pipeline_tag
stringclasses 48
values | library_name
stringclasses 198
values | text
stringlengths 1
900k
| metadata
stringlengths 2
438k
| id
stringlengths 5
122
| last_modified
null | tags
listlengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
| arxiv
listlengths 0
201
| languages
listlengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
listlengths 0
722
| processed_texts
listlengths 1
723
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
text-generation
|
transformers
|
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1364302532080762882/8_tNRrto_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Ryan 🤖 AI Bot </div>
<div style="font-size: 15px">@defnotreal_ bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@defnotreal_'s tweets](https://twitter.com/defnotreal_).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2920 |
| Retweets | 2437 |
| Short tweets | 113 |
| Tweets kept | 370 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3lvnbvmn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @defnotreal_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3uffbfpz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3uffbfpz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/defnotreal_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/defnotreal_/1616212090089/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/defnotreal_
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Ryan AI Bot
@defnotreal\_ bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @defnotreal\_'s tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @defnotreal\_'s tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/58546628/goat22_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/726824334002638848/BEZFr1k8_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & deg & Fred Delicious</div>
<div style="text-align: center; font-size: 14px;">@degg-dril-fred_delicious</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & deg & Fred Delicious.
| Data | wint | deg | Fred Delicious |
| --- | --- | --- | --- |
| Tweets downloaded | 3227 | 3152 | 3235 |
| Retweets | 473 | 142 | 429 |
| Short tweets | 318 | 42 | 398 |
| Tweets kept | 2436 | 2968 | 2408 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1mwoed1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @degg-dril-fred_delicious's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1a691ucn/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/degg-dril-fred_delicious')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/degg-dril-fred_delicious/1634845142916/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/degg-dril-fred_delicious
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
AI CYBORG
wint & deg & Fred Delicious
@degg-dril-fred\_delicious
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & deg & Fred Delicious.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @degg-dril-fred\_delicious's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Degrassi No Context 🤖 AI Bot </div>
<div style="font-size: 15px">@degrassinocontx bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@degrassinocontx's tweets](https://twitter.com/degrassinocontx).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 54 |
| Short tweets | 1504 |
| Tweets kept | 1687 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/mu201mzi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @degrassinocontx's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1wxznhll) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1wxznhll/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/degrassinocontx')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/degrassinocontx/1614122429501/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/degrassinocontx
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Degrassi No Context AI Bot
@degrassinocontx bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @degrassinocontx's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @degrassinocontx's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Just the Tip 🤖 AI Bot </div>
<div style="font-size: 15px">@deityofyoutube bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@deityofyoutube's tweets](https://twitter.com/deityofyoutube).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1518 |
| Retweets | 58 |
| Short tweets | 47 |
| Tweets kept | 1413 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3o3puxa8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deityofyoutube's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ou2v7h4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ou2v7h4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deityofyoutube')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deityofyoutube/1620252403590/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deityofyoutube
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Just the Tip AI Bot
@deityofyoutube bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @deityofyoutube's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deityofyoutube's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">evelyn 🤖 AI Bot </div>
<div style="font-size: 15px">@deleteevelyn bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@deleteevelyn's tweets](https://twitter.com/deleteevelyn).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3196 |
| Retweets | 277 |
| Short tweets | 358 |
| Tweets kept | 2561 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1cgctgf3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deleteevelyn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/inf2farl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/inf2farl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deleteevelyn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deleteevelyn/1614106800270/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deleteevelyn
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
evelyn AI Bot
@deleteevelyn bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @deleteevelyn's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deleteevelyn's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/2300677070/886b0055ea8f8e5ba55a58f8ea82dac8_400x400.png')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Delicious Tacos 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@delicious_tacos bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@delicious_tacos's tweets](https://twitter.com/delicious_tacos).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3214</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>817</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>578</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1819</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/1573t9o6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @delicious_tacos's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/39svipdd) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/39svipdd/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/delicious_tacos'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/delicious_tacos
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Delicious Tacos AI Bot </div>
<div style="font-size: 15px; color: #657786">@delicious_tacos bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @delicious_tacos's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3214</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>817</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>578</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1819</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @delicious_tacos's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/delicious_tacos'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">🍕 Deliveroo France</div>
<div style="text-align: center; font-size: 14px;">@deliveroo_fr</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from 🍕 Deliveroo France.
| Data | 🍕 Deliveroo France |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 5 |
| Short tweets | 209 |
| Tweets kept | 3036 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/35lhnvsx/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deliveroo_fr's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3544md47) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3544md47/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deliveroo_fr')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/deliveroo_fr/1639165126235/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deliveroo_fr
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Deliveroo France
@deliveroo\_fr
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Deliveroo France.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deliveroo\_fr's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dace🐛🏠 🤖 AI Bot </div>
<div style="font-size: 15px">@deliverydace bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@deliverydace's tweets](https://twitter.com/deliverydace).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2003 |
| Retweets | 169 |
| Short tweets | 329 |
| Tweets kept | 1505 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1826o3k3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deliverydace's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/24r42zx0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/24r42zx0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deliverydace')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deliverydace/1613630846956/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deliverydace
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dace AI Bot
@deliverydace bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @deliverydace's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deliverydace's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">OptionsWolf</div>
<div style="text-align: center; font-size: 14px;">@deltagammaqueen</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from OptionsWolf.
| Data | OptionsWolf |
| --- | --- |
| Tweets downloaded | 3245 |
| Retweets | 264 |
| Short tweets | 1164 |
| Tweets kept | 1817 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2tt0l3wo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deltagammaqueen's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/unz6kk43) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/unz6kk43/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deltagammaqueen')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deltagammaqueen/1628736507176/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deltagammaqueen
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
OptionsWolf
@deltagammaqueen
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from OptionsWolf.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deltagammaqueen's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">rj bday (season) 🦜🍓💝 🤖 AI Bot </div>
<div style="font-size: 15px">@demirenjun bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@demirenjun's tweets](https://twitter.com/demirenjun).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3199 |
| Retweets | 800 |
| Short tweets | 384 |
| Tweets kept | 2015 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bdlmgyb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @demirenjun's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ck8cxvw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ck8cxvw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/demirenjun')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/demirenjun/1617917661023/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/demirenjun
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
rj bday (season) AI Bot
@demirenjun bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @demirenjun's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @demirenjun's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dení has returned. 🤖 AI Bot </div>
<div style="font-size: 15px">@deni_is_aflor bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@deni_is_aflor's tweets](https://twitter.com/deni_is_aflor).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3196 |
| Retweets | 1101 |
| Short tweets | 195 |
| Tweets kept | 1900 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22jo6jl8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deni_is_aflor's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/l4we4gl2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/l4we4gl2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deni_is_aflor')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deni_is_aflor/1617777629095/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deni_is_aflor
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dení has returned. AI Bot
@deni\_is\_aflor bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @deni\_is\_aflor's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deni\_is\_aflor's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Den</div>
<div style="text-align: center; font-size: 14px;">@denyah_</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Den.
| Data | Den |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 464 |
| Short tweets | 795 |
| Tweets kept | 1985 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3e5c08gr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @denyah_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1438ocp8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1438ocp8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/denyah_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/denyah_/1643852632266/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/denyah_
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Den
@denyah\_
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Den.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @denyah\_'s tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">pete wolfendale 🤖 AI Bot </div>
<div style="font-size: 15px">@deontologistics bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@deontologistics's tweets](https://twitter.com/deontologistics).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3230 |
| Retweets | 590 |
| Short tweets | 187 |
| Tweets kept | 2453 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ahwv4uv/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deontologistics's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2dpgq6x6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2dpgq6x6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deontologistics')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deontologistics/1616689045190/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deontologistics
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
pete wolfendale AI Bot
@deontologistics bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @deontologistics's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deontologistics's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">yo sophist</div>
<div style="text-align: center; font-size: 14px;">@deptofsophistry</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from yo sophist.
| Data | yo sophist |
| --- | --- |
| Tweets downloaded | 3215 |
| Retweets | 327 |
| Short tweets | 762 |
| Tweets kept | 2126 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3p698zbi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deptofsophistry's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3nt0sevr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3nt0sevr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deptofsophistry')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deptofsophistry/1621365721868/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deptofsophistry
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
yo sophist
@deptofsophistry
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from yo sophist.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deptofsophistry's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">DER SPIEGEL</div>
<div style="text-align: center; font-size: 14px;">@derspiegel</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from DER SPIEGEL.
| Data | DER SPIEGEL |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 478 |
| Short tweets | 6 |
| Tweets kept | 2766 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2uv8zr0k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @derspiegel's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i3q4xu9o) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i3q4xu9o/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/derspiegel')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/derspiegel/1638461583796/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/derspiegel
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
DER SPIEGEL
@derspiegel
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from DER SPIEGEL.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @derspiegel's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dev, Bride of Kripkenstein</div>
<div style="text-align: center; font-size: 14px;">@dervine7</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dev, Bride of Kripkenstein.
| Data | Dev, Bride of Kripkenstein |
| --- | --- |
| Tweets downloaded | 3237 |
| Retweets | 177 |
| Short tweets | 272 |
| Tweets kept | 2788 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2j2ia8ja/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dervine7's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/287itbe2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/287itbe2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dervine7')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dervine7/1633413178103/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dervine7
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Dev, Bride of Kripkenstein
@dervine7
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dev, Bride of Kripkenstein.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dervine7's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">nathan, stuck on magic mountain 🤖 AI Bot </div>
<div style="font-size: 15px">@derweise91 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@derweise91's tweets](https://twitter.com/derweise91).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3233 |
| Retweets | 468 |
| Short tweets | 408 |
| Tweets kept | 2357 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2cgk3c79/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @derweise91's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yxo7yhz5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yxo7yhz5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/derweise91')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/derweise91/1616691639404/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/derweise91
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
nathan, stuck on magic mountain AI Bot
@derweise91 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @derweise91's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @derweise91's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">♦️Moira Perfected♦️ 🤖 AI Bot </div>
<div style="font-size: 15px">@destiny_thememe bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@destiny_thememe's tweets](https://twitter.com/destiny_thememe).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 186 |
| Short tweets | 772 |
| Tweets kept | 2284 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bbkix40/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @destiny_thememe's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/20xpitr1) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/20xpitr1/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/destiny_thememe')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/destiny_thememe/1616803427645/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/destiny_thememe
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
️Moira Perfected️ AI Bot
@destiny\_thememe bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @destiny\_thememe's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @destiny\_thememe's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1554982611/Nolan_Finley1_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/667024309995626496/OmzBnHNF_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Detroit News Opinion & Nolan Finley & Ingrid Jacques</div>
<div style="text-align: center; font-size: 14px;">@detnewsopinion-ingrid_jacques-nolanfinleydn</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Detroit News Opinion & Nolan Finley & Ingrid Jacques.
| Data | Detroit News Opinion | Nolan Finley | Ingrid Jacques |
| --- | --- | --- | --- |
| Tweets downloaded | 3250 | 3249 | 3248 |
| Retweets | 530 | 1833 | 1324 |
| Short tweets | 0 | 49 | 45 |
| Tweets kept | 2720 | 1367 | 1879 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ktqwqx5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detnewsopinion-ingrid_jacques-nolanfinleydn's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/vu0trurc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/vu0trurc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/detnewsopinion-ingrid_jacques-nolanfinleydn')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/detnewsopinion-ingrid_jacques-nolanfinleydn/1639365489716/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/detnewsopinion-ingrid_jacques-nolanfinleydn
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Detroit News Opinion & Nolan Finley & Ingrid Jacques
@detnewsopinion-ingrid\_jacques-nolanfinleydn
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Detroit News Opinion & Nolan Finley & Ingrid Jacques.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @detnewsopinion-ingrid\_jacques-nolanfinleydn's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Detroit News Opinion</div>
<div style="text-align: center; font-size: 14px;">@detnewsopinion</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Detroit News Opinion.
| Data | Detroit News Opinion |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 527 |
| Short tweets | 0 |
| Tweets kept | 2723 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/gpe3yyem/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detnewsopinion's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zezrwsaf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zezrwsaf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/detnewsopinion')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/detnewsopinion/1639432824211/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/detnewsopinion
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Detroit News Opinion
@detnewsopinion
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Detroit News Opinion.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @detnewsopinion's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1426046688263692288/RzlZFjIP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1312018147822759937/Z7XnZkhn_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sad rico & follow me only if you're sad & ...</div>
<div style="text-align: center; font-size: 14px;">@detseretninu-dumbricardo-illuminusnumb</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sad rico & follow me only if you're sad & ....
| Data | sad rico | follow me only if you're sad | ... |
| --- | --- | --- | --- |
| Tweets downloaded | 768 | 3233 | 677 |
| Retweets | 0 | 167 | 1 |
| Short tweets | 102 | 755 | 285 |
| Tweets kept | 666 | 2311 | 391 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/l42hthlz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @detseretninu-dumbricardo-illuminusnumb's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/c1hyp8lf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/detseretninu-dumbricardo-illuminusnumb')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/detseretninu-dumbricardo-illuminusnumb/1629841756956/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/detseretninu-dumbricardo-illuminusnumb
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
sad rico & follow me only if you're sad & ...
@detseretninu-dumbricardo-illuminusnumb
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from sad rico & follow me only if you're sad & ....
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @detseretninu-dumbricardo-illuminusnumb's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Riley 🇺🇸 🤖 AI Bot </div>
<div style="font-size: 15px">@deusdairyland bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@deusdairyland's tweets](https://twitter.com/deusdairyland).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 908 |
| Retweets | 136 |
| Short tweets | 219 |
| Tweets kept | 553 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/e8tma1u2/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @deusdairyland's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/146925y8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/146925y8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/deusdairyland')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/deusdairyland/1616653373811/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/deusdairyland
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Riley 🇺🇸 AI Bot
@deusdairyland bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @deusdairyland's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @deusdairyland's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1288646558364372994/jgsTkFCl_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">koob85 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@devkoob bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@devkoob's tweets](https://twitter.com/devkoob).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>712</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>27</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>191</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>494</td>
</tr>
</tbody>
</table>
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/qdwtu190/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devkoob's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nweh9viw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nweh9viw/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/devkoob'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/devkoob/1609552229453/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/devkoob
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">koob85 AI Bot </div>
<div style="font-size: 15px; color: #657786">@devkoob bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @devkoob's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>712</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>27</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>191</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>494</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @devkoob's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/devkoob'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">𝐃𝐄𝐕𝐎𝐍 🤖 AI Bot </div>
<div style="font-size: 15px">@devon_onearth bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@devon_onearth's tweets](https://twitter.com/devon_onearth).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 449 |
| Short tweets | 358 |
| Tweets kept | 2420 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/ilmmvbmb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devon_onearth's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ryyr6zq5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ryyr6zq5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/devon_onearth')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/devon_onearth/1614135166237/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/devon_onearth
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
𝐃𝐄𝐕𝐎𝐍 AI Bot
@devon\_onearth bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @devon\_onearth's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @devon\_onearth's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/748969887146471424/4BmVTQAv_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/74188698/NeilTysonOriginsA-Crop_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nigel Thurlow & Ernest Wright, Ph. D. ABD & Neil deGrasse Tyson</div>
<div style="text-align: center; font-size: 14px;">@devops_guru-neiltyson-nigelthurlow</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nigel Thurlow & Ernest Wright, Ph. D. ABD & Neil deGrasse Tyson.
| Data | Nigel Thurlow | Ernest Wright, Ph. D. ABD | Neil deGrasse Tyson |
| --- | --- | --- | --- |
| Tweets downloaded | 1264 | 1933 | 3250 |
| Retweets | 648 | 20 | 10 |
| Short tweets | 27 | 105 | 79 |
| Tweets kept | 589 | 1808 | 3161 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/jc9vah1k/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devops_guru-neiltyson-nigelthurlow's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2myicem9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2myicem9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/devops_guru-neiltyson-nigelthurlow')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/devops_guru-neiltyson-nigelthurlow/1626908139492/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/devops_guru-neiltyson-nigelthurlow
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Nigel Thurlow & Ernest Wright, Ph. D. ABD & Neil deGrasse Tyson
@devops\_guru-neiltyson-nigelthurlow
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Nigel Thurlow & Ernest Wright, Ph. D. ABD & Neil deGrasse Tyson.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @devops\_guru-neiltyson-nigelthurlow's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">an actual dog 🤖 AI Bot </div>
<div style="font-size: 15px">@devtesla bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@devtesla's tweets](https://twitter.com/devtesla).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3164 |
| Retweets | 1246 |
| Short tweets | 222 |
| Tweets kept | 1696 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mgmikdu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devtesla's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8vrkz503) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8vrkz503/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/devtesla')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/devtesla/1614137580281/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/devtesla
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
an actual dog AI Bot
@devtesla bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @devtesla's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @devtesla's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Devtrospective 🤖 AI Bot </div>
<div style="font-size: 15px">@devtrospective bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@devtrospective's tweets](https://twitter.com/devtrospective).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3239 |
| Retweets | 562 |
| Short tweets | 414 |
| Tweets kept | 2263 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3fwfr76h/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @devtrospective's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3moy4evm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3moy4evm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/devtrospective')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/devtrospective/1617905426485/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/devtrospective
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Devtrospective AI Bot
@devtrospective bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @devtrospective's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @devtrospective's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">dGc 🤖 AI Bot </div>
<div style="font-size: 15px">@dgcyt_ bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dgcyt_'s tweets](https://twitter.com/dgcyt_).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 907 |
| Retweets | 31 |
| Short tweets | 353 |
| Tweets kept | 523 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2172uj60/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dgcyt_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3goormmx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3goormmx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dgcyt_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dgcyt_/1619447035696/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dgcyt_
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
dGc AI Bot
@dgcyt\_ bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dgcyt\_'s tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dgcyt\_'s tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/870004265170948097/5tyWgIkd_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Damien Henry 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dh7net bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dh7net's tweets](https://twitter.com/dh7net).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2463</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>857</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>227</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1379</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/26i29me7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dh7net's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/6w8xyhch) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/6w8xyhch/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dh7net'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dh7net/1602195754110/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dh7net
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Damien Henry AI Bot </div>
<div style="font-size: 15px; color: #657786">@dh7net bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dh7net's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2463</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>857</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>227</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1379</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dh7net's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dh7net'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/911053058104221696/ERPL-sS4_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dharmesh Kakadia 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dharmeshkakadia bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dharmeshkakadia's tweets](https://twitter.com/dharmeshkakadia).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3231</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1284</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>505</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1442</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/igebzms3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dharmeshkakadia's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2rjrmg20) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2rjrmg20/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dharmeshkakadia'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dharmeshkakadia/1602267558589/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dharmeshkakadia
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dharmesh Kakadia AI Bot </div>
<div style="font-size: 15px; color: #657786">@dharmeshkakadia bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dharmeshkakadia's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3231</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1284</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>505</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1442</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dharmeshkakadia's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dharmeshkakadia'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1245735185787822080/riKefvZr_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Carlos 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@diaz_de_leon bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@diaz_de_leon's tweets](https://twitter.com/diaz_de_leon).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>718</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>167</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>66</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>485</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/w8v47wri/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @diaz_de_leon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/17bl278f) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/17bl278f/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/diaz_de_leon'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/diaz_de_leon/1603509315873/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/diaz_de_leon
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Carlos AI Bot </div>
<div style="font-size: 15px; color: #657786">@diaz_de_leon bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @diaz_de_leon's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>718</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>167</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>66</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>485</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @diaz_de_leon's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/diaz_de_leon'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">💾 🤖 AI Bot </div>
<div style="font-size: 15px">@digital_languor bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@digital_languor's tweets](https://twitter.com/digital_languor).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3200 |
| Retweets | 1037 |
| Short tweets | 589 |
| Tweets kept | 1574 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1z1me0hi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @digital_languor's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/uffw47ml) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/uffw47ml/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/digital_languor')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/digital_languor
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI Bot
@digital\_languor bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @digital\_languor's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @digital\_languor's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">artchick.eth 🔥</div>
<div style="text-align: center; font-size: 14px;">@digitalartchick</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from artchick.eth 🔥.
| Data | artchick.eth 🔥 |
| --- | --- |
| Tweets downloaded | 3248 |
| Retweets | 173 |
| Short tweets | 580 |
| Tweets kept | 2495 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3m0unu0z/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @digitalartchick's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3q41dpi6) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3q41dpi6/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/digitalartchick')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/digitalartchick/1622110282921/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/digitalartchick
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
URL
@digitalartchick
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from URL .
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @digitalartchick's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Digitalsolver 🤖 AI Bot </div>
<div style="font-size: 15px">@digitalsolver1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@digitalsolver1's tweets](https://twitter.com/digitalsolver1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 291 |
| Retweets | 112 |
| Short tweets | 70 |
| Tweets kept | 109 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23z4oayh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @digitalsolver1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/237vwzkl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/237vwzkl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/digitalsolver1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/digitalsolver1/1616653735166/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/digitalsolver1
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Digitalsolver AI Bot
@digitalsolver1 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @digitalsolver1's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @digitalsolver1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">george w kush 🤖 AI Bot </div>
<div style="font-size: 15px">@digitalsoyboy bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@digitalsoyboy's tweets](https://twitter.com/digitalsoyboy).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3170 |
| Retweets | 462 |
| Short tweets | 369 |
| Tweets kept | 2339 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/26qiav6i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @digitalsoyboy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3b4m8rf4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3b4m8rf4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/digitalsoyboy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/digitalsoyboy/1617805776990/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/digitalsoyboy
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
george w kush AI Bot
@digitalsoyboy bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @digitalsoyboy's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @digitalsoyboy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Jess O'Brien 🤖 AI Bot </div>
<div style="font-size: 15px">@disabledjess bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@disabledjess's tweets](https://twitter.com/disabledjess).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 713 |
| Retweets | 324 |
| Short tweets | 34 |
| Tweets kept | 355 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/dt08vg5c/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @disabledjess's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zxrg63ip) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zxrg63ip/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/disabledjess')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/disabledjess/1616670355194/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/disabledjess
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Jess O'Brien AI Bot
@disabledjess bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @disabledjess's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @disabledjess's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">luna 🤖 AI Bot </div>
<div style="font-size: 15px">@discarddiscord bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@discarddiscord's tweets](https://twitter.com/discarddiscord).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 1495 |
| Retweets | 289 |
| Short tweets | 213 |
| Tweets kept | 993 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1tvxkurq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @discarddiscord's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2g2xt22m) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2g2xt22m/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/discarddiscord')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/discarddiscord/1614246710317/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/discarddiscord
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
luna AI Bot
@discarddiscord bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @discarddiscord's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @discarddiscord's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">andrew blinn 🤖 AI Bot </div>
<div style="font-size: 15px">@disconcision bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@disconcision's tweets](https://twitter.com/disconcision).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2262 |
| Retweets | 453 |
| Short tweets | 159 |
| Tweets kept | 1650 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/n4jrdsqh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @disconcision's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2f36wyoh) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2f36wyoh/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/disconcision')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/disconcision/1616643733458/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/disconcision
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
andrew blinn AI Bot
@disconcision bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @disconcision's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @disconcision's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/980964012170121217/U6FjPH4H_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">LIAM & wint & Picasso</div>
<div style="text-align: center; font-size: 14px;">@discountpicasso-dril-liam_100000</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from LIAM & wint & Picasso.
| Data | LIAM | wint | Picasso |
| --- | --- | --- | --- |
| Tweets downloaded | 1962 | 3226 | 3216 |
| Retweets | 135 | 472 | 427 |
| Short tweets | 435 | 313 | 421 |
| Tweets kept | 1392 | 2441 | 2368 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1w4ekve8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @discountpicasso-dril-liam_100000's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2s4a755y/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/discountpicasso-dril-liam_100000')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/discountpicasso-dril-liam_100000/1630973640579/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/discountpicasso-dril-liam_100000
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
LIAM & wint & Picasso
@discountpicasso-dril-liam\_100000
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from LIAM & wint & Picasso.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @discountpicasso-dril-liam\_100000's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">malignant tzara 🤖 AI Bot </div>
<div style="font-size: 15px">@divorceenforcer bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@divorceenforcer's tweets](https://twitter.com/divorceenforcer).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3148 |
| Retweets | 1127 |
| Short tweets | 574 |
| Tweets kept | 1447 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2b3i6627/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @divorceenforcer's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13x1aewb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13x1aewb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/divorceenforcer')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/divorceenforcer/1614097005501/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/divorceenforcer
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
malignant tzara AI Bot
@divorceenforcer bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @divorceenforcer's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @divorceenforcer's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">memphis milano enthusiast 🤖 AI Bot </div>
<div style="font-size: 15px">@dkulchar bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dkulchar's tweets](https://twitter.com/dkulchar).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3236 |
| Retweets | 551 |
| Short tweets | 569 |
| Tweets kept | 2116 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ar0h0xc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dkulchar's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/v3hyz25i) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/v3hyz25i/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dkulchar')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dkulchar
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
memphis milano enthusiast AI Bot
@dkulchar bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dkulchar's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dkulchar's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Pirate Queen Grey</div>
<div style="text-align: center; font-size: 14px;">@dndomme</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Pirate Queen Grey.
| Data | Pirate Queen Grey |
| --- | --- |
| Tweets downloaded | 3218 |
| Retweets | 1329 |
| Short tweets | 288 |
| Tweets kept | 1601 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3ucgtv6r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dndomme's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1sej7nbm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1sej7nbm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dndomme')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dndomme/1632870893354/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dndomme
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Pirate Queen Grey
@dndomme
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Pirate Queen Grey.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dndomme's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/1193922190955167744/kFfjfcL4_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthias Dobbelaere-Welvaert 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@dobbelaerew bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dobbelaerew's tweets](https://twitter.com/dobbelaerew).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3208</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>344</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>350</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2514</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/30tqyeyq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dobbelaerew's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/2rthb7d0) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/2rthb7d0/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dobbelaerew'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo_share.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dobbelaerew
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Matthias Dobbelaere-Welvaert AI Bot </div>
<div style="font-size: 15px; color: #657786">@dobbelaerew bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @dobbelaerew's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3208</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>344</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>350</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2514</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @dobbelaerew's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/dobbelaerew'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Tim Houk 🤖 AI Bot </div>
<div style="font-size: 15px">@dochouk bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dochouk's tweets](https://twitter.com/dochouk).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 441 |
| Retweets | 21 |
| Short tweets | 11 |
| Tweets kept | 409 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/23t4thvg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dochouk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/218a58qu) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/218a58qu/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dochouk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dochouk/1616781012029/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dochouk
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Tim Houk AI Bot
@dochouk bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dochouk's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dochouk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1250027548785938432/KHyOaVQY_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Emmet Burke 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@doctor_emmet bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@doctor_emmet's tweets](https://twitter.com/doctor_emmet).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2496</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>204</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>176</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2116</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/duj1xqx6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @doctor_emmet's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/yzdnl9ld) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/yzdnl9ld/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/doctor_emmet'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/doctor_emmet/1603833315216/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/doctor_emmet
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Emmet Burke AI Bot </div>
<div style="font-size: 15px; color: #657786">@doctor_emmet bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @doctor_emmet's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>2496</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>204</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>176</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2116</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @doctor_emmet's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/doctor_emmet'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">dodo82.jp</div>
<div style="text-align: center; font-size: 14px;">@dodo82j</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from dodo82.jp.
| Data | dodo82.jp |
| --- | --- |
| Tweets downloaded | 217 |
| Retweets | 31 |
| Short tweets | 26 |
| Tweets kept | 160 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2k4cbj1t/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dodo82j's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2qiazp47) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2qiazp47/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dodo82j')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dodo82j/1628669484939/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dodo82j
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
URL
@dodo82j
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from URL.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dodo82j's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1046968391389589507/_0r5bQLl_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Elon Musk & Thoughts of Dog®</div>
<div style="text-align: center; font-size: 14px;">@dog_feelings-elonmusk</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Elon Musk & Thoughts of Dog®.
| Data | Elon Musk | Thoughts of Dog® |
| --- | --- | --- |
| Tweets downloaded | 400 | 1148 |
| Retweets | 32 | 14 |
| Short tweets | 123 | 17 |
| Tweets kept | 245 | 1117 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2vw0f8wk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dog_feelings-elonmusk's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2o3nweey) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2o3nweey/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dog_feelings-elonmusk')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dog_feelings-elonmusk
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Elon Musk & Thoughts of Dog®
@dog\_feelings-elonmusk
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Elon Musk & Thoughts of Dog®.
Data: Tweets downloaded, Elon Musk: 400, Thoughts of Dog®: 1148
Data: Retweets, Elon Musk: 32, Thoughts of Dog®: 14
Data: Short tweets, Elon Musk: 123, Thoughts of Dog®: 17
Data: Tweets kept, Elon Musk: 245, Thoughts of Dog®: 1117
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dog\_feelings-elonmusk's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Thoughts of Dog®</div>
<div style="text-align: center; font-size: 14px;">@dog_feelings</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Thoughts of Dog®.
| Data | Thoughts of Dog® |
| --- | --- |
| Tweets downloaded | 1213 |
| Retweets | 23 |
| Short tweets | 21 |
| Tweets kept | 1169 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1u7m68sz/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dog_feelings's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/lt738fgm) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/lt738fgm/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dog_feelings')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dog_feelings/1668288769350/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dog_feelings
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Thoughts of Dog®
@dog\_feelings
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Thoughts of Dog®.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dog\_feelings's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🥞 🤖 AI Bot </div>
<div style="font-size: 15px">@dogdick420cum bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dogdick420cum's tweets](https://twitter.com/dogdick420cum).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3242 |
| Retweets | 148 |
| Short tweets | 512 |
| Tweets kept | 2582 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/nzltah4f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dogdick420cum's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29pe6wy0) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29pe6wy0/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dogdick420cum')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dogdick420cum/1615429013878/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dogdick420cum
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI Bot
@dogdick420cum bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dogdick420cum's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dogdick420cum's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">doge (likes democracy) 🌐 🤖 AI Bot </div>
<div style="font-size: 15px">@dogepod_ bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dogepod_'s tweets](https://twitter.com/dogepod_).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3237 |
| Retweets | 584 |
| Short tweets | 525 |
| Tweets kept | 2128 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/316ieof3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dogepod_'s tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2fl8hjof) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2fl8hjof/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dogepod_')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dogepod_/1617166176912/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dogepod_
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
doge (likes democracy) AI Bot
@dogepod\_ bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dogepod\_'s tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dogepod\_'s tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Doityboy</div>
<div style="text-align: center; font-size: 14px;">@doityboy</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Doityboy.
| Data | Doityboy |
| --- | --- |
| Tweets downloaded | 3180 |
| Retweets | 551 |
| Short tweets | 660 |
| Tweets kept | 1969 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/17aeg3tr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @doityboy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3qumubtj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3qumubtj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/doityboy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/doityboy/1621603103969/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/doityboy
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Doityboy
@doityboy
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Doityboy.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @doityboy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Jean-Emmanuel De La Martinière</div>
<div style="text-align: center; font-size: 14px;">@dojacat</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Jean-Emmanuel De La Martinière.
| Data | Jean-Emmanuel De La Martinière |
| --- | --- |
| Tweets downloaded | 1569 |
| Retweets | 124 |
| Short tweets | 322 |
| Tweets kept | 1123 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3mc5ryte/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dojacat's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3urxj6el) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3urxj6el/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dojacat')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dojacat/1644852645931/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dojacat
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Jean-Emmanuel De La Martinière
@dojacat
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Jean-Emmanuel De La Martinière.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dojacat's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dom and Cats 😼 🤖 AI Bot </div>
<div style="font-size: 15px">@domandcats bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@domandcats's tweets](https://twitter.com/domandcats).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3249 |
| Retweets | 69 |
| Short tweets | 452 |
| Tweets kept | 2728 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/24l3uch3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @domandcats's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/nsc2js1f) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/nsc2js1f/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/domandcats')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/domandcats/1616883428985/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/domandcats
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Dom and Cats AI Bot
@domandcats bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @domandcats's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @domandcats's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Domonic</div>
<div style="text-align: center; font-size: 14px;">@domonic_m</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Domonic.
| Data | Domonic |
| --- | --- |
| Tweets downloaded | 502 |
| Retweets | 70 |
| Short tweets | 69 |
| Tweets kept | 363 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1q7f1cu6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @domonic_m's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/no8iew6j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/no8iew6j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/domonic_m')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/domonic_m/1629517784951/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/domonic_m
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Domonic
@domonic\_m
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Domonic.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @domonic\_m's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Donald Clark 🤖 AI Bot </div>
<div style="font-size: 15px">@donaldclark bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@donaldclark's tweets](https://twitter.com/donaldclark).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 4 |
| Short tweets | 195 |
| Tweets kept | 3051 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2vaujq4r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donaldclark's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2of8k8rc) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2of8k8rc/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/donaldclark')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/donaldclark/1617223633702/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/donaldclark
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Donald Clark AI Bot
@donaldclark bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @donaldclark's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @donaldclark's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Donald Hoffman 🤖 AI Bot </div>
<div style="font-size: 15px">@donalddhoffman bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@donalddhoffman's tweets](https://twitter.com/donalddhoffman).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 236 |
| Retweets | 11 |
| Short tweets | 45 |
| Tweets kept | 180 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1wzfrcs4/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donalddhoffman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2zo2lld7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2zo2lld7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/donalddhoffman')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/donalddhoffman
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Donald Hoffman AI Bot
@donalddhoffman bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @donalddhoffman's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @donalddhoffman's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Donkey Kong</div>
<div style="text-align: center; font-size: 14px;">@donkeykongape</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Donkey Kong.
| Data | Donkey Kong |
| --- | --- |
| Tweets downloaded | 3200 |
| Retweets | 72 |
| Short tweets | 1081 |
| Tweets kept | 2047 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1pcwumgk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donkeykongape's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/253exk8q) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/253exk8q/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/donkeykongape')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/donkeykongape/1625293730159/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/donkeykongape
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Donkey Kong
@donkeykongape
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Donkey Kong.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @donkeykongape's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Me on the left 🤖 AI Bot </div>
<div style="font-size: 15px">@dontgender bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dontgender's tweets](https://twitter.com/dontgender).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2340 |
| Retweets | 1023 |
| Short tweets | 311 |
| Tweets kept | 1006 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34s4a2i7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dontgender's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/sl8zueoq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/sl8zueoq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dontgender')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dontgender/1614140992709/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dontgender
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Me on the left AI Bot
@dontgender bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dontgender's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dontgender's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Don Winslow 🤖 AI Bot </div>
<div style="font-size: 15px">@donwinslow bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@donwinslow's tweets](https://twitter.com/donwinslow).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3219 |
| Retweets | 1841 |
| Short tweets | 169 |
| Tweets kept | 1209 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2jonj6ue/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @donwinslow's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jogue52) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jogue52/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/donwinslow')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/donwinslow/1612878348095/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/donwinslow
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Don Winslow AI Bot
@donwinslow bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @donwinslow's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @donwinslow's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Thistle Bnuuy 🤖 AI Bot </div>
<div style="font-size: 15px">@dorkyfolf bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dorkyfolf's tweets](https://twitter.com/dorkyfolf).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2881 |
| Retweets | 1665 |
| Short tweets | 255 |
| Tweets kept | 961 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2m0yq9vg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dorkyfolf's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2wv3osjp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2wv3osjp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dorkyfolf')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dorkyfolf/1617804114723/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dorkyfolf
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Thistle Bnuuy AI Bot
@dorkyfolf bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dorkyfolf's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dorkyfolf's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Carlos Santana - DotCSV 🧠🤖 🤖 AI Bot </div>
<div style="font-size: 15px">@dotcsv bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dotcsv's tweets](https://twitter.com/dotcsv).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3219 |
| Retweets | 1037 |
| Short tweets | 238 |
| Tweets kept | 1944 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/36v1c13g/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dotcsv's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3g04fco4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3g04fco4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dotcsv')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dotcsv/1619159083139/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dotcsv
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Carlos Santana - DotCSV AI Bot
@dotcsv bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dotcsv's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dotcsv's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">daniel 🤖 AI Bot </div>
<div style="font-size: 15px">@downgrad3d bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@downgrad3d's tweets](https://twitter.com/downgrad3d).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 441 |
| Retweets | 138 |
| Short tweets | 82 |
| Tweets kept | 221 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/6eqzlox6/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @downgrad3d's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1fsmvsit) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1fsmvsit/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/downgrad3d')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/downgrad3d/1614303163871/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/downgrad3d
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
daniel AI Bot
@downgrad3d bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @downgrad3d's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @downgrad3d's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Donovan</div>
<div style="text-align: center; font-size: 14px;">@dp_crazy_gamer</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Donovan.
| Data | Donovan |
| --- | --- |
| Tweets downloaded | 3214 |
| Retweets | 763 |
| Short tweets | 824 |
| Tweets kept | 1627 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2pvd0ays/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dp_crazy_gamer's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/14bwewth) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/14bwewth/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dp_crazy_gamer')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dp_crazy_gamer/1643299090939/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dp_crazy_gamer
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Donovan
@dp\_crazy\_gamer
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Donovan.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dp\_crazy\_gamer's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">David Pakman 🤖 AI Bot </div>
<div style="font-size: 15px">@dpakman bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dpakman's tweets](https://twitter.com/dpakman).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 49 |
| Short tweets | 418 |
| Tweets kept | 2783 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/el9fwqxw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dpakman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2esg5gfa) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2esg5gfa/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dpakman')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dpakman
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
David Pakman AI Bot
@dpakman bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dpakman's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dpakman's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">🏳️🌈Dragonogon🏳️⚧️🐲 🤖 AI Bot </div>
<div style="font-size: 15px">@dragonogon bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dragonogon's tweets](https://twitter.com/dragonogon).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3235 |
| Retweets | 988 |
| Short tweets | 346 |
| Tweets kept | 1901 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/egunl2pl/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dragonogon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1lgtnz96) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1lgtnz96/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dragonogon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dragonogon
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
️Dragonogon️️ AI Bot
@dragonogon bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dragonogon's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dragonogon's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Drizzy</div>
<div style="text-align: center; font-size: 14px;">@drake</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Drizzy.
| Data | Drizzy |
| --- | --- |
| Tweets downloaded | 1766 |
| Retweets | 396 |
| Short tweets | 151 |
| Tweets kept | 1219 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/178j75wb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drake's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gvmezqz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gvmezqz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drake')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drake/1631662344811/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drake
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
|
AI BOT
Drizzy
@drake
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Drizzy.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drake's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">izzy 😼 (anti-ableism arc)</div>
<div style="text-align: center; font-size: 14px;">@drbelbel0</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from izzy 😼 (anti-ableism arc).
| Data | izzy 😼 (anti-ableism arc) |
| --- | --- |
| Tweets downloaded | 340 |
| Retweets | 174 |
| Short tweets | 57 |
| Tweets kept | 109 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/y28lpi1f/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drbelbel0's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/362qf1n5) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/362qf1n5/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drbelbel0')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drbelbel0/1627246944704/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drbelbel0
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
izzy (anti-ableism arc)
@drbelbel0
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from izzy (anti-ableism arc).
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drbelbel0's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('http://pbs.twimg.com/profile_images/2684024563/9660a122cc7fa5a3d348e16614ebb7a7_400x400.jpeg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Brian May 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@drbrianmay bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@drbrianmay's tweets](https://twitter.com/drbrianmay).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3232</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>448</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>60</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2724</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3ee80djp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drbrianmay's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/1zzbge0u) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/1zzbge0u/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/drbrianmay'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drbrianmay
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Brian May AI Bot </div>
<div style="font-size: 15px; color: #657786">@drbrianmay bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @drbrianmay's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3232</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>448</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>60</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>2724</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @drbrianmay's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/drbrianmay'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Andrew Maragni 🇺🇸</div>
<div style="text-align: center; font-size: 14px;">@drew106</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Andrew Maragni 🇺🇸.
| Data | Andrew Maragni 🇺🇸 |
| --- | --- |
| Tweets downloaded | 3244 |
| Retweets | 786 |
| Short tweets | 176 |
| Tweets kept | 2282 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/pfjcjeb0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drew106's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3e1rv18u/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drew106')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drew106/1627055915329/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drew106
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Andrew Maragni 🇺🇸
@drew106
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Andrew Maragni 🇺🇸.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drew106's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">drewcoffman.eth 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢</div>
<div style="text-align: center; font-size: 14px;">@drewcoffman</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from drewcoffman.eth 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢.
| Data | drewcoffman.eth 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢 |
| --- | --- |
| Tweets downloaded | 3250 |
| Retweets | 43 |
| Short tweets | 540 |
| Tweets kept | 2667 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2kh4r1d8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drewcoffman's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1ln9svwl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1ln9svwl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drewcoffman')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drewcoffman/1627699166305/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drewcoffman
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
URL 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢
@drewcoffman
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from URL 𝕚𝕤 𝕠𝕟𝕝𝕚𝕟𝕖 🟢.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drewcoffman's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1468502340634296326/gbl8-ltv_400x400.png')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Jril & wintbot_neo</div>
<div style="text-align: center; font-size: 14px;">@dril-drilbot_neo-jril_bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Jril & wintbot_neo.
| Data | wint | Jril | wintbot_neo |
| --- | --- | --- | --- |
| Tweets downloaded | 3228 | 113 | 3241 |
| Retweets | 475 | 0 | 315 |
| Short tweets | 305 | 0 | 453 |
| Tweets kept | 2448 | 113 | 2473 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/27nmrlyy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-drilbot_neo-jril_bot's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/i64hq9wb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/i64hq9wb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-drilbot_neo-jril_bot')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dril-drilbot_neo-jril_bot/1643968320729/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-drilbot_neo-jril_bot
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Jril & wintbot\_neo
@dril-drilbot\_neo-jril\_bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Jril & wintbot\_neo.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-drilbot\_neo-jril\_bot's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1422460373152583683/d1k9xcgN_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1096005346/1_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & jon (PERSECUTED) & Horse ebooks</div>
<div style="text-align: center; font-size: 14px;">@dril-fart-horse_ebooks</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & jon (PERSECUTED) & Horse ebooks.
| Data | wint | jon (PERSECUTED) | Horse ebooks |
| --- | --- | --- | --- |
| Tweets downloaded | 3226 | 3217 | 3200 |
| Retweets | 477 | 571 | 0 |
| Short tweets | 306 | 558 | 421 |
| Tweets kept | 2443 | 2088 | 2779 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/wf0ppmhi/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-fart-horse_ebooks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/unmddioo) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/unmddioo/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-fart-horse_ebooks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dril-fart-horse_ebooks/1640224513212/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-fart-horse_ebooks
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & jon (PERSECUTED) & Horse ebooks
@dril-fart-horse\_ebooks
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & jon (PERSECUTED) & Horse ebooks.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-fart-horse\_ebooks's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1473236995497500675/FtwXDZld_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">sexy.funny.cute.pix & wint & HUSSY2K.</div>
<div style="text-align: center; font-size: 14px;">@dril-feufillet-hostagekiller</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from sexy.funny.cute.pix & wint & HUSSY2K..
| Data | sexy.funny.cute.pix | wint | HUSSY2K. |
| --- | --- | --- | --- |
| Tweets downloaded | 3101 | 3227 | 3186 |
| Retweets | 158 | 479 | 819 |
| Short tweets | 576 | 304 | 395 |
| Tweets kept | 2367 | 2444 | 1972 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1o5d39dk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-feufillet-hostagekiller's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/16eb1faz) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/16eb1faz/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-feufillet-hostagekiller')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dril-feufillet-hostagekiller/1641814499288/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-feufillet-hostagekiller
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
URL & wint & HUSSY2K.
@dril-feufillet-hostagekiller
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from URL & wint & HUSSY2K..
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-feufillet-hostagekiller's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1410800729590308868/UYAyBj1Y_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1393094522008080385/1urtPrKy_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Chet & gnome 👼🏻</div>
<div style="text-align: center; font-size: 14px;">@dril-gnomeszs-methwaffles</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Chet & gnome 👼🏻.
| Data | wint | Chet | gnome 👼🏻 |
| --- | --- | --- | --- |
| Tweets downloaded | 3188 | 1923 | 3219 |
| Retweets | 456 | 664 | 1078 |
| Short tweets | 307 | 211 | 438 |
| Tweets kept | 2425 | 1048 | 1703 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3sv8rebo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-gnomeszs-methwaffles's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2d941f4u) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2d941f4u/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-gnomeszs-methwaffles')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-gnomeszs-methwaffles/1628064664319/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-gnomeszs-methwaffles
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Chet & gnome
@dril-gnomeszs-methwaffles
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Chet & gnome .
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-gnomeszs-methwaffles's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1393094522008080385/1urtPrKy_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404609739883954183/gta_5zXG_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & gnome 👼🏻 & ppigg</div>
<div style="text-align: center; font-size: 14px;">@dril-gnomeszs-s4m31p4n</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & gnome 👼🏻 & ppigg.
| Data | wint | gnome 👼🏻 | ppigg |
| --- | --- | --- | --- |
| Tweets downloaded | 3192 | 3220 | 3156 |
| Retweets | 456 | 1075 | 992 |
| Short tweets | 307 | 438 | 907 |
| Tweets kept | 2429 | 1707 | 1257 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2370ibjc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-gnomeszs-s4m31p4n's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/yu2suj5m) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/yu2suj5m/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-gnomeszs-s4m31p4n')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-gnomeszs-s4m31p4n/1628166288972/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-gnomeszs-s4m31p4n
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & gnome & ppigg
@dril-gnomeszs-s4m31p4n
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & gnome & ppigg.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-gnomeszs-s4m31p4n's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1402535431523217411/h07KN7VS_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & casually Jesse</div>
<div style="text-align: center; font-size: 14px;">@dril-heroicvillain95</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & casually Jesse.
| Data | wint | casually Jesse |
| --- | --- | --- |
| Tweets downloaded | 3228 | 2663 |
| Retweets | 475 | 133 |
| Short tweets | 305 | 353 |
| Tweets kept | 2448 | 2177 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3u36b2x8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-heroicvillain95's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3c8ft6vl) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3c8ft6vl/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-heroicvillain95')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-heroicvillain95
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & casually Jesse
@dril-heroicvillain95
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & casually Jesse.
Data: Tweets downloaded, wint: 3228, casually Jesse: 2663
Data: Retweets, wint: 475, casually Jesse: 133
Data: Short tweets, wint: 305, casually Jesse: 353
Data: Tweets kept, wint: 2448, casually Jesse: 2177
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-heroicvillain95's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/866045441942487041/xRAnnstd_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1096005346/1_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Pukicho & Horse ebooks</div>
<div style="text-align: center; font-size: 14px;">@dril-horse_ebooks-pukicho</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Pukicho & Horse ebooks.
| Data | wint | Pukicho | Horse ebooks |
| --- | --- | --- | --- |
| Tweets downloaded | 3226 | 2989 | 3200 |
| Retweets | 466 | 90 | 0 |
| Short tweets | 308 | 292 | 421 |
| Tweets kept | 2452 | 2607 | 2779 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/29iqmln0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-horse_ebooks-pukicho's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/29cfj39j) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/29cfj39j/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-horse_ebooks-pukicho')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-horse_ebooks-pukicho/1637621684272/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-horse_ebooks-pukicho
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Pukicho & Horse ebooks
@dril-horse\_ebooks-pukicho
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Pukicho & Horse ebooks.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-horse\_ebooks-pukicho's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1096005346/1_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Horse ebooks</div>
<div style="text-align: center; font-size: 14px;">@dril-horse_ebooks</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Horse ebooks.
| Data | wint | Horse ebooks |
| --- | --- | --- |
| Tweets downloaded | 3225 | 3200 |
| Retweets | 458 | 0 |
| Short tweets | 302 | 421 |
| Tweets kept | 2465 | 2779 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/im94xdk8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-horse_ebooks's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/8vo03p09) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/8vo03p09/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-horse_ebooks')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-horse_ebooks/1621254059055/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-horse_ebooks
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Horse ebooks
@dril-horse\_ebooks
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Horse ebooks.
Data: Tweets downloaded, wint: 3225, Horse ebooks: 3200
Data: Retweets, wint: 458, Horse ebooks: 0
Data: Short tweets, wint: 302, Horse ebooks: 421
Data: Tweets kept, wint: 2465, Horse ebooks: 2779
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-horse\_ebooks's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1322637724470358022/ccOsLDPE_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">HUSSY2K. & wint & I have 400 diseases</div>
<div style="text-align: center; font-size: 14px;">@dril-hostagekiller-suicidepussy</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from HUSSY2K. & wint & I have 400 diseases.
| Data | HUSSY2K. | wint | I have 400 diseases |
| --- | --- | --- | --- |
| Tweets downloaded | 3186 | 3226 | 3237 |
| Retweets | 819 | 480 | 121 |
| Short tweets | 395 | 304 | 1125 |
| Tweets kept | 1972 | 2442 | 1991 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1bqo2ddu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-hostagekiller-suicidepussy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o4ya0wuw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-hostagekiller-suicidepussy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dril-hostagekiller-suicidepussy/1641810324627/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-hostagekiller-suicidepussy
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
HUSSY2K. & wint & I have 400 diseases
@dril-hostagekiller-suicidepussy
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from HUSSY2K. & wint & I have 400 diseases.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-hostagekiller-suicidepussy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1363680905215291399/Bl--YnLP_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1418244914597486594/nDL8WsU2_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Jan Dogmart & Ronnie</div>
<div style="text-align: center; font-size: 14px;">@dril-jdogmart-redfieldcooper</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Jan Dogmart & Ronnie.
| Data | wint | Jan Dogmart | Ronnie |
| --- | --- | --- | --- |
| Tweets downloaded | 3229 | 1339 | 3238 |
| Retweets | 464 | 107 | 586 |
| Short tweets | 311 | 245 | 378 |
| Tweets kept | 2454 | 987 | 2274 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2ma9es8d/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-jdogmart-redfieldcooper's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/acu5gl39) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/acu5gl39/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-jdogmart-redfieldcooper')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-jdogmart-redfieldcooper/1627093373715/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-jdogmart-redfieldcooper
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Jan Dogmart & Ronnie
@dril-jdogmart-redfieldcooper
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Jan Dogmart & Ronnie.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-jdogmart-redfieldcooper's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1276461929934942210/cqNhNk6v_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">lexi & wint & ye</div>
<div style="text-align: center; font-size: 14px;">@dril-kanyewest-ph4370n</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from lexi & wint & ye.
| Data | lexi | wint | ye |
| --- | --- | --- | --- |
| Tweets downloaded | 2679 | 3226 | 1856 |
| Retweets | 1274 | 468 | 186 |
| Short tweets | 199 | 319 | 573 |
| Tweets kept | 1206 | 2439 | 1097 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3g14a01v/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-kanyewest-ph4370n's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1gh1q6ja) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1gh1q6ja/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-kanyewest-ph4370n')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-kanyewest-ph4370n/1635716550756/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-kanyewest-ph4370n
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
lexi & wint & ye
@dril-kanyewest-ph4370n
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from lexi & wint & ye.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-kanyewest-ph4370n's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1423543147305619456/9RT-Ji0Z_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Lina Arabi</div>
<div style="text-align: center; font-size: 14px;">@dril-linaarabii</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Lina Arabi.
| Data | wint | Lina Arabi |
| --- | --- | --- |
| Tweets downloaded | 3227 | 3130 |
| Retweets | 473 | 896 |
| Short tweets | 317 | 322 |
| Tweets kept | 2437 | 1912 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1yq3shwo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-linaarabii's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/21rpwe17) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/21rpwe17/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-linaarabii')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-linaarabii/1634729786636/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-linaarabii
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Lina Arabi
@dril-linaarabii
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Lina Arabi.
Data: Tweets downloaded, wint: 3227, Lina Arabi: 3130
Data: Retweets, wint: 473, Lina Arabi: 896
Data: Short tweets, wint: 317, Lina Arabi: 322
Data: Tweets kept, wint: 2437, Lina Arabi: 1912
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-linaarabii's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1410800729590308868/UYAyBj1Y_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1404609739883954183/gta_5zXG_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Chet & ppigg</div>
<div style="text-align: center; font-size: 14px;">@dril-methwaffles-s4m31p4n</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Chet & ppigg.
| Data | wint | Chet | ppigg |
| --- | --- | --- | --- |
| Tweets downloaded | 3189 | 1923 | 3132 |
| Retweets | 456 | 664 | 976 |
| Short tweets | 307 | 211 | 914 |
| Tweets kept | 2426 | 1048 | 1242 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/bp0h4miy/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-methwaffles-s4m31p4n's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1020o0m8) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1020o0m8/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-methwaffles-s4m31p4n')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-methwaffles-s4m31p4n/1628070164168/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-methwaffles-s4m31p4n
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Chet & ppigg
@dril-methwaffles-s4m31p4n
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Chet & ppigg.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-methwaffles-s4m31p4n's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1410800729590308868/UYAyBj1Y_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1390534849132367872/a6Z-X0Qh_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Chet & some guy</div>
<div style="text-align: center; font-size: 14px;">@dril-methwaffles-someduckingguy</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Chet & some guy.
| Data | wint | Chet | some guy |
| --- | --- | --- | --- |
| Tweets downloaded | 3189 | 1923 | 3204 |
| Retweets | 456 | 664 | 322 |
| Short tweets | 307 | 211 | 773 |
| Tweets kept | 2426 | 1048 | 2109 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/19e11sp9/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-methwaffles-someduckingguy's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/ky2s7f8x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/ky2s7f8x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-methwaffles-someduckingguy')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-methwaffles-someduckingguy/1628072312957/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-methwaffles-someduckingguy
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Chet & some guy
@dril-methwaffles-someduckingguy
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Chet & some guy.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-methwaffles-someduckingguy's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Nia & wint</div>
<div style="text-align: center; font-size: 14px;">@dril-nia_mp4</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Nia & wint.
| Data | Nia | wint |
| --- | --- | --- |
| Tweets downloaded | 278 | 3229 |
| Retweets | 12 | 473 |
| Short tweets | 13 | 300 |
| Tweets kept | 253 | 2456 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1ybk5oh0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-nia_mp4's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ny6aucf) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ny6aucf/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-nia_mp4')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/dril-nia_mp4/1645818279249/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-nia_mp4
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Nia & wint
@dril-nia\_mp4
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Nia & wint.
Data: Tweets downloaded, Nia: 278, wint: 3229
Data: Retweets, Nia: 12, wint: 473
Data: Short tweets, Nia: 13, wint: 300
Data: Tweets kept, Nia: 253, wint: 2456
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-nia\_mp4's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1381764452098437120/74IgKP07_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint & Boston Psychology PhD</div>
<div style="text-align: center; font-size: 14px;">@dril-praisegodbarbon</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint & Boston Psychology PhD.
| Data | wint | Boston Psychology PhD |
| --- | --- | --- |
| Tweets downloaded | 3226 | 3207 |
| Retweets | 465 | 802 |
| Short tweets | 319 | 266 |
| Tweets kept | 2442 | 2139 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3knldxg0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-praisegodbarbon's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3gs5uhsw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3gs5uhsw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-praisegodbarbon')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-praisegodbarbon/1635015027636/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-praisegodbarbon
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
wint & Boston Psychology PhD
@dril-praisegodbarbon
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint & Boston Psychology PhD.
Data: Tweets downloaded, wint: 3226, Boston Psychology PhD: 3207
Data: Retweets, wint: 465, Boston Psychology PhD: 802
Data: Short tweets, wint: 319, Boston Psychology PhD: 266
Data: Tweets kept, wint: 2442, Boston Psychology PhD: 2139
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-praisegodbarbon's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/847818629840228354/VXyQHfn0_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">The Onion & wint</div>
<div style="text-align: center; font-size: 14px;">@dril-theonion</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from The Onion & wint.
| Data | The Onion | wint |
| --- | --- | --- |
| Tweets downloaded | 3250 | 3229 |
| Retweets | 8 | 466 |
| Short tweets | 13 | 311 |
| Tweets kept | 3229 | 2452 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3efeq3yq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril-theonion's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3mrv8gkj) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3mrv8gkj/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril-theonion')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril-theonion/1627516593101/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril-theonion
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
The Onion & wint
@dril-theonion
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from The Onion & wint.
Data: Tweets downloaded, The Onion: 3250, wint: 3229
Data: Retweets, The Onion: 8, wint: 466
Data: Short tweets, The Onion: 13, wint: 311
Data: Tweets kept, The Onion: 3229, wint: 2452
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril-theonion's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">slave to Woke</div>
<div style="text-align: center; font-size: 14px;">@dril</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from slave to Woke.
| Data | slave to Woke |
| --- | --- |
| Tweets downloaded | 3191 |
| Retweets | 512 |
| Short tweets | 274 |
| Tweets kept | 2405 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/a5mb4z84/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/k0swqzf3) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/k0swqzf3/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
slave to Woke
@dril
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from slave to Woke.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wint but Al</div>
<div style="text-align: center; font-size: 14px;">@dril_gpt2</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wint but Al.
| Data | wint but Al |
| --- | --- |
| Tweets downloaded | 3247 |
| Retweets | 37 |
| Short tweets | 50 |
| Tweets kept | 3160 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1dhjomoh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dril_gpt2's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/37mqhgg4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/37mqhgg4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dril_gpt2')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dril_gpt2/1623776600001/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dril_gpt2
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
wint but Al
@dril\_gpt2
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wint but Al.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dril\_gpt2's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1374924360780242944/-Q8NfgEr_400x400.jpg')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">merzy & wintbot_neo</div>
<div style="text-align: center; font-size: 14px;">@drilbot_neo-rusticgendarme</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from merzy & wintbot_neo.
| Data | merzy | wintbot_neo |
| --- | --- | --- |
| Tweets downloaded | 2598 | 3244 |
| Retweets | 449 | 218 |
| Short tweets | 440 | 271 |
| Tweets kept | 1709 | 2755 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/33n6vv8i/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drilbot_neo-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ti3qa9s/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drilbot_neo-rusticgendarme')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drilbot_neo-rusticgendarme/1627500242288/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drilbot_neo-rusticgendarme
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
merzy & wintbot\_neo
@drilbot\_neo-rusticgendarme
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from merzy & wintbot\_neo.
Data: Tweets downloaded, merzy: 2598, wintbot\_neo: 3244
Data: Retweets, merzy: 449, wintbot\_neo: 218
Data: Short tweets, merzy: 440, wintbot\_neo: 271
Data: Tweets kept, merzy: 1709, wintbot\_neo: 2755
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drilbot\_neo-rusticgendarme's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">wintbot_neo</div>
<div style="text-align: center; font-size: 14px;">@drilbot_neo</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from wintbot_neo.
| Data | wintbot_neo |
| --- | --- |
| Tweets downloaded | 3243 |
| Retweets | 373 |
| Short tweets | 468 |
| Tweets kept | 2402 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/25adu2w7/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drilbot_neo's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3keot8ku) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3keot8ku/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drilbot_neo')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drilbot_neo
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
wintbot\_neo
@drilbot\_neo
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from wintbot\_neo.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drilbot\_neo's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
 {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1305638279467892742/T6wx7LF8_400x400.jpg')">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Jessica Taylor 🤖 AI Bot </div>
<div style="font-size: 15px; color: #657786">@drjesstaylor bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@drjesstaylor's tweets](https://twitter.com/drjesstaylor).
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3186</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1032</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>362</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1792</td>
</tr>
</tbody>
</table>
[Explore the data](https://app.wandb.ai/wandb/huggingtweets/runs/3kufsr2o/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drjesstaylor's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://app.wandb.ai/wandb/huggingtweets/runs/ddlu736w) for full transparency and reproducibility.
At the end of training, [the final model](https://app.wandb.ai/wandb/huggingtweets/runs/ddlu736w/artifacts) is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/drjesstaylor'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
[](https://twitter.com/intent/follow?screen_name=borisdayma)
<section class='prose'>
For more details, visit the project repository.
</section>
[](https://github.com/borisdayma/huggingtweets)
<!--- random size file -->
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drjesstaylor/1601308075083/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drjesstaylor
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
<link rel="stylesheet" href="URL
<style>
@media (prefers-color-scheme: dark) {
.prose { color: #E2E8F0 !important; }
.prose h2, .prose h3, .prose a, .prose thead { color: #F7FAFC !important; }
}
</style>
<section class='prose'>
<div>
<div style="width: 132px; height:132px; border-radius: 50%; background-size: cover; background-image: url('URL
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Dr. Jessica Taylor AI Bot </div>
<div style="font-size: 15px; color: #657786">@drjesstaylor bot</div>
</div>
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
## How does it work?
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
## Training data
The model was trained on @drjesstaylor's tweets.
<table style='border-width:0'>
<thead style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #CBD5E0'>
<th style='border-width:0'>Data</th>
<th style='border-width:0'>Quantity</th>
</tr>
</thead>
<tbody style='border-width:0'>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Tweets downloaded</td>
<td style='border-width:0'>3186</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Retweets</td>
<td style='border-width:0'>1032</td>
</tr>
<tr style='border-width:0 0 1px 0; border-color: #E2E8F0'>
<td style='border-width:0'>Short tweets</td>
<td style='border-width:0'>362</td>
</tr>
<tr style='border-width:0'>
<td style='border-width:0'>Tweets kept</td>
<td style='border-width:0'>1792</td>
</tr>
</tbody>
</table>
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
## Training procedure
The model is based on a pre-trained GPT-2 which is fine-tuned on @drjesstaylor's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
## Intended uses & limitations
### How to use
You can use this model directly with a pipeline for text generation:
<pre><code><span style="color:#03A9F4">from</span> transformers <span style="color:#03A9F4">import</span> pipeline
generator = pipeline(<span style="color:#FF9800">'text-generation'</span>,
model=<span style="color:#FF9800">'huggingtweets/drjesstaylor'</span>)
generator(<span style="color:#FF9800">"My dream is"</span>, num_return_sequences=<span style="color:#8BC34A">5</span>)</code></pre>
### Limitations and bias
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
</section>
\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n\ngenerator(<span style=\"color:#FF9800\">\"My dream is\"</span>, num_return_sequences=<span style=\"color:#8BC34A\">5</span>)</code></pre>",
"### Limitations and bias\n\nThe model suffers from the same limitations and bias as GPT-2.\n\nIn addition, the data present in the user's tweets further affects the text generated by the model.",
"## About\n\n*Built by Boris Dayma*\n\n</section>\n\n">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dr. Roberta Bobby</div>
<div style="text-align: center; font-size: 14px;">@drsweety303</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dr. Roberta Bobby.
| Data | Dr. Roberta Bobby |
| --- | --- |
| Tweets downloaded | 3227 |
| Retweets | 415 |
| Short tweets | 346 |
| Tweets kept | 2466 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3s665txj/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drsweety303's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2eynd20x) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2eynd20x/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drsweety303')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "http://www.huggingtweets.com/drsweety303/1654433312789/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drsweety303
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Dr. Roberta Bobby
@drsweety303
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dr. Roberta Bobby.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drsweety303's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">Night the aeromorph 🤖 AI Bot </div>
<div style="font-size: 15px">@drumbunkerdrag1 bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@drumbunkerdrag1's tweets](https://twitter.com/drumbunkerdrag1).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 148 |
| Retweets | 8 |
| Short tweets | 27 |
| Tweets kept | 113 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1sfm2bdn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drumbunkerdrag1's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2trykl4g) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2trykl4g/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drumbunkerdrag1')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drumbunkerdrag1
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Night the aeromorph AI Bot
@drumbunkerdrag1 bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @drumbunkerdrag1's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drumbunkerdrag1's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/805274096514764802/poym9G5T_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/677459045918314496/satUWUbV_400x400.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Craig Wright Quotes & iang & Dorian Nakamoto</div>
<div style="text-align: center; font-size: 14px;">@drwrightquotes-iang_fc-s__nakamoto</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Craig Wright Quotes & iang & Dorian Nakamoto.
| Data | Craig Wright Quotes | iang | Dorian Nakamoto |
| --- | --- | --- | --- |
| Tweets downloaded | 327 | 3155 | 3166 |
| Retweets | 0 | 1307 | 1413 |
| Short tweets | 71 | 59 | 650 |
| Tweets kept | 256 | 1789 | 1103 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/30270yqq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drwrightquotes-iang_fc-s__nakamoto's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/4c021hpr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/4c021hpr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drwrightquotes-iang_fc-s__nakamoto')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drwrightquotes-iang_fc-s__nakamoto/1629097713464/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drwrightquotes-iang_fc-s__nakamoto
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Craig Wright Quotes & iang & Dorian Nakamoto
@drwrightquotes-iang\_fc-s\_\_nakamoto
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Craig Wright Quotes & iang & Dorian Nakamoto.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drwrightquotes-iang\_fc-s\_\_nakamoto's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1256199289476272131/JWhrljdS_400x400.jpg')">
</div>
<div
style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://pbs.twimg.com/profile_images/1362597154578075648/2WBy5DJd_400x400.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI CYBORG 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dorian Nakamoto & Craig Wright Quotes & Nick Szabo</div>
<div style="text-align: center; font-size: 14px;">@drwrightquotes-nickszabo4-s__nakamoto</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dorian Nakamoto & Craig Wright Quotes & Nick Szabo.
| Data | Dorian Nakamoto | Craig Wright Quotes | Nick Szabo |
| --- | --- | --- | --- |
| Tweets downloaded | 3166 | 316 | 3121 |
| Retweets | 1419 | 0 | 1519 |
| Short tweets | 650 | 62 | 71 |
| Tweets kept | 1097 | 254 | 1531 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/18sunueo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @drwrightquotes-nickszabo4-s__nakamoto's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3203umr9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3203umr9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/drwrightquotes-nickszabo4-s__nakamoto')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/drwrightquotes-nickszabo4-s__nakamoto/1627444323672/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/drwrightquotes-nickszabo4-s__nakamoto
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI CYBORG
Dorian Nakamoto & Craig Wright Quotes & Nick Szabo
@drwrightquotes-nickszabo4-s\_\_nakamoto
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dorian Nakamoto & Craig Wright Quotes & Nick Szabo.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @drwrightquotes-nickszabo4-s\_\_nakamoto's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">DUA LIPA</div>
<div style="text-align: center; font-size: 14px;">@dualipa</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from DUA LIPA.
| Data | DUA LIPA |
| --- | --- |
| Tweets downloaded | 1761 |
| Retweets | 93 |
| Short tweets | 205 |
| Tweets kept | 1463 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/thkuymdb/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dualipa's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/71zph2p9) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/71zph2p9/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dualipa')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dualipa
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
DUA LIPA
@dualipa
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from DUA LIPA.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dualipa's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">jumbudrif 🤖 AI Bot </div>
<div style="font-size: 15px">@dudeswatcheva bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://app.wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-model-to-generate-tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dudeswatcheva's tweets](https://twitter.com/dudeswatcheva).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 3169 |
| Retweets | 691 |
| Short tweets | 670 |
| Tweets kept | 1808 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3pxmaagu/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dudeswatcheva's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2oh4eeyp) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2oh4eeyp/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dudeswatcheva')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dudeswatcheva/1614184345694/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dudeswatcheva
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
jumbudrif AI Bot
@dudeswatcheva bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dudeswatcheva's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dudeswatcheva's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div style="margin-top: 8px; font-size: 19px; font-weight: 800">cmeptb 🏴☠️🦜 🤖 AI Bot </div>
<div style="font-size: 15px">@dumb4funbp bot</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on [@dumb4funbp's tweets](https://twitter.com/dumb4funbp).
| Data | Quantity |
| --- | --- |
| Tweets downloaded | 2079 |
| Retweets | 26 |
| Short tweets | 354 |
| Tweets kept | 1699 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/39zhdbbd/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dumb4funbp's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3pcmvoxb) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3pcmvoxb/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dumb4funbp')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dumb4funbp/1618513729086/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dumb4funbp
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #jax #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
cmeptb ️ AI Bot
@dumb4funbp bot
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on @dumb4funbp's tweets.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dumb4funbp's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
<div
style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Dunny Moment 🇳🇺💫🌝⃠🌞⃠</div>
<div style="text-align: center; font-size: 14px;">@dunnymoment</div>
</div>
I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets).
Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)!
## How does it work?
The model uses the following pipeline.

To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI).
## Training data
The model was trained on tweets from Dunny Moment 🇳🇺💫🌝⃠🌞⃠.
| Data | Dunny Moment 🇳🇺💫🌝⃠🌞⃠ |
| --- | --- |
| Tweets downloaded | 1920 |
| Retweets | 121 |
| Short tweets | 519 |
| Tweets kept | 1280 |
[Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3l2bbiuo/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @dunnymoment's tweets.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1jobyz43) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1jobyz43/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingtweets/dunnymoment')
generator("My dream is", num_return_sequences=5)
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Boris Dayma*
[](https://twitter.com/intent/follow?screen_name=borisdayma)
For more details, visit the project repository.
[](https://github.com/borisdayma/huggingtweets)
|
{"language": "en", "tags": ["huggingtweets"], "thumbnail": "https://www.huggingtweets.com/dunnymoment/1624473224134/predictions.png", "widget": [{"text": "My dream is"}]}
|
huggingtweets/dunnymoment
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"huggingtweets",
"en",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
[] |
[
"en"
] |
TAGS
#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
AI BOT
Dunny Moment 🇳🇺⃠⃠
@dunnymoment
I was made with huggingtweets.
Create your own bot based on your favorite user with the demo!
How does it work?
-----------------
The model uses the following pipeline.
!pipeline
To understand how the model was developed, check the W&B report.
Training data
-------------
The model was trained on tweets from Dunny Moment 🇳🇺⃠⃠.
Explore the data, which is tracked with W&B artifacts at every step of the pipeline.
Training procedure
------------------
The model is based on a pre-trained GPT-2 which is fine-tuned on @dunnymoment's tweets.
Hyperparameters and metrics are recorded in the W&B training run for full transparency and reproducibility.
At the end of training, the final model is logged and versioned.
How to use
----------
You can use this model directly with a pipeline for text generation:
Limitations and bias
--------------------
The model suffers from the same limitations and bias as GPT-2.
In addition, the data present in the user's tweets further affects the text generated by the model.
About
-----
*Built by Boris Dayma*
![Follow](URL
For more details, visit the project repository.
![GitHub stars](URL
|
[] |
[
"TAGS\n#transformers #pytorch #gpt2 #text-generation #huggingtweets #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.