URL with our downstream evaluation.\n\n\nThe previously published performance evaluation table was deleted because it was difficult to see it as a fair comparison because the comparison target algorithm was different and the performance measurement method could not be confirmed.\n\n\nYou can refer to the above issue link for the existing performance evaluation table and troubleshooting results.\n\n\nLimitations\n-----------\n\n\nKakaoBrain 'KoGPT' was trained on 'ryan dataset', a dataset known to contain profanity, lewd, political changed, and other harsh language.\nTherefore, 'KoGPT' can generate socially unacceptable texts. As with all language models, It is difficult to predict in advance how 'KoGPT' will response to particular prompts and offensive content without warning.\n\n\nPrimarily Korean: 'KoGPT' is primarily trained on Korean texts, and is best for classifying, searching, summarizing or generating such texts.\n'KoGPT' by default perform worse on inputs that are different from the data distribution it is trained on, including non-Korean as well as specific dialects of Korean that are not well represented in the training data.\n\n\n카카오브레인 'KoGPT'는 욕설, 음란, 정치적 내용 및 기타 거친 언어에 대한 처리를 하지 않은 'ryan dataset'으로 학습하였습니다.\n따라서 'KoGPT'는 사회적으로 용인되지 않은 텍스트를 생성할 수 있습니다. 다른 언어 모델과 마찬가지로 특정 프롬프트와 공격적인 콘텐츠에 어떠한 결과를 생성할지 사전에 파악하기 어렵습니다.\n\n\n'KoGPT'는 주로 한국어 텍스트로 학습을 하였으며 이러한 텍스트를 분류, 검색, 요약 또는 생성하는데 가장 적합합니다.\n기본적으로 'KoGPT'는 학습 데이터에 잘 나타나지 않는 방언뿐만아니라 한국어가 아닌 경우와 같이 학습 데이터에서 발견하기 어려운 입력에서 좋지 않은 성능을 보입니다.\n\n\nIf you apply this library or model to any project and research, please cite our code:\n\n\nContact\n-------\n\n\nThis is released as an open source in the hope that it will be helpful to many research institutes and startups for research purposes. We look forward to contacting us from various places who wish to cooperate with us.\n\n\ncontact@URL\n\n\nLicense\n-------\n\n\nThe 'source code' of KakaoBrain 'KoGPT' are licensed under Apache 2.0 License. \n\nThe 'pretrained wieghts' of KakaoBrain 'KoGPT' are licensed under CC-BY-NC-ND 4.0 License License.\n\n\n카카오브레인 'KoGPT'의 '소스코드(source code)'는 Apache 2.0 라이선스 하에 공개되어 있습니다. \n\n카카오브레인 'KoGPT'의 '사전학습된 가중치(pretrained weights)'는 CC-BY-NC-ND 4.0 라이선스 라이선스 하에 공개되어 있습니다. \n\n모델 및 코드, 사전학습된 가중치를 사용할 경우 라이선스 내용을 준수해 주십시오. 라이선스 전문은 Apache 2.0, URL-by-nc-nd-4.0 파일에서 확인하실 수 있습니다.\n\n\nReferences\n----------\n\n\n[1] HyperCLOVA: Kim, Boseop, et al. \"What changes can large-scale language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained transformers.\" arXiv preprint arXiv:2109.04650 (2021)." ]
[ "TAGS\n#KakaoBrain #KoGPT #GPT #GPT3 #ko #arxiv-2104.09864 #arxiv-2109.04650 #license-cc-by-nc-nd-4.0 #has_space #region-us \n", "### KoGPT6B-ryan1.5b\n\n\n* [[huggingface][kakaobrain/kogpt][KoGPT6B-ryan1.5b]](URL\n* [[huggingface][kakaobrain/kogpt][KoGPT6B-ryan1.5b-float16]](URL\n\n\n\nHardware requirements\n---------------------", "### KoGPT6B-ryan1.5b", "#### GPU\n\n\nThe following is the recommended minimum GPU hardware guidance for a handful of example KoGPT.\n\n\n* '32GB GPU RAM' in the required minimum memory size", "### KoGPT6B-ryan1.5b-float16", "#### GPU\n\n\nThe following is the recommended minimum GPU hardware guidance for a handful of example KoGPT.\n\n\n* half-precision requires NVIDIA GPUS based on Volta, Turing or Ampere\n* '16GB GPU RAM' in the required minimum memory size\n\n\nUsage\n-----", "### prompt", "### python\n\n\nExperiments\n-----------", "### In-context Few-Shots", "### Finetuning / P-Tuning\n\n\nWe have been reported to have issues(URL with our downstream evaluation.\n\n\nThe previously published performance evaluation table was deleted because it was difficult to see it as a fair comparison because the comparison target algorithm was different and the performance measurement method could not be confirmed.\n\n\nYou can refer to the above issue link for the existing performance evaluation table and troubleshooting results.\n\n\nLimitations\n-----------\n\n\nKakaoBrain 'KoGPT' was trained on 'ryan dataset', a dataset known to contain profanity, lewd, political changed, and other harsh language.\nTherefore, 'KoGPT' can generate socially unacceptable texts. As with all language models, It is difficult to predict in advance how 'KoGPT' will response to particular prompts and offensive content without warning.\n\n\nPrimarily Korean: 'KoGPT' is primarily trained on Korean texts, and is best for classifying, searching, summarizing or generating such texts.\n'KoGPT' by default perform worse on inputs that are different from the data distribution it is trained on, including non-Korean as well as specific dialects of Korean that are not well represented in the training data.\n\n\n카카오브레인 'KoGPT'는 욕설, 음란, 정치적 내용 및 기타 거친 언어에 대한 처리를 하지 않은 'ryan dataset'으로 학습하였습니다.\n따라서 'KoGPT'는 사회적으로 용인되지 않은 텍스트를 생성할 수 있습니다. 다른 언어 모델과 마찬가지로 특정 프롬프트와 공격적인 콘텐츠에 어떠한 결과를 생성할지 사전에 파악하기 어렵습니다.\n\n\n'KoGPT'는 주로 한국어 텍스트로 학습을 하였으며 이러한 텍스트를 분류, 검색, 요약 또는 생성하는데 가장 적합합니다.\n기본적으로 'KoGPT'는 학습 데이터에 잘 나타나지 않는 방언뿐만아니라 한국어가 아닌 경우와 같이 학습 데이터에서 발견하기 어려운 입력에서 좋지 않은 성능을 보입니다.\n\n\nIf you apply this library or model to any project and research, please cite our code:\n\n\nContact\n-------\n\n\nThis is released as an open source in the hope that it will be helpful to many research institutes and startups for research purposes. We look forward to contacting us from various places who wish to cooperate with us.\n\n\ncontact@URL\n\n\nLicense\n-------\n\n\nThe 'source code' of KakaoBrain 'KoGPT' are licensed under Apache 2.0 License. \n\nThe 'pretrained wieghts' of KakaoBrain 'KoGPT' are licensed under CC-BY-NC-ND 4.0 License License.\n\n\n카카오브레인 'KoGPT'의 '소스코드(source code)'는 Apache 2.0 라이선스 하에 공개되어 있습니다. \n\n카카오브레인 'KoGPT'의 '사전학습된 가중치(pretrained weights)'는 CC-BY-NC-ND 4.0 라이선스 라이선스 하에 공개되어 있습니다. \n\n모델 및 코드, 사전학습된 가중치를 사용할 경우 라이선스 내용을 준수해 주십시오. 라이선스 전문은 Apache 2.0, URL-by-nc-nd-4.0 파일에서 확인하실 수 있습니다.\n\n\nReferences\n----------\n\n\n[1] HyperCLOVA: Kim, Boseop, et al. \"What changes can large-scale language models bring? intensive study on hyperclova: Billions-scale korean generative pretrained transformers.\" arXiv preprint arXiv:2109.04650 (2021)." ]
token-classification
transformers
BioELECTRA-PICO Cite our paper using below citation ``` @inproceedings{kanakarajan-etal-2021-bioelectra, title = "{B}io{ELECTRA}:Pretrained Biomedical text Encoder using Discriminators", author = "Kanakarajan, Kamal raj and Kundumani, Bhuvana and Sankarasubbu, Malaikannan", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.bionlp-1.16", doi = "10.18653/v1/2021.bionlp-1.16", pages = "143--154", abstract = "Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply {`}replaced token detection{'} pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34{\%}(1.39{\%} accuracy improvement) on MedNLI and 64{\%} (2.98{\%} accuracy improvement) on PubMedQA dataset.", } ```
{"widget": [{"text": "Those in the aspirin group experienced reduced duration of headache compared to those in the placebo arm (P<0.05)"}]}
kamalkraj/BioELECTRA-PICO
null
[ "transformers", "pytorch", "safetensors", "electra", "token-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #electra #token-classification #autotrain_compatible #endpoints_compatible #has_space #region-us
BioELECTRA-PICO Cite our paper using below citation
[]
[ "TAGS\n#transformers #pytorch #safetensors #electra #token-classification #autotrain_compatible #endpoints_compatible #has_space #region-us \n" ]
null
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
{}
kamalkraj/bioelectra-base-discriminator-pubmed-pmc-lt
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators. ## How to use the discriminator in 'transformers'
[ "## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators\n\nRecent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.\n\nFor a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators.", "## How to use the discriminator in 'transformers'" ]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n", "## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators\n\nRecent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.\n\nFor a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators.", "## How to use the discriminator in 'transformers'" ]
null
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
{}
kamalkraj/bioelectra-base-discriminator-pubmed-pmc
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators. ## How to use the discriminator in 'transformers'
[ "## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators\n\nRecent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.\n\nFor a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators.", "## How to use the discriminator in 'transformers'" ]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n", "## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators\n\nRecent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.\n\nFor a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators.", "## How to use the discriminator in 'transformers'" ]
null
transformers
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper [BioELECTRA:Pretrained Biomedical text Encoder using Discriminators](https://www.aclweb.org/anthology/2021.bionlp-1.16/). Cite our paper using below citation ``` @inproceedings{kanakarajan-etal-2021-bioelectra, title = "{B}io{ELECTRA}:Pretrained Biomedical text Encoder using Discriminators", author = "Kanakarajan, Kamal raj and Kundumani, Bhuvana and Sankarasubbu, Malaikannan", booktitle = "Proceedings of the 20th Workshop on Biomedical Language Processing", month = jun, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.bionlp-1.16", doi = "10.18653/v1/2021.bionlp-1.16", pages = "143--154", abstract = "Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. We apply {`}replaced token detection{'} pretraining technique proposed by ELECTRA and pretrain a biomedical language model from scratch using biomedical text and vocabulary. We introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA for the Biomedical domain. WE evaluate our model on the BLURB and BLUE biomedical NLP benchmarks. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 different NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34{\%}(1.39{\%} accuracy improvement) on MedNLI and 64{\%} (2.98{\%} accuracy improvement) on PubMedQA dataset.", } ``` ## How to use the discriminator in `transformers` ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") tokenizer = ElectraTokenizerFast.from_pretrained("kamalkraj/bioelectra-base-discriminator-pubmed") sentence = "The quick brown fox jumps over the lazy dog" fake_sentence = "The quick brown fox fake over the lazy dog" fake_tokens = tokenizer.tokenize(fake_sentence) fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") discriminator_outputs = discriminator(fake_inputs) predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2) [print("%7s" % token, end="") for token in fake_tokens] [print("%7s" % int(prediction), end="") for prediction in predictions[0].tolist()] ```
{}
kamalkraj/bioelectra-base-discriminator-pubmed
null
[ "transformers", "pytorch", "electra", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #electra #pretraining #endpoints_compatible #region-us
## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators Recent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset. For a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators. Cite our paper using below citation ## How to use the discriminator in 'transformers'
[ "## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators\n\nRecent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.\n\nFor a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators.\n\nCite our paper using below citation", "## How to use the discriminator in 'transformers'" ]
[ "TAGS\n#transformers #pytorch #electra #pretraining #endpoints_compatible #region-us \n", "## BioELECTRA:Pretrained Biomedical text Encoder using Discriminators\n\nRecent advancements in pretraining strategies in NLP have shown a significant improvement in the performance of models on various text mining tasks. In this paper, we introduce BioELECTRA, a biomedical domain-specific language encoder model that adapts ELECTRA (Clark et al., 2020) for the Biomedical domain. BioELECTRA outperforms the previous models and achieves state of the art (SOTA) on all the 13 datasets in BLURB benchmark and on all the 4 Clinical datasets from BLUE Benchmark across 7 NLP tasks. BioELECTRA pretrained on PubMed and PMC full text articles performs very well on Clinical datasets as well. BioELECTRA achieves new SOTA 86.34%(1.39% accuracy improvement) on MedNLI and 64% (2.98% accuracy improvement) on PubMedQA dataset.\n\nFor a detailed description and experimental results, please refer to our paper BioELECTRA:Pretrained Biomedical text Encoder using Discriminators.\n\nCite our paper using below citation", "## How to use the discriminator in 'transformers'" ]
feature-extraction
transformers
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | |-------------------|-----------|-----------|--------| | RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 | | XLNet-Large | -/- | -/80.2 | 86.8 | | **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 | ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
{"language": "en", "license": "mit", "tags": "deberta-v1", "thumbnail": "https://huggingface.co/front/thumbnails/microsoft.png"}
kamalkraj/deberta-base
null
[ "transformers", "tf", "deberta", "feature-extraction", "deberta-v1", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2006.03654" ]
[ "en" ]
TAGS #transformers #tf #deberta #feature-extraction #deberta-v1 #en #arxiv-2006.03654 #license-mit #endpoints_compatible #region-us
DeBERTa: Decoding-enhanced BERT with Disentangled Attention ----------------------------------------------------------- DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the official repository for more details and updates. #### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. If you find DeBERTa useful for your work, please cite the following paper:
[ "#### Fine-tuning on NLU tasks\n\n\nWe present the dev results on SQuAD 1.1/2.0 and MNLI tasks.\n\n\n\nIf you find DeBERTa useful for your work, please cite the following paper:" ]
[ "TAGS\n#transformers #tf #deberta #feature-extraction #deberta-v1 #en #arxiv-2006.03654 #license-mit #endpoints_compatible #region-us \n", "#### Fine-tuning on NLU tasks\n\n\nWe present the dev results on SQuAD 1.1/2.0 and MNLI tasks.\n\n\n\nIf you find DeBERTa useful for your work, please cite the following paper:" ]
feature-extraction
transformers
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. This is the DeBERTa V2 xlarge model with 24 layers, 1536 hidden size. The total parameters are 900M and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. | Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B | |---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------| | | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S | | BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- | | RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- | | XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- | | [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 | | [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7| | [DeBERTa-V2-XLarge](https://huggingface.co/microsoft/deberta-v2-xlarge)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9| |**[DeBERTa-V2-XXLarge](https://huggingface.co/microsoft/deberta-v2-xxlarge)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** | -------- #### Notes. - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp** ```bash cd transformers/examples/text-classification/ export TASK_NAME=mrpc python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\\ --task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\\ --learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16 ``` ### Citation If you find DeBERTa useful for your work, please cite the following paper: ``` latex @inproceedings{ he2021deberta, title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2021}, url={https://openreview.net/forum?id=XPZIaotutsD} } ```
{"language": "en", "license": "mit", "tags": "deberta", "thumbnail": "https://huggingface.co/front/thumbnails/microsoft.png"}
kamalkraj/deberta-v2-xlarge
null
[ "transformers", "tf", "deberta-v2", "feature-extraction", "deberta", "en", "arxiv:2006.03654", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2006.03654" ]
[ "en" ]
TAGS #transformers #tf #deberta-v2 #feature-extraction #deberta #en #arxiv-2006.03654 #license-mit #endpoints_compatible #region-us
DeBERTa: Decoding-enhanced BERT with Disentangled Attention ----------------------------------------------------------- DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data. Please check the official repository for more details and updates. This is the DeBERTa V2 xlarge model with 24 layers, 1536 hidden size. The total parameters are 900M and it is trained with 160GB raw data. ### Fine-tuning on NLU tasks We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks. --- #### Notes. * 1 Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on DeBERTa-Large-MNLI, DeBERTa-XLarge-MNLI, DeBERTa-V2-XLarge-MNLI, DeBERTa-V2-XXLarge-MNLI. The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks. * 2 To try the XXLarge model with HF transformers, you need to specify --sharded\_ddp If you find DeBERTa useful for your work, please cite the following paper:
[ "### Fine-tuning on NLU tasks\n\n\nWe present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.\n\n\n\n\n\n---", "#### Notes.\n\n\n* 1 Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on DeBERTa-Large-MNLI, DeBERTa-XLarge-MNLI, DeBERTa-V2-XLarge-MNLI, DeBERTa-V2-XXLarge-MNLI. The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.\n* 2 To try the XXLarge model with HF transformers, you need to specify --sharded\\_ddp\n\n\nIf you find DeBERTa useful for your work, please cite the following paper:" ]
[ "TAGS\n#transformers #tf #deberta-v2 #feature-extraction #deberta #en #arxiv-2006.03654 #license-mit #endpoints_compatible #region-us \n", "### Fine-tuning on NLU tasks\n\n\nWe present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.\n\n\n\n\n\n---", "#### Notes.\n\n\n* 1 Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on DeBERTa-Large-MNLI, DeBERTa-XLarge-MNLI, DeBERTa-V2-XLarge-MNLI, DeBERTa-V2-XXLarge-MNLI. The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.\n* 2 To try the XXLarge model with HF transformers, you need to specify --sharded\\_ddp\n\n\nIf you find DeBERTa useful for your work, please cite the following paper:" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [bert-large-uncased-whole-word-masking-finetuned-squad](https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 1 | 0.5793 | | No log | 2.0 | 2 | 0.1730 | | No log | 3.0 | 3 | 0.1042 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
kamilali/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-squad ======================================= This model is a fine-tuned version of bert-large-uncased-whole-word-masking-finetuned-squad on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.1042 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.17.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.3 * Tokenizers 0.11.6
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.3\n* Tokenizers 0.11.6" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 208681 ## Validation Metrics - Loss: 0.37569838762283325 - Accuracy: 0.8365019011406845 - Precision: 0.8398058252427184 - Recall: 0.9453551912568307 - AUC: 0.9048838797814208 - F1: 0.8894601542416453 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kamivao/autonlp-cola_gram-208681 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kamivao/autonlp-cola_gram-208681", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kamivao/autonlp-cola_gram-208681", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["kamivao/autonlp-data-cola_gram"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
kamivao/autonlp-cola_gram-208681
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:kamivao/autonlp-data-cola_gram", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-kamivao/autonlp-data-cola_gram #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 208681 ## Validation Metrics - Loss: 0.37569838762283325 - Accuracy: 0.8365019011406845 - Precision: 0.8398058252427184 - Recall: 0.9453551912568307 - AUC: 0.9048838797814208 - F1: 0.8894601542416453 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 208681", "## Validation Metrics\n\n- Loss: 0.37569838762283325\n- Accuracy: 0.8365019011406845\n- Precision: 0.8398058252427184\n- Recall: 0.9453551912568307\n- AUC: 0.9048838797814208\n- F1: 0.8894601542416453", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-kamivao/autonlp-data-cola_gram #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 208681", "## Validation Metrics\n\n- Loss: 0.37569838762283325\n- Accuracy: 0.8365019011406845\n- Precision: 0.8398058252427184\n- Recall: 0.9453551912568307\n- AUC: 0.9048838797814208\n- F1: 0.8894601542416453", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 5771228 ## Validation Metrics - Loss: 0.17127291858196259 - Accuracy: 0.9206671174216813 - Precision: 0.9588885738588036 - Recall: 0.9423237670660352 - AUC: 0.9720189638675828 - F1: 0.9505340078695896 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/kamivao/autonlp-entity_selection-5771228 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("kamivao/autonlp-entity_selection-5771228", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("kamivao/autonlp-entity_selection-5771228", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["kamivao/autonlp-data-entity_selection"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
kamivao/autonlp-entity_selection-5771228
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:kamivao/autonlp-data-entity_selection", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #bert #text-classification #autonlp #en #dataset-kamivao/autonlp-data-entity_selection #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 5771228 ## Validation Metrics - Loss: 0.17127291858196259 - Accuracy: 0.9206671174216813 - Precision: 0.9588885738588036 - Recall: 0.9423237670660352 - AUC: 0.9720189638675828 - F1: 0.9505340078695896 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 5771228", "## Validation Metrics\n\n- Loss: 0.17127291858196259\n- Accuracy: 0.9206671174216813\n- Precision: 0.9588885738588036\n- Recall: 0.9423237670660352\n- AUC: 0.9720189638675828\n- F1: 0.9505340078695896", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autonlp #en #dataset-kamivao/autonlp-data-entity_selection #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 5771228", "## Validation Metrics\n\n- Loss: 0.17127291858196259\n- Accuracy: 0.9206671174216813\n- Precision: 0.9588885738588036\n- Recall: 0.9423237670660352\n- AUC: 0.9720189638675828\n- F1: 0.9505340078695896", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
learning rate: 5e-5 training epochs: 5 batch size: 8 seed: 42 model: bert-base-uncased trained on CB which is converted into two-way nli classification (predict entailment or not-entailment class)
{}
kangnichaluo/cb
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
learning rate: 5e-5 training epochs: 5 batch size: 8 seed: 42 model: bert-base-uncased trained on CB which is converted into two-way nli classification (predict entailment or not-entailment class)
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 42 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
{}
kangnichaluo/mnli-1
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 42 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
learning rate: 3e-5 training epochs: 3 batch size: 64 seed: 0 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
{}
kangnichaluo/mnli-2
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
learning rate: 3e-5 training epochs: 3 batch size: 64 seed: 0 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 13 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
{}
kangnichaluo/mnli-3
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 13 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 87 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
{}
kangnichaluo/mnli-4
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 87 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-classification
transformers
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 111 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
{}
kangnichaluo/mnli-5
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us
learning rate: 2e-5 training epochs: 3 batch size: 64 seed: 111 model: bert-base-uncased trained on MNLI which is converted into two-way nli classification (predict entailment or not-entailment class)
[]
[ "TAGS\n#transformers #pytorch #bert #text-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]