Serial Number
int64
1
6k
Issue Number
int64
75.6k
112k
Title
stringlengths
3
357
Labels
stringlengths
3
241
Body
stringlengths
9
74.5k
Comments
int64
0
867
1,301
107,945
Torch 1.13 Onnx Scope constant name not correct!
module: onnx, triaged
### 🐛 Describe the bug i'm using the pytorch 1.13 to convert the stable diffusion unet to onnx model. and i noticed that torch 1.13 will preserve the original module name in onnx graph.but it seems the constant name is not always corresponding to the state_dict weights name in torch.like some weights name in torch state_dict are : ```python down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj.weight down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj.bias ``` in onnx,there is no constant data named down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj.weight,but there is constant data named down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj.bias. the nodes corresponding to down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj in onnx are: ```python /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Cast (Cast) Inputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/norm3/LayerNormalization_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 640], dtype=float32) ] Outputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Cast_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 640], dtype=float16) ] Attributes: OrderedDict([('to', 10)]) /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/MatMul (MatMul) Inputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Cast_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 640], dtype=float16) Constant (onnx::MatMul_9242): (shape=[640, 5120], dtype=float16) ] Outputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/MatMul_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 5120], dtype=float16) ] /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Add (Add) Inputs: [ Constant (down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj.bias): (shape=[5120], dtype=float16) Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/MatMul_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 5120], dtype=float16) ] Outputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Add_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 5120], dtype=float16) ] /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Slice (Slice) Inputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Add_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 5120], dtype=float16) Constant (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Constant_1_output_0): (shape=[1], dtype=int64) Constant (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Mul_output_0): (shape=[1], dtype=int64) Constant (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Constant_output_0): (shape=[1], dtype=int64) ] Outputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Slice_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 2560], dtype=float16) ] /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Slice_1 (Slice) Inputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Add_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 5120], dtype=float16) Constant (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Mul_output_0): (shape=[1], dtype=int64) Constant (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Mul_1_output_0): (shape=[1], dtype=int64) Constant (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Constant_output_0): (shape=[1], dtype=int64) ] Outputs: [ Variable (/down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/Slice_1_output_0): (shape=['2B', '(floor(H/2 - 1/2) + 1)*(floor(W/2 - 1/2) + 1)', 2560], dtype=float16) ] ``` so, should /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/MatMul (MatMul) node constant data's name be down_blocks.1.attentions.1.transformer_blocks.0.ff.net.0.proj.weight ,howerver it actually is onnx::MatMul_9242. But the bias is correct in /down_blocks.1/attentions.1/transformer_blocks.0/ff/net.0/proj/Add (Add) node .why does it happen? ### Versions pytorch verison 1.13.1
0
1,302
107,929
Export to onnx error: RuntimeError: ArrayRef: invalid index Index = 3; Length = 3
module: onnx, triaged
### 🐛 Describe the bug When I try to export to onnx model, I got following error, RuntimeError: ArrayRef: invalid index Index = 3; Length = 3 ``` bash _C._jit_pass_onnx_graph_shape_type_inference( Traceback (most recent call last): File "export.py", line 41, in <module> torch.onnx.export(model, # model being run File "/home/leo/storage/sharedFolderVirtualbox/experiment/speaker_diarization-embeddings/embeddings/lib/python3.8/site-packages/torch/onnx/utils.py", line 516, in export _export( File "/home/leo/storage/sharedFolderVirtualbox/experiment/speaker_diarization-embeddings/embeddings/lib/python3.8/site-packages/torch/onnx/utils.py", line 1582, in _export graph, params_dict, torch_out = _model_to_graph( File "/home/leo/storage/sharedFolderVirtualbox/experiment/speaker_diarization-embeddings/embeddings/lib/python3.8/site-packages/torch/onnx/utils.py", line 1182, in _model_to_graph _C._jit_pass_onnx_assign_output_shape( RuntimeError: ArrayRef: invalid index Index = 3; Length = 3 ``` The code as below, ```python import torchaudio from speechbrain.pretrained import EncoderClassifier import torch model = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb") signal, fs = torchaudio.load('shortTeaching2.wav') print( signal ) print( signal.shape ) #exit( 0 ) # Print output shape embeddings = model.encode_batch(signal) #print( embeddings ) #print( embeddings.shape ) #exit( 0 ) # Create dummy input symbolic_names = {0: "batch_size", 1: "max_seq_len"} x = torch.randn( 1, 1920000 ) # Export the model torch.onnx.export(model, # model being run x, # model input (or a tuple for multiple inputs) "embeddings.onnx", # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file opset_version=17, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding for optimization verbose=False, input_names = ['signal'], # the model's input names output_names = ['embeddings'], # the model's output names dynamic_axes={'signal' : symbolic_names, # variable length axes }) ``` When I pdb into python code, I found the error raised from this function, _C._jit_pass_onnx_assign_output_shape with local variables, ```bash (Pdb) p output_wrapped (tensor([[ 0.0677, 0.0583, 0.1144, ..., -0.1774, -0.0198, -0.1925]]), tensor([0.2038]), tensor([3869]), ['id04606']) (Pdb) p output_tensors [tensor([[ 0.0677, 0.0583, 0.1144, ..., -0.1774, -0.0198, -0.1925]]), tensor([0.2038]), tensor([3869])] (Pdb) p out_desc <torch.IODescriptor object at 0x7fecd75d08b0> ``` Then debug into pytorch c++ code( I used gdb ), check desc ans tensors which passed into ONNXAssignOutputShape ```bash (gdb) p desc $24 = (const torch::jit::python::IODescriptor &) @0x74b81c0: {structure = "(vvv[s])", strings = std::vector of length 1, capacity 1 = {"id04606"}, metadata = std::vector of length 3, capacity 3 = {{sizes = std::vector of length 2, capacity 2 = { 1, 7205}, type = c10::ScalarType::Float, device = {type_ = c10::DeviceType::CPU, index_ = -1 '\377'}, requires_grad = false}, { sizes = std::vector of length 1, capacity 1 = {1}, type = c10::ScalarType::Float, device = { type_ = c10::DeviceType::CPU, index_ = -1 '\377'}, requires_grad = false}, { sizes = std::vector of length 1, capacity 1 = {1}, type = c10::ScalarType::Long, device = { type_ = c10::DeviceType::CPU, index_ = -1 '\377'}, requires_grad = false}}, grad_enabled = true} (gdb) p tensors $23 = std::vector of length 3, capacity 3 = {{<at::TensorBase> = {impl_ = { target_ = 0x12ffadf0}}, <No data fields>}, {<at::TensorBase> = {impl_ = { target_ = 0x12ff5540}}, <No data fields>}, {<at::TensorBase> = {impl_ = { target_ = 0x12ffdac0}}, <No data fields>}} ``` after unflatten ``` bash PyObject* py_obj = unflatten(outputs, desc); (gdb) p PyTuple_Size(py_obj) $39 = 4 so later it references outputs of graph from 0 till 3( 0, 1, 2, 3 ) ``` At line pytorch/torch/csrc/jit/passes/onnx/shape_type_inference.cpp:2295, graph->outputs() contains 3 elements only but it try access 4th elements by outputs_index=3 which leads to TORCH_CHECK failed. ### Versions Collecting environment information... PyTorch version: 2.1.0a0+git134d415 Is debug build: True CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.27.2 Libc version: glibc-2.35 Python version: 3.8.17 (default, Jul 5 2023, 21:04:15) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.2.0-26-generic-x86_64-with-glibc2.17 Is CUDA available: False CUDA runtime version: 12.2.128 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2070 SUPER Nvidia driver version: 535.86.05 cuDNN version: Probably one of the following: /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 /usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i9-9900KF CPU @ 3.60GHz CPU family: 6 Model: 158 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 13 CPU max MHz: 5000.0000 CPU min MHz: 800.0000 BogoMIPS: 7200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 2 MiB (8 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] torch==2.1.0a0+git134d415 [pip3] torchaudio==2.1.0a0+47eaab4 [pip3] triton==2.0.0 [conda] cudatoolkit 11.3.1 h2bc3f7f_2 anaconda [conda] magma-cuda117 2.6.1 1 pytorch [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-include 2023.1.0 h06a4308_46343 [conda] numpy 1.24.4 pypi_0 pypi [conda] torch 2.1.0a0+git134d415 dev_0 <develop> [conda] torchaudio 2.1.0a0+47eaab4 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi
0
1,303
107,925
DISABLED test_conv_weight_layout_convert_cuda (__main__.FreezingCudaTests)
module: rocm, triaged, module: flaky-tests, skipped, module: inductor
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/failure/test_conv_weight_layout_convert_cuda) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/16195333580). Over the past 72 hours, it has flakily failed in 6 workflow(s). **Debugging instructions (after clicking on the recent samples link):** To find relevant log snippets: 1. Click on the workflow logs linked above 2. Grep for `test_conv_weight_layout_convert_cuda` Test file path: `inductor/test_inductor_freezing.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,304
107,922
onnx export error
module: onnx, triaged
### 🐛 Describe the bug code: ```python import torch from torch import nn import torchaudio class DataCov(nn.Module): def __init__(self): super(DataCov, self).__init__() self.transform = nn.Sequential( torchaudio.transforms.MelSpectrogram(sample_rate=48000, n_fft=1536, hop_length=768, f_min=20, f_max=20000) ) def forward(self, x1): x1 = self.transform(x1) return x1 def export(): model = DataCov().to(torch.float32) model.eval() input = torch.rand((1, 1, 12 * 48000), dtype=torch.float32) torch.onnx.dynamo_export(model, (input), "DataCov.onnx", verbose=False, input_names=['input1'], output_names=['output1'], opset_version=18) if __name__ == '__main__': export() ``` linux error: ``` Traceback (most recent call last): File "/root/autodl-tmp/./main.py", line 27, in <module> export() File "/root/autodl-tmp/./main.py", line 22, in export torch.onnx.dynamo_export(model, (input), "DataCov.onnx", verbose=False, ^^^^^^^^^^ File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/torch/__init__.py", line 1827, in __getattr__ return importlib.import_module(f".{name}", __name__) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/test_onnx/lib/python3.11/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<frozen importlib._bootstrap>", line 1204, in _gcd_import File "<frozen importlib._bootstrap>", line 1176, in _find_and_load File "<frozen importlib._bootstrap>", line 1147, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 690, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 940, in exec_module File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/torch/onnx/__init__.py", line 48, in <module> from ._internal.exporter import ( # usort:skip. needs to be last to avoid circular import File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/torch/onnx/_internal/exporter.py", line 65, in <module> from torch.onnx._internal.fx import diagnostics File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/torch/onnx/_internal/fx/diagnostics.py", line 10, in <module> import onnxscript # type: ignore[import] ^^^^^^^^^^^^^^^^^ File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/onnxscript/__init__.py", line 7, in <module> from .backend.onnx_export import export2python as proto2python File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/onnxscript/backend/onnx_export.py", line 14, in <module> import onnxscript.onnx_types File "/root/miniconda3/envs/test_onnx/lib/python3.11/site-packages/onnxscript/onnx_types.py", line 177, in <module> class FLOAT8E4M3FN(TensorType, dtype=onnx.TensorProto.FLOAT8E4M3FN): ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: FLOAT8E4M3FN ``` windows error: C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\onnx\_internal\exporter.py:130: UserWarning: torch.onnx.dynamo_export only implements opset version 18 for now. If you need to use a different opset version, please register them with register_custom_op. warnings.warn( Traceback (most recent call last): File "C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\onnx\_internal\exporter.py", line 1091, in dynamo_export ).export() ^^^^^^^^ File "C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\onnx\_internal\exporter.py", line 892, in export graph_module = self.options.fx_tracer.generate_fx( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\onnx\_internal\fx\dynamo_graph_extractor.py", line 199, in generate_fx graph_module, graph_guard = torch._dynamo.export( ^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\_dynamo\eval_frame.py", line 1018, in inner check_if_dynamo_supported() File "C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\_dynamo\eval_frame.py", line 533, in check_if_dynamo_supported raise RuntimeError("Windows not yet supported for torch.compile") RuntimeError: Windows not yet supported for torch.compile The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\work\pytorch_to_onnx\main.py", line 27, in <module> export() File "C:\work\pytorch_to_onnx\main.py", line 22, in export torch.onnx.dynamo_export(model, (input), "DataCov.onnx", verbose=False, File "C:\Users\dell\miniconda3\envs\onnx_export\Lib\site-packages\torch\onnx\_internal\exporter.py", line 1102, in dynamo_export raise OnnxExporterError( torch.onnx.OnnxExporterError: Failed to export the model to ONNX. Generating SARIF report at {sarif_report_path}. SARIF is a standard format for the output of static analysis tools. SARIF log can be loaded in VS Code SARIF viewer extension, or SARIF web viewer(https://microsoft.github.io/sarif-web-component/).Please report a bug on PyTorch Github: https://github.com/pytorch/pytorch/issues ### Versions linux versions: Collecting environment information... PyTorch version: 2.1.0.dev20230824 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.11.4 (main, Jul 5 2023, 13:45:01) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-146-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 Nvidia driver version: 525.105.17 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 6 Frequency boost: enabled CPU max MHz: 2901.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 80 MiB (64 instances) L3 cache: 108 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.1.0.dev20230824 [pip3] torchaudio==2.1.0.dev20230824 [pip3] torchvision==0.16.0.dev20230824 [conda] blas 1.0 mkl https://mirrors.ustc.edu.cn/anaconda/pkgs/main [conda] brotlipy 0.7.0 py311h9bf148f_1002 pytorch-nightly [conda] cffi 1.15.1 py311h9bf148f_3 pytorch-nightly [conda] cpuonly 2.0 0 pytorch-nightly [conda] cryptography 38.0.4 py311h46ebde7_0 pytorch-nightly [conda] filelock 3.9.0 py311_0 pytorch-nightly [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch-nightly [conda] mkl 2021.4.0 h06a4308_640 https://mirrors.ustc.edu.cn/anaconda/pkgs/main [conda] mkl-service 2.4.0 py311h9bf148f_0 pytorch-nightly [conda] mkl_fft 1.3.1 py311hc796f24_0 pytorch-nightly [conda] mkl_random 1.2.2 py311hbba84a0_0 pytorch-nightly [conda] mpmath 1.2.1 py311_0 pytorch-nightly [conda] numpy 1.24.3 py311hc206e33_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main [conda] numpy-base 1.24.3 py311hfd5febd_0 https://mirrors.ustc.edu.cn/anaconda/pkgs/main [conda] pillow 9.3.0 py311h3fd9d12_2 pytorch-nightly [conda] pysocks 1.7.1 py311_0 pytorch-nightly [conda] pytorch 2.1.0.dev20230824 py3.11_cpu_0 pytorch-nightly [conda] pytorch-mutex 1.0 cpu pytorch-nightly [conda] requests 2.28.1 py311_0 pytorch-nightly [conda] torchaudio 2.1.0.dev20230824 py311_cpu pytorch-nightly [conda] torchvision 0.16.0.dev20230824 py311_cpu pytorch-nightly [conda] urllib3 1.26.14 py311_0 pytorch-nightly onnxscript-preview in /root/miniconda3/envs/test_onnx/lib/python3.11/site-packages (0.1.0.dev20230814) windows version: Collecting environment information... PyTorch version: 2.1.0.dev20230824 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 专业版 GCC version: (Rev5, Built by MSYS2 project) 13.1.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: N/A Python version: 3.11.4 | packaged by conda-forge | (main, Jun 10 2023, 17:59:51) [MSC v.1935 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Revision= Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] torch==2.1.0.dev20230824 [pip3] torchaudio==2.1.0.dev20230824 [pip3] torchvision==0.16.0.dev20230824 [conda] blas 1.0 mkl defaults [conda] cpuonly 2.0 0 pytorch-nightly [conda] mkl 2023.1.0 h6b88ed4_46357 defaults [conda] mkl-service 2.4.0 py311h2bbff1b_1 defaults [conda] mkl_fft 1.3.6 py311hf62ec03_1 defaults [conda] mkl_random 1.2.2 py311hf62ec03_1 defaults [conda] mpmath 1.2.1 py311_0 pytorch-nightly [conda] numpy 1.24.4 pypi_0 pypi [conda] numpy-base 1.25.2 py311hd01c5d8_0 defaults [conda] pytorch 2.1.0.dev20230824 py3.11_cpu_0 pytorch-nightly [conda] pytorch-mutex 1.0 cpu pytorch-nightly [conda] torchaudio 2.1.0.dev20230824 py311_cpu pytorch-nightly [conda] torchvision 0.16.0.dev20230824 py311_cpu pytorch-nightly onnxscript-preview in c:\users\dell\miniconda3\envs\onnx_export\lib\site-packages (0.1.0.dev20230814)
3
1,305
107,914
[BUG] "weight_norm_fwd_first_dim_kernel" not implemented for 'BFloat16'
module: nn, triaged, module: bfloat16, actionable
### 🐛 Describe the bug Attempting to `weight_norm` a bfloat16 layer in a CUDA environment results in an error like ```RuntimeError: "weight_norm_fwd_first_dim_kernel" not implemented for 'BFloat16'``` No error on `weight_norm` in CPU environment, but only in CUDA environment. # errror ``` "weight_norm_fwd_first_dim_kernel" not implemented for 'BFloat16' File "[user-dir]/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py", line 25, in compute_weight return _weight_norm(v, g, self.dim) File "[user-dir]/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py", line 50, in apply setattr(module, name, fn.compute_weight(module)) File "[user-dir]/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py", line 109, in weight_norm WeightNorm.apply(module, name, dim) File "/home/jsb193/workspace/github/llm/LLM42/train/train_dpo.py", line 48, in <module> nn.utils.weight_norm(module, "weight") RuntimeError: "weight_norm_fwd_first_dim_kernel" not implemented for 'BFloat16' ``` # example ```python import torch.nn as nn module = torch.nn.Linear(20, 40) module = module.to(torch.bfloat16) module = module.to("cuda") nn.utils.weight_norm(module, "weight") ``` ### Versions pytorch: 2.0.1+cu117 python: 3.10.11 os: ubuntu-18.04 gpu: GeForce3090 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
2
1,306
107,909
Provide a `reset_parameters()` method for MultiheadAttention to support FSDP meta device initializtion
module: nn, triaged, module: fsdp
### 🚀 The feature, motivation and pitch The [MultiheadAttention](https://github.com/pytorch/pytorch/blob/2fbe6ef2f866fe6ce42a950f2053f2f6b4bdab90/torch/nn/modules/activation.py) layer has a protected [`_reset_parameters()`](https://github.com/pytorch/pytorch/blob/2fbe6ef2f866fe6ce42a950f2053f2f6b4bdab90/torch/nn/modules/activation.py#L1020) method that is responsible for initializing the params. In light of the newly introduced approach to init modules on the meta device and materializing them with FSDP (https://github.com/pytorch/pytorch/issues/104187), it would be great if the `MultiheadAttention` module could expose the `_reset_parameters` as public so FSDP can call it internally. ### Alternatives Currently, the user has to modify the source code or patch it like so: ```py MultiheadAttention.reset_parameters = MultiheadAttention._reset_parameters ``` ### Additional context cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @zhaojuanmao @mrshenli @rohan-varma @awgu @fegin @penguinwu I'd be happy to send a PR if there are no objections.
3
1,307
107,908
Rzou/out dtype
module: dynamo, ciflow/inductor
Fixes #ISSUE_NUMBER cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
2
1,308
107,903
Support values backward on sparse CSR, CSC, BSR, and BSC tensors
module: autograd, open source, release notes: sparse, topic: new features
Fixes https://github.com/pytorch/pytorch/issues/107286 Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107903 * #107150 * #107777 * #107638 cc @ezyang @albanD @zou3519 @gqchen @nikitaved @soulitzer @Lezcano @Varal7
1
1,309
107,898
[FakeTensor] fake tensor mode not working with inference mode on Tensor.item()
triaged, oncall: pt2, module: fakeTensor, module: dynamic shapes
### 🐛 Describe the bug As titled. My repro: ```python import torch from torch._subclasses.fake_tensor import FakeTensorMode with FakeTensorMode(): with torch.inference_mode(): torch.tensor(32.).item() ``` stacktrace: ``` Traceback (most recent call last): File "repro.py", line 21, in <module> torch.tensor(32.).item() File "site-packages/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "site-packages/torch/_subclasses/fake_tensor.py", line 1233, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "site-packages/torch/_subclasses/fake_tensor.py", line 1437, in dispatch r = func.decompose(*args, **kwargs) File "site-packages/torch/_ops.py", line 467, in decompose return self._op_dk(dk, *args, **kwargs) File "site-packages/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "site-packages/torch/_subclasses/fake_tensor.py", line 1233, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "site-packages/torch/_subclasses/fake_tensor.py", line 1470, in dispatch op_impl_out = op_impl(self, func, *args, **kwargs) File "site-packages/torch/_subclasses/fake_tensor.py", line 501, in local_scalar_dense raise DataDependentOutputException(func) torch._subclasses.fake_tensor.DataDependentOutputException: aten._local_scalar_dense.default ``` ### Versions PyTorch version: 2.1.0.dev20230817+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 10.5.0-1ubuntu1~22.04) 10.5.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.8.16 (default, Jun 12 2023, 18:09:05) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.19.0-50-generic-x86_64-with-glibc2.17 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3070 Nvidia driver version: 520.61.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: AuthenticAMD Model name: AMD Ryzen 9 5900X 12-Core Processor CPU family: 25 Model: 33 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 4950.1948 CPU min MHz: 2200.0000 BogoMIPS: 7399.84 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 6 MiB (12 instances) L3 cache: 64 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] bert-pytorch==0.0.1a4 [pip3] clip-anytorch==2.5.2 [pip3] CoCa-pytorch==0.0.7 [pip3] dalle2-pytorch==1.14.2 [pip3] ema-pytorch==0.2.3 [pip3] flake8==6.0.0 [pip3] functorch==1.14.0a0+b71aa0b [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.21.2 [pip3] open-clip-torch==2.20.0 [pip3] pytorch-transformers==1.2.0 [pip3] pytorch-triton==2.1.0+9e3e10c5ed [pip3] pytorch-warmup==0.1.1 [pip3] rotary-embedding-torch==0.2.5 [pip3] torch==2.1.0.dev20230817+cpu [pip3] torch-fidelity==0.3.0 [pip3] torch_geometric==2.4.0 [pip3] torch-struct==0.5 [pip3] torchaudio==2.1.0.dev20230817+cpu [pip3] torchmetrics==1.0.1 [pip3] torchrec-nightly==2023.7.17 [pip3] torchvision==0.16.0.dev20230817+cpu [pip3] vector-quantize-pytorch==1.6.30 [conda] bert-pytorch 0.0.1a4 dev_0 <develop> [conda] clip-anytorch 2.5.2 pypi_0 pypi [conda] coca-pytorch 0.0.7 pypi_0 pypi [conda] dalle2-pytorch 1.14.2 pypi_0 pypi [conda] ema-pytorch 0.2.3 pypi_0 pypi [conda] functorch 1.14.0a0+b71aa0b pypi_0 pypi [conda] numpy 1.21.2 pypi_0 pypi [conda] open-clip-torch 2.20.0 pypi_0 pypi [conda] pytorch-transformers 1.2.0 pypi_0 pypi [conda] pytorch-triton 2.1.0+9e3e10c5ed pypi_0 pypi [conda] pytorch-warmup 0.1.1 pypi_0 pypi [conda] rotary-embedding-torch 0.2.5 pypi_0 pypi [conda] torch 2.1.0.dev20230817+cpu pypi_0 pypi [conda] torch-fidelity 0.3.0 pypi_0 pypi [conda] torch-geometric 2.4.0 pypi_0 pypi [conda] torch-struct 0.5 pypi_0 pypi [conda] torchaudio 2.1.0.dev20230817+cpu pypi_0 pypi [conda] torchmetrics 1.0.1 pypi_0 pypi [conda] torchrec-nightly 2023.7.17 pypi_0 pypi [conda] torchvision 0.16.0.dev20230817+cpu pypi_0 pypi [conda] vector-quantize-pytorch 1.6.30 pypi_0 pypi cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
9
1,310
107,897
wip add a test
module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107897 * #107834 cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
1
1,311
107,896
[feature request] [ux proposal] Min-max linear normalization to be supported in F.normalize (or in a new function)
module: nn, triaged, topic: new features
### 🚀 The feature, motivation and pitch It's useful as one of way of various image / arbitrary normalizations E.g. supported in OpenCV: https://docs.opencv.org/4.x/d2/de8/group__core__array.html#ggad12cefbcb5291cf958a85b4b67b6149fa9f0c1c342a18114d47b516a88e29822e in the cv2.normalize function: https://docs.opencv.org/4.x/d2/de8/group__core__array.html#ga87eef7ee3970f86906d69a92cbf064bd Also, related, NumPy supports https://numpy.org/doc/stable/reference/generated/numpy.ptp.html function which computes difference `amax() - amin()` My impl is simple (althgough it would be best to set by default `eps = torch.finfo(x.dtype).min` to accomodate float16 inputs), but it would be nice to have it supported by core convenience F.normalize function: ```python def normalize_min_max_(x, dim, eps = 1e-12): # workaround for https://github.com/pytorch/pytorch/issues/61582 amin, amax = x.amin(dim = dim, keepdim = True), x.amax(dim = dim, keepdim = True) return x.sub_(amin).div_(amax.sub_(amin).add_(eps)) ``` ### Alternatives _No response_ ### Additional context _No response_ cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
2
1,312
107,894
Fail to build C++ test_aot_inductor
triaged, oncall: pt2, module: inductor
### 🐛 Describe the bug When building `test_aot_inductor` with `BUILD_AOT_INDUCTOR_TEST=1 python setup.py build`, the build fails with the following error (discovered by @muchulee8) ``` [4826/7070] Generating libaot_inductor_output.so FAILED: test_aot_inductor/libaot_inductor_output.so /home/huydo/github/pytorch/build/test_aot_inductor/libaot_inductor_output.so cd /home/huydo/github/pytorch/build/test_aot_inductor && python /home/huydo/github/pytorch/test/cpp/aot_inductor/test.py /home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py:135: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance. warnings.warn( Traceback (most recent call last): File "/home/huydo/github/pytorch/test/cpp/aot_inductor/test.py", line 25, in <module> lib_path, module = torch._export.aot_compile(Net().cuda(), (x, y)) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_export/__init__.py", line 483, in aot_compile so_path = torch._inductor.aot_compile(ep.graph_module, list(all_args), options) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/__init__.py", line 48, in aot_compile result = compile_fx_aot( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 865, in compile_fx_aot return compile_fx( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 959, in compile_fx return compile_fx( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 977, in compile_fx return compile_fx( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1146, in compile_fx return aot_autograd( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_dynamo/backends/common.py", line 55, in compiler_fn cg = aot_module_simplified(gm, example_inputs, **kwargs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3891, in aot_module_simplified compiled_fn = create_aot_dispatcher_function( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3429, in create_aot_dispatcher_function compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2212, in aot_wrapper_dedupe return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 2392, in aot_wrapper_synthetic_base return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 1573, in aot_dispatch_base compiled_fw = compiler(fw_module, flat_args) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 1088, in fw_compiler_base return inner_compile( File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/compile_fx.py", line 244, in wrapper compiled(real_inputs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 373, in __call__ return self.get_current_callable()(inputs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/codecache.py", line 400, in _run_from_cache return compiled_graph.compiled_artifact(inputs) File "/tmp/torchinductor_huydo/xt/cxti37vajc246zxrtlz254qxq2su6l34jgktkil7nadig6e4z263.py", line 72, in call triton_poi_fused_add_cos_sin_0.run(arg2_1, arg3_1, buf0, 2048, grid=grid(2048), stream=stream0) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 383, in run self.autotune_to_one_config(*args, grid=grid) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 308, in autotune_to_one_config timings = self.benchmark_all_configs(*args, **kwargs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 284, in benchmark_all_configs timings = { File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 285, in <dictcomp> launcher: self.bench(launcher, *args, **kwargs) File "/home/huydo/py3.10/lib/python3.10/site-packages/torch/_inductor/triton_heuristics.py", line 241, in bench if launcher.n_spills > config.triton.spill_threshold: TypeError: '>' not supported between instances of 'NoneType' and 'int' ``` ### Versions The build is done on devgpu: ``` Collecting environment information... PyTorch version: 2.1.0a0+git88c400e Is debug build: False CUDA used to build PyTorch: 12.0 ROCM used to build PyTorch: N/A OS: CentOS Stream 9 (x86_64) GCC version: (GCC) 11.4.1 20230605 (Red Hat 11.4.1-2) Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.34 Python version: 3.10.11 (main, Apr 20 2023, 19:02:41) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.12.0-0_fbk13_zion_7455_gb24de3bdb045-x86_64-with-glibc2.34 Is CUDA available: True CUDA runtime version: 12.0.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA PG509-210 GPU 1: NVIDIA PG509-210 GPU 2: NVIDIA PG509-210 GPU 3: NVIDIA PG509-210 GPU 4: NVIDIA PG509-210 GPU 5: NVIDIA PG509-210 GPU 6: NVIDIA PG509-210 GPU 7: NVIDIA PG509-210 Nvidia driver version: 525.105.17 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 192 On-line CPU(s) list: 0-191 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8339HC CPU @ 1.80GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 4 Stepping: 11 Frequency boost: enabled CPU max MHz: 1801.0000 CPU min MHz: 800.0000 BogoMIPS: 3600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 3 MiB (96 instances) L1i cache: 3 MiB (96 instances) L2 cache: 96 MiB (96 instances) L3 cache: 132 MiB (4 instances) NUMA node(s): 4 NUMA node0 CPU(s): 0-23,96-119 NUMA node1 CPU(s): 24-47,120-143 NUMA node2 CPU(s): 48-71,144-167 NUMA node3 CPU(s): 72-95,168-191 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy==0.960 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.22.4 [pip3] pytorch-lightning==1.9.5 [pip3] pytorch-metric-learning==1.7.3 [pip3] torch==2.1.0a0+gitda67b41 [pip3] torchaudio==0.13.1+cpu [pip3] torchmetrics==0.8.2 [pip3] torchvision==0.14.1 [pip3] triton==2.0.0.post1 [conda] numpy 1.22.4 pypi_0 pypi [conda] pytorch-lightning 1.9.5 pypi_0 pypi [conda] pytorch-metric-learning 1.7.3 pypi_0 pypi [conda] torch 2.1.0a0+gitda67b41 pypi_0 pypi [conda] torchaudio 0.13.1+cpu pypi_0 pypi [conda] torchmetrics 0.8.2 pypi_0 pypi [conda] torchvision 0.14.1 pypi_0 pypi [conda] triton 2.0.0.post1 pypi_0 pypi ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,313
107,893
DISABLED test_conv_with_as_strided_cpu (__main__.FreezingCpuTests)
module: rocm, module: cpu, triaged, skipped
Platforms: rocm This test was disabled because it is failing on main branch ([recent examples](http://torch-ci.com/failure/inductor%2Ftest_inductor_freezing.py%3A%3AFreezingCpuTests%3A%3Atest_conv_with_as_strided_cpu)). Skipping for now as this has shown up on a few PRs e.g https://github.com/pytorch/pytorch/pull/107812. Long term I do not think we want these CPU tests running on ROCm either way. Disabling with issue for now and will assess further. cc: @pragupta @jithunnair-amd cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @hongxiayang @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
2
1,314
107,880
[POC][HSDP] Add option to disable all-reduce only
release notes: distributed (fsdp), topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107880 * #107784 * #106080 * #106068 With >= 4 GPUs: ``` python -m pytest test/distributed/fsdp/test_fsdp_hybrid_shard.py -k test_fsdp_hybrid_shard_accumulation ```
1
1,315
107,879
FakeMode should not fakify non persistent buffer
triaged, oncall: pt2, module: fakeTensor
I initially came across this information while working with ONNX fake mode export, where the FakeMode fakifies all tensors except for constant tensors. Referring to https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_buffer, non-persistent buffers can not be accessed through state_dict(). This implies that when attempting to open and load the state_dict() of a model in FakeMode, the non-persistent buffers are absent forever. Is there a way to retain non-persistent buffers in FakeMode, similar to how constant tensors are retained? cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @BowenBao
4
1,316
107,873
[BE] Consolidation of SymNode methods constant_int, maybe_as_int, etc
triaged, oncall: pt2
This is something of a preexisting problem, but I wonder why I didn't just have `maybe_as_int` take care of everything... _Originally posted by @ezyang in https://github.com/pytorch/pytorch/pull/107089#discussion_r1294920333_ cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
0
1,317
107,870
[clang-tidy] Get rid of WarningsAsErrors
fb-exported, topic: not user facing
Summary: WarningsAsErrors is very dangerous option reported several times Test Plan: N/A Differential Revision: D48646569
5
1,318
107,865
Graph break: call_function partial in skip_files
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug Log looks like: ``` [rank0]:[2023-08-23 20:16:32,832] [12/21] torch._dynamo.symbolic_convert: [DEBUG] TRACE CALL_FUNCTION 2 [UserFunctionVariable(), NNModuleVariable(), UserDefinedObjectVariable(PyTorchEnv), TupleVariable(), ConstDictVariable(), SkipFilesVariable(), UserFunctionVariable(), NNModuleVariable()] [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert: [DEBUG] empty checkpoint [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert: [DEBUG] FAILED INLINING <code object call_module_impl at 0x7fb4e45a8570, file "<torch_package_0>.dper3/core/environment.py", line 1267> [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.output_graph: [DEBUG] restore_graphstate: removed 0 nodes [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert: [DEBUG] break_graph_if_unsupported triggered compile [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert.__graph_breaks: [DEBUG] Graph break: call_function partial in skip_files /data/users/ftruzzi/fbsource/buck-out/v2/gen/fbcode/4f72fc365136a62e/third-party-buck/platform010/build/python/cinder.3.8/__python_runtime__/python_runtime/lib/python3.8/functools.py from user code at: [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert.__graph_breaks: [DEBUG] File "<torch_package_0>.dper3/core/environment.py", line 1279, in <resume in call_module> [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert.__graph_breaks: [DEBUG] return call_module_impl(self, m, *args, **kwargs) [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert.__graph_breaks: [DEBUG] File "<torch_package_0>.dper3/core/environment.py", line 1270, in call_module_impl [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert.__graph_breaks: [DEBUG] m, env, args, kwargs, partial(torch.nn.Module.__call__, m) [rank0]:[2023-08-23 20:16:32,833] [12/21] torch._dynamo.symbolic_convert.__graph_breaks: [DEBUG] ``` @voznesenskym didn't you have a fix for this? Can we land it? ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
1
1,319
107,864
`C10_HOST_DEVICE` for `std::isnan(c10::complex<T>)`?
module: cuda, triaged
### 🐛 Describe the bug I'm developing a C++ & CUDA extension (as part of the [phytorch](https://github.com/kosiokarchev/phytorch) package), and I had written a function `std::isnan(c10::complex<T>)`. However, since v2.0.0, torch includes a similar function in c10/util/complex_utils.h ([link](https://github.com/pytorch/pytorch/blame/75cfc0be21383636d300d702e5eeb66245f93048/c10/util/complex_utils.h#L41)). My problem is that, unlike most other functions that relate to `c10:complex<T>`, `isnan` is not declared with `__host__ __device__`, and I cannot use it in CUDA code, but I also cannot overwrite it in my code (or can I?), so the compiler now throws an error. Therefore, I'm left with either having to rename my function (or move it to a different namespace), or (instruct my users to) patch the torch headers, which is very undesirable. Will it be possible to add `C10_HOST_DEVICE` to `isnan` in `complex_utils.h`? Or would you recommend some other way of "using" it in GPU code? Thanks! ### Versions Collecting environment information... PyTorch version: 2.0.0 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Rocky Linux release 8.8 (Green Obsidian) (x86_64) GCC version: (conda-forge gcc 11.3.0-19) 11.3.0 Clang version: Could not collect CMake version: version 3.20.2 Libc version: glibc-2.28 Python version: 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:08:06) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-PCIE-40GB Nvidia driver version: 525.89.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 112 On-line CPU(s) list: 0-111 Thread(s) per core: 2 Core(s) per socket: 28 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz Stepping: 7 CPU MHz: 2200.000 BogoMIPS: 4400.00 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 1024K L3 cache: 39424K NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110 NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.24.2 [pip3] phytorch==0.0.post1.dev91+gd60c96f.d20230407 [pip3] phytorchx==0.1.post1.dev0+ge54312c.d20230816 [pip3] pytorch-lightning==2.0.1 [pip3] torch==2.0.0 [pip3] torch-scatter==2.1.1+pt20cu118 [pip3] torchdiffeq==0.2.2 [pip3] torchmetrics==0.11.4 [pip3] torchviz==0.0.2 [pip3] triton==2.0.0 [conda] blas 2.116 mkl conda-forge [conda] blas-devel 3.9.0 16_linux64_mkl conda-forge [conda] cudatoolkit 11.7.0 hd8887f6_10 nvidia [conda] libblas 3.9.0 16_linux64_mkl conda-forge [conda] libcblas 3.9.0 16_linux64_mkl conda-forge [conda] liblapack 3.9.0 16_linux64_mkl conda-forge [conda] liblapacke 3.9.0 16_linux64_mkl conda-forge [conda] mkl 2022.1.0 h84fe81f_915 conda-forge [conda] mkl-devel 2022.1.0 ha770c72_916 conda-forge [conda] mkl-include 2022.1.0 h84fe81f_915 conda-forge [conda] numpy 1.24.2 py310h8deb116_0 conda-forge [conda] phytorch 0.0.post1.dev91+gd60c96f.d20230407 pypi_0 pypi [conda] phytorchx 0.1.post1.dev0+ge54312c.d20230816 pypi_0 pypi [conda] pytorch 2.0.0 py3.10_cuda11.8_cudnn8.7.0_0 pytorch [conda] pytorch-cuda 11.8 h7e8668a_3 pytorch [conda] pytorch-lightning 2.0.1 pyhd8ed1ab_0 conda-forge [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch-scatter 2.1.1+pt20cu118 pypi_0 pypi [conda] torchdiffeq 0.2.2 pyhd8ed1ab_0 conda-forge [conda] torchmetrics 0.11.4 pyhd8ed1ab_0 conda-forge [conda] torchtriton 2.0.0 py310 pytorch [conda] torchviz 0.0.2 pypi_0 pypi cc @ptrblck
0
1,320
107,855
About the multi-node example not working properly
oncall: distributed, triaged
### 🐛 Describe the bug My machine: 2 machines with different ips and 2 available Gpus on each machine When I use the multigpu_torchrun.py example, when I pass these two directives: `torchrun --nproc_per_node=2 --nnodes=2 --node_rank=0 --rdzv_id=456 --rdzv_backend=c10d --rdzv_endpoint=172.xx.1.150:29603 multi_node_torchrun.py 50 10` and `torchrun --nproc_per_node=2 --nnodes=2 --node_rank=1 --rdzv_id=456 --rdzv_backend=c10d --rdzv_endpoint=172.xx.1.150:29603 multi_node_torchrun.py 50 10` When I started, the program got stuck in `self.model = DDP(self.model, device_ids=[self.local_rank])` and stopped running, But with `nvidia-smi` we can see that processes on both machines have been created and are already occupying memory. I wonder why Looking through the history I was able to find similar issues, saying they involved synchronization deadlocks, but I don't think that was the root cause since I was using the official example. ### Versions os: ubuntu20.04 cuda: 11.8 python: 3.8.17 torch: 1.12.1 cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu
0
1,321
107,854
"file_descriptor" multiprocessing sharing strategy works incorrectly in dataloading
module: dataloader, triaged, module: data
### 🐛 Describe the bug Issue originally found in yolo model, but I managed to write a small reproducer based on _MultiProcessingDataLoaderIter (torch/utils/data/dataloader.py): ```import threading import queue import random import torch import torch.multiprocessing as multiprocessing def producer(data_queue, index_queue): torch.set_num_threads(1) while True: try: r = index_queue.get(timeout=5.0) except queue.Empty: continue data = torch.rand([16, 3, 640, 640]) data_queue.put(data) del data, r def reader(data_queue): def do_one_step(): try: data = data_queue.get(timeout=5.0) except queue.Empty: return while True: do_one_step() if __name__ == "__main__": #multiprocessing.set_sharing_strategy('file_system') NUM_WORKERS = 8 workers = [] index_queues = [] data_queue = multiprocessing.Queue() for i in range(NUM_WORKERS): index_queue = multiprocessing.Queue() index_queue.cancel_join_thread() w = multiprocessing.Process( target=producer, args=(data_queue,index_queue)) w.daemon = True w.start() index_queues.append(index_queue) workers.append(w) readers = [] for i in range(1): reader_thread = threading.Thread( target=reader, args=(data_queue,)) reader_thread.daemon = True reader_thread.start() readers.append(reader_thread) index_tensor = torch.randint(high=10000, size=[100000]) for i in range(100000): index_queues[i % NUM_WORKERS].put(index_tensor[i]) readers[0].join() ``` The script fails (most of the time) with the following error: ```$ python experiment.py Exception in thread Thread-1: Traceback (most recent call last): File "/usr/lib/python3.8/threading.py", line 932, in _bootstrap_inner self.run() File "/usr/lib/python3.8/threading.py", line 870, in run self._target(*self._args, **self._kwargs) File "experiment.py", line 27, in reader do_one_step() File "experiment.py", line 22, in do_one_step data = data_queue.get(timeout=5.0) File "/usr/lib/python3.8/multiprocessing/queues.py", line 116, in get return _ForkingPickler.loads(res) File "/home/user/.venvs/torch/py3.8/pt2.0.1+cpu/lib/python3.8/site-packages/torch/multiprocessing/reductions.py", line 100, in rebuild_tensor t = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) File "/home/user/.venvs/torch/py3.8/pt2.0.1+cpu/lib/python3.8/site-packages/torch/_utils.py", line 149, in _rebuild_tensor return t.set_(storage._untyped_storage, storage_offset, size, stride) RuntimeError: Trying to resize storage that is not resizable ``` This is caused by storage from index_tensor incorrectly getting retrieved from cache when rebuilding data tensor. When setting the sharing_strategy to "file_system" the issue goes away. ### Versions Collecting environment information... PyTorch version: 2.0.1+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.3 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.31 Python version: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.29 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 43 bits physical, 48 bits virtual CPU(s): 12 On-line CPU(s) list: 0-11 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 12 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 5220R CPU @ 2.20GHz Stepping: 0 CPU MHz: 2194.843 BogoMIPS: 4389.68 Virtualization: VT-x Hypervisor vendor: VMware Virtualization type: full L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 12 MiB L3 cache: 429 MiB NUMA node0 CPU(s): 0-11 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT disabled Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xsaves arat pku ospke md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] numpy==1.23.5 [pip3] torch==2.0.1+cpu [conda] Could not collect cc @SsnL @VitalyFedyunin @ejguan @dzhulgakov
0
1,322
107,853
Throw error if setting static grads to `None` in `zero_grad()`
ciflow/trunk, module: dynamo, release notes: dynamo, release notes: optimizer
If a tensor is marked a static address for dynamo, this implies that the pointer will be the same across calls to the optimizer step. For this constraint to hold, we should not set grads marked as static to None. After some discussion, I opted to throw an error. cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
8
1,323
107,842
nn.AdaptiveMaxPool2d returns identical results within a batch
high priority, module: nn, module: cuda, triaged, module: correctness (silent), bug
### 🐛 Describe the bug When using nn.AdaptiveMaxPool2d(output_size=(1, 1)) as global max pooling after LayerNorm, it returns identical results within a batch. The code is as follows. ``` import torch from torch import nn import torch.nn.functional as F class LayerNorm2d(nn.LayerNorm): # normalization along channels def forward(self, x): # batch_size, channel, hight, width = x.size() x = x.permute(0, 2, 3, 1) x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) x = x.permute(0, 3, 1, 2) return x class TestConv(nn.Module): def __init__(self, in_channel, out_channel): super().__init__() self.norm = LayerNorm2d(in_channel) self.conv = nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1, bias=False) def forward(self, x): x = self.norm(x) x = self.conv(x) return x print(torch.__version__) model = TestConv(2, 1).cuda().eval() pooling = nn.AdaptiveMaxPool2d(output_size=(1, 1)) data_in = torch.rand((2,2,3,3)).cuda() data_out1 = model(data_in) data_out2 = pooling(data_out1) print(data_out1) print(data_out2) ``` In approximately 90% of cases, the elements of data_out2 are identical, which, I think, is incorrect. For example, the above code may act as: ``` 1.13.1+cu117 tensor([[[[-0.6695, -0.5291, -0.1605], [ 0.9633, 0.1471, -0.0945], [-0.0090, 0.7883, 0.7220]]], [[[ 0.2343, -0.4815, -0.1492], [-0.6429, 0.2614, -0.0867], [ 0.8783, 0.7894, 0.7118]]]], device='cuda:0', grad_fn=<ConvolutionBackward0>) tensor([[[[0.9633]]], [[[0.9633]]]], device='cuda:0', grad_fn=<AdaptiveMaxPool2DBackward0>) ``` ### Versions PyTorch version: 1.13.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.17 Python version: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-78-generic-x86_64-with-debian-buster-sid Is CUDA available: True CUDA runtime version: 11.3.109 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA RTX A4000 GPU 1: NVIDIA RTX A4000 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA RTX A4000 GPU 4: NVIDIA RTX A4000 Nvidia driver version: 525.125.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.2.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7302 16-Core Processor Stepping: 0 CPU MHz: 1500.000 CPU max MHz: 3000.0000 CPU min MHz: 1500.0000 BogoMIPS: 5989.01 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 16384K NUMA node0 CPU(s): 0-3,16-19 NUMA node1 CPU(s): 4-7,20-23 NUMA node2 CPU(s): 8-11,24-27 NUMA node3 CPU(s): 12-15,28-31 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es Versions of relevant libraries: [pip3] numpy==1.21.5 [pip3] torch==1.13.1 [pip3] torchtext==0.13.1 [pip3] torchvision==0.14.1 [conda] blas 1.0 mkl [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py39h7f8727e_0 [conda] mkl_fft 1.3.1 py39hd3c417c_0 [conda] mkl_random 1.2.2 py39h51133e4_0 [conda] numpy 1.21.5 py39h6c91a56_3 [conda] numpy-base 1.21.5 py39ha15fc14_3 [conda] numpydoc 1.4.0 py39h06a4308_0 [conda] torch 1.13.1 pypi_0 pypi [conda] torchaudio 0.13.1 pypi_0 pypi [conda] torchvision 0.14.1 pypi_0 pypi cc @ezyang @gchanan @zou3519 @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @ptrblck
3
1,324
107,841
Got Expand nodes with static shape input when exporting onnx model with dynamic shape
module: onnx, triaged, onnx-needs-info
### 🐛 Describe the bug I'm trying to export a onnx model by running the code below. It was supposed to be a onnx model with dynamic shape. But when checking the exported model, I found there were two Expand nodes with static shape input, which seemed to be converted from `graph_attn_bias[:, 1:, 0, :] = t ` `graph_attn_bias[:, 0, :, :] = t ` ```python import onnx import torch import torch.nn as nn class Embedding(nn.Embedding): def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, ): super(Embedding, self).__init__( num_embeddings, embedding_dim, padding_idx=padding_idx ) self._normal_init() if padding_idx is not None: self.weight.data[self.padding_idx].zero_() def _normal_init(self, std=0.02): nn.init.normal_(self.weight, mean=0.0, std=std) class EdgeFeature(nn.Module): """ Compute attention bias for each head. """ def __init__( self, pair_dim, num_edge, num_spatial, ): super(EdgeFeature, self).__init__() self.pair_dim = pair_dim self.edge_encoder = Embedding(num_edge, pair_dim, padding_idx=0) self.shorest_path_encoder = Embedding(num_spatial, pair_dim, padding_idx=0) self.vnode_virtual_distance = Embedding(1, pair_dim) def forward(self, shortest_path, edge_feat, graph_attn_bias): shortest_path = shortest_path edge_input = edge_feat graph_attn_bias[:, 1:, 1:, :] = self.shorest_path_encoder(shortest_path) # reset spatial pos here t = self.vnode_virtual_distance.weight.view(1, 1, self.pair_dim) graph_attn_bias[:, 1:, 0, :] = t graph_attn_bias[:, 0, :, :] = t edge_input = self.edge_encoder(edge_input).mean(-2) graph_attn_bias[:, 1:, 1:, :] = graph_attn_bias[:, 1:, 1:, :] + edge_input return graph_attn_bias if __name__ == "__main__": edge_feature = EdgeFeature( pair_dim=256, num_edge=64, num_spatial=512, ).float() attn_bias = torch.rand((64, 20, 20, 256),dtype=torch.float32) shortest_path = torch.ones((64, 19, 19),dtype=torch.int64) edge_feat = torch.ones((64, 19, 19, 3),dtype=torch.int64) torch.onnx.export(edge_feature, (shortest_path, edge_feat, attn_bias), "edge_feature.onnx", input_names=["shortest_path", "edge_feat", "attn_bias"], # verbose=True, opset_version=14, output_names=["graph_attn_bias"], dynamic_axes={ "attn_bias":{0: "batch_size", 1: "seq_len_1", 2: "seq_len_1"}, "shortest_path":{0: "batch_size", 1: "seq_len", 2: "seq_len"}, "edge_feat":{0: "batch_size", 2: "seq_len", 3: "seq_len"}, "graph_attn_bias":{0: "batch_size", 1: "seq_len_1", 2: "seq_len_1"} } ) from onnxsim import simplify model = onnx.load("edge_feature.onnx") # convert model model_simp, check = simplify(model) assert check, "Simplified ONNX model could not be validated" onnx.save(model_simp, "edge_feature_modified.onnx") ``` ![image](https://github.com/pytorch/pytorch/assets/16131776/3220b4ca-46c8-4fb1-a0bc-7ba07c82fab9) ### Versions PyTorch version: 1.13.1+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.4 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.22.3 Libc version: glibc-2.31 Python version: 3.8.13 | packaged by conda-forge | (default, Mar 25 2022, 06:04:10) [GCC 10.3.0] (64-bit runtime) Python platform: Linux-5.11.0-49-generic-x86_64-with-glibc2.10 Is CUDA available: True CUDA runtime version: 11.6.124 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Quadro RTX 8000 Nvidia driver version: 510.47.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.4.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 24 On-line CPU(s) list: 0-23 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz Stepping: 4 CPU MHz: 3400.000 CPU max MHz: 3700.0000 CPU min MHz: 1200.0000 BogoMIPS: 6800.00 L1d cache: 384 KiB L1i cache: 384 KiB L2 cache: 12 MiB L3 cache: 38.5 MiB NUMA node0 CPU(s): 0-5,12-17 NUMA node1 CPU(s): 6-11,18-23 Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Full generic retpoline, IBPB conditional, IBRS_FW, STIBP conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art ar ch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_dea dline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms inv pcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida a rat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke md_clear flush_l1d Versions of relevant libraries: [pip3] numpy==1.24.4 [pip3] pytorch-quantization==2.1.2 [pip3] torch==1.13.1+cu116 [pip3] torch-tensorrt==1.2.0 [pip3] torchaudio==0.13.1+cu116 [pip3] torchvision==0.14.1+cu116 [conda] magma-cuda110 2.5.2 5 local [conda] mkl 2019.5 281 conda-forge [conda] mkl-include 2019.5 281 conda-forge [conda] numpy 1.24.4 pypi_0 pypi [conda] pytorch-quantization 2.1.2 pypi_0 pypi [conda] torch 1.13.1+cu116 pypi_0 pypi [conda] torch-tensorrt 1.2.0 pypi_0 pypi [conda] torchaudio 0.13.1+cu116 pypi_0 pypi [conda] torchvision 0.14.1+cu116 pypi_0 pypi
3
1,325
107,832
[Inductor] Extend Pattern Matcher to Match Equivalent Function Invocation
fb-exported, Merged, Reverted, ciflow/trunk, topic: not user facing, module: inductor, ciflow/inductor
Fixes #104391 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
16
1,326
107,830
FSDP custom args per module
triaged, module: fsdp
### 🚀 The feature, motivation and pitch FSDP gives a set of arguments which are global across all wrapped modules. Instead, I would like to wrap some modules with custom args. For example, I have a module that I want to sync only across some GPUs, so I would like to specify custom process_groups which only hit a subset of ranks. Currently, PyTorch FSDP works with this but does not support an API to expose it. For example, in this [PR](https://github.com/mosaicml/composer/pull/2460), I monkeypatch `auto_wrap` to allow returning kwargs instead of just a bool which are then used to override the FSDP args for that wrap. This lets me change the process group for specific modules. So far, we remonkeypatch PyTorch every single release since 1.13 since this is critical for us but not supported. It would be amazing if this was supported. Our implementation extends auto_wrap to return either a bool or a set of override kwargs. I am happy to upstream this if it is acceptable. I imagine this would be useful to squeeze out more performance in general, e.g. some things I might wrap in FULL_SHARD and some in SHARD_GRAD_OP. ### Alternatives Monkeypatching pytorch https://github.com/mosaicml/composer/pull/2460 ### Additional context _No response_ cc @zhaojuanmao @mrshenli @rohan-varma @awgu @fegin @penguinwu
2
1,327
107,824
torch.compile() fails when an `autograd.Function` gets called and torch.no_grad() is *not* being used
oncall: distributed, triaged, ezyang's list, oncall: pt2, module: dynamo
### 🐛 Describe the bug I've been implementing TensorParallel with functional collectives in order to get good performance with torch.compile() on a model at work. My implementation of TensorParallel is based on Megatron-LM/fairscale, using `autograd.Function` as the basis to do the minimum amount of `allReduce` calls both on `forward()` and `backward()`. My TP calls looks like this: ``` import torch import torch.distributed as dist import torch.distributed._functional_collectives as distfunc class _CopyToModelParallelRegion(torch.autograd.Function): """Pass the input to the model parallel region.""" @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_): return input_ @staticmethod def backward(ctx, grad_output): return _all_reduce(grad_output) class _ReduceFromModelParallelRegion(torch.autograd.Function): """All-reduce the input from the model parallel region.""" @staticmethod def symbolic(graph, input_): return _all_reduce(input_) @staticmethod def forward(ctx, input_): return _all_reduce(input_) @staticmethod def backward(ctx, grad_output): return grad_output def _all_reduce(input_: torch.Tensor) -> torch.Tensor: """All-reduce the input tensor across model parallel group.""" world_size = torch.distributed.get_world_size() if world_size == 1: return input_ return distfunc.all_reduce(input_, "sum", list(range(world_size))) def copy_to_tensor_model_parallel_region(input_): return _CopyToModelParallelRegion.apply(input_) def reduce_from_tensor_model_parallel_region(input_): return _ReduceFromModelParallelRegion.apply(input_) ``` When using these in a module that has support for TP, if I try to torch.compile() the module using `with torch.no_grad()`, it works and there are no issues, achieving great performance. Now, if I don't put the `with torch.no_grad()`, the results are a Dynamo error with the following stack trace (repro at the bottom): ``` (/dccstor/aviros_pytorch/conda_envs/pytorch-dev) [avirosmartin@cccxl015 pytorch]$ torchrun --standalone --nnodes=1 --nproc-per-node=2 repro_compile_autograf.py [2023-08-23 18:04:25,043] torch.distributed.run: [WARNING] master_addr is only used for static rdzv_backend and when rdzv_endpoint is not specified. [2023-08-23 18:04:25,044] torch.distributed.run: [WARNING] [2023-08-23 18:04:25,044] torch.distributed.run: [WARNING] ***************************************** [2023-08-23 18:04:25,044] torch.distributed.run: [WARNING] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. [2023-08-23 18:04:25,044] torch.distributed.run: [WARNING] ***************************************** No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' No CUDA runtime is found, using CUDA_HOME='/usr/local/cuda' tensor([[-0.2395, 1.7112, -0.2051, ..., -3.9962, -2.2627, 1.5794], [ 0.6823, 0.9069, -1.0604, ..., -5.6853, -0.8283, 1.1720], [-0.1123, 0.2991, -0.7974, ..., -4.0582, -1.8296, 1.6378], ..., [-1.5834, 1.2646, -0.9437, ..., -2.6262, 1.2763, -2.2860], [-1.4105, -2.2290, -2.1080, ..., 0.4712, -2.1415, -3.8139], [ 0.2763, 1.1615, 2.2424, ..., -2.4191, -2.1367, 1.7405]])tensor([[-0.2395, 1.7112, -0.2051, ..., -3.9962, -2.2627, 1.5794], [ 0.6823, 0.9069, -1.0604, ..., -5.6853, -0.8283, 1.1720], [-0.1123, 0.2991, -0.7974, ..., -4.0582, -1.8296, 1.6378], ..., [-1.5834, 1.2646, -0.9437, ..., -2.6262, 1.2763, -2.2860], [-1.4105, -2.2290, -2.1080, ..., 0.4712, -2.1415, -3.8139], [ 0.2763, 1.1615, 2.2424, ..., -2.4191, -2.1367, 1.7405]]) Traceback (most recent call last): File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 114, in <module> repro() File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 104, in repro out = opt_model(input) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/eval_frame.py", line 493, in catch_errors return callback(frame, cache_entry, hooks, frame_state) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 636, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 389, in _convert_frame_assert return _compile( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 581, in _compile raise InternalTorchDynamoError(str(e)).with_traceback( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 564, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 486, in compile_inner Traceback (most recent call last): File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 114, in <module> out_code = transform_code_object(code, transform) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object repro() File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 104, in repro transformations(instructions, code_options) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 453, in transform out = opt_model(input) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl tracer.run() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 2074, in run return self._call_impl(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl super().run() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run return forward_call(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn and self.step() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl getattr(self, inst.opname)(inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION return self._call_impl(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl self.call_function(fn, args, {}) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function return forward_call(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/eval_frame.py", line 493, in catch_errors self.push(fn.call_function(self, args, kwargs)) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return callback(frame, cache_entry, hooks, frame_state) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 636, in _convert_frame return tx.inline_user_function_return( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = inner_convert(frame, cache_size, hooks, frame_state) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 389, in _convert_frame_assert return _compile( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 581, in _compile raise InternalTorchDynamoError(str(e)).with_traceback( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 564, in _compile return cls.inline_call_(parent, func, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ guarded_code = compile_inner(code, one_graph, hooks, transform) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 486, in compile_inner tracer.run() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run out_code = transform_code_object(code, transform) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object and self.step() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step transformations(instructions, code_options) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/convert_frame.py", line 453, in transform getattr(self, inst.opname)(inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper tracer.run() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 2074, in run return inner_fn(self, inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function super().run() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run self.push(fn.call_function(self, args, kwargs)) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/misc.py", line 583, in call_function and self.step() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step return self.obj.call_apply(tx, args, kwargs).add_options(self) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/misc.py", line 353, in call_apply getattr(self, inst.opname)(inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper ).call_function(tx, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 966, in call_function return inner_fn(self, inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION ) = speculate_subgraph( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 152, in speculate_subgraph self.call_function(fn, args, {}) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function output = f.call_function(tx, args, sub_kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/torch.py", line 727, in call_function self.push(fn.call_function(self, args, kwargs)) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function tensor_variable = wrap_fx_proxy( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/builder.py", line 1187, in wrap_fx_proxy return super().call_function(tx, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return return wrap_fx_proxy_cls( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/builder.py", line 1317, in wrap_fx_proxy_cls result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call example_value = _clone_input(example_value) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/builder.py", line 1268, in _clone_input return cls.inline_call_(parent, func, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ value = clone_input(value) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/utils.py", line 592, in clone_input result.copy_(x.clone()) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1101, in __torch_dispatch__ tracer.run() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run return func(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_ops.py", line 435, in __call__ and self.step() File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step return self._op(*args, **kwargs or {}) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_stats.py", line 20, in wrapper getattr(self, inst.opname)(inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1238, in __torch_dispatch__ return inner_fn(self, inst) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION return self.dispatch(func, types, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1364, in dispatch self.call_function(fn, args, {}) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/misc.py", line 583, in call_function ) = self.validate_and_convert_non_fake_tensors(func, converter, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1584, in validate_and_convert_non_fake_tensors return self.obj.call_apply(tx, args, kwargs).add_options(self) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/misc.py", line 353, in call_apply args, kwargs = tree_map_only( File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 397, in tree_map_only ).call_function(tx, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 966, in call_function return tree_map(map_only(ty)(fn), pytree) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 327, in tree_map return tree_unflatten([fn(i) for i in flat_args], spec) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 327, in <listcomp> ) = speculate_subgraph( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 152, in speculate_subgraph return tree_unflatten([fn(i) for i in flat_args], spec) output = f.call_function(tx, args, sub_kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 378, in inner File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/torch.py", line 727, in call_function return f(x) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1574, in validate tensor_variable = wrap_fx_proxy( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/builder.py", line 1187, in wrap_fx_proxy raise Exception( torch._dynamo.exc.InternalTorchDynamoError: Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode with 'allow_non_fake_inputs'. Found in aten.copy_.default(tensor([...], size=(50, 100)), FakeTensor(..., size=(50, 100))) from user code: File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 95, in forward return reduce_from_tensor_model_parallel_region(out_par) File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 51, in reduce_from_tensor_model_parallel_region return _ReduceFromModelParallelRegion.apply(input_) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True return wrap_fx_proxy_cls( File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/builder.py", line 1317, in wrap_fx_proxy_cls example_value = _clone_input(example_value) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/variables/builder.py", line 1268, in _clone_input value = clone_input(value) File "/dccstor/aviros_pytorch/pytorch/torch/_dynamo/utils.py", line 592, in clone_input result.copy_(x.clone()) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1101, in __torch_dispatch__ return func(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_ops.py", line 435, in __call__ return self._op(*args, **kwargs or {}) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1238, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1364, in dispatch ) = self.validate_and_convert_non_fake_tensors(func, converter, args, kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1584, in validate_and_convert_non_fake_tensors args, kwargs = tree_map_only( File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 397, in tree_map_only return tree_map(map_only(ty)(fn), pytree) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 327, in tree_map return tree_unflatten([fn(i) for i in flat_args], spec) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 327, in <listcomp> return tree_unflatten([fn(i) for i in flat_args], spec) File "/dccstor/aviros_pytorch/pytorch/torch/utils/_pytree.py", line 378, in inner return f(x) File "/dccstor/aviros_pytorch/pytorch/torch/_subclasses/fake_tensor.py", line 1574, in validate raise Exception( torch._dynamo.exc.InternalTorchDynamoError: Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode with 'allow_non_fake_inputs'. Found in aten.copy_.default(tensor([...], size=(50, 100)), FakeTensor(..., size=(50, 100))) from user code: File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 95, in forward return reduce_from_tensor_model_parallel_region(out_par) File "/dccstor/aviros_pytorch/pytorch/repro_compile_autograf.py", line 51, in reduce_from_tensor_model_parallel_region return _ReduceFromModelParallelRegion.apply(input_) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True [2023-08-23 18:04:50,118] torch.distributed.elastic.multiprocessing.api: [ERROR] failed (exitcode: 1) local_rank: 0 (pid: 3399902) of binary: /dccstor/aviros_pytorch/conda_envs/pytorch-dev/bin/python Traceback (most recent call last): File "/dccstor/aviros_pytorch/conda_envs/pytorch-dev/bin/torchrun", line 33, in <module> sys.exit(load_entry_point('torch', 'console_scripts', 'torchrun')()) File "/dccstor/aviros_pytorch/pytorch/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/dccstor/aviros_pytorch/pytorch/torch/distributed/run.py", line 806, in main run(args) File "/dccstor/aviros_pytorch/pytorch/torch/distributed/run.py", line 797, in run elastic_launch( File "/dccstor/aviros_pytorch/pytorch/torch/distributed/launcher/api.py", line 134, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/dccstor/aviros_pytorch/pytorch/torch/distributed/launcher/api.py", line 264, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ repro_compile_autograf.py FAILED ------------------------------------------------------------ Failures: [1]: time : 2023-08-23_18:04:50 host : cccxl015.pok.ibm.com rank : 1 (local_rank: 1) exitcode : 1 (pid: 3399903) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2023-08-23_18:04:50 host : cccxl015.pok.ibm.com rank : 0 (local_rank: 0) exitcode : 1 (pid: 3399902) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================ ``` Repro (together with the TP code) ``` class FeedForwardBlock(torch.nn.Module): def __init__( self, emb_dim, hidden_grow_factor=4, ): super(FeedForwardBlock, self).__init__() self.hidden_grow_factor = hidden_grow_factor self.hidden_dim = int(hidden_grow_factor * emb_dim) self.w1 = torch.nn.Linear(emb_dim, self.hidden_dim) self.a = torch.nn.SiLU() self.w2 = torch.nn.Linear(self.hidden_dim, emb_dim) self.reset_params() def reset_params(self): for layer in ["w1", "w2"]: torch.nn.init.trunc_normal_( getattr(self, layer).weight, mean=0.0, std=(2**0.5 / self.w1.weight.numel() ** 0.5) ** 0.5 ) def forward(self, x): out = self.a(self.w1(x)) return self.w2(out) class TPFeedForwardBlock(FeedForwardBlock): def __init__( self, emb_dim, hidden_grow_factor=4, world_size=1, rank=0, ): hidden_dim = int(hidden_grow_factor * emb_dim) assert hidden_dim % world_size == 0, "Hidden dim must be divisible by world size" super(TPFeedForwardBlock, self).__init__(emb_dim, hidden_grow_factor / world_size) self.rank = rank self.world_size = world_size def forward(self, x): x_par = copy_to_tensor_model_parallel_region(x) out_par = FeedForwardBlock.forward(self, x_par) return reduce_from_tensor_model_parallel_region(out_par) def repro(): model = TPFeedForwardBlock(100, 4, dist.get_world_size(), dist.get_rank()) opt_model = torch.compile(model) input = torch.randn((50, 100)) out = opt_model(input) print(out) if __name__ == "__main__": dist.init_process_group(backend="gloo") # This works with torch.no_grad(): repro() # This fails repro() ``` ### Versions Environment (this also fails on latest nightlies): ``` Collecting environment information... PyTorch version: 2.1.0a0+gitc9f947d Is debug build: False CUDA used to build PyTorch: 12.0 ROCM used to build PyTorch: N/A OS: Red Hat Enterprise Linux release 8.8 (Ootpa) (x86_64) GCC version: (conda-forge gcc 11.3.0-19) 11.3.0 Clang version: 15.0.7 (Red Hat 15.0.7-1.module+el8.8.0+17939+b58878af) CMake version: version 3.26.3 Libc version: glibc-2.28 Python version: 3.10.11 | packaged by conda-forge | (main, May 10 2023, 18:58:44) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-4.18.0-477.15.1.el8_8.x86_64-x86_64-with-glibc2.28 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Thread(s) per core: 1 Core(s) per socket: 8 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 62 Model name: Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz Stepping: 4 CPU MHz: 4000.000 CPU max MHz: 4000.0000 CPU min MHz: 1200.0000 BogoMIPS: 6583.80 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 25600K NUMA node0 CPU(s): 0-7 NUMA node1 CPU(s): 8-15 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm cpuid_fault epb pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase smep erms xsaveopt dtherm ida arat pln pts md_clear flush_l1d Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.12.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.3 [pip3] pytorch-triton==2.1.0+440fd1bf20 [pip3] torch==2.1.0a0+gitc9f947d [conda] magma-cuda121 2.6.1 1 pytorch [conda] mkl 2023.1.0 h84fe81f_48680 conda-forge [conda] mkl-include 2023.1.0 h84fe81f_48680 conda-forge [conda] numpy 1.24.3 py310ha4c1d20_0 conda-forge [conda] pytorch-triton 2.1.0+440fd1bf20 pypi_0 pypi [conda] torch 2.1.0a0+gitc9f947d dev_0 <develop> ``` cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
6
1,328
107,821
`torch.distributions.Pareto.sample` sometimes gives `inf`
module: distributions, triaged, module: NaNs and Infs
### 🐛 Describe the bug On my local checkout of PyTorch, the following script fails when it reaches `seed=6`: ```python import torch param = { 'scale': torch.tensor([ [1.7549, 1.1252, 1.1057, 1.2407, 0.8933], [0.7661, 0.9723, 0.2869, 1.1382, 0.1948], [0.3116, 0.5687, 0.0172, 0.2296, 0.1637], [0.6526, 0.8761, 0.0142, 2.0804, 1.3138], [0.8522, 2.6757, 0.9873, 0.6828, 1.1830]], dtype=torch.double, requires_grad=True), 'alpha': torch.tensor([ [0.3219, 2.0156, 0.5705, 1.0555, 0.0485], [0.1138, 0.1064, 0.4582, 0.3166, 0.0073], [0.3978, 0.3402, 0.4575, 2.7605, 0.3148], [0.0442, 1.2770, 1.3061, 1.4474, 0.6836], [0.1606, 1.1500, 0.2150, 0.2591, 0.1284]], dtype=torch.double, requires_grad=True) } dist = torch.distributions.Pareto(**param) for seed in range(100_000): torch.manual_seed(seed) print(seed) samples = dist.sample(sample_shape=(20,)) assert not samples.isinf().any() ``` The reason I found this is that in my PR #107246, I modified the tests in `test/distributions/test_distributions.py` such that the `Pareto` distribution here gets regenerated for each of the unit tests, instead of just being generated once for all the tests: https://github.com/pytorch/pytorch/blob/36399d067a56d9875fd9c2bf61434126398ffb87/test/distributions/test_distributions.py#L380-L383 This caused the [`test_cdf_icdf_inverse`](https://github.com/pytorch/pytorch/blob/36399d067a56d9875fd9c2bf61434126398ffb87/test/distributions/test_distributions.py#L2985) test to fail on just one CI job because an unlucky seed produced the `scale` and `alpha` values from the code snippet above and `Pareto.sample()` gave an output with infinities. Then when the infinities went through `dist.cdf` and `dist.icdf`, they turned into `nan`'s, causing comparisons to fail. So up to now, that test has not failed from this issue, just due to lucky seeds being used. In my PR, I think have a workaround where I've added `0.1` to `scale` and `alpha` to try to get the test to pass, because values further from 0 are evidently less likely to produce infinities. So if that passes, this issue is not blocking my PR ### Versions ``` Collecting environment information... PyTorch version: 2.1.0a0+git51d0d12 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (conda-forge gcc 9.5.0-19) 9.5.0 Clang version: Could not collect CMake version: version 3.21.3 Libc version: glibc-2.35 Python version: 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:23:11) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-76-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.1.66 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2060 GPU 1: NVIDIA GeForce RTX 2060 Nvidia driver version: 530.30.02 cuDNN version: Probably one of the following: /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_adv_train.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8 /usr/local/cuda-11.7.1/targets/x86_64-linux/lib/libcudnn_ops_train.so.8 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper 3970X 32-Core Processor CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 3700.0000 CPU min MHz: 2200.0000 BogoMIPS: 7400.28 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sme sev sev_es Virtualization: AMD-V L1d cache: 1 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 16 MiB (32 instances) L3 cache: 128 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.12.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.4.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.3 [pip3] torch==2.1.0a0+gitb0bc323 [conda] magma-cuda117 2.6.1 1 pytorch [conda] mkl 2023.2.0 h84fe81f_49572 conda-forge [conda] mkl-include 2023.2.0 h84fe81f_49572 conda-forge [conda] numpy 1.24.3 pypi_0 pypi [conda] torch 2.1.0a0+gitb0bc323 dev_0 <develop> ``` cc @fritzo @neerajprad @alicanb @nikitaved
1
1,329
107,820
`add_image_with_boxes` method from `torch.utils.tensorboard.writer.SummaryWriter` is broken
triaged, module: tensorboard, oncall: visualization
### 🐛 Describe the bug The method `add_image_with_boxes` of pytorch's SummaryWriter gets an error when `labels` option is not None ```python import torch from torch.utils.tensorboard.writer import SummaryWriter writer = SummaryWriter() image = torch.randn(3,100,100) bbox = torch.tensor([[0, 1, 0, 1]]) writer.add_image_with_boxes( "test", image, box_tensor=bbox, labels=["test label"], ) ``` Will have the following error : ``` Traceback (most recent call last): File "/home/clementpinard/workspace/test.py", line 8, in <module> writer.add_image_with_boxes( File "/home/clementpinard/workspace/.venv/lib/python3.10/site-packages/torch/utils/tensorboard/writer.py", line 713, in add_image_with_boxes image_boxes( File "/home/clementpinard/workspace/.venv/lib/python3.10/site-packages/torch/utils/tensorboard/summary.py", line 457, in image_boxes image = make_image( File "/home/clementpinard/workspace/.venv/lib/python3.10/site-packages/torch/utils/tensorboard/summary.py", line 489, in make_image image = draw_boxes(image, rois, labels=labels) File "/home/clementpinard/workspace/.venv/lib/python3.10/site-packages/torch/utils/tensorboard/summary.py", line 468, in draw_boxes disp_image = _draw_single_box( File "/home/clementpinard/workspace/.venv/lib/python3.10/site-packages/torch/utils/tensorboard/summary.py", line 57, in _draw_single_box text_width, text_height = font.getsize(display_str) AttributeError: 'ImageFont' object has no attribute 'getsize' ``` This is most likely a deprecation from pillow that was not detected. Applying this simple fix repairs the function in torch/utils/tensorboard/summary.py ```diff diff --git a/torch/utils/tensorboard/summary.py b/torch/utils/tensorboard/summary.py index e07d2c6b880..bf3b9820e21 100644 --- a/torch/utils/tensorboard/summary.py +++ b/torch/utils/tensorboard/summary.py @@ -108,7 +108,7 @@ def _draw_single_box( if display_str: text_bottom = bottom # Reverse list and print from bottom to top. - text_width, text_height = font.getsize(display_str) + text_width, text_height = font.font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle( [ ``` I am not sure since when this call is deprecated though, I suppose a more clever fix would be to try both so that a former version of Pillow still works. I can do the corresponding PR if you want. Since this Issue is very small I would also like to take this opportunity to formulate a related feature request : as you might see here https://github.com/pytorch/pytorch/blob/main/torch/utils/tensorboard/summary.py#L583 the bounding box will always be red. It would be nice to be able to specify a list of colors the same way we specify a list of labels to better read them. This would mean having a "colors" option in the method `add_image_with_boxes`, but also in the functions `image_boxes`, `make_image` and `draw_boxes`, and maybe a clever way to decide if we write the text in black or in white depending on the color. Nothing too complex actually. ### Versions I don't believe it's really necessary, but here it goes : ``` PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.0 Libc version: glibc-2.35 Python version: 3.11.4 (main, Jul 5 2023, 13:45:01) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-78-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 12.2.128 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA RTX A6000 GPU 1: NVIDIA RTX A6000 Nvidia driver version: 535.86.10 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.3 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6426Y CPU family: 6 Model: 143 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 8 CPU max MHz: 4100.0000 CPU min MHz: 800.0000 BogoMIPS: 5000.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 64 MiB (32 instances) L3 cache: 75 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-15,32-47 NUMA node1 CPU(s): 16-31,48-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.0.1 [pip3] torchaudio==2.0.2 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] numpy 1.25.1 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torchaudio 2.0.2 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi ```
1
1,330
107,811
doc stuff
null
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107811 Signed-off-by: Edward Z. Yang <ezyang@meta.com>
1
1,331
107,804
[WIP/CI Test] Try to tighten up VT stack invariant
module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107804 * #107803 cc @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
2
1,332
107,800
[feature request] [discussion] Include basic `ctypes` bindings for `cudart`/`cublasLt`/`cublas`/`nvrtc`/`cudnn` with stock PyTorch
feature, module: cuda, triaged, module: cublas
### 🚀 The feature, motivation and pitch This would make it more approachable experimenting with some new function variants (like quantized int8 gemms) earlier. Example of such ctypes bindings: https://github.com/OpenBMB/cpm_kernels/tree/master/cpm_kernels/library Including in core some bindings like this would be great! (maybe under some `torch.cuda.ctypes.cublasLt` or something similar) Examples of such C bindings: https://github.com/TimDettmers/bitsandbytes/blob/18e827d666fa2b70a12d539ccedc17aa51b2c97c/csrc/ops.cu#L434 Another set of bindings is now in `bitsandbytes`, but having it directly available in Python would make it more approachable for experimentation and benchmarking There might be problems with versions, but maybe then some bindings could be versioned as well: `torch.cuda.ctypes.cublatltV8` or sth like that, so that the user is responsible for using the correct bindings for their experiments ### Alternatives _No response_ ### Additional context _No response_ cc @ptrblck @csarofeen @xwang233
2
1,333
107,797
Fake Tensor error 'lengths' argument should be a 1D CPU int64 tensor, but got 1D meta Long tensor
triaged, oncall: pt2, module: fakeTensor, mlperf
### 🐛 Describe the bug Problem found here https://github.com/mlcommons/algorithmic-efficiency/issues/498 ```python import torch import torch.nn as nn class BatchRNN(nn.Module): def __init__(self): super().__init__() def forward(self, inputs, input_paddings): batch_size, seq_len, _ = inputs.size() lengths = torch.randint(1, seq_len + 1, (batch_size,)) packed_inputs = torch.nn.utils.rnn.pack_padded_sequence( inputs, lengths, batch_first=True, enforce_sorted=False) return packed_inputs model = BatchRNN() model(torch.randn(1, 32, 32), torch.randn(1, 32, 32)) model = torch.compile(model) model(torch.randn(1, 32, 32), torch.randn(1, 32, 32)) ``` ### Error logs ``` (sam) ubuntu@ip-172-31-9-217:~$ python rnn.py Traceback (most recent call last): File "/home/ubuntu/rnn.py", line 23, in <module> model(torch.randn(1, 32, 32), torch.randn(1, 32, 32)) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 493, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 605, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 132, in _fn return fn(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 370, in _convert_frame_assert return _compile( File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 536, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 447, in compile_inner out_code = transform_code_object(code, transform) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 425, in transform tracer.run() File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 2071, in run super().run() File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1167, in CALL_FUNCTION_KW self.call_function(fn, args, kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/variables/torch.py", line 716, in call_function tensor_variable = wrap_fx_proxy( File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1163, in wrap_fx_proxy return wrap_fx_proxy_cls( File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py", line 1237, in wrap_fx_proxy_cls example_value = get_fake_value(proxy.node, tx) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1351, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1319, in get_fake_value return wrap_fake_exception( File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 898, in wrap_fake_exception return fn() File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1320, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1385, in run_node raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 1372, in run_node return node.target(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/nn/utils/rnn.py", line 264, in pack_padded_sequence _VF._pack_padded_sequence(input, lengths, batch_first) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1233, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1523, in dispatch r = func(*args, **kwargs) File "/opt/conda/envs/sam/lib/python3.10/site-packages/torch/_ops.py", line 435, in __call__ return self._op(*args, **kwargs or {}) torch._dynamo.exc.TorchRuntimeError: Failed running call_function <function pack_padded_sequence at 0x7ff611d61900>(*(FakeTensor(..., size=(1, 32, 32)), FakeTensor(..., size=(1,), dtype=torch.int64)), **{'batch_first': True, 'enforce_sorted': False}): 'lengths' argument should be a 1D CPU int64 tensor, but got 1D meta Long tensor from user code: File "/home/ubuntu/rnn.py", line 15, in forward packed_inputs = torch.nn.utils.rnn.pack_padded_sequence( Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Minified repro _No response_ ### Versions `torch ==2.1.0.dev20230814+cu121` cc @ezyang @wconstab @bdhirsh @anijain2305
3
1,334
107,795
Back out "[inductor] make thread order consistent with loop order (#106827)"
fb-exported, module: inductor, ciflow/inductor
Summary: D48295371 cause batch fusion failure Test Plan: Without revert, f469732293. With revert diff f472266199. Differential Revision: D48593029 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
4
1,335
107,780
Add caffe2 ideep/onednn tests to OSS CI
oncall: releng, module: ci, triaged, module: mkldnn
### 🐛 Describe the bug Following PR https://github.com/pytorch/pytorch/pull/97957 that updates ideep have failed in these tests internally: https://github.com/pytorch/pytorch/tree/main/caffe2/python/ideep caffe2 module is still used intrnally a lot. Hence we want to enable OSS CI execute ideep tests from time to time. Perhaps we should be adding these tests as periodic. ### Versions 2.1.0 cc @seemethere @malfet @pytorch/pytorch-dev-infra @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen
0
1,336
107,778
Add ceil to core IR
fb-exported
Summary: This is similar to floor. Test Plan: After adding to IR, we can enable _check_ir_validity for deeplab Differential Revision: D48602187
4
1,337
107,774
DISABLED test_conv_stride_constraints (__main__.CPUReproTests)
module: rocm, triaged, skipped
Platforms: rocm This test was disabled because it is failing on main branch ([recent examples](http://torch-ci.com/failure/inductor%2Ftest_cpu_repro.py%3A%3ACPUReproTests%3A%3Atest_conv_stride_constraints)). I will take a look at this further locally, currently unsure why this shows up on ROCm for a CPU test. cc: @jithunnair-amd cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @hongxiayang
1
1,338
107,771
libtorch infer error : CUDNN_STATUS_INTERNAL_ERROR
oncall: jit
### 🐛 Describe the bug # code for model export ``` traced_script_module = torch.jit.trace(model, \ (data_dict['voxels'], data_dict['voxel_num_points'], data_dict['voxel_coords'])) traced_script_module.save(args.output_path) ``` # code for model infer ``` std::vector<torch::Tensor> output = net_.forward(torch_inputs).toTensorVector(); ``` # question model init is ok: ``` torch::Device device(device_type_, device_id_); net_ = torch::jit::load(model_file_, device); net_.eval(); ``` The error occurs when running the forward function: ![image](https://github.com/pytorch/pytorch/assets/39874362/7610a502-774f-42b3-98ba-fc7b030e47a0) ### Versions pytorch 1.7.0 libtorch 1.7.0 cudnn 8.0.4.30 cuda 11.1 cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
1
1,339
107,770
libtorch vs (onnx+tensorRT) show different object detection results
module: onnx, triaged
### 🐛 Describe the bug # libtorch ``` traced_script_module = torch.jit.trace(model, image) traced_script_module.save(args.output_path) ``` # onnx ``` torch.onnx.export(model, image, onnx_model_save_path, opset_version=11, verbose=False, export_params=True, operator_export_type=OperatorExportTypes.ONNX, input_names=['image'], output_names=['orient','conf','dim']) ``` # question We used the two approaches to export the trained model (YOLO), and use it for inference in the object detection task. However, different results were obtained, and the model exported by onnx shows a better and stable performance. Could you please give some possible reasons? ### Versions torch 2.0.1 onnx 1.14.0 onnxconverter-common 1.14.0 onnxmltools 1.11.2 onnxruntime-gpu 1.15.1
0
1,340
107,769
Enable Mypy Checking in torch/_inductor/bounds.py
triaged, open source, module: inductor, ciflow/inductor
Fixes #105230 Summary: As suggested in https://github.com/pytorch/pytorch/issues/105230 mypy checking is enabled in torch/_inductor/bounds.py After Fix: mypy --follow-imports=skip torch/_inductor/bounds.py Success: no issues found in 1 source file cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
2
1,341
107,767
DISABLED test_make_fx_symbolic_exhaustive_special_bessel_y0_cpu_float32 (__main__.TestProxyTensorOpInfoCPU)
triaged, module: flaky-tests, skipped, module: ProxyTensor
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_make_fx_symbolic_exhaustive_special_bessel_y0_cpu_float32&suite=TestProxyTensorOpInfoCPU) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/16128051710). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_make_fx_symbolic_exhaustive_special_bessel_y0_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_proxy_tensor.py`
12
1,342
107,764
Add Half support for range, logspace, logit, median, nanmedian, kthvalue, poisson, cummax, cummin, prod, cumprod, histc, logcumsumexp, vander, cross, aten2, logaddexp, logaddexp2, hypot, and nextafter on CPU
module: cpu, open source, module: half, ciflow/trunk, topic: not user facing, ciflow/periodic, ciflow/mps, module: inductor, ciflow/inductor
Add Half support for range, logspace, logit, median, nanmedian, kthvalue, poisson, cummax, cummin, prod, cumprod, histc, logcumsumexp, vander, cross, aten2, logaddexp, logaddexp2, hypot, and nextafter on CPU. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @Xia-Weiwen @ngimel
1
1,343
107,762
DISABLED test_make_fx_symbolic_exhaustive_special_bessel_j1_cpu_float32 (__main__.TestProxyTensorOpInfoCPU)
triaged, module: flaky-tests, skipped, module: ProxyTensor
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_make_fx_symbolic_exhaustive_special_bessel_j1_cpu_float32&suite=TestProxyTensorOpInfoCPU) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/16122457339). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_make_fx_symbolic_exhaustive_special_bessel_j1_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_proxy_tensor.py`
10
1,344
107,751
conv cudnn support integers
module: cudnn, triaged
### 🚀 The feature, motivation and pitch conv cudnn support integers i tried implementing by adding ```cpp else if (scalar_type == at::kChar) { return CUDNN_DATA_INT8; } ``` to https://github.com/pytorch/pytorch/blob/c093fdf9245875213cae65eba9e246a70748f9c0/aten/src/ATen/cudnn/Descriptors.cpp#L25C1-L26 but ran into ```python output = F.conv2d(input, kernel) RuntimeError: cuDNN error: CUDNN_STATUS_BAD_PARAM ``` @ezyang @dzdang do you some pointers on what specifically i am missing? related PR https://github.com/pytorch/pytorch/pull/3666 https://github.com/pytorch/pytorch/pull/74673 cc: @cchan @ezhang887 ### Alternatives _No response_ ### Additional context _No response_ cc @csarofeen @ptrblck @xwang233
0
1,345
107,739
DISABLED test_make_fx_symbolic_exhaustive_special_airy_ai_cpu_float32 (__main__.TestProxyTensorOpInfoCPU)
triaged, module: flaky-tests, skipped, module: ProxyTensor
Platforms: linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_make_fx_symbolic_exhaustive_special_airy_ai_cpu_float32&suite=TestProxyTensorOpInfoCPU) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/16113161016). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_make_fx_symbolic_exhaustive_special_airy_ai_cpu_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_proxy_tensor.py`
9
1,346
107,714
[ONNX] Retire FXSymbolicTracer in FX exporter
module: onnx, triaged, onnx-triaged
FXSymbolicTracer is a pioneer of exploring fake tensor export, which does successfully export large scale transformers, like BLOOM, and GPT2. However, it's not using dynamo export, but `torch.fx._symbolic_trace.Tracer` which is not actively maintained. Besides, there are patches used to only cover FXSymbolicTracer, which is not exposed to public API, and will never be.. Now, with the fake mode api in fx exporter becomes mature. We should retire FXSymbolicTracer.
0
1,347
107,708
Bump Triton version
ciflow/trunk, topic: not user facing, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107708
8
1,348
107,705
DISABLED test_multilayer_var_dynamic_shapes_cpu (__main__.DynamicShapesCpuTests)
triaged, skipped, module: dynamic shapes
Platforms: macos This test was disabled because it is failing on main branch ([recent examples](http://torch-ci.com/failure/inductor%2Ftest_torchinductor_dynamic_shapes.py%3A%3ADynamicShapesCpuTests%3A%3Atest_multilayer_var_dynamic_shapes_cpu)). cc @ezyang
7
1,349
107,703
Hardtanh docs are inaccurate/incomplete, since hardtanh behaves like clamp
module: docs, triaged
### 📚 The doc issue The issue is more evident when `input` < `max_val` < `min_val`, for example: ```python import torch torch.ops.aten.hardtanh(torch.tensor(2), min_val=4, max_val=3) ``` outputs: ``` tensor(3) ``` however, according to the [hardtanh docs](https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html) it should return the `min_val`, i.e. ``` tensor(4) ``` ### Suggest a potential alternative/fix The documentation should use `min` and `max`, like clamp's documentation. Something like: ``` HardTanh(x) = min(max(x, min_val), max_value) ``` cc @svekars @carljparker
0
1,350
107,702
Inconsistencies when handling scalars that are out of the range relative to the input tensor's dtype
triaged, module: int overflow
### 🐛 Describe the bug ```python import torch # Both should fail, or both should output 3. # However ATen converts -129 to 127 uint8, applying that as the min. But it fails if the dtype is int8 torch.ops.aten.clamp.out(torch.tensor([3], dtype=torch.uint8), -129, None, out=torch.tensor([], dtype=torch.uint8)) # tensor([127], dtype=torch.uint8) torch.ops.aten.clamp.out(torch.tensor([3], dtype=torch.int8), -129, None, out=torch.tensor([], dtype=torch.int8)) # RuntimeError: value cannot be converted to type int8_t without overflow ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: Could not collect Libc version: N/A Python version: 3.9.6 (default, Oct 18 2022, 12:41:40) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [conda] Could not collect
0
1,351
107,701
arange.out produces incorrect output when out tensor has dtype long
triaged, module: python frontend
### 🐛 Describe the bug ```python import torch print(torch.ops.aten.arange.out(2.3, out=torch.tensor([], dtype=torch.uint8))) print(torch.ops.aten.arange.out(2.3, out=torch.tensor([], dtype=torch.int8))) print(torch.ops.aten.arange.out(2.3, out=torch.tensor([], dtype=torch.int16))) print(torch.ops.aten.arange.out(2.3, out=torch.tensor([], dtype=torch.int32))) print(torch.ops.aten.arange.out(2.3, out=torch.tensor([], dtype=torch.int64))) ``` Outputs: ``` tensor([0, 1, 2], dtype=torch.uint8) tensor([0, 1, 2], dtype=torch.int8) tensor([0, 1, 2], dtype=torch.int16) tensor([0, 1, 2], dtype=torch.int32) tensor([0, 1]) ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: Could not collect Libc version: N/A Python version: 3.9.6 (default, Oct 18 2022, 12:41:40) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [conda] Could not collect cc @albanD
2
1,352
107,700
where.self_out doesn't fail gracefully when inputs have different dtypes
triaged, module: type promotion, module: advanced indexing, module: edge cases
### 🐛 Describe the bug This error seems to happen every time that `input`, `other` and `out` don't have the same dtype ```python import torch cond = torch.zeros(2, dtype=torch.bool) input = torch.zeros(2, dtype=torch.int) other = torch.zeros(2, dtype=torch.long) out = torch.zeros(2, dtype=torch.int) torch.ops.aten.where.self_out(cond, input, other, out=out) ``` Throws this error: ``` RuntimeError: !needs_dynamic_casting<func_t>::check(iter) INTERNAL ASSERT FAILED at "/Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/cpu/Loops.h":310, please report a bug to PyTorch. ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: Could not collect Libc version: N/A Python version: 3.9.6 (default, Oct 18 2022, 12:41:40) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [conda] Could not collect cc @ezyang @gchanan @zou3519 @nairbv @mruberry
2
1,353
107,699
index.Tensor_out & index_put.out errors or segfaults with indices list containing only null tensors
high priority, triaged, module: advanced indexing
### 🐛 Describe the bug Indicies with **only** null tensors causes an error or segfault. This doesn't happen if `indices` contains other tensors that aren't null ```python import torch input = torch.tensor([[1, 2], [3, 4]], dtype=torch.float) indices = [None] values = torch.tensor([10, 20], dtype=torch.float) out = torch.tensor([[0, 0], [0, 0]], dtype=torch.float) # Run any of the following two lines torch.ops.aten.index.Tensor_out(input, indices, out=out) torch.ops.aten.index_put.out(input, indices, values, False, out=out) ``` sometimes it segfaults: ``` zsh: segmentation fault ``` sometimes it throws this error: ``` RuntimeError: ntensor >= 3 INTERNAL ASSERT FAILED at "/Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/native/cpu/IndexKernelUtils.h":10, please report a bug to PyTorch. ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: Could not collect Libc version: N/A Python version: 3.9.6 (default, Oct 18 2022, 12:41:40) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [conda] Could not collect cc @ezyang @gchanan @zou3519
1
1,354
107,697
Enable thp(transparent huge pages) for buffer sizes >=2MB
triaged, open source
The 2MB thp pages provide better allocation latencies compared to the standard 4KB pages. This change has shown substantial improvement for batch mode usecases where the tensor sizes are larger than 100MB. Only enabled if THP_MEM_ALLOC_ENABLE environment variable is set. re-landing https://github.com/pytorch/pytorch/pull/93888 cc: @izaitsevfb
5
1,355
107,695
New variables in torch._ops.py pollute the torch.ops namespace
triaged, module: library
### 🐛 Describe the bug e.g. torch.ops.dl_open_guard is a thing, and prevents people from creating operators under a "dl_open_guard" namespace (e.g. torch.ops.dl_open_guard.my_conv2d.default) ### Versions main cc @anjali411
0
1,356
107,694
masked_fill_ outputs incorrect results for 'mps' tensor after transpose
triaged, module: mps
### 🐛 Describe the bug I found a bug with 'mps' backend tensor, which results in incorrect output for `masked_fill_` operation after `transpose` The following cod reproduces the behavior on my mac ```py import torch x = torch.tensor([[ False, False, True, True,], [True, True, True, True]], device='mps:0') def transform(x): return torch.zeros_like(x, dtype=torch.float32).masked_fill_(x, 1.0) print(x) print(transform(x)) print(x.t()) print(transform(x.t())) ``` The output I get from the script is ``` tensor([[False, False, True, True], [ True, True, True, True]], device='mps:0') tensor([[0., 0., 1., 1.], [1., 1., 1., 1.]], device='mps:0') tensor([[False, True], [False, True], [ True, True], [ True, True]], device='mps:0') tensor([[0., 1.], [1., 1.], [0., 1.], [1., 1.]], device='mps:0') ``` `transform(x)` works as expected, but `transform(x.t())` results in incorrect output. ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: version 3.25.1 Libc version: N/A Python version: 3.11.4 (main, Jul 25 2023, 17:36:13) [Clang 14.0.3 (clang-1403.0.22.14.1)] (64-bit runtime) Python platform: macOS-13.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.0.1 [conda] No relevant packages cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
1
1,357
107,693
Inconsistencies when casting to integral types
triaged, module: type promotion, module: arm, module: int overflow
### 🐛 Describe the bug Inconsistencies when casting to integral types ```python import torch print("== Casting way out of bounds float to integral types") print(torch.tensor(1e20, dtype=torch.float).to(dtype=torch.bool)) print(torch.tensor(1e20, dtype=torch.float).to(dtype=torch.uint8)) # seems to be clamping print(torch.tensor(1e20, dtype=torch.float).to(dtype=torch.int8)) # nonsense print(torch.tensor(1e20, dtype=torch.float).to(dtype=torch.int16)) # nonsense print(torch.tensor(1e20, dtype=torch.float).to(dtype=torch.int32)) # seems to be clamping print(torch.tensor(1e20, dtype=torch.float).to(dtype=torch.int64)) # seems to be clamping print("\n== Casting slightly out of bounds values") print("==== uint8") print(torch.tensor(256, dtype=torch.int64).to(dtype=torch.uint8)) # seems to wraparound print(torch.tensor(256, dtype=torch.float).to(dtype=torch.uint8)) # seems to wraparound print("==== int8") print(torch.tensor(128, dtype=torch.int64).to(dtype=torch.int8)) # seems to wraparound print(torch.tensor(128, dtype=torch.float).to(dtype=torch.int8)) # seems to wraparound print("==== int16") print(torch.tensor(32768, dtype=torch.int64).to(dtype=torch.int16)) # seems to wraparound print(torch.tensor(32768, dtype=torch.float).to(dtype=torch.int16)) # seems to wraparound print("==== int32") print(torch.tensor(2147483648, dtype=torch.int64).to(dtype=torch.int32)) # seems to wraparound print(torch.tensor(2150000000, dtype=torch.int64).to(dtype=torch.int32)) # seems to wraparound print(torch.tensor(3000000000, dtype=torch.int64).to(dtype=torch.int32)) # seems to wraparound print(torch.tensor(9000000000, dtype=torch.int64).to(dtype=torch.int32)) # seems to wraparound print(torch.tensor(2147483648, dtype=torch.float).to(dtype=torch.int32)) # seems to be clamping print(torch.tensor(2150000000, dtype=torch.float).to(dtype=torch.int32)) # seems to be clamping print(torch.tensor(3000000000, dtype=torch.float).to(dtype=torch.int32)) # seems to be clamping print(torch.tensor(9000000000, dtype=torch.float).to(dtype=torch.int32)) # seems to be clamping ``` The results we get, show that when casting a very large float to integral doesn't behave the same across all integral types. Also, we can see that casting an int64 value to int32, or the same value as float to int32, behaves differently. ``` == Casting way out of bounds float to integral types tensor(True) tensor(255, dtype=torch.uint8) tensor(-1, dtype=torch.int8) tensor(-1, dtype=torch.int16) tensor(2147483647, dtype=torch.int32) tensor(9223372036854775807) == Casting slightly out of bounds values ==== uint8 tensor(0, dtype=torch.uint8) tensor(0, dtype=torch.uint8) ==== int8 tensor(-128, dtype=torch.int8) tensor(-128, dtype=torch.int8) ==== int16 tensor(-32768, dtype=torch.int16) tensor(-32768, dtype=torch.int16) ==== int32 tensor(-2147483648, dtype=torch.int32) tensor(-2144967296, dtype=torch.int32) tensor(-1294967296, dtype=torch.int32) tensor(410065408, dtype=torch.int32) tensor(2147483647, dtype=torch.int32) tensor(2147483647, dtype=torch.int32) tensor(2147483647, dtype=torch.int32) tensor(2147483647, dtype=torch.int32) ``` ### Versions ``` Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.202) CMake version: Could not collect Libc version: N/A Python version: 3.9.6 (default, Oct 18 2022, 12:41:40) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.5-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [conda] Could not collect ``` cc @ezyang @gchanan @zou3519 @nairbv @mruberry @malfet
4
1,358
107,691
torch._dynamo.exc.Unsupported: call_function BuiltinVariable(zip) [ListVariable(), ListVariable(), ListVariable(), UserDefinedObjectVariable(KJTList)] {}
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug Steps to reproduce: pytorch version: https://github.com/pytorch/pytorch/commit/796ce672296c9ae8d7387b18403810aa2f1048a1 torchrec version: 005727ef06cdc808aa7d263ab4f2837938a77ed2 1. Get working torchrec install (you need fbgemm-gpu and torchrec, install by source; explicitly uninstall fbgemm-gpu-nightly and torchrec-nightly if they exist) 2. Patch torchrec with https://gist.github.com/ezyang/e8a60401b52a3c7f630c1f7c072ec9f1 3. For ease of diagnosis, patch pytorch with https://github.com/pytorch/pytorch/pull/107683 (but I don't think it is strictly necessary) 4. Patch ``` diff --git a/torch/_dynamo/config.py b/torch/_dynamo/config.py index b9e828750c7..17eab15f945 100644 --- a/torch/_dynamo/config.py +++ b/torch/_dynamo/config.py @@ -205,7 +205,7 @@ enforce_cond_guards_match = True # run without graph-breaks, but also without comm/compute overlap. # set torch._dynamo.config.log_level to INFO or DEBUG for more info # about optimize_ddp behavior. -optimize_ddp = True +optimize_ddp = False # Whether to skip guarding on FSDP-managed modules skip_fsdp_guards = True ``` 5. Run TORCH_LOGS=+dynamo MASTER_ADDR=127.0.0.1 MASTER_PORT=29501 RANK=0 LOCAL_RANK=0 WORLD_SIZE=1 python train_dlrm.py ``` Traceback (most recent call last): File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 164, in <module> main() File "/data/users/ezyang/a/pytorch/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 52, in main train() File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 157, in train print(model(next(train_iterator).to(device))) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/model_parallel.py", line 266, in forward return self._dmp_wrapped_module(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/parallel/distributed.py", line 1519, in forward else self._run_ddp_forward(*inputs, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/parallel/distributed.py", line 1355, in _run_ddp_forward return self.module(*inputs, **kwargs) # type: ignore[index] File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 493, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 379, in _convert_frame_assert return _compile( File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 554, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 476, in compile_inner out_code = transform_code_object(code, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 443, in transform tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2074, in run super().run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 331, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 331, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 716, in call_function ).call_function(tx, [self] + list(args), kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/builtin.py", line 635, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/base.py", line 306, in call_function unimplemented(f"call_function {self} {args} {kwargs}") File "/data/users/ezyang/a/pytorch/torch/_dynamo/exc.py", line 172, in unimplemented raise Unsupported(msg) torch._dynamo.exc.Unsupported: call_function BuiltinVariable(zip) [ListVariable(), ListVariable(), ListVariable(), UserDefinedObjectVariable(KJTList)] {} from user code: File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 893, in forward logits = self.model(batch.dense_features, batch.sparse_features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 571, in forward embedded_sparse = self.sparse_arch(sparse_features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 99, in forward sparse_features: KeyedTensor = self.embedding_bag_collection(features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/types.py", line 700, in forward return self.compute_and_output_dist(ctx, dist_input) File "/data/users/ezyang/a/torchrec/torchrec/distributed/embeddingbag.py", line 704, in compute_and_output_dist for lookup, dist, sharding_ctx, features in zip( ``` Full debug log https://gist.github.com/ezyang/84f0c66e349682f689f3fb0b38433b0e ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
0
1,359
107,685
Error in ONNX during Export GLU with Opset 18
module: onnx, triaged
### 🐛 Describe the bug When attempting to export a PyTorch model containing the `glu` function to ONNX format using opset version 18, an error is encountered during the ONNX shape inference process. The error message received is as follows: ``` /usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py:1672: UserWarning: The exported ONNX model failed ONNX shape inference. The model will not be executable by the ONNX Runtime. If this is unintended and you believe there is a bug, please report an issue at https://github.com/pytorch/pytorch/issues. Error reported by strict ONNX shape inference: [ShapeInferenceError] Shape inference error(s): (op_type:Split, node name: /Split): [ShapeInferenceError] Neither 'split' input nor 'num_outputs' attribute has been given (op_type:Sigmoid, node name: /Sigmoid): [TypeInferenceError] Input 0 expected to have type but instead is null (op_type:Mul, node name: /Mul): [TypeInferenceError] Input 0 expected to have type but instead is null (Triggered internally at ../torch/csrc/jit/serialization/export.cpp:1403.) _C._check_onnx_proto(proto) ``` Code to reproduce ```python import torch from torch import nn class Model(nn.Module): def forward(self, x): x = nn.functional.glu(x, dim=1) return x model = Model() model.eval() x = torch.rand(1024, 512) torch.onnx.export( model, (x,), "model.onnx", verbose=False, opset_version=18, ) ``` ### Versions PyTorch version: 2.1.0.dev20230812+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.4.0-152-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-PCIE-40GB Nvidia driver version: 525.125.06 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.3 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.3 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 5320T CPU @ 2.30GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 Stepping: 6 BogoMIPS: 4600.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp_epp avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.9 MiB (40 instances) L1i cache: 1.3 MiB (40 instances) L2 cache: 50 MiB (40 instances) L3 cache: 60 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-19,40-59 NUMA node1 CPU(s): 20-39,60-79 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.22.2 [pip3] pytorch-lightning==1.9.4 [pip3] pytorch-quantization==2.1.2 [pip3] pytorch-triton==2.1.0+e6216047b8 [pip3] torch==2.1.0.dev20230812+cu121 [pip3] torch-tensorrt==1.5.0.dev0 [pip3] torchaudio==2.1.0.dev20230813+cu121 [pip3] torchdata==0.7.0a0 [pip3] torchmetrics==1.0.3 [pip3] torchtext==0.16.0a0 [pip3] torchvision==0.16.0.dev20230813+cu121 [pip3] triton==2.0.0 [conda] Could not collect
7
1,360
107,684
[Dynamo] 'NoneType' object is not subscriptable from torchrec (bad error message)
triaged, oncall: pt2
### 🐛 Describe the bug UPDATE: Actually this is user error, the patch causes an attribute to no longer exist, but Dynamo gives a bad error message instead of correctly noticing user code problem Steps to reproduce: pytorch version: https://github.com/pytorch/pytorch/commit/796ce672296c9ae8d7387b18403810aa2f1048a1 torchrec version: 005727ef06cdc808aa7d263ab4f2837938a77ed2 1. Get working torchrec install (you need fbgemm-gpu and torchrec, install by source; explicitly uninstall fbgemm-gpu-nightly and torchrec-nightly if they exist) 2. Patch torchrec with https://gist.github.com/ezyang/d1a15bb53e0cfc6e05c4e6b57a49bc85 3. For ease of diagnosis, patch pytorch with https://github.com/pytorch/pytorch/pull/107683 (but I don't think it is strictly necessary) 4. Run `TORCH_LOGS=+dynamo MASTER_ADDR=127.0.0.1 MASTER_PORT=29501 RANK=0 LOCAL_RANK=0 WORLD_SIZE=1 python train_dlrm.py` Stack trace ``` Traceback (most recent call last): File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 164, in <module> main() File "/data/users/ezyang/a/pytorch/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 52, in main train() File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 157, in train print(model(next(train_iterator).to(device))) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/model_parallel.py", line 266, in forward return self._dmp_wrapped_module(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/parallel/distributed.py", line 1519, in forward else self._run_ddp_forward(*inputs, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/parallel/distributed.py", line 1355, in _run_ddp_forward return self.module(*inputs, **kwargs) # type: ignore[index] File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 490, in catch_errors return hijacked_callback(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 626, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 379, in _convert_frame_assert return _compile( File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 571, in _compile raise InternalTorchDynamoError(str(e)).with_traceback( File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 554, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 476, in compile_inner out_code = transform_code_object(code, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 443, in transform tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2074, in run super().run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 331, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 331, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 716, in call_function ).call_function(tx, [self] + list(args), kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 716, in call_function ).call_function(tx, [self] + list(args), kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1115, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/nn_module.py", line 716, in call_function ).call_function(tx, [self] + list(args), kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 1155, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars.items) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 307, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 261, in call_function return super().call_function(tx, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/functions.py", line 90, in call_function return tx.inline_user_function_return( File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 598, in inline_user_function_return result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2179, in inline_call return cls.inline_call_(parent, func, args, kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2286, in inline_call_ tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 392, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 168, in impl self.push(fn_var.call_function(self, self.popn(nargs), {})) File "/data/users/ezyang/a/pytorch/torch/_dynamo/variables/builtin.py", line 621, in call_function self.as_python_constant()( torch._dynamo.exc.InternalTorchDynamoError: 'NoneType' object is not subscriptable from user code: File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 893, in forward logits = self.model(batch.dense_features, batch.sparse_features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 571, in forward embedded_sparse = self.sparse_arch(sparse_features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 99, in forward sparse_features: KeyedTensor = self.embedding_bag_collection(features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/types.py", line 699, in forward dist_input = self.input_dist(ctx, *input, **kwargs).wait().wait() File "/data/users/ezyang/a/torchrec/torchrec/distributed/embeddingbag.py", line 669, in input_dist awaitables.append(input_dist(features_by_shard)) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/sharding/tw_sharding.py", line 240, in forward return self._dist(sparse_features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/dist_data.py", line 454, in forward self._splits_cumsum[rank] : self._splits_cumsum[rank + 1] ``` Full debug logs: https://gist.github.com/ezyang/3340a5fa3330e135e13250b3b4246804 ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305
0
1,361
107,683
Actually raise an error on all graph breaks with fullgraph=True
Stale, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107683 Previously, if you had a graph break inside a fullgraph=True compile, but Dynamo was able to compile a partial graph, we would let the graph through anyway (instead of erroring). Now you error. Fixes https://github.com/pytorch/pytorch/issues/107639 Signed-off-by: Edward Z. Yang <ezyang@meta.com> cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @Xia-Weiwen
3
1,362
107,680
torch.nn.functional.cross_entropy different loss when providing one_hot_target and class weights
module: nn, module: loss, triaged
### 🐛 Describe the bug ```python inputs = torch.tensor([[2.3, 2.1, 4.5], [4.2, 3.2, 5.1]]) target = torch.tensor([1, 2]) one_hot_target = torch.tensor([[0,1,0], [0,0,1]]).float() weights = torch.tensor([25., 25., 100.]) torch.nn.functional.cross_entropy(inputs, target, reduction="mean", weight=weights) #output: 0.8705 torch.nn.functional.cross_entropy(inputs, one_hot_target, reduction="mean", weight=weights) #output: 54.4052 ``` This seems to only occur with `mean` reduction when `weight` is provided, `sum` and `none` output the same thing. ### Versions PyTorch version: 2.0.1+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 10 (buster) (x86_64) GCC version: (Debian 8.3.0-6) 8.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.28 Python version: 3.10.0 (default, Mar 3 2022, 09:58:08) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-5.15.0-1041-azure-x86_64-with-glibc2.28 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7763 64-Core Processor Stepping: 1 CPU MHz: 2445.425 BogoMIPS: 4890.85 Virtualization: AMD-V Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 32768K NUMA node0 CPU(s): 0-7 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat npt nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload umip vaes vpclmulqdq rdpid fsrm Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.0.1+cpu [pip3] torch-scatter==2.1.1 [conda] numpy 1.25.2 pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
1
1,363
107,679
Enable Mypy Checking in torch/_inductor/debug.py
open source, topic: not user facing, module: inductor, ciflow/inductor
Fixes #105230 Summary: As suggested in https://github.com/pytorch/pytorch/issues/105230 mypy checking is enabled in torch/_inductor/debug.py After Fix: mypy --follow-imports=skip torch/_inductor/debug.py Success: no issues found in 1 source file cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
1
1,364
107,678
[Torch.fx] Torch fx failed to trace torch extension library
triaged, module: fx
### 🐛 Describe the bug Hi, I'm currently focusing on point cloud detection workloads, and I rely heavily on the torch extension libraries like mmdet3d. I recently attempted to trace a straightforward torch cpp extension using torch.fx, but unfortunately, I encountered an error. For reference, the code I'm working with is directly from the official PyTorch documentation, specifically this [tutorial on cpp extensions](https://pytorch.org/tutorials/advanced/cpp_extension.html). Is there any known limitation or workaround when it comes to using torch.fx with torch cpp extensions? I'd appreciate any guidance or recommendations on this matter. ``` python class LLTM(torch.nn.Module): def __init__(self, input_features, state_size): super(LLTM, self).__init__() self.input_features = input_features self.state_size = state_size self.weights = torch.nn.Parameter( torch.empty(3 * state_size, input_features + state_size)) self.bias = torch.nn.Parameter(torch.empty(3 * state_size)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.state_size) for weight in self.parameters(): weight.data.uniform_(-stdv, +stdv) def forward(self, input, state): return LLTMFunction.apply(input, self.weights, self.bias, *state) ``` Here is the tracing code. ``` python import time import torch batch_size = 16 input_features = 32 state_size = 128 X = torch.randn(batch_size, input_features) h = torch.randn(batch_size, state_size) C = torch.randn(batch_size, state_size) rnn = LLTM(input_features, state_size) compile_rnn = torch.compile(rnn, backend="inductor") new_h, new_C = compile_rnn(X, (h, C)) import torch.fx tracer = torch.fx.symbolic_trace(rnn) print(tracer) ``` Then I got these errors: ``` Traceback (most recent call last): File "/home/leosys/Documents/test_fx/lltm.py", line 62, in <module> tracer = torch.fx.symbolic_trace(rnn) File "/home/leosys/.conda/envs/gencom/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 1150, in symbolic_trace graph = tracer.trace(root, concrete_args) File "/home/leosys/.conda/envs/gencom/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/home/leosys/.conda/envs/gencom/lib/python3.9/site-packages/torch/_dynamo/external_utils.py", line 17, in inner return fn(*args, **kwargs) File "/home/leosys/.conda/envs/gencom/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 817, in trace (self.create_arg(fn(*args)),), File "/home/leosys/Documents/test_fx/lltm.py", line 41, in forward return LLTMFunction.apply(input, self.weights, self.bias, *state) File "/home/leosys/.conda/envs/gencom/lib/python3.9/site-packages/torch/fx/proxy.py", line 409, in __iter__ return self.tracer.iter(self) File "/home/leosys/.conda/envs/gencom/lib/python3.9/site-packages/torch/fx/proxy.py", line 309, in iter raise TraceError('Proxy object cannot be iterated. This can be ' torch.fx.proxy.TraceError: Proxy object cannot be iterated. This can be attempted when the Proxy is used in a loop or as a *args or **kwargs function argument. See the torch.fx docs on pytorch.org for a more detailed explanation of what types of control flow can be traced, and check out the Proxy docstring for help troubleshooting Proxy iteration errors ``` ### Versions PyTorch version: 2.1.0.dev20230821 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.35 Python version: 3.9.17 (main, Jul 5 2023, 20:41:20) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.2.0-26-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3080 Nvidia driver version: 525.125.06 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 5800X 8-Core Processor CPU family: 25 Model: 33 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU max MHz: 4850.1948 CPU min MHz: 2200.0000 BogoMIPS: 7585.37 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 4 MiB (8 instances) L3 cache: 32 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.1 [pip3] pytorch-triton==2.1.0+e6216047b8 [pip3] torch==2.1.0.dev20230820+cu118 [pip3] torch-geometric==2.3.1 [pip3] torchaudio==2.1.0.dev20230821+cu118 [pip3] torchvision==0.16.0.dev20230821+cu118 [pip3] triton==2.0.0 [conda] blas 1.0 mkl [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch-nightly [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py39h5eee18b_1 [conda] mkl_fft 1.3.6 py39h417a72b_1 [conda] mkl_random 1.2.2 py39h417a72b_1 [conda] numpy 1.24.1 pypi_0 pypi [conda] numpy-base 1.25.2 py39hb5e798b_0 [conda] pytorch 2.1.0.dev20230821 py3.9_cuda11.8_cudnn8.7.0_0 pytorch-nightly [conda] pytorch-cuda 11.8 h7e8668a_5 pytorch-nightly [conda] pytorch-mutex 1.0 cuda pytorch-nightly [conda] pytorch-triton 2.1.0+e6216047b8 pypi_0 pypi [conda] torch 2.1.0.dev20230820+cu118 pypi_0 pypi [conda] torch-geometric 2.3.1 pypi_0 pypi [conda] torchaudio 2.1.0.dev20230821+cu118 pypi_0 pypi [conda] torchtriton 2.1.0+e6216047b8 py39 pytorch-nightly [conda] torchvision 0.16.0.dev20230821+cu118 pypi_0 pypi cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
2
1,365
107,674
Add mha to Autocast CPU
triaged, open source, module: amp (automated mixed precision), ciflow/trunk, topic: not user facing, intel
Fixes #106751. This PR adds `_native_multi_head_attention` to Autocast CPU policy. Behavior: Within the scope of torch.cpu.amp.autocast(dtype=torch.bfloat16) , `_native_multi_head_attention` will be forced to run with bf16 data type. cc @mcarilli @ptrblck @leslie-fang-intel @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
5
1,366
107,668
torch.dot gives wrong result on Macos
high priority, triaged, module: macos, module: correctness (silent)
### 🐛 Describe the bug When I try to create a demo, I found that the result is realy baffling: (1)The demo created by me: ``` Last login: Tue Aug 22 14:42:20 on ttys000 (base) crk@crkdeMacBook-Air ~ % conda activate kk (kk) crk@crkdeMacBook-Air ~ % python Python 3.8.17 (default, Jul 5 2023, 15:35:58) [Clang 14.0.6 ] :: Anaconda, Inc. on darwin Type "help", "copyright", "credits" or "license" for more information. >>> import torch >>> x = torch.arange(4.0) >>> x tensor([0., 1., 2., 3.]) >>> x.requires_grad_(True) tensor([0., 1., 2., 3.], requires_grad=True) >>> y = 2 * torch.dot(x, x) >>> y tensor(0., grad_fn=<MulBackward0>) >>> ``` I'm very confused, and when I try it on Colab, the result of y is `tensor(28., grad_fn=<MulBackward0>)` I realy want to know why. ### Versions My enviorment is below: ``` (kk) crk@crkdeMacBook-Air ~ % conda list # packages in environment at /Users/crk/miniconda3/envs/kk: # # Name Version Build Channel appnope 0.1.3 pyhd8ed1ab_0 conda-forge asttokens 2.2.1 pyhd8ed1ab_0 conda-forge backcall 0.2.0 pyh9f0ad1d_0 conda-forge backports 1.0 pyhd8ed1ab_3 conda-forge backports.functools_lru_cache 1.6.5 pyhd8ed1ab_0 conda-forge ca-certificates 2023.7.22 hf0a4a13_0 conda-forge comm 0.1.4 pyhd8ed1ab_0 conda-forge contourpy 1.1.0 pypi_0 pypi cycler 0.11.0 pypi_0 pypi debugpy 1.6.7 py38h313beb8_0 decorator 5.1.1 pyhd8ed1ab_0 conda-forge entrypoints 0.4 pyhd8ed1ab_0 conda-forge executing 1.2.0 pyhd8ed1ab_0 conda-forge fonttools 4.42.0 pypi_0 pypi glob2 0.7 pypi_0 pypi importlib-resources 6.0.1 pypi_0 pypi ipykernel 6.25.1 pyh5fb750a_0 conda-forge ipython 8.12.0 pyhd1c38e8_0 conda-forge jedi 0.19.0 pyhd8ed1ab_0 conda-forge jupyter_client 7.3.4 pyhd8ed1ab_0 conda-forge jupyter_core 5.3.0 py38hca03da5_0 kiwisolver 1.4.4 pypi_0 pypi libcxx 14.0.6 h848a8c0_0 libffi 3.4.4 hca03da5_0 libsodium 1.0.18 h27ca646_1 conda-forge matplotlib 3.7.2 pypi_0 pypi matplotlib-inline 0.1.6 pyhd8ed1ab_0 conda-forge ncurses 6.4 h313beb8_0 nest-asyncio 1.5.6 pyhd8ed1ab_0 conda-forge numpy 1.24.4 pypi_0 pypi opencv-python 4.8.0.76 pypi_0 pypi openssl 3.1.2 h53f4e23_0 conda-forge packaging 23.1 pyhd8ed1ab_0 conda-forge pandas 2.0.3 pypi_0 pypi parso 0.8.3 pyhd8ed1ab_0 conda-forge pexpect 4.8.0 pyh1a96a4e_2 conda-forge pickleshare 0.7.5 py_1003 conda-forge pillow 10.0.0 pypi_0 pypi pip 23.2.1 py38hca03da5_0 platformdirs 3.10.0 pyhd8ed1ab_0 conda-forge prompt-toolkit 3.0.39 pyha770c72_0 conda-forge prompt_toolkit 3.0.39 hd8ed1ab_0 conda-forge psutil 5.9.0 py38h1a28f6b_0 ptyprocess 0.7.0 pyhd3deb0d_0 conda-forge pure_eval 0.2.2 pyhd8ed1ab_0 conda-forge pygments 2.16.1 pyhd8ed1ab_0 conda-forge pyparsing 3.0.9 pypi_0 pypi python 3.8.17 hb885b13_0 python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python_abi 3.8 2_cp38 conda-forge pytz 2023.3 pypi_0 pypi pyzmq 25.1.0 py38h313beb8_0 readline 8.2 h1a28f6b_0 setuptools 68.0.0 py38hca03da5_0 six 1.16.0 pyh6c4a22f_0 conda-forge sqlite 3.41.2 h80987f9_0 stack_data 0.6.2 pyhd8ed1ab_0 conda-forge tk 8.6.12 hb8d0fd4_0 torch 1.9.0 pypi_0 pypi torchaudio 0.9.0 pypi_0 pypi torchvision 0.10.0 pypi_0 pypi tornado 6.1 py38hea4295b_1 conda-forge tqdm 4.66.0 pypi_0 pypi traitlets 5.9.0 pyhd8ed1ab_0 conda-forge typing-extensions 4.7.1 hd8ed1ab_0 conda-forge typing_extensions 4.7.1 pyha770c72_0 conda-forge tzdata 2023.3 pypi_0 pypi wcwidth 0.2.6 pyhd8ed1ab_0 conda-forge wheel 0.38.4 py38hca03da5_0 xz 5.4.2 h80987f9_0 zeromq 4.3.4 hbdafb3b_1 conda-forge zipp 3.16.2 pypi_0 pypi zlib 1.2.13 h5a0b063_0 (kk) crk@crkdeMacBook-Air ~ % ``` cc @ezyang @gchanan @zou3519 @malfet @albanD
4
1,367
107,664
adding _int_mm to out_dtype mm WIP
Stale, module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107664 Summary: it looks like out_dtype doesn't work with max-autotune in torch.compile Test Plan: python pytorch/torch/_inductor/ir.py -k "int_mm" Reviewers: Subscribers: Tasks: Tags: cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
2
1,368
107,663
`RuntimeError: expected scalar type BFloat16 but found Float` with `torch.nn.TransformerEncoder`
module: nn, triaged, oncall: transformer/mha, module: amp (automated mixed precision)
### 🐛 Describe the bug Runtime error occurred when running `torch.nn.TransformerEncoder` in AMP scope. This issue occurs for both when `enable_nested_tensor` is `True` and `False`. ```python import torch encoder_layer = torch.nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first = True) model = torch.nn.TransformerEncoder(encoder_layer, num_layers=6, enable_nested_tensor=True) model.eval() src_rand = torch.rand(16, 41, 512) mask_rand = torch.zeros(16, 41) with torch.no_grad(), torch.autocast(device_type="cpu", dtype=torch.bfloat16): out = model(src_rand, src_key_padding_mask = mask_rand) ``` Error message: ``` Traceback (most recent call last): File "/workspace/test/test1.py", line 13, in <module> out = model(torch.FloatTensor(src), src_key_padding_mask = mask, is_causal = True) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 387, in forward output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/root/miniconda3/lib/python3.10/site-packages/torch/nn/modules/transformer.py", line 678, in forward return torch._transformer_encoder_layer_fwd( RuntimeError: expected scalar type BFloat16 but found Float ``` ### Versions ``` Collecting environment information... PyTorch version: 2.1.0.dev20230820+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0 Clang version: Could not collect CMake version: version 3.27.2 Libc version: glibc-2.35 Python version: 3.10.9 (main, Jan 11 2023, 15:21:40) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-48-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz CPU family: 6 Model: 106 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 2 Stepping: 6 CPU max MHz: 3600.0000 CPU min MHz: 800.0000 BogoMIPS: 6200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 1.5 MiB (32 instances) L1i cache: 1 MiB (32 instances) L2 cache: 40 MiB (32 instances) L3 cache: 72 MiB (2 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-15,32-47 NUMA node1 CPU(s): 16-31,48-63 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT vulnerable Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.1.0.dev20230820+cpu [pip3] torchaudio==2.1.0.dev20230821+cpu [pip3] torchvision==0.16.0.dev20230821+cpu [conda] mkl-include 2023.2.0 pypi_0 pypi [conda] mkl-static 2023.2.0 pypi_0 pypi [conda] numpy 1.25.2 pypi_0 pypi [conda] torch 2.1.0.dev20230820+cpu pypi_0 pypi [conda] torchaudio 2.1.0.dev20230821+cpu pypi_0 pypi [conda] torchvision 0.16.0.dev20230821+cpu pypi_0 pypi ``` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @bhosmer @cpuhrsch @erichan1 @drisspg @mcarilli @ptrblck @leslie-fang-intel @jgong5
2
1,369
107,661
A backward bug of dtensor seems to be caused by new_empty_strided
high priority, oncall: distributed, triaged, module: dtensor
### 🐛 Describe the bug ```python device_mesh = DeviceMesh("cpu", [1,2,3,4]) local_tensor = torch.randn(8,8, requires_grad=True, device="cpu") my_dtensor = distribute_tensor(local_tensor, device_mesh, [Shard(0)]) # bug happen when backward() my_dtensor.to_local().sum().backward() ``` ``` Traceback (most recent call last): File "/home/hzh/mytest/test_dist.py", line 101, in main_worker my_dtensor.to_local().sum().backward() File "/root/miniconda3/envs/hzh/lib/python3.9/site-packages/torch/_tensor.py", line 491, in backward torch.autograd.backward( File "/root/miniconda3/envs/hzh/lib/python3.9/site-packages/torch/autograd/__init__.py", line 250, in backward Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass File "/root/miniconda3/envs/hzh/lib/python3.9/site-packages/torch/distributed/_tensor/api.py", line 258, in __torch_dispatch__ res = op_dispatch.operator_dispatch( File "/root/miniconda3/envs/hzh/lib/python3.9/site-packages/torch/distributed/_tensor/dispatch.py", line 114, in operator_dispatch out, _, _ = _operator_dispatch(op_call, args, kwargs, sharding_propagator) File "/root/miniconda3/envs/hzh/lib/python3.9/site-packages/torch/distributed/_tensor/dispatch.py", line 254, in _operator_dispatch local_results = op_call(*local_tensor_args, **local_tensor_kwargs) File "/root/miniconda3/envs/hzh/lib/python3.9/site-packages/torch/_ops.py", line 435, in __call__ return self._op(*args, **kwargs or {}) RuntimeError: The size of tensor a (8) must match the size of tensor b (2) at non-singleton dimension 0 ``` this bug is directly caused here by the size check in operator `copy_` during the process of backward, and can be traced back to the previous calling of operator `new_empty_strided`. https://github.com/pytorch/pytorch/blob/f13101640f548f8fa139c03dfa6711677278c391/torch/csrc/autograd/utils/grad_layout_contract.h#L65-L70 https://github.com/pytorch/pytorch/blob/a506d0ad8f21dd4090594c0aaca62518a5438081/aten/src/ATen/native/native_functions.yaml#L2317 When calling `new_empty_strided` with `self` to be a dtensor, it will be dispatched into `Dtensor.__torch_dispatch__`. Here, the paramater `size` and `stride` will be directly used to create a local tensor which is not i want. https://github.com/pytorch/pytorch/blob/a506d0ad8f21dd4090594c0aaca62518a5438081/torch/distributed/_tensor/dispatch.py#L128-L146 For the example above, `self` is a dtensor with `placements = [Shard(0)]`, `shape = [8, 8]` and `_local_tensor.shape = [2, 8]`. When i call `new_empty_strided(self, [8, 8], [8, 1])`, i want a dtensor with `shape = [8, 8]` and `_local_tensor.shape = [2, 8]` just like `self`. But, in fact, it return a local tensor with `shape = [8, 8]` after `op_call`, and finally return a **self-contradictory** dtensor with `placements = [Shard(0)]`, `shape = [8, 8]` and `_local_tensor.shape = [8, 8]` which is generated by simply calling the method `Dtensor.__new__()`. https://github.com/pytorch/pytorch/blob/a506d0ad8f21dd4090594c0aaca62518a5438081/torch/distributed/_tensor/dispatch.py#L265 ### Versions ``` PyTorch version: 2.1.0a0+git849fbc6 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: CentOS Linux 7 (Core) (x86_64) GCC version: (GCC) 7.5.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.17 Python version: 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:39:03) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-3.10.0-x86_64-with-glibc2.17 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.1.0a0+git849fbc6 ``` cc @ezyang @gchanan @zou3519 @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu
5
1,370
107,639
fullgraph=True doesn't actually raise error when you don't manage full graph inside DDP
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug This is same repro as https://github.com/pytorch/pytorch/issues/107637 In the logs https://gist.github.com/ezyang/e4bf7345326092138969387ba364f3ea#file-dist-log-L752-L761 you can see that we don't raise an error when the first graph fails compiling, we just keep going. ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
1
1,371
107,637
[DDP PT2] TypeError: convert_frame_assert.<locals>._convert_frame_assert() missing 2 required positional arguments: 'hooks' and 'frame_state'
triaged, oncall: pt2, module: dynamo, mlperf
### 🐛 Describe the bug Steps to reproduce: pytorch version: 796ce672296c9ae8d7387b18403810aa2f1048a1 torchrec version: 005727ef06cdc808aa7d263ab4f2837938a77ed2 1. Get working torchrec install (you need fbgemm-gpu and torchrec, install by source; explicitly uninstall fbgemm-gpu-nightly and torchrec-nightly if they exist) 2. Patch torchrec with ``` diff --git a/examples/golden_training/train_dlrm.py b/examples/golden_training/train_dlrm.py index 4004fbc..39fb5e4 100644 --- a/examples/golden_training/train_dlrm.py +++ b/examples/golden_training/train_dlrm.py @@ -127,6 +127,8 @@ def train( ) sharder = EmbeddingBagCollectionSharder(qcomm_codecs_registry=qcomm_codecs_registry) + train_model.forward = torch.compile(fullgraph=True)(train_model.forward) + model = DistributedModelParallel( module=train_model, device=device, ``` In torchrec/examples/golden_training/ run `TORCH_LOGS=dynamo MASTER_ADDR=127.0.0.1 MASTER_PORT=29501 RANK=0 LOCAL_RANK=0 WORLD_SIZE=1 python train_dlrm.py` Backtrace ``` 0%| | 0/1000 [00:00<?, ?it/s] Traceback (most recent call last): File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 163, in <module> main() File "/data/users/ezyang/a/pytorch/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 52, in main train() File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 159, in train train_pipeline.progress(train_iterator) File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 1002, in progress losses, output = cast(Tuple[torch.Tensor, Out], self._model(self._batch_i)) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/distributed/model_parallel.py", line 266, in forward return self._dmp_wrapped_module(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/parallel/distributed.py", line 1519, in forward else self._run_ddp_forward(*inputs, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/parallel/distributed.py", line 1355, in _run_ddp_forward return self.module(*inputs, **kwargs) # type: ignore[index] File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/torchrec/torchrec/models/dlrm.py", line 893, in forward logits = self.model(batch.dense_features, batch.sparse_features) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 490, in catch_errors return hijacked_callback(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 626, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 379, in _convert_frame_assert return _compile( File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 554, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 476, in compile_inner out_code = transform_code_object(code, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 443, in transform tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2074, in run super().run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 439, in wrapper self.output.compile_subgraph(self, reason=reason) File "/data/users/ezyang/a/pytorch/torch/_dynamo/output_graph.py", line 857, in compile_subgraph self.compile_and_call_fx_graph(tx, pass2.graph_output_vars(), root) File "/home/ezyang/local/a/pytorch-env/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/data/users/ezyang/a/pytorch/torch/_dynamo/output_graph.py", line 957, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/data/users/ezyang/a/pytorch/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/output_graph.py", line 1024, in call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/data/users/ezyang/a/pytorch/torch/_dynamo/output_graph.py", line 1009, in call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/data/users/ezyang/a/pytorch/torch/_dynamo/backends/distributed.py", line 291, in compile_fn return self.backend_compile_fn(gm, example_inputs) torch._dynamo.exc.BackendCompilerFailed: backend='compile_fn' raised: TypeError: convert_frame_assert.<locals>._convert_frame_assert() missing 2 required positional arguments: 'hooks' and 'frame_state' Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information ``` I spent some time shuffling around looking for the call to convert_frame_assert that was missing these extra arguments but I couldn't find it. Very mysterious. Note that this model is using DistributedDataParallel. Full dynamo debug log: https://gist.github.com/ezyang/e4bf7345326092138969387ba364f3ea cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov ### Versions main
3
1,372
107,636
Support integer implementations for max_pool1d/2d/3d (cpu and cuda)
module: cpu, triaged, open source
Fixes #107412 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 cc: @cchan @ezhang887 also supports `torch.compile` ```python import torch f = lambda y:torch.nn.functional.max_pool1d(y, kernel_size=3) f_compiled = torch.compile(f) x = torch.randn(3,3,3, device="cpu").to(torch.int8) print(x) print(f_compiled(x)) ``` output ``` tensor([[[ 0, 0, 1], [ 0, 0, 0], [ 0, -1, 0]], [[ 0, 1, 0], [-1, -1, 0], [ 0, 1, 0]], [[ 1, 0, 0], [ 1, 1, 0], [-1, 0, -1]]], dtype=torch.int8) tensor([[[1], [0], [0]], [[1], [0], [1]], [[1], [1], [0]]], dtype=torch.int8) ```
9
1,373
107,633
nvfuser does not respect CMAKE_INSTALL_PREFIX when build (cmake) libtorch
triaged, module: nvfuser
### 🐛 Describe the bug I followed the libtorch build instructions from https://github.com/pytorch/pytorch/blob/main/docs/libtorch.rst#building-libtorch-using-cmake: ``` git clone -b main --recurse-submodule https://github.com/pytorch/pytorch.git mkdir pytorch-build cd pytorch-build cmake -DBUILD_SHARED_LIBS:BOOL=ON -DCMAKE_BUILD_TYPE:STRING=Release -DPYTHON_EXECUTABLE:PATH=`which python3` -DCMAKE_INSTALL_PREFIX:PATH=../pytorch-install ../pytorch cmake --build . --target install ``` However, "libnvfuser_codegen.so" is missing from the installation dir "pytorch-install". Looks like it's bc nvfuser_codegen's install destination is hard-coded to <ProjectRoot>/torch/lib. In nvfuser/CMakeLists.txt: ``` set(TORCH_INSTALL_LIB_DIR ${TORCH_ROOT}/torch/lib) ... install(TARGETS ${NVFUSER_CODEGEN} EXPORT NvfuserTargets DESTINATION "${TORCH_INSTALL_LIB_DIR}") ``` see https://github.com/pytorch/pytorch/blob/2b32a74ab084a9379c9e46a792c95348a6fc0971/third_party/nvfuser/CMakeLists.txt#L21 Please make nvfuser lib install destination settings consistent with other libs. ### Versions since 2.0.0 cc @kevinstephano @jjsjann123
1
1,374
107,632
add user frame to shape guard
Stale, release notes: fx, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107632 Differential Revision: [D48534785](https://our.internmc.facebook.com/intern/diff/D48534785/)
2
1,375
107,631
torch.fx.Interpreter modules don't get compiled
triaged, module: dynamo
As a small example: ``` import torch import torch.fx class InterpreterModule(torch.fx.GraphModule): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.interpreter = torch.fx.Interpreter(self) def __call__(self, *args, **kwargs): return self.interpreter.run(*args, enable_io_processing=False) class Mod(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): x = x + x x = x * x return x gm = torch.fx.symbolic_trace(Mod()) imodule = InterpreterModule({}, gm.graph) opt_mod = torch.compile(imodule) for i in range(1000): opt_mod(torch.ones(2, 3)) ``` Turning on the logging, I see that we avoid compiling over `torch.fx.Interpreter` because it's getting skipfile'd. When I try adding `torch.fx.Interpreter` to the skipfile, it skips again with `GraphModule.graph`, so I gave up here and decided to record an issue instead. Not sure how easy/hard this is to support with dynamo, but it would be nice. Generally we like using `torch.fx.Interpreter` instead of the torch.fx Python codegen for two reasons: 1. You get better stack traces in the case of exceptions 2. It's easier to debug/interact with intermediates cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
4
1,376
107,630
torch._dynamo.exc.InternalTorchDynamoError: 'NoneType' object has no attribute 'guards'
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug Steps to reproduce: pytorch version: 796ce672296c9ae8d7387b18403810aa2f1048a1 torchrec version: 005727ef06cdc808aa7d263ab4f2837938a77ed2 1. Get working torchrec install (you need fbgemm-gpu and torchrec, install by source; explicitly uninstall fbgemm-gpu-nightly and torchrec-nightly if they exist) 2. Patch torchrec with ``` diff --git a/examples/golden_training/train_dlrm.py b/examples/golden_training/train_dlrm.py index 4004fbc..e22677d 100644 --- a/examples/golden_training/train_dlrm.py +++ b/examples/golden_training/train_dlrm.py @@ -151,8 +151,13 @@ def train( num_embeddings=num_embeddings, ) ) - for _ in tqdm(range(int(num_iterations)), mininterval=5.0): - train_pipeline.progress(train_iterator) + + @torch.compile() + def f(): + for _ in tqdm(range(int(num_iterations)), mininterval=5.0): + train_pipeline.progress(train_iterator) + + f() if __name__ == "__main__": ``` 3. In torchrec/examples/golden_training/ run `TORCH_LOGS=dynamo MASTER_ADDR=127.0.0.1 MASTER_PORT=29501 RANK=0 LOCAL_RANK=0 WORLD_SIZE=1 python train_dlrm.py` Backtrace ``` Traceback (most recent call last): File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 164, in <module> main() File "/data/users/ezyang/a/pytorch/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 52, in main train() File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 160, in train f() File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 157, in f for _ in tqdm(range(int(num_iterations)), mininterval=5.0): File "/data/users/ezyang/a/torchrec/examples/golden_training/train_dlrm.py", line 158, in <resume in f> train_pipeline.progress(train_iterator) File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 987, in progress self._fill_pipeline(dataloader_iter) File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 979, in _fill_pipeline self._init_pipelined_modules(self._batch_i) File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 1028, in _init_pipelined_modules self._pipelined_modules, self._model = _rewrite_model( File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 860, in _rewrite_model arg_info_list, num_found = _get_node_args(node, feature_processor_nodes) File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 707, in _get_node_args pos_arg_info_list, num_found = _get_node_args_helper( File "/data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py", line 493, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 626, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 379, in _convert_frame_assert return _compile( File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 571, in _compile raise InternalTorchDynamoError(str(e)).with_traceback( File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 554, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 476, in compile_inner out_code = transform_code_object(code, transform) File "/data/users/ezyang/a/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/a/pytorch/torch/_dynamo/convert_frame.py", line 443, in transform tracer.run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 2074, in run super().run() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/a/pytorch/torch/_dynamo/symbolic_convert.py", line 246, in inner self.output.guards.update(value.guards) torch._dynamo.exc.InternalTorchDynamoError: 'NoneType' object has no attribute 'guards' from user code: File "/data/users/ezyang/a/torchrec/torchrec/distributed/train_pipeline.py", line 656, in _get_node_args_helper and child_node in feature_processor_arguments Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information ``` Full dynamo debug log: https://gist.github.com/ezyang/deae63fd778eb63265111a3190561562 ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
3
1,377
107,627
ModuleNotFoundError: No module named 'torchgen.code_template'
module: build, triaged, module: android, oncall: mobile
### 🐛 Describe the bug I am doing android benchmarking, with reference to https://pytorch.org/tutorials/recipes/mobile_perf.html#benchmarking **Configuration Version:** Android NDK: 21.1.6352462 Android SDK: 33.0.0 Android API: 34 Cmake: 3.27.0 **Problem** When running ``` BUILD_PYTORCH_MOBILE=1 ANDROID_ABI=arm64-v8a ./scripts/build_android.sh -DBUILD_BINARY=ON ``` I got an error in cmake/VulkanCodegen.cmake:54: ``` Traceback (most recent call last): File "/usr/local/google/home/ericaliuuu/repo/pytorch/cmake/../tools/gen_vulkan_spv.py", line 14, in <module> from torchgen.code_template import CodeTemplate ModuleNotFoundError: No module named 'torchgen.code_template' CMake Error at cmake/VulkanCodegen.cmake:54 (message): Failed to gen spv.h and spv.cpp with precompiled shaders for Vulkan backend Call Stack (most recent call first): caffe2/CMakeLists.txt:6 (include) ``` ### Versions ``` $ python collect_env.py Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Debian GNU/Linux rodete (x86_64) GCC version: (Debian 12.2.0-14) 12.2.0 Clang version: 14.0.6 CMake version: version 3.27.0 Libc version: glibc-2.37 Python version: 3.11.4 (main, Jun 7 2023, 10:13:09) [GCC 12.2.0] (64-bit runtime) Python platform: Linux-6.3.11-1rodete1-amd64-x86_64-with-glibc2.37 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 24 On-line CPU(s) list: 0-23 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 12 Socket(s): 1 Stepping: 0 BogoMIPS: 4400.41 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 384 KiB (12 instances) L1i cache: 384 KiB (12 instances) L2 cache: 3 MiB (12 instances) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-23 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown Versions of relevant libraries: [pip3] No relevant packages [conda] Could not collect ``` cc @malfet @seemethere
2
1,378
107,623
[ao] updating embedding_bag support for fx and eager
release notes: quantization
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107623 Summary: our docs were saying dynamic embedding bag wasn't supported but it actually is (at least at the same level as embeddings were) it just wasn't previously tested/listed. Test Plan: python test/test_quantization.py -k "test_embedding" Reviewers: Subscribers: Tasks: Tags:
1
1,379
107,618
Add dynamo support for `autograd.Function` with multiple return values.
open source, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #110417 * __->__ #107618 * #109433 * #110290 Fix: #106389 cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
2
1,380
107,615
[Inductor] Autotuner Model Training
open source, module: inductor, module: dynamo, ciflow/inductor
```sh # Model Training ## XGB BASELINE python3 inductor_autotuner/model/data_gen.py --data_dir /scratch/bohanhou/fresh/data --model_type 0 --output_dir /scratch/bohanhou/fresh/new_experiments/xgb_baseline/ python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/xgb_baseline/train.py --data_dir new_experiments/xgb_baseline/ --output_dir new_experiments/xgb_baseline/ python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/xgb_baseline/train.py --data_dir new_experiments/xgb_baseline/ --output_dir new_experiments/xgb_baseline/ --full_train python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/test.py --data-dir new_experiments/xgb_baseline/ --model-name xgb_baseline.pkl ## NN Pointwise python3 inductor_autotuner/model/data_gen.py --data_dir /scratch/bohanhou/fresh/data --model_type 1 --output_dir /scratch/bohanhou/fresh/new_experiments/nn_pointwise/ CUDA_VISIBLE_DEVICES=0 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/nn_pointwise/train.py --data_dir new_experiments/nn_pointwise/ --output_dir new_experiments/nn_pointwise/ CUDA_VISIBLE_DEVICES=1 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/nn_pointwise/train.py --data_dir new_experiments/nn_pointwise/ --output_dir new_experiments/nn_pointwise/ --full_train CUDA_VISIBLE_DEVICES=1 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/test.py --data-dir new_experiments/nn_pointwise/ --model-name nn_pointwise_False_1400_0.09660947996426718_0.05548533260289992.pkl CUDA_VISIBLE_DEVICES=1 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/test.py --data-dir new_experiments/nn_pointwise/ --model-name nn_pointwise_True_1400_0.0420697318410453_0.02314407822228018.pkl ## NN L2R python3 inductor_autotuner/model/data_gen.py --data_dir /scratch/bohanhou/fresh/data --model_type 2 --output_dir /scratch/bohanhou/fresh/new_experiments/nn_l2r/ CUDA_VISIBLE_DEVICES=2 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/nn_l2r/train.py --data_dir new_experiments/nn_l2r/ --output_dir new_experiments/nn_l2r/ CUDA_VISIBLE_DEVICES=3 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/nn_l2r/train.py --data_dir new_experiments/nn_l2r/ --output_dir new_experiments/nn_l2r/ --full_train CUDA_VISIBLE_DEVICES=1 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/test.py --data-dir new_experiments/nn_l2r/ --model-name nn_l2r_False_700_0.011643019712382935_0.8144301772117615.pkl ## NN L2R SMALL python3 inductor_autotuner/model/data_gen.py --data_dir /scratch/bohanhou/fresh/data --model_type 3 --output_dir /scratch/bohanhou/fresh/new_experiments/nn_l2r_small/ CUDA_VISIBLE_DEVICES=4 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/nn_l2r_small/train.py --data_dir new_experiments/nn_l2r_small/ --output_dir new_experiments/nn_l2r_small/ CUDA_VISIBLE_DEVICES=5 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/nn_l2r_small/train.py --data_dir new_experiments/nn_l2r_small/ --output_dir new_experiments/nn_l2r_small/ --full_train CUDA_VISIBLE_DEVICES=5 python3 pytorch/benchmarks/dynamo/inductor_autotuner/model/test.py --data-dir new_experiments/nn_l2r_small/ --model-name nn_l2r_small_False_750_0.016344008184915007_0.8171488046646118.pkl ``` Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107615 * #107489 * #107488 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @anijain2305
1
1,381
107,611
Previous version not found
oncall: releng, triaged
### 📚 The doc issue I'm trying to download a specific version of pytorch (1.8.0 with CUDA 11.1) and I found this [page](https://pytorch.org/get-started/previous-versions/) where I could download it using the following command: `pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html` No matter what I try, I get the following error message: > ERROR: Could not find a version that satisfies the requirement torch==1.8.0+cu111 (from versions: 2.0.0, 2.0.0+cpu, 2.0.0+cu117, 2.0.0+cu118, 2.0.1, 2.0.1+cpu, 2.0.1+cu117, 2.0.1+cu118) > ERROR: No matching distribution found for torch==1.8.0+cu111 Could somebody tell me how to fix this issue? I'm kind of a newbie with PyTorch. Thanks :) ### Suggest a potential alternative/fix _No response_
3
1,382
107,607
[Fix] add validation logics to TCPStore queries
triaged, open source, module: c10d, release notes: distributed (c10d)
This PR fixes #106294. Due to the lack of request validation mechanism, TCPStore in torch mistakenly treats nmap scan messages as valid query messages, which leads to DDP OOM. The simple solution enforces the very first query from a client is a validation query with a predefined magic number. If the validation fails, the server will terminate the connection.
9
1,383
107,605
Support AMD Ryzen Unified Memory Architecture (UMA)
module: rocm, triaged
### 🚀 The feature, motivation and pitch **Background:** I am using Asus Zenbook S13 OLED, which runs AMD Ryzen 6800U APU. The APU comes with 680M Graphics Card. The memory of the graphic card use the shared memory from the system and its default is 512MB (Please reference the screenshot below). ![alt text](https://p.xfastest.com/~sinchen/AMD-Zenbook-S-13-OLED/AMD-Zenbook-S-13-OLED-7.jpg) In Windows environment the memory size would dynamically change, due to the amount of GPU memory required. But in Linux environment it shows 512MB memory (which is the result of setting Auto in BIOS) and thus when I use Stable Diffusion Pytorch would face the OOM situation. As the BIOS setting of the Notebook doesn't allow users from modifying the amount of dedicated memory so would it be possible that PyTorch could support UMA? Here is the quote from [AMD Ryzen UMA](https://www.amd.com/en/support/kb/faq/pa-280#faq-Recommendations) > The UMA Frame Buffer Size when set to Auto (default setting) allows the system to manage the amount of shared memory for graphics. In this configuration, the size of the UMA frame buffer should scale depending on the amount of available system memory, enabling the system to perform in an optimal state. Therefore, it is recommended to leave the setting on Auto, which is ideal for most types of video processing workloads. ### Alternatives _No response_ ### Additional context Another developer created [torch-apu-helper](https://github.com/pomoke/torch-apu-helper) that uses `CUDAPluggableAllocator` to take advantage of the shared memory on PyTorch. However when I try the code snippet with Stable Diffusion I got the following error: ``` RuntimeError: CUDAPluggableAllocator does not yet support getDeviceStats. If you need it, please file an issue describing your use case. ``` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
0
1,384
107,595
torch._dynamo.exc.Unsupported: call_method UserDefinedObjectVariable(defaultdict) items [] {}
good first issue, triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug occurs in torchrec FusedEmbeddingBagCollection ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
3
1,385
107,593
dynamo: don't graph break on ctx.mark_dirty
triaged, module: dynamo
### 🐛 Describe the bug Can we add dynamo support for `torch.autograd.Function::ctx.mark_dirty` without a graph break? It currently graph breaks. Repro: https://gist.github.com/vkuzo/210b2fdf0e0f14cc01e3b6af6a4c176e Logs: https://gist.github.com/vkuzo/171e765c492ae5175c558409892c5181 This will be needed for `Float8` training UX. ### Versions master cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
0
1,386
107,591
`repeat_interleave` does not support tensor indexes on different devices while `repeat` does
module: onnx, triaged
### 🐛 Describe the bug Hi, the ONNX export of a model using `repeat_interleave` with dynamic shapes fail due to the requirement of the `Tensor.repeat_interleave(repeats: Tuple[Union[Tensor, int]])` tensors to be on the same device. The `Tensor.repeat` operator does not have this requirement. Is this difference intended? ```python import torch x = torch.ones(2, 32, 64, 64).to("cuda") n_repeat = torch.tensor(4).to(torch.int32) res = x.repeat_interleave(n_repeat, 0) ``` raises `RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (when checking argument for argument index in method wrapper_CUDA__index_select)`, while ```python import torch x = torch.ones(2, 32, 64, 64).to("cuda") n_repeat = torch.tensor(4).to(torch.int32) res = x.repeat(n_repeat, 1, 1, 1) ``` do not. This is an issue for the ONNX export of `repeat_interleave` on CUDA device where one the indexes of the repeats is dynamic (for example [here](https://github.com/huggingface/transformers/blob/2df24228d68872d79304b932a68cf56de3061f5b/src/transformers/models/sam/modeling_sam.py#L510)) cc @justinchuby I wonder if the issue comes from the dispatch being on `repeat_interleave_cuda` (instead of ), in turn calling `compute_cuda_kernel` that assumes that the `repeat_ptr` points to data on the device? ### Versions PyTorch version: 2.1.0.dev20230820+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.9.16 (main, May 15 2023, 23:46:34) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1023-aws-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA A100-SXM4-80GB GPU 4: NVIDIA A100-SXM4-80GB GPU 5: NVIDIA A100-SXM4-80GB GPU 6: NVIDIA A100-SXM4-80GB GPU 7: NVIDIA A100-SXM4-80GB Nvidia driver version: 510.73.08 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 96 On-line CPU(s) list: 0-95 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz Stepping: 7 CPU MHz: 2999.998 BogoMIPS: 5999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 1.5 MiB L1i cache: 1.5 MiB L2 cache: 48 MiB L3 cache: 71.5 MiB NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke Versions of relevant libraries: [pip3] mypy-protobuf==3.4.0 [pip3] numpy==1.24.3 [pip3] pytorch-triton==2.1.0+e6216047b8 [pip3] torch==2.1.0.dev20230820+cu118 [pip3] torch-ort==1.15.0 [pip3] triton==2.0.0 [conda] numpy 1.24.3 pypi_0 pypi [conda] pytorch-triton 2.1.0+e6216047b8 pypi_0 pypi [conda] torch 2.1.0.dev20230820+cu118 pypi_0 pypi [conda] torch-ort 1.15.0 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi
2
1,387
107,590
Select on a coalesced COO tensor returns COO tensor with coalesce flag set to False.
module: sparse, feature, triaged
## Issue description As in the title. The result of `select` ought to be always coalesced when its input tensor is a coalesced COO tensor because the ordering of indices in the select result is the same as in the input tensor indices. ## Code example ```python >>> a = torch.tensor([[0, 1, 2], [3, 4, 5], [5, 6, 7]]).to_sparse() >>> a.is_coalesced() True >>> a.select(0, 0) tensor(indices=tensor([[1, 2]]), values=tensor([1, 2]), size=(3,), nnz=2, layout=torch.sparse_coo) >>> a.select(0, 0).is_coalesced() False ``` The expected result is `True`. ## System Info - PyTorch version: main cc @alexsamardzic @nikitaved @cpuhrsch @amjames @bhosmer
0
1,388
107,587
Run transformers.OPTForCausalLM(config=config) occurs 'GraphModule' object has no attribute 'compile_subgraph_reason'
triaged, oncall: pt2, module: export
### 🐛 Describe the bug I try to convert whole opt model fw/bw without any break. It seems same to closed issue https://github.com/pytorch/pytorch/issues/97319, which is not solved in nighty version! test.py ``` import transformers import torch._dynamo torch._dynamo.config.suppress_errors = False def make_data(model, device): batch_size = 1 seq_len = 16 input = torch.randint( low=0, high=model.config.vocab_size, size=(batch_size, seq_len), device=device ) label = torch.randint(low=0, high=model.config.vocab_size, size=(batch_size, seq_len), device=device) return input, label device = torch.device('cuda') config = transformers.AutoConfig.from_pretrained("facebook/opt-125m") config.tie_word_embeddings = False model = transformers.OPTForCausalLM(config=config) model.to(device) optimized_model = torch.compile(model, backend='inductor',options={'trace.enabled':True,'trace.graph_diagram':True}) data = make_data(model, device) model.zero_grad(set_to_none=True) with torch.cuda.amp.autocast(enabled=True, dtype=torch.float16): torch._dynamo.explain(model, data[0]) ``` occurs: ``` Traceback (most recent call last): File "/home/training/test.py", line 26, in <module> torch._dynamo.explain(model, data[0]) File "/usr/lib/python3.9/unittest/mock.py", line 1336, in patched return func(*newargs, **newkeywargs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 702, in explain return inner(*extra_args, **extra_kwargs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 661, in inner opt_f(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 333, in _fn return fn(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/training/torch-byteir-training/transformers/models/opt/modeling_opt.py", line 944, in forward outputs = self.model.decoder( File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/training/torch-byteir-training/transformers/models/opt/modeling_opt.py", line 650, in forward causal_attention_mask = self._prepare_decoder_attention_mask( File "/usr/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 493, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/usr/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 637, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/usr/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 133, in _fn return fn(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 371, in _convert_frame_assert return _compile( File "/usr/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 567, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/usr/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 466, in compile_inner out_code = transform_code_object(code, transform) File "/usr/lib/python3.9/site-packages/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/usr/lib/python3.9/site-packages/torch/_dynamo/convert_frame.py", line 433, in transform tracer.run() File "/usr/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2071, in run super().run() File "/usr/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 724, in run and self.step() File "/usr/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 688, in step getattr(self, inst.opname)(inst) File "/usr/lib/python3.9/site-packages/torch/_dynamo/symbolic_convert.py", line 2159, in RETURN_VALUE self.output.compile_subgraph( File "/usr/lib/python3.9/site-packages/torch/_dynamo/output_graph.py", line 829, in compile_subgraph self.compile_and_call_fx_graph(tx, list(reversed(stack_values)), root) File "/usr/lib/python3.9/contextlib.py", line 79, in inner return func(*args, **kwds) File "/usr/lib/python3.9/site-packages/torch/_dynamo/output_graph.py", line 953, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/usr/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 181, in time_wrapper r = func(*args, **kwargs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/output_graph.py", line 1020, in call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/usr/lib/python3.9/site-packages/torch/_dynamo/output_graph.py", line 1005, in call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/usr/lib/python3.9/site-packages/torch/_dynamo/repro/after_dynamo.py", line 95, in debug_wrapper compiled_gm = compiler_fn(copy.deepcopy(gm), example_inputs) File "/usr/lib/python3.9/site-packages/torch/_dynamo/eval_frame.py", line 644, in dynamo_graph_accumulating_compiler gm, graphs, op_count, ops_per_graph, break_reasons = _explain_graph_detail( File "/usr/lib/python3.9/site-packages/torch/_dynamo/backends/debugging.py", line 232, in _explain_graph_detail if gm.compile_subgraph_reason.graph_break: File "/usr/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1695, in __getattr__ raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") torch._dynamo.exc.BackendCompilerFailed: backend='dynamo_graph_accumulating_compiler' raised: AttributeError: 'GraphModule' object has no attribute 'compile_subgraph_reason' ``` break at: ``` # File "/home/training/torch-byteir-training/transformers/models/opt/modeling_opt.py", line 650, in forward causal_attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) ``` ### Versions --extra-index-url https://download.pytorch.org/whl/nightly/cu118 --pre torch==2.1.0.dev20230820+cu118 cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
4
1,389
107,586
Add support for float8_e4m3fnuz and _e5m2fnuz
module: cpu, triaged, open source, NNC, release notes: quantization, release notes: linalg_frontend, skip-pr-sanity-checks
This PR relates to the feature in [this feature submission](https://docs.google.com/document/d/1pF2T1xz54IPg1jG7FhykbrpbcJZVelQw0v8vBaoLkfs/edit). It has been based on #104242 which adds similar float8 types. These new types added in this PR are described in the paper at https://arxiv.org/abs/2206.02915. A brief description and comparison of the types with other float8 types can be also found in the [OpenXLA RFC](https://github.com/openxla/stablehlo/blob/main/rfcs/20230321-fp8_fnuz.md). cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @EikanWang @albanD
13
1,390
107,583
Enable Mypy Checking in torch/_inductor/triton_heuristics.py
triaged, open source, Stale, module: inductor, ciflow/inductor
Fixes #105230 Summary: As suggested in https://github.com/pytorch/pytorch/issues/105230 mypy checking is enabled in torch/_inductor/triton_heuristics.py After Fix: mypy --follow-imports=skip torch/_inductor/triton_heuristics.py Success: no issues found in 1 source file cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @Xia-Weiwen @ngimel
4
1,391
107,582
[FakeTensor] `to` doesn't error with `allow_non_fake_inputs=False`
triaged, module: fakeTensor
### 🐛 Describe the bug ```python import torch from torch._subclasses.fake_tensor import FakeTensorMode number = 0.5 const = torch.tensor(number) with FakeTensorMode(allow_non_fake_inputs=False): x = const.sin() # Fails as expected `Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode with 'allow_non_fake_inputs'.` x = const.to(torch.float) # This passes print(x) # tensor(0.5) x = const.to(torch.int) # This passes print(x) # FakeTensor(..., size=(), dtype=torch.int32) ``` cc: @zou3519 ### Versions main
0
1,392
107,581
[LibTorch/iOS] Building with METAL support script is freezing
triaged, oncall: mobile, module: ios
### 🐛 Describe the bug I am trying to build the library to support METAL on iOS, I am executing this command after cloning the repo: `IOS_ARCH=arm64 USE_PYTORCH_METAL=1 ./scripts/build_ios.sh` However, it just freezes here at 86%: ``` Consolidate compiler generated dependencies of target torch_cpu [ 86%] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/native/cpu/ReduceOpsKernel.cpp.DEFAULT.cpp.o ``` ### Versions LibTorch-Lite (1.13.0.1): LibTorch-Lite/Core (= 1.13.0.1) LibTorch-Lite/Core (1.13.0.1): LibTorch-Lite/Torch LibTorch-Lite/Torch (1.13.0.1) cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
6
1,393
107,580
Doc is unclear on how to install pytorch with Cuda via pip
triaged, topic: docs
### 📚 The doc issue ![image](https://github.com/pytorch/pytorch/assets/35759490/17b506aa-ff3a-40cf-baac-63bb66c486ac) I've been looking on how to install torch with CUDA via pip for almost one day and the doc is absolutely not helping on how to do so. ### Suggest a potential alternative/fix Explain clearly how to install pytorch using pip with CUDA or not. ``` To install pytorch with CUDA using pip, you first need to install CUDA on your system if it is compatible with it and then install pytorch with the following command in your shell: `pip install ...........` ```
9
1,394
107,575
halo,I continue pretrain llama2-13B model ,but save state_dict is about 50GB file
oncall: distributed, triaged
### 🐛 Describe the bug @record def training_function(args): # get some base rank info # metric = evaluate.load("glue", "mrpc") world_size = os.getenv("WORLD_SIZE") rank = os.getenv("RANK") local_rank = os.getenv("LOCAL_RANK") assert world_size is not None, f"WORLD_SIZE is needed {world_size}" assert rank is not None, f"RANK is needed {rank}" assert local_rank is not None, f"RANK is needed {local_rank}" world_size = int(world_size) rank = int(rank) local_rank = int(local_rank) # Instantiate the model (we build the model here so that the seed also control new weights initialization) # Load the pre-trained model and setup its configuration model = LlamaForCausalLM.from_pretrained( args.model_name_and_path, load_in_8bit=True if args.quantization else None, device_map="auto" if args.quantization else None, return_dict=True ) model.train() # Initialize accelerator gradient_accumulation_steps = args.gradient_accumulation_steps if args.with_tracking: accelerator = Accelerator( gradient_accumulation_steps=gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", project_dir=args.project_dir) else: accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps, mixed_precision=args.mixed_precision) # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: run = os.path.split(__file__)[-1].split(".")[0] tracker_cfg = { 'lr': args.lr, 'per_device_batch_size': args.batch_size, 'seed': args.seed, 'num_epoch': args.num_epochs } accelerator.init_trackers(run, tracker_cfg) accelerator.print(f"***** Total GPUS: {accelerator.num_processes} *****") # set seed set_seed(args.seed) # epoch or steps if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None if hasattr(args.lora_save_steps, "isdigit"): if args.lora_save_steps == "epoch": lora_save_steps = args.lora_save_steps elif args.lora_save_steps.isdigit(): lora_save_steps = int(args.lora_save_steps) else: raise ValueError( f"Argument `lora_save_steps` must be either a number or `epoch`. `{args.lora_save_steps}` passed." ) else: lora_save_steps = None # Load the tokenizer and add special tokens if args.token_name: accelerator.print(f'Use tokenizer: [{args.token_name}]') tokenizer = LlamaTokenizer.from_pretrained(args.token_name, ) model.config.vocab_size = tokenizer.vocab_size model.config.pad_token_id = tokenizer.pad_token_id model.config.bos_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.resize_token_embeddings(tokenizer.vocab_size) else: tokenizer = LlamaTokenizer.from_pretrained(args.model_name_and_path) tokenizer.add_special_tokens( { "pad_token": "<PAD>", } ) # get processed dataset # vol = os.getenv('LPAI_INPUT_DATA_0') # dataset_all = load_from_disk(f'{vol}/NLP/bigDatasets/pretrain_D/tokened_grouped_eval') dataset_all = load_from_disk(args.dataset_path) dataset_all = dataset_all.train_test_split(test_size=0.01) dataset_train = dataset_all['train'] dataset_val = dataset_all['test'] train_sampler = None val_sampler = None # print(f'dist.get_rank() ->{dist.get_rank()}, dist.get_world_size() -> {dist.get_world_size()}') def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding=True, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) if args.enable_fsdp: train_sampler = DistributedSampler( dataset_train, rank=dist.get_rank(), # rank=accelerator.device, seed=args.seed, num_replicas=dist.get_world_size(), shuffle=True, ) if args.run_validation: val_sampler = DistributedSampler( dataset_val, rank=dist.get_rank(), # rank=accelerator.device, num_replicas=dist.get_world_size(), ) train_dataloader = torch.utils.data.DataLoader( dataset_train, batch_size=args.batch_size, num_workers=args.num_workers_dataloader, pin_memory=True, sampler=train_sampler if train_sampler else None, drop_last=True, # collate_fn=default_data_collator, collate_fn=collate_fn, ) if args.run_validation: eval_dataloader = torch.utils.data.DataLoader( dataset_val, batch_size=args.val_batch_size, num_workers=args.num_workers_dataloader, pin_memory=True, sampler=val_sampler if val_sampler else None, drop_last=True, # collate_fn=default_data_collator, collate_fn=collate_fn, ) if args.use_peft: model.to(torch.bfloat16) if args.resume_from_lora: assert args.resume_from_checkpoint is None, 'lora adapter or checkpoint just need use any one' if args.resume_from_lora is not None or args.resume_from_lora != "": accelerator.print(f"Resumeing from lora_adapter: {args.resume_from_lora}") model=PeftModel.from_pretrained(model, args.resume_from_lora, is_trainable=True) model.print_trainable_parameters() else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last accelerator.print(f"Resumeing from lora_adapter: {path}") model=PeftModel.from_pretrained(model, path, is_trainable=True) model.print_trainable_parameters() else: # target_modules = args.lora_modules.split(',') # accelerator.print(target_modules) # model.to(torch.bfloat16) peft_config = LoraConfig( r=args.lora_r, lora_alpha=32, # target_modules=target_modules, target_modules=["q_proj", "v_proj", "o_proj", "k_proj", "gate_proj", "up_proj"], bias="none", task_type="CAUSAL_LM", lora_dropout=0.05, inference_mode=False ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() mixed_precision_policy, wrapping_policy = get_policies(fsdp_config, rank) my_auto_wrapping_policy = fsdp_auto_wrap_policy(model, LlamaDecoderLayer) bfSixteen = MixedPrecision( param_dtype=torch.bfloat16, # Gradient communication precision. reduce_dtype=torch.bfloat16, # Buffer precision. buffer_dtype=torch.bfloat16, cast_forward_inputs=True, ) torch.cuda.set_device(local_rank) model = FSDP( model, auto_wrap_policy= my_auto_wrapping_policy if args.use_peft else wrapping_policy, # mixed_precision=mixed_precision_policy if not fsdp_config.pure_bf16 else None, mixed_precision=bfSixteen, sharding_strategy=fsdp_config.sharding_strategy, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, device_id=torch.cuda.current_device(), # forward_prefetch=True, limit_all_gathers=True, ) if fsdp_config.fsdp_activation_checkpointing: policies.apply_fsdp_checkpointing(model) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 optimizer = AdamW(params=model.parameters(), lr=args.lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=500, num_training_steps=(len(train_dataloader) * args.num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( optimizer, train_dataloader, eval_dataloader, lr_scheduler ) total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps num_training_steps=int((len(train_dataloader) * args.num_epochs) // gradient_accumulation_steps) accelerator.print("***** Running training *****") accelerator.print(f" Num examples = {len(dataset_train)}") accelerator.print(f" Num train_loader = {len(train_dataloader)}") accelerator.print(f" Num eval_loader = {len(eval_dataloader)}") accelerator.print(f" Num Epochs = {args.num_epochs}") accelerator.print(f" Instantaneous batch size per device = {args.batch_size}") accelerator.print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") accelerator.print(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") accelerator.print(f" Total optimization steps = {num_training_steps}") progress_bar = tqdm(range(num_training_steps), disable=not accelerator.is_local_main_process) # Potentially load in the weights and states from a previous save if args.resume_from_lora: assert args.resume_from_checkpoint is None, 'lora adapter or checkpoint just need use any one' if args.resume_from_lora is not None or args.resume_from_lora != "": path = os.path.basename(args.resume_from_lora) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("lora_epoch_", "")) + 1 resume_step = None resume_step_r = starting_epoch * len(train_dataloader) else: resume_step_r = int(training_difference.replace("lora_step_", "")) starting_epoch = resume_step_r // len(train_dataloader) resume_step = resume_step_r - (starting_epoch * len(train_dataloader)) accelerator.print(f'***** In use_peft resume_step {resume_step}') if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"***** Resumed from checkpoint: {args.resume_from_checkpoint} *****") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last accelerator.print(f"***** Resumed from checkpoint: {path} *****") accelerator.load_state(args.resume_from_checkpoint) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None resume_step_r = starting_epoch * len(train_dataloader) else: resume_step_r = int(training_difference.replace("step_", "")) starting_epoch = resume_step_r // len(train_dataloader) resume_step = resume_step_r - (starting_epoch * len(train_dataloader)) accelerator.print(f'***** In checkpoint resume_step {resume_step}') # overall_step = resume_step // args.gradient_accumulation_steps # update the progress_bar if load from checkpoint # Create a gradient scaler for fp16 if train_config.use_fp16 and train_config.enable_fsdp: scaler = ShardedGradScaler() elif train_config.use_fp16 and not train_config.enable_fsdp: scaler = torch.cuda.amp.GradScaler() if train_config.enable_fsdp: world_size = int(os.environ["WORLD_SIZE"]) # Now we train the model for epoch in range(starting_epoch, args.num_epochs): model.train() train_sampler.set_epoch(epoch) accelerator.print(f'***** Ins loop epoch and distribute set epoch *****') if args.with_tracking: total_loss = 0 if (args.resume_from_checkpoint or args.resume_from_lora) and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step accelerator.print(f'accelerator.skip_first_batches -> resume_step {resume_step}') # active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) active_dataloader = skip_first_batches(train_dataloader, resume_step) overall_step += resume_step_r progress_bar.update(overall_step) accelerator.print(f'***** oversteps {overall_step} skip train loader *****') else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader first_f = False for step, batch in enumerate(active_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. # batch.to(accelerator.device) with accelerator.accumulate(model): if not first_f: log_ids = batch['input_ids'] accelerator.print(tokenizer.batch_decode(log_ids)) first_f = True for key in batch.keys(): if args.enable_fsdp: batch[key] = batch[key].to(accelerator.device) # batch[key] = batch[key].to(local_rank) else: batch[key] = batch[key].to('cuda:0') loss = model(**batch).loss # loss = loss / gradient_accumulation_steps # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) accelerator.log({"loss": loss.item()}, step=step) accelerator.print(f"step: {overall_step} loss: {loss.item()}") if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) # if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() if accelerator.sync_gradients: overall_step += 1 progress_bar.update(1) if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) # 0.0 # keep_fp32_wrapper # create singleton saving policies to avoid making over and over fullstate_save_policy = FullStateDictConfig(offload_to_cpu=True, rank0_only=True) with FSDP.state_dict_type( model, StateDictType.FULL_STATE_DICT, fullstate_save_policy ): accelerator.print(f'***** model.state_dict() {model.state_dict().keys()} *****') cpu_state = model.state_dict() # pwd_dir = Path('./').absolute() / args.output_dir pwd_dir = os.path.join(args.output_dir, f'epoch_model.pth') # torch.save(cpu_state, args.output_dir) # accelerator.print(f'***** pwd dir: {pwd_dir} *****') accelerator.save(cpu_state, pwd_dir) ### Versions Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 18.04.6 LTS (x86_64) GCC version: (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0 Clang version: Could not collect CMake version: version 3.26.0 Libc version: glibc-2.27 Python version: 3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0] (64-bit runtime) Python platform: Linux-3.10.0-1160.42.2.el7.x86_64-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB GPU 1: NVIDIA A100-SXM4-40GB GPU 2: NVIDIA A100-SXM4-40GB GPU 3: NVIDIA A100-SXM4-40GB GPU 4: NVIDIA A100-SXM4-40GB GPU 5: NVIDIA A100-SXM4-40GB GPU 6: NVIDIA A100-SXM4-40GB GPU 7: NVIDIA A100-SXM4-40GB Nvidia driver version: 470.57.02 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.0.4 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.0.4 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: 架构: x86_64 CPU 运行模式: 32-bit, 64-bit 字节序: Little Endian CPU: 112 在线 CPU 列表: 0-111 每个核的线程数: 2 每个座的核数: 28 座: 2 NUMA 节点: 2 厂商 ID: GenuineIntel CPU 系列: 6 型号: 106 型号名称: Intel(R) Xeon(R) Platinum 8350C CPU @ 2.60GHz 步进: 6 CPU MHz: 2593.904 BogoMIPS: 5187.80 超管理器厂商: KVM 虚拟化类型: 完全 L1d 缓存: 48K L1i 缓存: 32K L2 缓存: 1280K L3 缓存: 49152K NUMA 节点0 CPU: 0-55 NUMA 节点1 CPU: 56-111 标记: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc eagerfpu pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 arat avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq spec_ctrl arch_capabilities Versions of relevant libraries: [pip3] flake8==3.8.4 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.21.5 [pip3] pytorch-lightning==1.6.5 [pip3] pytorch-metric-learning==1.5.2 [pip3] pytorch-ranger==0.1.1 [pip3] pytorch-wpe==0.0.1 [pip3] torch==2.0.1 [pip3] torch-audiomentations==0.11.0 [pip3] torch-complex==0.4.3 [pip3] torch-optimizer==0.1.0 [pip3] torch-pitch-shift==1.2.2 [pip3] torch-stoi==0.1.2 [pip3] torchaudio==2.0.2 [pip3] torchmetrics==0.7.2 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] numpy 1.21.5 pypi_0 pypi [conda] pytorch-lightning 1.6.5 pypi_0 pypi [conda] pytorch-metric-learning 1.5.2 pypi_0 pypi [conda] pytorch-ranger 0.1.1 pypi_0 pypi [conda] pytorch-wpe 0.0.1 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torch-audiomentations 0.11.0 pypi_0 pypi [conda] torch-complex 0.4.3 pypi_0 pypi [conda] torch-optimizer 0.1.0 pypi_0 pypi [conda] torch-pitch-shift 1.2.2 pypi_0 pypi [conda] torch-stoi 0.1.2 pypi_0 pypi [conda] torchaudio 2.0.2 pypi_0 pypi [conda] torchmetrics 0.7.2 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu
2
1,395
107,574
[xla hash update] update the pinned xla hash
open source, Stale, ciflow/trunk, topic: not user facing, ciflow/inductor, merging
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/_update-commit-hash.yml). Update the pinned xla hash.
5
1,396
107,573
caching keys+values in TransformerDecoderLayer for faster inference
triaged, oncall: transformer/mha
### 🚀 The feature, motivation and pitch In autoregressive generation, at step k, we only need to compute the new token k+1, based on all the previous ones. This can be done in $O(k d)$ for each step, if we cache previous examples. However, the current nn.TransformerDecoderLayer (and Encoder) does not support this. Therefore, currently the most efficient inference method would be in $O(k^2 d)$ for each step. ### Alternatives add an option to feed in previously calculated keys+values, and if they appear, avoid some unneeded computations. ### Additional context _No response_ cc @jbschlosser @bhosmer @cpuhrsch @erichan1 @drisspg
2
1,397
107,568
RuntimeError: Unsupported value kind: Tensor while torch.jit.script nn.Module
oncall: jit
### 🐛 Describe the bug I trying to scripting Lovasz loss function that I found online. There are any error that occurs, but i have fixed them. However, I am reaching a dead-end right now. The error is RuntimeError: Unsupported value kind: Tensor. It doesn't sound right at all because TorchScript does support Tensor. Please help me! This is my code: ``` class LovaszLoss(nn.Module): def __init__(self, per_image=False): super().__init__() self.per_image = per_image def forward(self, logit: torch.Tensor, labels: torch.Tensor): return lovasz_hinge(logit, labels, per_image=self.per_image) def lovasz_hinge(logits, labels, per_image: bool = True, ignore=None): r""" Binary Lovasz hinge loss logits: [B, H, W] Variable, logits at each pixel (between -\infty and +\infty) labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) per_image: compute the loss per image instead of per batch ignore: void class id """ if per_image: loss_list = [] for log, lab in zip(logits, labels): loss_list.append(lovasz_hinge_flat( *flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore))) loss = torch.cat(loss_list, 0).mean() else: loss = lovasz_hinge_flat( *flatten_binary_scores(logits, labels, ignore)) return loss def lovasz_hinge_flat(logits, labels): r""" Binary Lovasz hinge loss logits: [P] Variable, logits at each prediction (between -\infty and +\infty) labels: [P] Tensor, binary ground truth labels (0 or 1) ignore: label to ignore """ if len(labels) == 0: # only void pixels, the gradients should be 0 return logits.sum() * 0.0 signs = 2.0 * labels.float() - 1.0 errors = 1.0 - logits * signs errors_sorted, perm = torch.sort(errors, dim=0, descending=True) perm = perm.data gt_sorted = labels[perm] grad = lovasz_grad(gt_sorted) loss = torch.dot(F.elu(errors_sorted) + 1, grad) return loss def flatten_binary_scores(scores, labels, ignore=None): """Flattens predictions in the batch (binary case) Remove labels equal to 'ignore'.""" scores = scores.view(-1) labels = labels.view(-1) if ignore is None: return scores, labels valid = labels != ignore vscores = scores[valid] vlabels = labels[valid] return vscores, vlabels def lovasz_grad(gt_sorted): """Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1.0 - intersection / union if p > 1: # cover 1-pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard if __name__ == "__main__": x = torch.rand((1, 3, 256, 256)) y = torch.rand((1, 3, 256, 256)) loss = LovaszLoss() loss = torch.jit.script(loss) print(loss(x, y)) ``` ### Versions Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.2 Libc version: glibc-2.35 Python version: 3.11.4 (main, Jul 5 2023, 13:45:01) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.2.0-26-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2060 Nvidia driver version: 535.86.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz CPU family: 6 Model: 165 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 2 CPU max MHz: 5000,0000 CPU min MHz: 800,0000 BogoMIPS: 5199.98 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp pku ospke md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 1,5 MiB (6 instances) L3 cache: 12 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] pytorch-lightning==2.0.7 [pip3] torch==2.0.1 [pip3] torchmetrics==1.0.3 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [pip3] tritonclient==2.36.0 [conda] numpy 1.25.2 pypi_0 pypi [conda] pytorch-lightning 2.0.7 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torchmetrics 1.0.3 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi [conda] tritonclient 2.36.0 pypi_0 pypi cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
1,398
107,567
Hacked up SHAPE_ENV provenance
release notes: fx, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #107567 * #107439 * #107471 * #107562 * #107532 * #107530 * #107516 * #107505 Signed-off-by: Edward Z. Yang <ezyang@meta.com> cc @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @chenyang78 @aakhundov
1
1,399
107,566
[pt2] enable meta tests for `foreach` ops
open source, Stale
Stack from [ghstack](https://github.com/ezyang/ghstack): * __->__ #107566 * #107560
3
1,400
107,561
Dynamo guards on unused Tensor variables
triaged, oncall: pt2, module: dynamo
### 🐛 Describe the bug ``` import torch @torch.compile(backend="eager") def f(x, y): return x * 2 f(torch.randn(2), torch.randn(3)) ``` Produces these guards: ``` (/home/ezyang/local/b/pytorch-env) [ezyang@devgpu005.nha1 ~/local/b/pytorch (fe888068)]$ TORCH_LOGS=guards python n.py [2023-08-20 17:50:05,934] [0/0] torch._dynamo.guards.__guards: [DEBUG] GUARDS: [2023-08-20 17:50:05,934] [0/0] torch._dynamo.guards.__guards: [DEBUG] hasattr(L['x'], '_dynamo_dynamic_indices') == False # _dynamo/variables/builder.py:1237 in wrap_fx_proxy_cls [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] hasattr(L['y'], '_dynamo_dynamic_indices') == False # _dynamo/variables/builder.py:1237 in wrap_fx_proxy_cls [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] ___is_grad_enabled() # _dynamo/output_graph.py:345 in init_ambient_guards [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] not ___are_deterministic_algorithms_enabled() # _dynamo/output_graph.py:341 in init_ambient_guards [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] ___is_torch_function_enabled() # _dynamo/output_graph.py:349 in init_ambient_guards [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] utils_device.CURRENT_DEVICE == None # _dynamo/output_graph.py:347 in init_ambient_guards [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] check_tensor(L['x'], Tensor, DispatchKeySet(CPU, BackendSelect, ADInplaceOrView, AutogradCPU), torch.float32, device=None, requires_grad=False, size=[2], stride=[1]) # _dynamo/variables/builder.py:1237 in wrap_fx_proxy_cls [2023-08-20 17:50:05,935] [0/0] torch._dynamo.guards.__guards: [DEBUG] check_tensor(L['y'], Tensor, DispatchKeySet(CPU, BackendSelect, ADInplaceOrView, AutogradCPU), torch.float32, device=None, requires_grad=False, size=[3], stride=[1]) # _dynamo/variables/builder.py:1237 in wrap_fx_proxy_cls ``` Guarding on y is unnecessary because it is unused. In fact, we know to prune it from the graph we compile, but we don't know to avoid doing guard tests on it. ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov
3