pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio import urllib.request import tarfile import pandas as pd from tqdm.auto import tqdm from datasets import load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # Download the raw data instead of using HF datasets to save disk space data_url = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/uk.tar.gz" filestream = urllib.request.urlopen(data_url) data_file = tarfile.open(fileobj=filestream, mode="r|gz") data_file.extractall() wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("anton-l/wav2vec2-large-xlsr-53-ukrainian") model.to("cuda") cv_test = pd.read_csv("cv-corpus-6.1-2020-12-11/uk/test.tsv", sep='\t') clips_path = "cv-corpus-6.1-2020-12-11/uk/clips/" def clean_sentence(sent): sent = sent.lower() # normalize apostrophes sent = sent.replace("’", "'") # replace non-alpha characters with space sent = "".join(ch if ch.isalpha() or ch == "'" else " " for ch in sent) # remove repeated spaces sent = " ".join(sent.split()) return sent targets = [] preds = [] for i, row in tqdm(cv_test.iterrows(), total=cv_test.shape[0]): row["sentence"] = clean_sentence(row["sentence"]) speech_array, sampling_rate = torchaudio.load(clips_path + row["path"]) resampler = torchaudio.transforms.Resample(sampling_rate, 16_000) row["speech"] = resampler(speech_array).squeeze().numpy() inputs = processor(row["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) targets.append(row["sentence"]) preds.append(processor.batch_decode(pred_ids)[0]) print("WER: {:2f}".format(100 * wer.compute(predictions=preds, references=targets))) ``` **Test Result**: 32.29 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "uk", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Ukrainian XLSR Wav2Vec2 Large 53 by Anton Lozhkov", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "common_voice", "args": "uk"}, "metrics": [{"type": "wer", "value": 32.29, "name": "Test WER"}]}]}]}
anton-l/wav2vec2-large-xlsr-53-ukrainian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. Test Result: 32.29 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 32.29 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 32.29 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
null
null
This is a standalone Turkish Wav2Vec2 tokenizer config intended for use with `run_speech_recognition_ctc_streaming.py`
{"license": "cc0-1.0"}
anton-l/wav2vec2-tokenizer-turkish
null
[ "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #license-cc0-1.0 #region-us
This is a standalone Turkish Wav2Vec2 tokenizer config intended for use with 'run_speech_recognition_ctc_streaming.py'
[]
[ "TAGS\n#license-cc0-1.0 #region-us \n" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5806 - Wer: 0.3998 - Cer: 0.1053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.5369 | 17.0 | 500 | 0.6021 | 0.6366 | 0.1727 | | 0.3542 | 34.0 | 1000 | 0.5265 | 0.4906 | 0.1278 | | 0.1866 | 51.0 | 1500 | 0.5805 | 0.4768 | 0.1261 | | 0.1674 | 68.01 | 2000 | 0.5336 | 0.4518 | 0.1186 | | 0.19 | 86.0 | 2500 | 0.5676 | 0.4427 | 0.1151 | | 0.0815 | 103.0 | 3000 | 0.5510 | 0.4268 | 0.1125 | | 0.0545 | 120.0 | 3500 | 0.5608 | 0.4175 | 0.1099 | | 0.0299 | 137.01 | 4000 | 0.5875 | 0.4222 | 0.1124 | | 0.0267 | 155.0 | 4500 | 0.5882 | 0.4026 | 0.1063 | | 0.025 | 172.0 | 5000 | 0.5806 | 0.3998 | 0.1053 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft", "results": []}]}
anton-l/wav2vec2-xls-r-common_voice-tr-ft-100sh
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-common\_voice-tr-ft ================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.5806 * Wer: 0.3998 * Cer: 0.1053 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft-stream This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.3519 - Wer: 0.2927 - Cer: 0.0694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.6768 | 9.01 | 500 | 0.4220 | 0.5143 | 0.1235 | | 0.3801 | 19.01 | 1000 | 0.3303 | 0.4403 | 0.1055 | | 0.3616 | 29.0 | 1500 | 0.3540 | 0.3716 | 0.0878 | | 0.2334 | 39.0 | 2000 | 0.3666 | 0.3671 | 0.0842 | | 0.3141 | 49.0 | 2500 | 0.3407 | 0.3373 | 0.0819 | | 0.1926 | 58.01 | 3000 | 0.3886 | 0.3520 | 0.0867 | | 0.1372 | 68.01 | 3500 | 0.3415 | 0.3189 | 0.0743 | | 0.091 | 78.0 | 4000 | 0.3750 | 0.3164 | 0.0757 | | 0.0893 | 88.0 | 4500 | 0.3559 | 0.2968 | 0.0712 | | 0.095 | 98.0 | 5000 | 0.3519 | 0.2927 | 0.0694 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft-stream", "results": []}]}
anton-l/wav2vec2-xls-r-common_voice-tr-ft-stream
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-common\_voice-tr-ft-stream ========================================= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.3519 * Wer: 0.2927 * Cer: 0.0694 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-common_voice-tr-ft-500sh This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - TR dataset. It achieves the following results on the evaluation set: - Loss: 0.5794 - Wer: 0.4009 - Cer: 0.1032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 0.5288 | 17.0 | 500 | 0.5099 | 0.5426 | 0.1432 | | 0.2967 | 34.0 | 1000 | 0.5421 | 0.4746 | 0.1256 | | 0.2447 | 51.0 | 1500 | 0.5347 | 0.4831 | 0.1267 | | 0.122 | 68.01 | 2000 | 0.5854 | 0.4479 | 0.1161 | | 0.1035 | 86.0 | 2500 | 0.5597 | 0.4457 | 0.1166 | | 0.081 | 103.0 | 3000 | 0.5748 | 0.4250 | 0.1144 | | 0.0849 | 120.0 | 3500 | 0.5598 | 0.4337 | 0.1145 | | 0.0542 | 137.01 | 4000 | 0.5687 | 0.4223 | 0.1097 | | 0.0318 | 155.0 | 4500 | 0.5904 | 0.4057 | 0.1052 | | 0.0106 | 172.0 | 5000 | 0.5794 | 0.4009 | 0.1032 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.2 - Tokenizers 0.10.3
{"language": ["tr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "common_voice", "generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-common_voice-tr-ft-500sh", "results": []}]}
anton-l/wav2vec2-xls-r-common_voice-tr-ft
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "common_voice", "generated_from_trainer", "tr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "tr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xls-r-common\_voice-tr-ft-500sh ======================================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the COMMON\_VOICE - TR dataset. It achieves the following results on the evaluation set: * Loss: 0.5794 * Wer: 0.4009 * Cer: 0.1032 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0005 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 64 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #common_voice #generated_from_trainer #tr #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 64\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
question-answering
transformers
# Italian Bert Base Uncased on Squad-it ## Model description This model is the uncased base version of the italian BERT (which you may find at `dbmdz/bert-base-italian-uncased`) trained on the question answering task. #### How to use ```python from transformers import pipeline nlp = pipeline('question-answering', model='antoniocappiello/bert-base-italian-uncased-squad-it') # nlp(context="D'Annunzio nacque nel 1863", question="Quando nacque D'Annunzio?") # {'score': 0.9990354180335999, 'start': 22, 'end': 25, 'answer': '1863'} ``` ## Training data It has been trained on the question answering task using [SQuAD-it](http://sag.art.uniroma2.it/demo-software/squadit/), derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian. ## Training procedure ```bash python ./examples/run_squad.py \ --model_type bert \ --model_name_or_path dbmdz/bert-base-italian-uncased \ --do_train \ --do_eval \ --train_file ./squad_it_uncased/train-v1.1.json \ --predict_file ./squad_it_uncased/dev-v1.1.json \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./models/bert-base-italian-uncased-squad-it/ \ --per_gpu_eval_batch_size=3 \ --per_gpu_train_batch_size=3 \ --do_lower_case \ ``` ## Eval Results | Metric | # Value | | ------ | --------- | | **EM** | **63.8** | | **F1** | **75.30** | ## Comparison | Model | EM | F1 score | | -------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- | | [DrQA-it trained on SQuAD-it](https://github.com/crux82/squad-it/blob/master/README.md#evaluating-a-neural-model-over-squad-it) | 56.1 | 65.9 | | This one | **63.8** | **75.30** |
{"language": "it", "widget": [{"text": "Quando nacque D'Annunzio?", "context": "D'Annunzio nacque nel 1863"}]}
antoniocappiello/bert-base-italian-uncased-squad-it
null
[ "transformers", "pytorch", "question-answering", "it", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #question-answering #it #endpoints_compatible #has_space #region-us
Italian Bert Base Uncased on Squad-it ===================================== Model description ----------------- This model is the uncased base version of the italian BERT (which you may find at 'dbmdz/bert-base-italian-uncased') trained on the question answering task. #### How to use Training data ------------- It has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian. Training procedure ------------------ Eval Results ------------ Comparison ---------- Model: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9 Model: This one, EM: 63.8, F1 score: 75.30
[ "#### How to use\n\n\nTraining data\n-------------\n\n\nIt has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.\n\n\nTraining procedure\n------------------\n\n\nEval Results\n------------\n\n\n\nComparison\n----------\n\n\nModel: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9\nModel: This one, EM: 63.8, F1 score: 75.30" ]
[ "TAGS\n#transformers #pytorch #question-answering #it #endpoints_compatible #has_space #region-us \n", "#### How to use\n\n\nTraining data\n-------------\n\n\nIt has been trained on the question answering task using SQuAD-it, derived from the original SQuAD dataset and obtained through the semi-automatic translation of the SQuAD dataset in Italian.\n\n\nTraining procedure\n------------------\n\n\nEval Results\n------------\n\n\n\nComparison\n----------\n\n\nModel: DrQA-it trained on SQuAD-it, EM: 56.1, F1 score: 65.9\nModel: This one, EM: 63.8, F1 score: 75.30" ]
question-answering
transformers
# Question answering model for Estonian This is a question answering model based on XLM-Roberta base model. It is fine-tuned subsequentially on: 1. English SQuAD v1.1 2. SQuAD v1.1 translated into Estonian 3. Small native Estonian dataset (800 samples) The model has retained good multilingual properties and can be used for extractive QA tasks in all languages included in XLM-Roberta. The performance is best in the fine-tuning languages of Estonian and English. | Tested on | F1 | EM | | ----------- | --- | --- | | EstQA test set | 82.4 | 75.3 | | SQuAD v1.1 dev set | 86.9 | 77.9 | The Estonian dataset used for fine-tuning and validating results is available in https://huggingface.co/datasets/anukaver/EstQA/ (version 1.0)
{"tags": ["question-answering"], "datasets": ["squad", "anukaver/EstQA"]}
anukaver/xlm-roberta-est-qa
null
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "dataset:squad", "dataset:anukaver/EstQA", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #xlm-roberta #question-answering #dataset-squad #dataset-anukaver/EstQA #endpoints_compatible #region-us
Question answering model for Estonian ===================================== This is a question answering model based on XLM-Roberta base model. It is fine-tuned subsequentially on: 1. English SQuAD v1.1 2. SQuAD v1.1 translated into Estonian 3. Small native Estonian dataset (800 samples) The model has retained good multilingual properties and can be used for extractive QA tasks in all languages included in XLM-Roberta. The performance is best in the fine-tuning languages of Estonian and English. Tested on: EstQA test set, F1: 82.4, EM: 75.3 Tested on: SQuAD v1.1 dev set, F1: 86.9, EM: 77.9 The Estonian dataset used for fine-tuning and validating results is available in URL (version 1.0)
[]
[ "TAGS\n#transformers #pytorch #xlm-roberta #question-answering #dataset-squad #dataset-anukaver/EstQA #endpoints_compatible #region-us \n" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-as This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.9068 - Wer: 0.6679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 5.7027 | 21.05 | 400 | 3.4157 | 1.0 | | 1.1638 | 42.1 | 800 | 1.3498 | 0.7461 | | 0.2266 | 63.15 | 1200 | 1.6147 | 0.7273 | | 0.1473 | 84.21 | 1600 | 1.6649 | 0.7108 | | 0.1043 | 105.26 | 2000 | 1.7691 | 0.7090 | | 0.0779 | 126.31 | 2400 | 1.8300 | 0.7009 | | 0.0613 | 147.36 | 2800 | 1.8681 | 0.6916 | | 0.0471 | 168.41 | 3200 | 1.8567 | 0.6875 | | 0.0343 | 189.46 | 3600 | 1.9054 | 0.6840 | | 0.0265 | 210.51 | 4000 | 1.9020 | 0.6786 | | 0.0219 | 231.56 | 4400 | 1.9068 | 0.6679 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-as --dataset mozilla-foundation/common_voice_7_0 --config as --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-as" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "as", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "জাহাজত তো তিশকুৰলৈ যাব কিন্তু জহাজিটো আহিপনে" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 67 | 56.995 |
{"language": ["as"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-as", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "as"}, "metrics": [{"type": "wer", "value": 56.995, "name": "Test WER"}, {"type": "cer", "value": 20.39, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-as
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "robust-speech-event", "as", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "as" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #as #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-as ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.9068 * Wer: 0.6679 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 240 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #hf-asr-leaderboard #robust-speech-event #as #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Bulgarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set: - Loss: 0.2473 - Wer: 0.3002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1589 | 3.48 | 400 | 3.0830 | 1.0 | | 2.8921 | 6.96 | 800 | 2.6605 | 0.9982 | | 1.3049 | 10.43 | 1200 | 0.5069 | 0.5707 | | 1.1349 | 13.91 | 1600 | 0.4159 | 0.5041 | | 1.0686 | 17.39 | 2000 | 0.3815 | 0.4746 | | 0.999 | 20.87 | 2400 | 0.3541 | 0.4343 | | 0.945 | 24.35 | 2800 | 0.3266 | 0.4132 | | 0.9058 | 27.83 | 3200 | 0.2969 | 0.3771 | | 0.8672 | 31.3 | 3600 | 0.2802 | 0.3553 | | 0.8313 | 34.78 | 4000 | 0.2662 | 0.3380 | | 0.8068 | 38.26 | 4400 | 0.2528 | 0.3181 | | 0.7796 | 41.74 | 4800 | 0.2537 | 0.3073 | | 0.7621 | 45.22 | 5200 | 0.2503 | 0.3036 | | 0.7611 | 48.7 | 5600 | 0.2477 | 0.2991 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset mozilla-foundation/common_voice_8_0 --config bg --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-bg --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-bg" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "bg", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "и надутият му ката блоонкурем взе да се събира" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 30.07 | 21.195 |
{"language": ["bg"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Bulgarian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "bg"}, "metrics": [{"type": "wer", "value": 21.195, "name": "Test WER"}, {"type": "cer", "value": 4.786, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 32.667, "name": "Test WER"}, {"type": "cer", "value": 12.452, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "bg"}, "metrics": [{"type": "wer", "value": 31.03, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-bg
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "bg", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "bg" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #bg #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Bulgarian ====================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - BG dataset. It achieves the following results on the evaluation set: * Loss: 0.2473 * Wer: 0.3002 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #bg #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Hausa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.6094 - Wer: 0.5234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 13 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.9599 | 6.56 | 400 | 2.8650 | 1.0 | | 2.7357 | 13.11 | 800 | 2.7377 | 0.9951 | | 1.3012 | 19.67 | 1200 | 0.6686 | 0.7111 | | 1.0454 | 26.23 | 1600 | 0.5686 | 0.6137 | | 0.9069 | 32.79 | 2000 | 0.5576 | 0.5815 | | 0.82 | 39.34 | 2400 | 0.5502 | 0.5591 | | 0.7413 | 45.9 | 2800 | 0.5970 | 0.5586 | | 0.6872 | 52.46 | 3200 | 0.5817 | 0.5428 | | 0.634 | 59.02 | 3600 | 0.5636 | 0.5314 | | 0.6022 | 65.57 | 4000 | 0.5780 | 0.5229 | | 0.5705 | 72.13 | 4400 | 0.6036 | 0.5323 | | 0.5408 | 78.69 | 4800 | 0.6119 | 0.5336 | | 0.5225 | 85.25 | 5200 | 0.6105 | 0.5270 | | 0.5265 | 91.8 | 5600 | 0.6034 | 0.5231 | | 0.5154 | 98.36 | 6000 | 0.6094 | 0.5234 | ### Framework versions - Transformers 4.16.1 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "kakin hade ya ke da kyautar" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 47.821 | 36.295 |
{"language": ["ha"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Hausa", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ha"}, "metrics": [{"type": "wer", "value": 36.295, "name": "Test WER"}, {"type": "cer", "value": 11.073, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-ha-cv8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ha", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ha" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Hausa ================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.6094 * Wer: 0.5234 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 13 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine\_with\_restarts * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.16.1 * Pytorch 1.10.0+cu111 * Datasets 1.18.2 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 13\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ha #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 13\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\\_with\\_restarts\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.1\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.2\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.4156 - Wer: 0.7181 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.7703 | 2.72 | 400 | 2.2274 | 0.9259 | | 0.6515 | 5.44 | 800 | 1.5812 | 0.7581 | | 0.339 | 8.16 | 1200 | 2.0590 | 0.7825 | | 0.2262 | 10.88 | 1600 | 2.0324 | 0.7603 | | 0.1665 | 13.6 | 2000 | 2.1396 | 0.7481 | | 0.1311 | 16.33 | 2400 | 2.2090 | 0.7379 | | 0.1079 | 19.05 | 2800 | 2.3907 | 0.7612 | | 0.0927 | 21.77 | 3200 | 2.5294 | 0.7478 | | 0.0748 | 24.49 | 3600 | 2.5024 | 0.7452 | | 0.0644 | 27.21 | 4000 | 2.4715 | 0.7307 | | 0.0569 | 29.93 | 4400 | 2.4156 | 0.7181 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hi", "results": []}]}
anuragshas/wav2vec2-large-xls-r-300m-hi
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-hi ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 2.4156 * Wer: 0.7181 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * num\_epochs: 30 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-mr This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5479 - Wer: 0.5740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.7378 | 18.18 | 400 | 3.5047 | 1.0 | | 3.1707 | 36.36 | 800 | 2.6166 | 0.9912 | | 1.4942 | 54.55 | 1200 | 0.5778 | 0.6927 | | 1.2058 | 72.73 | 1600 | 0.5168 | 0.6362 | | 1.0558 | 90.91 | 2000 | 0.5105 | 0.6069 | | 0.9488 | 109.09 | 2400 | 0.5151 | 0.6089 | | 0.8588 | 127.27 | 2800 | 0.5157 | 0.5989 | | 0.7991 | 145.45 | 3200 | 0.5179 | 0.5740 | | 0.7545 | 163.64 | 3600 | 0.5348 | 0.5740 | | 0.7144 | 181.82 | 4000 | 0.5518 | 0.5724 | | 0.7041 | 200.0 | 4400 | 0.5479 | 0.5740 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-mr --dataset mozilla-foundation/common_voice_8_0 --config mr --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-mr" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mr", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "या पानास लेखाचे स्वरूप यायला हावे" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 49.177 | 32.811 |
{"language": ["mr"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-mr", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mr"}, "metrics": [{"type": "wer", "value": 32.811, "name": "Test WER"}, {"type": "cer", "value": 7.692, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-mr
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mr", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mr #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-mr ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.5479 * Wer: 0.5740 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 200 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mr #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-or This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.6618 - Wer: 0.5166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.0493 | 23.53 | 400 | 2.9728 | 1.0 | | 0.5306 | 47.06 | 800 | 1.2895 | 0.6138 | | 0.1253 | 70.59 | 1200 | 1.6854 | 0.5703 | | 0.0763 | 94.12 | 1600 | 1.9433 | 0.5870 | | 0.0552 | 117.65 | 2000 | 1.4393 | 0.5575 | | 0.0382 | 141.18 | 2400 | 1.4665 | 0.5537 | | 0.0286 | 164.71 | 2800 | 1.5441 | 0.5320 | | 0.0212 | 188.24 | 3200 | 1.6502 | 0.5115 | | 0.0168 | 211.76 | 3600 | 1.6411 | 0.5332 | | 0.0129 | 235.29 | 4000 | 1.6618 | 0.5166 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-or --dataset mozilla-foundation/common_voice_7_0 --config or --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-or" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "or", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ପରରାଏ ବାଲା ଗସ୍ତି ଫାଣ୍ଡି ଗୋପାଳ ପରଠାରୁ ଦେଢ଼କଶ ଦୂର" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.92 | 47.186 |
{"language": ["or"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-or", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "or"}, "metrics": [{"type": "wer", "value": 47.186, "name": "Test WER"}, {"type": "cer", "value": 11.82, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-or
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "or", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #robust-speech-event #hf-asr-leaderboard #or #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-or ============================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.6618 * Wer: 0.5166 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 240 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #robust-speech-event #hf-asr-leaderboard #or #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Punjabi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.2548 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 120 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.4804 | 16.65 | 400 | 1.8461 | 1.0 | | 0.474 | 33.33 | 800 | 1.1018 | 0.6624 | | 0.1389 | 49.98 | 1200 | 1.1918 | 0.6103 | | 0.0919 | 66.65 | 1600 | 1.1889 | 0.6058 | | 0.0657 | 83.33 | 2000 | 1.2266 | 0.5931 | | 0.0479 | 99.98 | 2400 | 1.2512 | 0.5902 | | 0.0355 | 116.65 | 2800 | 1.2548 | 0.5677 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-pa-in --dataset mozilla-foundation/common_voice_7_0 --config pa-IN --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-pa-in" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "pa-IN", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "ਉਨ੍ਹਾਂ ਨੇ ਸਾਰੇ ਤੇਅਰਵੇ ਵੱਖਰੀ ਕਿਸਮ ਦੇ ਕੀਤੇ ਹਨ" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 51.968 | 45.611 |
{"language": ["pa"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 45.611, "name": "Test WER"}, {"type": "cer", "value": 15.584, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-pa-in
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "pa", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pa" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #pa #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Punjabi ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.2548 * Wer: 0.5677 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0003 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 120 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 120\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #pa #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0003\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 120\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur-cv8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 1.1443 - Wer: 0.5677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.6269 | 15.98 | 400 | 3.3246 | 1.0 | | 3.0546 | 31.98 | 800 | 2.8148 | 0.9963 | | 1.4589 | 47.98 | 1200 | 1.0237 | 0.6584 | | 1.0911 | 63.98 | 1600 | 0.9524 | 0.5966 | | 0.8879 | 79.98 | 2000 | 0.9827 | 0.5822 | | 0.7467 | 95.98 | 2400 | 0.9923 | 0.5840 | | 0.6427 | 111.98 | 2800 | 0.9988 | 0.5714 | | 0.5685 | 127.98 | 3200 | 1.0872 | 0.5807 | | 0.5068 | 143.98 | 3600 | 1.1194 | 0.5822 | | 0.463 | 159.98 | 4000 | 1.1138 | 0.5692 | | 0.4212 | 175.98 | 4400 | 1.1232 | 0.5714 | | 0.4056 | 191.98 | 4800 | 1.1443 | 0.5677 | ### Framework versions - Transformers 4.16.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ur-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ur --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-large-xls-r-300m-ur-cv8" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ur", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "اب نے ٹ پیس ان لیتے ہیں" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 52.146 | 42.376 |
{"language": ["ur"], "license": "apache-2.0", "tags": ["generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ur-cv8", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 42.376, "name": "Test WER"}, {"type": "cer", "value": 18.18, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-large-xls-r-300m-ur-cv8
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ur", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ur" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-ur-cv8 ================================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 1.1443 * Wer: 0.5677 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 200 ### Training results ### Framework versions * Transformers 4.16.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ur #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-ur This model is a fine-tuned version of [anuragshas/wav2vec2-large-xls-r-300m-ur](https://huggingface.co/anuragshas/wav2vec2-large-xls-r-300m-ur) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 2.0508 - Wer: 0.7328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.12 - num_epochs: 240 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.0719 | 66.67 | 400 | 1.8510 | 0.7432 | | 0.0284 | 133.33 | 800 | 2.0088 | 0.7415 | | 0.014 | 200.0 | 1200 | 2.0508 | 0.7328 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-ur", "results": []}]}
anuragshas/wav2vec2-large-xls-r-300m-ur
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-large-xls-r-300m-ur ============================ This model is a fine-tuned version of anuragshas/wav2vec2-large-xls-r-300m-ur on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 2.0508 * Wer: 0.7328 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 64 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.12 * num\_epochs: 240 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 64\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.12\n* num\\_epochs: 240", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Dhivehi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "dv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "dv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-dv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\،\.\؟\–\'\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 55.68 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "dv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Dhivehi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice dv", "type": "common_voice", "args": "dv"}, "metrics": [{"type": "wer", "value": 55.68, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-dv
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "dv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Dhivehi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Dhivehi test data of Common Voice. Test Result: 55.68 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Dhivehi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Dhivehi test data of Common Voice.\n\nTest Result: 55.68 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Dhivehi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Dhivehi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Dhivehi test data of Common Voice.\n\nTest Result: 55.68 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Sorbian, Upper Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sorbian, Upper using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hsb", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sorbian, Upper test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hsb", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-hsb") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 65.05 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "hsb", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Sorbian, Upper", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hsb", "type": "common_voice", "args": "hsb"}, "metrics": [{"type": "wer", "value": 65.05, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-hsb
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hsb", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hsb" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hsb #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Sorbian, Upper Fine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Sorbian, Upper test data of Common Voice. Test Result: 65.05 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Sorbian, Upper\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sorbian, Upper test data of Common Voice.\n\nTest Result: 65.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hsb #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Sorbian, Upper\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sorbian, Upper using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sorbian, Upper test data of Common Voice.\n\nTest Result: 65.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ia", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Interlingua test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ia", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-ia") model.to("cuda") chars_to_ignore_regex = '[\.\,\!\?\-\"\:\;\'\“\”]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 22.08 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ia", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Interlingua", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ia", "type": "common_voice", "args": "ia"}, "metrics": [{"type": "wer", "value": 22.08, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-ia
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ia", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ia" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Interlingua test data of Common Voice. Test Result: 22.08 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Interlingua test data of Common Voice.\n\nTest Result: 22.08 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Interlingua test data of Common Voice.\n\nTest Result: 22.08 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-odia") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 57.10 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Odia", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 57.1, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-odia
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. Test Result: 57.10 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 57.10 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 57.10 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Romansh Sursilv Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilv using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romansh Sursilv test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.78 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "rm-sursilv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Sursilv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-sursilv", "type": "common_voice", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 25.78, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-rm-sursilv
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "rm-sursilv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romansh Sursilv Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Romansh Sursilv test data of Common Voice. Test Result: 25.78 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Romansh Sursilv\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Sursilv test data of Common Voice.\n\nTest Result: 25.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romansh Sursilv\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilv using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Sursilv test data of Common Voice.\n\nTest Result: 25.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Romansh Vallader Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Vallader using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-vallader", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Romansh Vallader test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-vallader", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub('’ ',' ',batch["sentence"]) batch["sentence"] = re.sub(' ‘',' ',batch["sentence"]) batch["sentence"] = re.sub('’|‘','\'',batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 32.89 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "rm-vallader", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Vallader", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-vallader", "type": "common_voice", "args": "rm-vallader"}, "metrics": [{"type": "wer", "value": 32.89, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-rm-vallader
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "rm-vallader" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romansh Vallader Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Romansh Vallader test data of Common Voice. Test Result: 32.89 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Romansh Vallader\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Vallader test data of Common Voice.\n\nTest Result: 32.89 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romansh Vallader\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Vallader using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Romansh Vallader test data of Common Voice.\n\nTest Result: 32.89 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Sakha using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "sah", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "sah", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-sah") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 38.04 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "sah", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Sakha", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice sah", "type": "common_voice", "args": "sah"}, "metrics": [{"type": "wer", "value": 38.04, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-sah
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "sah", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "sah" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Sakha Fine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Sakha test data of Common Voice. Test Result: 38.04 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Sakha\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\nTest Result: 38.04 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #sah #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Sakha\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Sakha using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Sakha test data of Common Voice.\n\nTest Result: 38.04 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Telugu Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Telugu using the [OpenSLR SLR66](http://openslr.org/66/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation ```python import torch import torchaudio from datasets import Dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd # Evaluation notebook contains the procedure to download the data df = pd.read_csv("/content/te/test.tsv", sep="\t") df["path"] = "/content/te/clips/" + df["path"] test_dataset = Dataset.from_pandas(df) wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]' resampler = torchaudio.transforms.Resample(48_000, 16_000) def normalizer(text): # Use your custom normalizer text = text.replace("\\n","\n") text = ' '.join(text.split()) text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE) text = re.sub(r'''%'''," శాతం ", text) text = re.sub(r'''(/|-|_)'''," ", text) text = re.sub("ై","ై", text) text = text.strip() return text def speech_file_to_array_fn(batch): batch["sentence"] = normalizer(batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " " speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 44.98% ## Training 70% of the OpenSLR Telugu dataset was used for training. Train Split of annotations is [here](https://www.dropbox.com/s/xqc0wtour7f9h4c/train.tsv) Test Split of annotations is [here](https://www.dropbox.com/s/qw1uy63oj4qdiu4/test.tsv) Training Data Preparation notebook can be found [here](https://colab.research.google.com/drive/1_VR1QtY9qoiabyXBdJcOI29-xIKGdIzU?usp=sharing) Training notebook can be found[here](https://colab.research.google.com/drive/14N-j4m0Ng_oktPEBN5wiUhDDbyrKYt8I?usp=sharing) Evaluation notebook is [here](https://colab.research.google.com/drive/1SLEvbTWBwecIRTNqpQ0fFTqmr1-7MnSI?usp=sharing)
{"language": "te", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Telugu", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR te", "type": "openslr", "args": "te"}, "metrics": [{"type": "wer", "value": 44.98, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-telugu
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "te", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "te" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #te #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Telugu Fine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation Test Result: 44.98% ## Training 70% of the OpenSLR Telugu dataset was used for training. Train Split of annotations is here Test Split of annotations is here Training Data Preparation notebook can be found here Training notebook can be foundhere Evaluation notebook is here
[ "# Wav2Vec2-Large-XLSR-53-Telugu\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\n\nTest Result: 44.98%", "## Training\n70% of the OpenSLR Telugu dataset was used for training.\n\nTrain Split of annotations is here\n\nTest Split of annotations is here\n\nTraining Data Preparation notebook can be found here\n\nTraining notebook can be foundhere\n\nEvaluation notebook is here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #te #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Telugu\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\n\nTest Result: 44.98%", "## Training\n70% of the OpenSLR Telugu dataset was used for training.\n\nTrain Split of annotations is here\n\nTest Split of annotations is here\n\nTraining Data Preparation notebook can be found here\n\nTraining notebook can be foundhere\n\nEvaluation notebook is here" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "vi", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "vi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-vietnamese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 66.78 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "vi", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Vietnamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice vi", "type": "common_voice", "args": "vi"}, "metrics": [{"type": "wer", "value": 66.78, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-53-vietnamese
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "vi", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "vi" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #vi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Vietnamese Fine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Vietnamese test data of Common Voice. Test Result: 66.78 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Vietnamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Vietnamese test data of Common Voice.\n\nTest Result: 66.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #vi #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Vietnamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Vietnamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Vietnamese test data of Common Voice.\n\nTest Result: 66.78 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Assamese using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "as", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Assamese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "as", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-as") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\”\\়\\।]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub('’ ',' ',batch["sentence"]) batch["sentence"] = re.sub(' ‘',' ',batch["sentence"]) batch["sentence"] = re.sub('’|‘','\'',batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 69.63 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "as", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Assamese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice as", "type": "common_voice", "args": "as"}, "metrics": [{"type": "wer", "value": 69.63, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-large-xlsr-as
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "as", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "as" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Assamese Fine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Assamese test data of Common Voice. Test Result: 69.63 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Assamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Assamese test data of Common Voice.\n\nTest Result: 69.63 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #as #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Assamese\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Assamese using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Assamese test data of Common Voice.\n\nTest Result: 69.63 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6780 - Wer: 0.3670 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.514 | 2.07 | 400 | 1.4589 | 0.8531 | | 1.4289 | 4.15 | 800 | 0.8940 | 0.6475 | | 1.276 | 6.22 | 1200 | 0.7743 | 0.6089 | | 1.2213 | 8.29 | 1600 | 0.6919 | 0.4973 | | 1.1522 | 10.36 | 2000 | 0.6635 | 0.4588 | | 1.0914 | 12.44 | 2400 | 0.6839 | 0.4586 | | 1.0499 | 14.51 | 2800 | 0.7151 | 0.4467 | | 1.0238 | 16.58 | 3200 | 0.6824 | 0.4436 | | 0.9963 | 18.65 | 3600 | 0.6872 | 0.4437 | | 0.9728 | 20.73 | 4000 | 0.7047 | 0.4244 | | 0.9373 | 22.8 | 4400 | 0.6569 | 0.4189 | | 0.9028 | 24.87 | 4800 | 0.6623 | 0.4094 | | 0.8759 | 26.94 | 5200 | 0.6723 | 0.4152 | | 0.8824 | 29.02 | 5600 | 0.6467 | 0.4017 | | 0.8371 | 31.09 | 6000 | 0.6911 | 0.4080 | | 0.8205 | 33.16 | 6400 | 0.7145 | 0.4063 | | 0.7837 | 35.23 | 6800 | 0.7037 | 0.3930 | | 0.7708 | 37.31 | 7200 | 0.6925 | 0.3840 | | 0.7359 | 39.38 | 7600 | 0.7034 | 0.3829 | | 0.7153 | 41.45 | 8000 | 0.7030 | 0.3794 | | 0.7127 | 43.52 | 8400 | 0.6823 | 0.3761 | | 0.6884 | 45.6 | 8800 | 0.6854 | 0.3711 | | 0.6835 | 47.67 | 9200 | 0.6723 | 0.3665 | | 0.6703 | 49.74 | 9600 | 0.6773 | 0.3668 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
anuragshas/wav2vec2-xls-r-1b-hi-cv8
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.6780 * Wer: 0.3670 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-1B - Hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.6921 - Wer: 0.3547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.0674 | 2.07 | 400 | 1.3411 | 0.8835 | | 1.324 | 4.15 | 800 | 0.9311 | 0.7142 | | 1.2023 | 6.22 | 1200 | 0.8060 | 0.6170 | | 1.1573 | 8.29 | 1600 | 0.7415 | 0.4972 | | 1.1117 | 10.36 | 2000 | 0.7248 | 0.4588 | | 1.0672 | 12.44 | 2400 | 0.6729 | 0.4350 | | 1.0336 | 14.51 | 2800 | 0.7117 | 0.4346 | | 1.0025 | 16.58 | 3200 | 0.7019 | 0.4272 | | 0.9578 | 18.65 | 3600 | 0.6792 | 0.4118 | | 0.9272 | 20.73 | 4000 | 0.6863 | 0.4156 | | 0.9321 | 22.8 | 4400 | 0.6535 | 0.3972 | | 0.8802 | 24.87 | 4800 | 0.6766 | 0.3906 | | 0.844 | 26.94 | 5200 | 0.6782 | 0.3949 | | 0.8387 | 29.02 | 5600 | 0.6916 | 0.3921 | | 0.8042 | 31.09 | 6000 | 0.6806 | 0.3797 | | 0.793 | 33.16 | 6400 | 0.7120 | 0.3831 | | 0.7567 | 35.23 | 6800 | 0.6862 | 0.3808 | | 0.7463 | 37.31 | 7200 | 0.6893 | 0.3709 | | 0.7053 | 39.38 | 7600 | 0.7096 | 0.3701 | | 0.6906 | 41.45 | 8000 | 0.6921 | 0.3676 | | 0.6891 | 43.52 | 8400 | 0.7167 | 0.3663 | | 0.658 | 45.6 | 8800 | 0.6833 | 0.3580 | | 0.6576 | 47.67 | 9200 | 0.6914 | 0.3569 | | 0.6358 | 49.74 | 9600 | 0.6922 | 0.3551 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi-with-lm --dataset mozilla-foundation/common_voice_8_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.209 | 15.899 |
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-1B - Hindi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 15.899, "name": "Test WER"}, {"type": "cer", "value": 5.83, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-xls-r-1b-hi-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
XLS-R-1B - Hindi ================ This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.6921 * Wer: 0.3547 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-hi-cv7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.5878 - Wer: 0.3419 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.9859 | 2.72 | 400 | 1.1663 | 0.7948 | | 1.2969 | 5.44 | 800 | 0.7725 | 0.6562 | | 1.1954 | 8.16 | 1200 | 0.5940 | 0.4904 | | 1.164 | 10.88 | 1600 | 0.5338 | 0.4316 | | 1.1464 | 13.6 | 2000 | 0.5432 | 0.4226 | | 1.1553 | 16.33 | 2400 | 0.5471 | 0.4260 | | 1.0985 | 19.05 | 2800 | 0.5290 | 0.4076 | | 1.0421 | 21.77 | 3200 | 0.5672 | 0.4181 | | 0.9831 | 24.49 | 3600 | 0.5741 | 0.4141 | | 0.9827 | 27.21 | 4000 | 0.5754 | 0.4179 | | 0.9669 | 29.93 | 4400 | 0.5310 | 0.3889 | | 0.9496 | 32.65 | 4800 | 0.5649 | 0.4062 | | 0.9112 | 35.37 | 5200 | 0.5738 | 0.3926 | | 0.8838 | 38.1 | 5600 | 0.5232 | 0.3768 | | 0.8666 | 40.81 | 6000 | 0.5510 | 0.3852 | | 0.8366 | 43.54 | 6400 | 0.5436 | 0.3837 | | 0.7957 | 46.26 | 6800 | 0.5337 | 0.3775 | | 0.7834 | 48.98 | 7200 | 0.5611 | 0.3844 | | 0.7685 | 51.7 | 7600 | 0.5710 | 0.4008 | | 0.7431 | 54.42 | 8000 | 0.5636 | 0.3726 | | 0.7353 | 57.14 | 8400 | 0.5937 | 0.3836 | | 0.7001 | 59.86 | 8800 | 0.5815 | 0.3858 | | 0.6799 | 62.58 | 9200 | 0.5862 | 0.3696 | | 0.6459 | 65.31 | 9600 | 0.6181 | 0.3762 | | 0.6121 | 68.03 | 10000 | 0.5637 | 0.3590 | | 0.5942 | 70.75 | 10400 | 0.6374 | 0.3882 | | 0.5769 | 73.47 | 10800 | 0.6015 | 0.3640 | | 0.5689 | 76.19 | 11200 | 0.5669 | 0.3508 | | 0.5461 | 78.91 | 11600 | 0.5967 | 0.3621 | | 0.5286 | 81.63 | 12000 | 0.5840 | 0.3605 | | 0.5057 | 84.35 | 12400 | 0.5848 | 0.3489 | | 0.482 | 87.07 | 12800 | 0.5860 | 0.3488 | | 0.4655 | 89.79 | 13200 | 0.5780 | 0.3453 | | 0.4523 | 92.52 | 13600 | 0.6150 | 0.3532 | | 0.4422 | 95.24 | 14000 | 0.5930 | 0.3452 | | 0.4436 | 97.96 | 14400 | 0.5867 | 0.3428 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-1b-hi --dataset mozilla-foundation/common_voice_7_0 --config hi --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-1b-hi" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_7_0", "hi", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "तुम्हारे पास तीन महीने बचे हैं" ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 28.942 | 18.504 |
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_7_0"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xls-r-1b-hi-cv7", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 18.504, "name": "Test WER"}, {"type": "cer", "value": 6.655, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-xls-r-1b-hi
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "hi", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-1b-hi-cv7 ======================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_7\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.5878 * Wer: 0.3419 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 100.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.0.dev0 * Pytorch 1.10.1+cu102 * Datasets 1.17.1.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_7\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 7 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_7_0 #robust-speech-event #hi #dataset-mozilla-foundation/common_voice_7_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 100.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.0.dev0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.1.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_7\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 7 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Latvian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - LV dataset. It achieves the following results on the evaluation set: - Loss: 0.1660 - Wer: 0.1705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.489 | 2.56 | 400 | 3.3590 | 1.0 | | 2.9903 | 5.13 | 800 | 2.9704 | 1.0001 | | 1.6712 | 7.69 | 1200 | 0.6179 | 0.6566 | | 1.2635 | 10.26 | 1600 | 0.3176 | 0.4531 | | 1.0819 | 12.82 | 2000 | 0.2517 | 0.3508 | | 1.0136 | 15.38 | 2400 | 0.2257 | 0.3124 | | 0.9625 | 17.95 | 2800 | 0.1975 | 0.2311 | | 0.901 | 20.51 | 3200 | 0.1986 | 0.2097 | | 0.8842 | 23.08 | 3600 | 0.1904 | 0.2039 | | 0.8542 | 25.64 | 4000 | 0.1847 | 0.1981 | | 0.8244 | 28.21 | 4400 | 0.1805 | 0.1847 | | 0.7689 | 30.77 | 4800 | 0.1736 | 0.1832 | | 0.7825 | 33.33 | 5200 | 0.1698 | 0.1821 | | 0.7817 | 35.9 | 5600 | 0.1758 | 0.1803 | | 0.7488 | 38.46 | 6000 | 0.1663 | 0.1760 | | 0.7171 | 41.03 | 6400 | 0.1636 | 0.1721 | | 0.7222 | 43.59 | 6800 | 0.1663 | 0.1729 | | 0.7156 | 46.15 | 7200 | 0.1633 | 0.1715 | | 0.7121 | 48.72 | 7600 | 0.1666 | 0.1718 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config lv --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config lv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "lv", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "domāju ka viņam viss labi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 16.997 | 9.633 |
{"language": ["lv"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Latvian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "lv"}, "metrics": [{"type": "wer", "value": 9.633, "name": "Test WER"}, {"type": "cer", "value": 2.614, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "lv"}, "metrics": [{"type": "wer", "value": 36.11, "name": "Test WER"}, {"type": "cer", "value": 14.244, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "lv"}, "metrics": [{"type": "wer", "value": 44.12, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-xls-r-300m-lv-cv8-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "lv", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "lv" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #lv #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Latvian ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - LV dataset. It achieves the following results on the evaluation set: * Loss: 0.1660 * Wer: 0.1705 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #lv #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MR dataset. It achieves the following results on the evaluation set: - Loss: 0.6693 - Wer: 0.5921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.9504 | 18.18 | 400 | 4.6730 | 1.0 | | 3.3766 | 36.36 | 800 | 3.3464 | 1.0 | | 3.1128 | 54.55 | 1200 | 3.0177 | 0.9980 | | 1.7966 | 72.73 | 1600 | 0.8733 | 0.8039 | | 1.4085 | 90.91 | 2000 | 0.5555 | 0.6458 | | 1.1731 | 109.09 | 2400 | 0.4930 | 0.6438 | | 1.0271 | 127.27 | 2800 | 0.4780 | 0.6093 | | 0.9045 | 145.45 | 3200 | 0.4647 | 0.6578 | | 0.807 | 163.64 | 3600 | 0.4505 | 0.5925 | | 0.741 | 181.82 | 4000 | 0.4746 | 0.6025 | | 0.6706 | 200.0 | 4400 | 0.5004 | 0.5844 | | 0.6186 | 218.18 | 4800 | 0.4984 | 0.5997 | | 0.5508 | 236.36 | 5200 | 0.5298 | 0.5636 | | 0.5123 | 254.55 | 5600 | 0.5410 | 0.5110 | | 0.4623 | 272.73 | 6000 | 0.5591 | 0.5383 | | 0.4281 | 290.91 | 6400 | 0.5775 | 0.5600 | | 0.4045 | 309.09 | 6800 | 0.5924 | 0.5580 | | 0.3651 | 327.27 | 7200 | 0.5671 | 0.5684 | | 0.343 | 345.45 | 7600 | 0.6083 | 0.5945 | | 0.3085 | 363.64 | 8000 | 0.6243 | 0.5728 | | 0.2941 | 381.82 | 8400 | 0.6245 | 0.5580 | | 0.2735 | 400.0 | 8800 | 0.6458 | 0.5804 | | 0.262 | 418.18 | 9200 | 0.6566 | 0.5824 | | 0.2578 | 436.36 | 9600 | 0.6558 | 0.5965 | | 0.2388 | 454.55 | 10000 | 0.6598 | 0.5993 | | 0.2328 | 472.73 | 10400 | 0.6700 | 0.6041 | | 0.2286 | 490.91 | 10800 | 0.6684 | 0.5957 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["mr"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
anuragshas/wav2vec2-xls-r-300m-mr-cv8-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "mr", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #mr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - MR dataset. It achieves the following results on the evaluation set: * Loss: 0.6693 * Wer: 0.5921 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 500.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #mr #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Maltese This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - MT dataset. It achieves the following results on the evaluation set: - Loss: 0.1895 - Wer: 0.1984 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.4219 | 3.6 | 400 | 3.3127 | 1.0 | | 3.0399 | 7.21 | 800 | 3.0330 | 1.0 | | 1.5756 | 10.81 | 1200 | 0.6108 | 0.5724 | | 1.0995 | 14.41 | 1600 | 0.3091 | 0.3154 | | 0.9639 | 18.02 | 2000 | 0.2596 | 0.2841 | | 0.9032 | 21.62 | 2400 | 0.2270 | 0.2514 | | 0.8145 | 25.23 | 2800 | 0.2172 | 0.2483 | | 0.7845 | 28.83 | 3200 | 0.2084 | 0.2333 | | 0.7694 | 32.43 | 3600 | 0.1974 | 0.2234 | | 0.7333 | 36.04 | 4000 | 0.2020 | 0.2185 | | 0.693 | 39.64 | 4400 | 0.1947 | 0.2148 | | 0.6802 | 43.24 | 4800 | 0.1960 | 0.2102 | | 0.667 | 46.85 | 5200 | 0.1904 | 0.2072 | | 0.6486 | 50.45 | 5600 | 0.1881 | 0.2009 | | 0.6339 | 54.05 | 6000 | 0.1877 | 0.1989 | | 0.6254 | 57.66 | 6400 | 0.1893 | 0.2003 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config mt --split test ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "mt", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "għadu jilagħbu ċirku tant bilfondi" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.853 | 15.967 |
{"language": ["mt"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "metrics": ["wer"], "model-index": [{"name": "XLS-R-300M - Maltese", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "mt"}, "metrics": [{"type": "wer", "value": 15.967, "name": "Test WER"}, {"type": "cer", "value": 3.657, "name": "Test CER"}]}]}]}
anuragshas/wav2vec2-xls-r-300m-mt-cv8-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "mt", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "mt" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mt #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Maltese ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - MT dataset. It achieves the following results on the evaluation set: * Loss: 0.1895 * Wer: 0.1984 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 60.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #mt #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 0.6864 - Wer: 0.6707 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 4.3322 | 14.81 | 400 | 3.7450 | 1.0 | | 3.2662 | 29.63 | 800 | 3.2571 | 0.9996 | | 1.6408 | 44.44 | 1200 | 0.9098 | 0.8162 | | 1.2289 | 59.26 | 1600 | 0.6757 | 0.7099 | | 1.0551 | 74.07 | 2000 | 0.6417 | 0.7044 | | 0.966 | 88.89 | 2400 | 0.6365 | 0.6789 | | 0.8713 | 103.7 | 2800 | 0.6617 | 0.6954 | | 0.8055 | 118.52 | 3200 | 0.6371 | 0.6762 | | 0.7489 | 133.33 | 3600 | 0.6798 | 0.6911 | | 0.7073 | 148.15 | 4000 | 0.6567 | 0.6731 | | 0.6609 | 162.96 | 4400 | 0.6742 | 0.6840 | | 0.6435 | 177.78 | 4800 | 0.6862 | 0.6633 | | 0.6282 | 192.59 | 5200 | 0.6865 | 0.6731 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
anuragshas/wav2vec2-xls-r-300m-pa-IN-cv8-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - PA-IN dataset. It achieves the following results on the evaluation set: * Loss: 0.6864 * Wer: 0.6707 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 200.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 200.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovak This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset. It achieves the following results on the evaluation set: - Loss: 0.3067 - Wer: 0.2678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1500 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.175 | 2.41 | 400 | 4.6909 | 1.0 | | 3.3785 | 4.82 | 800 | 3.3080 | 1.0 | | 2.6964 | 7.23 | 1200 | 2.0651 | 1.1055 | | 1.3008 | 9.64 | 1600 | 0.5845 | 0.6207 | | 1.1185 | 12.05 | 2000 | 0.4195 | 0.4193 | | 1.0252 | 14.46 | 2400 | 0.3824 | 0.3570 | | 0.935 | 16.87 | 2800 | 0.3693 | 0.3462 | | 0.8818 | 19.28 | 3200 | 0.3587 | 0.3318 | | 0.8534 | 21.69 | 3600 | 0.3420 | 0.3180 | | 0.8137 | 24.1 | 4000 | 0.3426 | 0.3130 | | 0.7968 | 26.51 | 4400 | 0.3349 | 0.3102 | | 0.7558 | 28.92 | 4800 | 0.3216 | 0.3019 | | 0.7313 | 31.33 | 5200 | 0.3451 | 0.3060 | | 0.7358 | 33.73 | 5600 | 0.3272 | 0.2967 | | 0.718 | 36.14 | 6000 | 0.3315 | 0.2882 | | 0.6991 | 38.55 | 6400 | 0.3299 | 0.2830 | | 0.6529 | 40.96 | 6800 | 0.3140 | 0.2836 | | 0.6225 | 43.37 | 7200 | 0.3128 | 0.2751 | | 0.633 | 45.78 | 7600 | 0.3211 | 0.2774 | | 0.5876 | 48.19 | 8000 | 0.3162 | 0.2764 | | 0.588 | 50.6 | 8400 | 0.3082 | 0.2722 | | 0.5915 | 53.01 | 8800 | 0.3120 | 0.2681 | | 0.5798 | 55.42 | 9200 | 0.3133 | 0.2709 | | 0.5736 | 57.83 | 9600 | 0.3086 | 0.2676 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 26.707 | 18.609 |
{"language": ["sk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Slovak", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sk"}, "metrics": [{"type": "wer", "value": 18.609, "name": "Test WER"}, {"type": "cer", "value": 5.488, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sk"}, "metrics": [{"type": "wer", "value": 40.548, "name": "Test WER"}, {"type": "cer", "value": 17.733, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sk"}, "metrics": [{"type": "wer", "value": 44.1, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "sk" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Slovak =================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - SK dataset. It achieves the following results on the evaluation set: * Loss: 0.3067 * Wer: 0.2678 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1500 * num\_epochs: 60.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1500\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # XLS-R-300M - Slovenian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SL dataset. It achieves the following results on the evaluation set: - Loss: 0.2578 - Wer: 0.2273 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 60.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.1829 | 4.88 | 400 | 3.1228 | 1.0 | | 2.8675 | 9.76 | 800 | 2.8616 | 0.9993 | | 1.583 | 14.63 | 1200 | 0.6392 | 0.6239 | | 1.1959 | 19.51 | 1600 | 0.3602 | 0.3651 | | 1.0276 | 24.39 | 2000 | 0.3021 | 0.2981 | | 0.9671 | 29.27 | 2400 | 0.2872 | 0.2739 | | 0.873 | 34.15 | 2800 | 0.2593 | 0.2459 | | 0.8513 | 39.02 | 3200 | 0.2617 | 0.2473 | | 0.8132 | 43.9 | 3600 | 0.2548 | 0.2426 | | 0.7935 | 48.78 | 4000 | 0.2637 | 0.2353 | | 0.7565 | 53.66 | 4400 | 0.2629 | 0.2322 | | 0.7359 | 58.54 | 4800 | 0.2579 | 0.2253 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sl --split test ``` 2. To evaluate on `speech-recognition-community-v2/dev_data` ```bash python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sl --split validation --chunk_length_s 5.0 --stride_length_s 1.0 ``` ### Inference With LM ```python import torch from datasets import load_dataset from transformers import AutoModelForCTC, AutoProcessor import torchaudio.functional as F model_id = "anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm" sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sl", split="test", streaming=True, use_auth_token=True)) sample = next(sample_iter) resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy() model = AutoModelForCTC.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) input_values = processor(resampled_audio, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits transcription = processor.batch_decode(logits.numpy()).text # => "zmago je divje od letel s helikopterjem visoko vzrak" ``` ### Eval results on Common Voice 8 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 19.938 | 12.736 |
{"language": ["sl"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "XLS-R-300M - Slovenian", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8", "type": "mozilla-foundation/common_voice_8_0", "args": "sl"}, "metrics": [{"type": "wer", "value": 12.736, "name": "Test WER"}, {"type": "cer", "value": 3.605, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 45.587, "name": "Test WER"}, {"type": "cer", "value": 20.886, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "sl"}, "metrics": [{"type": "wer", "value": 45.42, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-xls-r-300m-sl-cv8-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "sl", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "sl" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sl #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
XLS-R-300M - Slovenian ====================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - SL dataset. It achieves the following results on the evaluation set: * Loss: 0.2578 * Wer: 0.2273 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 1000 * num\_epochs: 60.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on 'mozilla-foundation/common\_voice\_8\_0' with split 'test' 2. To evaluate on 'speech-recognition-community-v2/dev\_data' ### Inference With LM ### Eval results on Common Voice 8 "test" (WER):
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #sl #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 60.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0", "#### Evaluation Commands\n\n\n1. To evaluate on 'mozilla-foundation/common\\_voice\\_8\\_0' with split 'test'\n2. To evaluate on 'speech-recognition-community-v2/dev\\_data'", "### Inference With LM", "### Eval results on Common Voice 8 \"test\" (WER):" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-pa-in") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\'\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.05 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa-IN", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 58.05, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-xlsr-53-pa-in
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. Test Result: 58.05 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Punjabi test data of Common Voice.\n\nTest Result: 58.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-Punjabi\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Punjabi test data of Common Voice.\n\nTest Result: 58.05 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xlsr-53-rm-vallader-with-lm This model is a fine-tuned version of [anuragshas/wav2vec2-large-xlsr-53-rm-vallader](https://huggingface.co/anuragshas/wav2vec2-large-xlsr-53-rm-vallader) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.4552 - Wer: 0.3206 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.112 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2379 | 3.12 | 100 | 0.4041 | 0.3396 | | 0.103 | 6.25 | 200 | 0.4400 | 0.3337 | | 0.0664 | 9.38 | 300 | 0.4239 | 0.3315 | | 0.0578 | 12.5 | 400 | 0.4303 | 0.3267 | | 0.0446 | 15.62 | 500 | 0.4575 | 0.3274 | | 0.041 | 18.75 | 600 | 0.4451 | 0.3223 | | 0.0402 | 21.88 | 700 | 0.4507 | 0.3206 | | 0.0374 | 25.0 | 800 | 0.4649 | 0.3208 | | 0.0371 | 28.12 | 900 | 0.4552 | 0.3206 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xlsr-53-rm-vallader-with-lm", "results": []}]}
anuragshas/wav2vec2-xlsr-53-rm-vallader-with-lm
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
wav2vec2-xlsr-53-rm-vallader-with-lm ==================================== This model is a fine-tuned version of anuragshas/wav2vec2-large-xlsr-53-rm-vallader on the common\_voice dataset. It achieves the following results on the evaluation set: * Loss: 0.4552 * Wer: 0.3206 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.112 * num\_epochs: 30 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.112\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.112\n* num\\_epochs: 30", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ta", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-xlsr-53-tamil") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\।\’\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 71.87 % ## Training The Common Voice `train` and `validation` datasets were used for training.
{"language": "ta", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Anurag Singh XLSR Wav2Vec2 Large 53 Tamil", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ta", "type": "common_voice", "args": "ta"}, "metrics": [{"type": "wer", "value": 71.87, "name": "Test WER"}]}]}]}
anuragshas/wav2vec2-xlsr-53-tamil
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ta", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ta" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ta #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. Test Result: 71.87 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.
[ "# Wav2Vec2-Large-XLSR-53-Tamil\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Tamil test data of Common Voice.\n\nTest Result: 71.87 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ta #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Tamil\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Tamil test data of Common Voice.\n\nTest Result: 71.87 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training." ]
text-generation
transformers
# Chandler DialoGPT Model
{"tags": ["conversational"]}
anweasha/DialoGPT-small-Chandler
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Chandler DialoGPT Model
[ "# Chandler DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Chandler DialoGPT Model" ]
text-generation
transformers
# Jake Peralta DialoGPT Model
{"tags": ["conversational"]}
anweasha/DialoGPT-small-Jake
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Jake Peralta DialoGPT Model
[ "# Jake Peralta DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Jake Peralta DialoGPT Model" ]
translation
transformers
## [google/t5-v1_1-small](google/t5-v1_1-small) model ### pretrained on [anzorq/kbd-ru-1.67M-temp](https://huggingface.co/datasets/anzorq/kbd-ru-1.67M-temp) ### fine-tuned on **17753** Russian-Kabardian word/sentence pairs kbd text uses custom latin script for optimization reasons. Translation input should start with '**ru->kbd:** '. **Tokenizer**: T5 sentencepiece, char, cased.
{"language": ["ru", "kbd"], "tags": ["translation"], "datasets": ["anzorq/kbd-ru-1.67M-temp", "17753 Russian-Kabardian pairs of text"], "widget": [{"text": "ru->kbd: \u042f \u0438\u0434\u0443 \u0434\u043e\u043c\u043e\u0439.", "example_title": "\u042f \u0438\u0434\u0443 \u0434\u043e\u043c\u043e\u0439."}, {"text": "ru->kbd: \u0414\u0435\u0442\u0438 \u0438\u0433\u0440\u0430\u044e\u0442 \u0432\u043e \u0434\u0432\u043e\u0440\u0435.", "example_title": "\u0414\u0435\u0442\u0438 \u0438\u0433\u0440\u0430\u044e\u0442 \u0432\u043e \u0434\u0432\u043e\u0440\u0435."}, {"text": "ru->kbd: \u0421\u043a\u043e\u043b\u044c\u043a\u043e \u0442\u0435\u0431\u0435 \u043b\u0435\u0442?", "example_title": "\u0421\u043a\u043e\u043b\u044c\u043a\u043e \u0442\u0435\u0431\u0435 \u043b\u0435\u0442?"}]}
anzorq/t5-v1_1-small-ru_kbd-cased
null
[ "transformers", "pytorch", "t5", "text2text-generation", "translation", "ru", "kbd", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ru", "kbd" ]
TAGS #transformers #pytorch #t5 #text2text-generation #translation #ru #kbd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## google/t5-v1_1-small model ### pretrained on anzorq/kbd-ru-1.67M-temp ### fine-tuned on 17753 Russian-Kabardian word/sentence pairs kbd text uses custom latin script for optimization reasons. Translation input should start with 'ru->kbd: '. Tokenizer: T5 sentencepiece, char, cased.
[ "## google/t5-v1_1-small model", "### pretrained on anzorq/kbd-ru-1.67M-temp", "### fine-tuned on 17753 Russian-Kabardian word/sentence pairs\n\nkbd text uses custom latin script for optimization reasons.\n\nTranslation input should start with 'ru->kbd: '.\n\nTokenizer: T5 sentencepiece, char, cased." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #translation #ru #kbd #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## google/t5-v1_1-small model", "### pretrained on anzorq/kbd-ru-1.67M-temp", "### fine-tuned on 17753 Russian-Kabardian word/sentence pairs\n\nkbd text uses custom latin script for optimization reasons.\n\nTranslation input should start with 'ru->kbd: '.\n\nTokenizer: T5 sentencepiece, char, cased." ]
fill-mask
transformers
# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-10_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
{}
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us
# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model '''bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-10_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616
[ "# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-10_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n", "# BERT L-10 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-10_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616" ]
question-answering
transformers
# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0 BERT model with [10 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-10_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), [fine-tuned for MLM](https://huggingface.co/aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616) on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0. ## Training the model ```bash python run_squad.py --model_type bert --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616 --train_file 'train-v2.0.json' --predict_file 'dev-v2.0.json' --do_train --do_eval --do_lower_case --version_2_with_negative --max_seq_length 384 --per_gpu_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
{"datasets": ["squad_v2"]}
aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
null
[ "transformers", "pytorch", "jax", "bert", "question-answering", "dataset:squad_v2", "arxiv:1908.08962", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #question-answering #dataset-squad_v2 #arxiv-1908.08962 #endpoints_compatible #region-us
# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0 BERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0. ## Training the model '''bash python run_squad.py --model_type bert --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616 --train_file 'train-v2.0.json' --predict_file 'dev-v2.0.json' --do_train --do_eval --do_lower_case --version_2_with_negative --max_seq_length 384 --per_gpu_train_batch_size 10 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2
[ "# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.", "## Training the model\n\n'''bash\npython run_squad.py\n --model_type bert\n --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616\n --train_file 'train-v2.0.json'\n --predict_file 'dev-v2.0.json'\n --do_train\n --do_eval\n --do_lower_case\n --version_2_with_negative\n --max_seq_length 384\n --per_gpu_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2" ]
[ "TAGS\n#transformers #pytorch #jax #bert #question-answering #dataset-squad_v2 #arxiv-1908.08962 #endpoints_compatible #region-us \n", "# BERT L-10 H-512 CORD-19 (2020/06/16) fine-tuned on SQuAD v2.0\n\nBERT model with 10 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16) and fine-tuned for QA on SQuAD v2.0.", "## Training the model\n\n'''bash\npython run_squad.py\n --model_type bert\n --model_name_or_path aodiniz/bert_uncased_L-10_H-512_A-8_cord19-200616\n --train_file 'train-v2.0.json'\n --predict_file 'dev-v2.0.json'\n --do_train\n --do_eval\n --do_lower_case\n --version_2_with_negative\n --max_seq_length 384\n --per_gpu_train_batch_size 10\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-10_H-512_A-8_cord19-200616_squad2" ]
fill-mask
transformers
# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [2 Transformer layers and hidden embedding of size 512](https://huggingface.co/google/bert_uncased_L-2_H-512_A-8), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-2_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
{}
aodiniz/bert_uncased_L-2_H-512_A-8_cord19-200616
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us
# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model '''bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-2_H-512_A-8 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 512 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616
[ "# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-2_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n", "# BERT L-2 H-512 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 2 Transformer layers and hidden embedding of size 512, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-2_H-512_A-8\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 512\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-2_H-512_A-8_cord19-200616" ]
fill-mask
transformers
# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with [4 Transformer layers and hidden embedding of size 256](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4), referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962), fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model ```bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-4_H-256_A-4 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 256 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616
{}
aodiniz/bert_uncased_L-4_H-256_A-4_cord19-200616
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "arxiv:1908.08962", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1908.08962" ]
[]
TAGS #transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us
# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16) BERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16). ## Training the model '''bash python run_language_modeling.py --model_type bert --model_name_or_path google/bert_uncased_L-4_H-256_A-4 --do_train --train_data_file {cord19-200616-dataset} --mlm --mlm_probability 0.2 --line_by_line --block_size 256 --per_device_train_batch_size 20 --learning_rate 3e-5 --num_train_epochs 2 --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616
[ "# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-4_H-256_A-4\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 256\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616" ]
[ "TAGS\n#transformers #pytorch #jax #bert #fill-mask #arxiv-1908.08962 #autotrain_compatible #endpoints_compatible #region-us \n", "# BERT L-4 H-256 fine-tuned on MLM (CORD-19 2020/06/16)\n\nBERT model with 4 Transformer layers and hidden embedding of size 256, referenced in Well-Read Students Learn Better: On the Importance of Pre-training Compact Models, fine-tuned for MLM on CORD-19 dataset (as released on 2020/06/16).", "## Training the model\n\n'''bash\npython run_language_modeling.py\n --model_type bert\n --model_name_or_path google/bert_uncased_L-4_H-256_A-4\n --do_train\n --train_data_file {cord19-200616-dataset}\n --mlm\n --mlm_probability 0.2\n --line_by_line\n --block_size 256\n --per_device_train_batch_size 20\n --learning_rate 3e-5\n --num_train_epochs 2\n --output_dir bert_uncased_L-4_H-256_A-4_cord19-200616" ]
null
null
# Building a HuggingFace Transformer NLP Model ## Running this Repo
{}
aogara/slai_transformer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
# Building a HuggingFace Transformer NLP Model ## Running this Repo
[ "# Building a HuggingFace Transformer NLP Model", "## Running this Repo" ]
[ "TAGS\n#region-us \n", "# Building a HuggingFace Transformer NLP Model", "## Running this Repo" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my-new-model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "model-index": [{"name": "my-new-model", "results": []}]}
aozorahime/my-new-model
null
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-xsum #license-apache-2.0 #endpoints_compatible #region-us
# my-new-model This model is a fine-tuned version of bert-base-uncased on the xsum dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# my-new-model\n\nThis model is a fine-tuned version of bert-base-uncased on the xsum dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #question-answering #generated_from_trainer #dataset-xsum #license-apache-2.0 #endpoints_compatible #region-us \n", "# my-new-model\n\nThis model is a fine-tuned version of bert-base-uncased on the xsum dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
text-generation
transformers
# Aladdin Bot
{"tags": ["conversational"]}
aplnestrella/Aladdin-Bot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Aladdin Bot
[ "# Aladdin Bot" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Aladdin Bot" ]
text-to-image
transformers
## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="https://raw.githubusercontent.com/borisdayma/dalle-mini/main/img/logo.png" width="200"> * [Technical Report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) * [Demo](https://huggingface.co/spaces/flax-community/dalle-mini) ### Model Description This is an attempt to replicate OpenAI's [DALL·E](https://openai.com/blog/dall-e/), a model capable of generating arbitrary images from a text prompt that describes the desired result. ![DALL·E mini demo screenshot](img/demo_screenshot.png) This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on [BART](https://arxiv.org/abs/1910.13461). The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a [VQGAN model](https://compvis.github.io/taming-transformers/). The model definition we use for the encoder can be downloaded from our [Github repo](https://github.com/borisdayma/dalle-mini). The encoder is represented by the class `CustomFlaxBartForConditionalGeneration`. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, [flax-community/vqgan_f16_16384](https://huggingface.co/flax-community/vqgan_f16_16384). ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our [github repo](https://github.com/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb). For your convenience, you can open it in Google Colaboratory: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/dev/inference/inference_pipeline.ipynb) If you just want to test the trained model and see what it comes up with, please visit [our demo](https://huggingface.co/spaces/flax-community/dalle-mini), available in 🤗 Spaces. ### Additional Details Our [report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA) contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
{"language": ["en"], "pipeline_tag": "text-to-image", "inference": false}
apol/dalle-mini
null
[ "transformers", "jax", "bart", "text2text-generation", "text-to-image", "en", "arxiv:1910.13461", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1910.13461" ]
[ "en" ]
TAGS #transformers #jax #bart #text2text-generation #text-to-image #en #arxiv-1910.13461 #autotrain_compatible #region-us
## DALL·E mini - Generate images from text <img style="text-align:center; display:block;" src="URL width="200"> * Technical Report * Demo ### Model Description This is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. !DALL·E mini demo screenshot This model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days. ### Components of the Architecture The system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends. The main components of the architecture include: * An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook. * A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model. The model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'. To use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384. ### How to Use The easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our github repo. For your convenience, you can open it in Google Colaboratory: ![Open In Colab](URL If you just want to test the trained model and see what it comes up with, please visit our demo, available in Spaces. ### Additional Details Our report contains more details about how the model was trained and shows many examples that demonstrate its capabilities.
[ "## DALL·E mini - Generate images from text\n\n<img style=\"text-align:center; display:block;\" src=\"URL width=\"200\">\n\n* Technical Report\n* Demo", "### Model Description\n\nThis is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. \n\n!DALL·E mini demo screenshot\n\nThis model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days.", "### Components of the Architecture\n\nThe system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends.\n\nThe main components of the architecture include:\n\n* An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook.\n\n* A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model.\n\nThe model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'.\n\nTo use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384.", "### How to Use\n\nThe easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our github repo. For your convenience, you can open it in Google Colaboratory: ![Open In Colab](URL\n\nIf you just want to test the trained model and see what it comes up with, please visit our demo, available in Spaces.", "### Additional Details\n\nOur report contains more details about how the model was trained and shows many examples that demonstrate its capabilities." ]
[ "TAGS\n#transformers #jax #bart #text2text-generation #text-to-image #en #arxiv-1910.13461 #autotrain_compatible #region-us \n", "## DALL·E mini - Generate images from text\n\n<img style=\"text-align:center; display:block;\" src=\"URL width=\"200\">\n\n* Technical Report\n* Demo", "### Model Description\n\nThis is an attempt to replicate OpenAI's DALL·E, a model capable of generating arbitrary images from a text prompt that describes the desired result. \n\n!DALL·E mini demo screenshot\n\nThis model's architecture is a simplification of the original, and leverages previous open source efforts and available pre-trained models. Results have lower quality than OpenAI's, but the model can be trained and used on less demanding hardware. Our training was performed on a single TPU v3-8 for a few days.", "### Components of the Architecture\n\nThe system relies on the Flax/JAX infrastructure, which are ideal for TPU training. TPUs are not required, both Flax and JAX run very efficiently on GPU backends.\n\nThe main components of the architecture include:\n\n* An encoder, based on BART. The encoder transforms a sequence of input text tokens to a sequence of image tokens. The input tokens are extracted from the text prompt by using the model's tokenizer. The image tokens are a fixed-length sequence, and they represent indices in a VQGAN-based pre-trained codebook.\n\n* A decoder, which converts the image tokens to image pixels. As mentioned above, the decoder is based on a VQGAN model.\n\nThe model definition we use for the encoder can be downloaded from our Github repo. The encoder is represented by the class 'CustomFlaxBartForConditionalGeneration'.\n\nTo use the decoder, you need to follow the instructions in our accompanying VQGAN model in the hub, flax-community/vqgan_f16_16384.", "### How to Use\n\nThe easiest way to get familiar with the code and the models is to follow the inference notebook we provide in our github repo. For your convenience, you can open it in Google Colaboratory: ![Open In Colab](URL\n\nIf you just want to test the trained model and see what it comes up with, please visit our demo, available in Spaces.", "### Additional Details\n\nOur report contains more details about how the model was trained and shows many examples that demonstrate its capabilities." ]
null
null
hello
{}
apoorvumang/kgt5-test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
hello
[]
[ "TAGS\n#region-us \n" ]
text2text-generation
transformers
This is a t5-small model trained from scratch on WikiKG90Mv2 dataset. Please see https://github.com/apoorvumang/kgt5/ for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/entity.csv and relation.csv). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. We achieve 0.22 validation MRR (the full leaderboard is here https://ogb.stanford.edu/docs/lsc/leaderboards/#wikikg90mv2) You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv (apoorvumang@gmail.com) for clarifications/details. --------- ``` from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("apoorvumang/kgt5-wikikg90mv2") model = AutoModelForSeq2SeqLM.from_pretrained("apoorvumang/kgt5-wikikg90mv2") ``` ``` import torch def getScores(ids, scores, pad_token_id): """get sequence scores from model.generate output""" scores = torch.stack(scores, dim=1) log_probs = torch.log_softmax(scores, dim=2) # remove start token ids = ids[:,1:] # gather needed probs x = ids.unsqueeze(-1).expand(log_probs.shape) needed_logits = torch.gather(log_probs, 2, x) final_logits = needed_logits[:, :, 0] padded_mask = (ids == pad_token_id) final_logits[padded_mask] = 0 final_scores = final_logits.sum(dim=-1) return final_scores.cpu().detach().numpy() def topkSample(input, model, tokenizer, num_samples=5, num_beams=1, max_output_length=30): tokenized = tokenizer(input, return_tensors="pt") out = model.generate(**tokenized, do_sample=True, num_return_sequences = num_samples, num_beams = num_beams, eos_token_id = tokenizer.eos_token_id, pad_token_id = tokenizer.pad_token_id, output_scores = True, return_dict_in_generate=True, max_length=max_output_length,) out_tokens = out.sequences out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) out_scores = getScores(out_tokens, out.scores, tokenizer.pad_token_id) pair_list = [(x[0], x[1]) for x in zip(out_str, out_scores)] sorted_pair_list = sorted(pair_list, key=lambda x:x[1], reverse=True) return sorted_pair_list def greedyPredict(input, model, tokenizer): input_ids = tokenizer([input], return_tensors="pt").input_ids out_tokens = model.generate(input_ids) out_str = tokenizer.batch_decode(out_tokens, skip_special_tokens=True) return out_str[0] ``` ``` # an example from validation set that the model predicts correctly # you can try your own examples here. what's your noble title? input = "Sophie Valdemarsdottir| noble title" out = topkSample(input, model, tokenizer, num_samples=5) out ``` You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here https://storage.googleapis.com/kgt5-wikikg90mv2/ent_alias_list.pickle) (relation file: https://storage.googleapis.com/kgt5-wikikg90mv2/rel_alias_list.pickle) The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times). ``` # download valid.txt. you can also try same url with test.txt. however test does not contain the correct tails !wget https://storage.googleapis.com/kgt5-wikikg90mv2/valid.txt ``` ``` fname = 'valid.txt' valid_lines = [] f = open(fname) for line in f: valid_lines.append(line.rstrip()) f.close() print(valid_lines[0]) ``` ``` from tqdm.auto import tqdm # try unfiltered hits@k. this is approximation since model can sample same seq multiple times # you should run this on gpu if you want to evaluate on all points with 300 samples each k = 1 count_at_k = 0 max_predictions = k max_points = 1000 for line in tqdm(valid_lines[:max_points]): input, target = line.split('\t') model_output = topkSample(input, model, tokenizer, num_samples=max_predictions) prediction_strings = [x[0] for x in model_output] if target in prediction_strings: count_at_k += 1 print('Hits at {0} unfiltered: {1}'.format(k, count_at_k/max_points)) ```
{"license": "mit", "widget": [{"text": "Apoorv Umang Saxena| family name", "example_title": "Family name prediction"}, {"text": "Apoorv Saxena| country", "example_title": "Country prediction"}, {"text": "World War 2| followed by", "example_title": "followed by"}]}
apoorvumang/kgt5-wikikg90mv2
null
[ "transformers", "pytorch", "tf", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tf #t5 #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
This is a t5-small model trained from scratch on WikiKG90Mv2 dataset. Please see URL for more details on the method. This model was trained on the tail entity prediction task ie. given subject entity and relation, predict the object entity. Input should be provided in the form of "\<entity text\>| \<relation text\>". We used the raw text title and descriptions to get entity and relation textual representations. These raw texts were obtained from ogb dataset itself (dataset/wikikg90m-v2/mapping/URL and URL). Entity representation was set to the title, and description was used to disambiguate if 2 entities had the same title. If still no disambiguation was possible, we used the wikidata ID (eg. Q123456). We trained the model on WikiKG90Mv2 for approx 1.5 epochs on 4x1080Ti GPUs. The training time for 1 epoch was approx 5.5 days. To evaluate the model, we sample 300 times from the decoder for each input (s,r) pair. We then remove predictions which do not map back to a valid entity, and then rank the predictions by their log probabilities. Filtering was performed subsequently. We achieve 0.22 validation MRR (the full leaderboard is here URL You can try the following code in an ipython notebook to evaluate the pre-trained model. The full procedure of mapping entity to ids, filtering etc. is not included here for sake of simplicity but can be provided on request if needed. Please contact Apoorv (apoorvumang@URL) for clarifications/details. --------- You can further load the list of entity aliases, then filter only those predictions which are valid entities then create a reverse mapping from alias -> integer id to get final predictions in required format. However, loading these aliases in memory as a dictionary requires a lot of RAM + you need to download the aliases file (made available here URL (relation file: URL The submitted validation/test results for were obtained by sampling 300 times for each input, then applying above procedure, followed by filtering known entities. The final MRR can vary slightly due to this sampling nature (we found that although beam search gives deterministic output, the results are inferior to sampling large number of times).
[]
[ "TAGS\n#transformers #pytorch #tf #t5 #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
null
null
1
{}
app-test-user/test-tensorboard
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #tensorboard #region-us
1
[]
[ "TAGS\n#tensorboard #region-us \n" ]
text-generation
transformers
# DialoGPT-medium-simpsons This is a version of [DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) fine-tuned on The Simpsons scripts.
{"tags": ["conversational"]}
arampacha/DialoGPT-medium-simpsons
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# DialoGPT-medium-simpsons This is a version of DialoGPT-medium fine-tuned on The Simpsons scripts.
[ "# DialoGPT-medium-simpsons\n\nThis is a version of DialoGPT-medium fine-tuned on The Simpsons scripts." ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# DialoGPT-medium-simpsons\n\nThis is a version of DialoGPT-medium fine-tuned on The Simpsons scripts." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Chech Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cs", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cs", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-czech") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays # Note: this models is trained ignoring accents on letters as below def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('[äá]'), 'a', batch['sentence']) batch["sentence"] = re.sub(re.compile('[öó]'), 'o', batch['sentence']) batch["sentence"] = re.sub(re.compile('[èé]'), 'e', batch['sentence']) batch["sentence"] = re.sub(re.compile("[ïí]"), 'i', batch['sentence']) batch["sentence"] = re.sub(re.compile("[üů]"), 'u', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.56 ## Training The Common Voice `train`, `validation`. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
{"language": "cs", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "metrics": "wer", "dataset": "common_voice", "model-index": [{"name": "Czech XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cs", "type": "common_voice", "args": "cs"}, "metrics": [{"type": "wer", "value": 24.56, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-large-xlsr-czech
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cs", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "cs" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Chech Fine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Czech test data of Common Voice. Test Result: 24.56 ## Training The Common Voice 'train', 'validation'. The script used for training will be available here soon.
[ "# Wav2Vec2-Large-XLSR-53-Chech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\n\nTest Result: 24.56", "## Training\n\nThe Common Voice 'train', 'validation'.\n\nThe script used for training will be available here soon." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cs #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Chech\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Czech using the Common Voice dataset.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Czech test data of Common Voice.\n\n\n\n\nTest Result: 24.56", "## Training\n\nThe Common Voice 'train', 'validation'.\n\nThe script used for training will be available here soon." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Ukrainian using the [Common Voice](https://huggingface.co/datasets/common_voice) and sample of [M-AILABS Ukrainian Corpus](https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/) datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "uk", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "uk", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model = Wav2Vec2ForCTC.from_pretrained("arampacha/wav2vec2-large-xlsr-ukrainian") model.to("cuda") chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", '«', '»', '—', '…', '(', ')', '*', '”', '“'] chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays and normalize charecters def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(re.compile("['`]"), '’', batch['sentence']) batch["sentence"] = re.sub(re.compile(chars_to_ignore_regex), '', batch["sentence"]).lower().strip() batch["sentence"] = re.sub(re.compile('i'), 'і', batch['sentence']) batch["sentence"] = re.sub(re.compile('o'), 'о', batch['sentence']) batch["sentence"] = re.sub(re.compile('a'), 'а', batch['sentence']) batch["sentence"] = re.sub(re.compile('ы'), 'и', batch['sentence']) batch["sentence"] = re.sub(re.compile("–"), '', batch['sentence']) batch['sentence'] = re.sub(' ', ' ', batch['sentence']) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.transforms.Resample(sampling_rate, 16_000)(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 29.89 ## Training The Common Voice `train`, `validation` and the M-AILABS Ukrainian corpus. The script used for training will be available [here](https://github.com/arampacha/hf-sprint-xlsr) soon.
{"language": "uk", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "metrics": "wer", "dataset": "common_voice", "model-index": [{"name": "Ukrainian XLSR Wav2Vec2 Large 53", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "common_voice", "args": "uk"}, "metrics": [{"type": "wer", "value": 29.89, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-large-xlsr-ukrainian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "uk", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Ukrainian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Ukrainian test data of Common Voice. Test Result: 29.89 ## Training The Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus. The script used for training will be available here soon.
[ "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 29.89", "## Training\n\nThe Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus.\n\nThe script used for training will be available here soon." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #uk #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Ukrainian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Ukrainian using the Common Voice and sample of M-AILABS Ukrainian Corpus datasets.\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Ukrainian test data of Common Voice.\n\n\n\nTest Result: 29.89", "## Training\n\nThe Common Voice 'train', 'validation' and the M-AILABS Ukrainian corpus.\n\nThe script used for training will be available here soon." ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: **0.4521** - Wer: **0.5141** - Cer: **0.1100** - Wer+LM: **0.2756** - Cer+LM: **0.0866** ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: tristage - lr_scheduler_ratios: [0.1, 0.4, 0.5] - training_steps: 1400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:----:|:---------------:|:------:|:------:| | 6.1298 | 19.87 | 100 | 3.1204 | 1.0 | 1.0 | | 2.7269 | 39.87 | 200 | 0.6200 | 0.7592 | 0.1755 | | 1.4643 | 59.87 | 300 | 0.4796 | 0.5921 | 0.1277 | | 1.1242 | 79.87 | 400 | 0.4637 | 0.5359 | 0.1145 | | 0.9592 | 99.87 | 500 | 0.4521 | 0.5141 | 0.1100 | | 0.8704 | 119.87 | 600 | 0.4736 | 0.4914 | 0.1045 | | 0.7908 | 139.87 | 700 | 0.5394 | 0.5250 | 0.1124 | | 0.7049 | 159.87 | 800 | 0.4822 | 0.4754 | 0.0985 | | 0.6299 | 179.87 | 900 | 0.4890 | 0.4809 | 0.1028 | | 0.5832 | 199.87 | 1000 | 0.5233 | 0.4813 | 0.1028 | | 0.5145 | 219.87 | 1100 | 0.5350 | 0.4781 | 0.0994 | | 0.4604 | 239.87 | 1200 | 0.5223 | 0.4715 | 0.0984 | | 0.4226 | 259.87 | 1300 | 0.5167 | 0.4625 | 0.0953 | | 0.3946 | 279.87 | 1400 | 0.5248 | 0.4614 | 0.0950 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 0.2755659640905542, "name": "WER LM"}, {"type": "cer", "value": 0.08659585230146687, "name": "CER LM"}]}]}]}
arampacha/wav2vec2-xls-r-1b-hy-cv
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hy" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HY-AM dataset. It achieves the following results on the evaluation set: * Loss: 0.4521 * Wer: 0.5141 * Cer: 0.1100 * Wer+LM: 0.2756 * Cer+LM: 0.0866 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: tristage * lr\_scheduler\_ratios: [0.1, 0.4, 0.5] * training\_steps: 1400 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: tristage\n* lr\\_scheduler\\_ratios: [0.1, 0.4, 0.5]\n* training\\_steps: 1400\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: tristage\n* lr\\_scheduler\\_ratios: [0.1, 0.4, 0.5]\n* training\\_steps: 1400\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_4/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1693 - Wer: 0.2373 - Cer: 0.0429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.255 | 7.24 | 500 | 0.2978 | 0.4294 | 0.0758 | | 1.0058 | 14.49 | 1000 | 0.1883 | 0.2838 | 0.0483 | | 0.9371 | 21.73 | 1500 | 0.1813 | 0.2627 | 0.0457 | | 0.8999 | 28.98 | 2000 | 0.1693 | 0.2373 | 0.0429 | | 0.8814 | 36.23 | 2500 | 0.1760 | 0.2420 | 0.0435 | | 0.8364 | 43.47 | 3000 | 0.1765 | 0.2416 | 0.0419 | | 0.8019 | 50.72 | 3500 | 0.1758 | 0.2311 | 0.0398 | | 0.7665 | 57.96 | 4000 | 0.1745 | 0.2240 | 0.0399 | | 0.7376 | 65.22 | 4500 | 0.1717 | 0.2190 | 0.0385 | | 0.716 | 72.46 | 5000 | 0.1700 | 0.2147 | 0.0382 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hy", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 10.811865729898516, "name": "WER LM"}, {"type": "cer", "value": 2.2205361659079412, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hy"}, "metrics": [{"type": "wer", "value": 18.219363037089988, "name": "Test WER"}, {"type": "cer", "value": 7.075988867335752, "name": "Test CER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-hy
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "hy", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hy" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #hy #mozilla-foundation/common_voice_8_0 #robust-speech-event #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/HY/NOIZY\_STUDENT\_4/ - NA dataset. It achieves the following results on the evaluation set: * Loss: 0.1693 * Wer: 0.2373 * Cer: 0.0429 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 842 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 5000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #hy #mozilla-foundation/common_voice_8_0 #robust-speech-event #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 5000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-1b-ka This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/KA/NOIZY_STUDENT_2/ - KA dataset. It achieves the following results on the evaluation set: - Loss: 0.1022 - Wer: 0.1527 - Cer: 0.0221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2839 | 6.45 | 400 | 0.2229 | 0.3609 | 0.0557 | | 0.9775 | 12.9 | 800 | 0.1271 | 0.2202 | 0.0317 | | 0.9045 | 19.35 | 1200 | 0.1268 | 0.2030 | 0.0294 | | 0.8652 | 25.8 | 1600 | 0.1211 | 0.1940 | 0.0287 | | 0.8505 | 32.26 | 2000 | 0.1192 | 0.1912 | 0.0276 | | 0.8168 | 38.7 | 2400 | 0.1086 | 0.1763 | 0.0260 | | 0.7737 | 45.16 | 2800 | 0.1098 | 0.1753 | 0.0256 | | 0.744 | 51.61 | 3200 | 0.1054 | 0.1646 | 0.0239 | | 0.7114 | 58.06 | 3600 | 0.1034 | 0.1573 | 0.0228 | | 0.6773 | 64.51 | 4000 | 0.1022 | 0.1527 | 0.0221 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["ka"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-ka", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ka", "type": "mozilla-foundation/common_voice_8_0", "args": "ka"}, "metrics": [{"type": "wer", "value": 7.39778066580026, "name": "WER LM"}, {"type": "cer", "value": 1.1882089427096434, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "ka"}, "metrics": [{"type": "wer", "value": 22.61, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "ka"}, "metrics": [{"type": "wer", "value": 21.58, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-ka
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hf-asr-leaderboard", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ka" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
wav2vec2-xls-r-1b-ka ==================== This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/KA/NOIZY\_STUDENT\_2/ - KA dataset. It achieves the following results on the evaluation set: * Loss: 0.1022 * Wer: 0.1527 * Cer: 0.0221 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 4000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hf-asr-leaderboard #ka #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.1747 - Wer: 0.2107 - Cer: 0.0408 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.3719 | 4.35 | 500 | 0.3389 | 0.4236 | 0.0833 | | 1.1361 | 8.7 | 1000 | 0.2309 | 0.3162 | 0.0630 | | 1.0517 | 13.04 | 1500 | 0.2166 | 0.3056 | 0.0597 | | 1.0118 | 17.39 | 2000 | 0.2141 | 0.2784 | 0.0557 | | 0.9922 | 21.74 | 2500 | 0.2231 | 0.2941 | 0.0594 | | 0.9929 | 26.09 | 3000 | 0.2171 | 0.2892 | 0.0587 | | 0.9485 | 30.43 | 3500 | 0.2236 | 0.2956 | 0.0599 | | 0.9573 | 34.78 | 4000 | 0.2314 | 0.3043 | 0.0616 | | 0.9195 | 39.13 | 4500 | 0.2169 | 0.2812 | 0.0580 | | 0.8915 | 43.48 | 5000 | 0.2109 | 0.2780 | 0.0560 | | 0.8449 | 47.83 | 5500 | 0.2050 | 0.2534 | 0.0514 | | 0.8028 | 52.17 | 6000 | 0.2032 | 0.2456 | 0.0492 | | 0.7881 | 56.52 | 6500 | 0.1890 | 0.2380 | 0.0469 | | 0.7423 | 60.87 | 7000 | 0.1816 | 0.2245 | 0.0442 | | 0.7248 | 65.22 | 7500 | 0.1789 | 0.2165 | 0.0422 | | 0.6993 | 69.57 | 8000 | 0.1747 | 0.2107 | 0.0408 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy-cv", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "mozilla-foundation/common_voice_8_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 12.246920571994902, "name": "WER LM"}, {"type": "cer", "value": 2.513653497966816, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 46.56, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 35.98, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-uk-cv
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - UK dataset. It achieves the following results on the evaluation set: * Loss: 0.1747 * Wer: 0.2107 * Cer: 0.0408 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 8e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 8000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 8000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-mozilla-foundation/common_voice_8_0 #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 8e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 8000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/COMPOSED_DATASET/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1752 - Cer: 0.0323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 12000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.7005 | 1.61 | 500 | 0.4082 | 0.5584 | 0.1164 | | 1.1555 | 3.22 | 1000 | 0.2020 | 0.2953 | 0.0557 | | 1.0927 | 4.82 | 1500 | 0.1708 | 0.2584 | 0.0480 | | 1.0707 | 6.43 | 2000 | 0.1563 | 0.2405 | 0.0450 | | 1.0728 | 8.04 | 2500 | 0.1620 | 0.2442 | 0.0463 | | 1.0268 | 9.65 | 3000 | 0.1588 | 0.2378 | 0.0458 | | 1.0328 | 11.25 | 3500 | 0.1466 | 0.2352 | 0.0442 | | 1.0249 | 12.86 | 4000 | 0.1552 | 0.2341 | 0.0449 | | 1.016 | 14.47 | 4500 | 0.1602 | 0.2435 | 0.0473 | | 1.0164 | 16.08 | 5000 | 0.1491 | 0.2337 | 0.0444 | | 0.9935 | 17.68 | 5500 | 0.1539 | 0.2373 | 0.0458 | | 0.9626 | 19.29 | 6000 | 0.1458 | 0.2305 | 0.0434 | | 0.9505 | 20.9 | 6500 | 0.1368 | 0.2157 | 0.0407 | | 0.9389 | 22.51 | 7000 | 0.1437 | 0.2231 | 0.0426 | | 0.9129 | 24.12 | 7500 | 0.1313 | 0.2076 | 0.0394 | | 0.9118 | 25.72 | 8000 | 0.1292 | 0.2040 | 0.0384 | | 0.8848 | 27.33 | 8500 | 0.1299 | 0.2028 | 0.0384 | | 0.8667 | 28.94 | 9000 | 0.1228 | 0.1945 | 0.0367 | | 0.8641 | 30.55 | 9500 | 0.1223 | 0.1939 | 0.0364 | | 0.8516 | 32.15 | 10000 | 0.1184 | 0.1876 | 0.0349 | | 0.8379 | 33.76 | 10500 | 0.1137 | 0.1821 | 0.0338 | | 0.8235 | 35.37 | 11000 | 0.1127 | 0.1779 | 0.0331 | | 0.8112 | 36.98 | 11500 | 0.1103 | 0.1766 | 0.0327 | | 0.8069 | 38.59 | 12000 | 0.1092 | 0.1752 | 0.0323 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-1b-hy", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice uk", "type": "mozilla-foundation/common_voice_8_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 10.406342913776015, "name": "WER LM"}, {"type": "cer", "value": 2.0387492208601703, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 40.57, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 28.95, "name": "Test WER"}]}]}]}
arampacha/wav2vec2-xls-r-1b-uk
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "uk", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "uk" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/UK/COMPOSED\_DATASET/ - NA dataset. It achieves the following results on the evaluation set: * Loss: 0.1092 * Wer: 0.1752 * Cer: 0.0323 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 8 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 12000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 12000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #generated_from_trainer #hf-asr-leaderboard #mozilla-foundation/common_voice_8_0 #robust-speech-event #uk #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 12000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HY-AM dataset. It achieves the following results on the evaluation set: - Loss: 0.5891 - Wer: 0.6569 **Note**: If you aim for best performance use [this model](https://huggingface.co/arampacha/wav2vec2-xls-r-300m-hy). It is trained using noizy student procedure and achieves considerably better results. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 1200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 9.167 | 16.67 | 100 | 3.5599 | 1.0 | | 3.2645 | 33.33 | 200 | 3.1771 | 1.0 | | 3.1509 | 50.0 | 300 | 3.1321 | 1.0 | | 3.0757 | 66.67 | 400 | 2.8594 | 1.0 | | 2.5274 | 83.33 | 500 | 1.5286 | 0.9797 | | 1.6826 | 100.0 | 600 | 0.8058 | 0.7974 | | 1.2868 | 116.67 | 700 | 0.6713 | 0.7279 | | 1.1262 | 133.33 | 800 | 0.6308 | 0.7034 | | 1.0408 | 150.0 | 900 | 0.6056 | 0.6745 | | 0.9617 | 166.67 | 1000 | 0.5891 | 0.6569 | | 0.9196 | 183.33 | 1100 | 0.5913 | 0.6432 | | 0.8853 | 200.0 | 1200 | 0.5924 | 0.6347 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hy-AM"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
arampacha/wav2vec2-xls-r-300m-hy-cv
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hy", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hy-AM" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hy #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HY-AM dataset. It achieves the following results on the evaluation set: * Loss: 0.5891 * Wer: 0.6569 Note: If you aim for best performance use this model. It is trained using noizy student procedure and achieves considerably better results. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 1200 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hy #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 1200\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_3/ - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2293 - Wer: 0.3333 - Cer: 0.0602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 842 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.1471 | 7.02 | 400 | 3.1599 | 1.0 | 1.0 | | 1.8691 | 14.04 | 800 | 0.7674 | 0.7361 | 0.1686 | | 1.3227 | 21.05 | 1200 | 0.3849 | 0.5336 | 0.1007 | | 1.163 | 28.07 | 1600 | 0.3015 | 0.4559 | 0.0823 | | 1.0768 | 35.09 | 2000 | 0.2721 | 0.4032 | 0.0728 | | 1.0224 | 42.11 | 2400 | 0.2586 | 0.3825 | 0.0691 | | 0.9817 | 49.12 | 2800 | 0.2458 | 0.3653 | 0.0653 | | 0.941 | 56.14 | 3200 | 0.2306 | 0.3388 | 0.0605 | | 0.9235 | 63.16 | 3600 | 0.2315 | 0.3380 | 0.0615 | | 0.9141 | 70.18 | 4000 | 0.2293 | 0.3333 | 0.0602 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2 - Datasets 1.18.4.dev0 - Tokenizers 0.11.0
{"language": ["hy"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-hy", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hy-AM", "type": "mozilla-foundation/common_voice_8_0", "args": "hy-AM"}, "metrics": [{"type": "wer", "value": 13.192818110850899, "name": "WER LM"}, {"type": "cer", "value": 2.787051087506323, "name": "CER LM"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "hy"}, "metrics": [{"type": "wer", "value": 22.246048764990867, "name": "Test WER"}, {"type": "cer", "value": 7.59406739840239, "name": "Test CER"}]}]}]}
arampacha/wav2vec2-xls-r-300m-hy
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "robust-speech-event", "hy", "hf-asr-leaderboard", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hy" ]
TAGS #transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the /WORKSPACE/DATA/HY/NOIZY\_STUDENT\_3/ - NA dataset. It achieves the following results on the evaluation set: * Loss: 0.2293 * Wer: 0.3333 * Cer: 0.0602 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 842 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 4000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2 * Datasets 1.18.4.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #tensorboard #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #robust-speech-event #hy #hf-asr-leaderboard #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 842\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2\n* Datasets 1.18.4.dev0\n* Tokenizers 0.11.0" ]
question-answering
transformers
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
{}
aravind-812/roberta-train-json
null
[ "transformers", "pytorch", "jax", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #roberta #question-answering #endpoints_compatible #region-us
--- datasets: - squad widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species."
[]
[ "TAGS\n#transformers #pytorch #jax #roberta #question-answering #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "model-index": [{"name": "results", "results": []}]}
arawat/pegasus-custom-xsum
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
# results This model is a fine-tuned version of google/pegasus-large on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# results\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n", "# results\n\nThis model is a fine-tuned version of google/pegasus-large on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.12.5\n- Pytorch 1.10.0\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
text-generation
transformers
#HourAI bot based on DialoGPT
{"tags": ["conversational"]}
archmagos/HourAI
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#HourAI bot based on DialoGPT
[]
[ "TAGS\n#transformers #pytorch #safetensors #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
#Mini-Me
{"tags": ["conversational"]}
ardatasc/miniMe-version1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#Mini-Me
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20-input_64 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4335 - Bleu: 8.6652 - Gen Len: 18.2596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6351 | 1.0 | 7629 | 1.4335 | 8.6652 | 18.2596 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-dataset_20-input_64", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 8.6652, "name": "Bleu"}]}]}]}
aretw0/t5-small-finetuned-en-to-ro-dataset_20-input_64
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-dataset\_20-input\_64 ================================================= This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4335 * Bleu: 8.6652 * Gen Len: 18.2596 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-dataset_20 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4052 - Bleu: 7.3293 - Gen Len: 18.2556 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6029 | 1.0 | 7629 | 1.4052 | 7.3293 | 18.2556 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-dataset_20", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.3293, "name": "Bleu"}]}]}]}
aretw0/t5-small-finetuned-en-to-ro-dataset_20
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-dataset\_20 ======================================= This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4052 * Bleu: 7.3293 * Gen Len: 18.2556 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-ro-epoch.04375 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.4137 - Bleu: 7.3292 - Gen Len: 18.2541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.04375 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | 0.6211 | 0.04 | 1669 | 1.4137 | 7.3292 | 18.2541 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "metrics": ["bleu"], "model-index": [{"name": "t5-small-finetuned-en-to-ro-epoch.04375", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "wmt16", "type": "wmt16", "args": "ro-en"}, "metrics": [{"type": "bleu", "value": 7.3292, "name": "Bleu"}]}]}]}
aretw0/t5-small-finetuned-en-to-ro-epoch.04375
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-en-to-ro-epoch.04375 ======================================= This model is a fine-tuned version of t5-small on the wmt16 dataset. It achieves the following results on the evaluation set: * Loss: 1.4137 * Bleu: 7.3292 * Gen Len: 18.2541 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 0.04375 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 0.04375\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wmt16 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 0.04375\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
feature-extraction
transformers
hello
{}
argv947059/example-based-ner-bert
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us
hello
[]
[ "TAGS\n#transformers #pytorch #jax #bert #feature-extraction #endpoints_compatible #region-us \n" ]
text-classification
transformers
# citizenlab/distilbert-base-multilingual-cased-toxicity This is multilingual Distil-Bert model sequence classifier trained based on [JIGSAW Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) dataset. ## How to use it ```python from transformers import pipeline model_path = "citizenlab/distilbert-base-multilingual-cased-toxicity" toxicity_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) toxicity_classifier("this is a lovely message") > [{'label': 'not_toxic', 'score': 0.9954179525375366}] toxicity_classifier("you are an idiot and you and your family should go back to your country") > [{'label': 'toxic', 'score': 0.9948776960372925}] ``` ## Evaluation ### Accuracy ``` Accuracy Score = 0.9425 F1 Score (Micro) = 0.9450549450549449 F1 Score (Macro) = 0.8491432341169309 ```
{"language": ["en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af"], "datasets": ["jigsaw_toxicity_pred"], "metrics": ["F1 Accuracy"], "pipeline_type": "text-classification", "widget": [{"text": "this is a lovely message", "example_title": "Example 1", "multi_class": false}, {"text": "you are an idiot and you and your family should go back to your country", "example_title": "Example 2", "multi_class": false}]}
citizenlab/distilbert-base-multilingual-cased-toxicity
null
[ "transformers", "pytorch", "distilbert", "text-classification", "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af", "dataset:jigsaw_toxicity_pred", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af" ]
TAGS #transformers #pytorch #distilbert #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us
# citizenlab/distilbert-base-multilingual-cased-toxicity This is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset. ## How to use it ## Evaluation ### Accuracy
[ "# citizenlab/distilbert-base-multilingual-cased-toxicity\n\nThis is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset.", "## How to use it", "## Evaluation", "### Accuracy" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# citizenlab/distilbert-base-multilingual-cased-toxicity\n\nThis is multilingual Distil-Bert model sequence classifier trained based on JIGSAW Toxic Comment Classification Challenge dataset.", "## How to use it", "## Evaluation", "### Accuracy" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.7751 - Accuracy: 0.9113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.315 | 1.0 | 318 | 3.3087 | 0.74 | | 2.6371 | 2.0 | 636 | 1.8833 | 0.8381 | | 1.5388 | 3.0 | 954 | 1.1547 | 0.8929 | | 1.0076 | 4.0 | 1272 | 0.8590 | 0.9071 | | 0.79 | 5.0 | 1590 | 0.7751 | 0.9113 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.7.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["clinc_oos"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-clinc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "clinc_oos", "type": "clinc_oos", "args": "plus"}, "metrics": [{"type": "accuracy", "value": 0.9112903225806451, "name": "Accuracy"}]}]}]}
arianpasquali/distilbert-base-uncased-finetuned-clinc
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:clinc_oos", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-clinc ======================================= This model is a fine-tuned version of distilbert-base-uncased on the clinc\_oos dataset. It achieves the following results on the evaluation set: * Loss: 0.7751 * Accuracy: 0.9113 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 48 * eval\_batch\_size: 48 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.7.1 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.7.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-clinc_oos #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 48\n* eval\\_batch\\_size: 48\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.7.1\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned This is multilingual XLM-Roberta model sequence classifier fine tunned and based on [Cardiff NLP Group](cardiffnlp/twitter-roberta-base-sentiment) sentiment classification model. ## How to use it ```python from transformers import pipeline model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned" sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path) sentiment_classifier("this is a lovely message") > [{'label': 'Positive', 'score': 0.9918450713157654}] sentiment_classifier("you are an idiot and you and your family should go back to your country") > [{'label': 'Negative', 'score': 0.9849833846092224}] ``` ## Evaluation ``` precision recall f1-score support Negative 0.57 0.14 0.23 28 Neutral 0.78 0.94 0.86 132 Positive 0.89 0.80 0.85 51 accuracy 0.80 211 macro avg 0.75 0.63 0.64 211 weighted avg 0.78 0.80 0.77 211 ```
{"language": ["en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af"], "datasets": ["jigsaw_toxicity_pred"], "metrics": ["F1 Accuracy"], "pipeline_type": "text-classification", "widget": [{"text": "this is a lovely message", "example_title": "Example 1", "multi_class": false}, {"text": "you are an idiot and you and your family should go back to your country", "example_title": "Example 2", "multi_class": false}]}
citizenlab/twitter-xlm-roberta-base-sentiment-finetunned
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af", "dataset:jigsaw_toxicity_pred", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en", "nl", "fr", "pt", "it", "es", "de", "da", "pl", "af" ]
TAGS #transformers #pytorch #xlm-roberta #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us
# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned This is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model. ## How to use it ## Evaluation
[ "# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned\n\nThis is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.", "## How to use it", "## Evaluation" ]
[ "TAGS\n#transformers #pytorch #xlm-roberta #text-classification #en #nl #fr #pt #it #es #de #da #pl #af #dataset-jigsaw_toxicity_pred #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned\n\nThis is multilingual XLM-Roberta model sequence classifier fine tunned and based on Cardiff NLP Group sentiment classification model.", "## How to use it", "## Evaluation" ]
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
arifbhrn/DialogGPT-small-Rickk
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Rick DialoGPT Model
[ "# Rick DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Rick DialoGPT Model" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
{"language": "Bengali", "license": "cc-by-sa-4.0", "tags": ["bn", "audio", "automatic-speech-recognition", "speech"], "datasets": ["OpenSLR"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Bengali by Arijit", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR", "type": "OpenSLR", "args": "ben"}, "metrics": [{"type": "wer", "value": 32.45, "name": "Test WER"}]}]}]}
arijitx/wav2vec2-large-xlsr-bengali
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "bn", "audio", "speech", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "Bengali" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #bn #audio #speech #dataset-OpenSLR #license-cc-by-sa-4.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : URL Data Prep Notebook : URL Inference Notebook : URL ## Usage The model can be used directly (without a language model) as follows: Test Result: WER on ~4200 utterance : 32.45 %
[ "# Wav2Vec2-Large-XLSR-Bengali\nFine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training.\nWhen using this model, make sure that your speech input is sampled at 16kHz.\nTrain Script can be Found at : URL \n\n Data Prep Notebook : URL\n Inference Notebook : URL", "## Usage\n\nThe model can be used directly (without a language model) as follows:\n\nTest Result: WER on ~4200 utterance : 32.45 %" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #bn #audio #speech #dataset-OpenSLR #license-cc-by-sa-4.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-Bengali\nFine-tuned facebook/wav2vec2-large-xlsr-53 Bengali using a subset of 40,000 utterances from Bengali ASR training data set containing ~196K utterances. Tested WER using ~4200 held out from training.\nWhen using this model, make sure that your speech input is sampled at 16kHz.\nTrain Script can be Found at : URL \n\n Data Prep Notebook : URL\n Inference Notebook : URL", "## Usage\n\nThe model can be used directly (without a language model) as follows:\n\nTest Result: WER on ~4200 utterance : 32.45 %" ]
automatic-speech-recognition
transformers
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from [AI4Bharat IndicCorp](https://indicnlp.ai4bharat.org/corpora/) dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event. - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
{"language": ["bn"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event"], "datasets": ["openslr", "SLR53", "AI4Bharat/IndicCorp"], "metrics": ["wer", "cer"], "model-index": [{"name": "arijitx/wav2vec2-xls-r-300m-bengali", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Open SLR", "type": "openslr", "args": "SLR53"}, "metrics": [{"type": "wer", "value": 0.21726385291857586, "name": "Test WER"}, {"type": "cer", "value": 0.04725010353701041, "name": "Test CER"}, {"type": "wer", "value": 0.15322879016421437, "name": "Test WER with lm"}, {"type": "cer", "value": 0.03413696666806267, "name": "Test CER with lm"}]}]}]}
arijitx/wav2vec2-xls-r-300m-bengali
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "bn", "hf-asr-leaderboard", "openslr_SLR53", "robust-speech-event", "dataset:openslr", "dataset:SLR53", "dataset:AI4Bharat/IndicCorp", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "bn" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #bn #hf-asr-leaderboard #openslr_SLR53 #robust-speech-event #dataset-openslr #dataset-SLR53 #dataset-AI4Bharat/IndicCorp #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the OPENSLR_SLR53 - bengali dataset. It achieves the following results on the evaluation set. Without language model : - WER: 0.21726385291857586 - CER: 0.04725010353701041 With 5 gram language model trained on 30M sentences randomly chosen from AI4Bharat IndicCorp dataset : - WER: 0.15322879016421437 - CER: 0.03413696666806267 Note : 5% of a total 10935 samples have been used for evaluation. Evaluation set has 10935 examples which was not part of training training was done on first 95% and eval was done on last 5%. Training was stopped after 180k steps. Output predictions are available under files section. ### Training hyperparameters The following hyperparameters were used during training: - dataset_name="openslr" - model_name_or_path="facebook/wav2vec2-xls-r-300m" - dataset_config_name="SLR53" - output_dir="./wav2vec2-xls-r-300m-bengali" - overwrite_output_dir - num_train_epochs="50" - per_device_train_batch_size="32" - per_device_eval_batch_size="32" - gradient_accumulation_steps="1" - learning_rate="7.5e-5" - warmup_steps="2000" - length_column_name="input_length" - evaluation_strategy="steps" - text_column_name="sentence" - chars_to_ignore , ? . ! \- \; \: \" “ % ‘ ” � — ’ … – - save_steps="2000" - eval_steps="3000" - logging_steps="100" - layerdrop="0.0" - activation_dropout="0.1" - save_total_limit="3" - freeze_feature_encoder - feat_proj_dropout="0.0" - mask_time_prob="0.75" - mask_time_length="10" - mask_feature_prob="0.25" - mask_feature_length="64" - preprocessing_num_workers 32 ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0 Notes - Training and eval code modified from : URL - Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used. - Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples. - OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate.
[ "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n\n- dataset_name=\"openslr\" \t\n- model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \t\n- dataset_config_name=\"SLR53\" \t\n- output_dir=\"./wav2vec2-xls-r-300m-bengali\" \t\n- overwrite_output_dir \t\n- num_train_epochs=\"50\" \t\n- per_device_train_batch_size=\"32\" \t\n- per_device_eval_batch_size=\"32\" \t\n- gradient_accumulation_steps=\"1\" \t\n- learning_rate=\"7.5e-5\" \t\n- warmup_steps=\"2000\" \t\n- length_column_name=\"input_length\" \t\n- evaluation_strategy=\"steps\" \t\n- text_column_name=\"sentence\" \t\n- chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \t\n- save_steps=\"2000\" \t\n- eval_steps=\"3000\" \t\n- logging_steps=\"100\" \t\n- layerdrop=\"0.0\" \t\n- activation_dropout=\"0.1\" \t\n- save_total_limit=\"3\" \t\n- freeze_feature_encoder \t\n- feat_proj_dropout=\"0.0\" \t\n- mask_time_prob=\"0.75\" \t\n- mask_time_length=\"10\" \t\n- mask_feature_prob=\"0.25\" \t\n- mask_feature_length=\"64\" \n- preprocessing_num_workers 32", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0\n\nNotes\n- Training and eval code modified from : URL \n- Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used.\n- Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples.\n- OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate." ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #bn #hf-asr-leaderboard #openslr_SLR53 #robust-speech-event #dataset-openslr #dataset-SLR53 #dataset-AI4Bharat/IndicCorp #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n\n- dataset_name=\"openslr\" \t\n- model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \t\n- dataset_config_name=\"SLR53\" \t\n- output_dir=\"./wav2vec2-xls-r-300m-bengali\" \t\n- overwrite_output_dir \t\n- num_train_epochs=\"50\" \t\n- per_device_train_batch_size=\"32\" \t\n- per_device_eval_batch_size=\"32\" \t\n- gradient_accumulation_steps=\"1\" \t\n- learning_rate=\"7.5e-5\" \t\n- warmup_steps=\"2000\" \t\n- length_column_name=\"input_length\" \t\n- evaluation_strategy=\"steps\" \t\n- text_column_name=\"sentence\" \t\n- chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \t\n- save_steps=\"2000\" \t\n- eval_steps=\"3000\" \t\n- logging_steps=\"100\" \t\n- layerdrop=\"0.0\" \t\n- activation_dropout=\"0.1\" \t\n- save_total_limit=\"3\" \t\n- freeze_feature_encoder \t\n- feat_proj_dropout=\"0.0\" \t\n- mask_time_prob=\"0.75\" \t\n- mask_time_length=\"10\" \t\n- mask_feature_prob=\"0.25\" \t\n- mask_feature_length=\"64\" \n- preprocessing_num_workers 32", "### Framework versions\n\n- Transformers 4.16.0.dev0\n- Pytorch 1.10.1+cu102\n- Datasets 1.17.1.dev0\n- Tokenizers 0.11.0\n\nNotes\n- Training and eval code modified from : URL \n- Bengali speech data was not available from common voice or librispeech multilingual datasets, so OpenSLR53 has been used.\n- Minimum audio duration of 0.5s has been used to filter the training data which excluded may be 10-20 samples.\n- OpenSLR53 transcripts are *not* part of LM training and LM used to evaluate." ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-finetuned-xsum This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the wsj_markets dataset. It achieves the following results on the evaluation set: - Loss: 0.8497 - Rouge1: 15.3934 - Rouge2: 7.0378 - Rougel: 13.9522 - Rougelsum: 14.3541 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.0964 | 1.0 | 1735 | 0.9365 | 18.703 | 12.7539 | 18.1293 | 18.5397 | 20.0 | | 0.95 | 2.0 | 3470 | 0.8871 | 19.5223 | 13.0938 | 18.9148 | 18.8363 | 20.0 | | 0.8687 | 3.0 | 5205 | 0.8587 | 15.0915 | 7.142 | 13.6693 | 14.5975 | 20.0 | | 0.7989 | 4.0 | 6940 | 0.8569 | 18.243 | 11.4495 | 17.4326 | 17.489 | 20.0 | | 0.7493 | 5.0 | 8675 | 0.8497 | 15.3934 | 7.0378 | 13.9522 | 14.3541 | 20.0 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.10.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["wsj_markets"], "metrics": ["rouge"], "model_index": [{"name": "bart-large-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "wsj_markets", "type": "wsj_markets", "args": "default"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 15.3934}}]}]}
aristotletan/bart-large-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "dataset:wsj_markets", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #dataset-wsj_markets #license-mit #autotrain_compatible #endpoints_compatible #region-us
bart-large-finetuned-xsum ========================= This model is a fine-tuned version of facebook/bart-large on the wsj\_markets dataset. It achieves the following results on the evaluation set: * Loss: 0.8497 * Rouge1: 15.3934 * Rouge2: 7.0378 * Rougel: 13.9522 * Rougelsum: 14.3541 * Gen Len: 20.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.9.0+cu102 * Datasets 1.10.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #dataset-wsj_markets #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.0\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-sst2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the scim dataset. It achieves the following results on the evaluation set: - Loss: 0.4632 - Accuracy: 0.9111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 90 | 2.0273 | 0.6667 | | No log | 2.0 | 180 | 0.8802 | 0.8556 | | No log | 3.0 | 270 | 0.5908 | 0.8889 | | No log | 4.0 | 360 | 0.4632 | 0.9111 | | No log | 5.0 | 450 | 0.4294 | 0.9111 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["scim"], "metrics": ["accuracy"], "model_index": [{"name": "roberta-base-finetuned-sst2", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "scim", "type": "scim", "args": "eod"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9111111111111111}}]}]}
aristotletan/roberta-base-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "dataset:scim", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-scim #license-mit #autotrain_compatible #endpoints_compatible #region-us
roberta-base-finetuned-sst2 =========================== This model is a fine-tuned version of roberta-base on the scim dataset. It achieves the following results on the evaluation set: * Loss: 0.4632 * Accuracy: 0.9111 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.9.1 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #text-classification #generated_from_trainer #dataset-scim #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.9.1\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wsj_markets dataset. It achieves the following results on the evaluation set: - Loss: 1.1447 - Rouge1: 10.4492 - Rouge2: 3.9563 - Rougel: 9.3368 - Rougelsum: 9.9828 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.2742 | 1.0 | 868 | 1.3135 | 9.4644 | 2.618 | 8.4048 | 8.9764 | 19.0 | | 1.4607 | 2.0 | 1736 | 1.2134 | 9.6327 | 3.8535 | 9.0703 | 9.2466 | 19.0 | | 1.3579 | 3.0 | 2604 | 1.1684 | 10.1616 | 3.5498 | 9.2294 | 9.4507 | 19.0 | | 1.3314 | 4.0 | 3472 | 1.1514 | 10.0621 | 3.6907 | 9.1635 | 9.4955 | 19.0 | | 1.3084 | 5.0 | 4340 | 1.1447 | 10.4492 | 3.9563 | 9.3368 | 9.9828 | 19.0 | ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Datasets 1.10.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wsj_markets"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "wsj_markets", "type": "wsj_markets", "args": "default"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 10.4492}}]}]}
aristotletan/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wsj_markets", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wsj_markets #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-xsum ======================= This model is a fine-tuned version of t5-small on the wsj\_markets dataset. It achieves the following results on the evaluation set: * Loss: 1.1447 * Rouge1: 10.4492 * Rouge2: 3.9563 * Rougel: 9.3368 * Rougelsum: 9.9828 * Gen Len: 19.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.8.2 * Pytorch 1.9.0+cu102 * Datasets 1.10.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-wsj_markets #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.8.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.10.0\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15892673 ## Validation Metrics - Loss: 1.3661842346191406 - Rouge1: 50.8868 - Rouge2: 26.996 - RougeL: 42.9088 - RougeLsum: 46.6748 - Gen Len: 20.716 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/arjun3816/autonlp-pegas_large_samsum-15892673 ```
{"language": "unk", "tags": "autonlp", "datasets": ["arjun3816/autonlp-data-pegas_large_samsum"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
arjun3816/autonlp-pegas_large_samsum-15892673
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:arjun3816/autonlp-data-pegas_large_samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "unk" ]
TAGS #transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-arjun3816/autonlp-data-pegas_large_samsum #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15892673 ## Validation Metrics - Loss: 1.3661842346191406 - Rouge1: 50.8868 - Rouge2: 26.996 - RougeL: 42.9088 - RougeLsum: 46.6748 - Gen Len: 20.716 ## Usage You can use cURL to access this model:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 15892673", "## Validation Metrics\n\n- Loss: 1.3661842346191406\n- Rouge1: 50.8868\n- Rouge2: 26.996\n- RougeL: 42.9088\n- RougeLsum: 46.6748\n- Gen Len: 20.716", "## Usage\n\nYou can use cURL to access this model:" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-arjun3816/autonlp-data-pegas_large_samsum #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 15892673", "## Validation Metrics\n\n- Loss: 1.3661842346191406\n- Rouge1: 50.8868\n- Rouge2: 26.996\n- RougeL: 42.9088\n- RougeLsum: 46.6748\n- Gen Len: 20.716", "## Usage\n\nYou can use cURL to access this model:" ]
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15492651 ## Validation Metrics - Loss: 1.4060134887695312 - Rouge1: 50.9953 - Rouge2: 35.9204 - RougeL: 43.5673 - RougeLsum: 46.445 - Gen Len: 58.0193 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/arjun3816/autonlp-sam_summarization1-15492651 ```
{"language": "unk", "tags": "autonlp", "datasets": ["arjun3816/autonlp-data-sam_summarization1"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
arjun3816/autonlp-sam_summarization1-15492651
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "unk", "dataset:arjun3816/autonlp-data-sam_summarization1", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "unk" ]
TAGS #transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-arjun3816/autonlp-data-sam_summarization1 #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 15492651 ## Validation Metrics - Loss: 1.4060134887695312 - Rouge1: 50.9953 - Rouge2: 35.9204 - RougeL: 43.5673 - RougeLsum: 46.445 - Gen Len: 58.0193 ## Usage You can use cURL to access this model:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 15492651", "## Validation Metrics\n\n- Loss: 1.4060134887695312\n- Rouge1: 50.9953\n- Rouge2: 35.9204\n- RougeL: 43.5673\n- RougeLsum: 46.445\n- Gen Len: 58.0193", "## Usage\n\nYou can use cURL to access this model:" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #unk #dataset-arjun3816/autonlp-data-sam_summarization1 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 15492651", "## Validation Metrics\n\n- Loss: 1.4060134887695312\n- Rouge1: 50.9953\n- Rouge2: 35.9204\n- RougeL: 43.5673\n- RougeLsum: 46.445\n- Gen Len: 58.0193", "## Usage\n\nYou can use cURL to access this model:" ]
null
null
# Noise2Recon > **Noise2Recon: A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising**\ > Arjun Desai, Batu Ozturkler, Christopher Sandino, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\ > https://arxiv.org/abs/2110.00075 This repository contains the artifacts for the Noise2Recon paper. To use our code and artifacts in your research, please use the [Meddlr](https://github.com/ad12/meddlr) package.
{"language": "en", "license": "apache-2.0", "tags": ["mri", "reconstruction", "denoising"]}
arjundd/noise2recon-release
null
[ "mri", "reconstruction", "denoising", "en", "arxiv:2110.00075", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2110.00075" ]
[ "en" ]
TAGS #mri #reconstruction #denoising #en #arxiv-2110.00075 #license-apache-2.0 #region-us
# Noise2Recon > Noise2Recon: A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising\ > Arjun Desai, Batu Ozturkler, Christopher Sandino, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\ > URL This repository contains the artifacts for the Noise2Recon paper. To use our code and artifacts in your research, please use the Meddlr package.
[ "# Noise2Recon\r\n\r\n> Noise2Recon: A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising\\\r\n> Arjun Desai, Batu Ozturkler, Christopher Sandino, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\\\r\n> URL\r\n\r\nThis repository contains the artifacts for the Noise2Recon paper. To use our code\r\nand artifacts in your research, please use the Meddlr package." ]
[ "TAGS\n#mri #reconstruction #denoising #en #arxiv-2110.00075 #license-apache-2.0 #region-us \n", "# Noise2Recon\r\n\r\n> Noise2Recon: A Semi-Supervised Framework for Joint MRI Reconstruction and Denoising\\\r\n> Arjun Desai, Batu Ozturkler, Christopher Sandino, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\\\r\n> URL\r\n\r\nThis repository contains the artifacts for the Noise2Recon paper. To use our code\r\nand artifacts in your research, please use the Meddlr package." ]
null
null
# VORTEX <div align="center"> <img src="https://drive.google.com/uc?export=view&id=1q0jAm6Kg5ZhRg3h0w0ZbtIgcRF3_-Vgb" alt="Vortex Schematic" width="700px" /> </div> > **VORTEX: Physics-Driven Data Augmentations for Consistency Training for Robust Accelerated MRI Reconstruction**\ > Arjun Desai, Beliz Gunel, Batu Ozturkler, Harris Beg, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\ > https://arxiv.org/abs/2111.02549 This repository contains the artifacts for the VORTEX paper. To use our code and artifacts in your research, please use the [Meddlr](https://github.com/ad12/meddlr) package.
{"language": "en", "license": "apache-2.0", "tags": ["mri", "reconstruction", "artifact correction"]}
arjundd/vortex-release
null
[ "mri", "reconstruction", "artifact correction", "en", "arxiv:2111.02549", "license:apache-2.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2111.02549" ]
[ "en" ]
TAGS #mri #reconstruction #artifact correction #en #arxiv-2111.02549 #license-apache-2.0 #region-us
# VORTEX <div align="center"> <img src="URL alt="Vortex Schematic" width="700px" /> </div> > VORTEX: Physics-Driven Data Augmentations for Consistency Training for Robust Accelerated MRI Reconstruction\ > Arjun Desai, Beliz Gunel, Batu Ozturkler, Harris Beg, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\ > URL This repository contains the artifacts for the VORTEX paper. To use our code and artifacts in your research, please use the Meddlr package.
[ "# VORTEX\r\n\r\n<div align=\"center\">\r\n <img src=\"URL alt=\"Vortex Schematic\" width=\"700px\" />\r\n</div>\r\n\r\n> VORTEX: Physics-Driven Data Augmentations for Consistency Training for Robust Accelerated MRI Reconstruction\\\r\n> Arjun Desai, Beliz Gunel, Batu Ozturkler, Harris Beg, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\\\r\n> URL\r\n\r\nThis repository contains the artifacts for the VORTEX paper. To use our code\r\nand artifacts in your research, please use the Meddlr package." ]
[ "TAGS\n#mri #reconstruction #artifact correction #en #arxiv-2111.02549 #license-apache-2.0 #region-us \n", "# VORTEX\r\n\r\n<div align=\"center\">\r\n <img src=\"URL alt=\"Vortex Schematic\" width=\"700px\" />\r\n</div>\r\n\r\n> VORTEX: Physics-Driven Data Augmentations for Consistency Training for Robust Accelerated MRI Reconstruction\\\r\n> Arjun Desai, Beliz Gunel, Batu Ozturkler, Harris Beg, Shreyas Vasanawala, Brian Hargreaves, Christopher Ré, John Pauly, Akshay Chaudhari\\\r\n> URL\r\n\r\nThis repository contains the artifacts for the VORTEX paper. To use our code\r\nand artifacts in your research, please use the Meddlr package." ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-multilingual-cased-sentiment-2 This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5882 - Accuracy: 0.7614 - F1: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-multilingual-cased-sentiment-2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "amazon_reviews_multi", "type": "amazon_reviews_multi", "args": "en"}, "metrics": [{"type": "accuracy", "value": 0.7614, "name": "Accuracy"}, {"type": "f1", "value": 0.7614, "name": "F1"}]}]}]}
arjuntheprogrammer/distilbert-base-multilingual-cased-sentiment-2
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
# distilbert-base-multilingual-cased-sentiment-2 This model is a fine-tuned version of distilbert-base-multilingual-cased on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5882 - Accuracy: 0.7614 - F1: 0.7614 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00024 - train_batch_size: 16 - eval_batch_size: 16 - seed: 33 - distributed_type: sagemaker_data_parallel - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.1 - Datasets 1.15.1 - Tokenizers 0.10.3
[ "# distilbert-base-multilingual-cased-sentiment-2\n\nThis model is a fine-tuned version of distilbert-base-multilingual-cased on the amazon_reviews_multi dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.5882\n- Accuracy: 0.7614\n- F1: 0.7614", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.00024\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 33\n- distributed_type: sagemaker_data_parallel\n- num_devices: 8\n- total_train_batch_size: 128\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-amazon_reviews_multi #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# distilbert-base-multilingual-cased-sentiment-2\n\nThis model is a fine-tuned version of distilbert-base-multilingual-cased on the amazon_reviews_multi dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.5882\n- Accuracy: 0.7614\n- F1: 0.7614", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.00024\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 33\n- distributed_type: sagemaker_data_parallel\n- num_devices: 8\n- total_train_batch_size: 128\n- total_eval_batch_size: 128\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 3\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.12.3\n- Pytorch 1.9.1\n- Datasets 1.15.1\n- Tokenizers 0.10.3" ]
fill-mask
transformers
BERTweet-FA: A pre-trained language model for Persian (a.k.a Farsi) Tweets --- BERTweet-FA is a transformer-based model trained on 20665964 Persian tweets. The model has been trained on the data only for 1 epoch (322906 steps), and yet it has the ability to recognize the meaning of most of the conversational sentences used in Farsi. Note that the architecture of this model follows the original BERT [[Devlin et al.](https://arxiv.org/abs/1810.04805)]. How to use the Model --- ```python from transformers import BertForMaskedLM, BertTokenizer, pipeline model = BertForMaskedLM.from_pretrained('arm-on/BERTweet-FA') tokenizer = BertTokenizer.from_pretrained('arm-on/BERTweet-FA') fill_sentence = pipeline('fill-mask', model=model, tokenizer=tokenizer) fill_sentence('اینجا جمله مورد نظر خود را بنویسید و کلمه موردنظر را [MASK] کنید') ``` The Training Data --- The first version of the model was trained on the "[Large Scale Colloquial Persian Dataset](https://iasbs.ac.ir/~ansari/lscp/)" containing more than 20 million tweets in Farsi, gathered by Khojasteh et al., and published on 2020. Evaluation --- | Training Loss | Epoch | Step | |:-------------:|:-----:|:-----:| | 0.0036 | 1.0 | 322906 | Contributors --- - Arman Malekzadeh [[Github](https://github.com/arm-on)]
{"language": "fa", "license": "apache-2.0", "tags": ["BERTweet"], "widget": [{"text": "\u0627\u06cc\u0646 \u0628\u0648\u062f [MASK] \u0647\u0627\u06cc \u0645\u0627\u061f"}, {"text": "\u062f\u0627\u062f\u0627\u0686 \u062f\u0627\u0631\u06cc [MASK] \u0645\u06cc\u0632\u0646\u06cc"}, {"text": "\u0628\u0647 \u0639\u0644\u06cc [MASK] \u0645\u06cc\u06af\u0641\u062a\u0646 \u062c\u0627\u062f\u0648\u06af\u0631"}, {"text": "\u0622\u062e\u0647 \u0645\u062d\u0633\u0646 [MASK] \u0647\u0645 \u0634\u062f \u062e\u0648\u0627\u0646\u0646\u062f\u0647\u061f"}, {"text": "\u067e\u0633\u0631 \u0639\u062c\u0628 [MASK] \u0632\u062f"}], "model-index": [{"name": "BERTweet-FA", "results": []}]}
arm-on/BERTweet-FA
null
[ "transformers", "pytorch", "bert", "fill-mask", "BERTweet", "fa", "arxiv:1810.04805", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "1810.04805" ]
[ "fa" ]
TAGS #transformers #pytorch #bert #fill-mask #BERTweet #fa #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
BERTweet-FA: A pre-trained language model for Persian (a.k.a Farsi) Tweets -------------------------------------------------------------------------- BERTweet-FA is a transformer-based model trained on 20665964 Persian tweets. The model has been trained on the data only for 1 epoch (322906 steps), and yet it has the ability to recognize the meaning of most of the conversational sentences used in Farsi. Note that the architecture of this model follows the original BERT [Devlin et al.]. How to use the Model -------------------- The Training Data ----------------- The first version of the model was trained on the "Large Scale Colloquial Persian Dataset" containing more than 20 million tweets in Farsi, gathered by Khojasteh et al., and published on 2020. Evaluation ---------- Contributors ------------ * Arman Malekzadeh [Github]
[]
[ "TAGS\n#transformers #pytorch #bert #fill-mask #BERTweet #fa #arxiv-1810.04805 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # albert-xxlarge-v2-squad2-covid-qa-deepset This model is a fine-tuned version of [mfeb/albert-xxlarge-v2-squad2](https://huggingface.co/mfeb/albert-xxlarge-v2-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "albert-xxlarge-v2-squad2-covid-qa-deepset", "results": []}]}
armageddon/albert-xxlarge-v2-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
# albert-xxlarge-v2-squad2-covid-qa-deepset This model is a fine-tuned version of mfeb/albert-xxlarge-v2-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
[ "# albert-xxlarge-v2-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of mfeb/albert-xxlarge-v2-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "# albert-xxlarge-v2-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of mfeb/albert-xxlarge-v2-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_bert_base_uncased_squad2 This model is a fine-tuned version of [twmkn9/bert-base-uncased-squad2](https://huggingface.co/twmkn9/bert-base-uncased-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "covid_qa_analysis_bert_base_uncased_squad2", "results": []}]}
armageddon/bert-base-uncased-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
# covid_qa_analysis_bert_base_uncased_squad2 This model is a fine-tuned version of twmkn9/bert-base-uncased-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
[ "# covid_qa_analysis_bert_base_uncased_squad2\n\nThis model is a fine-tuned version of twmkn9/bert-base-uncased-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "# covid_qa_analysis_bert_base_uncased_squad2\n\nThis model is a fine-tuned version of twmkn9/bert-base-uncased-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-uncased-squad2-covid-qa-deepset This model is a fine-tuned version of [phiyodr/bert-large-finetuned-squad2](https://huggingface.co/phiyodr/bert-large-finetuned-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "bert-large-uncased-squad2-covid-qa-deepset", "results": []}]}
armageddon/bert-large-uncased-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
# bert-large-uncased-squad2-covid-qa-deepset This model is a fine-tuned version of phiyodr/bert-large-finetuned-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
[ "# bert-large-uncased-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of phiyodr/bert-large-finetuned-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "# bert-large-uncased-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of phiyodr/bert-large-finetuned-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_albert_base_squad_v2 This model is a fine-tuned version of [abhilash1910/albert-squad-v2](https://huggingface.co/abhilash1910/albert-squad-v2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "covid_qa_analysis_albert_base_squad_v2", "results": []}]}
armageddon/albert-squad-v2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "albert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #albert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-apache-2.0 #endpoints_compatible #region-us
# covid_qa_analysis_albert_base_squad_v2 This model is a fine-tuned version of abhilash1910/albert-squad-v2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
[ "# covid_qa_analysis_albert_base_squad_v2\n\nThis model is a fine-tuned version of abhilash1910/albert-squad-v2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #albert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-apache-2.0 #endpoints_compatible #region-us \n", "# covid_qa_analysis_albert_base_squad_v2\n\nThis model is a fine-tuned version of abhilash1910/albert-squad-v2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_roberta-base-squad2 This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "covid_qa_analysis_roberta-base-squad2", "results": []}]}
armageddon/roberta-base-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-cc-by-4.0 #endpoints_compatible #region-us
# covid_qa_analysis_roberta-base-squad2 This model is a fine-tuned version of deepset/roberta-base-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
[ "# covid_qa_analysis_roberta-base-squad2\n\nThis model is a fine-tuned version of deepset/roberta-base-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# covid_qa_analysis_roberta-base-squad2\n\nThis model is a fine-tuned version of deepset/roberta-base-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # covid_qa_analysis_roberta-large-squad2 This model is a fine-tuned version of [deepset/roberta-large-squad2](https://huggingface.co/deepset/roberta-large-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "covid_qa_analysis_roberta-large-squad2", "results": []}]}
armageddon/roberta-large-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "roberta", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
# covid_qa_analysis_roberta-large-squad2 This model is a fine-tuned version of deepset/roberta-large-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
[ "# covid_qa_analysis_roberta-large-squad2\n\nThis model is a fine-tuned version of deepset/roberta-large-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #roberta #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "# covid_qa_analysis_roberta-large-squad2\n\nThis model is a fine-tuned version of deepset/roberta-large-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.12.1\n- Tokenizers 0.10.3" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-squad2-covid-qa-deepset This model is a fine-tuned version of [twmkn9/distilbert-base-uncased-squad2](https://huggingface.co/twmkn9/distilbert-base-uncased-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "distilbert-base-uncased-squad2-covid-qa-deepset", "results": []}]}
armageddon/distilbert-base-uncased-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us
# distilbert-base-uncased-squad2-covid-qa-deepset This model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
[ "# distilbert-base-uncased-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #question-answering #generated_from_trainer #dataset-covid_qa_deepset #endpoints_compatible #region-us \n", "# distilbert-base-uncased-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of twmkn9/distilbert-base-uncased-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-base-squad2-covid-qa-deepset This model is a fine-tuned version of [deepset/electra-base-squad2](https://huggingface.co/deepset/electra-base-squad2) on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "cc-by-4.0", "tags": ["generated_from_trainer"], "datasets": ["covid_qa_deepset"], "model-index": [{"name": "electra-base-squad2-covid-qa-deepset", "results": []}]}
armageddon/electra-base-squad2-covid-qa-deepset
null
[ "transformers", "pytorch", "tensorboard", "electra", "question-answering", "generated_from_trainer", "dataset:covid_qa_deepset", "license:cc-by-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #electra #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-cc-by-4.0 #endpoints_compatible #region-us
# electra-base-squad2-covid-qa-deepset This model is a fine-tuned version of deepset/electra-base-squad2 on the covid_qa_deepset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: tpu - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.9.0+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
[ "# electra-base-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of deepset/electra-base-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
[ "TAGS\n#transformers #pytorch #tensorboard #electra #question-answering #generated_from_trainer #dataset-covid_qa_deepset #license-cc-by-4.0 #endpoints_compatible #region-us \n", "# electra-base-squad2-covid-qa-deepset\n\nThis model is a fine-tuned version of deepset/electra-base-squad2 on the covid_qa_deepset dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: tpu\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Training results", "### Framework versions\n\n- Transformers 4.16.2\n- Pytorch 1.9.0+cu102\n- Datasets 1.18.3\n- Tokenizers 0.11.6" ]
fill-mask
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-wikitext2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8596 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.0963 | 1.0 | 2346 | 7.0570 | | 6.9063 | 2.0 | 4692 | 6.8721 | | 6.8585 | 3.0 | 7038 | 6.8931 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-cased-wikitext2", "results": []}]}
arman0320/bert-base-cased-wikitext2
null
[ "transformers", "pytorch", "tensorboard", "bert", "fill-mask", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-wikitext2 ========================= This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set: * Loss: 6.8596 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.18.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #fill-mask #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.18.0\n* Tokenizers 0.10.3" ]
text-generation
transformers
**A casual chatbot** This is a dialogpt medium fine tuned to talk like Tony Stark, Currently its only trained upon the script of Iron man 3
{"language": ["en"], "license": "MIT", "tags": ["conversational"]}
arnav7633/DialoGPT-medium-tony_stark
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
A casual chatbot This is a dialogpt medium fine tuned to talk like Tony Stark, Currently its only trained upon the script of Iron man 3
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
token-classification
transformers
# Model description **bert-base-uncased-kin** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-kin**| 75.00 |80.09|77.47 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
{"language": ["kin"], "license": "apache-2.0", "tags": ["NER"], "datasets": ["masakhaner"], "metrics": ["f1", "precision", "recall"], "widget": [{"text": "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n\u2019u Rwanda, bushingiye nanone ku bufatanye hagati y\u2019imigabane ya Afurika n\u2019u Burayi."}]}
arnolfokam/bert-base-uncased-kin
null
[ "transformers", "pytorch", "bert", "token-classification", "NER", "kin", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "kin" ]
TAGS #transformers #pytorch #bert #token-classification #NER #kin #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Model description ================= bert-base-uncased-kin is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: * dates & time (DATE) * Location (LOC) * Organizations (ORG) * Person (PER) Intended Use ============ * Intended to be used for research purposes concerning Named Entity Recognition for African Languages. * Not intended for practical purposes. Training Data ============= This model was fine-tuned on the Kinyarwanda corpus (kin) of the MasakhaNER dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. Training procedure ================== This model was trained on a single NVIDIA P5000 from Paperspace #### Hyperparameters * Learning Rate: 5e-5 * Batch Size: 32 * Maximum Sequence Length: 164 * Epochs: 30 Evaluation Data =============== We evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding. Metrics ======= * Precision * Recall * F1-score Limitations =========== * The size of the pre-trained language model prevents its usage in anything other than research. * Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. * The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. Caveats and Recommendations =========================== * The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus. Results ======= Usage =====
[ "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #NER #kin #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
token-classification
transformers
# Model description **bert-base-uncased-pcm** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Nigerian Pidgin corpus **(pcm)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(pcm)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-pcm**| 88.61 | 84.17 | 86.33 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-pcm") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/bert-base-uncased-pcm") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida." ner_results = nlp(example) print(ner_results) ```
{"language": ["pcm"], "license": "apache-2.0", "tags": ["NER"], "datasets": ["masakhaner"], "metrics": ["f1", "precision", "recall"], "widget": [{"text": "Mixed Martial Arts joinbodi, Ultimate Fighting Championship, UFC don decide say dem go enta back di octagon on Saturday, 9 May, for Jacksonville, Florida."}]}
arnolfokam/bert-base-uncased-pcm
null
[ "transformers", "pytorch", "bert", "token-classification", "NER", "pcm", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pcm" ]
TAGS #transformers #pytorch #bert #token-classification #NER #pcm #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Model description ================= bert-base-uncased-pcm is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: * dates & time (DATE) * Location (LOC) * Organizations (ORG) * Person (PER) Intended Use ============ * Intended to be used for research purposes concerning Named Entity Recognition for African Languages. * Not intended for practical purposes. Training Data ============= This model was fine-tuned on the Nigerian Pidgin corpus (pcm) of the MasakhaNER dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. Training procedure ================== This model was trained on a single NVIDIA P5000 from Paperspace #### Hyperparameters * Learning Rate: 5e-5 * Batch Size: 32 * Maximum Sequence Length: 164 * Epochs: 30 Evaluation Data =============== We evaluated this model on the test split of the Swahili corpus (pcm) present in the MasakhaNER with no thresholding. Metrics ======= * Precision * Recall * F1-score Limitations =========== * The size of the pre-trained language model prevents its usage in anything other than research. * Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. * The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. Caveats and Recommendations =========================== * The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus. Results ======= Usage =====
[ "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Swahili corpus (pcm) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #NER #pcm #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Swahili corpus (pcm) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
token-classification
transformers
# Model description **bert-base-uncased-swa** is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Swahili corpus **(swa)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Swahili corpus **(swa)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **bert-base-uncased-swa**| 83.38 | 89.32 | 86.26 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/bert-base-uncased-swa") model = AutoModelForTokenClassification.from_pretrained("bert-base-uncased-swa") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19." ner_results = nlp(example) print(ner_results) ```
{"language": ["swa"], "license": "apache-2.0", "tags": ["NER"], "datasets": ["masakhaner"], "metrics": ["f1", "precision", "recall"], "widget": [{"text": "Wizara ya afya ya Tanzania imeripoti Jumatatu kuwa, watu takriban 14 zaidi wamepata maambukizi ya Covid-19."}]}
arnolfokam/bert-base-uncased-swa
null
[ "transformers", "pytorch", "bert", "token-classification", "NER", "swa", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "swa" ]
TAGS #transformers #pytorch #bert #token-classification #NER #swa #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Model description ================= bert-base-uncased-swa is a model based on the fine-tuned BERT base uncased model. It has been trained to recognize four types of entities: * dates & time (DATE) * Location (LOC) * Organizations (ORG) * Person (PER) Intended Use ============ * Intended to be used for research purposes concerning Named Entity Recognition for African Languages. * Not intended for practical purposes. Training Data ============= This model was fine-tuned on the Swahili corpus (swa) of the MasakhaNER dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. Training procedure ================== This model was trained on a single NVIDIA P5000 from Paperspace #### Hyperparameters * Learning Rate: 5e-5 * Batch Size: 32 * Maximum Sequence Length: 164 * Epochs: 30 Evaluation Data =============== We evaluated this model on the test split of the Swahili corpus (swa) present in the MasakhaNER with no thresholding. Metrics ======= * Precision * Recall * F1-score Limitations =========== * The size of the pre-trained language model prevents its usage in anything other than research. * Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. * The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. Caveats and Recommendations =========================== * The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus. Results ======= Usage =====
[ "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Swahili corpus (swa) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #NER #swa #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Swahili corpus (swa) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
token-classification
transformers
# Model description **mbert-base-uncased-kin** is a model based on the fine-tuned multilingual BERT base uncased model. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-kin**| 81.35 | 83.98 | 82.64 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
{"language": ["kin"], "license": "apache-2.0", "tags": ["NER"], "datasets": ["masakhaner"], "metrics": ["f1", "precision", "recall"], "widget": [{"text": "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n\u2019u Rwanda, bushingiye nanone ku bufatanye hagati y\u2019imigabane ya Afurika n\u2019u Burayi."}]}
arnolfokam/mbert-base-uncased-kin
null
[ "transformers", "pytorch", "bert", "token-classification", "NER", "kin", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "kin" ]
TAGS #transformers #pytorch #bert #token-classification #NER #kin #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Model description ================= mbert-base-uncased-kin is a model based on the fine-tuned multilingual BERT base uncased model. It has been trained to recognize four types of entities: * dates & time (DATE) * Location (LOC) * Organizations (ORG) * Person (PER) Intended Use ============ * Intended to be used for research purposes concerning Named Entity Recognition for African Languages. * Not intended for practical purposes. Training Data ============= This model was fine-tuned on the Kinyarwanda corpus (kin) of the MasakhaNER dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. Training procedure ================== This model was trained on a single NVIDIA P5000 from Paperspace #### Hyperparameters * Learning Rate: 5e-5 * Batch Size: 32 * Maximum Sequence Length: 164 * Epochs: 30 Evaluation Data =============== We evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding. Metrics ======= * Precision * Recall * F1-score Limitations =========== * The size of the pre-trained language model prevents its usage in anything other than research. * Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. * The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. Caveats and Recommendations =========================== * The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus. Results ======= Usage =====
[ "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #NER #kin #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
token-classification
transformers
# Model description **mbert-base-uncased-ner-kin** is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities: - dates & time (DATE) - Location (LOC) - Organizations (ORG) - Person (PER) # Intended Use - Intended to be used for research purposes concerning Named Entity Recognition for African Languages. - Not intended for practical purposes. # Training Data This model was fine-tuned on the Kinyarwanda corpus **(kin)** of the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. # Training procedure This model was trained on a single NVIDIA P5000 from [Paperspace](https://www.paperspace.com) #### Hyperparameters - **Learning Rate:** 5e-5 - **Batch Size:** 32 - **Maximum Sequence Length:** 164 - **Epochs:** 30 # Evaluation Data We evaluated this model on the test split of the Kinyarwandan corpus **(kin)** present in the [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) with no thresholding. # Metrics - Precision - Recall - F1-score # Limitations - The size of the pre-trained language model prevents its usage in anything other than research. - Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. - The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. # Caveats and Recommendations - The topics in the dataset corpus are centered around **News**. Future training could be done with a more diverse corpus. # Results Model Name| Precision | Recall | F1-score -|-|-|- **mbert-base-uncased-ner-kin**| 81.95 |81.55 |81.75 # Usage ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("arnolfokam/mbert-base-uncased-ner-kin") model = AutoModelForTokenClassification.from_pretrained("arnolfokam/mbert-base-uncased-ner-kin") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "Rayon Sports yasinyishije rutahizamu w’Umurundi" ner_results = nlp(example) print(ner_results) ```
{"language": ["kin"], "license": "apache-2.0", "tags": ["NER"], "datasets": ["masakhaner"], "metrics": ["f1", "precision", "recall"], "widget": [{"text": "Ambasaderi Bellomo yavuze ko bishimira ubufatanye burambye hagati ya EU n\u2019u Rwanda, bushingiye nanone ku bufatanye hagati y\u2019imigabane ya Afurika n\u2019u Burayi."}]}
arnolfokam/mbert-base-uncased-ner-kin
null
[ "transformers", "pytorch", "bert", "token-classification", "NER", "kin", "dataset:masakhaner", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "kin" ]
TAGS #transformers #pytorch #bert #token-classification #NER #kin #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Model description ================= mbert-base-uncased-ner-kin is a model based on the fine-tuned Multilingual BERT base uncased model, previously fine-tuned for Named Entity Recognition using 10 high-resourced languages. It has been trained to recognize four types of entities: * dates & time (DATE) * Location (LOC) * Organizations (ORG) * Person (PER) Intended Use ============ * Intended to be used for research purposes concerning Named Entity Recognition for African Languages. * Not intended for practical purposes. Training Data ============= This model was fine-tuned on the Kinyarwanda corpus (kin) of the MasakhaNER dataset. However, we thresholded the number of entity groups per sentence in this dataset to 10 entity groups. Training procedure ================== This model was trained on a single NVIDIA P5000 from Paperspace #### Hyperparameters * Learning Rate: 5e-5 * Batch Size: 32 * Maximum Sequence Length: 164 * Epochs: 30 Evaluation Data =============== We evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding. Metrics ======= * Precision * Recall * F1-score Limitations =========== * The size of the pre-trained language model prevents its usage in anything other than research. * Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system. * The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance. Caveats and Recommendations =========================== * The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus. Results ======= Usage =====
[ "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]
[ "TAGS\n#transformers #pytorch #bert #token-classification #NER #kin #dataset-masakhaner #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "#### Hyperparameters\n\n\n* Learning Rate: 5e-5\n* Batch Size: 32\n* Maximum Sequence Length: 164\n* Epochs: 30\n\n\nEvaluation Data\n===============\n\n\nWe evaluated this model on the test split of the Kinyarwandan corpus (kin) present in the MasakhaNER with no thresholding.\n\n\nMetrics\n=======\n\n\n* Precision\n* Recall\n* F1-score\n\n\nLimitations\n===========\n\n\n* The size of the pre-trained language model prevents its usage in anything other than research.\n* Lack of analysis concerning the bias and fairness in these models may make them dangerous if deployed into production system.\n* The train data is a less populated version of the original dataset in terms of entity groups per sentence. Therefore, this can negatively impact the performance.\n\n\nCaveats and Recommendations\n===========================\n\n\n* The topics in the dataset corpus are centered around News. Future training could be done with a more diverse corpus.\n\n\nResults\n=======\n\n\n\nUsage\n=====" ]