id
int32
0
27.3k
func
stringlengths
26
142k
target
bool
2 classes
project
stringclasses
2 values
commit_id
stringlengths
40
40
8,591
static int qmp_async_cmd_handler(Monitor *mon, const mon_cmd_t *cmd, const QDict *params) { return cmd->mhandler.cmd_async(mon, params, qmp_monitor_complete, mon); }
true
qemu
65207c59d99f2260c5f1d3b9c491146616a522aa
8,593
static void write_frame(AVFormatContext *s, AVPacket *pkt, OutputStream *ost) { AVBitStreamFilterContext *bsfc = ost->bitstream_filters; AVCodecContext *avctx = ost->encoding_needed ? ost->enc_ctx : ost->st->codec; int ret; if (!ost->st->codec->extradata_size && ost->enc_ctx->extradata_size) { ost->st->codec->extradata = av_mallocz(ost->enc_ctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE); if (ost->st->codec->extradata) { memcpy(ost->st->codec->extradata, ost->enc_ctx->extradata, ost->enc_ctx->extradata_size); ost->st->codec->extradata_size = ost->enc_ctx->extradata_size; } } if ((avctx->codec_type == AVMEDIA_TYPE_VIDEO && video_sync_method == VSYNC_DROP) || (avctx->codec_type == AVMEDIA_TYPE_AUDIO && audio_sync_method < 0)) pkt->pts = pkt->dts = AV_NOPTS_VALUE; /* * Audio encoders may split the packets -- #frames in != #packets out. * But there is no reordering, so we can limit the number of output packets * by simply dropping them here. * Counting encoded video frames needs to be done separately because of * reordering, see do_video_out() */ if (!(avctx->codec_type == AVMEDIA_TYPE_VIDEO && avctx->codec)) { if (ost->frame_number >= ost->max_frames) { av_free_packet(pkt); return; } ost->frame_number++; } if (avctx->codec_type == AVMEDIA_TYPE_VIDEO) { int i; uint8_t *sd = av_packet_get_side_data(pkt, AV_PKT_DATA_QUALITY_STATS, NULL); ost->quality = sd ? AV_RL32(sd) : -1; ost->pict_type = sd ? sd[4] : AV_PICTURE_TYPE_NONE; for (i = 0; i<FF_ARRAY_ELEMS(ost->error); i++) { if (sd && i < sd[5]) ost->error[i] = AV_RL64(sd + 8 + 8*i); else ost->error[i] = -1; } } if (bsfc) av_packet_split_side_data(pkt); while (bsfc) { AVPacket new_pkt = *pkt; AVDictionaryEntry *bsf_arg = av_dict_get(ost->bsf_args, bsfc->filter->name, NULL, 0); int a = av_bitstream_filter_filter(bsfc, avctx, bsf_arg ? bsf_arg->value : NULL, &new_pkt.data, &new_pkt.size, pkt->data, pkt->size, pkt->flags & AV_PKT_FLAG_KEY); if(a == 0 && new_pkt.data != pkt->data && new_pkt.destruct) { uint8_t *t = av_malloc(new_pkt.size + AV_INPUT_BUFFER_PADDING_SIZE); //the new should be a subset of the old so cannot overflow if(t) { memcpy(t, new_pkt.data, new_pkt.size); memset(t + new_pkt.size, 0, AV_INPUT_BUFFER_PADDING_SIZE); new_pkt.data = t; new_pkt.buf = NULL; a = 1; } else a = AVERROR(ENOMEM); } if (a > 0) { pkt->side_data = NULL; pkt->side_data_elems = 0; av_free_packet(pkt); new_pkt.buf = av_buffer_create(new_pkt.data, new_pkt.size, av_buffer_default_free, NULL, 0); if (!new_pkt.buf) exit_program(1); } else if (a < 0) { new_pkt = *pkt; av_log(NULL, AV_LOG_ERROR, "Failed to open bitstream filter %s for stream %d with codec %s", bsfc->filter->name, pkt->stream_index, avctx->codec ? avctx->codec->name : "copy"); print_error("", a); if (exit_on_error) exit_program(1); } *pkt = new_pkt; bsfc = bsfc->next; } if (!(s->oformat->flags & AVFMT_NOTIMESTAMPS)) { if (pkt->dts != AV_NOPTS_VALUE && pkt->pts != AV_NOPTS_VALUE && pkt->dts > pkt->pts) { av_log(s, AV_LOG_WARNING, "Invalid DTS: %"PRId64" PTS: %"PRId64" in output stream %d:%d, replacing by guess\n", pkt->dts, pkt->pts, ost->file_index, ost->st->index); pkt->pts = pkt->dts = pkt->pts + pkt->dts + ost->last_mux_dts + 1 - FFMIN3(pkt->pts, pkt->dts, ost->last_mux_dts + 1) - FFMAX3(pkt->pts, pkt->dts, ost->last_mux_dts + 1); } if( (avctx->codec_type == AVMEDIA_TYPE_AUDIO || avctx->codec_type == AVMEDIA_TYPE_VIDEO) && pkt->dts != AV_NOPTS_VALUE && ost->last_mux_dts != AV_NOPTS_VALUE) { int64_t max = ost->last_mux_dts + !(s->oformat->flags & AVFMT_TS_NONSTRICT); if (pkt->dts < max) { int loglevel = max - pkt->dts > 2 || avctx->codec_type == AVMEDIA_TYPE_VIDEO ? AV_LOG_WARNING : AV_LOG_DEBUG; av_log(s, loglevel, "Non-monotonous DTS in output stream " "%d:%d; previous: %"PRId64", current: %"PRId64"; ", ost->file_index, ost->st->index, ost->last_mux_dts, pkt->dts); if (exit_on_error) { av_log(NULL, AV_LOG_FATAL, "aborting.\n"); exit_program(1); } av_log(s, loglevel, "changing to %"PRId64". This may result " "in incorrect timestamps in the output file.\n", max); if(pkt->pts >= pkt->dts) pkt->pts = FFMAX(pkt->pts, max); pkt->dts = max; } } } ost->last_mux_dts = pkt->dts; ost->data_size += pkt->size; ost->packets_written++; pkt->stream_index = ost->index; if (debug_ts) { av_log(NULL, AV_LOG_INFO, "muxer <- type:%s " "pkt_pts:%s pkt_pts_time:%s pkt_dts:%s pkt_dts_time:%s size:%d\n", av_get_media_type_string(ost->enc_ctx->codec_type), av_ts2str(pkt->pts), av_ts2timestr(pkt->pts, &ost->st->time_base), av_ts2str(pkt->dts), av_ts2timestr(pkt->dts, &ost->st->time_base), pkt->size ); } ret = av_interleaved_write_frame(s, pkt); if (ret < 0) { print_error("av_interleaved_write_frame()", ret); main_return_code = 1; close_all_output_streams(ost, MUXER_FINISHED | ENCODER_FINISHED, ENCODER_FINISHED); } av_free_packet(pkt); }
false
FFmpeg
c363843a53553cbda6d42d98e8fbd165eda193fb
8,594
void ff_aac_search_for_pred(AACEncContext *s, SingleChannelElement *sce) { int sfb, i, count = 0, cost_coeffs = 0, cost_pred = 0; const int pmax = FFMIN(sce->ics.max_sfb, ff_aac_pred_sfb_max[s->samplerate_index]); float *O34 = &s->scoefs[128*0], *P34 = &s->scoefs[128*1]; float *SENT = &s->scoefs[128*2], *S34 = &s->scoefs[128*3]; float *QERR = &s->scoefs[128*4]; if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { sce->ics.predictor_present = 0; return; } if (!sce->ics.predictor_initialized) { reset_all_predictors(sce->predictor_state); sce->ics.predictor_initialized = 1; memcpy(sce->prcoeffs, sce->coeffs, 1024*sizeof(float)); for (i = 1; i < 31; i++) sce->ics.predictor_reset_count[i] = i; } update_pred_resets(sce); memcpy(sce->band_alt, sce->band_type, sizeof(sce->band_type)); for (sfb = PRED_SFB_START; sfb < pmax; sfb++) { int cost1, cost2, cb_p; float dist1, dist2, dist_spec_err = 0.0f; const int cb_n = sce->band_type[sfb]; const int start_coef = sce->ics.swb_offset[sfb]; const int num_coeffs = sce->ics.swb_offset[sfb + 1] - start_coef; const FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[sfb]; if (start_coef + num_coeffs > MAX_PREDICTORS || (s->cur_channel && sce->band_type[sfb] >= INTENSITY_BT2) || sce->band_type[sfb] == NOISE_BT) continue; /* Normal coefficients */ abs_pow34_v(O34, &sce->coeffs[start_coef], num_coeffs); dist1 = quantize_and_encode_band_cost(s, NULL, &sce->coeffs[start_coef], NULL, O34, num_coeffs, sce->sf_idx[sfb], cb_n, s->lambda / band->threshold, INFINITY, &cost1, NULL, 0); cost_coeffs += cost1; /* Encoded coefficients - needed for #bits, band type and quant. error */ for (i = 0; i < num_coeffs; i++) SENT[i] = sce->coeffs[start_coef + i] - sce->prcoeffs[start_coef + i]; abs_pow34_v(S34, SENT, num_coeffs); if (cb_n < RESERVED_BT) cb_p = find_min_book(find_max_val(1, num_coeffs, S34), sce->sf_idx[sfb]); else cb_p = cb_n; quantize_and_encode_band_cost(s, NULL, SENT, QERR, S34, num_coeffs, sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY, &cost2, NULL, 0); /* Reconstructed coefficients - needed for distortion measurements */ for (i = 0; i < num_coeffs; i++) sce->prcoeffs[start_coef + i] += QERR[i] != 0.0f ? (sce->prcoeffs[start_coef + i] - QERR[i]) : 0.0f; abs_pow34_v(P34, &sce->prcoeffs[start_coef], num_coeffs); if (cb_n < RESERVED_BT) cb_p = find_min_book(find_max_val(1, num_coeffs, P34), sce->sf_idx[sfb]); else cb_p = cb_n; dist2 = quantize_and_encode_band_cost(s, NULL, &sce->prcoeffs[start_coef], NULL, P34, num_coeffs, sce->sf_idx[sfb], cb_p, s->lambda / band->threshold, INFINITY, NULL, NULL, 0); for (i = 0; i < num_coeffs; i++) dist_spec_err += (O34[i] - P34[i])*(O34[i] - P34[i]); dist_spec_err *= s->lambda / band->threshold; dist2 += dist_spec_err; if (dist2 <= dist1 && cb_p <= cb_n) { cost_pred += cost2; sce->ics.prediction_used[sfb] = 1; sce->band_alt[sfb] = cb_n; sce->band_type[sfb] = cb_p; count++; } else { cost_pred += cost1; sce->band_alt[sfb] = cb_p; } } if (count && cost_coeffs < cost_pred) { count = 0; for (sfb = PRED_SFB_START; sfb < pmax; sfb++) RESTORE_PRED(sce, sfb); memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used)); } sce->ics.predictor_present = !!count; }
false
FFmpeg
2a31b076b444d0c096efd4ab0eb4e19cf0ffd2ac
8,595
static int scan_file(AVFormatContext *avctx, AVStream *vst, AVStream *ast, int file) { MlvContext *mlv = avctx->priv_data; AVIOContext *pb = mlv->pb[file]; int ret; while (!avio_feof(pb)) { int type; unsigned int size; type = avio_rl32(pb); size = avio_rl32(pb); avio_skip(pb, 8); //timestamp if (size < 16) break; size -= 16; if (vst && type == MKTAG('R','A','W','I') && size >= 164) { vst->codec->width = avio_rl16(pb); vst->codec->height = avio_rl16(pb); if (avio_rl32(pb) != 1) avpriv_request_sample(avctx, "raw api version"); avio_skip(pb, 20); // pointer, width, height, pitch, frame_size vst->codec->bits_per_coded_sample = avio_rl32(pb); avio_skip(pb, 8 + 16 + 24); // black_level, white_level, xywh, active_area, exposure_bias if (avio_rl32(pb) != 0x2010100) /* RGGB */ avpriv_request_sample(avctx, "cfa_pattern"); avio_skip(pb, 80); // calibration_illuminant1, color_matrix1, dynamic_range vst->codec->pix_fmt = AV_PIX_FMT_BAYER_RGGB16LE; vst->codec->codec_tag = MKTAG('B', 'I', 'T', 16); size -= 164; } else if (ast && type == MKTAG('W', 'A', 'V', 'I') && size >= 16) { ret = ff_get_wav_header(pb, ast->codec, 16); if (ret < 0) return ret; size -= 16; } else if (type == MKTAG('I','N','F','O')) { if (size > 0) read_string(avctx, pb, "info", size); continue; } else if (type == MKTAG('I','D','N','T') && size >= 36) { read_string(avctx, pb, "cameraName", 32); read_uint32(avctx, pb, "cameraModel", "0x%"PRIx32); size -= 36; if (size >= 32) { read_string(avctx, pb, "cameraSerial", 32); size -= 32; } } else if (type == MKTAG('L','E','N','S') && size >= 48) { read_uint16(avctx, pb, "focalLength", "%i"); read_uint16(avctx, pb, "focalDist", "%i"); read_uint16(avctx, pb, "aperture", "%i"); read_uint8(avctx, pb, "stabilizerMode", "%i"); read_uint8(avctx, pb, "autofocusMode", "%i"); read_uint32(avctx, pb, "flags", "0x%"PRIx32); read_uint32(avctx, pb, "lensID", "%"PRIi32); read_string(avctx, pb, "lensName", 32); size -= 48; if (size >= 32) { read_string(avctx, pb, "lensSerial", 32); size -= 32; } } else if (vst && type == MKTAG('V', 'I', 'D', 'F') && size >= 4) { uint64_t pts = avio_rl32(pb); ff_add_index_entry(&vst->index_entries, &vst->nb_index_entries, &vst->index_entries_allocated_size, avio_tell(pb) - 20, pts, file, 0, AVINDEX_KEYFRAME); size -= 4; } else if (ast && type == MKTAG('A', 'U', 'D', 'F') && size >= 4) { uint64_t pts = avio_rl32(pb); ff_add_index_entry(&ast->index_entries, &ast->nb_index_entries, &ast->index_entries_allocated_size, avio_tell(pb) - 20, pts, file, 0, AVINDEX_KEYFRAME); size -= 4; } else if (vst && type == MKTAG('W','B','A','L') && size >= 28) { read_uint32(avctx, pb, "wb_mode", "%"PRIi32); read_uint32(avctx, pb, "kelvin", "%"PRIi32); read_uint32(avctx, pb, "wbgain_r", "%"PRIi32); read_uint32(avctx, pb, "wbgain_g", "%"PRIi32); read_uint32(avctx, pb, "wbgain_b", "%"PRIi32); read_uint32(avctx, pb, "wbs_gm", "%"PRIi32); read_uint32(avctx, pb, "wbs_ba", "%"PRIi32); size -= 28; } else if (type == MKTAG('R','T','C','I') && size >= 20) { char str[32]; struct tm time = { 0 }; time.tm_sec = avio_rl16(pb); time.tm_min = avio_rl16(pb); time.tm_hour = avio_rl16(pb); time.tm_mday = avio_rl16(pb); time.tm_mon = avio_rl16(pb); time.tm_year = avio_rl16(pb); time.tm_wday = avio_rl16(pb); time.tm_yday = avio_rl16(pb); time.tm_isdst = avio_rl16(pb); avio_skip(pb, 2); strftime(str, sizeof(str), "%Y-%m-%d %H:%M:%S", &time); av_dict_set(&avctx->metadata, "time", str, 0); size -= 20; } else if (type == MKTAG('E','X','P','O') && size >= 16) { av_dict_set(&avctx->metadata, "isoMode", avio_rl32(pb) ? "auto" : "manual", 0); read_uint32(avctx, pb, "isoValue", "%"PRIi32); read_uint32(avctx, pb, "isoAnalog", "%"PRIi32); read_uint32(avctx, pb, "digitalGain", "%"PRIi32); size -= 16; if (size >= 8) { read_uint64(avctx, pb, "shutterValue", "%"PRIi64); size -= 8; } } else if (type == MKTAG('S','T','Y','L') && size >= 36) { read_uint32(avctx, pb, "picStyleId", "%"PRIi32); read_uint32(avctx, pb, "contrast", "%"PRIi32); read_uint32(avctx, pb, "sharpness", "%"PRIi32); read_uint32(avctx, pb, "saturation", "%"PRIi32); read_uint32(avctx, pb, "colortone", "%"PRIi32); read_string(avctx, pb, "picStyleName", 16); size -= 36; } else if (type == MKTAG('M','A','R','K')) { } else if (type == MKTAG('N','U','L','L')) { } else if (type == MKTAG('M','L','V','I')) { /* occurs when MLV and Mnn files are concatenated */ } else { av_log(avctx, AV_LOG_INFO, "unsupported tag %c%c%c%c, size %u\n", type&0xFF, (type>>8)&0xFF, (type>>16)&0xFF, (type>>24)&0xFF, size); } avio_skip(pb, size); } return 0; }
false
FFmpeg
a9564e859bfc49f4fdaf632f51cc6341d2c3fb0a
8,596
static int sab_diamond_search(MpegEncContext * s, int *best, int dmin, int src_index, int ref_index, int const penalty_factor, int size, int h, int flags) { MotionEstContext * const c= &s->me; me_cmp_func cmpf, chroma_cmpf; Minima minima[MAX_SAB_SIZE]; const int minima_count= FFABS(c->dia_size); int i, j; LOAD_COMMON LOAD_COMMON2 unsigned map_generation = c->map_generation; av_assert1(minima_count <= MAX_SAB_SIZE); cmpf = s->mecc.me_cmp[size]; chroma_cmpf = s->mecc.me_cmp[size + 1]; /*Note j<MAX_SAB_SIZE is needed if MAX_SAB_SIZE < ME_MAP_SIZE as j can become larger due to MVs overflowing their ME_MAP_MV_BITS bits space in map */ for(j=i=0; i<ME_MAP_SIZE && j<MAX_SAB_SIZE; i++){ uint32_t key= map[i]; key += (1<<(ME_MAP_MV_BITS-1)) + (1<<(2*ME_MAP_MV_BITS-1)); if((key&((-1)<<(2*ME_MAP_MV_BITS))) != map_generation) continue; minima[j].height= score_map[i]; minima[j].x= key & ((1<<ME_MAP_MV_BITS)-1); key>>=ME_MAP_MV_BITS; minima[j].y= key & ((1<<ME_MAP_MV_BITS)-1); minima[j].x-= (1<<(ME_MAP_MV_BITS-1)); minima[j].y-= (1<<(ME_MAP_MV_BITS-1)); // all entries in map should be in range except if the mv overflows their ME_MAP_MV_BITS bits space if( minima[j].x > xmax || minima[j].x < xmin || minima[j].y > ymax || minima[j].y < ymin) continue; minima[j].checked=0; if(minima[j].x || minima[j].y) minima[j].height+= (mv_penalty[((minima[j].x)<<shift)-pred_x] + mv_penalty[((minima[j].y)<<shift)-pred_y])*penalty_factor; j++; } qsort(minima, j, sizeof(Minima), minima_cmp); for(; j<minima_count; j++){ minima[j].height=256*256*256*64; minima[j].checked=0; minima[j].x= minima[j].y=0; } for(i=0; i<minima_count; i++){ const int x= minima[i].x; const int y= minima[i].y; int d; if(minima[i].checked) continue; if( x >= xmax || x <= xmin || y >= ymax || y <= ymin) continue; SAB_CHECK_MV(x-1, y) SAB_CHECK_MV(x+1, y) SAB_CHECK_MV(x , y-1) SAB_CHECK_MV(x , y+1) minima[i].checked= 1; } best[0]= minima[0].x; best[1]= minima[0].y; dmin= minima[0].height; if( best[0] < xmax && best[0] > xmin && best[1] < ymax && best[1] > ymin){ int d; //ensure that the refernece samples for hpel refinement are in the map CHECK_MV(best[0]-1, best[1]) CHECK_MV(best[0]+1, best[1]) CHECK_MV(best[0], best[1]-1) CHECK_MV(best[0], best[1]+1) } return dmin; }
false
FFmpeg
11b563ed8f7c1a9183ba77680d9040fc384733d5
8,597
static int configure_filtergraph(FilterGraph *fg) { return fg->graph_desc ? configure_complex_filter(fg) : configure_video_filters(fg); }
true
FFmpeg
fc49f22c3b735db5aaac5f98e40b7124a2be13b8
8,598
void palette8torgb15(const uint8_t *src, uint8_t *dst, long num_pixels, const uint8_t *palette) { long i; for(i=0; i<num_pixels; i++) ((uint16_t *)dst)[i] = ((uint16_t *)palette)[ src[i] ]; }
true
FFmpeg
6e42e6c4b410dbef8b593c2d796a5dad95f89ee4
8,599
void st_set_trace_file_enabled(bool enable) { if (enable == !!trace_fp) { return; /* no change */ } /* Halt trace writeout */ flush_trace_file(true); trace_writeout_enabled = false; flush_trace_file(true); if (enable) { static const TraceRecord header = { .event = HEADER_EVENT_ID, .timestamp_ns = HEADER_MAGIC, .x1 = HEADER_VERSION, }; trace_fp = fopen(trace_file_name, "w"); if (!trace_fp) { return; } if (fwrite(&header, sizeof header, 1, trace_fp) != 1) { fclose(trace_fp); trace_fp = NULL; return; } /* Resume trace writeout */ trace_writeout_enabled = true; flush_trace_file(false); } else { fclose(trace_fp); trace_fp = NULL; } }
true
qemu
6c2a40742602c3cbe6a3905229dd539d7c311550
8,600
void ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd, int start, int end, int fast_gain, int is_lfe, int dba_mode, int dba_nsegs, uint8_t *dba_offsets, uint8_t *dba_lengths, uint8_t *dba_values, int16_t *mask) { int16_t excite[50]; /* excitation */ int bin, k; int bndstrt, bndend, begin, end1, tmp; int lowcomp, fastleak, slowleak; /* excitation function */ bndstrt = bin_to_band_tab[start]; bndend = bin_to_band_tab[end-1] + 1; if (bndstrt == 0) { lowcomp = 0; lowcomp = calc_lowcomp1(lowcomp, band_psd[0], band_psd[1], 384); excite[0] = band_psd[0] - fast_gain - lowcomp; lowcomp = calc_lowcomp1(lowcomp, band_psd[1], band_psd[2], 384); excite[1] = band_psd[1] - fast_gain - lowcomp; begin = 7; for (bin = 2; bin < 7; bin++) { if (!(is_lfe && bin == 6)) lowcomp = calc_lowcomp1(lowcomp, band_psd[bin], band_psd[bin+1], 384); fastleak = band_psd[bin] - fast_gain; slowleak = band_psd[bin] - s->slow_gain; excite[bin] = fastleak - lowcomp; if (!(is_lfe && bin == 6)) { if (band_psd[bin] <= band_psd[bin+1]) { begin = bin + 1; break; } } } end1=bndend; if (end1 > 22) end1=22; for (bin = begin; bin < end1; bin++) { if (!(is_lfe && bin == 6)) lowcomp = calc_lowcomp(lowcomp, band_psd[bin], band_psd[bin+1], bin); fastleak = FFMAX(fastleak - s->fast_decay, band_psd[bin] - fast_gain); slowleak = FFMAX(slowleak - s->slow_decay, band_psd[bin] - s->slow_gain); excite[bin] = FFMAX(fastleak - lowcomp, slowleak); } begin = 22; } else { /* coupling channel */ begin = bndstrt; fastleak = (s->cpl_fast_leak << 8) + 768; slowleak = (s->cpl_slow_leak << 8) + 768; } for (bin = begin; bin < bndend; bin++) { fastleak = FFMAX(fastleak - s->fast_decay, band_psd[bin] - fast_gain); slowleak = FFMAX(slowleak - s->slow_decay, band_psd[bin] - s->slow_gain); excite[bin] = FFMAX(fastleak, slowleak); } /* compute masking curve */ for (bin = bndstrt; bin < bndend; bin++) { tmp = s->db_per_bit - band_psd[bin]; if (tmp > 0) { excite[bin] += tmp >> 2; } mask[bin] = FFMAX(ff_ac3_hearing_threshold_tab[bin >> s->sr_shift][s->sr_code], excite[bin]); } /* delta bit allocation */ if (dba_mode == DBA_REUSE || dba_mode == DBA_NEW) { int band, seg, delta; band = 0; for (seg = 0; seg < dba_nsegs; seg++) { band += dba_offsets[seg]; if (dba_values[seg] >= 4) { delta = (dba_values[seg] - 3) << 7; } else { delta = (dba_values[seg] - 4) << 7; } for (k = 0; k < dba_lengths[seg]; k++) { mask[band] += delta; band++; } } } }
true
FFmpeg
31bc6b454994d7b7a99a30876c0427c07c5885e3
8,601
static struct iovec *adjust_sg(struct iovec *sg, int len, int *iovcnt) { while (len && *iovcnt) { if (len < sg->iov_len) { sg->iov_len -= len; sg->iov_base += len; len = 0; } else { len -= sg->iov_len; sg++; *iovcnt -= 1; } } return sg; }
true
qemu
302a0d3ed721e4c30c6a2a37f64c60b50ffd33b9
8,603
static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, uint64_t flags) { QEMUFileRDMA *rfile = opaque; RDMAContext *rdma = rfile->rdma; CHECK_ERROR_STATE(); DDDPRINTF("start section: %" PRIu64 "\n", flags); qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); qemu_fflush(f); return 0; }
true
qemu
60fe637bf0e4d7989e21e50f52526444765c63b4
8,604
static int nbd_negotiate_handle_info(NBDClient *client, uint32_t length, uint32_t opt, uint16_t myflags, Error **errp) { int rc; char name[NBD_MAX_NAME_SIZE + 1]; NBDExport *exp; uint16_t requests; uint16_t request; uint32_t namelen; bool sendname = false; bool blocksize = false; uint32_t sizes[3]; char buf[sizeof(uint64_t) + sizeof(uint16_t)]; const char *msg; /* Client sends: 4 bytes: L, name length (can be 0) L bytes: export name 2 bytes: N, number of requests (can be 0) N * 2 bytes: N requests */ if (length < sizeof(namelen) + sizeof(requests)) { msg = "overall request too short"; if (nbd_read(client->ioc, &namelen, sizeof(namelen), errp) < 0) { return -EIO; be32_to_cpus(&namelen); length -= sizeof(namelen); if (namelen > length - sizeof(requests) || (length - namelen) % 2) { msg = "name length is incorrect"; if (nbd_read(client->ioc, name, namelen, errp) < 0) { return -EIO; name[namelen] = '\0'; length -= namelen; trace_nbd_negotiate_handle_export_name_request(name); if (nbd_read(client->ioc, &requests, sizeof(requests), errp) < 0) { return -EIO; be16_to_cpus(&requests); length -= sizeof(requests); trace_nbd_negotiate_handle_info_requests(requests); if (requests != length / sizeof(request)) { msg = "incorrect number of requests for overall length"; while (requests--) { if (nbd_read(client->ioc, &request, sizeof(request), errp) < 0) { return -EIO; be16_to_cpus(&request); length -= sizeof(request); trace_nbd_negotiate_handle_info_request(request, nbd_info_lookup(request)); /* We care about NBD_INFO_NAME and NBD_INFO_BLOCK_SIZE; * everything else is either a request we don't know or * something we send regardless of request */ switch (request) { case NBD_INFO_NAME: sendname = true; break; case NBD_INFO_BLOCK_SIZE: blocksize = true; break; assert(length == 0); exp = nbd_export_find(name); if (!exp) { return nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_UNKNOWN, opt, errp, "export '%s' not present", name); /* Don't bother sending NBD_INFO_NAME unless client requested it */ if (sendname) { rc = nbd_negotiate_send_info(client, opt, NBD_INFO_NAME, namelen, name, errp); if (rc < 0) { return rc; /* Send NBD_INFO_DESCRIPTION only if available, regardless of * client request */ if (exp->description) { size_t len = strlen(exp->description); rc = nbd_negotiate_send_info(client, opt, NBD_INFO_DESCRIPTION, len, exp->description, errp); if (rc < 0) { return rc; /* Send NBD_INFO_BLOCK_SIZE always, but tweak the minimum size * according to whether the client requested it, and according to * whether this is OPT_INFO or OPT_GO. */ /* minimum - 1 for back-compat, or 512 if client is new enough. * TODO: consult blk_bs(blk)->bl.request_alignment? */ sizes[0] = (opt == NBD_OPT_INFO || blocksize) ? BDRV_SECTOR_SIZE : 1; /* preferred - Hard-code to 4096 for now. * TODO: is blk_bs(blk)->bl.opt_transfer appropriate? */ sizes[1] = 4096; /* maximum - At most 32M, but smaller as appropriate. */ sizes[2] = MIN(blk_get_max_transfer(exp->blk), NBD_MAX_BUFFER_SIZE); trace_nbd_negotiate_handle_info_block_size(sizes[0], sizes[1], sizes[2]); cpu_to_be32s(&sizes[0]); cpu_to_be32s(&sizes[1]); cpu_to_be32s(&sizes[2]); rc = nbd_negotiate_send_info(client, opt, NBD_INFO_BLOCK_SIZE, sizeof(sizes), sizes, errp); if (rc < 0) { return rc; /* Send NBD_INFO_EXPORT always */ trace_nbd_negotiate_new_style_size_flags(exp->size, exp->nbdflags | myflags); stq_be_p(buf, exp->size); stw_be_p(buf + 8, exp->nbdflags | myflags); rc = nbd_negotiate_send_info(client, opt, NBD_INFO_EXPORT, sizeof(buf), buf, errp); if (rc < 0) { return rc; /* If the client is just asking for NBD_OPT_INFO, but forgot to * request block sizes, return an error. * TODO: consult blk_bs(blk)->request_align, and only error if it * is not 1? */ if (opt == NBD_OPT_INFO && !blocksize) { return nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_BLOCK_SIZE_REQD, opt, errp, "request NBD_INFO_BLOCK_SIZE to " "use this export"); /* Final reply */ rc = nbd_negotiate_send_rep(client->ioc, NBD_REP_ACK, opt, errp); if (rc < 0) { return rc; if (opt == NBD_OPT_GO) { client->exp = exp; QTAILQ_INSERT_TAIL(&client->exp->clients, client, next); nbd_export_get(client->exp); rc = 1; return rc; invalid: if (nbd_drop(client->ioc, length, errp) < 0) { return -EIO; return nbd_negotiate_send_rep_err(client->ioc, NBD_REP_ERR_INVALID, opt, errp, "%s", msg);
true
qemu
51ae4f8455c9e32c54770c4ebc25bf86a8128183
8,605
static int unix_close(MigrationState *s) { DPRINTF("unix_close\n"); if (s->fd != -1) { close(s->fd); s->fd = -1; } return 0; }
true
qemu
8160bfbc4d5d0abf78afa557f2d5832dc11cd690
8,606
static int mov_write_single_packet(AVFormatContext *s, AVPacket *pkt) { MOVMuxContext *mov = s->priv_data; MOVTrack *trk = &mov->tracks[pkt->stream_index]; AVCodecParameters *par = trk->par; int64_t frag_duration = 0; int size = pkt->size; int ret = check_pkt(s, pkt); if (ret < 0) return ret; if (mov->flags & FF_MOV_FLAG_FRAG_DISCONT) { int i; for (i = 0; i < s->nb_streams; i++) mov->tracks[i].frag_discont = 1; mov->flags &= ~FF_MOV_FLAG_FRAG_DISCONT; } if (!pkt->size) { if (trk->start_dts == AV_NOPTS_VALUE && trk->frag_discont) { trk->start_dts = pkt->dts; if (pkt->pts != AV_NOPTS_VALUE) trk->start_cts = pkt->pts - pkt->dts; else trk->start_cts = 0; } if (trk->par->codec_id == AV_CODEC_ID_MP4ALS || trk->par->codec_id == AV_CODEC_ID_FLAC) { int side_size = 0; uint8_t *side = av_packet_get_side_data(pkt, AV_PKT_DATA_NEW_EXTRADATA, &side_size); if (side && side_size > 0 && (side_size != par->extradata_size || memcmp(side, par->extradata, side_size))) { void *newextra = av_mallocz(side_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!newextra) return AVERROR(ENOMEM); av_free(par->extradata); par->extradata = newextra; memcpy(par->extradata, side, side_size); par->extradata_size = side_size; mov->need_rewrite_extradata = 1; } } return 0; /* Discard 0 sized packets */ } if (trk->entry && pkt->stream_index < s->nb_streams) frag_duration = av_rescale_q(pkt->dts - trk->cluster[0].dts, s->streams[pkt->stream_index]->time_base, AV_TIME_BASE_Q); if ((mov->max_fragment_duration && frag_duration >= mov->max_fragment_duration) || (mov->max_fragment_size && mov->mdat_size + size >= mov->max_fragment_size) || (mov->flags & FF_MOV_FLAG_FRAG_KEYFRAME && par->codec_type == AVMEDIA_TYPE_VIDEO && trk->entry && pkt->flags & AV_PKT_FLAG_KEY)) { if (frag_duration >= mov->min_fragment_duration) { // Set the duration of this track to line up with the next // sample in this track. This avoids relying on AVPacket // duration, but only helps for this particular track, not // for the other ones that are flushed at the same time. trk->track_duration = pkt->dts - trk->start_dts; if (pkt->pts != AV_NOPTS_VALUE) trk->end_pts = pkt->pts; else trk->end_pts = pkt->dts; trk->end_reliable = 1; mov_auto_flush_fragment(s, 0); } } return ff_mov_write_packet(s, pkt); }
false
FFmpeg
f8c73e87532a80821422db9972514c0405b17047
8,607
static int msrle_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; MsrleContext *s = avctx->priv_data; int istride = FFALIGN(avctx->width*avctx->bits_per_coded_sample, 32) / 8; s->buf = buf; s->size = buf_size; s->frame.reference = 3; s->frame.buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE; if (avctx->reget_buffer(avctx, &s->frame)) { av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n"); return -1; } if (avctx->bits_per_coded_sample > 1 && avctx->bits_per_coded_sample <= 8) { const uint8_t *pal = av_packet_get_side_data(avpkt, AV_PKT_DATA_PALETTE, NULL); if (pal) { s->frame.palette_has_changed = 1; memcpy(s->pal, pal, AVPALETTE_SIZE); } } /* make the palette available */ memcpy(s->frame.data[1], s->pal, AVPALETTE_SIZE); /* FIXME how to correctly detect RLE ??? */ if (avctx->height * istride == avpkt->size) { /* assume uncompressed */ int linesize = (avctx->width * avctx->bits_per_coded_sample + 7) / 8; uint8_t *ptr = s->frame.data[0]; uint8_t *buf = avpkt->data + (avctx->height-1)*istride; int i, j; for (i = 0; i < avctx->height; i++) { if (avctx->bits_per_coded_sample == 4) { for (j = 0; j < avctx->width - 1; j += 2) { ptr[j+0] = buf[j>>1] >> 4; ptr[j+1] = buf[j>>1] & 0xF; } if (avctx->width & 1) ptr[j+0] = buf[j>>1] >> 4; } else { memcpy(ptr, buf, linesize); } buf -= istride; ptr += s->frame.linesize[0]; } } else { bytestream2_init(&s->gb, buf, buf_size); ff_msrle_decode(avctx, (AVPicture*)&s->frame, avctx->bits_per_coded_sample, &s->gb); } *data_size = sizeof(AVFrame); *(AVFrame*)data = s->frame; /* report that the buffer was completely consumed */ return buf_size; }
true
FFmpeg
58825a18aacca2e703e969cb064113dbb0e04b07
8,608
static int blk_root_inactivate(BdrvChild *child) { BlockBackend *blk = child->opaque; if (blk->disable_perm) { return 0; } /* Only inactivate BlockBackends for guest devices (which are inactive at * this point because the VM is stopped) and unattached monitor-owned * BlockBackends. If there is still any other user like a block job, then * we simply can't inactivate the image. */ if (!blk->dev && !blk->name[0]) { return -EPERM; } blk->disable_perm = true; if (blk->root) { bdrv_child_try_set_perm(blk->root, 0, BLK_PERM_ALL, &error_abort); } return 0; }
true
qemu
93c26503e01808bfb8cea3c25eae5be63147380e
8,609
qcrypto_tls_creds_x509_unload(QCryptoTLSCredsX509 *creds) { if (creds->data) { gnutls_certificate_free_credentials(creds->data); creds->data = NULL;
true
qemu
61b9251a3aaa65e65c4aab3a6800e884bb3b82f9
8,610
static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { uint64_t mfindex; DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid); xfer->in_xfer = epctx->type>>2; switch(epctx->type) { case ET_INTR_OUT: case ET_INTR_IN: case ET_BULK_OUT: case ET_BULK_IN: xfer->pkts = 0; xfer->iso_xfer = false; break; case ET_ISO_OUT: case ET_ISO_IN: xfer->pkts = 1; xfer->iso_xfer = true; mfindex = xhci_mfindex_get(xhci); xhci_calc_iso_kick(xhci, xfer, epctx, mfindex); xhci_check_iso_kick(xhci, xfer, epctx, mfindex); if (xfer->running_retry) { return -1; } break; default: fprintf(stderr, "xhci: unknown or unhandled EP " "(type %d, in %d, ep %02x)\n", epctx->type, xfer->in_xfer, xfer->epid); return -1; } if (xhci_setup_packet(xfer) < 0) { return -1; } usb_handle_packet(xfer->packet.ep->dev, &xfer->packet); xhci_complete_packet(xfer); if (!xfer->running_async && !xfer->running_retry) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid, xfer->streamid); } return 0; }
true
qemu
4d7a81c06f5f17e019a2d3a18300500bd64f6f40
8,611
static inline void softusb_read_dmem(MilkymistSoftUsbState *s, uint32_t offset, uint8_t *buf, uint32_t len) { if (offset + len >= s->dmem_size) { error_report("milkymist_softusb: read dmem out of bounds " "at offset 0x%x, len %d", offset, len); return; } memcpy(buf, s->dmem_ptr + offset, len); }
true
qemu
c31bc98e3bcf52fe1cd4b9b7a70869330eae80ea
8,612
static int request_frame(AVFilterLink *outlink) { AVFilterBufferRef *outpicref; MovieContext *movie = outlink->src->priv; int ret; if (movie->is_done) return AVERROR_EOF; if ((ret = movie_get_frame(outlink)) < 0) return ret; outpicref = avfilter_ref_buffer(movie->picref, ~0); avfilter_start_frame(outlink, outpicref); avfilter_draw_slice(outlink, 0, outlink->h, 1); avfilter_end_frame(outlink); return 0; }
true
FFmpeg
5eb901cfec4a1bca4d961c6eb6889a91a87031ca
8,613
static void baum_chr_open(Chardev *chr, ChardevBackend *backend, bool *be_opened, Error **errp) { BaumChardev *baum = BAUM_CHARDEV(chr); brlapi_handle_t *handle; handle = g_malloc0(brlapi_getHandleSize()); baum->brlapi = handle; baum->brlapi_fd = brlapi__openConnection(handle, NULL, NULL); if (baum->brlapi_fd == -1) { error_setg(errp, "brlapi__openConnection: %s", brlapi_strerror(brlapi_error_location())); g_free(handle); return; } baum->deferred_init = 0; baum->cellCount_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, baum_cellCount_timer_cb, baum); qemu_set_fd_handler(baum->brlapi_fd, baum_chr_read, NULL, baum); }
true
qemu
98e8790326d732fc79f0c133d9658f4761ba9cb7
8,614
static int can_safely_read(GetBitContext* gb, int bits) { return get_bits_left(gb) >= bits; }
true
FFmpeg
3d7817048cb387de87600f2152075f78b37b60a6
8,615
size_t qcrypto_cipher_get_block_len(QCryptoCipherAlgorithm alg) { if (alg >= G_N_ELEMENTS(alg_key_len)) { return 0; } return alg_block_len[alg]; }
false
qemu
32c813e6c2a857b93b897901b7e20281397528a3
8,616
petalogix_ml605_init(MachineState *machine) { ram_addr_t ram_size = machine->ram_size; MemoryRegion *address_space_mem = get_system_memory(); DeviceState *dev, *dma, *eth0; Object *ds, *cs; MicroBlazeCPU *cpu; SysBusDevice *busdev; DriveInfo *dinfo; int i; MemoryRegion *phys_lmb_bram = g_new(MemoryRegion, 1); MemoryRegion *phys_ram = g_new(MemoryRegion, 1); qemu_irq irq[32]; /* init CPUs */ cpu = MICROBLAZE_CPU(object_new(TYPE_MICROBLAZE_CPU)); object_property_set_bool(OBJECT(cpu), true, "realized", &error_abort); /* Attach emulated BRAM through the LMB. */ memory_region_init_ram(phys_lmb_bram, NULL, "petalogix_ml605.lmb_bram", LMB_BRAM_SIZE, &error_abort); vmstate_register_ram_global(phys_lmb_bram); memory_region_add_subregion(address_space_mem, 0x00000000, phys_lmb_bram); memory_region_init_ram(phys_ram, NULL, "petalogix_ml605.ram", ram_size, &error_abort); vmstate_register_ram_global(phys_ram); memory_region_add_subregion(address_space_mem, MEMORY_BASEADDR, phys_ram); dinfo = drive_get(IF_PFLASH, 0, 0); /* 5th parameter 2 means bank-width * 10th paremeter 0 means little-endian */ pflash_cfi01_register(FLASH_BASEADDR, NULL, "petalogix_ml605.flash", FLASH_SIZE, dinfo ? blk_bs(blk_by_legacy_dinfo(dinfo)) : NULL, (64 * 1024), FLASH_SIZE >> 16, 2, 0x89, 0x18, 0x0000, 0x0, 0); dev = qdev_create(NULL, "xlnx.xps-intc"); qdev_prop_set_uint32(dev, "kind-of-intr", 1 << TIMER_IRQ); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, INTC_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(cpu), MB_CPU_IRQ)); for (i = 0; i < 32; i++) { irq[i] = qdev_get_gpio_in(dev, i); } serial_mm_init(address_space_mem, UART16550_BASEADDR + 0x1000, 2, irq[UART16550_IRQ], 115200, serial_hds[0], DEVICE_LITTLE_ENDIAN); /* 2 timers at irq 2 @ 100 Mhz. */ dev = qdev_create(NULL, "xlnx.xps-timer"); qdev_prop_set_uint32(dev, "one-timer-only", 0); qdev_prop_set_uint32(dev, "clock-frequency", 100 * 1000000); qdev_init_nofail(dev); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, TIMER_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, irq[TIMER_IRQ]); /* axi ethernet and dma initialization. */ qemu_check_nic_model(&nd_table[0], "xlnx.axi-ethernet"); eth0 = qdev_create(NULL, "xlnx.axi-ethernet"); dma = qdev_create(NULL, "xlnx.axi-dma"); /* FIXME: attach to the sysbus instead */ object_property_add_child(qdev_get_machine(), "xilinx-eth", OBJECT(eth0), NULL); object_property_add_child(qdev_get_machine(), "xilinx-dma", OBJECT(dma), NULL); ds = object_property_get_link(OBJECT(dma), "axistream-connected-target", NULL); cs = object_property_get_link(OBJECT(dma), "axistream-control-connected-target", NULL); qdev_set_nic_properties(eth0, &nd_table[0]); qdev_prop_set_uint32(eth0, "rxmem", 0x1000); qdev_prop_set_uint32(eth0, "txmem", 0x1000); object_property_set_link(OBJECT(eth0), OBJECT(ds), "axistream-connected", &error_abort); object_property_set_link(OBJECT(eth0), OBJECT(cs), "axistream-control-connected", &error_abort); qdev_init_nofail(eth0); sysbus_mmio_map(SYS_BUS_DEVICE(eth0), 0, AXIENET_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(eth0), 0, irq[AXIENET_IRQ]); ds = object_property_get_link(OBJECT(eth0), "axistream-connected-target", NULL); cs = object_property_get_link(OBJECT(eth0), "axistream-control-connected-target", NULL); qdev_prop_set_uint32(dma, "freqhz", 100 * 1000000); object_property_set_link(OBJECT(dma), OBJECT(ds), "axistream-connected", &error_abort); object_property_set_link(OBJECT(dma), OBJECT(cs), "axistream-control-connected", &error_abort); qdev_init_nofail(dma); sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, AXIDMA_BASEADDR); sysbus_connect_irq(SYS_BUS_DEVICE(dma), 0, irq[AXIDMA_IRQ0]); sysbus_connect_irq(SYS_BUS_DEVICE(dma), 1, irq[AXIDMA_IRQ1]); { SSIBus *spi; dev = qdev_create(NULL, "xlnx.xps-spi"); qdev_prop_set_uint8(dev, "num-ss-bits", NUM_SPI_FLASHES); qdev_init_nofail(dev); busdev = SYS_BUS_DEVICE(dev); sysbus_mmio_map(busdev, 0, SPI_BASEADDR); sysbus_connect_irq(busdev, 0, irq[SPI_IRQ]); spi = (SSIBus *)qdev_get_child_bus(dev, "spi"); for (i = 0; i < NUM_SPI_FLASHES; i++) { qemu_irq cs_line; dev = ssi_create_slave(spi, "n25q128"); cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0); sysbus_connect_irq(busdev, i+1, cs_line); } } microblaze_load_kernel(cpu, MEMORY_BASEADDR, ram_size, machine->initrd_filename, BINARY_DEVICE_TREE_FILE, machine_cpu_reset); }
false
qemu
4be746345f13e99e468c60acbd3a355e8183e3ce
8,618
static int mmu_translate_sfaa(CPUS390XState *env, target_ulong vaddr, uint64_t asc, uint64_t asce, target_ulong *raddr, int *flags, int rw) { if (asce & _SEGMENT_ENTRY_INV) { DPRINTF("%s: SEG=0x%" PRIx64 " invalid\n", __func__, asce); trigger_page_fault(env, vaddr, PGM_SEGMENT_TRANS, asc, rw); return -1; } if (asce & _SEGMENT_ENTRY_RO) { *flags &= ~PAGE_WRITE; } *raddr = (asce & 0xfffffffffff00000ULL) | (vaddr & 0xfffff); PTE_DPRINTF("%s: SEG=0x%" PRIx64 "\n", __func__, asce); return 0; }
false
qemu
f8f84e93ab6111848cfc83b3d6122573eb03bccf
8,619
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, abi_ulong new_size, unsigned long flags, abi_ulong new_addr) { int prot; void *host_addr; mmap_lock(); if (flags & MREMAP_FIXED) { host_addr = (void *) syscall(__NR_mremap, g2h(old_addr), old_size, new_size, flags, g2h(new_addr)); if (RESERVED_VA && host_addr != MAP_FAILED) { /* If new and old addresses overlap then the above mremap will already have failed with EINVAL. */ mmap_reserve(old_addr, old_size); } } else if (flags & MREMAP_MAYMOVE) { abi_ulong mmap_start; mmap_start = mmap_find_vma(0, new_size); if (mmap_start == -1) { errno = ENOMEM; host_addr = MAP_FAILED; } else { host_addr = (void *) syscall(__NR_mremap, g2h(old_addr), old_size, new_size, flags | MREMAP_FIXED, g2h(mmap_start)); mmap_reserve(old_addr, old_size); } } else { int prot = 0; if (RESERVED_VA && old_size < new_size) { abi_ulong addr; for (addr = old_addr + old_size; addr < old_addr + new_size; addr++) { prot |= page_get_flags(addr); } } if (prot == 0) { host_addr = mremap(g2h(old_addr), old_size, new_size, flags); if (host_addr != MAP_FAILED && RESERVED_VA && old_size > new_size) { mmap_reserve(old_addr + old_size, new_size - old_size); } } else { errno = ENOMEM; host_addr = MAP_FAILED; } /* Check if address fits target address space */ if ((unsigned long)host_addr + new_size > (abi_ulong)-1) { /* Revert mremap() changes */ host_addr = mremap(g2h(old_addr), new_size, old_size, flags); errno = ENOMEM; host_addr = MAP_FAILED; } } if (host_addr == MAP_FAILED) { new_addr = -1; } else { new_addr = h2g(host_addr); prot = page_get_flags(old_addr); page_set_flags(old_addr, old_addr + old_size, 0); page_set_flags(new_addr, new_addr + new_size, prot | PAGE_VALID); } mmap_unlock(); return new_addr; }
false
qemu
c65ffe6d6ca8b156e729e81054ca7597864354a9
8,620
bool migration_is_blocked(Error **errp) { if (qemu_savevm_state_blocked(errp)) { return true; } if (migration_blockers) { *errp = error_copy(migration_blockers->data); return true; } return false; }
false
qemu
250561e1aebf69e911992da9017322df7aeaa564
8,621
static int usb_serial_handle_data(USBDevice *dev, USBPacket *p) { USBSerialState *s = (USBSerialState *)dev; int i, ret = 0; uint8_t devep = p->devep; struct iovec *iov; uint8_t header[2]; int first_len, len; switch (p->pid) { case USB_TOKEN_OUT: if (devep != 2) goto fail; for (i = 0; i < p->iov.niov; i++) { iov = p->iov.iov + i; qemu_chr_fe_write(s->cs, iov->iov_base, iov->iov_len); } break; case USB_TOKEN_IN: if (devep != 1) goto fail; first_len = RECV_BUF - s->recv_ptr; len = p->iov.size; if (len <= 2) { ret = USB_RET_NAK; break; } header[0] = usb_get_modem_lines(s) | 1; /* We do not have the uart details */ /* handle serial break */ if (s->event_trigger && s->event_trigger & FTDI_BI) { s->event_trigger &= ~FTDI_BI; header[1] = FTDI_BI; usb_packet_copy(p, header, 2); ret = 2; break; } else { header[1] = 0; } len -= 2; if (len > s->recv_used) len = s->recv_used; if (!len) { ret = USB_RET_NAK; break; } if (first_len > len) first_len = len; usb_packet_copy(p, header, 2); usb_packet_copy(p, s->recv_buf + s->recv_ptr, first_len); if (len > first_len) usb_packet_copy(p, s->recv_buf, len - first_len); s->recv_used -= len; s->recv_ptr = (s->recv_ptr + len) % RECV_BUF; ret = len + 2; break; default: DPRINTF("Bad token\n"); fail: ret = USB_RET_STALL; break; } return ret; }
false
qemu
079d0b7f1eedcc634c371fe05b617fdc55c8b762
8,622
static void handle_hmp_command(Monitor *mon, const char *cmdline) { QDict *qdict; const mon_cmd_t *cmd; qdict = qdict_new(); cmd = monitor_parse_command(mon, cmdline, 0, mon->cmd_table, qdict); if (cmd) { cmd->mhandler.cmd(mon, qdict); } QDECREF(qdict); }
false
qemu
ae50212ff717f3d295ebff352eb7d6cc08332b7e
8,623
static uint16_t dummy_section(MemoryRegion *mr) { MemoryRegionSection section = { .mr = mr, .offset_within_address_space = 0, .offset_within_region = 0, .size = int128_2_64(), }; return phys_section_add(&section); }
false
qemu
53cb28cbfea038f8ad50132dc8a684e638c7d48b
8,627
static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) { KVMState *s = kvm_state; unsigned long size, allocated_size = 0; KVMDirtyLog d; KVMSlot *mem; int ret = 0; hwaddr start_addr = section->offset_within_address_space; hwaddr end_addr = start_addr + int128_get64(section->size); d.dirty_bitmap = NULL; while (start_addr < end_addr) { mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); if (mem == NULL) { break; } /* XXX bad kernel interface alert * For dirty bitmap, kernel allocates array of size aligned to * bits-per-long. But for case when the kernel is 64bits and * the userspace is 32bits, userspace can't align to the same * bits-per-long, since sizeof(long) is different between kernel * and user space. This way, userspace will provide buffer which * may be 4 bytes less than the kernel will use, resulting in * userspace memory corruption (which is not detectable by valgrind * too, in most cases). * So for now, let's align to 64 instead of HOST_LONG_BITS here, in * a hope that sizeof(long) wont become >8 any time soon. */ size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), /*HOST_LONG_BITS*/ 64) / 8; if (!d.dirty_bitmap) { d.dirty_bitmap = g_malloc(size); } else if (size > allocated_size) { d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); } allocated_size = size; memset(d.dirty_bitmap, 0, allocated_size); d.slot = mem->slot; if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { DPRINTF("ioctl failed %d\n", errno); ret = -1; break; } kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); start_addr = mem->start_addr + mem->memory_size; } g_free(d.dirty_bitmap); return ret; }
false
qemu
d229b985b504261369f2035936cc147c2606fa92
8,628
void av_bsf_list_free(AVBSFList **lst) { int i; if (*lst) return; for (i = 0; i < (*lst)->nb_bsfs; ++i) av_bsf_free(&(*lst)->bsfs[i]); av_free((*lst)->bsfs); av_freep(lst); }
false
FFmpeg
762bf6f4afa906a69366cbd125ef40fb788280de
8,629
static inline int get_bat(CPUState *env, mmu_ctx_t *ctx, target_ulong virtual, int rw, int type) { target_ulong *BATlt, *BATut, *BATu, *BATl; target_ulong BEPIl, BEPIu, bl; int i, valid, prot; int ret = -1; LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', virtual); switch (type) { case ACCESS_CODE: BATlt = env->IBAT[1]; BATut = env->IBAT[0]; break; default: BATlt = env->DBAT[1]; BATut = env->DBAT[0]; break; } for (i = 0; i < env->nb_BATs; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & 0xF0000000; BEPIl = *BATu & 0x0FFE0000; if (unlikely(env->mmu_model == POWERPC_MMU_601)) { bat_601_size_prot(env, &bl, &valid, &prot, BATu, BATl); } else { bat_size_prot(env, &bl, &valid, &prot, BATu, BATl); } LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl); if ((virtual & 0xF0000000) == BEPIu && ((virtual & 0x0FFE0000) & ~bl) == BEPIl) { /* BAT matches */ if (valid != 0) { /* Get physical address */ ctx->raddr = (*BATl & 0xF0000000) | ((virtual & 0x0FFE0000 & bl) | (*BATl & 0x0FFE0000)) | (virtual & 0x0001F000); /* Compute access rights */ ctx->prot = prot; ret = check_prot(ctx->prot, rw, type); if (ret == 0) LOG_BATS("BAT %d match: r " TARGET_FMT_plx " prot=%c%c\n", i, ctx->raddr, ctx->prot & PAGE_READ ? 'R' : '-', ctx->prot & PAGE_WRITE ? 'W' : '-'); break; } } } if (ret < 0) { #if defined(DEBUG_BATS) if (qemu_log_enabled()) { LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", virtual); for (i = 0; i < 4; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & 0xF0000000; BEPIl = *BATu & 0x0FFE0000; bl = (*BATu & 0x00001FFC) << 15; LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx " \n\t" TARGET_FMT_lx " " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl, BEPIu, BEPIl, bl); } } #endif } /* No hit */ return ret; }
false
qemu
b2bedb214469af55179d907a60cd67fed6b0779e
8,630
static int net_vde_init(VLANState *vlan, const char *model, const char *name, const char *sock, int port, const char *group, int mode) { VDEState *s; char *init_group = strlen(group) ? (char *)group : NULL; char *init_sock = strlen(sock) ? (char *)sock : NULL; struct vde_open_args args = { .port = port, .group = init_group, .mode = mode, }; s = qemu_mallocz(sizeof(VDEState)); s->vde = vde_open(init_sock, (char *)"QEMU", &args); if (!s->vde){ free(s); return -1; } s->vc = qemu_new_vlan_client(vlan, model, name, NULL, vde_from_qemu, NULL, vde_cleanup, s); qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s); snprintf(s->vc->info_str, sizeof(s->vc->info_str), "sock=%s,fd=%d", sock, vde_datafd(s->vde)); return 0; }
false
qemu
e3f5ec2b5e92706e3b807059f79b1fb5d936e567
8,631
static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu, sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { sPAPRPHBState *sphb; sPAPRPHBClass *spc; int option; uint64_t buid; if ((nargs != 8) || (nret != 1)) { goto param_error_exit; } buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); sphb = find_phb(spapr, buid); if (!sphb) { goto param_error_exit; } spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb); if (!spc->eeh_set_option) { goto param_error_exit; } option = rtas_ld(args, 7); switch (option) { case RTAS_SLOT_TEMP_ERR_LOG: case RTAS_SLOT_PERM_ERR_LOG: break; default: goto param_error_exit; } /* We don't have error log yet */ rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND); return; param_error_exit: rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); }
false
qemu
46c5874e9cd752ed8ded31af03472edd8fc3efc1
8,632
static void lan9118_writel(void *opaque, target_phys_addr_t offset, uint64_t val, unsigned size) { lan9118_state *s = (lan9118_state *)opaque; offset &= 0xff; //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val); if (offset >= 0x20 && offset < 0x40) { /* TX FIFO */ tx_fifo_push(s, val); return; } switch (offset) { case CSR_IRQ_CFG: /* TODO: Implement interrupt deassertion intervals. */ val &= (IRQ_EN | IRQ_POL | IRQ_TYPE); s->irq_cfg = (s->irq_cfg & IRQ_INT) | val; break; case CSR_INT_STS: s->int_sts &= ~val; break; case CSR_INT_EN: s->int_en = val & ~RESERVED_INT; s->int_sts |= val & SW_INT; break; case CSR_FIFO_INT: DPRINTF("FIFO INT levels %08x\n", val); s->fifo_int = val; break; case CSR_RX_CFG: if (val & 0x8000) { /* RX_DUMP */ s->rx_fifo_used = 0; s->rx_status_fifo_used = 0; s->rx_packet_size_tail = s->rx_packet_size_head; s->rx_packet_size[s->rx_packet_size_head] = 0; } s->rx_cfg = val & 0xcfff1ff0; break; case CSR_TX_CFG: if (val & 0x8000) { s->tx_status_fifo_used = 0; } if (val & 0x4000) { s->txp->state = TX_IDLE; s->txp->fifo_used = 0; s->txp->cmd_a = 0xffffffff; } s->tx_cfg = val & 6; break; case CSR_HW_CFG: if (val & 1) { /* SRST */ lan9118_reset(&s->busdev.qdev); } else { s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4); } break; case CSR_RX_DP_CTRL: if (val & 0x80000000) { /* Skip forward to next packet. */ s->rxp_pad = 0; s->rxp_offset = 0; if (s->rxp_size == 0) { /* Pop a word to start the next packet. */ rx_fifo_pop(s); s->rxp_pad = 0; s->rxp_offset = 0; } s->rx_fifo_head += s->rxp_size; if (s->rx_fifo_head >= s->rx_fifo_size) { s->rx_fifo_head -= s->rx_fifo_size; } } break; case CSR_PMT_CTRL: if (val & 0x400) { phy_reset(s); } s->pmt_ctrl &= ~0x34e; s->pmt_ctrl |= (val & 0x34e); break; case CSR_GPIO_CFG: /* Probably just enabling LEDs. */ s->gpio_cfg = val & 0x7777071f; break; case CSR_GPT_CFG: if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) { if (val & GPT_TIMER_EN) { ptimer_set_count(s->timer, val & 0xffff); ptimer_run(s->timer, 0); } else { ptimer_stop(s->timer); ptimer_set_count(s->timer, 0xffff); } } s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff); break; case CSR_WORD_SWAP: /* Ignored because we're in 32-bit mode. */ s->word_swap = val; break; case CSR_MAC_CSR_CMD: s->mac_cmd = val & 0x4000000f; if (val & 0x80000000) { if (val & 0x40000000) { s->mac_data = do_mac_read(s, val & 0xf); DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data); } else { DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data); do_mac_write(s, val & 0xf, s->mac_data); } } break; case CSR_MAC_CSR_DATA: s->mac_data = val; break; case CSR_AFC_CFG: s->afc_cfg = val & 0x00ffffff; break; case CSR_E2P_CMD: lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f); break; case CSR_E2P_DATA: s->e2p_data = val & 0xff; break; default: hw_error("lan9118_write: Bad reg 0x%x = %x\n", (int)offset, (int)val); break; } lan9118_update(s); }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
8,633
float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env) { return float64_mul(a, b, &env->ucf64.fp_status); }
false
qemu
e8ede0a8bb5298a6979bcf7ed84ef64a64a4e3fe
8,634
static int check_physical (CPUState *env, mmu_ctx_t *ctx, target_ulong eaddr, int rw) { int in_plb, ret; ctx->raddr = eaddr; ctx->prot = PAGE_READ; ret = 0; switch (env->mmu_model) { case POWERPC_MMU_32B: case POWERPC_MMU_SOFT_6xx: case POWERPC_MMU_SOFT_74xx: case POWERPC_MMU_SOFT_4xx: case POWERPC_MMU_REAL_4xx: case POWERPC_MMU_BOOKE: ctx->prot |= PAGE_WRITE; break; #if defined(TARGET_PPC64) case POWERPC_MMU_64B: /* Real address are 60 bits long */ ctx->raddr &= 0x0FFFFFFFFFFFFFFFULL; ctx->prot |= PAGE_WRITE; break; #endif case POWERPC_MMU_SOFT_4xx_Z: if (unlikely(msr_pe != 0)) { /* 403 family add some particular protections, * using PBL/PBU registers for accesses with no translation. */ in_plb = /* Check PLB validity */ (env->pb[0] < env->pb[1] && /* and address in plb area */ eaddr >= env->pb[0] && eaddr < env->pb[1]) || (env->pb[2] < env->pb[3] && eaddr >= env->pb[2] && eaddr < env->pb[3]) ? 1 : 0; if (in_plb ^ msr_px) { /* Access in protected area */ if (rw == 1) { /* Access is not allowed */ ret = -2; } } else { /* Read-write access is allowed */ ctx->prot |= PAGE_WRITE; } } break; case POWERPC_MMU_BOOKE_FSL: /* XXX: TODO */ cpu_abort(env, "BookE FSL MMU model not implemented\n"); break; default: cpu_abort(env, "Unknown or invalid MMU model\n"); return -1; } return ret; }
false
qemu
b227a8e9aa5f27d29f77ba90d5eb9d0662a1175e
8,635
static int cirrus_bitblt_videotovideo_copy(CirrusVGAState * s) { if (blit_is_unsafe(s)) return 0; cirrus_do_copy(s, s->cirrus_blt_dstaddr - s->vga.start_addr, s->cirrus_blt_srcaddr - s->vga.start_addr, s->cirrus_blt_width, s->cirrus_blt_height); return 1; }
false
qemu
4299b90e9ba9ce5ca9024572804ba751aa1a7e70
8,636
static BlockDriverAIOCB *raw_aio_writev(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { return bdrv_aio_writev(bs->file, sector_num, qiov, nb_sectors, cb, opaque); }
false
qemu
d8b7e0adf562277180f96ecbd7f1777a384a0308
8,637
static void xen_main_loop_prepare(XenIOState *state) { int evtchn_fd = -1; if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) { evtchn_fd = xc_evtchn_fd(state->xce_handle); } state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, state); if (evtchn_fd != -1) { CPUState *cpu_state; DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); CPU_FOREACH(cpu_state) { DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", __func__, cpu_state->cpu_index, cpu_state); state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; } qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); } }
false
qemu
a2db2a1edd06a50b8a862c654cf993368cf9f1d9
8,638
static void blk_mig_cleanup(void) { BlkMigDevState *bmds; BlkMigBlock *blk; bdrv_drain_all(); unset_dirty_tracking(); blk_mig_lock(); while ((bmds = QSIMPLEQ_FIRST(&block_mig_state.bmds_list)) != NULL) { QSIMPLEQ_REMOVE_HEAD(&block_mig_state.bmds_list, entry); bdrv_set_in_use(bmds->bs, 0); bdrv_unref(bmds->bs); g_free(bmds->aio_bitmap); g_free(bmds); } while ((blk = QSIMPLEQ_FIRST(&block_mig_state.blk_list)) != NULL) { QSIMPLEQ_REMOVE_HEAD(&block_mig_state.blk_list, entry); g_free(blk->buf); g_free(blk); } blk_mig_unlock(); }
false
qemu
3718d8ab65f68de2acccbe6a315907805f54e3cc
8,639
static int decode_rle(GetBitContext *gb, uint8_t *pal_dst, int pal_stride, uint8_t *rgb_dst, int rgb_stride, uint32_t *pal, int keyframe, int kf_slipt, int slice, int w, int h) { uint8_t bits[270] = { 0 }; uint32_t codes[270]; VLC vlc; int current_length = 0, read_codes = 0, next_code = 0, current_codes = 0; int remaining_codes, surplus_codes, i; const int alphabet_size = 270 - keyframe; int last_symbol = 0, repeat = 0, prev_avail = 0; if (!keyframe) { int x, y, clipw, cliph; x = get_bits(gb, 12); y = get_bits(gb, 12); clipw = get_bits(gb, 12) + 1; cliph = get_bits(gb, 12) + 1; if (x + clipw > w || y + cliph > h) return AVERROR_INVALIDDATA; pal_dst += pal_stride * y + x; rgb_dst += rgb_stride * y + x * 3; w = clipw; h = cliph; if (y) prev_avail = 1; } else { if (slice > 0) { pal_dst += pal_stride * kf_slipt; rgb_dst += rgb_stride * kf_slipt; prev_avail = 1; h -= kf_slipt; } else h = kf_slipt; } /* read explicit codes */ do { while (current_codes--) { int symbol = get_bits(gb, 8); if (symbol >= 204 - keyframe) symbol += 14 - keyframe; else if (symbol > 189) symbol = get_bits1(gb) + (symbol << 1) - 190; if (bits[symbol]) return AVERROR_INVALIDDATA; bits[symbol] = current_length; codes[symbol] = next_code++; read_codes++; } current_length++; next_code <<= 1; remaining_codes = (1 << current_length) - next_code; current_codes = get_bits(gb, av_ceil_log2(remaining_codes + 1)); if (current_length > 22 || current_codes > remaining_codes) return AVERROR_INVALIDDATA; } while (current_codes != remaining_codes); remaining_codes = alphabet_size - read_codes; /* determine the minimum length to fit the rest of the alphabet */ while ((surplus_codes = (2 << current_length) - (next_code << 1) - remaining_codes) < 0) { current_length++; next_code <<= 1; } /* add the rest of the symbols lexicographically */ for (i = 0; i < alphabet_size; i++) if (!bits[i]) { if (surplus_codes-- == 0) { current_length++; next_code <<= 1; } bits[i] = current_length; codes[i] = next_code++; } if (next_code != 1 << current_length) return AVERROR_INVALIDDATA; if (i = init_vlc(&vlc, 9, alphabet_size, bits, 1, 1, codes, 4, 4, 0)) return i; /* frame decode */ do { uint8_t *pp = pal_dst; uint8_t *rp = rgb_dst; do { if (repeat-- < 1) { int b = get_vlc2(gb, vlc.table, 9, 3); if (b < 256) last_symbol = b; else if (b < 268) { b -= 256; if (b == 11) b = get_bits(gb, 4) + 10; if (!b) repeat = 0; else repeat = get_bits(gb, b); repeat += (1 << b) - 1; if (last_symbol == -2) { int skip = FFMIN(repeat, pal_dst + w - pp); repeat -= skip; pp += skip; rp += skip * 3; } } else last_symbol = 267 - b; } if (last_symbol >= 0) { *pp = last_symbol; AV_WB24(rp, pal[last_symbol]); } else if (last_symbol == -1 && prev_avail) { *pp = *(pp - pal_stride); memcpy(rp, rp - rgb_stride, 3); } rp += 3; } while (++pp < pal_dst + w); pal_dst += pal_stride; rgb_dst += rgb_stride; prev_avail = 1; } while (--h); ff_free_vlc(&vlc); return 0; }
false
FFmpeg
8ea9334b31546880dfd2b5dc49497b8da9a620bf
8,640
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) { ARMCPU *cpu = arm_env_get_cpu(env); env->cp15.c3 = value; tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */ }
false
qemu
8d5c773e323b22402abdd0beef4c7d2fc91dd0eb
8,641
void bdrv_io_unplugged_end(BlockDriverState *bs) { BdrvChild *child; assert(bs->io_plug_disabled); QLIST_FOREACH(child, &bs->children, next) { bdrv_io_unplugged_end(child->bs); } if (--bs->io_plug_disabled == 0 && bs->io_plugged > 0) { BlockDriver *drv = bs->drv; if (drv && drv->bdrv_io_plug) { drv->bdrv_io_plug(bs); } } }
false
qemu
8f90b5e91df59fde0dfecc6738ff39f3edf14be5
8,642
static uint64_t omap_prcm_read(void *opaque, target_phys_addr_t addr, unsigned size) { struct omap_prcm_s *s = (struct omap_prcm_s *) opaque; uint32_t ret; if (size != 4) { return omap_badwidth_read32(opaque, addr); } switch (addr) { case 0x000: /* PRCM_REVISION */ return 0x10; case 0x010: /* PRCM_SYSCONFIG */ return s->sysconfig; case 0x018: /* PRCM_IRQSTATUS_MPU */ return s->irqst[0]; case 0x01c: /* PRCM_IRQENABLE_MPU */ return s->irqen[0]; case 0x050: /* PRCM_VOLTCTRL */ return s->voltctrl; case 0x054: /* PRCM_VOLTST */ return s->voltctrl & 3; case 0x060: /* PRCM_CLKSRC_CTRL */ return s->clksrc[0]; case 0x070: /* PRCM_CLKOUT_CTRL */ return s->clkout[0]; case 0x078: /* PRCM_CLKEMUL_CTRL */ return s->clkemul[0]; case 0x080: /* PRCM_CLKCFG_CTRL */ case 0x084: /* PRCM_CLKCFG_STATUS */ return 0; case 0x090: /* PRCM_VOLTSETUP */ return s->setuptime[0]; case 0x094: /* PRCM_CLKSSETUP */ return s->setuptime[1]; case 0x098: /* PRCM_POLCTRL */ return s->clkpol[0]; case 0x0b0: /* GENERAL_PURPOSE1 */ case 0x0b4: /* GENERAL_PURPOSE2 */ case 0x0b8: /* GENERAL_PURPOSE3 */ case 0x0bc: /* GENERAL_PURPOSE4 */ case 0x0c0: /* GENERAL_PURPOSE5 */ case 0x0c4: /* GENERAL_PURPOSE6 */ case 0x0c8: /* GENERAL_PURPOSE7 */ case 0x0cc: /* GENERAL_PURPOSE8 */ case 0x0d0: /* GENERAL_PURPOSE9 */ case 0x0d4: /* GENERAL_PURPOSE10 */ case 0x0d8: /* GENERAL_PURPOSE11 */ case 0x0dc: /* GENERAL_PURPOSE12 */ case 0x0e0: /* GENERAL_PURPOSE13 */ case 0x0e4: /* GENERAL_PURPOSE14 */ case 0x0e8: /* GENERAL_PURPOSE15 */ case 0x0ec: /* GENERAL_PURPOSE16 */ case 0x0f0: /* GENERAL_PURPOSE17 */ case 0x0f4: /* GENERAL_PURPOSE18 */ case 0x0f8: /* GENERAL_PURPOSE19 */ case 0x0fc: /* GENERAL_PURPOSE20 */ return s->scratch[(addr - 0xb0) >> 2]; case 0x140: /* CM_CLKSEL_MPU */ return s->clksel[0]; case 0x148: /* CM_CLKSTCTRL_MPU */ return s->clkctrl[0]; case 0x158: /* RM_RSTST_MPU */ return s->rst[0]; case 0x1c8: /* PM_WKDEP_MPU */ return s->wkup[0]; case 0x1d4: /* PM_EVGENCTRL_MPU */ return s->ev; case 0x1d8: /* PM_EVEGENONTIM_MPU */ return s->evtime[0]; case 0x1dc: /* PM_EVEGENOFFTIM_MPU */ return s->evtime[1]; case 0x1e0: /* PM_PWSTCTRL_MPU */ return s->power[0]; case 0x1e4: /* PM_PWSTST_MPU */ return 0; case 0x200: /* CM_FCLKEN1_CORE */ return s->clken[0]; case 0x204: /* CM_FCLKEN2_CORE */ return s->clken[1]; case 0x210: /* CM_ICLKEN1_CORE */ return s->clken[2]; case 0x214: /* CM_ICLKEN2_CORE */ return s->clken[3]; case 0x21c: /* CM_ICLKEN4_CORE */ return s->clken[4]; case 0x220: /* CM_IDLEST1_CORE */ /* TODO: check the actual iclk status */ return 0x7ffffff9; case 0x224: /* CM_IDLEST2_CORE */ /* TODO: check the actual iclk status */ return 0x00000007; case 0x22c: /* CM_IDLEST4_CORE */ /* TODO: check the actual iclk status */ return 0x0000001f; case 0x230: /* CM_AUTOIDLE1_CORE */ return s->clkidle[0]; case 0x234: /* CM_AUTOIDLE2_CORE */ return s->clkidle[1]; case 0x238: /* CM_AUTOIDLE3_CORE */ return s->clkidle[2]; case 0x23c: /* CM_AUTOIDLE4_CORE */ return s->clkidle[3]; case 0x240: /* CM_CLKSEL1_CORE */ return s->clksel[1]; case 0x244: /* CM_CLKSEL2_CORE */ return s->clksel[2]; case 0x248: /* CM_CLKSTCTRL_CORE */ return s->clkctrl[1]; case 0x2a0: /* PM_WKEN1_CORE */ return s->wken[0]; case 0x2a4: /* PM_WKEN2_CORE */ return s->wken[1]; case 0x2b0: /* PM_WKST1_CORE */ return s->wkst[0]; case 0x2b4: /* PM_WKST2_CORE */ return s->wkst[1]; case 0x2c8: /* PM_WKDEP_CORE */ return 0x1e; case 0x2e0: /* PM_PWSTCTRL_CORE */ return s->power[1]; case 0x2e4: /* PM_PWSTST_CORE */ return 0x000030 | (s->power[1] & 0xfc00); case 0x300: /* CM_FCLKEN_GFX */ return s->clken[5]; case 0x310: /* CM_ICLKEN_GFX */ return s->clken[6]; case 0x320: /* CM_IDLEST_GFX */ /* TODO: check the actual iclk status */ return 0x00000001; case 0x340: /* CM_CLKSEL_GFX */ return s->clksel[3]; case 0x348: /* CM_CLKSTCTRL_GFX */ return s->clkctrl[2]; case 0x350: /* RM_RSTCTRL_GFX */ return s->rstctrl[0]; case 0x358: /* RM_RSTST_GFX */ return s->rst[1]; case 0x3c8: /* PM_WKDEP_GFX */ return s->wkup[1]; case 0x3e0: /* PM_PWSTCTRL_GFX */ return s->power[2]; case 0x3e4: /* PM_PWSTST_GFX */ return s->power[2] & 3; case 0x400: /* CM_FCLKEN_WKUP */ return s->clken[7]; case 0x410: /* CM_ICLKEN_WKUP */ return s->clken[8]; case 0x420: /* CM_IDLEST_WKUP */ /* TODO: check the actual iclk status */ return 0x0000003f; case 0x430: /* CM_AUTOIDLE_WKUP */ return s->clkidle[4]; case 0x440: /* CM_CLKSEL_WKUP */ return s->clksel[4]; case 0x450: /* RM_RSTCTRL_WKUP */ return 0; case 0x454: /* RM_RSTTIME_WKUP */ return s->rsttime_wkup; case 0x458: /* RM_RSTST_WKUP */ return s->rst[2]; case 0x4a0: /* PM_WKEN_WKUP */ return s->wken[2]; case 0x4b0: /* PM_WKST_WKUP */ return s->wkst[2]; case 0x500: /* CM_CLKEN_PLL */ return s->clken[9]; case 0x520: /* CM_IDLEST_CKGEN */ ret = 0x0000070 | (s->apll_lock[0] << 9) | (s->apll_lock[1] << 8); if (!(s->clksel[6] & 3)) /* Core uses 32-kHz clock */ ret |= 3 << 0; else if (!s->dpll_lock) /* DPLL not locked, core uses ref_clk */ ret |= 1 << 0; else /* Core uses DPLL */ ret |= 2 << 0; return ret; case 0x530: /* CM_AUTOIDLE_PLL */ return s->clkidle[5]; case 0x540: /* CM_CLKSEL1_PLL */ return s->clksel[5]; case 0x544: /* CM_CLKSEL2_PLL */ return s->clksel[6]; case 0x800: /* CM_FCLKEN_DSP */ return s->clken[10]; case 0x810: /* CM_ICLKEN_DSP */ return s->clken[11]; case 0x820: /* CM_IDLEST_DSP */ /* TODO: check the actual iclk status */ return 0x00000103; case 0x830: /* CM_AUTOIDLE_DSP */ return s->clkidle[6]; case 0x840: /* CM_CLKSEL_DSP */ return s->clksel[7]; case 0x848: /* CM_CLKSTCTRL_DSP */ return s->clkctrl[3]; case 0x850: /* RM_RSTCTRL_DSP */ return 0; case 0x858: /* RM_RSTST_DSP */ return s->rst[3]; case 0x8c8: /* PM_WKDEP_DSP */ return s->wkup[2]; case 0x8e0: /* PM_PWSTCTRL_DSP */ return s->power[3]; case 0x8e4: /* PM_PWSTST_DSP */ return 0x008030 | (s->power[3] & 0x3003); case 0x8f0: /* PRCM_IRQSTATUS_DSP */ return s->irqst[1]; case 0x8f4: /* PRCM_IRQENABLE_DSP */ return s->irqen[1]; case 0x8f8: /* PRCM_IRQSTATUS_IVA */ return s->irqst[2]; case 0x8fc: /* PRCM_IRQENABLE_IVA */ return s->irqen[2]; } OMAP_BAD_REG(addr); return 0; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
8,643
float64 HELPER(ucf64_negd)(float64 a) { return float64_chs(a); }
false
qemu
e8ede0a8bb5298a6979bcf7ed84ef64a64a4e3fe
8,644
static int tcp_chr_add_client(CharDriverState *chr, int fd) { TCPCharDriver *s = chr->opaque; if (s->fd != -1) return -1; qemu_set_nonblock(fd); if (s->do_nodelay) socket_set_nodelay(fd); s->fd = fd; s->chan = io_channel_from_socket(fd); g_source_remove(s->listen_tag); s->listen_tag = 0; tcp_chr_connect(chr); return 0; }
false
qemu
910b63682ea72f34307b8797c4cc81a1f2a0c47f
8,645
static uint64_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr, unsigned size) { struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; if (size < 2) { return omap_badwidth_read16(opaque, addr); } switch (addr) { case 0x00: /* TIPB_CNTL */ return s->control; case 0x04: /* TIPB_BUS_ALLOC */ return s->alloc; case 0x08: /* MPU_TIPB_CNTL */ return s->buffer; case 0x0c: /* ENHANCED_TIPB_CNTL */ return s->enh_control; case 0x10: /* ADDRESS_DBG */ case 0x14: /* DATA_DEBUG_LOW */ case 0x18: /* DATA_DEBUG_HIGH */ return 0xffff; case 0x1c: /* DEBUG_CNTR_SIG */ return 0x00f8; } OMAP_BAD_REG(addr); return 0; }
false
qemu
a8170e5e97ad17ca169c64ba87ae2f53850dab4c
8,646
static void lan9118_writel(void *opaque, hwaddr offset, uint64_t val, unsigned size) { lan9118_state *s = (lan9118_state *)opaque; offset &= 0xff; //DPRINTF("Write reg 0x%02x = 0x%08x\n", (int)offset, val); if (offset >= 0x20 && offset < 0x40) { /* TX FIFO */ tx_fifo_push(s, val); return; } switch (offset) { case CSR_IRQ_CFG: /* TODO: Implement interrupt deassertion intervals. */ val &= (IRQ_EN | IRQ_POL | IRQ_TYPE); s->irq_cfg = (s->irq_cfg & IRQ_INT) | val; break; case CSR_INT_STS: s->int_sts &= ~val; break; case CSR_INT_EN: s->int_en = val & ~RESERVED_INT; s->int_sts |= val & SW_INT; break; case CSR_FIFO_INT: DPRINTF("FIFO INT levels %08x\n", val); s->fifo_int = val; break; case CSR_RX_CFG: if (val & 0x8000) { /* RX_DUMP */ s->rx_fifo_used = 0; s->rx_status_fifo_used = 0; s->rx_packet_size_tail = s->rx_packet_size_head; s->rx_packet_size[s->rx_packet_size_head] = 0; } s->rx_cfg = val & 0xcfff1ff0; break; case CSR_TX_CFG: if (val & 0x8000) { s->tx_status_fifo_used = 0; } if (val & 0x4000) { s->txp->state = TX_IDLE; s->txp->fifo_used = 0; s->txp->cmd_a = 0xffffffff; } s->tx_cfg = val & 6; break; case CSR_HW_CFG: if (val & 1) { /* SRST */ lan9118_reset(DEVICE(s)); } else { s->hw_cfg = (val & 0x003f300) | (s->hw_cfg & 0x4); } break; case CSR_RX_DP_CTRL: if (val & 0x80000000) { /* Skip forward to next packet. */ s->rxp_pad = 0; s->rxp_offset = 0; if (s->rxp_size == 0) { /* Pop a word to start the next packet. */ rx_fifo_pop(s); s->rxp_pad = 0; s->rxp_offset = 0; } s->rx_fifo_head += s->rxp_size; if (s->rx_fifo_head >= s->rx_fifo_size) { s->rx_fifo_head -= s->rx_fifo_size; } } break; case CSR_PMT_CTRL: if (val & 0x400) { phy_reset(s); } s->pmt_ctrl &= ~0x34e; s->pmt_ctrl |= (val & 0x34e); break; case CSR_GPIO_CFG: /* Probably just enabling LEDs. */ s->gpio_cfg = val & 0x7777071f; break; case CSR_GPT_CFG: if ((s->gpt_cfg ^ val) & GPT_TIMER_EN) { if (val & GPT_TIMER_EN) { ptimer_set_count(s->timer, val & 0xffff); ptimer_run(s->timer, 0); } else { ptimer_stop(s->timer); ptimer_set_count(s->timer, 0xffff); } } s->gpt_cfg = val & (GPT_TIMER_EN | 0xffff); break; case CSR_WORD_SWAP: /* Ignored because we're in 32-bit mode. */ s->word_swap = val; break; case CSR_MAC_CSR_CMD: s->mac_cmd = val & 0x4000000f; if (val & 0x80000000) { if (val & 0x40000000) { s->mac_data = do_mac_read(s, val & 0xf); DPRINTF("MAC read %d = 0x%08x\n", val & 0xf, s->mac_data); } else { DPRINTF("MAC write %d = 0x%08x\n", val & 0xf, s->mac_data); do_mac_write(s, val & 0xf, s->mac_data); } } break; case CSR_MAC_CSR_DATA: s->mac_data = val; break; case CSR_AFC_CFG: s->afc_cfg = val & 0x00ffffff; break; case CSR_E2P_CMD: lan9118_eeprom_cmd(s, (val >> 28) & 7, val & 0x7f); break; case CSR_E2P_DATA: s->e2p_data = val & 0xff; break; default: hw_error("lan9118_write: Bad reg 0x%x = %x\n", (int)offset, (int)val); break; } lan9118_update(s); }
false
qemu
52b4bb7383b32e4e7512f98c57738c8fc9cb35ba
8,648
int bdrv_create_file(const char *filename, QemuOpts *opts, Error **errp) { BlockDriver *drv; Error *local_err = NULL; int ret; drv = bdrv_find_protocol(filename, true, errp); if (drv == NULL) { return -ENOENT; } ret = bdrv_create(drv, filename, opts, &local_err); if (local_err) { error_propagate(errp, local_err); } return ret; }
false
qemu
621ff94d5074d88253a5818c6b9c4db718fbfc65
8,649
static int tcg_match_add2i(TCGType type, tcg_target_long val) { if (facilities & FACILITY_EXT_IMM) { if (type == TCG_TYPE_I32) { return 1; } else if (val >= -0xffffffffll && val <= 0xffffffffll) { return 1; } } return 0; }
false
qemu
b2c98d9d392c87c9b9e975d30f79924719d9cbbe
8,650
int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors, int *pnum) { return bdrv_get_block_status(bs, sector_num, nb_sectors, pnum); }
false
qemu
4333bb71405f58a8dc8d3255feb3ca5960b0daf8
8,651
static void fw_cfg_init1(DeviceState *dev) { FWCfgState *s = FW_CFG(dev); MachineState *machine = MACHINE(qdev_get_machine()); assert(!object_resolve_path(FW_CFG_PATH, NULL)); object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL); qdev_init_nofail(dev); fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); fw_cfg_bootsplash(s); fw_cfg_reboot(s); s->machine_ready.notify = fw_cfg_machine_ready; qemu_add_machine_init_done_notifier(&s->machine_ready); }
false
qemu
5836d16812cda6b93380632802d56411972e3148
8,652
static av_cold int vsink_init(AVFilterContext *ctx, const char *args, void *opaque) { BufferSinkContext *buf = ctx->priv; av_unused AVBufferSinkParams *params; if (!opaque) { av_log(ctx, AV_LOG_ERROR, "No opaque field provided\n"); return AVERROR(EINVAL); } else { #if FF_API_OLD_VSINK_API buf->pixel_fmts = (const enum PixelFormat *)opaque; #else params = (AVBufferSinkParams *)opaque; buf->pixel_fmts = params->pixel_fmts; #endif } return common_init(ctx); }
false
FFmpeg
386aee6864c5cfc438785d2421b2f056450da014
8,653
int ff_adts_write_frame_header(ADTSContext *ctx, uint8_t *buf, int size, int pce_size) { PutBitContext pb; init_put_bits(&pb, buf, ADTS_HEADER_SIZE); /* adts_fixed_header */ put_bits(&pb, 12, 0xfff); /* syncword */ put_bits(&pb, 1, 0); /* ID */ put_bits(&pb, 2, 0); /* layer */ put_bits(&pb, 1, 1); /* protection_absent */ put_bits(&pb, 2, ctx->objecttype); /* profile_objecttype */ put_bits(&pb, 4, ctx->sample_rate_index); put_bits(&pb, 1, 0); /* private_bit */ put_bits(&pb, 3, ctx->channel_conf); /* channel_configuration */ put_bits(&pb, 1, 0); /* original_copy */ put_bits(&pb, 1, 0); /* home */ /* adts_variable_header */ put_bits(&pb, 1, 0); /* copyright_identification_bit */ put_bits(&pb, 1, 0); /* copyright_identification_start */ put_bits(&pb, 13, ADTS_HEADER_SIZE + size + pce_size); /* aac_frame_length */ put_bits(&pb, 11, 0x7ff); /* adts_buffer_fullness */ put_bits(&pb, 2, 0); /* number_of_raw_data_blocks_in_frame */ flush_put_bits(&pb); return 0; }
false
FFmpeg
ac47e014bbaf5163871a8beb7522015e0bc27615
8,654
static int fbdev_read_packet(AVFormatContext *avctx, AVPacket *pkt) { FBDevContext *fbdev = avctx->priv_data; int64_t curtime, delay; struct timespec ts; int i, ret; uint8_t *pin, *pout; if (fbdev->time_frame == AV_NOPTS_VALUE) fbdev->time_frame = av_gettime(); /* wait based on the frame rate */ while (1) { curtime = av_gettime(); delay = fbdev->time_frame - curtime; av_dlog(avctx, "time_frame:%"PRId64" curtime:%"PRId64" delay:%"PRId64"\n", fbdev->time_frame, curtime, delay); if (delay <= 0) { fbdev->time_frame += INT64_C(1000000) * av_q2d(fbdev->time_base); break; } if (avctx->flags & AVFMT_FLAG_NONBLOCK) return AVERROR(EAGAIN); ts.tv_sec = delay / 1000000; ts.tv_nsec = (delay % 1000000) * 1000; while (nanosleep(&ts, &ts) == EINTR); } if ((ret = av_new_packet(pkt, fbdev->frame_size)) < 0) return ret; /* refresh fbdev->varinfo, visible data position may change at each call */ if (ioctl(fbdev->fd, FBIOGET_VSCREENINFO, &fbdev->varinfo) < 0) av_log(avctx, AV_LOG_WARNING, "Error refreshing variable info: %s\n", strerror(errno)); pkt->pts = curtime; /* compute visible data offset */ pin = fbdev->data + fbdev->bytes_per_pixel * fbdev->varinfo.xoffset + fbdev->varinfo.yoffset * fbdev->fixinfo.line_length; pout = pkt->data; for (i = 0; i < fbdev->heigth; i++) { memcpy(pout, pin, fbdev->frame_linesize); pin += fbdev->fixinfo.line_length; pout += fbdev->frame_linesize; } return fbdev->frame_size; }
false
FFmpeg
478607668c8840278c3fdd97382c3fae3f8cd7a2
8,655
static int virtio_ccw_set_guest_notifier(VirtioCcwDevice *dev, int n, bool assign, bool with_irqfd) { VirtIODevice *vdev = virtio_bus_get_device(&dev->bus); VirtQueue *vq = virtio_get_queue(vdev, n); EventNotifier *notifier = virtio_queue_get_guest_notifier(vq); VirtioDeviceClass *k = VIRTIO_DEVICE_GET_CLASS(vdev); if (assign) { int r = event_notifier_init(notifier, 0); if (r < 0) { return r; } virtio_queue_set_guest_notifier_fd_handler(vq, true, with_irqfd); if (with_irqfd) { r = virtio_ccw_add_irqfd(dev, n); if (r) { virtio_queue_set_guest_notifier_fd_handler(vq, false, with_irqfd); return r; } } /* * We do not support individual masking for channel devices, so we * need to manually trigger any guest masking callbacks here. */ if (k->guest_notifier_mask) { k->guest_notifier_mask(vdev, n, false); } /* get lost events and re-inject */ if (k->guest_notifier_pending && k->guest_notifier_pending(vdev, n)) { event_notifier_set(notifier); } } else { if (k->guest_notifier_mask) { k->guest_notifier_mask(vdev, n, true); } if (with_irqfd) { virtio_ccw_remove_irqfd(dev, n); } virtio_queue_set_guest_notifier_fd_handler(vq, false, with_irqfd); event_notifier_cleanup(notifier); } return 0; }
false
qemu
2858bc68701e282c404ed04d65d4f065e4b40e52
8,656
qemu_acl *qemu_acl_init(const char *aclname) { qemu_acl *acl; acl = qemu_acl_find(aclname); if (acl) return acl; acl = qemu_malloc(sizeof(*acl)); acl->aclname = qemu_strdup(aclname); /* Deny by default, so there is no window of "open * access" between QEMU starting, and the user setting * up ACLs in the monitor */ acl->defaultDeny = 1; acl->nentries = 0; TAILQ_INIT(&acl->entries); acls = qemu_realloc(acls, sizeof(*acls) * (nacls +1)); acls[nacls] = acl; nacls++; return acl; }
false
qemu
72cf2d4f0e181d0d3a3122e04129c58a95da713e
8,657
static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr, uint32_t val) { int dirty_flags; dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; if (!(dirty_flags & CODE_DIRTY_FLAG)) { #if !defined(CONFIG_USER_ONLY) tb_invalidate_phys_page_fast(ram_addr, 2); dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS]; #endif } stw_p(qemu_get_ram_ptr(ram_addr), val); #ifdef CONFIG_KQEMU if (cpu_single_env->kqemu_enabled && (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK) kqemu_modify_page(cpu_single_env, ram_addr); #endif dirty_flags |= (0xff & ~CODE_DIRTY_FLAG); phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags; /* we remove the notdirty callback only if the code has been flushed */ if (dirty_flags == 0xff) tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr); }
false
qemu
4a1418e07bdcfaa3177739e04707ecaec75d89e1
8,658
static void aio_signal_handler(int signum) { if (posix_aio_state) { char byte = 0; write(posix_aio_state->wfd, &byte, sizeof(byte)); } qemu_service_io(); }
false
qemu
9ef91a677110ec200d7b2904fc4bcae5a77329ad
8,659
inline qemu_irq omap_inth_get_pin(struct omap_intr_handler_s *s, int n) { return s->pins[n]; }
false
qemu
0919ac787641db11024912651f3bc5764d4f1286
8,660
static void realview_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env; ram_addr_t ram_offset; DeviceState *dev; qemu_irq *irqp; qemu_irq pic[64]; PCIBus *pci_bus; NICInfo *nd; int n; int done_smc = 0; qemu_irq cpu_irq[4]; int ncpu; if (!cpu_model) cpu_model = "arm926"; /* FIXME: obey smp_cpus. */ if (strcmp(cpu_model, "arm11mpcore") == 0) { ncpu = 4; } else { ncpu = 1; } for (n = 0; n < ncpu; n++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } irqp = arm_pic_init_cpu(env); cpu_irq[n] = irqp[ARM_PIC_CPU_IRQ]; if (n > 0) { qemu_register_reset(secondary_cpu_reset, env); } } ram_offset = qemu_ram_alloc(ram_size); /* ??? RAM should repeat to fill physical memory space. */ /* SDRAM at address zero. */ cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM); arm_sysctl_init(0x10000000, 0xc1400400); if (ncpu == 1) { /* ??? The documentation says GIC1 is nFIQ and either GIC2 or GIC3 is nIRQ (there are inconsistencies). However Linux 2.6.17 expects GIC1 to be nIRQ and ignores all the others, so do that for now. */ dev = sysbus_create_simple("realview_gic", 0x10040000, cpu_irq[0]); } else { dev = sysbus_create_varargs("realview_mpcore", -1, cpu_irq[0], cpu_irq[1], cpu_irq[2], cpu_irq[3], NULL); } for (n = 0; n < 64; n++) { pic[n] = qdev_get_gpio_in(dev, n); } sysbus_create_simple("pl050_keyboard", 0x10006000, pic[20]); sysbus_create_simple("pl050_mouse", 0x10007000, pic[21]); sysbus_create_simple("pl011", 0x10009000, pic[12]); sysbus_create_simple("pl011", 0x1000a000, pic[13]); sysbus_create_simple("pl011", 0x1000b000, pic[14]); sysbus_create_simple("pl011", 0x1000c000, pic[15]); /* DMA controller is optional, apparently. */ sysbus_create_simple("pl081", 0x10030000, pic[24]); sysbus_create_simple("sp804", 0x10011000, pic[4]); sysbus_create_simple("sp804", 0x10012000, pic[5]); sysbus_create_simple("pl110_versatile", 0x10020000, pic[23]); sysbus_create_varargs("pl181", 0x10005000, pic[17], pic[18], NULL); sysbus_create_simple("pl031", 0x10017000, pic[10]); dev = sysbus_create_varargs("realview_pci", 0x60000000, pic[48], pic[49], pic[50], pic[51], NULL); pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci"); if (usb_enabled) { usb_ohci_init_pci(pci_bus, -1); } n = drive_get_max_bus(IF_SCSI); while (n >= 0) { pci_create_simple(pci_bus, -1, "lsi53c895a"); n--; } for(n = 0; n < nb_nics; n++) { nd = &nd_table[n]; if ((!nd->model && !done_smc) || strcmp(nd->model, "smc91c111") == 0) { smc91c111_init(nd, 0x4e000000, pic[28]); done_smc = 1; } else { pci_nic_init_nofail(nd, "rtl8139", NULL); } } /* Memory map for RealView Emulation Baseboard: */ /* 0x10000000 System registers. */ /* 0x10001000 System controller. */ /* 0x10002000 Two-Wire Serial Bus. */ /* 0x10003000 Reserved. */ /* 0x10004000 AACI. */ /* 0x10005000 MCI. */ /* 0x10006000 KMI0. */ /* 0x10007000 KMI1. */ /* 0x10008000 Character LCD. */ /* 0x10009000 UART0. */ /* 0x1000a000 UART1. */ /* 0x1000b000 UART2. */ /* 0x1000c000 UART3. */ /* 0x1000d000 SSPI. */ /* 0x1000e000 SCI. */ /* 0x1000f000 Reserved. */ /* 0x10010000 Watchdog. */ /* 0x10011000 Timer 0+1. */ /* 0x10012000 Timer 2+3. */ /* 0x10013000 GPIO 0. */ /* 0x10014000 GPIO 1. */ /* 0x10015000 GPIO 2. */ /* 0x10016000 Reserved. */ /* 0x10017000 RTC. */ /* 0x10018000 DMC. */ /* 0x10019000 PCI controller config. */ /* 0x10020000 CLCD. */ /* 0x10030000 DMA Controller. */ /* 0x10040000 GIC1. */ /* 0x10050000 GIC2. */ /* 0x10060000 GIC3. */ /* 0x10070000 GIC4. */ /* 0x10080000 SMC. */ /* 0x40000000 NOR flash. */ /* 0x44000000 DoC flash. */ /* 0x48000000 SRAM. */ /* 0x4c000000 Configuration flash. */ /* 0x4e000000 Ethernet. */ /* 0x4f000000 USB. */ /* 0x50000000 PISMO. */ /* 0x54000000 PISMO. */ /* 0x58000000 PISMO. */ /* 0x5c000000 PISMO. */ /* 0x60000000 PCI. */ /* 0x61000000 PCI Self Config. */ /* 0x62000000 PCI Config. */ /* 0x63000000 PCI IO. */ /* 0x64000000 PCI mem 0. */ /* 0x68000000 PCI mem 1. */ /* 0x6c000000 PCI mem 2. */ /* ??? Hack to map an additional page of ram for the secondary CPU startup code. I guess this works on real hardware because the BootROM happens to be in ROM/flash or in memory that isn't clobbered until after Linux boots the secondary CPUs. */ ram_offset = qemu_ram_alloc(0x1000); cpu_register_physical_memory(0x80000000, 0x1000, ram_offset | IO_MEM_RAM); realview_binfo.ram_size = ram_size; realview_binfo.kernel_filename = kernel_filename; realview_binfo.kernel_cmdline = kernel_cmdline; realview_binfo.initrd_filename = initrd_filename; realview_binfo.nb_cpus = ncpu; arm_load_kernel(first_cpu, &realview_binfo); }
false
qemu
26e92f65525ef4446a500d85e185cf78835922aa
8,661
static void gen_cop1_ldst(DisasContext *ctx, uint32_t op, int rt, int rs, int16_t imm) { if (ctx->CP0_Config1 & (1 << CP0C1_FP)) { check_cp1_enabled(ctx); gen_flt_ldst(ctx, op, rt, rs, imm); } else { generate_exception_err(ctx, EXCP_CpU, 1); } }
false
qemu
d9224450208e0de62323b64ace91f98bc31d6e2c
8,662
static IOMMUTLBEntry s390_translate_iommu(MemoryRegion *mr, hwaddr addr, bool is_write) { uint64_t pte; uint32_t flags; S390PCIIOMMU *iommu = container_of(mr, S390PCIIOMMU, iommu_mr); IOMMUTLBEntry ret = { .target_as = &address_space_memory, .iova = 0, .translated_addr = 0, .addr_mask = ~(hwaddr)0, .perm = IOMMU_NONE, }; switch (iommu->pbdev->state) { case ZPCI_FS_ENABLED: case ZPCI_FS_BLOCKED: if (!iommu->enabled) { return ret; } break; default: return ret; } DPRINTF("iommu trans addr 0x%" PRIx64 "\n", addr); if (addr < iommu->pba || addr > iommu->pal) { return ret; } pte = s390_guest_io_table_walk(s390_pci_get_table_origin(iommu->g_iota), addr); if (!pte) { return ret; } flags = pte & ZPCI_PTE_FLAG_MASK; ret.iova = addr; ret.translated_addr = pte & ZPCI_PTE_ADDR_MASK; ret.addr_mask = 0xfff; if (flags & ZPCI_PTE_INVALID) { ret.perm = IOMMU_NONE; } else { ret.perm = IOMMU_RW; } return ret; }
false
qemu
bf55b7afce53718ef96f4e6616da62c0ccac37dd
8,663
static void spr_write_dbatl (void *opaque, int sprn) { DisasContext *ctx = opaque; gen_op_store_dbatl((sprn - SPR_DBAT0L) / 2); RET_STOP(ctx); }
false
qemu
e1833e1f96456fd8fc17463246fe0b2050e68efb
8,664
static uint32_t vbe_ioport_read_index(void *opaque, uint32_t addr) { VGACommonState *s = opaque; uint32_t val; val = s->vbe_index; return val; }
false
qemu
9be385980d37e8f4fd33f605f5fb1c3d144170a8
8,665
static int decode_dds1(GetByteContext *gb, uint8_t *frame, int width, int height) { const uint8_t *frame_start = frame; const uint8_t *frame_end = frame + width * height; int mask = 0x10000, bitbuf = 0; int i, v, offset, count, segments; segments = bytestream2_get_le16(gb); while (segments--) { if (bytestream2_get_bytes_left(gb) < 2) return -1; if (mask == 0x10000) { bitbuf = bytestream2_get_le16u(gb); mask = 1; } if (frame_end - frame < 2) return -1; if (bitbuf & mask) { v = bytestream2_get_le16(gb); offset = (v & 0x1FFF) << 2; count = ((v >> 13) + 2) << 1; if (frame - frame_start < offset || frame_end - frame < count*2 + width) return -1; for (i = 0; i < count; i++) { frame[0] = frame[1] = frame[width] = frame[width + 1] = frame[-offset]; frame += 2; } } else if (bitbuf & (mask << 1)) { frame += bytestream2_get_le16(gb) * 2; } else { frame[0] = frame[1] = frame[width] = frame[width + 1] = bytestream2_get_byte(gb); frame += 2; frame[0] = frame[1] = frame[width] = frame[width + 1] = bytestream2_get_byte(gb); frame += 2; } mask <<= 2; } return 0; }
false
FFmpeg
72b9537d8886f679494651df517dfed9b420cf1f
8,667
static void netmap_update_fd_handler(NetmapState *s) { qemu_set_fd_handler2(s->me.fd, s->read_poll ? netmap_can_send : NULL, s->read_poll ? netmap_send : NULL, s->write_poll ? netmap_writable : NULL, s); }
false
qemu
e8dd1d9c396104f0fac4b39a701143df49df2a74
8,668
static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc) { if (drc->dev && (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) { return SPAPR_DR_ENTITY_SENSE_PRESENT; } else { return SPAPR_DR_ENTITY_SENSE_UNUSABLE; } }
false
qemu
9d4c0f4f0a71e74fd7e04d73620268484d693adf
8,669
void x86_cpudef_setup(void) { int i, j; static const char *model_with_versions[] = { "qemu32", "qemu64", "athlon" }; for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); ++i) { X86CPUDefinition *def = &builtin_x86_defs[i]; /* Look for specific "cpudef" models that */ /* have the QEMU version in .model_id */ for (j = 0; j < ARRAY_SIZE(model_with_versions); j++) { if (strcmp(model_with_versions[j], def->name) == 0) { pstrcpy(def->model_id, sizeof(def->model_id), "QEMU Virtual CPU version "); pstrcat(def->model_id, sizeof(def->model_id), qemu_get_version()); break; } } } }
false
qemu
35c2c8dc8c0899882a8e0d349d93bd657772f1e7
8,670
static int scsi_read_dvd_structure(SCSIDiskState *s, SCSIDiskReq *r, uint8_t *outbuf) { static const int rds_caps_size[5] = { [0] = 2048 + 4, [1] = 4 + 4, [3] = 188 + 4, [4] = 2048 + 4, }; uint8_t media = r->req.cmd.buf[1]; uint8_t layer = r->req.cmd.buf[6]; uint8_t format = r->req.cmd.buf[7]; int size = -1; if (s->qdev.type != TYPE_ROM) { return -1; } if (media != 0) { scsi_check_condition(r, SENSE_CODE(INVALID_FIELD)); return -1; } if (format != 0xff) { if (s->tray_open || !bdrv_is_inserted(s->qdev.conf.bs)) { scsi_check_condition(r, SENSE_CODE(NO_MEDIUM)); return -1; } if (media_is_cd(s)) { scsi_check_condition(r, SENSE_CODE(INCOMPATIBLE_FORMAT)); return -1; } if (format >= ARRAY_SIZE(rds_caps_size)) { return -1; } size = rds_caps_size[format]; memset(outbuf, 0, size); } switch (format) { case 0x00: { /* Physical format information */ uint64_t nb_sectors; if (layer != 0) { goto fail; } bdrv_get_geometry(s->qdev.conf.bs, &nb_sectors); outbuf[4] = 1; /* DVD-ROM, part version 1 */ outbuf[5] = 0xf; /* 120mm disc, minimum rate unspecified */ outbuf[6] = 1; /* one layer, read-only (per MMC-2 spec) */ outbuf[7] = 0; /* default densities */ stl_be_p(&outbuf[12], (nb_sectors >> 2) - 1); /* end sector */ stl_be_p(&outbuf[16], (nb_sectors >> 2) - 1); /* l0 end sector */ break; } case 0x01: /* DVD copyright information, all zeros */ break; case 0x03: /* BCA information - invalid field for no BCA info */ return -1; case 0x04: /* DVD disc manufacturing information, all zeros */ break; case 0xff: { /* List capabilities */ int i; size = 4; for (i = 0; i < ARRAY_SIZE(rds_caps_size); i++) { if (!rds_caps_size[i]) { continue; } outbuf[size] = i; outbuf[size + 1] = 0x40; /* Not writable, readable */ stw_be_p(&outbuf[size + 2], rds_caps_size[i]); size += 4; } break; } default: return -1; } /* Size of buffer, not including 2 byte size field */ stw_be_p(outbuf, size - 2); return size; fail: return -1; }
false
qemu
4be746345f13e99e468c60acbd3a355e8183e3ce
8,671
START_TEST(qdict_get_not_exists_test) { fail_unless(qdict_get(tests_dict, "foo") == NULL); }
false
qemu
ac531cb6e542b1e61d668604adf9dc5306a948c0
8,672
int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags) { BlockDriverState *bs; int ret; bs = bdrv_new(""); if (!bs) return -ENOMEM; ret = bdrv_open2(bs, filename, flags | BDRV_O_FILE, NULL); if (ret < 0) { bdrv_delete(bs); return ret; } bs->growable = 1; *pbs = bs; return 0; }
false
qemu
51d7c00c14550334ec140ce8f40e04ed4c88de57
8,674
size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port) { struct iovec iov[2]; struct socket *so; so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); if (!so || so->so_state & SS_NOFDREF) return 0; if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) return 0; return sopreprbuf(so, iov, NULL); }
false
qemu
cf1d078e4ea094e516faab49678fbea3a34b7848
8,675
static void openpic_save(QEMUFile* f, void *opaque) { OpenPICState *opp = (OpenPICState *)opaque; unsigned int i; qemu_put_be32s(f, &opp->glbc); qemu_put_be32s(f, &opp->veni); qemu_put_be32s(f, &opp->pint); qemu_put_be32s(f, &opp->spve); qemu_put_be32s(f, &opp->tifr); for (i = 0; i < opp->max_irq; i++) { qemu_put_be32s(f, &opp->src[i].ipvp); qemu_put_be32s(f, &opp->src[i].ide); qemu_put_sbe32s(f, &opp->src[i].last_cpu); qemu_put_sbe32s(f, &opp->src[i].pending); } qemu_put_be32s(f, &opp->nb_cpus); for (i = 0; i < opp->nb_cpus; i++) { qemu_put_be32s(f, &opp->dst[i].pctp); qemu_put_be32s(f, &opp->dst[i].pcsr); openpic_save_IRQ_queue(f, &opp->dst[i].raised); openpic_save_IRQ_queue(f, &opp->dst[i].servicing); } for (i = 0; i < MAX_TMR; i++) { qemu_put_be32s(f, &opp->timers[i].ticc); qemu_put_be32s(f, &opp->timers[i].tibc); } }
false
qemu
c975330ec4f5674f2899331f914c04ecba6edf26
8,676
static int ac3_parse_sync_info(AC3DecodeContext *ctx) { ac3_sync_info *sync_info = &ctx->sync_info; GetBitContext *gb = &ctx->gb; sync_info->sync_word = get_bits(gb, 16); sync_info->crc1 = get_bits(gb, 16); sync_info->fscod = get_bits(gb, 2); if (sync_info->fscod == 0x03) return -1; sync_info->frmsizecod = get_bits(gb, 6); if (sync_info->frmsizecod >= 0x38) return -1; sync_info->sampling_rate = ac3_freqs[sync_info->fscod]; sync_info->bit_rate = ac3_bitratetab[sync_info->frmsizecod >> 1]; return 0; }
false
FFmpeg
0058584580b87feb47898e60e4b80c7f425882ad
8,677
static int curl_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVCURLState *s = bs->opaque; CURLState *state = NULL; QemuOpts *opts; Error *local_err = NULL; const char *file; double d; static int inited = 0; if (flags & BDRV_O_RDWR) { error_setg(errp, "curl block device does not support writes"); return -EROFS; } opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); qemu_opts_absorb_qdict(opts, options, &local_err); if (local_err) { error_propagate(errp, local_err); goto out_noclean; } s->readahead_size = qemu_opt_get_size(opts, "readahead", READ_AHEAD_SIZE); if ((s->readahead_size & 0x1ff) != 0) { error_setg(errp, "HTTP_READAHEAD_SIZE %zd is not a multiple of 512", s->readahead_size); goto out_noclean; } file = qemu_opt_get(opts, "url"); if (file == NULL) { error_setg(errp, "curl block driver requires an 'url' option"); goto out_noclean; } if (!inited) { curl_global_init(CURL_GLOBAL_ALL); inited = 1; } DPRINTF("CURL: Opening %s\n", file); s->url = g_strdup(file); state = curl_init_state(s); if (!state) goto out_noclean; // Get file size s->accept_range = false; curl_easy_setopt(state->curl, CURLOPT_NOBODY, 1); curl_easy_setopt(state->curl, CURLOPT_HEADERFUNCTION, curl_header_cb); curl_easy_setopt(state->curl, CURLOPT_HEADERDATA, s); if (curl_easy_perform(state->curl)) goto out; curl_easy_getinfo(state->curl, CURLINFO_CONTENT_LENGTH_DOWNLOAD, &d); if (d) s->len = (size_t)d; else if(!s->len) goto out; if ((!strncasecmp(s->url, "http://", strlen("http://")) || !strncasecmp(s->url, "https://", strlen("https://"))) && !s->accept_range) { pstrcpy(state->errmsg, CURL_ERROR_SIZE, "Server does not support 'range' (byte ranges)."); goto out; } DPRINTF("CURL: Size = %zd\n", s->len); curl_clean_state(state); curl_easy_cleanup(state->curl); state->curl = NULL; aio_timer_init(bdrv_get_aio_context(bs), &s->timer, QEMU_CLOCK_REALTIME, SCALE_NS, curl_multi_timeout_do, s); // Now we know the file exists and its size, so let's // initialize the multi interface! s->multi = curl_multi_init(); curl_multi_setopt(s->multi, CURLMOPT_SOCKETDATA, s); curl_multi_setopt(s->multi, CURLMOPT_SOCKETFUNCTION, curl_sock_cb); #ifdef NEED_CURL_TIMER_CALLBACK curl_multi_setopt(s->multi, CURLMOPT_TIMERDATA, s); curl_multi_setopt(s->multi, CURLMOPT_TIMERFUNCTION, curl_timer_cb); #endif qemu_opts_del(opts); return 0; out: error_setg(errp, "CURL: Error opening file: %s", state->errmsg); curl_easy_cleanup(state->curl); state->curl = NULL; out_noclean: g_free(s->url); qemu_opts_del(opts); return -EINVAL; }
false
qemu
838ef602498b8d1985a231a06f5e328e2946a81d
8,678
static int raw_truncate(BlockDriverState *bs, int64_t offset) { BDRVRawState *s = bs->opaque; LONG low, high; low = offset; high = offset >> 32; if (!SetFilePointer(s->hfile, low, &high, FILE_BEGIN)) return -EIO; if (!SetEndOfFile(s->hfile)) return -EIO; return 0; }
false
qemu
fbcad04d6bfdff937536eb23088a01a280a1a3af
8,679
static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc) { TranslationBlock *tb; PageDesc *p; int n; #ifdef TARGET_HAS_PRECISE_SMC TranslationBlock *current_tb = NULL; CPUState *cpu = current_cpu; CPUArchState *env = NULL; int current_tb_modified = 0; target_ulong current_pc = 0; target_ulong current_cs_base = 0; uint32_t current_flags = 0; #endif assert_memory_lock(); addr &= TARGET_PAGE_MASK; p = page_find(addr >> TARGET_PAGE_BITS); if (!p) { return false; } tb_lock(); tb = p->first_tb; #ifdef TARGET_HAS_PRECISE_SMC if (tb && pc != 0) { current_tb = tb_find_pc(pc); } if (cpu != NULL) { env = cpu->env_ptr; } #endif while (tb != NULL) { n = (uintptr_t)tb & 3; tb = (TranslationBlock *)((uintptr_t)tb & ~3); #ifdef TARGET_HAS_PRECISE_SMC if (current_tb == tb && (current_tb->cflags & CF_COUNT_MASK) != 1) { /* If we are modifying the current TB, we must stop its execution. We could be more precise by checking that the modification is after the current PC, but it would require a specialized function to partially restore the CPU state */ current_tb_modified = 1; cpu_restore_state_from_tb(cpu, current_tb, pc); cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base, &current_flags); } #endif /* TARGET_HAS_PRECISE_SMC */ tb_phys_invalidate(tb, addr); tb = tb->page_next[n]; } p->first_tb = NULL; #ifdef TARGET_HAS_PRECISE_SMC if (current_tb_modified) { /* we generate a block containing just the instruction modifying the memory. It will ensure that it cannot modify itself */ tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1 | curr_cflags()); /* tb_lock will be reset after cpu_loop_exit_noexc longjmps * back into the cpu_exec loop. */ return true; } #endif tb_unlock(); return false; }
false
qemu
9b990ee5a3cc6aa38f81266fb0c6ef37a36c45b9
8,680
static int64_t raw_getlength(BlockDriverState *bs) { int64_t len; BDRVRawState *s = bs->opaque; /* Update size. It should not change unless the file was externally * modified. */ len = bdrv_getlength(bs->file->bs); if (len < 0) { return len; } if (len < s->offset) { s->size = 0; } else { if (s->has_size) { /* Try to honour the size */ s->size = MIN(s->size, len - s->offset); } else { s->size = len - s->offset; } } return s->size; }
false
qemu
2e6fc7eb1a4af1b127df5f07b8bb28af891946fa
8,681
void omap_rfbi_attach(struct omap_dss_s *s, int cs, struct rfbi_chip_s *chip) { if (cs < 0 || cs > 1) hw_error("%s: wrong CS %i\n", __FUNCTION__, cs); s->rfbi.chip[cs] = chip; }
false
qemu
a89f364ae8740dfc31b321eed9ee454e996dc3c1
8,682
int kvm_arch_init(MachineState *ms, KVMState *s) { MachineClass *mc = MACHINE_GET_CLASS(ms); mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) || !kvm_check_extension(s, KVM_CAP_S390_COW)) { phys_mem_set_alloc(legacy_s390_alloc); } kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); if (ri_allowed()) { if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { cap_ri = 1; } } if (gs_allowed()) { if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { cap_gs = 1; } } /* * The migration interface for ais was introduced with kernel 4.13 * but the capability itself had been active since 4.12. As migration * support is considered necessary let's disable ais in the 2.10 * machine. */ /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ qemu_mutex_init(&qemu_sigp_mutex); return 0; }
false
qemu
74b4c74d5efb0a489bdf0acc5b5d0197167e7649
8,683
static void disas_arm_insn(CPUARMState * env, DisasContext *s) { unsigned int cond, insn, val, op1, i, shift, rm, rs, rn, rd, sh; TCGv_i32 tmp; TCGv_i32 tmp2; TCGv_i32 tmp3; TCGv_i32 addr; TCGv_i64 tmp64; insn = arm_ldl_code(env, s->pc, s->bswap_code); s->pc += 4; /* M variants do not implement ARM mode. */ if (IS_M(env)) goto illegal_op; cond = insn >> 28; if (cond == 0xf){ /* In ARMv3 and v4 the NV condition is UNPREDICTABLE; we * choose to UNDEF. In ARMv5 and above the space is used * for miscellaneous unconditional instructions. */ ARCH(5); /* Unconditional instructions. */ if (((insn >> 25) & 7) == 1) { /* NEON Data processing. */ if (!arm_feature(env, ARM_FEATURE_NEON)) goto illegal_op; if (disas_neon_data_insn(env, s, insn)) goto illegal_op; return; } if ((insn & 0x0f100000) == 0x04000000) { /* NEON load/store. */ if (!arm_feature(env, ARM_FEATURE_NEON)) goto illegal_op; if (disas_neon_ls_insn(env, s, insn)) goto illegal_op; return; } if ((insn & 0x0f000e10) == 0x0e000a00) { /* VFP. */ if (disas_vfp_insn(env, s, insn)) { goto illegal_op; } return; } if (((insn & 0x0f30f000) == 0x0510f000) || ((insn & 0x0f30f010) == 0x0710f000)) { if ((insn & (1 << 22)) == 0) { /* PLDW; v7MP */ if (!arm_feature(env, ARM_FEATURE_V7MP)) { goto illegal_op; } } /* Otherwise PLD; v5TE+ */ ARCH(5TE); return; } if (((insn & 0x0f70f000) == 0x0450f000) || ((insn & 0x0f70f010) == 0x0650f000)) { ARCH(7); return; /* PLI; V7 */ } if (((insn & 0x0f700000) == 0x04100000) || ((insn & 0x0f700010) == 0x06100000)) { if (!arm_feature(env, ARM_FEATURE_V7MP)) { goto illegal_op; } return; /* v7MP: Unallocated memory hint: must NOP */ } if ((insn & 0x0ffffdff) == 0x01010000) { ARCH(6); /* setend */ if (((insn >> 9) & 1) != s->bswap_code) { /* Dynamic endianness switching not implemented. */ qemu_log_mask(LOG_UNIMP, "arm: unimplemented setend\n"); goto illegal_op; } return; } else if ((insn & 0x0fffff00) == 0x057ff000) { switch ((insn >> 4) & 0xf) { case 1: /* clrex */ ARCH(6K); gen_clrex(s); return; case 4: /* dsb */ case 5: /* dmb */ case 6: /* isb */ ARCH(7); /* We don't emulate caches so these are a no-op. */ return; default: goto illegal_op; } } else if ((insn & 0x0e5fffe0) == 0x084d0500) { /* srs */ if (IS_USER(s)) { goto illegal_op; } ARCH(6); gen_srs(s, (insn & 0x1f), (insn >> 23) & 3, insn & (1 << 21)); return; } else if ((insn & 0x0e50ffe0) == 0x08100a00) { /* rfe */ int32_t offset; if (IS_USER(s)) goto illegal_op; ARCH(6); rn = (insn >> 16) & 0xf; addr = load_reg(s, rn); i = (insn >> 23) & 3; switch (i) { case 0: offset = -4; break; /* DA */ case 1: offset = 0; break; /* IA */ case 2: offset = -8; break; /* DB */ case 3: offset = 4; break; /* IB */ default: abort(); } if (offset) tcg_gen_addi_i32(addr, addr, offset); /* Load PC into tmp and CPSR into tmp2. */ tmp = tcg_temp_new_i32(); gen_aa32_ld32u(tmp, addr, 0); tcg_gen_addi_i32(addr, addr, 4); tmp2 = tcg_temp_new_i32(); gen_aa32_ld32u(tmp2, addr, 0); if (insn & (1 << 21)) { /* Base writeback. */ switch (i) { case 0: offset = -8; break; case 1: offset = 4; break; case 2: offset = -4; break; case 3: offset = 0; break; default: abort(); } if (offset) tcg_gen_addi_i32(addr, addr, offset); store_reg(s, rn, addr); } else { tcg_temp_free_i32(addr); } gen_rfe(s, tmp, tmp2); return; } else if ((insn & 0x0e000000) == 0x0a000000) { /* branch link and change to thumb (blx <offset>) */ int32_t offset; val = (uint32_t)s->pc; tmp = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp, val); store_reg(s, 14, tmp); /* Sign-extend the 24-bit offset */ offset = (((int32_t)insn) << 8) >> 8; /* offset * 4 + bit24 * 2 + (thumb bit) */ val += (offset << 2) | ((insn >> 23) & 2) | 1; /* pipeline offset */ val += 4; /* protected by ARCH(5); above, near the start of uncond block */ gen_bx_im(s, val); return; } else if ((insn & 0x0e000f00) == 0x0c000100) { if (arm_feature(env, ARM_FEATURE_IWMMXT)) { /* iWMMXt register transfer. */ if (env->cp15.c15_cpar & (1 << 1)) if (!disas_iwmmxt_insn(env, s, insn)) return; } } else if ((insn & 0x0fe00000) == 0x0c400000) { /* Coprocessor double register transfer. */ ARCH(5TE); } else if ((insn & 0x0f000010) == 0x0e000010) { /* Additional coprocessor register transfer. */ } else if ((insn & 0x0ff10020) == 0x01000000) { uint32_t mask; uint32_t val; /* cps (privileged) */ if (IS_USER(s)) return; mask = val = 0; if (insn & (1 << 19)) { if (insn & (1 << 8)) mask |= CPSR_A; if (insn & (1 << 7)) mask |= CPSR_I; if (insn & (1 << 6)) mask |= CPSR_F; if (insn & (1 << 18)) val |= mask; } if (insn & (1 << 17)) { mask |= CPSR_M; val |= (insn & 0x1f); } if (mask) { gen_set_psr_im(s, mask, 0, val); } return; } goto illegal_op; } if (cond != 0xe) { /* if not always execute, we generate a conditional jump to next instruction */ s->condlabel = gen_new_label(); arm_gen_test_cc(cond ^ 1, s->condlabel); s->condjmp = 1; } if ((insn & 0x0f900000) == 0x03000000) { if ((insn & (1 << 21)) == 0) { ARCH(6T2); rd = (insn >> 12) & 0xf; val = ((insn >> 4) & 0xf000) | (insn & 0xfff); if ((insn & (1 << 22)) == 0) { /* MOVW */ tmp = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp, val); } else { /* MOVT */ tmp = load_reg(s, rd); tcg_gen_ext16u_i32(tmp, tmp); tcg_gen_ori_i32(tmp, tmp, val << 16); } store_reg(s, rd, tmp); } else { if (((insn >> 12) & 0xf) != 0xf) goto illegal_op; if (((insn >> 16) & 0xf) == 0) { gen_nop_hint(s, insn & 0xff); } else { /* CPSR = immediate */ val = insn & 0xff; shift = ((insn >> 8) & 0xf) * 2; if (shift) val = (val >> shift) | (val << (32 - shift)); i = ((insn & (1 << 22)) != 0); if (gen_set_psr_im(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i, val)) goto illegal_op; } } } else if ((insn & 0x0f900000) == 0x01000000 && (insn & 0x00000090) != 0x00000090) { /* miscellaneous instructions */ op1 = (insn >> 21) & 3; sh = (insn >> 4) & 0xf; rm = insn & 0xf; switch (sh) { case 0x0: /* move program status register */ if (op1 & 1) { /* PSR = reg */ tmp = load_reg(s, rm); i = ((op1 & 2) != 0); if (gen_set_psr(s, msr_mask(env, s, (insn >> 16) & 0xf, i), i, tmp)) goto illegal_op; } else { /* reg = PSR */ rd = (insn >> 12) & 0xf; if (op1 & 2) { if (IS_USER(s)) goto illegal_op; tmp = load_cpu_field(spsr); } else { tmp = tcg_temp_new_i32(); gen_helper_cpsr_read(tmp, cpu_env); } store_reg(s, rd, tmp); } break; case 0x1: if (op1 == 1) { /* branch/exchange thumb (bx). */ ARCH(4T); tmp = load_reg(s, rm); gen_bx(s, tmp); } else if (op1 == 3) { /* clz */ ARCH(5); rd = (insn >> 12) & 0xf; tmp = load_reg(s, rm); gen_helper_clz(tmp, tmp); store_reg(s, rd, tmp); } else { goto illegal_op; } break; case 0x2: if (op1 == 1) { ARCH(5J); /* bxj */ /* Trivial implementation equivalent to bx. */ tmp = load_reg(s, rm); gen_bx(s, tmp); } else { goto illegal_op; } break; case 0x3: if (op1 != 1) goto illegal_op; ARCH(5); /* branch link/exchange thumb (blx) */ tmp = load_reg(s, rm); tmp2 = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp2, s->pc); store_reg(s, 14, tmp2); gen_bx(s, tmp); break; case 0x4: { /* crc32/crc32c */ uint32_t c = extract32(insn, 8, 4); /* Check this CPU supports ARMv8 CRC instructions. * op1 == 3 is UNPREDICTABLE but handle as UNDEFINED. * Bits 8, 10 and 11 should be zero. */ if (!arm_feature(env, ARM_FEATURE_CRC) || op1 == 0x3 || (c & 0xd) != 0) { goto illegal_op; } rn = extract32(insn, 16, 4); rd = extract32(insn, 12, 4); tmp = load_reg(s, rn); tmp2 = load_reg(s, rm); tmp3 = tcg_const_i32(1 << op1); if (c & 0x2) { gen_helper_crc32c(tmp, tmp, tmp2, tmp3); } else { gen_helper_crc32(tmp, tmp, tmp2, tmp3); } tcg_temp_free_i32(tmp2); tcg_temp_free_i32(tmp3); store_reg(s, rd, tmp); break; } case 0x5: /* saturating add/subtract */ ARCH(5TE); rd = (insn >> 12) & 0xf; rn = (insn >> 16) & 0xf; tmp = load_reg(s, rm); tmp2 = load_reg(s, rn); if (op1 & 2) gen_helper_double_saturate(tmp2, cpu_env, tmp2); if (op1 & 1) gen_helper_sub_saturate(tmp, cpu_env, tmp, tmp2); else gen_helper_add_saturate(tmp, cpu_env, tmp, tmp2); tcg_temp_free_i32(tmp2); store_reg(s, rd, tmp); break; case 7: { int imm16 = extract32(insn, 0, 4) | (extract32(insn, 8, 12) << 4); /* SMC instruction (op1 == 3) and undefined instructions (op1 == 0 || op1 == 2) will trap */ if (op1 != 1) { goto illegal_op; } /* bkpt */ ARCH(5); gen_exception_insn(s, 4, EXCP_BKPT, syn_aa32_bkpt(imm16, false)); break; } case 0x8: /* signed multiply */ case 0xa: case 0xc: case 0xe: ARCH(5TE); rs = (insn >> 8) & 0xf; rn = (insn >> 12) & 0xf; rd = (insn >> 16) & 0xf; if (op1 == 1) { /* (32 * 16) >> 16 */ tmp = load_reg(s, rm); tmp2 = load_reg(s, rs); if (sh & 4) tcg_gen_sari_i32(tmp2, tmp2, 16); else gen_sxth(tmp2); tmp64 = gen_muls_i64_i32(tmp, tmp2); tcg_gen_shri_i64(tmp64, tmp64, 16); tmp = tcg_temp_new_i32(); tcg_gen_trunc_i64_i32(tmp, tmp64); tcg_temp_free_i64(tmp64); if ((sh & 2) == 0) { tmp2 = load_reg(s, rn); gen_helper_add_setq(tmp, cpu_env, tmp, tmp2); tcg_temp_free_i32(tmp2); } store_reg(s, rd, tmp); } else { /* 16 * 16 */ tmp = load_reg(s, rm); tmp2 = load_reg(s, rs); gen_mulxy(tmp, tmp2, sh & 2, sh & 4); tcg_temp_free_i32(tmp2); if (op1 == 2) { tmp64 = tcg_temp_new_i64(); tcg_gen_ext_i32_i64(tmp64, tmp); tcg_temp_free_i32(tmp); gen_addq(s, tmp64, rn, rd); gen_storeq_reg(s, rn, rd, tmp64); tcg_temp_free_i64(tmp64); } else { if (op1 == 0) { tmp2 = load_reg(s, rn); gen_helper_add_setq(tmp, cpu_env, tmp, tmp2); tcg_temp_free_i32(tmp2); } store_reg(s, rd, tmp); } } break; default: goto illegal_op; } } else if (((insn & 0x0e000000) == 0 && (insn & 0x00000090) != 0x90) || ((insn & 0x0e000000) == (1 << 25))) { int set_cc, logic_cc, shiftop; op1 = (insn >> 21) & 0xf; set_cc = (insn >> 20) & 1; logic_cc = table_logic_cc[op1] & set_cc; /* data processing instruction */ if (insn & (1 << 25)) { /* immediate operand */ val = insn & 0xff; shift = ((insn >> 8) & 0xf) * 2; if (shift) { val = (val >> shift) | (val << (32 - shift)); } tmp2 = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp2, val); if (logic_cc && shift) { gen_set_CF_bit31(tmp2); } } else { /* register */ rm = (insn) & 0xf; tmp2 = load_reg(s, rm); shiftop = (insn >> 5) & 3; if (!(insn & (1 << 4))) { shift = (insn >> 7) & 0x1f; gen_arm_shift_im(tmp2, shiftop, shift, logic_cc); } else { rs = (insn >> 8) & 0xf; tmp = load_reg(s, rs); gen_arm_shift_reg(tmp2, shiftop, tmp, logic_cc); } } if (op1 != 0x0f && op1 != 0x0d) { rn = (insn >> 16) & 0xf; tmp = load_reg(s, rn); } else { TCGV_UNUSED_I32(tmp); } rd = (insn >> 12) & 0xf; switch(op1) { case 0x00: tcg_gen_and_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(env, s, rd, tmp); break; case 0x01: tcg_gen_xor_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(env, s, rd, tmp); break; case 0x02: if (set_cc && rd == 15) { /* SUBS r15, ... is used for exception return. */ if (IS_USER(s)) { goto illegal_op; } gen_sub_CC(tmp, tmp, tmp2); gen_exception_return(s, tmp); } else { if (set_cc) { gen_sub_CC(tmp, tmp, tmp2); } else { tcg_gen_sub_i32(tmp, tmp, tmp2); } store_reg_bx(env, s, rd, tmp); } break; case 0x03: if (set_cc) { gen_sub_CC(tmp, tmp2, tmp); } else { tcg_gen_sub_i32(tmp, tmp2, tmp); } store_reg_bx(env, s, rd, tmp); break; case 0x04: if (set_cc) { gen_add_CC(tmp, tmp, tmp2); } else { tcg_gen_add_i32(tmp, tmp, tmp2); } store_reg_bx(env, s, rd, tmp); break; case 0x05: if (set_cc) { gen_adc_CC(tmp, tmp, tmp2); } else { gen_add_carry(tmp, tmp, tmp2); } store_reg_bx(env, s, rd, tmp); break; case 0x06: if (set_cc) { gen_sbc_CC(tmp, tmp, tmp2); } else { gen_sub_carry(tmp, tmp, tmp2); } store_reg_bx(env, s, rd, tmp); break; case 0x07: if (set_cc) { gen_sbc_CC(tmp, tmp2, tmp); } else { gen_sub_carry(tmp, tmp2, tmp); } store_reg_bx(env, s, rd, tmp); break; case 0x08: if (set_cc) { tcg_gen_and_i32(tmp, tmp, tmp2); gen_logic_CC(tmp); } tcg_temp_free_i32(tmp); break; case 0x09: if (set_cc) { tcg_gen_xor_i32(tmp, tmp, tmp2); gen_logic_CC(tmp); } tcg_temp_free_i32(tmp); break; case 0x0a: if (set_cc) { gen_sub_CC(tmp, tmp, tmp2); } tcg_temp_free_i32(tmp); break; case 0x0b: if (set_cc) { gen_add_CC(tmp, tmp, tmp2); } tcg_temp_free_i32(tmp); break; case 0x0c: tcg_gen_or_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(env, s, rd, tmp); break; case 0x0d: if (logic_cc && rd == 15) { /* MOVS r15, ... is used for exception return. */ if (IS_USER(s)) { goto illegal_op; } gen_exception_return(s, tmp2); } else { if (logic_cc) { gen_logic_CC(tmp2); } store_reg_bx(env, s, rd, tmp2); } break; case 0x0e: tcg_gen_andc_i32(tmp, tmp, tmp2); if (logic_cc) { gen_logic_CC(tmp); } store_reg_bx(env, s, rd, tmp); break; default: case 0x0f: tcg_gen_not_i32(tmp2, tmp2); if (logic_cc) { gen_logic_CC(tmp2); } store_reg_bx(env, s, rd, tmp2); break; } if (op1 != 0x0f && op1 != 0x0d) { tcg_temp_free_i32(tmp2); } } else { /* other instructions */ op1 = (insn >> 24) & 0xf; switch(op1) { case 0x0: case 0x1: /* multiplies, extra load/stores */ sh = (insn >> 5) & 3; if (sh == 0) { if (op1 == 0x0) { rd = (insn >> 16) & 0xf; rn = (insn >> 12) & 0xf; rs = (insn >> 8) & 0xf; rm = (insn) & 0xf; op1 = (insn >> 20) & 0xf; switch (op1) { case 0: case 1: case 2: case 3: case 6: /* 32 bit mul */ tmp = load_reg(s, rs); tmp2 = load_reg(s, rm); tcg_gen_mul_i32(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); if (insn & (1 << 22)) { /* Subtract (mls) */ ARCH(6T2); tmp2 = load_reg(s, rn); tcg_gen_sub_i32(tmp, tmp2, tmp); tcg_temp_free_i32(tmp2); } else if (insn & (1 << 21)) { /* Add */ tmp2 = load_reg(s, rn); tcg_gen_add_i32(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); } if (insn & (1 << 20)) gen_logic_CC(tmp); store_reg(s, rd, tmp); break; case 4: /* 64 bit mul double accumulate (UMAAL) */ ARCH(6); tmp = load_reg(s, rs); tmp2 = load_reg(s, rm); tmp64 = gen_mulu_i64_i32(tmp, tmp2); gen_addq_lo(s, tmp64, rn); gen_addq_lo(s, tmp64, rd); gen_storeq_reg(s, rn, rd, tmp64); tcg_temp_free_i64(tmp64); break; case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: /* 64 bit mul: UMULL, UMLAL, SMULL, SMLAL. */ tmp = load_reg(s, rs); tmp2 = load_reg(s, rm); if (insn & (1 << 22)) { tcg_gen_muls2_i32(tmp, tmp2, tmp, tmp2); } else { tcg_gen_mulu2_i32(tmp, tmp2, tmp, tmp2); } if (insn & (1 << 21)) { /* mult accumulate */ TCGv_i32 al = load_reg(s, rn); TCGv_i32 ah = load_reg(s, rd); tcg_gen_add2_i32(tmp, tmp2, tmp, tmp2, al, ah); tcg_temp_free_i32(al); tcg_temp_free_i32(ah); } if (insn & (1 << 20)) { gen_logicq_cc(tmp, tmp2); } store_reg(s, rn, tmp); store_reg(s, rd, tmp2); break; default: goto illegal_op; } } else { rn = (insn >> 16) & 0xf; rd = (insn >> 12) & 0xf; if (insn & (1 << 23)) { /* load/store exclusive */ int op2 = (insn >> 8) & 3; op1 = (insn >> 21) & 0x3; switch (op2) { case 0: /* lda/stl */ if (op1 == 1) { goto illegal_op; } ARCH(8); break; case 1: /* reserved */ goto illegal_op; case 2: /* ldaex/stlex */ ARCH(8); break; case 3: /* ldrex/strex */ if (op1) { ARCH(6K); } else { ARCH(6); } break; } addr = tcg_temp_local_new_i32(); load_reg_var(s, addr, rn); /* Since the emulation does not have barriers, the acquire/release semantics need no special handling */ if (op2 == 0) { if (insn & (1 << 20)) { tmp = tcg_temp_new_i32(); switch (op1) { case 0: /* lda */ gen_aa32_ld32u(tmp, addr, IS_USER(s)); break; case 2: /* ldab */ gen_aa32_ld8u(tmp, addr, IS_USER(s)); break; case 3: /* ldah */ gen_aa32_ld16u(tmp, addr, IS_USER(s)); break; default: abort(); } store_reg(s, rd, tmp); } else { rm = insn & 0xf; tmp = load_reg(s, rm); switch (op1) { case 0: /* stl */ gen_aa32_st32(tmp, addr, IS_USER(s)); break; case 2: /* stlb */ gen_aa32_st8(tmp, addr, IS_USER(s)); break; case 3: /* stlh */ gen_aa32_st16(tmp, addr, IS_USER(s)); break; default: abort(); } tcg_temp_free_i32(tmp); } } else if (insn & (1 << 20)) { switch (op1) { case 0: /* ldrex */ gen_load_exclusive(s, rd, 15, addr, 2); break; case 1: /* ldrexd */ gen_load_exclusive(s, rd, rd + 1, addr, 3); break; case 2: /* ldrexb */ gen_load_exclusive(s, rd, 15, addr, 0); break; case 3: /* ldrexh */ gen_load_exclusive(s, rd, 15, addr, 1); break; default: abort(); } } else { rm = insn & 0xf; switch (op1) { case 0: /* strex */ gen_store_exclusive(s, rd, rm, 15, addr, 2); break; case 1: /* strexd */ gen_store_exclusive(s, rd, rm, rm + 1, addr, 3); break; case 2: /* strexb */ gen_store_exclusive(s, rd, rm, 15, addr, 0); break; case 3: /* strexh */ gen_store_exclusive(s, rd, rm, 15, addr, 1); break; default: abort(); } } tcg_temp_free_i32(addr); } else { /* SWP instruction */ rm = (insn) & 0xf; /* ??? This is not really atomic. However we know we never have multiple CPUs running in parallel, so it is good enough. */ addr = load_reg(s, rn); tmp = load_reg(s, rm); tmp2 = tcg_temp_new_i32(); if (insn & (1 << 22)) { gen_aa32_ld8u(tmp2, addr, IS_USER(s)); gen_aa32_st8(tmp, addr, IS_USER(s)); } else { gen_aa32_ld32u(tmp2, addr, IS_USER(s)); gen_aa32_st32(tmp, addr, IS_USER(s)); } tcg_temp_free_i32(tmp); tcg_temp_free_i32(addr); store_reg(s, rd, tmp2); } } } else { int address_offset; int load; /* Misc load/store */ rn = (insn >> 16) & 0xf; rd = (insn >> 12) & 0xf; addr = load_reg(s, rn); if (insn & (1 << 24)) gen_add_datah_offset(s, insn, 0, addr); address_offset = 0; if (insn & (1 << 20)) { /* load */ tmp = tcg_temp_new_i32(); switch(sh) { case 1: gen_aa32_ld16u(tmp, addr, IS_USER(s)); break; case 2: gen_aa32_ld8s(tmp, addr, IS_USER(s)); break; default: case 3: gen_aa32_ld16s(tmp, addr, IS_USER(s)); break; } load = 1; } else if (sh & 2) { ARCH(5TE); /* doubleword */ if (sh & 1) { /* store */ tmp = load_reg(s, rd); gen_aa32_st32(tmp, addr, IS_USER(s)); tcg_temp_free_i32(tmp); tcg_gen_addi_i32(addr, addr, 4); tmp = load_reg(s, rd + 1); gen_aa32_st32(tmp, addr, IS_USER(s)); tcg_temp_free_i32(tmp); load = 0; } else { /* load */ tmp = tcg_temp_new_i32(); gen_aa32_ld32u(tmp, addr, IS_USER(s)); store_reg(s, rd, tmp); tcg_gen_addi_i32(addr, addr, 4); tmp = tcg_temp_new_i32(); gen_aa32_ld32u(tmp, addr, IS_USER(s)); rd++; load = 1; } address_offset = -4; } else { /* store */ tmp = load_reg(s, rd); gen_aa32_st16(tmp, addr, IS_USER(s)); tcg_temp_free_i32(tmp); load = 0; } /* Perform base writeback before the loaded value to ensure correct behavior with overlapping index registers. ldrd with base writeback is is undefined if the destination and index registers overlap. */ if (!(insn & (1 << 24))) { gen_add_datah_offset(s, insn, address_offset, addr); store_reg(s, rn, addr); } else if (insn & (1 << 21)) { if (address_offset) tcg_gen_addi_i32(addr, addr, address_offset); store_reg(s, rn, addr); } else { tcg_temp_free_i32(addr); } if (load) { /* Complete the load. */ store_reg(s, rd, tmp); } } break; case 0x4: case 0x5: goto do_ldst; case 0x6: case 0x7: if (insn & (1 << 4)) { ARCH(6); /* Armv6 Media instructions. */ rm = insn & 0xf; rn = (insn >> 16) & 0xf; rd = (insn >> 12) & 0xf; rs = (insn >> 8) & 0xf; switch ((insn >> 23) & 3) { case 0: /* Parallel add/subtract. */ op1 = (insn >> 20) & 7; tmp = load_reg(s, rn); tmp2 = load_reg(s, rm); sh = (insn >> 5) & 7; if ((op1 & 3) == 0 || sh == 5 || sh == 6) goto illegal_op; gen_arm_parallel_addsub(op1, sh, tmp, tmp2); tcg_temp_free_i32(tmp2); store_reg(s, rd, tmp); break; case 1: if ((insn & 0x00700020) == 0) { /* Halfword pack. */ tmp = load_reg(s, rn); tmp2 = load_reg(s, rm); shift = (insn >> 7) & 0x1f; if (insn & (1 << 6)) { /* pkhtb */ if (shift == 0) shift = 31; tcg_gen_sari_i32(tmp2, tmp2, shift); tcg_gen_andi_i32(tmp, tmp, 0xffff0000); tcg_gen_ext16u_i32(tmp2, tmp2); } else { /* pkhbt */ if (shift) tcg_gen_shli_i32(tmp2, tmp2, shift); tcg_gen_ext16u_i32(tmp, tmp); tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000); } tcg_gen_or_i32(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); store_reg(s, rd, tmp); } else if ((insn & 0x00200020) == 0x00200000) { /* [us]sat */ tmp = load_reg(s, rm); shift = (insn >> 7) & 0x1f; if (insn & (1 << 6)) { if (shift == 0) shift = 31; tcg_gen_sari_i32(tmp, tmp, shift); } else { tcg_gen_shli_i32(tmp, tmp, shift); } sh = (insn >> 16) & 0x1f; tmp2 = tcg_const_i32(sh); if (insn & (1 << 22)) gen_helper_usat(tmp, cpu_env, tmp, tmp2); else gen_helper_ssat(tmp, cpu_env, tmp, tmp2); tcg_temp_free_i32(tmp2); store_reg(s, rd, tmp); } else if ((insn & 0x00300fe0) == 0x00200f20) { /* [us]sat16 */ tmp = load_reg(s, rm); sh = (insn >> 16) & 0x1f; tmp2 = tcg_const_i32(sh); if (insn & (1 << 22)) gen_helper_usat16(tmp, cpu_env, tmp, tmp2); else gen_helper_ssat16(tmp, cpu_env, tmp, tmp2); tcg_temp_free_i32(tmp2); store_reg(s, rd, tmp); } else if ((insn & 0x00700fe0) == 0x00000fa0) { /* Select bytes. */ tmp = load_reg(s, rn); tmp2 = load_reg(s, rm); tmp3 = tcg_temp_new_i32(); tcg_gen_ld_i32(tmp3, cpu_env, offsetof(CPUARMState, GE)); gen_helper_sel_flags(tmp, tmp3, tmp, tmp2); tcg_temp_free_i32(tmp3); tcg_temp_free_i32(tmp2); store_reg(s, rd, tmp); } else if ((insn & 0x000003e0) == 0x00000060) { tmp = load_reg(s, rm); shift = (insn >> 10) & 3; /* ??? In many cases it's not necessary to do a rotate, a shift is sufficient. */ if (shift != 0) tcg_gen_rotri_i32(tmp, tmp, shift * 8); op1 = (insn >> 20) & 7; switch (op1) { case 0: gen_sxtb16(tmp); break; case 2: gen_sxtb(tmp); break; case 3: gen_sxth(tmp); break; case 4: gen_uxtb16(tmp); break; case 6: gen_uxtb(tmp); break; case 7: gen_uxth(tmp); break; default: goto illegal_op; } if (rn != 15) { tmp2 = load_reg(s, rn); if ((op1 & 3) == 0) { gen_add16(tmp, tmp2); } else { tcg_gen_add_i32(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); } } store_reg(s, rd, tmp); } else if ((insn & 0x003f0f60) == 0x003f0f20) { /* rev */ tmp = load_reg(s, rm); if (insn & (1 << 22)) { if (insn & (1 << 7)) { gen_revsh(tmp); } else { ARCH(6T2); gen_helper_rbit(tmp, tmp); } } else { if (insn & (1 << 7)) gen_rev16(tmp); else tcg_gen_bswap32_i32(tmp, tmp); } store_reg(s, rd, tmp); } else { goto illegal_op; } break; case 2: /* Multiplies (Type 3). */ switch ((insn >> 20) & 0x7) { case 5: if (((insn >> 6) ^ (insn >> 7)) & 1) { /* op2 not 00x or 11x : UNDEF */ goto illegal_op; } /* Signed multiply most significant [accumulate]. (SMMUL, SMMLA, SMMLS) */ tmp = load_reg(s, rm); tmp2 = load_reg(s, rs); tmp64 = gen_muls_i64_i32(tmp, tmp2); if (rd != 15) { tmp = load_reg(s, rd); if (insn & (1 << 6)) { tmp64 = gen_subq_msw(tmp64, tmp); } else { tmp64 = gen_addq_msw(tmp64, tmp); } } if (insn & (1 << 5)) { tcg_gen_addi_i64(tmp64, tmp64, 0x80000000u); } tcg_gen_shri_i64(tmp64, tmp64, 32); tmp = tcg_temp_new_i32(); tcg_gen_trunc_i64_i32(tmp, tmp64); tcg_temp_free_i64(tmp64); store_reg(s, rn, tmp); break; case 0: case 4: /* SMLAD, SMUAD, SMLSD, SMUSD, SMLALD, SMLSLD */ if (insn & (1 << 7)) { goto illegal_op; } tmp = load_reg(s, rm); tmp2 = load_reg(s, rs); if (insn & (1 << 5)) gen_swap_half(tmp2); gen_smul_dual(tmp, tmp2); if (insn & (1 << 6)) { /* This subtraction cannot overflow. */ tcg_gen_sub_i32(tmp, tmp, tmp2); } else { /* This addition cannot overflow 32 bits; * however it may overflow considered as a signed * operation, in which case we must set the Q flag. */ gen_helper_add_setq(tmp, cpu_env, tmp, tmp2); } tcg_temp_free_i32(tmp2); if (insn & (1 << 22)) { /* smlald, smlsld */ tmp64 = tcg_temp_new_i64(); tcg_gen_ext_i32_i64(tmp64, tmp); tcg_temp_free_i32(tmp); gen_addq(s, tmp64, rd, rn); gen_storeq_reg(s, rd, rn, tmp64); tcg_temp_free_i64(tmp64); } else { /* smuad, smusd, smlad, smlsd */ if (rd != 15) { tmp2 = load_reg(s, rd); gen_helper_add_setq(tmp, cpu_env, tmp, tmp2); tcg_temp_free_i32(tmp2); } store_reg(s, rn, tmp); } break; case 1: case 3: /* SDIV, UDIV */ if (!arm_feature(env, ARM_FEATURE_ARM_DIV)) { goto illegal_op; } if (((insn >> 5) & 7) || (rd != 15)) { goto illegal_op; } tmp = load_reg(s, rm); tmp2 = load_reg(s, rs); if (insn & (1 << 21)) { gen_helper_udiv(tmp, tmp, tmp2); } else { gen_helper_sdiv(tmp, tmp, tmp2); } tcg_temp_free_i32(tmp2); store_reg(s, rn, tmp); break; default: goto illegal_op; } break; case 3: op1 = ((insn >> 17) & 0x38) | ((insn >> 5) & 7); switch (op1) { case 0: /* Unsigned sum of absolute differences. */ ARCH(6); tmp = load_reg(s, rm); tmp2 = load_reg(s, rs); gen_helper_usad8(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); if (rd != 15) { tmp2 = load_reg(s, rd); tcg_gen_add_i32(tmp, tmp, tmp2); tcg_temp_free_i32(tmp2); } store_reg(s, rn, tmp); break; case 0x20: case 0x24: case 0x28: case 0x2c: /* Bitfield insert/clear. */ ARCH(6T2); shift = (insn >> 7) & 0x1f; i = (insn >> 16) & 0x1f; i = i + 1 - shift; if (rm == 15) { tmp = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp, 0); } else { tmp = load_reg(s, rm); } if (i != 32) { tmp2 = load_reg(s, rd); tcg_gen_deposit_i32(tmp, tmp2, tmp, shift, i); tcg_temp_free_i32(tmp2); } store_reg(s, rd, tmp); break; case 0x12: case 0x16: case 0x1a: case 0x1e: /* sbfx */ case 0x32: case 0x36: case 0x3a: case 0x3e: /* ubfx */ ARCH(6T2); tmp = load_reg(s, rm); shift = (insn >> 7) & 0x1f; i = ((insn >> 16) & 0x1f) + 1; if (shift + i > 32) goto illegal_op; if (i < 32) { if (op1 & 0x20) { gen_ubfx(tmp, shift, (1u << i) - 1); } else { gen_sbfx(tmp, shift, i); } } store_reg(s, rd, tmp); break; default: goto illegal_op; } break; } break; } do_ldst: /* Check for undefined extension instructions * per the ARM Bible IE: * xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx */ sh = (0xf << 20) | (0xf << 4); if (op1 == 0x7 && ((insn & sh) == sh)) { goto illegal_op; } /* load/store byte/word */ rn = (insn >> 16) & 0xf; rd = (insn >> 12) & 0xf; tmp2 = load_reg(s, rn); i = (IS_USER(s) || (insn & 0x01200000) == 0x00200000); if (insn & (1 << 24)) gen_add_data_offset(s, insn, tmp2); if (insn & (1 << 20)) { /* load */ tmp = tcg_temp_new_i32(); if (insn & (1 << 22)) { gen_aa32_ld8u(tmp, tmp2, i); } else { gen_aa32_ld32u(tmp, tmp2, i); } } else { /* store */ tmp = load_reg(s, rd); if (insn & (1 << 22)) { gen_aa32_st8(tmp, tmp2, i); } else { gen_aa32_st32(tmp, tmp2, i); } tcg_temp_free_i32(tmp); } if (!(insn & (1 << 24))) { gen_add_data_offset(s, insn, tmp2); store_reg(s, rn, tmp2); } else if (insn & (1 << 21)) { store_reg(s, rn, tmp2); } else { tcg_temp_free_i32(tmp2); } if (insn & (1 << 20)) { /* Complete the load. */ store_reg_from_load(env, s, rd, tmp); } break; case 0x08: case 0x09: { int j, n, user, loaded_base; TCGv_i32 loaded_var; /* load/store multiple words */ /* XXX: store correct base if write back */ user = 0; if (insn & (1 << 22)) { if (IS_USER(s)) goto illegal_op; /* only usable in supervisor mode */ if ((insn & (1 << 15)) == 0) user = 1; } rn = (insn >> 16) & 0xf; addr = load_reg(s, rn); /* compute total size */ loaded_base = 0; TCGV_UNUSED_I32(loaded_var); n = 0; for(i=0;i<16;i++) { if (insn & (1 << i)) n++; } /* XXX: test invalid n == 0 case ? */ if (insn & (1 << 23)) { if (insn & (1 << 24)) { /* pre increment */ tcg_gen_addi_i32(addr, addr, 4); } else { /* post increment */ } } else { if (insn & (1 << 24)) { /* pre decrement */ tcg_gen_addi_i32(addr, addr, -(n * 4)); } else { /* post decrement */ if (n != 1) tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); } } j = 0; for(i=0;i<16;i++) { if (insn & (1 << i)) { if (insn & (1 << 20)) { /* load */ tmp = tcg_temp_new_i32(); gen_aa32_ld32u(tmp, addr, IS_USER(s)); if (user) { tmp2 = tcg_const_i32(i); gen_helper_set_user_reg(cpu_env, tmp2, tmp); tcg_temp_free_i32(tmp2); tcg_temp_free_i32(tmp); } else if (i == rn) { loaded_var = tmp; loaded_base = 1; } else { store_reg_from_load(env, s, i, tmp); } } else { /* store */ if (i == 15) { /* special case: r15 = PC + 8 */ val = (long)s->pc + 4; tmp = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp, val); } else if (user) { tmp = tcg_temp_new_i32(); tmp2 = tcg_const_i32(i); gen_helper_get_user_reg(tmp, cpu_env, tmp2); tcg_temp_free_i32(tmp2); } else { tmp = load_reg(s, i); } gen_aa32_st32(tmp, addr, IS_USER(s)); tcg_temp_free_i32(tmp); } j++; /* no need to add after the last transfer */ if (j != n) tcg_gen_addi_i32(addr, addr, 4); } } if (insn & (1 << 21)) { /* write back */ if (insn & (1 << 23)) { if (insn & (1 << 24)) { /* pre increment */ } else { /* post increment */ tcg_gen_addi_i32(addr, addr, 4); } } else { if (insn & (1 << 24)) { /* pre decrement */ if (n != 1) tcg_gen_addi_i32(addr, addr, -((n - 1) * 4)); } else { /* post decrement */ tcg_gen_addi_i32(addr, addr, -(n * 4)); } } store_reg(s, rn, addr); } else { tcg_temp_free_i32(addr); } if (loaded_base) { store_reg(s, rn, loaded_var); } if ((insn & (1 << 22)) && !user) { /* Restore CPSR from SPSR. */ tmp = load_cpu_field(spsr); gen_set_cpsr(tmp, 0xffffffff); tcg_temp_free_i32(tmp); s->is_jmp = DISAS_UPDATE; } } break; case 0xa: case 0xb: { int32_t offset; /* branch (and link) */ val = (int32_t)s->pc; if (insn & (1 << 24)) { tmp = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp, val); store_reg(s, 14, tmp); } offset = sextract32(insn << 2, 0, 26); val += offset + 4; gen_jmp(s, val); } break; case 0xc: case 0xd: case 0xe: if (((insn >> 8) & 0xe) == 10) { /* VFP. */ if (disas_vfp_insn(env, s, insn)) { goto illegal_op; } } else if (disas_coproc_insn(env, s, insn)) { /* Coprocessor. */ goto illegal_op; } break; case 0xf: /* swi */ gen_set_pc_im(s, s->pc); s->svc_imm = extract32(insn, 0, 24); s->is_jmp = DISAS_SWI; break; default: illegal_op: gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized()); break; } } }
false
qemu
33bbd75a7c3321432fe40a8cbacd64619c56138c
8,684
int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc, target_ulong *raddr, int *flags, bool exc) { int r = -1; uint8_t *sk; *flags = PAGE_READ | PAGE_WRITE | PAGE_EXEC; vaddr &= TARGET_PAGE_MASK; if (!(env->psw.mask & PSW_MASK_DAT)) { *raddr = vaddr; r = 0; goto out; } switch (asc) { case PSW_ASC_PRIMARY: PTE_DPRINTF("%s: asc=primary\n", __func__); r = mmu_translate_asce(env, vaddr, asc, env->cregs[1], raddr, flags, rw, exc); break; case PSW_ASC_HOME: PTE_DPRINTF("%s: asc=home\n", __func__); r = mmu_translate_asce(env, vaddr, asc, env->cregs[13], raddr, flags, rw, exc); break; case PSW_ASC_SECONDARY: PTE_DPRINTF("%s: asc=secondary\n", __func__); /* * Instruction: Primary * Data: Secondary */ if (rw == MMU_INST_FETCH) { r = mmu_translate_asce(env, vaddr, PSW_ASC_PRIMARY, env->cregs[1], raddr, flags, rw, exc); *flags &= ~(PAGE_READ | PAGE_WRITE); } else { r = mmu_translate_asce(env, vaddr, PSW_ASC_SECONDARY, env->cregs[7], raddr, flags, rw, exc); *flags &= ~(PAGE_EXEC); } break; case PSW_ASC_ACCREG: default: hw_error("guest switched to unknown asc mode\n"); break; } out: /* Convert real address -> absolute address */ *raddr = mmu_real2abs(env, *raddr); if (*raddr <= ram_size) { sk = &env->storage_keys[*raddr / TARGET_PAGE_SIZE]; if (*flags & PAGE_READ) { *sk |= SK_R; } if (*flags & PAGE_WRITE) { *sk |= SK_C; } } return r; }
true
qemu
9814fed0afa73f5c37f04e02ec17c915a5d59303
8,685
static void adb_mouse_initfn(Object *obj) { ADBDevice *d = ADB_DEVICE(obj); d->devaddr = ADB_DEVID_MOUSE; }
true
qemu
77cb0f5aafc8e6d0c6d3c339f381c9b7921648e0
8,686
int ff_raw_read_header(AVFormatContext *s, AVFormatParameters *ap) { AVStream *st; enum CodecID id; st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); id = s->iformat->value; if (id == CODEC_ID_RAWVIDEO) { st->codec->codec_type = AVMEDIA_TYPE_VIDEO; } else { st->codec->codec_type = AVMEDIA_TYPE_AUDIO; st->codec->codec_id = id; switch(st->codec->codec_type) { case AVMEDIA_TYPE_AUDIO: { RawAudioDemuxerContext *s1 = s->priv_data; st->codec->channels = 1; if (id == CODEC_ID_ADPCM_G722) st->codec->sample_rate = 16000; if (s1 && s1->sample_rate) st->codec->sample_rate = s1->sample_rate; if (s1 && s1->channels) st->codec->channels = s1->channels; st->codec->bits_per_coded_sample = av_get_bits_per_sample(st->codec->codec_id); assert(st->codec->bits_per_coded_sample > 0); st->codec->block_align = st->codec->bits_per_coded_sample*st->codec->channels/8; av_set_pts_info(st, 64, 1, st->codec->sample_rate); break; case AVMEDIA_TYPE_VIDEO: { FFRawVideoDemuxerContext *s1 = s->priv_data; int width = 0, height = 0, ret = 0; enum PixelFormat pix_fmt; AVRational framerate; if (s1->video_size && (ret = av_parse_video_size(&width, &height, s1->video_size)) < 0) { av_log(s, AV_LOG_ERROR, "Couldn't parse video size.\n"); goto fail; if ((pix_fmt = av_get_pix_fmt(s1->pixel_format)) == PIX_FMT_NONE) { av_log(s, AV_LOG_ERROR, "No such pixel format: %s.\n", s1->pixel_format); ret = AVERROR(EINVAL); goto fail; if ((ret = av_parse_video_rate(&framerate, s1->framerate)) < 0) { av_log(s, AV_LOG_ERROR, "Could not parse framerate: %s.\n", s1->framerate); goto fail; av_set_pts_info(st, 64, framerate.den, framerate.num); st->codec->width = width; st->codec->height = height; st->codec->pix_fmt = pix_fmt; fail: return ret; default: return -1; return 0;
true
FFmpeg
aa638b4600e1fa7a1b64323b8228c459af644a47
8,687
e1000_mmio_map(PCIDevice *pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { E1000State *d = (E1000State *)pci_dev; DBGOUT(MMIO, "e1000_mmio_map addr=0x%08x 0x%08x\n", addr, size); cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index); }
true
qemu
f65ed4c1529f29a7d62d6733eaa50bed24a4b2ed
8,688
static av_cold int decode_init(AVCodecContext *avctx) { WMAProDecodeCtx *s = avctx->priv_data; uint8_t *edata_ptr = avctx->extradata; unsigned int channel_mask; int i, bits; int log2_max_num_subframes; int num_possible_block_sizes; if (avctx->codec_id == AV_CODEC_ID_XMA1 || avctx->codec_id == AV_CODEC_ID_XMA2) avctx->block_align = 2048; if (!avctx->block_align) { av_log(avctx, AV_LOG_ERROR, "block_align is not set\n"); return AVERROR(EINVAL); } s->avctx = avctx; s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); if (!s->fdsp) return AVERROR(ENOMEM); init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; if (avctx->codec_id == AV_CODEC_ID_XMA2 && avctx->extradata_size >= 34) { s->decode_flags = 0x10d6; channel_mask = AV_RL32(edata_ptr+2); s->bits_per_sample = 16; /** dump the extradata */ for (i = 0; i < avctx->extradata_size; i++) ff_dlog(avctx, "[%x] ", avctx->extradata[i]); ff_dlog(avctx, "\n"); } else if (avctx->codec_id == AV_CODEC_ID_XMA1 && avctx->extradata_size >= 28) { s->decode_flags = 0x10d6; s->bits_per_sample = 16; channel_mask = 0; /** dump the extradata */ for (i = 0; i < avctx->extradata_size; i++) ff_dlog(avctx, "[%x] ", avctx->extradata[i]); ff_dlog(avctx, "\n"); } else if (avctx->extradata_size >= 18) { s->decode_flags = AV_RL16(edata_ptr+14); channel_mask = AV_RL32(edata_ptr+2); s->bits_per_sample = AV_RL16(edata_ptr); /** dump the extradata */ for (i = 0; i < avctx->extradata_size; i++) ff_dlog(avctx, "[%x] ", avctx->extradata[i]); ff_dlog(avctx, "\n"); } else { avpriv_request_sample(avctx, "Unknown extradata size"); return AVERROR_PATCHWELCOME; } if (avctx->codec_id != AV_CODEC_ID_WMAPRO && avctx->channels > 2) { avpriv_report_missing_feature(avctx, ">2 channels support"); return AVERROR_PATCHWELCOME; } /** generic init */ s->log2_frame_size = av_log2(avctx->block_align) + 4; if (s->log2_frame_size > 25) { avpriv_request_sample(avctx, "Large block align"); return AVERROR_PATCHWELCOME; } /** frame info */ if (avctx->codec_id != AV_CODEC_ID_WMAPRO) s->skip_frame = 0; else s->skip_frame = 1; /* skip first frame */ s->packet_loss = 1; s->len_prefix = (s->decode_flags & 0x40); /** get frame len */ if (avctx->codec_id == AV_CODEC_ID_WMAPRO) { bits = ff_wma_get_frame_len_bits(avctx->sample_rate, 3, s->decode_flags); if (bits > WMAPRO_BLOCK_MAX_BITS) { avpriv_request_sample(avctx, "14-bit block sizes"); return AVERROR_PATCHWELCOME; } s->samples_per_frame = 1 << bits; } else { s->samples_per_frame = 512; } /** subframe info */ log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); s->max_num_subframes = 1 << log2_max_num_subframes; if (s->max_num_subframes == 16 || s->max_num_subframes == 4) s->max_subframe_len_bit = 1; s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; num_possible_block_sizes = log2_max_num_subframes + 1; s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; s->dynamic_range_compression = (s->decode_flags & 0x80); if (s->max_num_subframes > MAX_SUBFRAMES) { av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %"PRId8"\n", s->max_num_subframes); return AVERROR_INVALIDDATA; } if (s->min_samples_per_subframe < WMAPRO_BLOCK_MIN_SIZE) { av_log(avctx, AV_LOG_ERROR, "min_samples_per_subframe of %d too small\n", s->min_samples_per_subframe); return AVERROR_INVALIDDATA; } if (s->avctx->sample_rate <= 0) { av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); return AVERROR_INVALIDDATA; } if (avctx->channels < 0) { av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", avctx->channels); return AVERROR_INVALIDDATA; } else if (avctx->channels > WMAPRO_MAX_CHANNELS) { avpriv_request_sample(avctx, "More than %d channels", WMAPRO_MAX_CHANNELS); return AVERROR_PATCHWELCOME; } /** init previous block len */ for (i = 0; i < avctx->channels; i++) s->channel[i].prev_block_len = s->samples_per_frame; /** extract lfe channel position */ s->lfe_channel = -1; if (channel_mask & 8) { unsigned int mask; for (mask = 1; mask < 16; mask <<= 1) { if (channel_mask & mask) ++s->lfe_channel; } } INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, scale_huffbits, 1, 1, scale_huffcodes, 2, 2, 616); INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, scale_rl_huffbits, 1, 1, scale_rl_huffcodes, 4, 4, 1406); INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE, coef0_huffbits, 1, 1, coef0_huffcodes, 4, 4, 2108); INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE, coef1_huffbits, 1, 1, coef1_huffcodes, 4, 4, 3912); INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, vec4_huffbits, 1, 1, vec4_huffcodes, 2, 2, 604); INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, vec2_huffbits, 1, 1, vec2_huffcodes, 2, 2, 562); INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, vec1_huffbits, 1, 1, vec1_huffcodes, 2, 2, 562); /** calculate number of scale factor bands and their offsets for every possible block size */ for (i = 0; i < num_possible_block_sizes; i++) { int subframe_len = s->samples_per_frame >> i; int x; int band = 1; int rate = get_rate(avctx); s->sfb_offsets[i][0] = 0; for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { int offset = (subframe_len * 2 * critical_freq[x]) / rate + 2; offset &= ~3; if (offset > s->sfb_offsets[i][band - 1]) s->sfb_offsets[i][band++] = offset; if (offset >= subframe_len) break; } s->sfb_offsets[i][band - 1] = subframe_len; s->num_sfb[i] = band - 1; if (s->num_sfb[i] <= 0) { av_log(avctx, AV_LOG_ERROR, "num_sfb invalid\n"); return AVERROR_INVALIDDATA; } } /** Scale factors can be shared between blocks of different size as every block has a different scale factor band layout. The matrix sf_offsets is needed to find the correct scale factor. */ for (i = 0; i < num_possible_block_sizes; i++) { int b; for (b = 0; b < s->num_sfb[i]; b++) { int x; int offset = ((s->sfb_offsets[i][b] + s->sfb_offsets[i][b + 1] - 1) << i) >> 1; for (x = 0; x < num_possible_block_sizes; x++) { int v = 0; while (s->sfb_offsets[x][v + 1] << x < offset) { v++; av_assert0(v < MAX_BANDS); } s->sf_offsets[i][x][b] = v; } } } /** init MDCT, FIXME: only init needed sizes */ for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) ff_mdct_init(&s->mdct_ctx[i], WMAPRO_BLOCK_MIN_BITS+1+i, 1, 1.0 / (1 << (WMAPRO_BLOCK_MIN_BITS + i - 1)) / (1 << (s->bits_per_sample - 1))); /** init MDCT windows: simple sine window */ for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; ff_init_ff_sine_windows(win_idx); s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx]; } /** calculate subwoofer cutoff values */ for (i = 0; i < num_possible_block_sizes; i++) { int block_size = s->samples_per_frame >> i; int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1) / s->avctx->sample_rate; s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size); } /** calculate sine values for the decorrelation matrix */ for (i = 0; i < 33; i++) sin64[i] = sin(i*M_PI / 64.0); if (avctx->debug & FF_DEBUG_BITSTREAM) dump_context(s); avctx->channel_layout = channel_mask; return 0; }
true
FFmpeg
0c56f8303e676556ea09bfac73d881c6c9057259
8,689
static int vhdx_allocate_block(BlockDriverState *bs, BDRVVHDXState *s, uint64_t *new_offset) { *new_offset = bdrv_getlength(bs->file->bs); /* per the spec, the address for a block is in units of 1MB */ *new_offset = ROUND_UP(*new_offset, 1024 * 1024); return bdrv_truncate(bs->file, *new_offset + s->block_size, PREALLOC_MODE_OFF, NULL); }
true
qemu
3f910692c287e1c611c00e763ebeb95ed0e017f8
8,690
POWERPC_FAMILY(POWER7)(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc); dc->fw_name = "PowerPC,POWER7"; dc->desc = "POWER7"; pcc->pvr = CPU_POWERPC_POWER7_BASE; pcc->pvr_mask = CPU_POWERPC_POWER7_MASK; pcc->init_proc = init_proc_POWER7; pcc->check_pow = check_pow_nocheck; pcc->insns_flags = PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC | PPC_64B | PPC_ALTIVEC | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD; pcc->insns_flags2 = PPC2_VSX | PPC2_DFP | PPC2_DBRX | PPC2_ISA205 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206; pcc->msr_mask = (1ull << MSR_SF) | (1ull << MSR_VR) | (1ull << MSR_VSX) | (1ull << MSR_EE) | (1ull << MSR_PR) | (1ull << MSR_FP) | (1ull << MSR_ME) | (1ull << MSR_FE0) | (1ull << MSR_SE) | (1ull << MSR_DE) | (1ull << MSR_FE1) | (1ull << MSR_IR) | (1ull << MSR_DR) | (1ull << MSR_PMM) | (1ull << MSR_RI) | (1ull << MSR_LE); pcc->mmu_model = POWERPC_MMU_2_06; #if defined(CONFIG_SOFTMMU) pcc->handle_mmu_fault = ppc_hash64_handle_mmu_fault; #endif pcc->excp_model = POWERPC_EXCP_POWER7; pcc->bus_model = PPC_FLAGS_INPUT_POWER7; pcc->bfd_mach = bfd_mach_ppc64; pcc->flags = POWERPC_FLAG_VRE | POWERPC_FLAG_SE | POWERPC_FLAG_BE | POWERPC_FLAG_PMM | POWERPC_FLAG_BUS_CLK | POWERPC_FLAG_CFAR | POWERPC_FLAG_VSX; pcc->l1_dcache_size = 0x8000; pcc->l1_icache_size = 0x8000; pcc->interrupts_big_endian = ppc_cpu_interrupts_big_endian_lpcr; }
true
qemu
8dfa3a5e85eca94a93b1495136f49c5776fd5ada
8,691
static int parse_metadata_ext(DBEContext *s) { if (s->mtd_ext_size) skip_input(s, s->key_present + s->mtd_ext_size + 1); return 0; }
true
FFmpeg
5e715b583dab85735660b15a8d217a69164675fe
8,692
static void test_validate_fail_union_flat(TestInputVisitorData *data, const void *unused) { UserDefFlatUnion *tmp = NULL; Error *err = NULL; Visitor *v; v = validate_test_init(data, "{ 'string': 'c', 'integer': 41, 'boolean': true }"); visit_type_UserDefFlatUnion(v, &tmp, NULL, &err); g_assert(err); qapi_free_UserDefFlatUnion(tmp); }
true
qemu
b18f1141d0afa00de11a8e079f4f5305c9e36893
8,693
static int net_slirp_init(VLANState *vlan, const char *model, const char *name) { if (!slirp_inited) { slirp_inited = 1; slirp_init(slirp_restrict, slirp_ip); } slirp_vc = qemu_new_vlan_client(vlan, model, name, slirp_receive, NULL, NULL); slirp_vc->info_str[0] = '\0'; return 0; }
true
qemu
b946a1533209f61a93e34898aebb5b43154b99c3
8,695
static int adb_mouse_poll(ADBDevice *d, uint8_t *obuf) { MouseState *s = ADB_MOUSE(d); int dx, dy; if (s->last_buttons_state == s->buttons_state && s->dx == 0 && s->dy == 0) return 0; dx = s->dx; if (dx < -63) dx = -63; else if (dx > 63) dx = 63; dy = s->dy; if (dy < -63) dy = -63; else if (dy > 63) dy = 63; s->dx -= dx; s->dy -= dy; s->last_buttons_state = s->buttons_state; dx &= 0x7f; dy &= 0x7f; if (!(s->buttons_state & MOUSE_EVENT_LBUTTON)) dy |= 0x80; if (!(s->buttons_state & MOUSE_EVENT_RBUTTON)) dx |= 0x80; obuf[0] = dy; obuf[1] = dx; return 2; }
true
qemu
77cb0f5aafc8e6d0c6d3c339f381c9b7921648e0
8,696
hwaddr ppc_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; mmu_ctx_t ctx; switch (env->mmu_model) { #if defined(TARGET_PPC64) case POWERPC_MMU_64B: case POWERPC_MMU_2_03: case POWERPC_MMU_2_06: case POWERPC_MMU_2_07: return ppc_hash64_get_phys_page_debug(env, addr); #endif case POWERPC_MMU_32B: case POWERPC_MMU_601: return ppc_hash32_get_phys_page_debug(env, addr); default: ; } if (unlikely(get_physical_address(env, &ctx, addr, 0, ACCESS_INT) != 0)) { /* Some MMUs have separate TLBs for code and data. If we only try an * ACCESS_INT, we may not be able to read instructions mapped by code * TLBs, so we also try a ACCESS_CODE. */ if (unlikely(get_physical_address(env, &ctx, addr, 0, ACCESS_CODE) != 0)) { return -1; } } return ctx.raddr & TARGET_PAGE_MASK; }
true
qemu
ba3ecda05e933acf6fff618716b6f6d2ed6a5a07
8,697
static int get_physical_address_data(CPUState *env, target_phys_addr_t *physical, int *prot, target_ulong address, int rw, int mmu_idx) { unsigned int i; uint64_t context; int is_user = (mmu_idx == MMU_USER_IDX || mmu_idx == MMU_USER_SECONDARY_IDX); if ((env->lsu & DMMU_E) == 0) { /* DMMU disabled */ *physical = ultrasparc_truncate_physical(address); *prot = PAGE_READ | PAGE_WRITE; return 0; } switch(mmu_idx) { case MMU_USER_IDX: case MMU_KERNEL_IDX: context = env->dmmu.mmu_primary_context & 0x1fff; break; case MMU_USER_SECONDARY_IDX: case MMU_KERNEL_SECONDARY_IDX: context = env->dmmu.mmu_secondary_context & 0x1fff; break; case MMU_NUCLEUS_IDX: context = 0; break; } for (i = 0; i < 64; i++) { // ctx match, vaddr match, valid? if (ultrasparc_tag_match(&env->dtlb[i], address, context, physical)) { // access ok? if (((env->dtlb[i].tte & 0x4) && is_user) || (!(env->dtlb[i].tte & 0x2) && (rw == 1))) { uint8_t fault_type = 0; if ((env->dtlb[i].tte & 0x4) && is_user) { fault_type |= 1; /* privilege violation */ } if (env->dmmu.sfsr & 1) /* Fault status register */ env->dmmu.sfsr = 2; /* overflow (not read before another fault) */ env->dmmu.sfsr |= (is_user << 3) | ((rw == 1) << 2) | 1; env->dmmu.sfsr |= (fault_type << 7); env->dmmu.sfar = address; /* Fault address register */ env->exception_index = TT_DFAULT; #ifdef DEBUG_MMU printf("DFAULT at 0x%" PRIx64 "\n", address); #endif return 1; } *prot = PAGE_READ; if (env->dtlb[i].tte & 0x2) *prot |= PAGE_WRITE; TTE_SET_USED(env->dtlb[i].tte); return 0; } } #ifdef DEBUG_MMU printf("DMISS at 0x%" PRIx64 "\n", address); #endif env->dmmu.tag_access = (address & ~0x1fffULL) | context; env->exception_index = TT_DMISS; return 1; }
true
qemu
4450521668471c7685551d8c5bcc582d754e9843
8,698
static void virtio_pci_reset(DeviceState *qdev) { VirtIOPCIProxy *proxy = VIRTIO_PCI(qdev); VirtioBusState *bus = VIRTIO_BUS(&proxy->bus); int i; virtio_pci_stop_ioeventfd(proxy); virtio_bus_reset(bus); msix_unuse_all_vectors(&proxy->pci_dev); for (i = 0; i < VIRTIO_QUEUE_MAX; i++) { proxy->vqs[i].enabled = 0; } }
true
qemu
60a8d8023473dd24957b3a66824f66cd35b80d64
8,699
static int decode_residual(const H264Context *h, H264SliceContext *sl, GetBitContext *gb, int16_t *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff) { static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3}; int level[16]; int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before; //FIXME put trailing_onex into the context if(max_coeff <= 8){ if (max_coeff == 4) coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1); else coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc.table, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1); total_coeff= coeff_token>>2; }else{ if(n >= LUMA_DC_BLOCK_INDEX){ total_coeff= pred_non_zero_count(h, sl, (n - LUMA_DC_BLOCK_INDEX)*16); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; }else{ total_coeff= pred_non_zero_count(h, sl, n); coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2); total_coeff= coeff_token>>2; } } sl->non_zero_count_cache[scan8[n]] = total_coeff; //FIXME set last_non_zero? if(total_coeff==0) return 0; if(total_coeff > (unsigned)max_coeff) { av_log(h->avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", sl->mb_x, sl->mb_y, total_coeff); return -1; } trailing_ones= coeff_token&3; ff_tlog(h->avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff); assert(total_coeff<=16); i = show_bits(gb, 3); skip_bits(gb, trailing_ones); level[0] = 1-((i&4)>>1); level[1] = 1-((i&2) ); level[2] = 1-((i&1)<<1); if(trailing_ones<total_coeff) { int mask, prefix; int suffix_length = total_coeff > 10 & trailing_ones < 3; int bitsi= show_bits(gb, LEVEL_TAB_BITS); int level_code= cavlc_level_tab[suffix_length][bitsi][0]; skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]); if(level_code >= 100){ prefix= level_code - 100; if(prefix == LEVEL_TAB_BITS) prefix += get_level_prefix(gb); //first coefficient has suffix_length equal to 0 or 1 if(prefix<14){ //FIXME try to build a large unified VLC table for all this if(suffix_length) level_code= (prefix<<1) + get_bits1(gb); //part else level_code= prefix; //part }else if(prefix==14){ if(suffix_length) level_code= (prefix<<1) + get_bits1(gb); //part else level_code= prefix + get_bits(gb, 4); //part }else{ level_code= 30 + get_bits(gb, prefix-3); //part if(prefix>=16){ if(prefix > 25+3){ av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n"); return -1; } level_code += (1<<(prefix-3))-4096; } } if(trailing_ones < 3) level_code += 2; suffix_length = 2; mask= -(level_code&1); level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask; }else{ level_code += ((level_code>>31)|1) & -(trailing_ones < 3); suffix_length = 1 + (level_code + 3U > 6U); level[trailing_ones]= level_code; } //remaining coefficients have suffix_length > 0 for(i=trailing_ones+1;i<total_coeff;i++) { static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX }; int bitsi= show_bits(gb, LEVEL_TAB_BITS); level_code= cavlc_level_tab[suffix_length][bitsi][0]; skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]); if(level_code >= 100){ prefix= level_code - 100; if(prefix == LEVEL_TAB_BITS){ prefix += get_level_prefix(gb); } if(prefix<15){ level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length); }else{ level_code = (15<<suffix_length) + get_bits(gb, prefix-3); if(prefix>=16) level_code += (1<<(prefix-3))-4096; } mask= -(level_code&1); level_code= (((2+level_code)>>1) ^ mask) - mask; } level[i]= level_code; suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length]; } } if(total_coeff == max_coeff) zeros_left=0; else{ if (max_coeff <= 8) { if (max_coeff == 4) zeros_left = get_vlc2(gb, chroma_dc_total_zeros_vlc[total_coeff - 1].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1); else zeros_left = get_vlc2(gb, chroma422_dc_total_zeros_vlc[total_coeff - 1].table, CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1); } else { zeros_left= get_vlc2(gb, total_zeros_vlc[total_coeff - 1].table, TOTAL_ZEROS_VLC_BITS, 1); } } #define STORE_BLOCK(type) \ scantable += zeros_left + total_coeff - 1; \ if(n >= LUMA_DC_BLOCK_INDEX){ \ ((type*)block)[*scantable] = level[0]; \ for(i=1;i<total_coeff && zeros_left > 0;i++) { \ if(zeros_left < 7) \ run_before= get_vlc2(gb, run_vlc[zeros_left - 1].table, RUN_VLC_BITS, 1); \ else \ run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \ zeros_left -= run_before; \ scantable -= 1 + run_before; \ ((type*)block)[*scantable]= level[i]; \ } \ for(;i<total_coeff;i++) { \ scantable--; \ ((type*)block)[*scantable]= level[i]; \ } \ }else{ \ ((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \ for(i=1;i<total_coeff && zeros_left > 0;i++) { \ if(zeros_left < 7) \ run_before= get_vlc2(gb, run_vlc[zeros_left - 1].table, RUN_VLC_BITS, 1); \ else \ run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \ zeros_left -= run_before; \ scantable -= 1 + run_before; \ ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \ } \ for(;i<total_coeff;i++) { \ scantable--; \ ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \ } \ } if (zeros_left < 0) { av_log(h->avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", sl->mb_x, sl->mb_y); return AVERROR_INVALIDDATA; } if (h->pixel_shift) { STORE_BLOCK(int32_t) } else { STORE_BLOCK(int16_t) } return 0; }
true
FFmpeg
522d850e68ec4b77d3477b3c8f55b1ba00a9d69a
8,700
DISAS_INSN(fsave) { /* TODO: Implement fsave. */ qemu_assert(0, "FSAVE not implemented"); }
true
qemu
7372c2b926200db295412efbb53f93773b7f1754