Serial Number
int64
1
6k
Issue Number
int64
75.6k
112k
Title
stringlengths
3
357
Labels
stringlengths
3
241
βŒ€
Body
stringlengths
9
74.5k
βŒ€
Comments
int64
0
867
2,301
103,581
Passing dict in datapipe/dataset will have memory leak problem
triaged, module: data
### πŸ› Describe the bug Passing dict in datapipe or dataset will casuse memory leak ```python from copy import deepcopy import gc from memory_profiler import profile import torch from torch.utils.data import DataLoader from torchdata.datapipes.iter import IterableWrapper from torchdata.dataloader2 import DataLoader2 def build_dp1(num_batch): item_list = list() for idx in range(num_batch): item = { "id": idx, "clean": { "path": str(idx), "id": idx, }, "noisy":{ "path": str(idx), "id": idx, }, } item_list.append(item) return IterableWrapper(item_list) def build_dp2(num_batch): item_list = list() for idx in range(num_batch): item = { "id": idx, "clean_path": str(idx), "clean_id": idx, "noisy_path": str(idx), "noisy_id": idx, } item_list.append(item) return IterableWrapper(item_list) def add_audio1(item): item["clean"]["audio"] = torch.randn([5000, 10]) item["noisy"]["audio"] = torch.randn([5000, 10]) return item def add_audio2(item): new_item = deepcopy(item) new_item["clean"]["audio"] = torch.randn([5000, 10]) new_item["noisy"]["audio"] = torch.randn([5000, 10]) return new_item def add_audio3(item): item["clean_audio"] = torch.randn([5000, 10]) item["noisy_audio"] = torch.randn([5000, 10]) return item class MyDataset1(torch.utils.data.Dataset): def __init__(self, datalen): super().__init__() self.datalen = datalen def __getitem__(self, index): item = { "id": index, "clean_path": str(index), "clean_id": index, "clean_audio": torch.randn([5000, 10]), "noisy_path": str(index), "noisy_id": index, "noisy_audio": torch.randn([5000, 10]), } return item def __len__(self): return self.datalen class MyDataset2(torch.utils.data.Dataset): def __init__(self, datalen): super().__init__() self.datalen = datalen def __getitem__(self, index): return torch.randn([5000, 10]), torch.randn([5000, 10]) def __len__(self): return self.datalen @profile def datapipe(num_batch): dp = build_dp2(num_batch).map(add_audio3) dl = DataLoader2(dp) for i, batch in enumerate(dl): pass pass del dp, dl @profile def dataset1(num_batch): ds = MyDataset1(num_batch) dl = DataLoader(ds) for i, batch in enumerate(dl): pass pass del ds, dl @profile def dataset2(num_batch): ds = MyDataset2(num_batch) dl = DataLoader(ds) for i, batch in enumerate(dl): pass pass del ds, dl num_batch = 1000 gc.collect() datapipe(num_batch) gc.collect() dataset1(num_batch) gc.collect() dataset2(num_batch) gc.collect() num_batch = 5000 gc.collect() datapipe(num_batch) gc.collect() dataset1(num_batch) gc.collect() dataset2(num_batch) gc.collect() ``` output: ``` Filename: /home/haoyu.tang/uim_se/test_datapipes.py Line # Mem usage Increment Occurrences Line Contents ============================================================= 88 328.1 MiB 328.1 MiB 1 @profile 89 def datapipe(num_batch): 90 328.4 MiB 0.3 MiB 1 dp = build_dp2(num_batch).map(add_audio3) 91 330.6 MiB 2.2 MiB 1 dl = DataLoader2(dp) 92 714.3 MiB 383.6 MiB 1001 for i, batch in enumerate(dl): 93 714.3 MiB 0.0 MiB 1000 pass 94 714.3 MiB 0.0 MiB 1 pass 95 714.3 MiB 0.0 MiB 1 del dp, dl Filename: /home/haoyu.tang/uim_se/test_datapipes.py Line # Mem usage Increment Occurrences Line Contents ============================================================= 97 714.4 MiB 714.4 MiB 1 @profile 98 def dataset1(num_batch): 99 714.4 MiB 0.0 MiB 1 ds = MyDataset1(num_batch) 100 714.4 MiB 0.0 MiB 1 dl = DataLoader(ds) 101 716.9 MiB 2.5 MiB 1001 for i, batch in enumerate(dl): 102 716.9 MiB 0.0 MiB 1000 pass 103 716.9 MiB 0.0 MiB 1 pass 104 716.9 MiB 0.0 MiB 1 del ds, dl Filename: /home/haoyu.tang/uim_se/test_datapipes.py Line # Mem usage Increment Occurrences Line Contents ============================================================= 106 716.9 MiB 716.9 MiB 1 @profile 107 def dataset2(num_batch): 108 716.9 MiB 0.0 MiB 1 ds = MyDataset2(num_batch) 109 716.9 MiB 0.0 MiB 1 dl = DataLoader(ds) 110 716.9 MiB 0.0 MiB 1001 for i, batch in enumerate(dl): 111 716.9 MiB 0.0 MiB 1000 pass 112 716.9 MiB 0.0 MiB 1 pass 113 716.9 MiB 0.0 MiB 1 del ds, dl Filename: /home/haoyu.tang/uim_se/test_datapipes.py Line # Mem usage Increment Occurrences Line Contents ============================================================= 88 716.9 MiB 716.9 MiB 1 @profile 89 def datapipe(num_batch): 90 717.0 MiB 0.0 MiB 1 dp = build_dp2(num_batch).map(add_audio3) 91 721.6 MiB 4.6 MiB 1 dl = DataLoader2(dp) 92 2254.1 MiB 1532.6 MiB 5001 for i, batch in enumerate(dl): 93 2254.1 MiB 0.0 MiB 5000 pass 94 2254.1 MiB 0.0 MiB 1 pass 95 2252.1 MiB -2.0 MiB 1 del dp, dl Filename: /home/haoyu.tang/uim_se/test_datapipes.py Line # Mem usage Increment Occurrences Line Contents ============================================================= 97 2251.5 MiB 2251.5 MiB 1 @profile 98 def dataset1(num_batch): 99 2251.5 MiB 0.0 MiB 1 ds = MyDataset1(num_batch) 100 2251.5 MiB 0.0 MiB 1 dl = DataLoader(ds) 101 2251.5 MiB -7642068.4 MiB 5001 for i, batch in enumerate(dl): 102 2251.5 MiB -7640538.2 MiB 5000 pass 103 721.3 MiB -1530.2 MiB 1 pass 104 721.3 MiB 0.0 MiB 1 del ds, dl Filename: /home/haoyu.tang/uim_se/test_datapipes.py Line # Mem usage Increment Occurrences Line Contents ============================================================= 106 721.3 MiB 721.3 MiB 1 @profile 107 def dataset2(num_batch): 108 721.3 MiB 0.0 MiB 1 ds = MyDataset2(num_batch) 109 721.3 MiB 0.0 MiB 1 dl = DataLoader(ds) 110 721.3 MiB 0.0 MiB 5001 for i, batch in enumerate(dl): 111 721.3 MiB 0.0 MiB 5000 pass 112 721.3 MiB 0.0 MiB 1 pass 113 721.3 MiB 0.0 MiB 1 del ds, dl ``` It is clear that is pasing the dict of tensor memory will leak but list of tensor will not. I used dict of tensor in my model training, and I found the training faied multiple times all since of memory leak. And I tried to used Tensordict(https://pytorch.org/rl/tensordict/), but it cannot contains the string. I need string during my datapipes passing (str to tensor encode in one of datapipes). copy from: https://github.com/pytorch/data/issues/1183 ### Versions ### Versions torch version: 2.0.0 torchdata version: 0.6.0 cc @VitalyFedyunin @ejguan @dzhulgakov
3
2,302
103,580
Support ByteTensor and ShortTensor for nn.Embedding and nn.EmbeddingBag
module: nn, triaged, enhancement, actionable, topic: improvements
### πŸš€ The feature, motivation and pitch Torch's embedding layers only accept int32 and int64 as input. However, for sequences with a small number of distinct possible tokens (e.g., ASCII character embeddings or DNA sequences) int8 or int16 are sufficient to index all of the tokens. Currently, modeling long sequences that consist of only a few possible tokens means wasting a lot of GPU memory and being forced to use smaller batch sizes than might be desirable. ### Alternatives _No response_ ### Additional context _No response_ cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
6
2,303
103,578
ImportError: undefined symbol: cublasSetWorkspace_v2, version libcublas.so.11
oncall: binaries
### πŸ› Describe the bug I actually conda create a new environment python=3.10 and then use the command "pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118" However, torch seems not to be installed correctly, since when I "import torch", it rasie an error. import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/dataln/morong/miniconda3/envs/py310/lib/python3.10/site-packages/torch/__init__.py", line 229, in <module> from torch._C import * # noqa: F403 ImportError: /root/dataln/morong/miniconda3/envs/py310/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so: undefined symbol: cublasSetWorkspace_v2, version libcublas.so.11 ### Versions Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: CentOS Linux release 8.5.2111 (x86_64) GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-4) Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.28 Python version: 3.10.11 (main, May 16 2023, 00:28:57) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-305.19.1.el8_4.x86_64-x86_64-with-glibc2.28 Is CUDA available: N/A CUDA runtime version: 11.0.194 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: A100-SXM-80GB GPU 1: A100-SXM-80GB GPU 2: A100-SXM-80GB GPU 3: A100-SXM-80GB Nvidia driver version: 460.91.03 cuDNN version: Probably one of the following: /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn.so.8.0.4 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.0.4 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.0.4 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.0.4 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.0.4 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.0.4 /usr/local/cuda-11.0/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.0.4 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 64 On-line CPU(s) list: 0-63 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz Stepping: 6 CPU MHz: 2899.998 BogoMIPS: 5799.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 49152K NUMA node0 CPU(s): 0-63 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves wbnoinvd arat avx512vbmi avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm arch_capabilities Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] torch 2.0.1+cu118 pypi_0 pypi [conda] torchaudio 2.0.2+cu118 pypi_0 pypi [conda] torchvision 0.15.2+cu118 pypi_0 pypi cc @seemethere @malfet
0
2,304
103,575
add default argument device type api
triaged, open source, Stale, topic: not user facing
Fixes #103828 1、For many operators(such as pin_memory), the device argument is cuda if not given; but for other device, we must have to give extra argument device_type comparing to cuda, so we add an API to set the default argument device just once at the begining to keep usage consistent with cuda. 2、And there are some API defined in Python, we add a argument named device_type and the default value is cuda, so that we could support more device (privateuse1 device). So we use the this api to get the default device to keep usage consistent with cuda if not gived device_type.
7
2,305
103,573
[ONNX] Support aten::mT
module: onnx, low priority, triaged, OSS contribution wanted
### πŸš€ The feature, motivation and pitch Add onnx export for aten::mT ### Alternatives _No response_ ### Additional context _No response_
2
2,306
103,572
[ONNX] Support aten::linalg_solve_triangular
module: onnx, triaged
### πŸš€ The feature, motivation and pitch Add onnx export support for aten::linalg_solve_triangular ### Alternatives _No response_ ### Additional context _No response_
0
2,307
103,571
[ONNX] Support aten::linalg_cholesky_ex
module: onnx, triaged
### πŸš€ The feature, motivation and pitch Add support for onnx export of aten::linalg_cholesky_ex ### Alternatives _No response_ ### Additional context _No response_
0
2,308
103,570
File Missing When i build with C++
module: cpp, triaged
I installed pytorch For C++distribution and added in CMakeList.txt. 1) Initially it given torch/torch.h No Such file or directory and I used CMAKE_PREFIX_PATH to libtorch. 2) I try to build it will showing ATen/Tensor.h No such file or directory. I checked for .h file(No file neme Tensor.h). 3) I tried different versions of NVIDIA toolkit CUDA versions for Build the Cmake. 4) Now it showing ATen/Tensor.h No such file or directory. I checked for .h file(No file Name Tensor.h). which Version best suitable for Running the smallest Applications. #include <iostream> #include <torch/torch.h> int main() { torch::Tensor tensor = torch::rand({ 2, 3 },torch::kCUDA); std::cout << tensor << std::endl; } cc @jbschlosser
6
2,309
103,553
Request: flag to know model is compiled after torch.compile()
triaged, enhancement, oncall: pt2
### πŸš€ The feature, motivation and pitch As a user, it will be great to have a flag that reports that the model has been compiled successfully. Like: model = torch.compile(model) print(model.is_compile) True Even if the flag does not exist before compilation and it is created later, that would be great. Thanks! ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
0
2,310
103,552
Inject detailed NVTX markers into the Inductor Triton generated kernels
triaged, oncall: pt2, module: inductor
### πŸš€ The feature, motivation and pitch The inductor/triton generated kernels have limited NVTX marker support and the kernel names don't provide much information related to which operators they implement. Since many of the generated kernels represent fused ops, it would be useful to be able to see from the profiler which high level ops contributed to the fused kernels. There is an existing attribute in the inductor graph ir called called origin_node. Origin node indicates which high level op the node in the IR is associated with. For fused kernels there is a list of origin_nodes which describe which high level ops contributed to the fused kernel. This is really useful information for understanding how the fusion algorithm works. I am proposing to capture this information for each triton kernel and inject a marker into the generated code so it appears in the profiler at runtime. The markers will use the record_function python api. The screen shot below shows an example of the markers I implemented. They are prefixed with **triton_info:** and show details about each of the origin ops, including the module name, op type and sequence id. ![inductor_fwd_pass](https://github.com/pytorch/pytorch/assets/37422826/a11e6f7f-a524-416e-96c6-9ffa9dc95524) ### Alternatives Not really, some of this information is available in the debug logs but it is difficult to map the kernel instance directly to the ops in the original fx graphs. ### Additional context This is related to #102375 which adds fwd and bwd sequence id tracking to aot autograd. The sequence id of each op is included in the triton_info nvtx markers. cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @davidberard98
0
2,311
103,539
torch.fx.passes.split_module.split_module doesn't support dynamic shapes
good first issue, triaged, module: dynamic shapes
### πŸ› Describe the bug Steps to reproduce: 1. Enable dynamic shapes on test_multiple_aot_autograd_calls_dupe_args (deleting the config patch) 2. Test fails with ``` File "/data/users/ezyang/b/pytorch/torch/_dynamo/output_graph.py", line 857, in compile_and_call_fx_graph compiled_fn = self.call_user_compiler(gm) File "/data/users/ezyang/b/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/b/pytorch/torch/_dynamo/output_graph.py", line 913, in call_user_compiler raise BackendCompilerFailed(self.compiler_fn, e).with_traceback( File "/data/users/ezyang/b/pytorch/torch/_dynamo/output_graph.py", line 909, in call_user_compiler compiled_fn = compiler_fn(gm, self.example_inputs()) File "/data/users/ezyang/b/pytorch/torch/_dynamo/repro/after_dynamo.py", line 117, in debug_wrapper compiled_gm = compiler_fn(gm, example_inputs) File "/data/users/ezyang/b/pytorch/test/dynamo/test_aot_autograd.py", line 688, in test_compile submod_1_inps = split_gm.submod_0(*example_inps) File "/data/users/ezyang/b/pytorch/torch/fx/graph_module.py", line 662, in call_wrapped return self._wrapped_call(self, *args, **kwargs) File "/data/users/ezyang/b/pytorch/torch/fx/graph_module.py", line 281, in __call__ raise e File "/data/users/ezyang/b/pytorch/torch/fx/graph_module.py", line 271, in __call__ return super(self.cls, obj).__call__(*args, **kwargs) # type: ignore[misc] File "/data/users/ezyang/b/pytorch/torch/nn/modules/module.py", line 1502, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/data/users/ezyang/b/pytorch/torch/nn/modules/module.py", line 1511, in _call_impl return forward_call(*args, **kwargs) torch._dynamo.exc.BackendCompilerFailed: backend='test_compile' raised: TypeError: forward() takes 2 positional arguments but 3 were given You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` cc @wconstab ### Versions main
1
2,312
103,530
Deduplicate the operands passed into torch.cond after dynamo tracing.
triaged
### πŸš€ The feature, motivation and pitch Currently, we lift the free variables inside torch.cond branches as extra inputs to the branch graph. As a result, for simplicitly, we naively extend the torch.cond operands list with free lifted variables from each branch. For example, let's consider `cond(pred, true_fn, false_fn, [x])` where `true_fn` has `a, b, c` as free variables and `false_fn` has `a, b, d` as free variables. Then, dynamo will rewrite it as `cond(pred, true_fn, false_fn, [x, a, b, c, a, b, d])`. Ideally, we should detect this and deduplicate the operands list. ### Alternatives _No response_ ### Additional context _No response_
3
2,313
103,518
`gradcheck` produces false positives with sparse inputs when `masked=False`.
module: sparse, module: autograd, triaged
### πŸ› Describe the bug As per title. As an example, let's consider the `sampled_addmm` method which is semantically equivalent to `sampled_addmm(s, m1, m2, alpha, beta) := alpha * (m1 @ m2).sparse_mask(s) + beta * s`. If we inspect the subgradient of `sampled_addmm` wrt `s` in `derivatives.yaml`, we find the following: ``` - name: sparse_sampled_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor self: maybe_multiply(grad, beta.conj()) ``` Note, that under the assumption of masked semantics this formula is correct, even though it does not account for the `(mat1 @ mat2).sparse_mask(self)` part. This follows from the sparse semantics that implies `self.indices == (self + perturbation_of_self).indices`. Hence we can expect `gradcheck` to work with `masked=True`: ```python In [1]: import torch In [2]: x = torch.eye(3, dtype=torch.double).to_sparse_csr().requires_grad_(True) In [3]: y = torch.rand(3, 3, dtype=torch.double) In [4]: z = torch.rand(3, 3, dtype=torch.double) In [5]: torch.autograd.gradcheck(lambda x: torch.sparse.sampled_addmm(x, y, z).to_dense(masked_grad=True), (x,), masked=True) Out[5]: True ``` However, the situation is reversed for `masked=False`. In this case the backward formula for `self` should take `alpha * (m1 @ m2).sparse_mask(self)` into consideration, so it is expected for `gradcheck` with `masked=False` to fail. This, however, does not happen: ```python In [6]: torch.autograd.gradcheck(lambda x: torch.sparse.sampled_addmm(x, y, z).to_dense(masked_grad=False), (x,), masked=False) Out[6]: True ``` As per @pearu's insight, this happens during the densification process in gradcheck. Namely, it sometimes expands `self.indices` to full dimensions while producing a new sparse input `self_densified`. Unfortunately, `sampled_addmm(self)` and `sampled_addmm(self_densified)` are not equivalent in backward, because `sampled_addmm(self_densified)` should pass gradcheck with either `masked=True` or `masked=False` since it's mask is the whole space. ### Versions Current master. cc @alexsamardzic @pearu @cpuhrsch @amjames @bhosmer @ezyang @albanD @zou3519 @gqchen @soulitzer @Lezcano @Varal7
14
2,314
103,505
[functorch] [FakeTensorMode, meta tensor] + aot_autograd Bug.
triaged, oncall: pt2, module: fakeTensor, module: aotdispatch
### πŸ› Describe the bug I am trying to use FakeTensor and aot_autograd to capture the computation graph, but I met below errors. Can anyone help me out? # FakeTensorMode case In this case, I got errors like `TypeError: Multiple dispatch failed for 'torch._ops.aten.t.default'; all __torch_dispatch__ handlers returned NotImplemented`. ```python import torch from torch.nn import Linear from torchdistx.fake import fake_mode from torch._subclasses.fake_tensor import FakeTensorMode, FakeTensor from torch._functorch.aot_autograd import aot_export_joint_simple class TestModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = Linear(1024, 4096) self.linear2 = Linear(4096, 1024) def forward(self, x): y = self.linear(x) z = self.linear2(y) # loss = torch.sum(z) return tuple([z]) with FakeTensorMode(): sample_input = torch.randn(4, 512, 1024) loss = torch.rand(4, 512, 4096) model = TestModel() z = model(sample_input) graph_module = aot_export_joint_simple(model, tuple([sample_input]), trace_joint=True) print(graph_module) ``` ``` [2023-06-13 20:10:10,474] torch.fx.experimental.proxy_tensor.__not_implemented: [DEBUG] ProxyTensorMode tensors without proxy had unrecognized subclasses: [<class 'torch._subclasses.fake_tensor.FakeTensor'>] [2023-06-13 20:10:10,474] torch._subclasses.fake_tensor.__not_implemented: [DEBUG] FakeTensor mode already active: <torch._subclasses.fake_tensor.FakeTensorMode object at 0x7f91b9efbfa0> in [<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7f91b9efbfa0>, <torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode object at 0x7f91c24e23a0>] Traceback (most recent call last): File "/Users/connolly/Documents/GitHub/Autoplanner/test/fake_tensor_bug_issue.py", line 28, in <module> graph_module = aot_export_joint_simple(model, tuple([sample_input]), trace_joint=True) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3960, in aot_export_joint_simple fx_g, metadata, in_spec, out_spec = _aot_export_function( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 4050, in _aot_export_function fx_g, meta = create_aot_dispatcher_function( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3262, in create_aot_dispatcher_function compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 2083, in aot_wrapper_dedupe return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 2263, in aot_wrapper_synthetic_base return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 1500, in aot_dispatch_base_graph fw_module = create_functionalized_graph( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 1387, in create_functionalized_graph fx_g = make_fx(helper, decomposition_table=aot_config.decompositions)(*args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/experimental/proxy_tensor.py", line 769, in wrapped t = dispatch_trace(wrap_key(func, args, fx_tracer, pre_dispatch), tracer=fx_tracer, concrete_args=tuple(phs)) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/experimental/proxy_tensor.py", line 463, in dispatch_trace graph = tracer.trace(root, concrete_args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 810, in trace (self.create_arg(fn(*args)),), File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/experimental/proxy_tensor.py", line 480, in wrapped out = f(*tensors) File "<string>", line 1, in <lambda> File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 1379, in fwd_helper return functionalized_f_helper(*args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 1329, in functionalized_f_helper f_outs = fn(*f_args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 1128, in inner_fn outs = fn(*args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3374, in flat_fn tree_out = fn(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 788, in module_call_wrapper return self.call_module(mod, forward, args, kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/experimental/proxy_tensor.py", line 429, in call_module return forward(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 781, in forward return _orig_module_call(mod, *args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1502, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1511, in _call_impl return forward_call(*args, **kwargs) File "/Users/connolly/Documents/GitHub/Autoplanner/test/fake_tensor_bug_issue.py", line 15, in forward y = self.linear(x) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 788, in module_call_wrapper return self.call_module(mod, forward, args, kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/experimental/proxy_tensor.py", line 429, in call_module return forward(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/fx/_symbolic_trace.py", line 781, in forward return _orig_module_call(mod, *args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1502, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1511, in _call_impl return forward_call(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) TypeError: Multiple dispatch failed for 'torch._ops.aten.t.default'; all __torch_dispatch__ handlers returned NotImplemented: - mode object <torch.fx.experimental.proxy_tensor.ProxyTorchDispatchMode object at 0x7f91c24e23a0> - tensor subclass <class 'torch._subclasses.fake_tensor.FakeTensor'> ``` # torchdistx fake_mode case If I replace the `with FakeTensorMode():` by `with fake_mode()` in torchdistx, it gets below errors: ``` Traceback (most recent call last): File "/Users/connolly/Documents/GitHub/Autoplanner/test/fake_tensor_bug_issue.py", line 28, in <module> graph_module = aot_export_joint_simple(model, tuple([sample_input]), trace_joint=True) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3960, in aot_export_joint_simple fx_g, metadata, in_spec, out_spec = _aot_export_function( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 4050, in _aot_export_function fx_g, meta = create_aot_dispatcher_function( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3201, in create_aot_dispatcher_function fake_flat_args = process_inputs(flat_args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3199, in process_inputs return [convert(idx, x) for idx, x in enumerate(flat_args)] File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3199, in <listcomp> return [convert(idx, x) for idx, x in enumerate(flat_args)] File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3197, in convert return fake_mode.from_tensor(x, static_shapes=False) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 1588, in from_tensor return self.fake_tensor_converter( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 341, in __call__ return self.from_real_tensor( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 294, in from_real_tensor out = self.meta_converter( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_subclasses/meta_utils.py", line 531, in __call__ r = self.meta_tensor( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_subclasses/meta_utils.py", line 410, in meta_tensor s = t.untyped_storage() NotImplementedError: Cannot access storage of FakeTensorImpl ``` # Meta Tensor case In meta tensor case, below code works for small models. But for some complicated models like Bert, it raises Errors shown below. ```python from transformers import BertModel, BertConfig with torch.device("meta"): sample_input = torch.randint(0, 30522, [4, 512]) model = BertModel(BertConfig()) z = model(sample_input) graph_module = aot_export_module(model, tuple([sample_input]),output_loss_index=0, trace_joint=True) print(graph_module) ``` ``` Traceback (most recent call last): File "/Users/connolly/Documents/GitHub/Autoplanner/test/fake_tensor_bug_issue.py", line 29, in <module> graph_module = aot_export_module(model, tuple([sample_input]),output_loss_index=0, trace_joint=True) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3868, in aot_export_module fx_g, metadata, in_spec, out_spec = _aot_export_function( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 4050, in _aot_export_function fx_g, meta = create_aot_dispatcher_function( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3212, in create_aot_dispatcher_function fw_metadata = run_functionalized_fw_and_collect_metadata( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 733, in inner flat_f_outs = f(*flat_f_args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3374, in flat_fn tree_out = fn(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3822, in fn_to_trace out = functional_call(*args) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/_functorch/aot_autograd.py", line 3347, in functional_call out = mod(*args[params_len:], **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1502, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1511, in _call_impl return forward_call(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/transformers/models/bert/modeling_bert.py", line 1013, in forward embedding_output = self.embeddings( File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1502, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1511, in _call_impl return forward_call(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/transformers/models/bert/modeling_bert.py", line 238, in forward embeddings = self.dropout(embeddings) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1502, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1511, in _call_impl return forward_call(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/modules/dropout.py", line 59, in forward return F.dropout(input, self.p, self.training, self.inplace) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/functional.py", line 1267, in dropout return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/overrides.py", line 1541, in handle_torch_function result = mode.__torch_function__(public_api, types, args, kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/utils/_device.py", line 76, in __torch_function__ return func(*args, **kwargs) File "/Users/connolly/opt/anaconda3/envs/astropy/lib/python3.9/site-packages/torch/nn/functional.py", line 1270, in dropout return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training) RuntimeError: 0 INTERNAL ASSERT FAILED at "/Users/runner/work/pytorch/pytorch/pytorch/aten/src/ATen/core/boxing/KernelFunction.cpp":19, please report a bug to PyTorch. fallthrough_kernel was executed but it should have been short-circuited by the dispatcher. This could occur if you registered a fallthrough kernel as a override for a specific operator (as opposed to a backend fallback); this is NOT currently supported, and we do not intend to add support for it in the near future. If you do find yourself in need of this, let us know in the bug tracker. ``` ### Versions PyTorch version: 2.1.0.dev20230612 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4 (x86_64) GCC version: Could not collect Clang version: 13.1.6 (clang-1316.0.21.2.5) CMake version: version 3.24.0 Libc version: N/A Python version: 3.9.13 (main, Aug 25 2022, 18:29:29) [Clang 12.0.0 ] (64-bit runtime) Python platform: macOS-10.16-x86_64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz Versions of relevant libraries: [pip3] functorch==0.2.1 [pip3] numpy==1.23.2 [pip3] torch==2.1.0.dev20230612 [pip3] torchdistx==0.3.0.dev0+cpu [conda] functorch 0.2.1 pypi_0 pypi [conda] numpy 1.23.2 pypi_0 pypi [conda] torch 2.1.0.dev20230612 pypi_0 pypi [conda] torchdistx 0.3.0.dev0+cpu pypi_0 pypi cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
7
2,315
103,499
CUBLAS_WORKSPACE_CONFIG can not be parsed
triaged, module: cublas
### πŸ› Describe the bug The following errors occur: python3.8/site-packages/torch/nn/modules/linear.py:114: UserWarning: Could not parse CUBLAS_WORKSPACE_CONFIG, using default workspace size of 8519680 bytes. (Triggered internally at /opt/conda/conda-bld/pytorch_1682343998658/work/aten/src/ATen/cuda/CublasHandlePool.cpp:56.) lib/python3.8/site-packages/torch/autograd/__init__.py:200: UserWarning: Could not parse CUBLAS_WORKSPACE_CONFIG, using default workspace size of 8519680 bytes. (Triggered internally at /opt/conda/conda-bld/pytorch_1682343998658/work/aten/src/ATen/cuda/CublasHandlePool.cpp:56.) The warning is implemented in Pytorch itself. But i find it impossible to fix it. When setting the CUBLAS_WORKSPACE_CONFIG variable myself the error still occurs. This seems to not be a problem with the previous major version of pytorch. The warning is annoying because it gets spammed in our logs so it is difficult to find other warnings. ### Versions **Versions** ``` PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.35 Python version: 3.8.16 (default, Mar 2 2023, 03:21:46) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1030-ibm-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-PCIE-16GB Nvidia driver version: 520.61.05 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 40 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: GenuineIntel Model name: Intel Xeon Processor (Cascadelake) CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 6 BogoMIPS: 4988.13 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat pku ospke avx512_vnni md_clear arch_capabilities Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 32 MiB (8 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] numpy-ext==0.9.8 [pip3] torch==2.0.1 [pip3] torchaudio==2.0.2 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] blas 1.0 mkl [conda] captum 0.6.0 0 pytorch [conda] libblas 3.9.0 12_linux64_mkl conda-forge [conda] libcblas 3.9.0 12_linux64_mkl conda-forge [conda] mkl 2021.4.0 h06a4308_640 [conda] mkl-service 2.4.0 py38h7f8727e_0 [conda] mkl_fft 1.3.1 py38hd3c417c_0 [conda] mkl_random 1.2.2 py38h51133e4_0 [conda] numpy 1.23.1 pypi_0 pypi [conda] numpy-base 1.24.3 py38h31eccc5_0 [conda] numpy-ext 0.9.8 pypi_0 pypi [conda] pytorch 2.0.1 py3.8_cuda11.8_cudnn8.7.0_0 pytorch [conda] pytorch-cuda 11.8 h7e8668a_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] tensorflow-base 2.11.0 mkl_py38he5f8e37_0 [conda] torchaudio 2.0.2 py38_cu118 pytorch [conda] torchtriton 2.0.0 py38 pytorch [conda] torchvision 0.15.2 py38_cu118 pytorch ``` cc @csarofeen @ptrblck @xwang233
2
2,316
103,498
ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 6047) of binary: /home/win10-ubuntu/anaconda3/envs/vicuna-7b/bin/python
oncall: distributed, triaged
### πŸ› Describe the bug ![image](https://github.com/pytorch/pytorch/assets/39661319/0b4f213d-6022-4873-a40a-b5cf4825ed18) ### Versions Fine-tune vicuna-7b error Fine-tuning commands: ![image](https://github.com/pytorch/pytorch/assets/39661319/8151b496-0bc6-4995-b39f-3c32857cce6c) But I got an error: ![image](https://github.com/pytorch/pytorch/assets/39661319/4b0ec6e9-06a2-42cf-b0b3-c49770d2dbab) cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
2
2,317
103,495
DISABLED test_mem_get_info (__main__.TestCuda)
module: cuda, triaged, module: flaky-tests, skipped
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_mem_get_info&suite=TestCuda) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/14208052987). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 4 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_mem_get_info` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_cuda.py` ConnectionTimeoutError: Connect timeout for 5000ms, GET https://raw.githubusercontent.com/pytorch/pytorch/main/test/test_cuda.py -2 (connected: false, keepalive socket: false, socketHandledRequests: 1, socketHandledResponses: 0) headers: {} cc @ptrblck
3
2,318
103,484
No backward implementation for `torch._native_multi_head_attention`
triaged, module: multi-headed-attention
### πŸš€ The feature, motivation and pitch There is a forward implementation for `torch._native_multi_head_attention` but no coressponded backward implementation. So use torch to realize training MHA, we need to use small ops to compose it or use `torch.nn.MultiHeadAttention`. ### Alternatives * Small ops like linear/bmm to compose MHA. * `torch.nn.MultiHeadAttention` ### Additional context _No response_
2
2,319
103,483
torch._dynamo.exc.Unsupported: Tensor.backward with aten_graph=True
triaged, oncall: pt2, module: export
### πŸ› Describe the bug When trying to export the ATen graph of any model containing a `backward()` call using dynamo I'm hitting an "Unsupported" exception. However, exporting the graph of a model without the backward call works completely fine: ``` graph(): %arg0 : [#users=0] = placeholder[target=arg0] %arg1 : [#users=1] = placeholder[target=arg1] %arg2 : [#users=1] = placeholder[target=arg2] %view_default : [#users=1] = call_function[target=torch.ops.aten.view.default](args = (%arg1, [16, 784]), kwargs = {}) %_param_constant0 : [#users=1] = get_attr[target=_param_constant0] %t_default : [#users=1] = call_function[target=torch.ops.aten.t.default](args = (%_param_constant0,), kwargs = {}) %_param_constant1 : [#users=1] = get_attr[target=_param_constant1] %addmm_default : [#users=1] = call_function[target=torch.ops.aten.addmm.default](args = (%_param_constant1, %view_default, %t_default), kwargs = {}) %relu_default : [#users=2] = call_function[target=torch.ops.aten.relu.default](args = (%addmm_default,), kwargs = {}) %detach_default : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%relu_default,), kwargs = {}) %_log_softmax_default : [#users=2] = call_function[target=torch.ops.aten._log_softmax.default](args = (%relu_default, 1, False), kwargs = {}) %detach_default_1 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%_log_softmax_default,), kwargs = {}) %nll_loss_forward_default : [#users=2] = call_function[target=torch.ops.aten.nll_loss_forward.default](args = (%_log_softmax_default, %arg2, None, 1, -100), kwargs = {}) %getitem : [#users=1] = call_function[target=operator.getitem](args = (%nll_loss_forward_default, 0), kwargs = {}) %getitem_1 : [#users=0] = call_function[target=operator.getitem](args = (%nll_loss_forward_default, 1), kwargs = {}) return [getitem] ``` Since currently there [seems to be no issue tracking ATen export functionality](https://discuss.pytorch.org/t/torch-dynamo-exc-unsupported-tensor-backward/169246/4?u=gengrill), I'm creating it here. ### Error logs Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 601, in export result_traced = opt_f(*args, **kwargs) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 209, in _fn return fn(*args, **kwargs) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py", line 337, in catch_errors return callback(frame, cache_size, hooks) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 104, in _fn return fn(*args, **kwargs) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 262, in _convert_frame_assert return _compile( File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 163, in time_wrapper r = func(*args, **kwargs) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 324, in _compile out_code = transform_code_object(code, transform) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py", line 445, in transform_code_object transformations(instructions, code_options) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py", line 311, in transform tracer.run() File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 1726, in run super().run() File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 576, in run and self.step() File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 540, in step getattr(self, inst.opname)(inst) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 342, in wrapper return inner_fn(self, inst) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 965, in CALL_FUNCTION self.call_function(fn, args, {}) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py", line 474, in call_function self.push(fn.call_function(self, args, kwargs)) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/variables/misc.py", line 744, in call_function return self.obj.call_method(tx, self.name, args, kwargs).add_options(self) File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/variables/tensor.py", line 341, in call_method unimplemented(f"Tensor.{name}") File "/home/user/projects/pytorch-2.0/lib/python3.10/site-packages/torch/_dynamo/exc.py", line 71, in unimplemented raise Unsupported(msg) torch._dynamo.exc.Unsupported: Tensor.backward ### Minified repro ``` import torch import torch._dynamo as dynamo from torch import nn class Simple(nn.Module): def __init__(self, H=28, W=28, C=10): super(Simple, self).__init__() self.linear = nn.Linear(H*W, C) def forward(self, x): x = torch.flatten(x, start_dim=1) x = self.linear(x) return nn.functional.relu(x) def generate_data(b): return (torch.randn(b,28,28).to(torch.float32), torch.randint(10, (b,))) def no_train(model, data): pred = model(data[0]) loss = nn.CrossEntropyLoss()(pred, data[1]) return loss def train(model, data): pred = model(data[0]) loss = nn.CrossEntropyLoss()(pred, data[1]) loss.backward() return loss model = Simple() model_exp_no_train = dynamo.export(no_train, model, generate_data(16), aten_graph=True) print(model_exp_no_train[0].graph) model_exp_train = dynamo.export(train, model, generate_data(16), aten_graph=True) print(model_exp_train[0].graph) ``` ### Versions master cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
2,320
103,482
Document CI retry rules
triaged, module: devx
With all the recent changes w.r.t retrying to harden PyTorch CI, we need to create a wiki page to document all these mechanisms. The tentative list includes: * Individual test case retry (flaky bot) * Retry test file * Retry on workflow steps (using GHA) * Retry the job itself (retry bot) In addition, we also want to gather data points to answer the following questions * How much resource do we spend on retrying these cases? * And a rough estimation on how frequently people manually retry stuffs on their PR to get green signals or to debug flaky issue cc @ZainRizvi @kit1980 @clee2000
2
2,321
103,475
[Inductor] Optimize More Cases of Int32 -> Int64
triaged, enhancement, module: inductor
### πŸš€ The feature, motivation and pitch Inductor has [an existing](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/optimize_indexing.py#L313-L317) optimization which will convert indirect indexing that is done in int64 to int32 for index expressions we can prove are expressible in int32. However this optimization is incomplete. 1. We do not propagate the bounds of tensors from one kernel to the other. 2. We do not change the dtype of temporary tensors which could be converted to int32. 3. We use ValueRange Analysis to strength reduce on indices whose bounds we can prove. However, in some cases, as in the kernel below, we are indexing from Tensor values whose bounds we don't know. For the following repro: ``` import torch import triton inp = torch.rand([6, 3, 352, 352], device="cuda", requires_grad=False) inp2 = torch.rand([6, 352, 352, 2], device="cuda", requires_grad=False) def grid(inp, inp2): return torch.ops.aten.grid_sampler_2d.default(inp, inp2, 0, 0, False) def invoke_grid(): return grid(inp, inp2) median_ms = triton.testing.do_bench( lambda: invoke_grid() ) grid_opt = torch.compile()(invoke_grid) median_ms2 = triton.testing.do_bench( lambda: grid_opt() ) print(f"Eager Execution time: {median_ms} secs") print(f"Compiled Execution time: {median_ms2} secs") ``` Inductor is significantly slower than eager (25%) which can be reduced to 10% with int64->int32 conversions. [Original code](https://gist.github.com/eellison/cb422e219f8be58a3d8787a0dea75401), and then [optimize code](https://gist.github.com/eellison/91b80dac72c088344a92da17411161b9), where the int64 has been replaced with int32. This could be optimized, but it's a bit tricky. If we guard on the tensor used in the second kernel having numel < 2^32, we can set the bounds of this final expression to also be in the range[0, 2^32). ``` tmp61 = tl.load(in_ptr6 + (x0 + (123904*x2)), None, eviction_policy='evict_last') tmp64 = tl.load(in_ptr7 + (x0 + (123904*x2)), None, eviction_policy='evict_last') ``` From there, we would need to propagate the bounds backwards. There is initial work to do that by @ysiraichi in https://github.com/pytorch/pytorch/pull/97963, and we could extend it for the set of ops that appears in this kernel to start. Once the bounds are propagated we could reduce the dtype of the int64 to int32, as well as the ops that construct those tensors. I originally wrote this up as starter task but it might be a bit complicated for that lol. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @aakhundov @chenyang78 @ezyang, @lezcano for other thoughts here ### Alternatives _No response_ ### Additional context _No response_
2
2,322
103,473
Error encountered when tracing model with Dynamo/Functorch for export with trilinear interpolation
triaged, oncall: pt2, module: dynamic shapes, module: export
### πŸ› Describe the bug When exporting a small network via any of the following functions, one of two errors is encountered. The model runs successfully as-is (via `model(sample_inputs)`) and also works with `torch.compile`, but fails during export. Additionally, the model has no explicit control flow and `torch._dynamo.explain` shows no graph breaks. **Functions With Errors:** - `torch.fx.experimental.proxy_tensor.make_fx` - `torch._dynamo.export` - `torch._export.export` - `torch._functorch.aot_autograd` **Sample Script with Network** ```python import torch class MyModule(torch.nn.Module): def __init__(self, *args, **kwargs) -> None: super().__init__(*args, **kwargs) def forward(self, x): out = torch.nn.functional.interpolate(x, size=(10, 20, 30), mode="trilinear", align_corners=True) return out + 1 # Build model, sample inputs, and validate model succeeds on sample inputs model = MyModule().eval().cuda() sample_input = torch.rand((1, 2, 3, 4, 5)).cuda() model(sample_input) # Try various export/tracing methods try: torch._dynamo.export(model, sample_input, aten_graph=True, tracing_mode="symbolic") except Exception as e: print("Dynamo export:\n", e) try: torch._export.export(model, sample_input) except Exception as e: print("Torch export:\n", e) try: torch._functorch.aot_autograd.aot_export_module(model, sample_input, trace_joint=False) except Exception as e: print("AOT export:\n", e) try: torch.fx.experimental.proxy_tensor.make_fx(model, tracing_mode="symbolic", _allow_non_fake_inputs=True, pre_autograd=True)(sample_input) except Exception as e: print("Make FX:\n", e) print(torch._dynamo.explain(model, sample_input)) ``` **Errors** **Error 1 [`torch._export.export` + `aot_export_module`]:** ```python Failed running call_function <function interpolate at 0x7f1b7d1769d0>(*(FakeTensor(..., device='cuda:0', size=(2, 3, 4, 5)),), **{'size': (10, 20, 30), 'mode': 'trilinear', 'align_corners': True}): Input and output must have the same number of spatial dimensions, but got input with spatial dimensions of [4, 5] and output size of (10, 20, 30). Please provide input tensor in (N, C, d1, d2, ...,dK) format and output size in (o1, o2, ...,oK) format. ``` **Error 2 [`torch._dynamo.export` + `make_fx`]:** ```python Failed running call_function <function interpolate at 0x7f1b7d1769d0>(*(FakeTensor(..., device='cuda:0', size=(1, s0, s1, s2, s3)),), **{'size': (10, 20, 30), 'mode': 'trilinear', 'align_corners': True}): Cannot call sizes() on tensor with symbolic sizes/strides ``` ### Versions ```python Versions of relevant libraries: [pip3] torch==2.1.0.dev20230608+cu118 ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
3
2,323
103,469
[inductor] multi-kernel support
module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #106012 * __->__ #103469 For a persistent reduction, we generate 2 flavor of 'equivalant' kernels at the same time - persistent reduction - regular reduction A MultiKernel wraps these 2 kernels and pick the one with better performance at runtime. Here I talk more about implementation details: - Inductor maintains states for generating kernels. E.g. the wrapper code. After we generate code for one kernel, we need restore the inductor state before we can generate the counterpart. ***There is one thing I need some comments from others***: There is one tricky thing about kernel arguments. In general, inductor removes a buffer from the argument list if it's only used inside the kernel. But somehow a buffer removed by persistent reduction kernel may still be kept by the regular (non-persistent) reduction kernel because of some CSE invalidation rule. My current implementation avoid removing buffers if multi_kernel is enabled. This makes sure both flavors of reduction has consistent argument list. Another idea I have is, we generate the multi-kernel definition with the union of arguments from both sub-kernels. Let each sub-kernel pick the subset of arguments it wants. But this will make the code-gen or multi-kernel much complex. I'm not sure if there is some easy and clean way to resolve this. Testing command: ``` TORCHINDUCTOR_MULTI_KERNEL=1 TORCH_LOGS=+torch._inductor.graph TORCHINDUCTOR_UNIQUE_KERNEL_NAMES=1 python benchmarks/dynamo/huggingface.py --backend inductor --amp --performance --only BertForMaskedLM --training ``` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @aakhundov
5
2,324
103,467
[ao] making hist_obs handle torch.inf and closeby values
module: cpu, Stale, with-ssh, release notes: quantization, topic: bug fixes
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #103467 * #107623 Summary: This PR does 2 things: 1) Previously this would simply error, now it will ignore any torch.inf values that it recieves. note: The code checks for torch.inf after aminmax that way if there are no torch.inf values found, the perf is a relatively unchanged 2) as mentioned in https://github.com/pytorch/pytorch/issues/100051, values close to (but not quite at) the maximum/minimum float value could overflow to infinity in the course of _adjust_min_max() (when this large value would be multiplied by something in the middle of a calculation that would otherwise result in a non inf value). This was fixed by rearranging the order of operations for the lines in question without altering the actual equations. Specifically, where operations in lines 1095, 1098 and 1100 have multiplication and division of large values, its better to divide the two large values before multiplying, rather than multiplying the two large values together (creating overflow) before dividing like it had been. Test Plan: python test/test_quantization.py TestObserver.test_histogram_observer_ignore_infinity python test/test_quantization.py TestObserver.test_histogram_observer_handle_close_to_infinity Reviewers: Subscribers: Tasks: Tags: cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
7
2,325
103,462
Memory efficient SDP yields wrong gradients
triaged, module: multi-headed-attention
### πŸ› Describe the bug The gradients of samples for models with and without memory efficient SPD should be nearly identical, but are in practice often very different. I have a code example here: https://gist.github.com/lengstrom/fd091020d1cf8e22b2e0caa01c2e9255. `optimum` transforms the model to use memory efficient SDP -- the gradients go back to matching when I disable memory efficient SDP and enable math SDP. Considering a GPTNeoX model, we fix a sample and record the gradient of the memory efficient SDP model and the gradient of the original model. We then measure the cosine similarity (a vector similarity metric, 0 = uncorrelated, 1 = perfectly correlated) and find that both: (a) the cosine similarity of gradients between the ME-SDP and standard models is not 1.0 and furthermore (b) on some parameter groups, this cosine similarity is very low. For example, see `gpt_neox.layers.0.input_layernorm.weight` - the similarity is `0.45` on this parameter group You can see the logs that show this here (from the script above): ``` gpt_neox.embed_in.weight grad match: False Maxdiff: 2.2251620292663574, relativediff: nan, cosine=0.6628117561340332 gpt_neox.layers.0.input_layernorm.weight grad match: False Maxdiff: 0.23522385954856873, relativediff: 6.147019863128662, cosine=0.4535333514213562 gpt_neox.layers.0.input_layernorm.bias grad match: False Maxdiff: 0.0925818607211113, relativediff: 4.2182841300964355, cosine=0.6757722496986389 gpt_neox.layers.0.post_attention_layernorm.weight grad match: False Maxdiff: 0.09811977297067642, relativediff: 6.601757526397705, cosine=0.7666352987289429 gpt_neox.layers.0.post_attention_layernorm.bias grad match: False Maxdiff: 0.08014828711748123, relativediff: 3.4428935050964355, cosine=0.7390220165252686 gpt_neox.layers.0.attention.query_key_value.weight grad match: False Maxdiff: 1.9186370372772217, relativediff: 12.226367950439453, cosine=0.7150740623474121 gpt_neox.layers.0.attention.query_key_value.bias grad match: False Maxdiff: 0.20297080278396606, relativediff: inf, cosine=0.7175157070159912 gpt_neox.layers.0.attention.dense.weight grad match: False Maxdiff: 0.4924759864807129, relativediff: 11.39132308959961, cosine=0.6795455813407898 ``` This code should perfectly reproduce with just pytorch (nightly), optimumΒ (latest -- this library is unversioned?), datasets (2.11.1), and transformers (4.29.2) installed. The full output is commented in the gist. This issue was explored more in https://github.com/huggingface/optimum/issues/1091: it doesn't arise with the 160m Pythia model (only 70m). ### Versions Collecting environment information... PyTorch version: 2.1.0.dev20230609+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.35 Python version: 3.10.11 (main, May 16 2023, 00:28:57) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-73-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 11.7.64 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe GPU 1: NVIDIA A100 80GB PCIe GPU 2: NVIDIA A100 80GB PCIe GPU 3: NVIDIA A100 80GB PCIe GPU 4: NVIDIA A100 80GB PCIe GPU 5: NVIDIA A100 80GB PCIe GPU 6: NVIDIA A100 80GB PCIe GPU 7: NVIDIA A100 80GB PCIe Nvidia driver version: 515.43.04 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Vendor ID: AuthenticAMD Model name: AMD EPYC 7513 32-Core Processor CPU family: 25 Model: 1 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 Stepping: 1 Frequency boost: enabled CPU max MHz: 3681.6399 CPU min MHz: 1500.0000 BogoMIPS: 5189.74 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca Virtualization: AMD-V L1d cache: 2 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 32 MiB (64 instances) L3 cache: 256 MiB (8 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] pytorch-triton==2.1.0+9820899b38 [pip3] torch==2.1.0.dev20230609+cu117 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] cudatoolkit 11.3.1 h2bc3f7f_2 [conda] magma-cuda117 2.6.1 1 pytorch [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-include 2023.1.0 h06a4308_46342 [conda] numpy 1.24.3 pypi_0 pypi [conda] pytorch-triton 2.1.0+9820899b38 pypi_0 pypi [conda] torch 2.1.0.dev20230609+cu117 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi
5
2,326
103,449
Asynchronous CUDA AveragedModel
module: optimizer, triaged, needs research
### πŸš€ The feature, motivation and pitch This is a proposal to improve the efficiency of CUDA `AveragedModel` used in EMA and SWA. (Follow-up of https://github.com/pytorch/pytorch/pull/94820). I would provide the implementation but would like feedback/approval before opening a PR. Currently the EMA/SWA weight update is done on the default stream, same as all the other GPU work. Because EMA/SWA weights are typically updated at the end of a training iteration (after an optimizer step), and are not needed until the end of the next iteration, we can actually run the EMA/SWA update in parallel of the forward/backward/optimizer step, virtually eliminating the overhead of EMA/SWA in many cases. This can be done by using a separate dedicated CUDA stream to perform the weight update. This is how it is done in the NeMo framework: - Stream creation: https://github.com/NVIDIA/NeMo/blob/a87702a522387da0aac62dc1f90a88a8e0bfc7cc/nemo/collections/common/callbacks/ema.py#L234 - Synchronization between the dedicated stream and the main stream: https://github.com/NVIDIA/NeMo/blob/a87702a522387da0aac62dc1f90a88a8e0bfc7cc/nemo/collections/common/callbacks/ema.py#L259 - Weight update in the dedicated stream: https://github.com/NVIDIA/NeMo/blob/a87702a522387da0aac62dc1f90a88a8e0bfc7cc/nemo/collections/common/callbacks/ema.py#L261 - API to manually synchronize the dedicated stream: https://github.com/NVIDIA/NeMo/blob/a87702a522387da0aac62dc1f90a88a8e0bfc7cc/nemo/collections/common/callbacks/ema.py#L310 If the team is interested in extending the current `AveragedModel` class with an optional asynchronous feature, let me know and I'll work on a PR. ### Alternatives _No response_ ### Additional context _No response_ cc @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar
3
2,327
103,444
Deprecation warning on lr_scheduler.step(num_steps)
module: optimizer, triaged, actionable
### πŸ› Describe the bug `step(num_steps)` produces a deprecation warning currently. However, there is a legitimate use case for this API in learning rate schedulers β€” if reloading a trained model and continuing to train, it is necessary to advance the number of steps inside the scheduler to match the current model state. The scheduler does not provide an alternative way to advance the number of steps. And it is not possible to use `state_dict()` + `load_state_dict()` because they also prevent changing the learning rate and other hyperparameters during transitions, unless the user manually changes the state dict, which is a hacky. ``` UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose. ``` ### Versions Versions of relevant libraries: [pip3] torch==2.0.1 cc @vincentqb @jbschlosser @albanD @janeyx99
4
2,328
103,439
test_generate_tensor_from_list_of_numpy_primitive_type fails if run under pytest
triaged, module: dynamic shapes
### πŸ› Describe the bug Sample failure: ``` __________________ StaticDefaultDynamicShapesFunctionTests.test_return_numpy_ndarray_dynamic_shapes_static_default ___________________ Traceback (most recent call last): File "/data/users/ezyang/d/pytorch/test/dynamo/test_functions.py", line 42, in test_fn return torch._dynamo.testing.standard_test(self, fn=fn, nargs=nargs) File "/data/users/ezyang/d/pytorch/torch/_dynamo/testing.py", line 225, in standard_test self.assertTrue(same(val1a, correct1)) File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 944, in same assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}" AssertionError: type mismatch <class 'torch.Tensor'> <class 'numpy.ndarray'> -------------------------------------------------------- Captured stdout call -------------------------------------------------------- stats [('calls_captured', 2), ('unique_graphs', 1)] ___________________________ DynamicShapesMiscTests.test_generate_tensor_from_list_of_numpy_primitive_type ____________________________ Traceback (most recent call last): File "/data/users/ezyang/d/pytorch/test/dynamo/test_misc.py", line 3548, in test_generate_tensor_from_list_of_numpy_primitive_type res = opt_fn() File "/data/users/ezyang/d/pytorch/torch/_dynamo/eval_frame.py", line 295, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/test/dynamo/test_misc.py", line 3541, in fn x = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) File "/data/users/ezyang/d/pytorch/torch/_dynamo/eval_frame.py", line 448, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 527, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 127, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 360, in _convert_frame_assert return _compile( File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 430, in _compile out_code = transform_code_object(code, transform) File "/data/users/ezyang/d/pytorch/torch/_dynamo/bytecode_transformation.py", line 1000, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 415, in transform tracer.run() File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 2024, in run super().run() File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 707, in run and self.step() File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 667, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 389, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 1099, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 558, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/d/pytorch/torch/_dynamo/variables/torch.py", line 607, in call_function tensor_variable = wrap_fx_proxy( File "/data/users/ezyang/d/pytorch/torch/_dynamo/variables/builder.py", line 1063, in wrap_fx_proxy return wrap_fx_proxy_cls( File "/data/users/ezyang/d/pytorch/torch/_dynamo/variables/builder.py", line 1098, in wrap_fx_proxy_cls example_value = get_fake_value(proxy.node, tx) File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1298, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1266, in get_fake_value return wrap_fake_exception( File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 860, in wrap_fake_exception return fn() File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1267, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1332, in run_node raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1319, in run_node return node.target(*args, **kwargs) torch._dynamo.exc.TorchRuntimeError: Failed running call_function <class 'torch.LongTensor'>(*([FakeTensor(..., size=(), dtype=torch.int64), FakeTensor(..., size=(), dtype=torch.int64), FakeTensor(..., size=(), dtype=torch.int64)],), **{}): The tensor has a non-zero number of elements, but its data is not allocated yet. Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory. from user code: File "/data/users/ezyang/d/pytorch/test/dynamo/test_misc.py", line 3543, in <resume in fn> z = torch.LongTensor(y) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True -------------------------------------------------------- Captured stdout call -------------------------------------------------------- frames [('total', 2), ('ok', 1)] unimplemented [] graph_break [('numpy.<built-in function array>()', 1)] ____________________ DynamicShapesMiscTests.test_generate_tensor_from_list_of_numpy_primitive_type_dynamic_shapes ____________________ Traceback (most recent call last): File "/data/users/ezyang/d/pytorch/test/dynamo/test_misc.py", line 3548, in test_generate_tensor_from_list_of_numpy_primitive_type res = opt_fn() File "/data/users/ezyang/d/pytorch/torch/_dynamo/eval_frame.py", line 295, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/test/dynamo/test_misc.py", line 3541, in fn x = np.array([1, 2, 3, 4, 5, 6], dtype=np.int64) File "/data/users/ezyang/d/pytorch/torch/_dynamo/eval_frame.py", line 448, in catch_errors return callback(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 527, in _convert_frame result = inner_convert(frame, cache_size, hooks, frame_state) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 127, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 360, in _convert_frame_assert return _compile( File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 430, in _compile out_code = transform_code_object(code, transform) File "/data/users/ezyang/d/pytorch/torch/_dynamo/bytecode_transformation.py", line 1000, in transform_code_object transformations(instructions, code_options) File "/data/users/ezyang/d/pytorch/torch/_dynamo/convert_frame.py", line 415, in transform tracer.run() File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 2024, in run super().run() File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 707, in run and self.step() File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 667, in step getattr(self, inst.opname)(inst) File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 389, in wrapper return inner_fn(self, inst) File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 1099, in CALL_FUNCTION self.call_function(fn, args, {}) File "/data/users/ezyang/d/pytorch/torch/_dynamo/symbolic_convert.py", line 558, in call_function self.push(fn.call_function(self, args, kwargs)) File "/data/users/ezyang/d/pytorch/torch/_dynamo/variables/torch.py", line 607, in call_function tensor_variable = wrap_fx_proxy( File "/data/users/ezyang/d/pytorch/torch/_dynamo/variables/builder.py", line 1063, in wrap_fx_proxy return wrap_fx_proxy_cls( File "/data/users/ezyang/d/pytorch/torch/_dynamo/variables/builder.py", line 1098, in wrap_fx_proxy_cls example_value = get_fake_value(proxy.node, tx) File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1298, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1266, in get_fake_value return wrap_fake_exception( File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 860, in wrap_fake_exception return fn() File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1267, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1332, in run_node raise RuntimeError(fn_str + str(e)).with_traceback(e.__traceback__) from e File "/data/users/ezyang/d/pytorch/torch/_dynamo/utils.py", line 1319, in run_node return node.target(*args, **kwargs) torch._dynamo.exc.TorchRuntimeError: Failed running call_function <class 'torch.LongTensor'>(*([FakeTensor(..., size=(), dtype=torch.int64), FakeTensor(..., size=(), dtype=torch.int64), FakeTensor(..., size=(), dtype=torch.int64)],), **{}): The tensor has a non-zero number of elements, but its data is not allocated yet. Caffe2 uses a lazy allocation, so you will need to call mutable_data() or raw_mutable_data() to actually allocate memory. from user code: File "/data/users/ezyang/d/pytorch/test/dynamo/test_misc.py", line 3543, in <resume in fn> z = torch.LongTensor(y) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True -------------------------------------------------------- Captured stdout call -------------------------------------------------------- frames [('total', 2), ('ok', 1)] unimplemented [] graph_break [('numpy.<built-in function array>()', 1)] ``` It doesn't fail if I run it under python directly ### Versions main
0
2,329
103,425
The document does not emphasize Illegal value in nn.Bilinear
module: nn, triaged, actionable, module: edge cases
### πŸ› Describe the bug `Illegal value of in1_feature parameter in nn.Bilinear` `ZeroDivisionError: float division by zero` ### Code ```py import torch from torch import nn class lenet(nn.Module): def __init__(self): super(lenet, self).__init__() self.conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, stride=1) self.linear = nn.Bilinear(in1_features=0, in2_features=0, out_features=0) def forward(self, x): # 1st block x = self.conv(x) x = self.linear(x) return x if __name__ == '__main__': net = lenet() ``` ### Versions ### Version ``` PyTorch version: 2.0.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.6 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.102) CMake version: Could not collect Libc version: N/A Python version: 3.10.10 (main, Mar 21 2023, 13:41:05) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-12.6-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.0 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.15.1 [conda] numpy 1.23.5 py310hb93e574_0 [conda] numpy-base 1.23.5 py310haf87e8b_0 [conda] torch 2.0.0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.15.1 pypi_0 pypi ``` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
2
2,330
103,424
The document does not emphasize hidden range in nn.Embedding
needs reproduction, module: docs, triaged
### πŸ› Describe the bug `Hidden range of padding parameter in nn.Embedding` ### Code ```py import torch import torch.nn as nn class BiLSTM(nn.Module): def __init__(self, batch_size, hidden_dim, vocab_size, sequence_len): super().__init__() self.batch_size = batch_size self.hidden_dim = hidden_dim self.input_size = vocab_size self.num_classes = vocab_size self.sequence_len = sequence_len # Dropout self.dropout = nn.Dropout(0.25) # Embedding layer self.embedding_0 = nn.Embedding(num_embeddings=2, embedding_dim=2, padding_idx=3) def forward(self, x): # Bi-LSTM # hs = [batch_size x hidden_size] # cs = [batch_size x hidden_size] hs_forward = torch.zeros(x.size(0), self.hidden_dim) cs_forward = torch.zeros(x.size(0), self.hidden_dim) hs_backward = torch.zeros(x.size(0), self.hidden_dim) cs_backward = torch.zeros(x.size(0), self.hidden_dim) # LSTM # hs = [batch_size x (hidden_size * 2)] # cs = [batch_size x (hidden_size * 2)] hs_lstm = torch.zeros(x.size(0), self.hidden_dim * 2) cs_lstm = torch.zeros(x.size(0), self.hidden_dim * 2) # Weights initialization torch.nn.init.kaiming_normal_(hs_forward) torch.nn.init.kaiming_normal_(cs_forward) torch.nn.init.kaiming_normal_(hs_backward) torch.nn.init.kaiming_normal_(cs_backward) torch.nn.init.kaiming_normal_(hs_lstm) torch.nn.init.kaiming_normal_(cs_lstm) # From idx to embedding x = self.embedding_0(x.long()) return x if __name__ == '__main__': net = BiLSTM(5, 2, 100, 100) ``` ### Version ``` PyTorch version: 2.0.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.6 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.102) CMake version: Could not collect Libc version: N/A Python version: 3.10.10 (main, Mar 21 2023, 13:41:05) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-12.6-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.0 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.15.1 [conda] numpy 1.23.5 py310hb93e574_0 [conda] numpy-base 1.23.5 py310haf87e8b_0 [conda] torch 2.0.0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.15.1 pypi_0 pypi ``` cc @svekars @carljparker
2
2,331
103,423
The document does not emphasize hidden range in nn.MaxPool2d
needs reproduction, module: docs, triaged
### πŸ› Describe the bug `Hidden range of padding parameter in nn.MaxPool2d` `pad should be at most half of kernel size, but got pad=2 and kernel_size=2` ### Code ```py import torch from torch import nn class lenet(nn.Module): def __init__(self): super(lenet, self).__init__() self.conv = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=2, padding=2, stride=1) self.pool = nn.MaxPool2d(padding=2, kernel_size=2) def forward(self, x): # 1st block x = self.conv(x) x = self.pool(x) return x if __name__ == '__main__': net = lenet() ``` ### Versions ### Version PyTorch version: 2.0.0 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.6 (arm64) GCC version: Could not collect Clang version: 14.0.0 (clang-1400.0.29.102) CMake version: Could not collect Libc version: N/A Python version: 3.10.10 (main, Mar 21 2023, 13:41:05) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-12.6-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.0 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.15.1 [conda] numpy 1.23.5 py310hb93e574_0 [conda] numpy-base 1.23.5 py310haf87e8b_0 [conda] torch 2.0.0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.15.1 pypi_0 pypi cc @svekars @carljparker
2
2,332
103,422
Possible memory leak when using Torch and Torchvision in conjunction with XGBoost
module: memory usage, triaged, module: vision
### πŸ› Describe the bug I had an issue in one of the services I work on, where it would use more and more memory until crashing. After some digging around I was able to reduce it to the following script: ```python import argparse import logging import math import os import psutil import torch import torchvision import xgboost import numpy as np def main() -> None: process = psutil.Process(os.getpid()) parser = argparse.ArgumentParser() parser.add_argument("xgboost_model_path") args = parser.parse_args() feature_extractor = torchvision.models.vit_b_16(num_classes=512) predictor = xgboost.XGBClassifier( base_score=0.5, booster=None, colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1, importance_type="gain", interaction_constraints=None, learning_rate=0.3, max_delta_step=0, max_depth=10, min_child_weight=1, missing=math.nan, monotone_constraints=None, n_estimators=300, n_jobs=32, num_parallel_tree=1, objective="multi:softprob", random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=None, subsample=1, tree_method=None, validate_parameters=False, verbosity=0, ) predictor.load_model(args.xgboost_model_path) frames_torch = torch.rand((1, 3, 224, 224), device="cpu") i = 0 while True: with torch.no_grad(): embedding = feature_extractor(frames_torch).numpy().mean(axis=0) if i == 0: logging.warning(f"Mem usage (embedding) {process.memory_percent()}") features = np.expand_dims(embedding, 0) predictor.predict_proba(features) i = (i + 1) % 10 if __name__ == "__main__": main() ``` which uses the following xgboost model: [xgboost_classifier.txt](https://github.com/dmlc/xgboost/files/11720066/xgboost_classifier.txt) (txt format becuase github doesn't allow JSON, apparently). I left this script running for a day and memory usage grew from 640MB to about 9GB. This issue seems to depend on the import order, if XGBoost is imported before torch and torchvision the memory usage is more or less constant (I didn't leave it to run for the same amount of time but I didn't see an upwards trend that's clearly visible otherwise). ### Versions ``` PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.9.15 (main, Jun 12 2023, 04:04:50) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-1036-aws-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.3.58 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 510.47.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz Stepping: 7 CPU MHz: 2469.691 BogoMIPS: 4999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 4 MiB L3 cache: 35.8 MiB NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke avx512_vnni Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [pip3] torchvision==0.15.2 [pip3] triton==2.0.0 [conda] No relevant packages ``` cc @datumbox @vfdev-5 @pmeier
4
2,333
103,417
Torch model compile error "/usr/bin/ld: cannot find -lcuda" though cuda is installed via run file
triaged, oncall: pt2, upstream triton
### πŸ› Describe the bug I have installed the NVIDIA driver seperate and CUDA seperate libcuda.so --> is provided by the NVIDIA Driver and is here ``` /usr/lib/x86_64-linux-gnu/libcuda.so.525.105.17 /usr/lib/x86_64-linux-gnu/libcuda.so.1 ``` libcudart.so --> is provided by CUDA Runtime and is here ``` ld -L/usr/local/cuda/lib64/ -lcudart --verbose attempt to open /usr/local/cuda/lib64//libcudart.so succeeded ``` and it is linked to CUDA 12.0 ``` ll /usr/local/cuda/lib64//libcudart.so lrwxrwxrwx 1 root root 15 Jun 6 21:14 /usr/local/cuda/lib64//libcudart.so -> libcudart.so.12* ``` All this is fine and as expected I have given the LD_LIBRARY_PATH ``` export LD_LIBRARY_PATH=/usr/local/cuda/lib64 sudo ldconfig ``` I am able to run a model in GPU. However when I run the torch.model.compile it links against `libcuda.so`. From my understanding it shoud be able to work also with `libcudart.so` ; but I am unable to set any environment variable or flag to let torch to use this library Sample Code ``` import torch import torchvision print("torch version is ",torch.__version__) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) x=torch.ones(1,3,224,224).to(device) model=torchvision.models.resnet50().to(device) compiled=torch.compile(model) compiled(x) ``` Ouput ``` python test_cuda.py torch version is 2.0.0.dev20230202+cu116 Using device: cuda /home/alex/.local/lib/python3.10/site-packages/torch/_inductor/compile_fx.py:89: UserWarning: TensorFloat32 tensor cores for float32 matrix multiplication available but not enabled. Consider setting `torch.set_float32_matmul_precision('high')` for better performance. warnings.warn( /usr/bin/ld: cannot find -lcuda: No such file or directory collect2: error: ld returned 1 exit status ``` ### Versions Collecting environment information... PyTorch version: 2.0.0.dev20230202+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: Pop!_OS 22.04 LTS (x86_64) GCC version: (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0 Clang version: Could not collect CMake version: version 3.25.0 Libc version: glibc-2.35 Python version: 3.10.6 (main, Mar 10 2023, 10:55:28) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-6.2.6-76060206-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.0.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 525.105.17 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 5800H with Radeon Graphics CPU family: 25 Model: 80 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 4462.5000 CPU min MHz: 1200.0000 BogoMIPS: 6388.26 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 4 MiB (8 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.24.1 [pip3] pytorch-triton==2.0.0+0d7e753227 [pip3] torch==2.0.0.dev20230202+cu116 [pip3] torch-tb-profiler==0.4.0 [pip3] torchaudio==2.0.0.dev20230201+cu116 [pip3] torchvision==0.15.0.dev20230201+cu116 [conda] Could not collect cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
7
2,334
103,415
[inductor][cpp_wrapper] Support rand fallback
triaged, oncall: pt2
### Edited/minified issue ```python import torch import torch._dynamo import torch._inductor.config torch._inductor.config.fallback_random = True torch._inductor.config.cpp_wrapper = True def fn(x): y = torch.randint(0, 10, (4, 4), dtype=torch.int32) return y + x opt_fn = torch._dynamo.optimize("inductor")(fn) x = torch.rand((4, 4)) torch.manual_seed(42) ref = fn(x) torch.manual_seed(42) res = opt_fn(x) print(torch.max(torch.abs(res-ref))) ``` Error: ~~~ File "/scratch/anijain/work/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/scratch/anijain/work/pytorch/torch/_inductor/scheduler.py", line 1379, in codegen self.codegen_extern_call(node) File "/scratch/anijain/work/pytorch/torch/_inductor/scheduler.py", line 1300, in codegen_extern_call node.codegen(V.graph.wrapper_code) File "/scratch/anijain/work/pytorch/torch/_inductor/ir.py", line 3314, in codegen super().codegen(wrapper) File "/scratch/anijain/work/pytorch/torch/_inductor/ir.py", line 3002, in codegen args = [*self.codegen_args(), *self.codegen_kwargs()] File "/scratch/anijain/work/pytorch/torch/_inductor/ir.py", line 2875, in codegen_kwargs assert ( torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: AssertionError: ordered_kwargs_for_cpp_kernel has to be provided ~~~ There are a few issues here: 1. self.ordered_kwargs_for_cpp_kernel doesn't exist when we try to codegen. 2. We can't always get the schema because the `kernel` passed into the FallbackKernel IR node is sometimes an OpOverload and sometimes an OpOverloadPacket 3. if we add it, self.kwargs != self.ordered_kwargs_for_cpp_kernel. AFAIK, this is fine because the missing self.kwargs (specifically, `layout`) are optional. 4. The codegen-ed code doesn't match the CPP args: the dtype, layout, etc. are expected to be provided as a single TensorOptions() object but the codegen provides it as a list of individual options. ### πŸ› Original bug below ~~~ import torch from torch import tensor, device import torch.fx as fx from torch._dynamo.testing import rand_strided from math import inf import torch._inductor.inductor_prims import torch._dynamo.config import torch._inductor.config import torch._functorch.config torch._inductor.config.fallback_random = True torch._inductor.config.triton.autotune_cublasLt = False torch._inductor.config.triton.unique_kernel_names = True torch._inductor.config.triton.store_cubin = True torch._inductor.config.cpp_wrapper = True isolate_fails_code_str = None # torch version: 2.1.0a0+gita5cdb9a # torch cuda version: 11.8 # torch git version: a5cdb9a9a4de0b8cd92d850588a1d7e40958189b # CUDA Info: # nvcc: NVIDIA (R) Cuda compiler driver # Copyright (c) 2005-2022 NVIDIA Corporation # Built on Wed_Sep_21_10:33:58_PDT_2022 # Cuda compilation tools, release 11.8, V11.8.89 # Build cuda_11.8.r11.8/compiler.31833905_0 # GPU Hardware Info: # NVIDIA A100-SXM4-40GB : 1 from torch.nn import * class Repro(torch.nn.Module): def __init__(self): super().__init__() def forward(self, arg0_1): full = torch.ops.aten.full.default([209982], 1, dtype = torch.float32, layout = torch.strided, device = device(type='cuda', index=0), pin_memory = False) select = torch.ops.aten.select.int(arg0_1, 0, 0) select_1 = torch.ops.aten.select.int(arg0_1, 0, 1); arg0_1 = None view = torch.ops.aten.view.default(select_1, [-1]) expand = torch.ops.aten.expand.default(view, [209982]); view = None full_1 = torch.ops.aten.full.default([10000], 0, dtype = torch.float32, layout = torch.strided, device = device(type='cuda', index=0), pin_memory = False) scatter_add = torch.ops.aten.scatter_add.default(full_1, 0, expand, full); full_1 = expand = None pow_1 = torch.ops.aten.pow.Tensor_Scalar(scatter_add, -0.5); scatter_add = None eq = torch.ops.aten.eq.Scalar(pow_1, inf) scalar_tensor = torch.ops.aten.scalar_tensor.default(0.0, dtype = torch.float32, layout = torch.strided, device = device(type='cuda', index=0)) where = torch.ops.aten.where.self(eq, scalar_tensor, pow_1); eq = scalar_tensor = pow_1 = None index = torch.ops.aten.index.Tensor(where, [select]); select = None mul = torch.ops.aten.mul.Tensor(index, full); index = full = None index_1 = torch.ops.aten.index.Tensor(where, [select_1]); where = select_1 = None mul_1 = torch.ops.aten.mul.Tensor(mul, index_1); mul = index_1 = None return (mul_1,) def load_args(reader): buf0 = reader.storage(None, 3359712, device=device(type='cuda', index=0), dtype_hint=torch.int64) reader.tensor(buf0, (2, 209982), dtype=torch.int64, is_leaf=True) # arg0_1 load_args._version = 0 mod = Repro() if __name__ == '__main__': from torch._dynamo.repro.after_aot import run_repro run_repro(mod, load_args, accuracy=False, command='minify', save_dir='/scratch/anijain/work/pytorch/torch_compile_debug/run_2023_06_12_06_49_04_662047-pid_1028077/minifier/checkpoints', tracing_mode='real') ~~~~ ~~~ File "/scratch/anijain/work/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/scratch/anijain/work/pytorch/torch/_inductor/scheduler.py", line 1379, in codegen self.codegen_extern_call(node) File "/scratch/anijain/work/pytorch/torch/_inductor/scheduler.py", line 1300, in codegen_extern_call node.codegen(V.graph.wrapper_code) File "/scratch/anijain/work/pytorch/torch/_inductor/ir.py", line 3314, in codegen super().codegen(wrapper) File "/scratch/anijain/work/pytorch/torch/_inductor/ir.py", line 3002, in codegen args = [*self.codegen_args(), *self.codegen_kwargs()] File "/scratch/anijain/work/pytorch/torch/_inductor/ir.py", line 2875, in codegen_kwargs assert ( torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised: AssertionError: ordered_kwargs_for_cpp_kernel has to be provided ~~~ ### Versions N/A cc @ezyang @msaroufim @wconstab @bdhirsh
1
2,335
103,412
[Distributed] Limit world_size to 8 for FSDP Unit tests
module: rocm, triaged, open source, ciflow/trunk, topic: not user facing, ciflow/periodic, rocm, rocm priority, merging
There are few unit tests in FSDP that can support upto 8 GPUs. In this case, for example test_fsdp_uneven has an input size of [8,3]. For each process/rank we pass the data as input[self.rank] as below. So when we use 16 GPUs for our tests, these tests throw an index/key error. So basically to avoid such corner cases, I would like to add this change to use 8GPUs if there are more than 8 GPUs. This is applicable to both ROCm and CUDA builds as well. https://github.com/pytorch/pytorch/blob/main/test/distributed/fsdp/test_fsdp_uneven.py#L44 https://github.com/pytorch/pytorch/blob/main/test/distributed/fsdp/test_fsdp_uneven.py#L55 cc: @jithunnair-amd cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
28
2,336
103,402
[decomp][bad accuracy] AlbertForQuestionAnswering
triaged, oncall: pt2, module: inductor, module: pt2 accuracy
### πŸ› Describe the bug Repro - `python benchmarks/dynamo/huggingface.py --backend=aot_eager_decomp_partition --amp --training --device cuda --accuracy --only=AlbertForQuestionAnswering` Setup - Get my branch - `https://github.com/pytorch/pytorch/tree/tb-pin` and run the above cmd. Note that the accuracy fails with `aot_eager_decomp_partition`. It passes with `aot_eager` My branch * removes all the decomps except softmax from the decomp table. * further fires off decomp only for the first softmax. This limits the scope to just one decomp. But, I am out of ideas. I am unable to debug this further. The softmax decomp looks really simple. Would love to have someone look into this. ### Versions N/A cc @ezyang @msaroufim @wconstab @bdhirsh @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8
4
2,337
103,397
LayerNorm freeze processes using torch multiprocessing
module: multiprocessing, triaged
### πŸ› Describe the bug LayerNorm operation is freezing my processes when i launch 1 or more process using torch multiprocessing. I did a trivial network only containing a layernorm and my process all freezes in the forward pass. I am on linux and i did not hve this problem on MacOS. The code is : ``` import sys, os import torch import torch.multiprocessing as mp def worker(rank, model, input_action): """Worker function""" print(f"Worker {rank} received model") out = model(input_action) #Create a model using torch layernorm class LayerNormModel(torch.nn.Module): def __init__(self): super().__init__() self.layernorm = torch.nn.LayerNorm(4) def forward(self, x): return self.layernorm(x) if __name__ == '__main__': # Set the multiprocessing start method #mp.set_start_method('spawn') num_threads = torch.get_num_threads() print("Number of threads:", num_threads) model = LayerNormModel() input_action = torch.randn(1, 2, 4) #Working properly test = model(input_action) torch.set_num_threads(5) num_threads = torch.get_num_threads() print("Number of threads:", num_threads) # Create a list of values values = [1, 2, 3, 4, 5] # Create a process for each value processes = [] for i, value in enumerate(values): p = mp.Process(target=worker, args=(i, model, input_action)) processes.append(p) p.start() # Wait for all processes to finish for p in processes: p.join() print("Done!") ``` ### Versions Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [pip3] triton==2.0.0 [conda] numpy 1.24.3 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi cc @VitalyFedyunin
2
2,338
103,393
Typing missing on arithmetic ops on `Tensor`
module: typing, triaged
### πŸ› Describe the bug This is related to #103375 and #103376, but I assume it's better to split into smaller fixes. Some of the dunder ops are not defined in `_C._TensorBase` but directly in `Tensor`: https://github.com/pytorch/pytorch/blob/03101a227f6639d5a9ad628d1dc300f9f99a8812/torch/_tensor.py#L850-L902 However, as seen, there's no typing for these methods. ### Versions master cc @ezyang @malfet @rgommers @xuzhao9 @gramster
0
2,339
103,382
NotImplementedError Could not run 'c10d::alltoall_' with arguments from the 'Meta' backend.
triaged
### πŸ› Describe the bug I use FakeTensor for Shape_prop_pass and met this error: Exception has occurred: NotImplementedError Could not run 'c10d::alltoall_' with arguments from the 'Meta' backend. This could be because the operator doesn't exist for this backend, or was omitted during the selective/custom build process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://fburl.com/ptmfixes for possible resolutions. 'c10d::alltoall_' is only available for these backends: [CPU, CUDA, BackendSelect, Python, FuncTorchDynamicLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther, AutogradCPU, AutogradCUDA, AutogradXLA, AutogradMPS, AutogradXPU, AutogradHPU, AutogradLazy, AutogradMeta, Tracer, AutocastCPU, AutocastCUDA, FuncTorchBatched, FuncTorchVmapMode, Batched, VmapMode, FuncTorchGradWrapper, PythonTLSSnapshot, FuncTorchDynamicLayerFrontMode, PythonDispatcher]. CPU: registered at ../torch/csrc/distributed/c10d/Ops.cpp:700 [kernel] CUDA: registered at ../torch/csrc/distributed/c10d/Ops.cpp:704 [kernel] BackendSelect: fallthrough registered at ../aten/src/ATen/core/BackendSelectFallbackKernel.cpp:3 [backend fallback] Python: registered at ../aten/src/ATen/core/PythonFallbackKernel.cpp:144 [backend fallback] FuncTorchDynamicLayerBackMode: registered at ../aten/src/ATen/functorch/DynamicLayer.cpp:491 [backend fallback] Functionalize: registered at ../aten/src/ATen/FunctionalizeFallbackKernel.cpp:280 [backend fallback] Named: registered at ../aten/src/ATen/core/NamedRegistrations.cpp:7 [backend fallback] Conjugate: registered at ../aten/src/ATen/ConjugateFallback.cpp:17 [backend fallback] Negative: registered at ../aten/src/ATen/native/NegateFallback.cpp:19 [backend fallback] ZeroTensor: registered at ../aten/src/ATen/ZeroTensorFallback.cpp:86 [backend fallback] ADInplaceOrView: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:63 [backend fallback] AutogradOther: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:30 [backend fallback] AutogradCPU: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:34 [backend fallback] AutogradCUDA: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:42 [backend fallback] AutogradXLA: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:46 [backend fallback] AutogradMPS: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:54 [backend fallback] AutogradXPU: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:38 [backend fallback] AutogradHPU: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:67 [backend fallback] AutogradLazy: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:50 [backend fallback] AutogradMeta: fallthrough registered at ../aten/src/ATen/core/VariableFallbackKernel.cpp:58 [backend fallback] Tracer: registered at ../torch/csrc/autograd/TraceTypeManual.cpp:294 [backend fallback] AutocastCPU: fallthrough registered at ../aten/src/ATen/autocast_mode.cpp:487 [backend fallback] AutocastCUDA: fallthrough registered at ../aten/src/ATen/autocast_mode.cpp:354 [backend fallback] FuncTorchBatched: registered at ../aten/src/ATen/functorch/LegacyBatchingRegistrations.cpp:815 [backend fallback] FuncTorchVmapMode: fallthrough registered at ../aten/src/ATen/functorch/VmapModeRegistrations.cpp:28 [backend fallback] Batched: registered at ../aten/src/ATen/LegacyBatchingRegistrations.cpp:1073 [backend fallback] VmapMode: fallthrough registered at ../aten/src/ATen/VmapModeRegistrations.cpp:33 [backend fallback] FuncTorchGradWrapper: registered at ../aten/src/ATen/functorch/TensorWrapper.cpp:210 [backend fallback] PythonTLSSnapshot: registered at ../aten/src/ATen/core/PythonFallbackKernel.cpp:152 [backend fallback] FuncTorchDynamicLayerFrontMode: registered at ../aten/src/ATen/functorch/DynamicLayer.cpp:487 [backend fallback] PythonDispatcher: registered at ../aten/src/ATen/core/PythonFallbackKernel.cpp:148 [backend fallback] While executing %runtime_apply_1 : [#users=1] = call_function[target=colossalai.auto_parallel.passes.runtime_apply_pass.runtime_apply](args = (%transformer_wte, %origin_node_sharding_spec_dict, %sharding_spec_convert_dict, 11, 0), kwargs = {}) Original traceback: None File "/usr/local/lib/python3.9/site-packages/torch/_ops.py", line 287, in __call__ return self._op(*args, **kwargs or {}) File "/usr/local/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 1175, in dispatch raise not_implemented_error File "/usr/local/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 1175, in dispatch raise not_implemented_error File "/usr/local/lib/python3.9/site-packages/torch/_subclasses/fake_tensor.py", line 988, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/usr/local/lib/python3.9/site-packages/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/usr/local/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 3281, in all_to_all work = group.alltoall(output_tensor_list, input_tensor_list, opts) File "/usr/local/lib/python3.9/site-packages/torch/distributed/distributed_c10d.py", line 1451, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.9/site-packages/colossalai/tensor/comm_spec.py", line 66, in _all_to_all dist.all_to_all(output_tensor_list, input_tensor_list, group) File "/usr/local/lib/python3.9/site-packages/colossalai/tensor/comm_spec.py", line 321, in forward output = _all_to_all(input_, comm_spec) File "/usr/local/lib/python3.9/site-packages/torch/autograd/function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/usr/local/lib/python3.9/site-packages/colossalai/tensor/comm_spec.py", line 368, in all_to_all return _AllToAll.apply(input_, comm_spec) File "/usr/local/lib/python3.9/site-packages/colossalai/tensor/comm_spec.py", line 514, in covert_spec_to_action tensor = pattern_to_func_dict[self.comm_pattern](tensor, self) File "/usr/local/lib/python3.9/site-packages/colossalai/tensor/shape_consistency.py", line 742, in apply_for_autoparallel_runtime tensor = comm_spec.covert_spec_to_action(tensor) File "/usr/local/lib/python3.9/site-packages/colossalai/auto_parallel/passes/runtime_apply_pass.py", line 30, in runtime_apply return shape_consistency_manager.apply_for_autoparallel_runtime(node, origin_sharding_spec, target_sharding_spec) File "/usr/local/lib/python3.9/site-packages/torch/fx/interpreter.py", line 252, in call_function return target(*args, **kwargs) File "/usr/local/lib/python3.9/site-packages/torch/fx/interpreter.py", line 180, in run_node return getattr(self, n.op)(n.target, args, kwargs) File "/usr/local/lib/python3.9/site-packages/torch/fx/passes/fake_tensor_prop.py", line 31, in run_node result = super().run_node(n) File "/usr/local/lib/python3.9/site-packages/torch/fx/interpreter.py", line 139, in run self.env[node] = self.run_node(node) File "/usr/local/lib/python3.9/site-packages/torch/fx/passes/fake_tensor_prop.py", line 38, in propagate return super().run(*fake_args) File "/usr/local/lib/python3.9/site-packages/colossalai/_analyzer/fx/passes/shape_prop.py", line 287, in shape_prop_pass FakeTensorProp(module, mode=fake_mode).propagate(*args) File "/workspace/workfile/nanoGPT_colossalai/nanoGPT/ColossalAI/colossalai/auto_parallel/tensor_shard/initialize.py", line 150, in transform_to_sharded_model shape_prop_pass(gm, *meta_args.values(), sharding_spec_dict, origin_spec_dict, comm_actions_dict) File "/workspace/workfile/nanoGPT_colossalai/nanoGPT/ColossalAI/colossalai/auto_parallel/tensor_shard/initialize.py", line 274, in initialize_model gm, sharding_spec_dicts = transform_to_sharded_model(gm, meta_args, solution, device_mesh, strategies_constructor, File "/workspace/workfile/nanoGPT_colossalai/nanoGPT/ColossalAI/colossalai/auto_parallel/tensor_shard/initialize.py", line 342, in autoparallelize rst_to_unpack = initialize_model(model, File "/workspace/workfile/nanoGPT_colossalai/nanoGPT/train.py", line 299, in train gm, solution = autoparallelize(model, meta_input_sample, return_solution=True) File "/workspace/workfile/nanoGPT_colossalai/nanoGPT/train.py", line 405, in <module> train() ### Versions pytorch 2.0
1
2,340
103,375
Inplace binary ops on tensor subclasses can cause mypy error
module: typing, triaged
### πŸ› Describe the bug Using inplace binary ops on a subclass of `Tensor` will cause mypy error (e.g. `*=` shown below, same for other ops `+=` etc.) ```python import torch a = torch.nn.Parameter(torch.Tensor()) a *= 2 ``` run `mypy`: ``` a.py:3: error: Result type of * incompatible in assignment ``` This is because of pyi definition `def __imul__(self, other: Any) -> Tensor: ...`, which means it always returns `Tensor` but not the subclass. --- Although mypy does not give any error with `a.mul_(2)` instead of `a*=2`, they should be the same, and inplace methods like `mul_` should return `Self` instead of `Tensor`. ```python import torch a = torch.nn.Parameter(torch.Tensor()) print(a.mul_(2).__class__) ``` The result is indeed `torch.nn.parameter.Parameter`. ### Versions master cc @ezyang @malfet @rgommers @xuzhao9 @gramster
0
2,341
103,372
ImportError: cannot import name 'Store' from 'torch.distributed'
oncall: distributed, triaged
### πŸ› Describe the bug Hello, I am trying to run YoloNAS on the nvidia Orin NX. I can have successfully for YoloV7 working but YoloNAS is complaining about torch.distributed. Here is some information about my Orin: torch 2.0.0+nv23.5 torchmetrics 0.8.0 torchvision 0.15.1 Python 3.8.10 Model: NVIDIA Orin NX Developer Kit - Jetpack 5.1 [L4T 35.2.1] The error I get is the following: ImportError: cannot import name 'Store' from 'torch.distributed' (/home/rebotnix/.local/lib/python3.8/site-packages/torch/distributed/__init__.py) Checking in python: >>> import torch >>> torch.distributed.is_available() False >>> Any suggestions would be much appreciated. All the best, Simon ### Versions rebotnix@rebotnix:~/Documents/yolo-nas$ python collect_env.py Collecting environment information... PyTorch version: 2.0.0+nv23.05 Is debug build: False CUDA used to build PyTorch: 11.4 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (aarch64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.10.104-tegra-aarch64-with-glibc2.29 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/aarch64-linux-gnu/libcudnn.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_adv_train.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_cnn_train.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops_infer.so.8.6.0 /usr/lib/aarch64-linux-gnu/libcudnn_ops_train.so.8.6.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: False CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 1 Core(s) per socket: 8 Socket(s): 1 Vendor ID: ARM Model: 1 Model name: ARMv8 Processor rev 1 (v8l) Stepping: r0p1 CPU max MHz: 1984.0000 CPU min MHz: 115.2000 BogoMIPS: 62.50 L1d cache: 512 KiB L1i cache: 512 KiB L2 cache: 2 MiB L3 cache: 4 MiB Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp uscat ilrcpc flagm Versions of relevant libraries: [pip3] numpy==1.23.0 [pip3] torch==2.0.0+nv23.5 [pip3] torchmetrics==0.8.0 [pip3] torchvision==0.15.1 [conda] Could not collect cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
1
2,342
103,370
torchgen/gen_backend_stubs.py compatibility with DispatchStubs
triaged, module: dispatch, module: codegen, module: structured kernels
### πŸš€ The feature, motivation and pitch For our out-of-tree backend, I would like to support many structured kernels similar to how is done in CUDA, i.e. registering `DispatchStub` per operation, similar to how is done [here](https://github.com/pytorch/pytorch/blob/03101a227f6639d5a9ad628d1dc300f9f99a8812/aten/src/ATen/native/cuda/BinaryMulKernel.cu#L46), for `PrivateUse1`, the support for registering stubs was added in [this PR](https://github.com/pytorch/pytorch/pull/99611). This PR however, does not tackle how to implement structured kernels in the same manner. It would be nice if [`get_backend_stubs.py`](https://github.com/pytorch/pytorch/blob/03101a227f6639d5a9ad628d1dc300f9f99a8812/torchgen/native_function_generation.py) could support implementation paths of this form instead. I'm not certain as to whether `torchgen` could support the reuse of these kernels with overridden headers, which is how we've implemented a method to redirect CUDA kernel launches from our backend successfully with various unstructured kernels. ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @bhosmer @bdhirsh
1
2,343
103,369
test_workspace_allocation_error fails on my local devgpu
triaged, module: cuda graphs
### πŸ› Describe the bug I get this error: ``` ====================================================================== ERROR: test_workspace_allocation_error (__main__.CudaGraphTreeTests) ---------------------------------------------------------------------- Traceback (most recent call last): File "/data/users/ezyang/d/pytorch/test/inductor/test_cudagraph_trees.py", line 778, in test_workspace_allocation_error foo(*inps) File "/data/users/ezyang/d/pytorch/torch/_dynamo/eval_frame.py", line 292, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/test/inductor/test_cudagraph_trees.py", line 770, in foo @torch.compile() File "/data/users/ezyang/d/pytorch/torch/_dynamo/eval_frame.py", line 292, in _fn return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_dynamo/external_utils.py", line 17, in inner return fn(*args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_functorch/aot_autograd.py", line 3721, in forward return compiled_fn(full_args) File "/data/users/ezyang/d/pytorch/torch/_functorch/aot_autograd.py", line 1439, in g return f(*args) File "/data/users/ezyang/d/pytorch/torch/_functorch/aot_autograd.py", line 2394, in runtime_wrapper all_outs = call_func_with_args( File "/data/users/ezyang/d/pytorch/torch/_functorch/aot_autograd.py", line 1463, in call_func_with_args out = normalize_as_list(f(args)) File "/data/users/ezyang/d/pytorch/torch/_functorch/aot_autograd.py", line 1548, in rng_functionalization_wrapper return compiled_fw(args) File "/data/users/ezyang/d/pytorch/torch/_inductor/compile_fx.py", line 454, in run return model(new_inputs) File "/data/users/ezyang/d/pytorch/torch/_inductor/compile_fx.py", line 496, in run return compiled_fn(new_inputs) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 360, in deferred_cudagraphify fn, out = cudagraphify(model, inputs, static_input_idxs, *args, **kwargs) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 384, in cudagraphify return manager.add_function( File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 1856, in add_function return fn, fn(inputs) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 1676, in run out = self._run(new_inputs, function_id) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 1717, in _run return self.run_eager(new_inputs, function_id) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 1832, in run_eager return node.run(new_inputs) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 600, in run check_memory_pool(self.device_index, self.cuda_graphs_pool, new_storages) File "/data/users/ezyang/d/pytorch/torch/_inductor/cudagraph_trees.py", line 1543, in check_memory_pool raise RuntimeError(msg) RuntimeError: These live storage data ptrs are in the cudagraph pool but not accounted for as an output of cudagraph trees: Data Pointer: 140691082575872, history: File "??", line 0, in torch::unwind::unwind() File "??", line 0, in torch::CapturedTraceback::gather(bool, bool, bool) File "Module.cpp", line 0, in gather_with_cpp() File "CUDACachingAllocator.cpp", line 0, in c10::cuda::CUDACachingAllocator::Native::DeviceCachingAllocator::malloc(int, unsigned long, CUstream_st*) File "crtstuff.c", line 0, in c10::cuda::CUDACachingAllocator::Native::NativeCachingAllocator::malloc(void**, int, unsigned long, CUstream_st*) File "crtstuff.c", line 0, in c10::cuda::CUDACachingAllocator::Native::NativeCachingAllocator::allocate(unsigned long) const File "??", line 0, in at::cuda::getCurrentCUDABlasHandle() File "offloadstuff.c", line 0, in void at::cuda::blas::gemm<float>(char, char, long, long, long, at::OpMathType<float>::type, float const*, long, float const*, long, at::OpMathType<float>::type, float*, long) File "Blas.cpp", line 0, in at::native::(anonymous namespace)::addmm_out_cuda_impl(at::Tensor&, at::Tensor const&, at::Tensor const&, at::Tensor const&, c10::Scalar const&, c10::Scalar const&, at::native::(anonymous namespace)::Activation) [clone .isra.0] File "??", line 0, in at::native::structured_mm_out_cuda::impl(at::Tensor const&, at::Tensor const&, at::Tensor const&) File "RegisterCUDA.cpp", line 0, in at::(anonymous namespace)::wrapper_CUDA_mm_out_out(at::Tensor const&, at::Tensor const&, at::Tensor&) File "ADInplaceOrViewType_0.cpp", line 0, in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor& (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor&), &torch::ADInplaceOrView::(anonymous namespace)::mm_out_out>, at::Tensor&, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor&> >, at::Tensor& (c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor&) File "VariableType_1.cpp", line 0, in torch::autograd::VariableType::(anonymous namespace)::mm_out_out(c10::DispatchKeySet, at::Tensor const&, at::Tensor const&, at::Tensor&) File "??", line 0, in at::_ops::mm_out::call(at::Tensor const&, at::Tensor const&, at::Tensor&) File "python_torch_functions_1.cpp", line 0, in torch::autograd::THPVariable_mm(_object*, _object*, _object*) File "/usr/local/src/conda/python-3.10.11/Objects/methodobject.c", line 543, in cfunction_call File "/usr/local/src/conda/python-3.10.11/Objects/call.c", line 305, in _PyObject_Call File "/usr/local/src/conda/python-3.10.11/Python/ceval.c", line 5917, in do_call_core File "/data/users/ezyang/d/pytorch/torch/utils/_device.py", line 76, in __torch_function__ return func(*args, **kwargs) File "/usr/local/src/conda/python-3.10.11/Include/internal/pycore_ceval.h", line 46, in _PyEval_EvalFrame During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ezyang/local/d/pytorch-env/lib/python3.10/contextlib.py", line 79, in inner return func(*args, **kwds) File "/data/users/ezyang/d/pytorch/test/inductor/test_cudagraph_trees.py", line 783, in test_workspace_allocation_error ).run(str(e)) RuntimeError: Expected to find "at::cuda::getNewWorkspace" but did not find it Searched string: These live storage data ptrs are in the cudagraph pool but not accounted for as an output of cudagraph trees: ~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE Data Pointer: 140691082575872, history: From CHECK: at::cuda::getNewWorkspace ====================================================================== FAIL: test_workspace_allocation_error (__main__.CudaGraphTreeTests) ---------------------------------------------------------------------- Traceback (most recent call last): File "/data/users/ezyang/d/pytorch/test/inductor/test_cudagraph_trees.py", line 132, in tearDown self.assertEqual(all_live_block_count(), 0) File "/data/users/ezyang/d/pytorch/torch/testing/_internal/common_utils.py", line 3096, in assertEqual raise error_metas[0].to_error( AssertionError: Scalars are not equal! Expected 0 but got 1. Absolute difference: 1 Relative difference: inf ---------------------------------------------------------------------- Ran 39 tests in 77.199s ``` Build config ``` $ python -c "import torch.__config__; print(torch.__config__.show())" PyTorch built with: - GCC 11.3 - C++ Version: 201703 - Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.7.3 (Git Hash 6dbeffbae1f23cbbeae17adb7b5b13f1f37c080e) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 12.0 - NVCC architecture flags: -gencode;arch=compute_80,code=sm_80 - Magma 2.6.1 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=12.0, CXX_COMPILER=/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_DISABLE_GPU_ASSERTS=ON, TORCH_VERSION=2.1.0, USE_CUDA=ON, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, ``` cc @mcarilli @eellison ### Versions main
3
2,344
103,367
RuntimeError: CUDA error: unknown error
oncall: distributed, triaged, module: fsdp
### πŸ› Describe the bug ![image](https://github.com/pytorch/pytorch/assets/39661319/da0f9a22-de47-4942-8319-d279c6a682a6) ### Versions RuntimeError: CUDA error: unknown error Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions. ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 8193) of binary: /home/win10-ubuntu/anaconda3/envs/vicuna-7b/bin/python3.10 Traceback (most recent call last): File "/home/win10-ubuntu/anaconda3/envs/vicuna-7b/bin/torchrun", line 8, in <module> sys.exit(main()) File "/home/win10-ubuntu/anaconda3/envs/vicuna-7b/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 346, in wrapper return f(*args, **kwargs) File "/home/win10-ubuntu/anaconda3/envs/vicuna-7b/lib/python3.10/site-packages/torch/distributed/run.py", line 794, in main run(args) File "/home/win10-ubuntu/anaconda3/envs/vicuna-7b/lib/python3.10/site-packages/torch/distributed/run.py", line 785, in run elastic_launch( File "/home/win10-ubuntu/anaconda3/envs/vicuna-7b/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 134, in __call__ return launch_agent(self._config, self._entrypoint, list(args)) File "/home/win10-ubuntu/anaconda3/envs/vicuna-7b/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 250, in launch_agent raise ChildFailedError( torch.distributed.elastic.multiprocessing.errors.ChildFailedError: ============================================================ fastchat/train/train_mem.py FAILED ------------------------------------------------------------ Failures: <NO_OTHER_FAILURES> ------------------------------------------------------------ Root Cause (first observed failure): [0]: time : 2023-06-10_20:45:09 host : DESKTOP-LA7GLEG.localdomain rank : 0 (local_rank: 0) exitcode : 1 (pid: 8193) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ![image](https://github.com/pytorch/pytorch/assets/39661319/ab44828a-414b-4fe6-99ca-28c0f0fa2253) cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
6
2,345
103,359
Libtorch compile error when defining D_GLIBCXX_DEBUG
module: build, module: abi, triaged
### πŸ› Describe the bug I'm not sure if this is expected behaviour, but by having the compiler flag `-D_GLIBCXX_DEBUG` will result in a `use of deleted function` error. Minimal reproducible example here: main.cpp: ```c++ #include <torch/torch.h> int main() { return 0; } ``` CMakeLists.txt: ``` cmake_minimum_required(VERSION 3.0 FATAL_ERROR) project(example-app) find_package(Torch REQUIRED) set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${TORCH_CXX_FLAGS}") add_executable(main main.cpp) target_link_libraries(main "${TORCH_LIBRARIES}") set_property(TARGET main PROPERTY CXX_STANDARD 14) target_compile_options(main PUBLIC -Wall -Wextra -D_GLIBCXX_DEBUG ) ``` cmake generated output: ``` $cmake -DCMAKE_PREFIX_PATH=/usr/local/libtorch .. -- The C compiler identification is GNU 11.3.0 -- The CXX compiler identification is GNU 11.3.0 -- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Check for working C compiler: /usr/bin/cc - skipped -- Detecting C compile features -- Detecting C compile features - done -- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done -- Check for working CXX compiler: /usr/bin/c++ - skipped -- Detecting CXX compile features -- Detecting CXX compile features - done -- Found CUDA: /usr/local/cuda (found version "11.8") -- The CUDA compiler identification is NVIDIA 11.8.89 -- Detecting CUDA compiler ABI info -- Detecting CUDA compiler ABI info - done -- Check for working CUDA compiler: /usr/local/cuda/bin/nvcc - skipped -- Detecting CUDA compile features -- Detecting CUDA compile features - done -- Caffe2: CUDA detected: 11.8 -- Caffe2: CUDA nvcc is: /usr/local/cuda/bin/nvcc -- Caffe2: CUDA toolkit directory: /usr/local/cuda -- Caffe2: Header version is: 11.8 -- /usr/local/cuda/lib64/libnvrtc.so shorthash is 672ee683 -- USE_CUDNN is set to 0. Compiling without cuDNN support -- Autodetected CUDA architecture(s): 8.6 -- Added CUDA NVCC flags for: -gencode;arch=compute_86,code=sm_86 -- Found Torch: /usr/local/libtorch/lib/libtorch.so -- Configuring done (3.3s) -- Generating done (0.0s) -- Build files have been written to: /home/tuero/Documents/test/test_torch/build ``` Compiler error: ``` %$ make [ 50%] Building CXX object CMakeFiles/main.dir/main.cpp.o In file included from /usr/local/libtorch/include/torch/csrc/autograd/variable.h:11, from /usr/local/libtorch/include/torch/csrc/autograd/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/all.h:7, from /usr/local/libtorch/include/torch/csrc/api/include/torch/torch.h:3, from /home/tuero/Documents/test/test_torch/main.cpp:1: /usr/local/libtorch/include/ATen/NamedTensorUtils.h: In function β€˜bool at::has_names(at::ITensorListRef)’: /usr/local/libtorch/include/ATen/NamedTensorUtils.h:15:35: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 15 | return std::any_of(tensors.begin(), tensors.end(), [](const Tensor& t) { | ~~~~~~~~~~~~~^~ In file included from /usr/local/libtorch/include/ATen/WrapDimUtils.h:3, from /usr/local/libtorch/include/ATen/TensorNames.h:3, from /usr/local/libtorch/include/ATen/NamedTensorUtils.h:3, from /usr/local/libtorch/include/torch/csrc/autograd/variable.h:11, from /usr/local/libtorch/include/torch/csrc/autograd/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/all.h:7, from /usr/local/libtorch/include/torch/csrc/api/include/torch/torch.h:3, from /home/tuero/Documents/test/test_torch/main.cpp:1: /usr/local/libtorch/include/ATen/core/IListRef.h:362:7: note: β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ is implicitly deleted because the default definition would be ill-formed: 362 | class IListRefIterator { | ^~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:362:7: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::Payload::~Payload()’ /usr/local/libtorch/include/ATen/core/IListRef.h:482:9: note: β€˜c10::IListRefIterator<at::Tensor>::Payload::~Payload()’ is implicitly deleted because the default definition would be ill-formed: 482 | union Payload { | ^~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:483:25: error: union member β€˜c10::IListRefIterator<at::Tensor>::Payload::boxed_iterator’ with non-trivial β€˜c10::impl::ListIterator<T, Iterator>::~ListIterator() [with T = at::Tensor; Iterator = __gnu_debug::_Safe_iterator<__gnu_cxx::__normal_iterator<c10::IValue*, std::__cxx1998::vector<c10::IValue, std::allocator<c10::IValue> > >, std::__debug::vector<c10::IValue>, std::random_access_iterator_tag>]’ 483 | boxed_iterator_type boxed_iterator; | ^~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:485:32: error: union member β€˜c10::IListRefIterator<at::Tensor>::Payload::materialized_iterator’ with non-trivial β€˜__gnu_debug::_Safe_iterator<__gnu_cxx::__normal_iterator<const std::reference_wrapper<const at::Tensor>*, std::__cxx1998::vector<std::reference_wrapper<const at::Tensor>, std::allocator<std::reference_wrapper<const at::Tensor> > > >, std::__debug::vector<std::reference_wrapper<const at::Tensor>, std::allocator<std::reference_wrapper<const at::Tensor> > >, std::random_access_iterator_tag>::~_Safe_iterator()’ 485 | materialized_iterator_type materialized_iterator; | ^~~~~~~~~~~~~~~~~~~~~ In file included from /usr/local/libtorch/include/torch/csrc/autograd/variable.h:11, from /usr/local/libtorch/include/torch/csrc/autograd/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/all.h:7, from /usr/local/libtorch/include/torch/csrc/api/include/torch/torch.h:3, from /home/tuero/Documents/test/test_torch/main.cpp:1: /usr/local/libtorch/include/ATen/NamedTensorUtils.h:15:50: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 15 | return std::any_of(tensors.begin(), tensors.end(), [](const Tensor& t) { | ~~~~~~~~~~~^~ In file included from /usr/local/libtorch/include/ATen/core/dispatch/OperatorEntry.h:12, from /usr/local/libtorch/include/ATen/core/dispatch/Dispatcher.h:6, from /usr/local/libtorch/include/torch/csrc/api/include/torch/types.h:12, from /usr/local/libtorch/include/torch/csrc/api/include/torch/data/dataloader_options.h:4, from /usr/local/libtorch/include/torch/csrc/api/include/torch/data/dataloader/base.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/data/dataloader/stateful.h:4, from /usr/local/libtorch/include/torch/csrc/api/include/torch/data/dataloader.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/data.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/all.h:9, from /usr/local/libtorch/include/torch/csrc/api/include/torch/torch.h:3, from /home/tuero/Documents/test/test_torch/main.cpp:1: /usr/local/libtorch/include/ATen/core/dispatch/DispatchKeyExtractor.h: In member function β€˜void c10::detail::MultiDispatchKeySet::operator()(at::ITensorListRef)’: /usr/local/libtorch/include/ATen/core/dispatch/DispatchKeyExtractor.h:79:28: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 79 | for (const auto& x : xs) { | ^~ /usr/local/libtorch/include/ATen/core/dispatch/DispatchKeyExtractor.h:79:28: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ In file included from /usr/local/libtorch/include/ATen/WrapDimUtils.h:3, from /usr/local/libtorch/include/ATen/TensorNames.h:3, from /usr/local/libtorch/include/ATen/NamedTensorUtils.h:3, from /usr/local/libtorch/include/torch/csrc/autograd/variable.h:11, from /usr/local/libtorch/include/torch/csrc/autograd/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/autograd.h:3, from /usr/local/libtorch/include/torch/csrc/api/include/torch/all.h:7, from /usr/local/libtorch/include/torch/csrc/api/include/torch/torch.h:3, from /home/tuero/Documents/test/test_torch/main.cpp:1: /usr/local/libtorch/include/ATen/core/IListRef.h: In instantiation of β€˜c10::IListRef<T>::iterator c10::IListRef<T>::begin() const [with T = at::Tensor; c10::IListRef<T>::iterator = c10::IListRefIterator<at::Tensor>]’: /usr/local/libtorch/include/ATen/NamedTensorUtils.h:15:35: required from here /usr/local/libtorch/include/ATen/core/IListRef.h:561:5: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 561 | TORCH_ILISTREF_UNWRAP(tag_, { return this_.begin(); }); | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:561:5: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 561 | TORCH_ILISTREF_UNWRAP(tag_, { return this_.begin(); }); | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:561:5: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 561 | TORCH_ILISTREF_UNWRAP(tag_, { return this_.begin(); }); | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h: In instantiation of β€˜c10::IListRef<T>::iterator c10::IListRef<T>::end() const [with T = at::Tensor; c10::IListRef<T>::iterator = c10::IListRefIterator<at::Tensor>]’: /usr/local/libtorch/include/ATen/NamedTensorUtils.h:15:50: required from here /usr/local/libtorch/include/ATen/core/IListRef.h:565:5: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 565 | TORCH_ILISTREF_UNWRAP(tag_, { return this_.end(); }); | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:565:5: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 565 | TORCH_ILISTREF_UNWRAP(tag_, { return this_.end(); }); | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h:565:5: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::~IListRefIterator()’ 565 | TORCH_ILISTREF_UNWRAP(tag_, { return this_.end(); }); | ^~~~~~~~~~~~~~~~~~~~~ /usr/local/libtorch/include/ATen/core/IListRef.h: In instantiation of β€˜c10::IListRefIterator<T>::IListRefIterator(c10::IListRefIterator<T>::unboxed_iterator_type) [with T = at::Tensor; c10::IListRefIterator<T>::unboxed_iterator_type = const at::Tensor*]’: /usr/local/libtorch/include/ATen/core/IListRef.h:561:5: required from β€˜c10::IListRef<T>::iterator c10::IListRef<T>::begin() const [with T = at::Tensor; c10::IListRef<T>::iterator = c10::IListRefIterator<at::Tensor>]’ /usr/local/libtorch/include/ATen/NamedTensorUtils.h:15:35: required from here /usr/local/libtorch/include/ATen/core/IListRef.h:433:78: error: use of deleted function β€˜c10::IListRefIterator<at::Tensor>::Payload::~Payload()’ 433 | IListRefIterator(unboxed_iterator_type unboxed) : tag_(IListRefTag::Unboxed) { | ^ make[2]: *** [CMakeFiles/main.dir/build.make:76: CMakeFiles/main.dir/main.cpp.o] Error 1 make[1]: *** [CMakeFiles/Makefile2:83: CMakeFiles/main.dir/all] Error 2 make: *** [Makefile:91: all] Error 2 ``` Removing the `-D_GLIBCXX_DEBUG` works as expected. ### Versions ``` $ cat /usr/local/libtorch/build-version 2.0.1+cu118 $ g++ --version g++ (Ubuntu 11.3.0-6ubuntu1) 11.3.0 Copyright (C) 2021 Free Software Foundation, Inc. This is free software; see the source for copying conditions. There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. ``` cc @malfet @seemethere
0
2,346
103,354
Add a requirements.txt for windows pip packages
triaged, module: devx
**Goal**: Enable pytorch devs to add/update pip packages for windows builds and tests in a single PR ### Context Today, if you're introducing a PR that takes a dependency on a new python package, for Windows you need to: 1. Add a manual, temporary pip install somewhere in the workflow so that your PR passes 2. Create a test-infra PR that adds that pip package to the AMI here: https://github.com/pytorch/test-infra/blob/main/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1 3. Remove the manual pip install line from step 1 That's pretty tedious ### The Ask Instead we should do the following: 1. Define a dedicated requirements.txt file for windows in python/python, following the pattern used for https://github.com/pytorch/pytorch/blob/main/.github/requirements/pip-requirements-macOS.txt 3. In that [ps1 file](https://github.com/pytorch/test-infra/blob/main/aws/ami/windows/scripts/Installers/Install-Pip-Dependencies.ps1), download the req.txt file from the prev step (you'll need to get it from the py/py repo) and install the packages it specifies. 4. In the windows build & test workflows, we also always install packages from the requirements.txt file if they’re not already installed. ### Benefits 1. This would make future installations/upgrades easy by putting all the package changes in a single folder 2. We have dependencies defined in one place 3. We have safe guard in case the dependencies are not found in the AMI (which is expected for a small time window when a new package/upgrade is freshly added) cc @kit1980 @huydhn @clee2000
0
2,347
103,352
[feature request] Native method for iterating Python items of tensors: `iteritems()` and a new `tensor.item(i, j, k, ...)` method
feature, triaged, module: python frontend
### πŸš€ The feature, motivation and pitch without having to call `.item()`. OP: https://github.com/pytorch/pytorch/pull/103339#discussion_r1224826554 so this is needed for 1d tensors, although could be useful in the future in other contexts if string arrays are supported: https://github.com/pytorch/pytorch/issues/101699 Only relevant for large tensors/loops, where materializing a python list first takes too many python objects Related on slow item indexing: https://github.com/pytorch/pytorch/issues/29973 and proposal of `tensor.item(i, j, k, ...)` fast indexing method returning Python int/float objects without `tensor[i, j, k, ...].item()` first creating an extra tensor object and only then upacking it Related on supporting `memoryview` on tensors: https://github.com/pytorch/pytorch/issues/43949, then this method could be implemented by simply returning memoryview which supports iteration in python ### Alternatives _No response_ ### Additional context _No response_ cc @albanD
8
2,348
103,343
mps and cpu give far different results when training a transformer.
triaged, module: mps
### πŸ› Describe the bug when training a transfromer model with mac CPU this is the resulting loss function log 994,tensor(13.4385),2.598125166893005,2.676572799682617 1988,tensor(13.2934),2.5872674012184143,2.6137495040893555 2000,tensor(13.3104),2.5885423374176026,2.628082513809204 2982,tensor(12.8851),2.5560683608055115,2.675567865371704 3976,tensor(12.6861),2.54050742149353,2.4734363555908203 4000,tensor(12.8042),2.549770863056183,2.584007501602173 4970,tensor(12.6474),2.537447814941406,2.528282403945923 when using the MPS, same code and data 994,tensor(1.4541),0.3743850642442703,0.42320576310157776 1988,tensor(1.4568),0.3762083804607391,0.3572617173194885 2000,tensor(1.4540),0.37433584868907926,0.3778816759586334 2982,tensor(1.4524),0.3732233664393425,0.3656735122203827 3976,tensor(1.4476),0.36990807741880416,0.3881590962409973 4000,tensor(1.4447),0.36788938045501707,0.3148590922355652 4970,tensor(1.4531),0.373729208111763,0.3972059488296509 [test.zip](https://github.com/pytorch/pytorch/files/11710031/test.zip) ### Versions Collecting environment information... PyTorch version: 2.1.0.dev20230608 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: Could not collect Libc version: N/A Python version: 3.11.3 (main, Apr 19 2023, 18:49:55) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-13.4-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M2 Pro Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.1.0.dev20230608 [pip3] torchaudio==2.1.0.dev20230608 [pip3] torchvision==0.16.0.dev20230608 [conda] numpy 1.24.3 py311hb57d4eb_0 [conda] numpy-base 1.24.3 py311h1d85a46_0 [conda] pytorch 2.1.0.dev20230608 py3.11_0 pytorch-nightly [conda] torchaudio 2.1.0.dev20230608 py311_cpu pytorch-nightly [conda] torchvision 0.16.0.dev20230608 py311_cpu pytorch-nightly cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
4
2,349
103,336
python test/inductor/test_split_cat_fx_passes.py -k test_consecutive_split_merge fails, but running all tests together succeeds
triaged, oncall: pt2
### πŸ› Describe the bug Something wrong with the harness. I plan to disable these tests for now. cc @msaroufim @wconstab @bdhirsh @anijain2305 @devashishshankar ### Versions main
0
2,350
103,332
Improve `_group_tensors_by_device_and_dtype`
module: optimizer, triaged, better-engineering, actionable, module: mta
follow-up https://github.com/pytorch/pytorch/pull/100007 https://github.com/pytorch/pytorch/blob/6fa2d41dc7dfcbff37df7fb5517e6644eb3d74ab/torch/csrc/Module.cpp#L1745-L1746 should be able to be cleaner by implementing an appropriate type caster for `at::ScalarType` cc @vincentqb @jbschlosser @albanD @janeyx99 @mcarilli
0
2,351
103,329
RuntimeError: torch.vmap a function that includes in-place arithmetic operations on a zero-initialized tensor, an error "vmap: inplace arithmetic(self, *extra_args) is not possible" is raised.
triaged, module: functorch
### πŸ› Describe the bug When using torch.vmap to batch-process a function that includes inplace arithmetic operations on a zero-initialized tensor, an error "vmap: inplace arithmetic(self, *extra_args) is not possible" is raised. Specifically, an error is raised when initializing the zero tensor using torch.zeros(x.shape), but no error is raised if using torch.zeros_like(x). ``` import torch def func(x, y): mat = torch.zeros(x.shape) # Error occurs on this line # mat = torch.zeros_like(x) # No error occurs on this line mat[0, 0] = mat[0, 1] + x[0, 0] return mat input = torch.ones((10, 5, 6)) inputy = torch.ones((10, 5, 6)) batched_func = torch.vmap(func, in_dims=(0, 0)) batched_func(input, inputy) ``` ``` Error message: RuntimeError: vmap: inplace arithmetic(self, *extra_args) is not possible because there exists a Tensor `other` in extra_args that has more elements than `self`. This happened due to `other` being vmapped over but `self` not being vmapped over in a vmap. Please try to use out-of-place operators instead of inplace arithmetic. If said operator is being called inside the PyTorch framework, please file a bug report instead ``` ### Versions PyTorch version: 2.0.1 Operating system: Mac Monterey 12.6.2 Python version: 3.10.4 cc @zou3519 @Chillee @samdow @kshitij12345 @janeyx99
4
2,352
103,322
Disabling ALL TestOptim on the dynamo config
high priority, module: optimizer, triaged, skipped, module: dynamo
### πŸ› Describe the bug https://github.com/pytorch/pytorch/pull/102640 introduced flakiness into the dynamo optim tests. There was a followup PR https://github.com/pytorch/pytorch/pull/103066 to try to disable the tests in attempt to restore health, but that did not sufficiently cover all forms of flakiness as there were further reports of flaky tests after. This issue tracks the fact that we currently disable ALL test_optim tests in the dynamo shard, which is probably undesirable, but is a necessary stopgap to restore CI health. The alternative is reverting https://github.com/pytorch/pytorch/pull/102640 and its forward fixes, like https://github.com/pytorch/pytorch/pull/103121. ### Versions main cc @ezyang @gchanan @zou3519 @vincentqb @jbschlosser @albanD @voznesenskym @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @aakhundov
5
2,353
103,318
Custom autograd function causes a graph break
triaged, oncall: pt2
### πŸ› Describe the bug Under what conditions do custom autograd functions cause graph breaks? ### Error logs I've got a graph break when using mem_efficient_attention MHA from xformers: https://github.com/facebookresearch/xformers/issues/765 ### Minified repro _No response_ ### Versions Collecting environment information... PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: 10.0.0-4ubuntu1 CMake version: version 3.25.2 Libc version: glibc-2.31 Python version: 3.10.12 (main, Jun 7 2023, 12:45:35) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.107+-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla T4 Nvidia driver version: 525.85.12 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.7.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.7.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 2 On-line CPU(s) list: 0,1 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU @ 2.20GHz Stepping: 0 CPU MHz: 2199.998 BogoMIPS: 4399.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB L1i cache: 32 KiB L2 cache: 256 KiB L3 cache: 55 MiB NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.22.4 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] Could not collect cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
4
2,354
103,316
binary_cross_entropy (loss) seems to be giving incorrect values for very negative logits
module: nn, triaged
### πŸ› Describe the bug Please see the following code which computes the loss manually (using PyTorch ops) and using the `F.binary_cross_entropy` API. ``` import torch from torch import nn from torch.nn import functional as F x = nn.Parameter(torch.tensor([-50., -10., -5., -2., 0., 2., 5., 10.]), requires_grad=True) optimizer = torch.optim.Adam([x]) optimizer.zero_grad() xs = x.sigmoid() loss = -xs.log().mean() loss.backward() print(x.grad) optimizer.zero_grad() loss = F.binary_cross_entropy(x.sigmoid(), torch.ones_like(x)) loss.backward() print(x.grad) ``` This code prints. ``` tensor([-1.2500e-01, -1.2499e-01, -1.2416e-01, -1.1010e-01, -6.2500e-02, -1.4900e-02, -8.3660e-04, -5.6773e-06]) tensor([-2.4109e-11, -1.2499e-01, -1.2416e-01, -1.1010e-01, -6.2500e-02, -1.4900e-02, -8.3660e-04, -5.6773e-06]) ``` Note that for the input `-50`, the `binary_cross_entropy` API returns a very small negative value `-2.4109e-11`, instead of a larger negative value, namely `-1.2500e-01`. ### Versions 1.12.1 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
5
2,355
103,315
Add Half support for softmax and log_softmax on CPU
module: cpu, open source, ciflow/trunk, release notes: nn, ciflow/periodic, ciflow/mps, module: inductor
Add Half support for softmax and log_softmax on CPU. Note: This introduces a correctness issue with MPS https://github.com/pytorch/pytorch/issues/111416 and https://github.com/pytorch/pytorch/issues/111479. cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @voznesenskym @penguinwu @EikanWang @Guobing-Chen @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler @ngimel
6
2,356
103,313
Fast kernels for low rank matrix multiplication
triaged, module: linear algebra
### πŸš€ The feature, motivation and pitch I'm working on the robotics perception field and we have been exploring to use pytorch for production more on the control side where the most common used primitives are camera poses, projections, quaternion arithmetic, which in the real-time production side can be identified by a subset of matmul operators of sizes of 3x1, 4x1, 3x3, 4x4. With some colleagues we put together in kornia a small package for [Lie Algebra](https://github.com/kornia/kornia/tree/master/kornia/geometry/liegroup), Quaternion, etc based on a colab with the [Sophus](https://github.com/strasdat/Sophus) team. We did some internal benchmarks and ended up turning down the kornia/pytorch implementation because of slowness for small matrix multiplications operators. Sophus is based on c++ Eigen, however, in parallel I did a quick public [benchmark](https://discuss.pytorch.org/t/matmul-slow-for-small-matrices/168425) comparing pytorch/numpy and (unless something missing; and happy to expand/improve) numpy is still a clear winner that prevents using pytorch in real time production robotics platforms. ### Alternatives Alternatives I'm thinking to solve my problem: - Numba (which removes pytorch out of the equation) - Custom c++/cuda kernels to mimic Eigen (which in kornia we don't have bandwidth to support but happy to contribute (with guidance) to pytorch core. - Custom Python/Triton kernels (which we can experiment/maintain from kornia side) ### Additional context Just screenshot of the [benchmark](https://discuss.pytorch.org/t/matmul-slow-for-small-matrices/168425) mentioned above ![image](https://github.com/pytorch/pytorch/assets/5157099/2cadc328-19ab-430e-b621-1753920c9855) cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
11
2,357
103,312
setup.py fails to pass USE_ROCM to CAFFE2 build
module: rocm, triaged
### πŸ› Describe the bug When building pytorch main branch (978a2f2b276b51f615aa860d47fadd16a284b2f6) with: ``` python tools/amd_build/build_amd.py export USE_ROCM=1 export BUILD_CAFFE2=1 python setup.py develop ``` Following compiler error is produced: ``` [1/10] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o FAILED: caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o /usr/bin/c++ -DAT_PER_OPERATOR_HEADERS -DBUILD_ONEDNN_GRAPH -DCAFFE2_BUILD_MAIN_LIB -DCPUINFO_SUPPORTED_PLATFORM=1 -DFMT_HEADER_ONLY=1 -DFXDIV_USE_INLINE_ASSEMBLY=0 -DHAVE_MALLOC_USABLE_SIZE=1 -DHAVE_MMAP=1 -DHAVE_SHM_OPEN=1 -DHAVE_SHM_UNLINK=1 -DMINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -DNNP_CONVOLUTION_ONLY=0 -DNNP_INFERENCE_ONLY=0 -DONNXIFI_ENABLE_EXT=1 -DONNX_ML=1 -DONNX_NAMESPACE=onnx_torch -DUSE_C10D_GLOO -DUSE_C10D_MPI -DUSE_DISTRIBUTED -DUSE_EXTERNAL_MZCRC -DUSE_RPC -DUSE_TENSORPIPE -D_FILE_OFFSET_BITS=64 -Dtorch_cpu_EXPORTS -Iaten/src -I../aten/src -I. -I../ -I../cmake/../third_party/benchmark/include -Icaffe2/contrib/aten -I../third_party/onnx -Ithird_party/onnx -I../third_party/foxi -Ithird_party/foxi -I../torch/csrc/api -I../torch/csrc/api/include -I../caffe2/aten/src/TH -Icaffe2/aten/src/TH -Icaffe2/aten/src -I../caffe2/../third_party -Icaffe2/../aten/src -I../torch/csrc -I../third_party/miniz-2.1.0 -I../third_party/kineto/libkineto/include -I../third_party/kineto/libkineto/src -I../aten/src/ATen/.. -I../caffe2/core/nomnigraph/include -I../third_party/FXdiv/include -I../c10/.. -I../third_party/pthreadpool/include -I../third_party/cpuinfo/include -I../third_party/QNNPACK/include -I../aten/src/ATen/native/quantized/cpu/qnnpack/include -I../aten/src/ATen/native/quantized/cpu/qnnpack/src -I../third_party/cpuinfo/deps/clog/include -I../third_party/NNPACK/include -I../third_party/fbgemm/include -I../third_party/fbgemm -I../third_party/fbgemm/third_party/asmjit/src -I../third_party/ittapi/src/ittnotify -I../third_party/FP16/include -I../third_party/tensorpipe -Ithird_party/tensorpipe -I../third_party/tensorpipe/third_party/libnop/include -Ithird_party/ideep/mkl-dnn/third_party/oneDNN/include -I../third_party/ideep/mkl-dnn/third_party/oneDNN/src/../include -I../third_party/fmt/include -I../third_party/flatbuffers/include -isystem third_party/gloo -isystem ../cmake/../third_party/gloo -isystem ../cmake/../third_party/googletest/googlemock/include -isystem ../cmake/../third_party/googletest/googletest/include -isystem ../third_party/protobuf/src -isystem ../third_party/gemmlowp -isystem ../third_party/neon2sse -isystem ../third_party/XNNPACK/include -isystem ../third_party/ittapi/include -isystem ../cmake/../third_party/eigen -isystem /opt/cray/pe/mpich/8.1.21/ofi/cray/10.0/include -isystem ../third_party/ideep/mkl-dnn/third_party/oneDNN/include -isystem ../third_party/ideep/include -isystem ../third_party/ideep/mkl-dnn/include -isystem include -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -DHAVE_AVX2_CPU_DEFINITION -O3 -DNDEBUG -DNDEBUG -fPIC -DCAFFE2_USE_GLOO -DTH_HAVE_THREAD -Wall -Wextra -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-type-limits -Wno-array-bounds -Wno-strict-overflow -Wno-strict-aliasing -Wno-missing-braces -Wno-maybe-uninitialized -fvisibility=hidden -O2 -Wno-sign-compare -pthread -DASMJIT_STATIC -fopenmp -std=gnu++17 -MD -MT caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o -MF caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o.d -o caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o -c ../torch/csrc/jit/ir/ir.cpp ../torch/csrc/jit/ir/ir.cpp: In member function β€˜bool torch::jit::Node::hasSideEffects() const’: ../torch/csrc/jit/ir/ir.cpp:1191:10: error: β€˜hip’ has not been declared case hip::set_stream: ^~~ ../torch/csrc/jit/ir/ir.cpp:1192:10: error: β€˜hip’ has not been declared case hip::_set_device: ^~~ ../torch/csrc/jit/ir/ir.cpp:1193:10: error: β€˜hip’ has not been declared case hip::_current_device: ^~~ ../torch/csrc/jit/ir/ir.cpp:1194:10: error: β€˜hip’ has not been declared case hip::synchronize: ^~~ At global scope: cc1plus: warning: unrecognized command line option β€˜-Wno-aligned-allocation-unavailable’ cc1plus: warning: unrecognized command line option β€˜-Wno-unused-private-field’ cc1plus: warning: unrecognized command line option β€˜-Wno-invalid-partial-specialization’ ninja: build stopped: subcommand failed. ``` And after lines in torch/csrc/jit/ir/ir.cpp:1191-1194 from: ``` #if !defined(USE_ROCM) case hip::set_stream: case hip::_set_device: case hip::_current_device: case hip::synchronize: #endif ``` to: ``` #if !defined(USE_ROCM) case c10::cuda::set_stream: case c10::cuda::_set_device: case c10::cuda::_current_device: case c10::cuda::synchronize: #endif ``` it manages to build. It seems that when building `caffe2/CMakeFiles/torch_cpu.dir/__/torch/csrc/jit/ir/ir.cpp.o` cmake does not pass `USE_ROCM` to preprocessor. ### Versions Collecting environment information... PyTorch version: 2.1.0a0+git978a2f2 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 0.0.0 OS: Red Hat Enterprise Linux 8.6 (Ootpa) (x86_64) GCC version: (GCC) 8.5.0 20210514 (Red Hat 8.5.0-10) Clang version: 15.0.0 (324a8e7de6a18594c06a0ee5d8c0eda2109c6ac6) CMake version: version 3.20.2 Libc version: glibc-2.28 Python version: 3.9.13 (main, Aug 2 2022, 03:25:18) [GCC 9.3.0 20200312 (Cray Inc.)] (64-bit runtime) Python platform: Linux-4.18.0-372.9.1.el8.x86_64-x86_64-with-glibc2.28 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 2 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 4 Vendor ID: AuthenticAMD CPU family: 23 Model: 49 Model name: AMD EPYC 7542 32-Core Processor Stepping: 0 CPU MHz: 2900.000 CPU max MHz: 2900.0000 CPU min MHz: 1500.0000 BogoMIPS: 5789.48 Virtualization: AMD-V L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 16384K NUMA node0 CPU(s): 0-15,64-79 NUMA node1 CPU(s): 16-31,80-95 NUMA node2 CPU(s): 32-47,96-111 NUMA node3 CPU(s): 48-63,112-127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.1.0a0+git978a2f2 [conda] Could not collect cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo
1
2,358
103,306
DTensor uneven sharding corner cases.
oncall: distributed, triaged
### πŸ› Describe the bug While debugging activation checkpointing's unit I found one interesting corner case. For example: ``` x = torch.rand(5, 10) y = DTensor.from_local(x).redistribute(device_mesh=mesh, placements=[Shard(0)]).redistribute(device_mesh=mesh, placements=[Replicate()]).to_local() y.size is not equal to x. ``` ### Versions If world size = 4, y sizes are: ``` y size: torch.Size([8, 10]) (rank 1) y size: torch.Size([8, 10]) (rank 2) y size: torch.Size([8, 10]) (rank 0) y size: torch.Size([8, 10]) (rank 3) ``` So this is a bug of uneven sharding. cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
0
2,359
103,305
distributed.gather shape constraints
oncall: distributed, triaged, topic: docs
### πŸ“š The doc issue For distributed.gather(tensor, tensorlist, **kwargs) with backend NCCL It is not documented what are the shape constraints for gather tensorlist. I thought for the destination call, the tensors in tensor_list must simply be of the size of the tensor input of each corresponding rank, but this is not the case, I had an incorrect shape error with on rank 0 tensor of shape (70, 1), on rank 1 tensor of shape (76, 1) and a tensor_list on rank 1 with in position 0 a tensor of shape (70, 1), in position 1 a tensor of shape (76, 1) After searching for the cause of the error, I found a forum message on a somewhat similar issue with all_gather that stated the shape of the tensor in tensor_list must all be equal ? Is that correct ? Or non-increasing (so that last tensor can have less than full size) ? I worked around the issue using asynchronous send and receive instead of a gather, but this could do with better specification. ### Suggest a potential alternative/fix _No response_ cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
1
2,360
103,276
Dynamo trouble shooting dead link
good first issue, triaged, topic: docs, oncall: pt2, module: dynamo
### πŸ“š The doc issue The dynamo page https://pytorch.org/docs/stable/dynamo/troubleshooting.html#accuracy-debugging link to TROUBLESHOOTING results in a dead link for me. ### Suggest a potential alternative/fix _No response_ cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @aakhundov
5
2,361
103,272
oneDNN kernel fails to compile
triaged, module: mkldnn
### πŸ› Describe the bug I am trying to compile latest PyTorch master on Arch Linux with Cuda, mkl and onednn. The process is not sufficiently documented at all. First I gave up on TensorRT, because pytorch does not support v8+. After that I still got errors, but I found my error in an open issue which stated to reinstall gcc-10 because of regressions. I did that and kept going forward. Now I have hit other errors. Cleaned up all build files and ccache but have hit this wall. I have manually installed Cuda 11.8, latest cudnn 8, nccl 2.16.5. And also system packages for mkl and onednn 2023.1 There are more than 2000 lines of error but I'll provide an excerpt: ```cc /home/psi/git/pytorch/third_party/ideep/mkl-dnn/third_party/oneDNN/src/../include/oneapi/dnnl/dnnl_types.h:3091:3: error: conflicting declaration β€˜typedef enum dnnl_stream_flags_t dnnl_stream_flags_t’ 3091 | } dnnl_stream_flags_t; | ^~~~~~~~~~~~~~~~~~~ In file included from /usr/include/oneapi/dnnl/dnnl_common.h:23, from /usr/include/oneapi/dnnl/dnnl_common.hpp:32, from /usr/include/oneapi/dnnl/dnnl_graph.hpp:20, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/graph_helper.h:3, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:1: /usr/include/oneapi/dnnl/dnnl_common_types.h:165:3: note: previous declaration as β€˜typedef enum dnnl_stream_flags_t dnnl_stream_flags_t’ 165 | } dnnl_stream_flags_t; | ^~~~~~~~~~~~~~~~~~~ In file included from /home/psi/git/pytorch/build/third_party/ideep/mkl-dnn/third_party/oneDNN/include/oneapi/dnnl/dnnl_config.h:20, from /usr/include/oneapi/dnnl/dnnl_common.h:24, from /usr/include/oneapi/dnnl/dnnl_common.hpp:32, from /usr/include/oneapi/dnnl/dnnl_graph.hpp:20, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/graph_helper.h:3, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:1: /home/psi/git/pytorch/third_party/ideep/mkl-dnn/third_party/oneDNN/src/../include/oneapi/dnnl/dnnl_types.h:3139:3: error: conflicting declaration β€˜typedef struct dnnl_version_t dnnl_version_t’ 3139 | } dnnl_version_t; | ^~~~~~~~~~~~~~ In file included from /usr/include/oneapi/dnnl/dnnl_common.h:23, from /usr/include/oneapi/dnnl/dnnl_common.hpp:32, from /usr/include/oneapi/dnnl/dnnl_graph.hpp:20, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/graph_helper.h:3, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:1: /usr/include/oneapi/dnnl/dnnl_common_types.h:213:3: note: previous declaration as β€˜typedef struct dnnl_version_t dnnl_version_t’ 213 | } dnnl_version_t; | ^~~~~~~~~~~~~~ /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp: In constructor β€˜torch::jit::fuser::onednn::LlgaKernel::LlgaKernel(const torch::jit::Node*)’: /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:32:34: error: β€˜class dnnl::graph::partition’ has no member named β€˜get_in_ports’; did you mean β€˜get_input_ports’? 32 | nPartitionInputs_ = partition_.get_in_ports().size(); | ^~~~~~~~~~~~ | get_input_ports /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp: In member function β€˜void torch::jit::fuser::onednn::LlgaKernel: :initializeConstantInputs()’: /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:43:30: error: β€˜class dnnl::graph::partition’ has no member named β€˜get_in_ports’; did you mean β€˜get_input_ports’? 43 | for (auto& lt : partition_.get_in_ports()) { | ^~~~~~~~~~~~ | get_input_ports In file included from /home/psi/git/pytorch/c10/util/Exception.h:4, from /home/psi/git/pytorch/aten/src/ATen/core/Generator.h:11, from /home/psi/git/pytorch/aten/src/ATen/CPUGeneratorImpl.h:3, from /home/psi/git/pytorch/aten/src/ATen/Context.h:3, from /home/psi/git/pytorch/aten/src/ATen/ATen.h:7, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/LlgaTensorImpl.h:3, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/operator.h:4, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/graph_helper.h:4, from /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:1: /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:55:45: error: expected primary-expression before β€˜>’ token 55 | value->type()->cast<TensorType>(), | ^ /home/psi/git/pytorch/c10/macros/Macros.h:200:64: note: in definition of macro β€˜C10_UNLIKELY’ 200 | #define C10_UNLIKELY(expr) (__builtin_expect(static_cast<bool>(expr), 0)) | ^~~~ /home/psi/git/pytorch/c10/util/Exception.h:503:7: note: in expansion of macro β€˜C10_UNLIKELY_OR_CONST’ 503 | if (C10_UNLIKELY_OR_CONST(!(cond))) { \ | ^~~~~~~~~~~~~~~~~~~~~ /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:53:7: note: in expansion of macro β€˜TORCH_CHECK’ 53 | TORCH_CHECK( | ^~~~~~~~~~~ /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:55:47: error: expected primary-expression before β€˜)’ token 55 | value->type()->cast<TensorType>(), | ^ /home/psi/git/pytorch/c10/macros/Macros.h:200:64: note: in definition of macro β€˜C10_UNLIKELY’ 200 | #define C10_UNLIKELY(expr) (__builtin_expect(static_cast<bool>(expr), 0)) | ^~~~ /home/psi/git/pytorch/c10/util/Exception.h:503:7: note: in expansion of macro β€˜C10_UNLIKELY_OR_CONST’ 503 | if (C10_UNLIKELY_OR_CONST(!(cond))) { \ | ^~~~~~~~~~~~~~~~~~~~~ /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:53:7: note: in expansion of macro β€˜TORCH_CHECK’ 53 | TORCH_CHECK( | ^~~~~~~~~~~ /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp: In member function β€˜std::map<long unsigned int, long int> torch::jit::fuser::onednn::LlgaKernel::initializeTensorIdToOccurence() const’: /home/psi/git/pytorch/torch/csrc/jit/codegen/onednn/kernel.cpp:69:30: error: β€˜const class dnnl::graph::partition’ has no member named β€˜get_in_ports’; did you mean β€˜get_input_ports’? 69 | for (auto& lt : partition_.get_in_ports()) { | ^~~~~~~~~~~~ | get_input_ports At global scope: cc1plus: note: unrecognized command-line option β€˜-Wno-aligned-allocation-unavailable’ may have been intended to silence earlier diagnostics cc1plus: note: unrecognized command-line option β€˜-Wno-unused-private-field’ may have been intended to silence earlier diagnostics cc1plus: note: unrecognized command-line option β€˜-Wno-invalid-partial-specialization’ may have been intended to silence earlier diagnostics [5461/7068] Building CXX object caffe2/CMakeFiles/torch_cpu.dir/__/aten/src/ATen/native/cpu/Activation.cpp.DEFAULT.cpp.o^C ninja: build stopped: interrupted by user. ``` <details> <summary>Cmake config:</summary> ``` /usr/bin/g++-10 /home/psi/git/pytorch/torch/abi-check.cpp -o /home/psi/git/pytorch/build/abi-check Determined _GLIBCXX_USE_CXX11_ABI=1 Current compiler supports avx2 extension. Will build perfkernels. Current compiler supports avx512f extension. Will build fbgemm. Found CUDAToolkit: /opt/cuda/include (found version "11.8.89") Caffe2: CUDA detected: 11.8 Caffe2: CUDA nvcc is: /opt/cuda/bin/nvcc Caffe2: CUDA toolkit directory: /opt/cuda Caffe2: Header version is: 11.8 /opt/cuda/lib64/libnvrtc.so shorthash is 672ee683 Autodetected CUDA architecture(s): 6.1 5.2 Added CUDA NVCC flags for: -gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_52,code=sm_52 Building using own protobuf under third_party per request. Use custom protobuf build. 3.13.0.0 Caffe2 protobuf include directory: $<BUILD_INTERFACE:/home/psi/git/pytorch/third_party/protobuf/src>$<INSTALL_INTERFACE:include> Trying to find preferred BLAS backend of choice: MKL MKL_THREADING = OMP CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_C) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) cmake/Modules/FindMKL.cmake:239 (FIND_PACKAGE) cmake/Modules/FindMKL.cmake:334 (CHECK_ALL_LIBRARIES) cmake/Dependencies.cmake:196 (find_package) CMakeLists.txt:705 (include) This warning is for project developers. Use -Wno-dev to suppress it. CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) cmake/Modules/FindMKL.cmake:239 (FIND_PACKAGE) cmake/Modules/FindMKL.cmake:334 (CHECK_ALL_LIBRARIES) cmake/Dependencies.cmake:196 (find_package) CMakeLists.txt:705 (include) This warning is for project developers. Use -Wno-dev to suppress it. MKL libraries: /opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_intel_lp64.so;/opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_gnu_thread.so;/opt/intel/oneapi/mkl/latest/lib/intel64/libmkl_core.so;-fopenmp;/usr/lib/libpthread.a;/usr/lib/libm.so;/usr/lib/libdl.a MKL include directory: /opt/intel/oneapi/mkl/latest/include MKL OpenMP type: GNU MKL OpenMP library: -fopenmp Brace yourself, we are building NNPACK NNPACK backend is x86-64 LLVM FileCheck Found: /usr/bin/FileCheck git version: v1.6.1 normalized to 1.6.1 Version: 1.6.1 Performing Test HAVE_STD_REGEX -- success Performing Test HAVE_GNU_POSIX_REGEX -- failed to compile Performing Test HAVE_POSIX_REGEX -- success Performing Test HAVE_STEADY_CLOCK -- success CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_C) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) third_party/fbgemm/CMakeLists.txt:129 (find_package) This warning is for project developers. Use -Wno-dev to suppress it. Found OpenMP_C: -fopenmp CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) third_party/fbgemm/CMakeLists.txt:129 (find_package) This warning is for project developers. Use -Wno-dev to suppress it. Found OpenMP_CXX: -fopenmp Found OpenMP: TRUE CMake Warning at third_party/fbgemm/CMakeLists.txt:131 (message): OpenMP found! OpenMP_C_INCLUDE_DIRS = CMake Warning at third_party/fbgemm/CMakeLists.txt:224 (message): ========== CMake Warning at third_party/fbgemm/CMakeLists.txt:225 (message): CMAKE_BUILD_TYPE = Release CMake Warning at third_party/fbgemm/CMakeLists.txt:226 (message): CMAKE_CXX_FLAGS_DEBUG is -g CMake Warning at third_party/fbgemm/CMakeLists.txt:227 (message): CMAKE_CXX_FLAGS_RELEASE is -O3 -DNDEBUG CMake Warning at third_party/fbgemm/CMakeLists.txt:228 (message): ========== ** AsmJit Summary ** ASMJIT_DIR=/home/psi/git/pytorch/third_party/fbgemm/third_party/asmjit ASMJIT_TEST=OFF ASMJIT_TARGET_TYPE=STATIC ASMJIT_DEPS=pthread;rt ASMJIT_LIBS=asmjit;pthread;rt ASMJIT_CFLAGS=-DASMJIT_STATIC ASMJIT_PRIVATE_CFLAGS=-Wall;-Wextra;-Wconversion;-fno-math-errno;-fno-threadsafe-statics;-fno-semantic-interposition;-DASMJIT_STATIC ASMJIT_PRIVATE_CFLAGS_DBG= ASMJIT_PRIVATE_CFLAGS_REL=-O2;-fmerge-all-constants;-fno-enforce-eh-specs INFOUSING OPENCL Found Numa (include: /usr/include, library: /usr/lib/libnuma.so) OpenCV found (/usr/lib/cmake/opencv4) Found FFMPEG or Libav: /usr/lib/libavcodec.so;/usr/lib/libavformat.so;/usr/lib/libavutil.so;/usr/lib/libswscale.so;/usr/lib/libswresample.so, /usr/include Found FFMPEG/LibAV libraries Using third party subdirectory Eigen. Found PythonInterp: /home/psi/.conda/envs/ai/bin/python (found suitable version "3.8.16", minimum required is "3.0") NumPy ver. 1.23.0 found (include: /home/psi/.conda/envs/ai/lib/python3.8/site-packages/numpy/core/include) Using third_party/pybind11. pybind11 include dirs: /home/psi/git/pytorch/cmake/../third_party/pybind11/include MPI support found MPI compile flags: MPI include path: /usr/include MPI LINK flags path: -Wl,-rpath -Wl,/usr/lib -Wl,--enable-new-dtags MPI libraries: /usr/lib/libmpi_cxx.so/usr/lib/libmpi.so Found OpenMPI with CUDA support built. Adding OpenMP CXX_FLAGS: -fopenmp Will link against OpenMP libraries: /usr/lib/gcc/x86_64-pc-linux-gnu/10.3.0/libgomp.so;/usr/lib/libpthread.a Autodetected CUDA architecture(s): 6.1 5.2 CMake Warning at cmake/External/nccl.cmake:69 (message): Enabling NCCL library slimming Call Stack (most recent call first): cmake/Dependencies.cmake:1345 (include) CMakeLists.txt:705 (include) Converting CMAKE_CUDA_FLAGS to CUDA_NVCC_FLAGS: CUDA_NVCC_FLAGS = -Xfatbin;-compress-all;-DONNX_NAMESPACE=onnx_torch;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_52,code=sm_52;-Xcudafe;--diag_suppress=cc_clobber_ignored,--diag_suppress=set_but_not_used,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl;--expt-relaxed-constexpr;--expt-extended-lambda CUDA_NVCC_FLAGS_DEBUG = -g CUDA_NVCC_FLAGS_RELEASE = -O3;-DNDEBUG CUDA_NVCC_FLAGS_RELWITHDEBINFO = -O2;-g;-DNDEBUG CUDA_NVCC_FLAGS_MINSIZEREL = -O1;-DNDEBUG summary of build options: Install prefix: /home/psi/git/pytorch/torch Target system: Linux Compiler: C compiler: /usr/bin/gcc-10 CFLAGS: Gloo build as SHARED library MPI include path: /usr/include MPI libraries: /usr/lib/libmpi_cxx.so/usr/lib/libmpi.so CMake Warning (dev) at third_party/gloo/cmake/Cuda.cmake:109 (find_package): Policy CMP0074 is not set: find_package uses <PackageName>_ROOT variables. Run "cmake --help-policy CMP0074" for policy details. Use the cmake_policy command to set the policy and suppress this warning. CMake variable CUDAToolkit_ROOT is set to: /opt/cuda For compatibility, CMake is ignoring the variable. Call Stack (most recent call first): third_party/gloo/cmake/Dependencies.cmake:115 (include) third_party/gloo/CMakeLists.txt:111 (include) This warning is for project developers. Use -Wno-dev to suppress it. Found CUDAToolkit: /opt/cuda/include (found suitable version "11.8.89", minimum required is "7.0") CUDA detected: 11.8.89 CMake Deprecation Warning at third_party/zstd/build/cmake/CMakeLists.txt:11 (CMAKE_MINIMUM_REQUIRED): Compatibility with CMake < 2.8.12 will be removed from a future version of CMake. Update the VERSION argument <min> value or use a ...<max> suffix to tell CMake that the project does not need compatibility with older versions. ZSTD_LEGACY_SUPPORT not defined! ZSTD VERSION 1.3.2 Found PythonInterp: /home/psi/.conda/envs/ai/bin/python (found version "3.8.16") Generated: /home/psi/git/pytorch/build/third_party/onnx/onnx/onnx_onnx_torch-ml.proto Generated: /home/psi/git/pytorch/build/third_party/onnx/onnx/onnx-operators_onnx_torch-ml.proto Generated: /home/psi/git/pytorch/build/third_party/onnx/onnx/onnx-data_onnx_torch.proto ******** Summary ******** CMake version : 3.26.4 CMake command : /usr/bin/cmake System : Linux C++ compiler : /usr/bin/g++-10 C++ compiler version : 10.3.0 CXX flags : -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -Wnon-virtual-dtor Build type : Release Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;__STDC_FORMAT_MACROS CMAKE_PREFIX_PATH : /opt/cuda CMAKE_INSTALL_PREFIX : /home/psi/git/pytorch/torch CMAKE_MODULE_PATH : /home/psi/git/pytorch/cmake/Modules;/home/psi/git/pytorch/cmake/public/../Modules_CUDA_fix ONNX version : 1.14.0 ONNX NAMESPACE : onnx_torch ONNX_USE_LITE_PROTO : OFF USE_PROTOBUF_SHARED_LIBS : OFF Protobuf_USE_STATIC_LIBS : ON ONNX_DISABLE_EXCEPTIONS : OFF ONNX_WERROR : OFF ONNX_BUILD_TESTS : OFF ONNX_BUILD_BENCHMARKS : OFF Protobuf compiler : Protobuf includes : Protobuf libraries : BUILD_ONNX_PYTHON : OFF ******** Summary ******** CMake version : 3.26.4 CMake command : /usr/bin/cmake System : Linux C++ compiler : /usr/bin/g++-10 C++ compiler version : 10.3.0 CXX flags : -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -Wnon-virtual-dtor Build type : Release Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1 CMAKE_PREFIX_PATH : /opt/cuda CMAKE_INSTALL_PREFIX : /home/psi/git/pytorch/torch CMAKE_MODULE_PATH : /home/psi/git/pytorch/cmake/Modules;/home/psi/git/pytorch/cmake/public/../Modules_CUDA_fix ONNX version : 1.4.1 ONNX NAMESPACE : onnx_torch ONNX_BUILD_TESTS : OFF ONNX_BUILD_BENCHMARKS : OFF ONNX_USE_LITE_PROTO : OFF ONNXIFI_DUMMY_BACKEND : Protobuf compiler : Protobuf includes : Protobuf libraries : BUILD_ONNX_PYTHON : OFF Found CUDA with FP16 support, compiling with torch.cuda.HalfTensor Adding -DNDEBUG to compile flags Compiling with MAGMA support MAGMA INCLUDE DIRECTORIES: /usr/include MAGMA LIBRARIES: /usr/lib/libmagma.so MAGMA V2 check: 0 Could not find hardware support for NEON on this machine. No OMAP3 processor on this machine. No OMAP4 processor on this machine. Found a library with LAPACK API (mkl). disabling ROCM because NOT USE_ROCM is set MIOpen not found. Compiling without MIOpen support -- Will build oneDNN Graph MKLDNN_CPU_RUNTIME = OMP cmake version: 3.26.4 CMake Deprecation Warning at third_party/ideep/mkl-dnn/CMakeLists.txt:36 (cmake_policy): The OLD behavior for policy CMP0025 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. DNNL_TARGET_ARCH: X64 DNNL_LIBRARY_NAME: dnnl CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_C) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) third_party/ideep/mkl-dnn/third_party/oneDNN/cmake/OpenMP.cmake:69 (find_package) third_party/ideep/mkl-dnn/third_party/oneDNN/CMakeLists.txt:117 (include) This warning is for project developers. Use -Wno-dev to suppress it. Found OpenMP_C: -fopenmp CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) third_party/ideep/mkl-dnn/third_party/oneDNN/cmake/OpenMP.cmake:69 (find_package) third_party/ideep/mkl-dnn/third_party/oneDNN/CMakeLists.txt:117 (include) This warning is for project developers. Use -Wno-dev to suppress it. Found OpenMP_CXX: -fopenmp Could NOT find Doxyrest (missing: DOXYREST_EXECUTABLE) Found PythonInterp: /home/psi/.conda/envs/ai/bin/python (found suitable version "3.8.16", minimum required is "2.7") Could NOT find Sphinx (missing: SPHINX_EXECUTABLE) Enabled workload: TRAINING Enabled primitives: ALL Enabled primitive CPU ISA: ALL Enabled primitive GPU ISA: ALL Primitive cache is enabled CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_C) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) third_party/ideep/mkl-dnn/cmake/OpenMP.cmake:62 (find_package) third_party/ideep/mkl-dnn/CMakeLists.txt:179 (include) This warning is for project developers. Use -Wno-dev to suppress it. CMake Warning (dev) at /usr/share/cmake/Modules/FindPackageHandleStandardArgs.cmake:438 (message): The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) does not match the name of the calling package (OpenMP). This can lead to problems in calling code that expects `find_package` result variables (e.g., `_FOUND`) to follow a certain pattern. Call Stack (most recent call first): cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) third_party/ideep/mkl-dnn/cmake/OpenMP.cmake:62 (find_package) third_party/ideep/mkl-dnn/CMakeLists.txt:179 (include) This warning is for project developers. Use -Wno-dev to suppress it. DNNL_GRAPH_BUILD_FOR_CI is set to be OFF Compiling oneDNN Graph with CPU runtime OMP support Compiling oneDNN Graph with GPU runtime NONE support Graph compiler backend is disabled. Set version definitions to /home/psi/git/pytorch/third_party/ideep/mkl-dnn/src/utils/verbose.cpp Compiled partition cache is enabled Found MKL-DNN: TRUE -- <FindZVECTOR> -- check z16 -- check z15 -- check z14 -- </FindZVECTOR> Module support is disabled. Version: 9.1.0 Build type: Release CXX_STANDARD: 17 Required features: cxx_variadic_templates Using Kineto with CUPTI support Configuring Kineto dependency: KINETO_SOURCE_DIR = /home/psi/git/pytorch/third_party/kineto/libkineto KINETO_BUILD_TESTS = OFF KINETO_LIBRARY_TYPE = static CUDA_SOURCE_DIR = /opt/cuda CUDA_INCLUDE_DIRS = /opt/cuda/include CUPTI_INCLUDE_DIR = /opt/cuda/extras/CUPTI/include CUDA_cupti_LIBRARY = /opt/cuda/extras/CUPTI/lib64/libcupti.so Found CUPTI Found PythonInterp: /home/psi/.conda/envs/ai/bin/python (found version "3.8.16") INFO ROCM_SOURCE_DIR = Kineto: FMT_SOURCE_DIR = /home/psi/git/pytorch/third_party/fmt Kineto: FMT_INCLUDE_DIR = /home/psi/git/pytorch/third_party/fmt/include INFO CUPTI_INCLUDE_DIR = /opt/cuda/extras/CUPTI/include INFO ROCTRACER_INCLUDE_DIR = /include/roctracer INFO DYNOLOG_INCLUDE_DIR = /home/psi/git/pytorch/third_party/kineto/libkineto/third_party/dynolog/ INFO IPCFABRIC_INCLUDE_DIR = /home/psi/git/pytorch/third_party/kineto/libkineto/third_party/dynolog//dynolog/src/ipcfabric/ Configured Kineto GCC 10.3.0: Adding gcc and gcc_s libs to link line NUMA paths: /usr/include /usr/lib/libnuma.so headers outputs: sources outputs: declarations_yaml outputs: Using ATen parallel backend: OMP CMake Deprecation Warning at third_party/sleef/CMakeLists.txt:91 (cmake_policy): The OLD behavior for policy CMP0066 will be removed from a future version of CMake. The cmake-policies(7) manual explains that the OLD behaviors of all policies are deprecated and that a policy should be set to OLD only under specific short-term circumstances. Projects should be ported to the NEW behavior and not rely on setting a policy to OLD. Found OpenMP_C: -fopenmp (found version "4.5") Found OpenMP_CXX: -fopenmp (found version "4.5") Found OpenMP: TRUE (found version "4.5") Configuring build for SLEEF-v3.6.0 Target system: Linux-6.3.5-zen1-1-zen Target processor: x86_64 Host system: Linux-6.3.5-zen1-1-zen Host processor: x86_64 Detected C compiler: GNU @ /usr/bin/gcc-10 CMake: 3.26.4 Make program: /usr/bin/ninja Using option `-Wall -Wno-unused -Wno-attributes -Wno-unused-result -Wno-psabi -ffp-contract=off -fno-math-errno -fno-trapping-math` to compile libsleef Building shared libs : OFF Building static test bins: OFF MPFR : /usr/lib/libmpfr.so MPFR header file in /usr/include GMP : /usr/lib/libgmp.so RT : /usr/lib/librt.a FFTW3 : /usr/lib/libfftw3.so OPENSSL : 1.1.1t SDE : SDE_COMMAND-NOTFOUND RUNNING_ON_TRAVIS : COMPILER_SUPPORTS_OPENMP : 1 AT_INSTALL_INCLUDE_DIR include/ATen/core core header install: /home/psi/git/pytorch/build/aten/src/ATen/core/TensorBody.h core header install: /home/psi/git/pytorch/build/aten/src/ATen/core/aten_interned_strings.h core header install: /home/psi/git/pytorch/build/aten/src/ATen/core/enum_tag.h Generating sources for unboxing kernels /home/psi/.conda/envs/ai/bin/python;-m;torchgen.gen_executorch;--source-path=/home/psi/git/pytorch/test/edge/../../test/edge;--install-dir=/home/psi/git/pytorch/build/out;--tags-path=/home/psi/git/pytorch/test/edge/../../aten/src/ATen/native/tags.yaml;--aten-yaml-path=/home/psi/git/pytorch/test/edge/../../aten/src/ATen/native/native_functions.yaml;--use-aten-lib;--op-selection-yaml-path=/home/psi/git/pytorch/test/edge/../../test/edge/selected_operators.yaml;--custom-ops-yaml-path=/home/psi/git/pytorch/test/edge/../../test/edge/custom_ops.yaml _GLIBCXX_USE_CXX11_ABI=1 is already defined as a cmake variable CMake Warning (dev) at torch/CMakeLists.txt:379: Syntax Warning in cmake code at column 107 Argument not separated from preceding token by whitespace. This warning is for project developers. Use -Wno-dev to suppress it. CMake Warning (dev) at torch/CMakeLists.txt:379: Syntax Warning in cmake code at column 115 Argument not separated from preceding token by whitespace. This warning is for project developers. Use -Wno-dev to suppress it. Autodetected CUDA architecture(s): 6.1 5.2 Using lib/python3.8/site-packages as python relative installation path CMake Warning at CMakeLists.txt:1081 (message): Generated cmake files are only fully tested if one builds with system glog, gflags, and protobuf. Other settings may generate files that are not well tested. ******** Summary ******** General: CMake version : 3.26.4 CMake command : /usr/bin/cmake System : Linux C++ compiler : /usr/bin/g++-10 C++ compiler id : GNU C++ compiler version : 10.3.0 Using ccache if found : ON Found ccache : /usr/bin/ccache CXX flags : -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-invalid-partial-specialization -Wno-unused-private-field -Wno-aligned-allocation-unavailable -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow Build type : Release Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;IDEEP_USE_MKL;HAVE_MMAP=1;_FILE_OFFSET_BITS=64;HAVE_SHM_OPEN=1;HAVE_SHM_UNLINK=1;HAVE_MALLOC_USABLE_SIZE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS;BUILD_NVFUSER CMAKE_PREFIX_PATH : /opt/cuda CMAKE_INSTALL_PREFIX : /home/psi/git/pytorch/torch USE_GOLD_LINKER : OFF TORCH_VERSION : 2.1.0 BUILD_CAFFE2 : OFF BUILD_CAFFE2_OPS : OFF BUILD_STATIC_RUNTIME_BENCHMARK: OFF BUILD_TENSOREXPR_BENCHMARK: OFF BUILD_NVFUSER_BENCHMARK: OFF BUILD_BINARY : OFF BUILD_CUSTOM_PROTOBUF : ON Link local protobuf : ON BUILD_DOCS : OFF BUILD_PYTHON : ON Python version : 3.8.16 Python executable : /home/psi/.conda/envs/ai/bin/python Pythonlibs version : 3.8.16 Python library : /home/psi/.conda/envs/ai/lib/libpython3.8.so.1.0 Python includes : /home/psi/.conda/envs/ai/include/python3.8 Python site-packages: lib/python3.8/site-packages BUILD_SHARED_LIBS : ON CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF BUILD_TEST : ON BUILD_JNI : OFF BUILD_MOBILE_AUTOGRAD : OFF BUILD_LITE_INTERPRETER: OFF INTERN_BUILD_MOBILE : TRACING_BASED : OFF USE_BLAS : 1 BLAS : mkl BLAS_HAS_SBGEMM : USE_LAPACK : 1 LAPACK : mkl USE_ASAN : OFF USE_TSAN : OFF USE_CPP_CODE_COVERAGE : OFF USE_CUDA : ON Split CUDA : CUDA static link : OFF USE_CUDNN : ON USE_EXPERIMENTAL_CUDNN_V8_API: ON CUDA version : 11.8 USE_FLASH_ATTENTION : ON cuDNN version : 8.9.1 CUDA root directory : /opt/cuda CUDA library : /usr/lib/libcuda.so cudart library : /opt/cuda/lib64/libcudart.so cublas library : /opt/cuda/lib64/libcublas.so cufft library : /opt/cuda/lib64/libcufft.so curand library : /opt/cuda/lib64/libcurand.so cusparse library : /opt/cuda/lib64/libcusparse.so cuDNN library : /opt/cudnn/lib/libcudnn.so nvrtc : /opt/cuda/lib64/libnvrtc.so CUDA include path : /opt/cuda/include NVCC executable : /opt/cuda/bin/nvcc CUDA compiler : /opt/cuda/bin/nvcc CUDA flags : -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch -gencode arch=compute_61,code=sm_61 -gencode arch=compute_52,code=sm_52 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=set_but_not_used,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=bad_friend_decl --expt-relaxed-constexpr --expt-extended-lambda -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUB_WRAPPED_NAMESPACE=at_cuda_detail -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ CUDA host compiler : CUDA --device-c : OFF USE_TENSORRT : OFF USE_ROCM : OFF BUILD_NVFUSER : ON USE_EIGEN_FOR_BLAS : USE_FBGEMM : ON USE_FAKELOWP : OFF USE_KINETO : ON USE_FFMPEG : ON USE_GFLAGS : OFF USE_GLOG : OFF USE_LEVELDB : OFF USE_LITE_PROTO : OFF USE_LMDB : OFF USE_METAL : OFF USE_PYTORCH_METAL : OFF USE_PYTORCH_METAL_EXPORT : OFF USE_MPS : OFF USE_FFTW : OFF USE_MKL : ON USE_MKLDNN : ON USE_MKLDNN_ACL : OFF USE_MKLDNN_CBLAS : ON USE_UCC : OFF USE_ITT : ON USE_NCCL : ON USE_SYSTEM_NCCL : OFF USE_NCCL_WITH_UCC : OFF USE_NNPACK : ON USE_NUMPY : ON USE_OBSERVERS : ON USE_OPENCL : ON USE_OPENCV : ON OpenCV version : 4.7.0 USE_OPENMP : ON USE_TBB : OFF USE_VULKAN : OFF USE_PROF : OFF USE_QNNPACK : ON USE_PYTORCH_QNNPACK : ON USE_XNNPACK : ON USE_REDIS : OFF USE_ROCKSDB : OFF USE_ZMQ : OFF USE_DISTRIBUTED : ON USE_MPI : ON USE_GLOO : ON USE_GLOO_WITH_OPENSSL : OFF USE_TENSORPIPE : ON Public Dependencies : caffe2::mkl Private Dependencies : Threads::Threads;pthreadpool;cpuinfo;qnnpack;pytorch_qnnpack;nnpack;XNNPACK;fbgemm;/opt/cuda/lib64/libOpenCL.so;/usr/lib/libnuma.so;opencv_core;opencv_highgui;opencv_imgproc;opencv_imgcodecs;opencv_optflow;opencv_videoio;opencv_video;/usr/lib/libavcodec.so;/usr/lib/libavformat.so;/usr/lib/libavutil.so;/usr/lib/libswscale.so;/usr/lib/libswresample.so;ittnotify;fp16;/usr/lib/libmpi_cxx.so;/usr/lib/libmpi.so;caffe2::openmp;tensorpipe;gloo;libzstd_static;foxi_loader;rt;fmt::fmt-header-only;kineto;gcc_s;gcc;dl Public CUDA Deps. : caffe2::cufft;caffe2::curand;caffe2::cublas Private CUDA Deps. : torch::cudnn;__caffe2_nccl;tensorpipe_cuda;gloo_cuda;/opt/cuda/lib64/libcudart.so;CUDA::cusparse;CUDA::curand;CUDA::cufft;ATEN_CUDA_FILES_GEN_LIB USE_COREML_DELEGATE : OFF BUILD_LAZY_TS_BACKEND : ON TORCH_DISABLE_GPU_ASSERTS : ON Configuring done (24.6s) Generating done (1.9s) ``` </details> ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Arch Linux (x86_64) GCC version: (Arch Linux 10.3.0-2) 10.3.0 Clang version: 15.0.7 CMake version: version 3.26.4 Libc version: glibc-2.37 Python version: 3.8.16 (default, Mar 2 2023, 03:21:46) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.3.5-zen1-1-zen-x86_64-with-glibc2.17 Is CUDA available: N/A CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce GTX 1060 6GB GPU 1: NVIDIA GeForce GTX 970 Nvidia driver version: 530.41.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz CPU family: 6 Model: 158 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 10 CPU(s) scaling MHz: 98% CPU max MHz: 4900.0000 CPU min MHz: 800.0000 BogoMIPS: 7399.70 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 1.5 MiB (6 instances) L3 cache: 12 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==1.23.0 [conda] numpy 1.23.0 pypi_0 pypi cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen
4
2,362
103,271
Misaligned address error with torch.cat
high priority, triaged, oncall: pt2, module: inductor
### πŸ› Describe the bug The following repro raises "RuntimeError: Triton Error [CUDA]: misaligned address". https://gist.github.com/zou3519/0de4a64f5f612531133d04a8f59400eb ### Error logs _No response_ ### Minified repro _No response_ ### Versions main, A100 cc @ezyang @gchanan @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @davidberard98
6
2,363
103,258
Warn / deprecate / remove ProcessGroupNCCL._group_start(), _group_end() APIs
oncall: distributed, triaged
### πŸ› Describe the bug As reported by @lw, these APIs are error prone and can easily result in correctness issues if the appropriate synchronization is not done by the user. As a result, we should discuss whether to remove these APIs (and just use the `coalescing_manager`), or add a warning saying users have to do explicit sync. ### Versions main cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
3
2,364
103,254
Unexpected High PCIe traffic in Distributed Training since PT 2
oncall: distributed, triaged, module: fsdp
### πŸ› Describe the bug Since PT 2, we have noticed significant amount of PCIe traffic between host and device, which is something we didn't expect to happen and not observed in PT 1.x version. This applies to both DDP and FSDP, and we observed as much as 2G/s to 4G/s traffic throughout of the whole training stage (for our jobs with 3B+ models) which eventually harm the training due to continuous high consumption of the PCIe and the host. To reproduce, I am using the same code from the official DDP tutorial: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html#initialize-ddp-with-torch-distributed-run-torchrun except: 1. modify model size to test different model sizes 2. add a training loop to observe the continuous traffic ```python import torch import torch.distributed as dist import torch.nn as nn import torch.optim as optim from torch.nn.parallel import DistributedDataParallel as DDP from tqdm import tqdm class ToyModel(nn.Module): def __init__(self): super(ToyModel, self).__init__() self.net1 = nn.Linear(10, 100000000) self.relu = nn.ReLU() self.net2 = nn.Linear(100000000, 5) def forward(self, x): return self.net2(self.relu(self.net1(x))) def demo_basic(): dist.init_process_group("nccl") rank = dist.get_rank() print(f"Start running basic DDP example on rank {rank}.") # create model and move it to GPU with id rank device_id = rank % torch.cuda.device_count() model = ToyModel().to(device_id) print(f"\n--> model has {sum(p.numel() for p in model.parameters() if p.requires_grad)/1e6} Million params\n") ddp_model = DDP(model, device_ids=[device_id]) loss_fn = nn.MSELoss() optimizer = optim.SGD(ddp_model.parameters(), lr=0.001) for _ in tqdm(range(1000000000)): optimizer.zero_grad() outputs = ddp_model(torch.randn(20, 10)) labels = torch.randn(20, 5).to(device_id) loss_fn(outputs, labels).backward() optimizer.step() ``` PCIe traffic: Β  | Prior 2.0 (1.13.1+cu117) | Prior 2.0 (1.13.1+cu117) | 2.x (2.1.0.dev20230603+cu118) | 2.x (2.1.0.dev20230603+cu118) -- | -- | -- | -- | -- model size | device to host (DtoH) | host to device (HtoD) | device to host (DtoH) | host to device (HtoD) 1.6B | 8.8M/s | 21M/s | 122M/s | 950M/s 160M | 10.8M/s | 24.5M/s | 122M/s | 950M/s 16M | 21M/s | 48M/s | 73M/s | 480M/s 1.6M | 9M/s | 45M/s | 25M/s | 170M/s 0.16M | 8.5M/s | 41.5M/s | 7M/s | 36M/s Some screenshots (for 1.6B model): PT 1.x <img width="1692" alt="image" src="https://github.com/pytorch/pytorch/assets/20955448/681a33fe-eb13-4619-9656-27a93ce08f16"> PT 2.x <img width="1697" alt="image" src="https://github.com/pytorch/pytorch/assets/20955448/bb73ab7a-4e79-4668-909b-b58124ceb7c2"> Some other notes from our experiences: 1. we can confirm the traffic came only from back path (i.e. `loss.backward()`) 2. for DDP, we observed very little to zero PCIe traffic in PT 1.x (as expected), but very high PCIe traffic in PT 2.x 3. for FSDP, we observed high PCIe traffic in PT 1.x as well (which isn't as expected as we didn't turn on any offloading in FSDP), and in PT 2.x, the traffic is even higher (roughly 2X for the same training) 4. We were able to bring PCIe traffic down to almost zero in all these experiments by turning on CUDA_LAUNCH_BLOCKING. However, that is only for debugging purpose as turning on blocking will slow down the training. ### Versions ``` PyTorch version: 2.1.0.dev20230603+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Debian GNU/Linux 11 (bullseye) (x86_64) GCC version: (Debian 10.2.1-6) 10.2.1 20210110 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-4.18.0-372.19.1.el8_6.x86_64-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA A100-SXM4-80GB GPU 4: NVIDIA A100-SXM4-80GB GPU 5: NVIDIA A100-SXM4-80GB GPU 6: NVIDIA A100-SXM4-80GB GPU 7: NVIDIA A100-SXM4-80GB Nvidia driver version: 515.48.07 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 80 On-line CPU(s) list: 0-79 Thread(s) per core: 2 Core(s) per socket: 20 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel Xeon Processor (Cascadelake) Stepping: 5 CPU MHz: 2400.000 BogoMIPS: 4800.00 Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 1.3 MiB L1i cache: 1.3 MiB L2 cache: 160 MiB L3 cache: 32 MiB NUMA node0 CPU(s): 0-39 NUMA node1 CPU(s): 40-79 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat pku ospke avx512_vnni md_clear arch_capabilities Versions of relevant libraries: [pip3] numpy==1.25.0rc1 [pip3] pytorch-triton==2.1.0+9820899b38 [pip3] torch==2.1.0.dev20230603+cu118 [pip3] torchvision==0.16.0.dev20230603+cu118 [conda] numpy 1.25.0rc1 pypi_0 pypi [conda] pytorch-triton 2.1.0+9820899b38 pypi_0 pypi [conda] torch 2.1.0.dev20230603+cu118 pypi_0 pypi [conda] torchvision 0.16.0.dev20230603+cu118 pypi_0 pypi ``` cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @lessw2020 @HamidShojanazeri
27
2,365
103,253
Issue-103101: Refactor dimensionality check in tuned_mm_plus_mm to pattern matching phase.
triaged, open source, module: inductor, ciflow/inductor
Fixes #103101 I am a new contributor and this is my first attempt at solving the issue. Looking forward to feedback. Thanks, Sid cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @aakhundov
8
2,366
103,250
torch.jit.script mean(keepdim=True) segfaults on GPU
oncall: jit
### πŸ› Describe the bug When wrapping a `torch.nn.Module` with `torch.jit.script`, calling `torch.mean` with `keepdim=True` leads to a crash in backpropagation. Calling `torch.mean` followed by `unsqueeze` does not. Crash message: `RuntimeError: invalid vector subscript` Reproducing code ``` #!/usr/bin/env python import torch N_Floats=50 Batch_Size = 8 Linear_Width = 512 N_Actions = 12 class Agent(torch.nn.Module): def __init__(self,Linear_Width:int): super().__init__() self.A_head = torch.nn.Linear(N_Floats,N_Actions) def forward(self, inputs): A = self.A_head(inputs) #Q = V + A - A.mean(dim=-1).unsqueeze(-1) #Works Q = A - A.mean(dim=-1,keepdim=True) #Crashes with "invalid vector subscript" return Q def learn_on_batch(model,optimizer): Action_Indexes = torch.randint(low=0,high=N_Actions,size=(Batch_Size,1),device='cuda',dtype=torch.int64) Inputs = torch.rand(size=(Batch_Size,N_Floats),device='cuda',dtype=torch.float32) target = torch.ones(Batch_Size,device='cuda') outputs = model(Inputs) outputs = torch.gather(outputs, 1, Action_Indexes.type(torch.int64)) loss = torch.nn.functional.mse_loss(outputs,target) total_loss = torch.sum(loss) optimizer.zero_grad(set_to_none=True) total_loss.backward() optimizer.step() if __name__ == '__main__': model = torch.jit.script(Agent(Linear_Width)).to("cuda") optimizer = torch.optim.Adam(model.parameters()) while True: learn_on_batch(model,optimizer) ``` ### Versions PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Pro GCC version: Could not collect Clang version: Could not collect CMake version: version 3.26.4 Libc version: N/A Python version: 3.10.11 | packaged by conda-forge | (main, May 10 2023, 18:51:25) [MSC v.1934 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 12.0.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4070 Nvidia driver version: 535.98 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=3401 DeviceID=CPU0 Family=107 L2CacheSize=8192 L2CacheSpeed= Manufacturer=AuthenticAMD MaxClockSpeed=3401 Name=AMD Ryzen 9 5950X 16-Core Processor ProcessorType=3 Revision=8448 Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] torch==2.0.1 [pip3] torch-tb-profiler==0.4.1 [pip3] torchaudio==2.0.2 [pip3] torchrl==0.1.1 [conda] blas 2.117 mkl conda-forge [conda] blas-devel 3.9.0 17_win64_mkl conda-forge [conda] libblas 3.9.0 17_win64_mkl conda-forge [conda] libcblas 3.9.0 17_win64_mkl conda-forge [conda] liblapack 3.9.0 17_win64_mkl conda-forge [conda] liblapacke 3.9.0 17_win64_mkl conda-forge [conda] mkl 2022.1.0 h6a75c08_874 conda-forge [conda] mkl-devel 2022.1.0 h57928b3_875 conda-forge [conda] mkl-include 2022.1.0 h6a75c08_874 conda-forge [conda] numpy 1.24.3 py310hd02465a_0 conda-forge [conda] pytorch 2.0.1 py3.10_cuda11.8_cudnn8_0 pytorch [conda] pytorch-cuda 11.8 h24eeafa_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch-tb-profiler 0.4.1 pypi_0 pypi [conda] torchaudio 2.0.2 pypi_0 pypi [conda] torchrl 0.1.1 pypi_0 pypi cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
2,367
103,243
torch.cuda.memory_reserved always returns 0 bytes
module: cuda, triaged
## Issue description I've been observing an issue with the `torch.cuda.memory_reserved("cuda:0")` function in PyTorch. Despite having a model training on the GPU, the function `torch.cuda.memory_reserved("cuda:0")` always returns 0. ## Code example Train a model on gpu 0. ``` import torch print(torch.cuda.memory_reserved("cuda:0")) ``` ![image](https://github.com/pytorch/pytorch/assets/32460579/9be67a01-21d5-4e24-89c0-a8360b7fff4e) ## System Info python collect_env.py Collecting environment information... PyTorch version: 1.13.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: version 3.16.3 Libc version: glibc-2.31 Python version: 3.8.10 (default, May 26 2023, 14:05:08) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.4.0-150-generic-x86_64-with-glibc2.29 Is CUDA available: True CUDA runtime version: 10.1.243 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Quadro RTX 5000 GPU 1: Quadro RTX 5000 GPU 2: Quadro RTX 5000 GPU 3: Quadro RTX 5000 Nvidia driver version: 515.43.04 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 40 On-line CPU(s) list: 0-39 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz Stepping: 7 CPU MHz: 2654.601 CPU max MHz: 3200.0000 CPU min MHz: 1000.0000 BogoMIPS: 4400.00 Virtualisation: VT-x L1d cache: 640 KiB L1i cache: 640 KiB L2 cache: 20 MiB L3 cache: 27.5 MiB NUMA node0 CPU(s): 0-9,20-29 NUMA node1 CPU(s): 10-19,30-39 Vulnerability Itlb multihit: KVM: Mitigation: Split huge pages Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; TSX disabled Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear flush_l1d arch_capabilities Versions of relevant libraries: [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.24.0 [pip3] pytorch-lightning==1.8.5.post0 [pip3] torch==1.13.1+cu117 [pip3] torchmetrics==0.11.0 [pip3] torchsampler==0.1.2 [pip3] torchvision==0.14.1+cu117 cc @ptrblck
1
2,368
103,241
Image Processing with Pytorch
triaged
### πŸš€ The feature, motivation and pitch Hello, I would like to use it in Image Processing for calculating the similarity between two photos. I am thinking Pytorch is really well for this process. But I couldn't see any issue therefore I would like to open that issue. I would like to submit a code as an example of usage for PyTorch in this area. And I would like to know how and where can I do this. ### Alternatives _No response_ ### Additional context My codes calculate the similarity between the reference image and the target image. For the data, I got some of the example pictures but the photo could change, it is necessary.
1
2,369
103,231
Benchmark --quick with huggingface runs almost indefinitely on CPU
triaged, oncall: pt2
Minimal repro is the same as triggering a run on `Albert`. ``` python benchmarks/dynamo/huggingface.py --performance --float32 -dcpu --output=tmp.csv --inference -n5 --inductor --no-skip --dashboard -k Albert --batch-size 1 ``` Not a bug per se, it might be just that slow for CPU. However it does hinder --quick sanity check on cpu. CPU: Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
3
2,370
103,222
compilation fails `error: invalid argument '-std=c++17' not allowed with 'C'`
module: build, triaged
### πŸ› Describe the bug can't compile i get error `error: invalid argument '-std=c++17' not allowed with 'C'` ### Error logs [log.txt](https://github.com/pytorch/pytorch/files/11682929/log.txt) ### Minified repro _No response_ ### Versions ``` Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Artix Linux (x86_64) GCC version: (GCC) 13.1.1 20230429 Clang version: 15.0.7 CMake version: version 3.26.4 Libc version: glibc-2.37 Python version: 3.11.3 (main, Apr 7 2023, 00:46:44) [GCC 12.2.1 20230201] (64-bit runtime) Python platform: Linux-6.3.4-artix1-1-x86_64-with-glibc2.37 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: AuthenticAMD Model name: AMD Ryzen 5 3600 6-Core Processor CPU family: 23 Model: 113 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU(s) scaling MHz: 70% CPU max MHz: 4208.2031 CPU min MHz: 2200.0000 BogoMIPS: 7189.31 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 3 MiB (6 instances) L3 cache: 32 MiB (2 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.3 [conda] Could not collect``` cc @malfet @seemethere @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
0
2,371
103,221
[help] did torch.distributed.launch can be applied on k8s cluster with pytorch-operator
oncall: distributed, module: elastic
### πŸ› Describe the bug Hi, i have been successfuly in starting distributed training via torch.distributed.launch on baremetal servers. But recently, i need to using k8s cluster, and "apply -f operator.yaml" on kubernetes is recommanded . I wonder does pytorch-operator or other training-operator support torch.distributed.launch ? because pytorch-operator does not import args like "ADDR_MASTER" or "NODE_RANK" etc to starts distributed train, but these args should be manually initialized to input to torch.distributed.launch, which really confuses me. Thank you in advance~ any hints would be helpful to me ### Versions kubernetes cluster cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @dzhulgakov
2
2,372
103,213
Undeterministic behavior in testing in dynamo.
triaged, oncall: pt2, module: dynamo
### πŸ› Describe the bug TorchDynamo uses object ID to figure out which functions/modules to be traced (https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/allowed_functions.py#L283). This is problematic when you are running unittests (python test/dynamo/test_misc.py) where one unittest uses allow_in_graph API which directly adds entry to this global allowed_functions tracker. (https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/__init__.py#L90). The reason is once the test that uses allow_in_graph finishes, we don't delete the object id from it directly. As a result, another test that uses different object with same object id will be assumed to be in this allowlist incorrectly. ### Versions main cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @aakhundov
4
2,373
103,212
PyTorch can not be compiled with MKLDNN if system compiler is clang
module: build, triaged, module: mkldnn
### πŸ› Describe the bug I'm trying to move clang configs to use clang for all building and linking, but it breaks `MKLDNNs` ability to detect presence of OpenMP on the system, see https://github.com/pytorch/pytorch/actions/runs/5194566413/jobs/9366365622 as an example: ```2023-06-07T00:46:50.4545541Z -- DNNL_LIBRARY_NAME: dnnl 2023-06-07T00:46:52.0985234Z CMake Warning (dev) at /opt/conda/envs/py_3.9/share/cmake-3.22/Modules/FindPackageHandleStandardArgs.cmake:438 (message): 2023-06-07T00:46:52.0985917Z The package name passed to `find_package_handle_standard_args` (OpenMP_C) 2023-06-07T00:46:52.0986252Z does not match the name of the calling package (OpenMP). This can lead to 2023-06-07T00:46:52.0986685Z problems in calling code that expects `find_package` result variables 2023-06-07T00:46:52.0987045Z (e.g., `_FOUND`) to follow a certain pattern. 2023-06-07T00:46:52.0987305Z Call Stack (most recent call first): 2023-06-07T00:46:52.0987709Z cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) 2023-06-07T00:46:52.0988470Z third_party/ideep/mkl-dnn/third_party/oneDNN/cmake/OpenMP.cmake:69 (find_package) 2023-06-07T00:46:52.0989047Z third_party/ideep/mkl-dnn/third_party/oneDNN/CMakeLists.txt:117 (include) 2023-06-07T00:46:52.0989682Z This warning is for project developers. Use -Wno-dev to suppress it. 2023-06-07T00:46:52.0990173Z  2023-06-07T00:46:52.0990533Z -- Could NOT find OpenMP_C (missing: OpenMP_C_FLAGS OpenMP_C_LIB_NAMES) 2023-06-07T00:46:52.0991065Z CMake Warning (dev) at /opt/conda/envs/py_3.9/share/cmake-3.22/Modules/FindPackageHandleStandardArgs.cmake:438 (message): 2023-06-07T00:46:52.0991481Z The package name passed to `find_package_handle_standard_args` (OpenMP_CXX) 2023-06-07T00:46:52.0991815Z does not match the name of the calling package (OpenMP). This can lead to 2023-06-07T00:46:52.0992122Z problems in calling code that expects `find_package` result variables 2023-06-07T00:46:52.0992446Z (e.g., `_FOUND`) to follow a certain pattern. 2023-06-07T00:46:52.0992811Z Call Stack (most recent call first): 2023-06-07T00:46:52.0993327Z cmake/Modules/FindOpenMP.cmake:584 (find_package_handle_standard_args) 2023-06-07T00:46:52.0993838Z third_party/ideep/mkl-dnn/third_party/oneDNN/cmake/OpenMP.cmake:69 (find_package) 2023-06-07T00:46:52.0994243Z third_party/ideep/mkl-dnn/third_party/oneDNN/CMakeLists.txt:117 (include) 2023-06-07T00:46:52.0994658Z This warning is for project developers. Use -Wno-dev to suppress it. 2023-06-07T00:46:52.0995043Z  2023-06-07T00:46:52.0995632Z -- Could NOT find OpenMP_CXX (missing: OpenMP_CXX_FLAGS OpenMP_CXX_LIB_NAMES) 2023-06-07T00:46:52.0996131Z -- Could NOT find OpenMP (missing: OpenMP_C_FOUND OpenMP_CXX_FOUND) 2023-06-07T00:46:52.0996569Z CMake Error at third_party/ideep/mkl-dnn/third_party/oneDNN/cmake/OpenMP.cmake:118 (message): 2023-06-07T00:46:52.0996907Z OpenMP library could not be found. Proceeding might lead to highly 2023-06-07T00:46:52.0997198Z sub-optimal performance. 2023-06-07T00:46:52.0997419Z Call Stack (most recent call first): 2023-06-07T00:46:52.0997751Z third_party/ideep/mkl-dnn/third_party/oneDNN/CMakeLists.txt:117 (include) 2023-06-07T00:46:52.0997941Z 2023-06-07T00:46:52.0998025Z  ``` `oneDNN` should either gracefully handle the failure or , better, use the same methods for locating OpenMP runtime as PyTorch. ### Versions CI cc @seemethere @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen
2
2,374
103,194
[inductor] test_fft_real_inputs fails with dynamic shapes
good first issue, triaged, oncall: pt2, module: dynamic shapes, module: inductor
### πŸ› Describe the bug ```python python test/inductor/test_torchinductor_dynamic_shapes.py -k fft python test/inductor/test_torchinductor_codegen_dynamic_shapes.py -k fft ``` (you will need to un-xfail the tests in `test_torchinductor_(codegen)?_dynamic_shapes.py` files) Fails with this error: ``` File "/data/users/dberard/pytorch/torch/_functorch/aot_autograd.py", line 3233, in create_aot_dispatcher_function compiled_fn = compiler_fn(flat_fn, fake_flat_args, aot_config, fw_metadata=fw_metadata) File "/data/users/dberard/pytorch/torch/_functorch/aot_autograd.py", line 2073, in aot_wrapper_dedupe return compiler_fn(flat_fn, leaf_flat_args, aot_config, fw_metadata=fw_metadata) File "/data/users/dberard/pytorch/torch/_functorch/aot_autograd.py", line 2253, in aot_wrapper_synthetic_base return compiler_fn(flat_fn, flat_args, aot_config, fw_metadata=fw_metadata) File "/data/users/dberard/pytorch/torch/_functorch/aot_autograd.py", line 1527, in aot_dispatch_base compiled_fw = compiler(fw_module, flat_args) File "/data/users/dberard/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/data/users/dberard/pytorch/torch/_inductor/compile_fx.py", line 763, in fw_compiler_base return inner_compile( File "/data/users/dberard/pytorch/torch/_dynamo/repro/after_aot.py", line 80, in debug_wrapper inner_compiled_fn = compiler_fn(gm, example_inputs) File "/data/users/dberard/pytorch/torch/_inductor/debug.py", line 220, in inner return fn(*args, **kwargs) File "/home/dberard/local/miniconda3/envs/pytorch/lib/python3.9/contextlib.py", line 79, in inner return func(*args, **kwds) File "/data/users/dberard/pytorch/torch/_inductor/compile_fx.py", line 47, in newFunction return old_func(*args, **kwargs) File "/data/users/dberard/pytorch/torch/_inductor/compile_fx.py", line 316, in compile_fx_inner graph.run(*example_inputs) File "/data/users/dberard/pytorch/torch/_dynamo/utils.py", line 180, in time_wrapper r = func(*args, **kwargs) File "/data/users/dberard/pytorch/torch/_inductor/graph.py", line 403, in run return super().run(*args) File "/data/users/dberard/pytorch/torch/fx/interpreter.py", line 138, in run self.env[node] = self.run_node(node) File "/data/users/dberard/pytorch/torch/_inductor/graph.py", line 643, in run_node result = fallback_handler(n.target, add_to_fallback_set=False)( File "/data/users/dberard/pytorch/torch/_inductor/lowering.py", line 1127, in handler TensorBox.create, ir.FallbackKernel.create(kernel, *args, **kwargs) File "/data/users/dberard/pytorch/torch/_inductor/ir.py", line 3321, in create ) = cls.process_kernel(kernel, *args, **kwargs) File "/data/users/dberard/pytorch/torch/_inductor/ir.py", line 2711, in process_kernel example_args.append(ir_node_to_tensor(x, guard_shape=True)) File "/data/users/dberard/pytorch/torch/_inductor/ir.py", line 200, in ir_node_to_tensor t = torch.empty_strided( torch._dynamo.exc.BackendCompilerFailed: backend='compile_fx_wrapper' raised: RuntimeError: aten/src/ATen/RegisterCUDA.cpp:7002: SymIntArrayRef expected to contain only concrete integers ``` ### Versions main branch / after https://github.com/pytorch/pytorch/pull/103183 lands cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225 @aakhundov
2
2,375
103,189
(fsdp - maybe a bug) SHARDED_STATE_DICT returns tensor with no data
triaged, module: fsdp
### πŸ› Describe the bug The huggingface `T5ForConditionalGeneration` model has the embedding layer named as `shared` at the top module, and passes a reference to it to the `T5Stack` ctor. In the `T5Stack` the passed embedding is stored as `embed_tokens`. So `t5model.shared` and `t5model.encoder.embed_tokens` point to the same `nn.Embedding()` layer. Here's the two code references: 1. [`model.shared`](https://github.com/huggingface/transformers/blob/12298cb65c7e9d615b749dde935a0b4966f4ae49/src/transformers/models/t5/modeling_t5.py#L1541) 1. [`model.encoder.embed_tokens`](https://github.com/huggingface/transformers/blob/12298cb65c7e9d615b749dde935a0b4966f4ae49/src/transformers/models/t5/modeling_t5.py#L879) and an excerpt of the code: ``` class T5ForConditionalGeneration(...): # nn.Module def __init__(...): # ... omitted... self.shared = nn.Embedding(...) self.encoder = T5Stack(encoder_config, self.shared) # ... omitted ... class T5Stack(...): # nn.Module def __init__(..., embed_tokens): # ... omitted ... self.embed_tokens = embed_tokens ``` Wrapping this T5 model with FSDP and inspecting the details of embedding layer in a transformer (T5 model) model wrapped in FSDP with `ShardingStrategy.FULL_SHARD` and `auto_wrap_policy=transformer_auto_wrap_policy`, I'm observing that with `StateDictType.SHARDED_STATE_DICT`: 1. `model.state_dict()["shared.weight"]` is a `ShardedTensor` (as expected) 2. `model.state_dict()["encoder.embed_tokens.weight"]` is a Tensor with no data (see repro script's output below) I'm guessing this has to do with this warning in the FSDP [docs page]( ![image](https://github.com/pytorch/pytorch/assets/43595115/8c85bae5-fc7d-4a8a-b8fe-959c48f32560) ): ![image](https://github.com/pytorch/pytorch/assets/43595115/af228cbd-eb2e-4547-a23a-9ceb9a634ec8) But I'm wrapping the `T5Block` (see my repro script below) not `T5Stack` in an FSDP unit so the outer module (`T5ForConditionalGeneration`) and `T5Block` belongs to the same (root) FSDP unit. Is this an expected behavior (I'm misunderstanding something) or is it a bug or should the documentation be updated? Repro Script -------------- To run: ``` $ pip install transformers, tabulate $ torchrun --rdzv_backend c10d --rdzv_id 1 --nnodes 1 --nproc_per_node 2 repro_script.py sharded ``` Save this as `repro_script.py` ```python import functools import os import sys import torch from tabulate import tabulate import torch.distributed as dist from torch.distributed._shard.sharded_tensor import ShardedTensor from torch.distributed.elastic.multiprocessing.errors import record from torch.distributed.fsdp import ( FullyShardedDataParallel, ShardingStrategy, StateDictType, ) from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy from transformers import T5ForConditionalGeneration, T5Config from transformers.models.t5.modeling_t5 import T5Block @record def main(): sdtype = sys.argv[1] state_dict_type = { "full": StateDictType.FULL_STATE_DICT, "local": StateDictType.LOCAL_STATE_DICT, "sharded": StateDictType.SHARDED_STATE_DICT, }[sdtype] rank = int(os.environ["RANK"]) sharding_strategy = ShardingStrategy.FULL_SHARD t5_model = T5ForConditionalGeneration( T5Config( d_ff=512, d_kv=32, d_model=128, is_encoder_decoder=True, model_type="t5", n_positions=512, num_heads=2, num_layers=4, vocab_size=32128, ) ) fsdp_model = FullyShardedDataParallel( t5_model, auto_wrap_policy=functools.partial( transformer_auto_wrap_policy, transformer_layer_cls={T5Block}, ), sharding_strategy=sharding_strategy, device_id=device_id, ) table = [] layer_names = ["shared.weight", "encoder.embed_tokens.weight"] with FullyShardedDataParallel.state_dict_type( fsdp_model, state_dict_type=state_dict_type ): for layer_name in layer_names: state_dict = fsdp_model.state_dict() layer = state_dict.get(layer_name) tensor_type = type(layer) row = { "rank": rank, "sharding strategy": sharding_strategy.name, "state_dict_type": state_dict_type.name, "layer": layer_name, } if layer is None: continue row.update( { "dtype": layer.dtype, "shape": layer.shape, "tensor type": tensor_type.__qualname__, } ) if tensor_type != ShardedTensor: row["storage"] = layer.untyped_storage() table.append(row) if rank == 0: print(tabulate(table, headers="keys", stralign="left")) if __name__ == "__main__": device_id = int(os.environ["LOCAL_RANK"]) torch.cuda.set_device(device_id) dist.init_process_group("nccl") try: main() finally: dist.destroy_process_group() ``` Output ---------- ``` rank sharding strategy state_dict_type layer dtype shape tensor type storage ------ ------------------- ------------------ --------------------------- ------------- ------------------------ ------------- ------------------------------------------------------- 0 FULL_SHARD SHARDED_STATE_DICT shared.weight torch.float32 torch.Size([32128, 128]) ShardedTensor 0 FULL_SHARD SHARDED_STATE_DICT encoder.embed_tokens.weight torch.float32 torch.Size([32128, 128]) Tensor [torch.storage.UntypedStorage(device=cuda:0) of size 0] ``` ### Versions ``` kiuk@ip-10-0-61-167% python collect_env.py ~/tmp Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Amazon Linux 2 (x86_64) GCC version: (GCC) 7.3.1 20180712 (Red Hat 7.3.1-15) Clang version: 11.1.0 (Amazon Linux 2 11.1.0-1.amzn2.0.2) CMake version: version 3.26.1 Libc version: glibc-2.26 Python version: 3.9.16 (main, Mar 31 2023, 16:44:31) [GCC 7.3.1 20180712 (Red Hat 7.3.1-15)] (64-bit runtime) Python platform: Linux-4.14.301-224.520.amzn2.x86_64-x86_64-with-glibc2.26 Is CUDA available: True CUDA runtime version: 11.7.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-40GB GPU 1: NVIDIA A100-SXM4-40GB GPU 2: NVIDIA A100-SXM4-40GB GPU 3: NVIDIA A100-SXM4-40GB GPU 4: NVIDIA A100-SXM4-40GB GPU 5: NVIDIA A100-SXM4-40GB GPU 6: NVIDIA A100-SXM4-40GB GPU 7: NVIDIA A100-SXM4-40GB Nvidia driver version: 515.65.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz Stepping: 7 CPU MHz: 1187.921 BogoMIPS: 5999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 32K L1i cache: 32K L2 cache: 1024K L3 cache: 36608K NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] mypy==0.991 [pip3] mypy-boto3-batch==1.26.103 [pip3] mypy-boto3-cloudwatch==1.26.127 [pip3] mypy-boto3-ec2==1.26.103 [pip3] mypy-boto3-iam==1.26.97 [pip3] mypy-boto3-s3==1.26.99 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.5 [pip3] pytorch-lightning==1.9.4 [pip3] torch==2.0.1 [pip3] torch-tb-profiler==0.4.1 [pip3] torchdata==0.6.1 [pip3] torchmetrics==0.11.4 [pip3] torchsnapshot-nightly==2023.3.15 [pip3] torchx-nightly==2023.5.9 [pip3] triton==2.0.0 [conda] No relevant packages ``` cc @zhaojuanmao @mrshenli @rohan-varma @awgu
1
2,376
103,173
[RFC] Emit better Telemetry in PyTorch
feature, module: logging, triaged, oncall: pt2
### πŸš€ The feature, motivation and pitch **Summary** The existing PyTorch 2.0 logging needs to be enhanced to emit better Telemetry. For this purpose, this document proposes the following changes: 1. Emit function parameters along with the function name using [_log_api_usage_once](https://github.com/pytorch/pytorch/blob/7b47cd0a6c206ef1de1ad74881942352089ddc72/torch/csrc/Module.cpp#L1420) 2. Control dumping dynamo compile metrics using compile_times via an environment variable PYTORCH_DYNAMO_COMPILE_TIMES_PERIOD. **Motivation** Enhancing the logging will highlight the features actively used by the Pytorch Users. Controlling the dumping of dynamo compile metrics using an environment variable will enable the feature without modifying the User training/inference script. **Proposed Implementation** **PyTorch API level logging** PyTorch uses Google’s logging library ([glog](https://github.com/google/glog#severity-levels)) for logging in C++. The environment variable [PYTORCH_API_USAGE_STDERR](https://github.com/pytorch/pytorch/blob/main/c10/util/Logging.cpp#L93) can be used to log what APIs are used. This corresponds to the API [_log_api_usage_once](https://github.com/pytorch/pytorch/blob/7b47cd0a6c206ef1de1ad74881942352089ddc72/torch/csrc/Module.cpp#L1420) in python and C10_LOG_API_USAGE_ONCE in C++. The current implementation only provides insight into which APIs were used, leaving out their arguments. We would like to capture the parameters of APIs that we want to log without compromising the users’s IP and privacy. We will modify the below APIs logging to include their parameters. We will only include the arguments of type bool, enum and constrained strings. ``` def format_api(api_name, param_dict): # format_string will be of the format <API><seperator:-><param_seperator:,> format_string = os.environ['PYTORCH_LOG_API_FORMAT'] if format_string is None: format_string = <API><seprator: ><param_seperator:,> separator_start = "<seperator:" separator_end = ">" param_separator_start = "<param_seperator:" param_separator_end = ">" #default values separator = " " param_separator = "," separator_index_start = format_string.find(separator_start) separator_index_end = format_string.find(separator_end, separator_index_start) param_separator_index_start = format_string.find(param_separator_start) param_separator_index_end = format_string.find(param_separator_end, param_separator_index_start) if separator_index_start != -1 and separator_index_end != -1: separator = format_string[separator_index_start + len(separator_start):separator_index_end] if param_separator_index_start != -1 and param_separator_index_end != -1: param_separator = format_string[param_separator_index_start + len(param_separator_start):param_separator_index_end] formatted_api = format_string.replace("<API>", api_name) formatted_api = formatted_api.replace(f"{separator_start}{separator}{separator_end}", separator) formatted_api = formatted_api.replace(f"{param_separator_start}{param_separator}{param_separator_end}", param_separator) param_string = param_separator.join([f"{key}{param_separator}{value}" for key, value in param_dict.items()]) formatted_api = f"{formatted_api}{separator}{param_string}" return formatted_api ``` We can use a custom format_api function that takes API name and parameters dict and provide the formatted string as output. The format string can be set using an environment variable **PYTORCH_LOG_API_FORMAT**. **[torch.compile](https://github.com/pytorch/pytorch/blob/7b47cd0a6c206ef1de1ad74881942352089ddc72/torch/__init__.py#L1574)** ``` param_dict = {} if(isinstance(backend, str)) { param_dict[β€œbackend”] = backend } param_dict[β€œfullgraph”] = str(fullgraph) param_dict[β€œdynamic”] = str(dynamic) param_dict[β€œmode”] = str(mode) param_dict[β€œdisable”] = str(disable) C._log_api_usage_once(format_api(torch.compile, param_dict)) param_dict = {sync_module_states:str(sync_module_states), forward_prefetch:str(forward_prefetch)} torch._C._log_api_usage_once(format_api(torch.distributed.fully_shard, param_dict)) ``` **[torch._dynamo.optimize](https://github.com/pytorch/pytorch/blob/7b47cd0a6c206ef1de1ad74881942352089ddc72/torch/_dynamo/eval_frame.py#LL532C35-L532C57)** ``` param_dict = {nopython:str(nopython), disable:str(disable), dynamic:str(dynamic)} torch._C._log_api_usage_once(format_api(torch._dynamo.optimize, param_dict) ``` **[torch._dynamo.export](https://github.com/pytorch/pytorch/blob/7b47cd0a6c206ef1de1ad74881942352089ddc72/torch/_dynamo/eval_frame.py#L832)** ``` param_dict = {aten_graph:str(aten_graph), pre_autograd:str(pre_autograd), tracing_mode:tracing_mode}, assume_static_by_default:str(assume_static_by_default), functionalize:str(functionalize)} torch._C._log_api_usage_once(format_api(torch._dynamo.export, param_dict)) ``` **Compilation runtime** TorchDynamo uses a function that can be used as a decorator to [capture](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/utils.py#L171) the breakdown of compilation time in terms of graph capture and backend compilation times. However, this breakdown is only made available with an explicit call to a [summary API](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/utils.py#L201) at the end of training/serving. As a result, this information is not available without customer intervention. The API can be automatically invoked after training/inference. This can be achieved by registering these APIs using [atexit](https://docs.python.org/3/library/atexit.html) exit handler in the torch._dynamo.__init__.py. `atexit.register(lambda: compile_times(str, True))` We can also dump this compile_times info periodically using a [Timeloop](https://pypi.org/project/timeloop/) library. We can periodically invoke compile_times API with a defined interval set using an environment variable **PYTORCH_DYNAMO_COMPILE_TIMES_PERIOD** in seconds. This will help live hosted endpoints where the script never exits. The default value will be 0 and gets updated based on user provided value. ``` #Pseudo code import os import time from timeloop import Timeloop from datetime import timedelta import torch._dynamo.utils tl = Timeloop() period = os.environ['PYTORCH_PRINT_DYNAMO_COMPILE_TIMES_PERIOD'] if not isinstance(period, int): period = 0; @tl.job(interval=timedelta(seconds=period)) def check_and_invoke_compile_times(): torch._dynamo.utils.compile_times() if __name__ == "__main__": if period > 0: tl.start(block=True) ``` To prevent redundant dumping of previously dumped metrics in the previous compile_times invocation, it is necessary to maintain an index indicating the point until which the compile times of specific APIs have already been logged. This can be achieved by enhancing the existing compilation_metrics dictionary to include a sub-dictionary for each API. The sub-dictionary will contain the values under the key 'values' and the new index that is pending logging under the key 'log_index'. By implementing this modification, we can effectively track the progress of logging the compile times for individual APIs and avoid re-dumping already logged metrics. We will modify the compile_times API as follows: ``` #Pseudo code def dynamo_timed(original_function=None, phase_name=None): def dynamo_timed_inner(func): @wraps(func) def time_wrapper(*args, **kwargs): key = func.__qualname__ if key not in compilation_metrics: compilation_metrics[key] = {values:[], index:0} with torch.profiler.record_function(f"{key} (dynamo_timed)"): t0 = time.time() r = func(*args, **kwargs) time_spent = time.time() - t0 # print(f"Dynamo timer: key={key}, latency={latency:.2f} sec") compilation_metrics[key]["values"].append(time_spent) if phase_name: frame_key = str(curr_frame) if frame_key not in frame_phase_timing: frame_phase_timing[frame_key] = {} assert ( phase_name not in frame_phase_timing[frame_key] ), f"Duplicate phase name {phase_name} for frame {frame_key}" frame_phase_timing[frame_key][phase_name] = time_spent return r return time_wrapper if original_function: return dynamo_timed_inner(original_function) return dynamo_timed_inner def compile_times(repr="str", aggregate=False): """ Get metrics about torchdynamo frontend/backend compilation times. Accumulates information from functions tagged with `@dynamo_timed`. repr='str' returns a printable string for user interaction, and 'csv' returns headers, rows which can be logged for output aggregate causes values from multiple compilations (e.g. split graphs) to be accumulated into one value. If false, expect more than one value per metric. """ def fmt_fn(values, item_fn=lambda x: x): if aggregate: return item_fn(sum(values)) return ", ".join(map(item_fn, values)) if repr == "str": rows = [ (k, fmt_fn(compilation_metrics[k]["values"] if aggregate else compilation_metrics[k]["values"][compilation_metrics[k]["index"]:], item_fn=lambda x: f"{x:.4f}")) for k in compilation_metrics ] out = "TorchDynamo compilation metrics:\n" out += tabulate(rows, headers=("Function", "Runtimes (s)")) return out elif repr == "csv": values = [ fmt_fn(v, item_fn=lambda x: f"{x:.6f}") for v in compilation_metrics.values() ] headers = list(compilation_metrics.keys()) return headers, values ``` **Metrics** This feature will enable PyTorch developers to understand the % usage of different PyTorch features. **Drawbacks** This will not break any existing features. **Alternatives** NA ### Alternatives NA ### Additional context NA cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
8
2,377
103,169
breakpoint() in torch.compile region behaves oddly
triaged, oncall: pt2
### πŸ› Describe the bug I expect breakpoint() to induce a graph break and let me inspect the frame ``` import torch @torch.compile(backend="eager") def f(x): breakpoint() return x + 1 f(torch.randn(1)) ``` However, when I run this, I actually get dropped in some weird, synthetic catch_errors frame ``` (/home/ezyang/local/a/pytorch-env) [ezyang@devgpu019.ftw1 ~/local/a/pytorch (f15e82f7)]$ python z.py --Call-- > /data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py(407)catch_errors() -> @functools.wraps(callback) (Pdb) bt /data/users/ezyang/a/pytorch/z.py(8)<module>() -> f(torch.randn(1)) /data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py(286)_fn() -> return fn(*args, **kwargs) /data/users/ezyang/a/pytorch/z.py(5)f() -> breakpoint() > /data/users/ezyang/a/pytorch/torch/_dynamo/eval_frame.py(407)catch_errors() -> @functools.wraps(callback) ``` I can get to the frame I care about by typing `up`, but this threw me for a loop the first time it happened to me. ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305
0
2,378
103,161
Calling jacrev with LSTM and functional_call gives error
triaged, module: functorch
### πŸ› Describe the bug I wanted to calculate some jacobian from the output of an LSTM, so I use funcitonal_call and feed the parameter of LSTM as input. ```python import torch from torch.func import functional_call, jacrev, jacfwd device = 'cuda' lstm = torch.nn.LSTM( input_size=32, hidden_size=32, num_layers=1, batch_first=True, ).to(device) dict_params = dict(lstm.named_parameters()) input_batch = torch.randn(11, 10, 32).to(device) def func_call(params, input_batch): output, _ = functional_call(lstm, params, input_batch) return output.mean() jac = jacrev( lambda params: func_call(params=params, input_batch=input_batch), argnums=0 )(dict_params) ``` However, it gives me error like this ```error --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) Cell In[9], line 1 ----> 1 jac = jacfwd( 2 lambda params: func_call(params=params, input_batch=input_batch), 3 argnums=0 4 )(dict_params) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py:1128](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py:1128), in jacfwd..wrapper_fn(*args) 1125 _, jvp_out = output 1126 return jvp_out -> 1128 results = vmap(push_jvp, randomness=randomness)(basis) 1129 if has_aux: 1130 results, aux = results File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:434](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:434), in vmap..wrapped(*args, **kwargs) 430 return _chunked_vmap(func, flat_in_dims, chunks_flat_args, 431 args_spec, out_dims, randomness, **kwargs) 433 # If chunk_size is not specified. --> 434 return _flat_vmap( 435 func, batch_size, flat_in_dims, flat_args, args_spec, out_dims, randomness, **kwargs 436 ) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:39](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:39), in doesnt_support_saved_tensors_hooks..fn(*args, **kwargs) 36 @functools.wraps(f) 37 def fn(*args, **kwargs): 38 with torch.autograd.graph.disable_saved_tensors_hooks(message): ---> 39 return f(*args, **kwargs) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:619](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:619), in _flat_vmap(func, batch_size, flat_in_dims, flat_args, args_spec, out_dims, randomness, **kwargs) 617 try: 618 batched_inputs = _create_batched_inputs(flat_in_dims, flat_args, vmap_level, args_spec) --> 619 batched_outputs = func(*batched_inputs, **kwargs) 620 return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func) 621 finally: File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py:1119](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py:1119), in jacfwd..wrapper_fn..push_jvp(basis) 1118 def push_jvp(basis): -> 1119 output = _jvp_with_argnums(func, args, basis, argnums=argnums, has_aux=has_aux) 1120 # output[0] is the output of `func(*args)` 1121 error_if_complex("jacfwd", output[0], is_input=False) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:39](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/vmap.py:39), in doesnt_support_saved_tensors_hooks..fn(*args, **kwargs) 36 @functools.wraps(f) 37 def fn(*args, **kwargs): 38 with torch.autograd.graph.disable_saved_tensors_hooks(message): ---> 39 return f(*args, **kwargs) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py:965](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py:965), in _jvp_with_argnums(func, primals, tangents, argnums, strict, has_aux) 963 primals = _wrap_all_tensors(primals, level) 964 duals = _replace_args(primals, duals, argnums) --> 965 result_duals = func(*duals) 966 if has_aux: 967 if not (isinstance(result_duals, tuple) and len(result_duals) == 2): Cell In[9], line 2, in (params) 1 jac = jacfwd( ----> 2 lambda params: func_call(params=params, input_batch=input_batch), 3 argnums=0 4 )(dict_params) Cell In[7], line 2, in func_call(params, input_batch) 1 def func_call(params, input_batch): ----> 2 output, _ = functional_call(lstm, params, input_batch) 3 return output.mean() File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/functional_call.py:143](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/_functorch/functional_call.py:143), in functional_call(module, parameter_and_buffer_dicts, args, kwargs, tie_weights, strict) 137 else: 138 raise ValueError( 139 f"Expected parameter_and_buffer_dicts to be a dict, or a list[/tuple](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/tuple) of dicts, " 140 f"but got {type(parameter_and_buffer_dicts)}" 141 ) --> 143 return nn.utils.stateless._functional_call( 144 module, 145 parameters_and_buffers, 146 args, 147 kwargs, 148 tie_weights=tie_weights, 149 strict=strict, 150 ) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/utils/stateless.py:262](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/utils/stateless.py:262), in _functional_call(module, parameters_and_buffers, args, kwargs, tie_weights, strict) 258 args = (args,) 259 with _reparametrize_module( 260 module, parameters_and_buffers, tie_weights=tie_weights, strict=strict 261 ): --> 262 return module(*args, **kwargs) File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/module.py:1501](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/module.py:1501), in Module._call_impl(self, *args, **kwargs) 1496 # If we don't have any hooks, we want to skip the rest of the logic in 1497 # this function, and just call forward. 1498 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1499 or _global_backward_pre_hooks or _global_backward_hooks 1500 or _global_forward_hooks or _global_forward_pre_hooks): -> 1501 return forward_call(*args, **kwargs) 1502 # Do not call functions when jit is used 1503 full_backward_hooks, non_full_backward_hooks = [], [] File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:762](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:762), in LSTM.forward(self, input, hx) 760 if not torch.jit.is_scripting(): 761 if self._weights_have_changed(): --> 762 self._init_flat_weights() 764 orig_input = input 765 # xxx: isinstance check needs to be in conditional for TorchScript to compile File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:139](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:139), in RNNBase._init_flat_weights(self) 135 self._flat_weights = [getattr(self, wn) if hasattr(self, wn) else None 136 for wn in self._flat_weights_names] 137 self._flat_weight_refs = [weakref.ref(w) if w is not None else None 138 for w in self._flat_weights] --> 139 self.flatten_parameters() File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:176](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:176), in RNNBase.flatten_parameters(self) 170 return 172 # If any parameters alias, we fall back to the slower, copying code path. This is 173 # a sufficient check, because overlapping parameter buffers that don't completely 174 # alias would break the assumptions of the uniqueness check in 175 # Module.named_parameters(). --> 176 unique_data_ptrs = {p.data_ptr() for p in self._flat_weights} 177 if len(unique_data_ptrs) != len(self._flat_weights): 178 return File [~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:176](https://vscode-remote+ssh-002dremote-002bquanta-002etitan.vscode-resource.vscode-cdn.net/home/quanta/Projects/FoRL-project/test_code/~/.conda/envs/forl-proj/lib/python3.10/site-packages/torch/nn/modules/rnn.py:176), in (.0) 170 return 172 # If any parameters alias, we fall back to the slower, copying code path. This is 173 # a sufficient check, because overlapping parameter buffers that don't completely 174 # alias would break the assumptions of the uniqueness check in 175 # Module.named_parameters(). --> 176 unique_data_ptrs = {p.data_ptr() for p in self._flat_weights} 177 if len(unique_data_ptrs) != len(self._flat_weights): 178 return RuntimeError: Cannot access data pointer of Tensor that doesn't have storage ``` It says something like `self._flat_weights` 's matrix does not have storage when calling `Tensor.data_ptr()` method. I also tried to print self._flat_weights when calling this funciton, it is ```python [GradTrackingTensor(lvl=1, value= Parameter containing: tensor([[ 0.0152, -0.0061, 0.0816, ..., -0.0025, -0.0326, 0.0344], [-0.0327, -0.0508, -0.1517, ..., -0.0478, 0.1520, 0.0825], [ 0.0265, -0.0549, -0.1710, ..., 0.0329, -0.0428, 0.0193], ..., [-0.1371, 0.0196, -0.0076, ..., -0.1137, -0.1058, 0.0396], [ 0.0370, -0.0681, 0.0193, ..., -0.0464, 0.0921, -0.1209], [-0.1082, -0.1462, 0.0414, ..., -0.0778, -0.0856, 0.0774]], device='cuda:0', requires_grad=True) ), GradTrackingTensor(lvl=1, value= Parameter containing: tensor([[-0.1160, -0.0630, 0.1476, ..., -0.0603, -0.1395, -0.1528], [ 0.1590, -0.1527, 0.1602, ..., 0.0061, 0.0968, 0.0363], [-0.1380, 0.0860, -0.1754, ..., -0.0117, -0.0765, -0.0704], ..., [ 0.1244, -0.1528, -0.1146, ..., 0.0456, 0.1050, 0.0627], [ 0.1305, 0.1589, -0.1673, ..., 0.0688, 0.0474, -0.0307], [ 0.0105, -0.0980, -0.0172, ..., -0.1360, 0.1762, -0.1558]], device='cuda:0', requires_grad=True) ), GradTrackingTensor(lvl=1, value= Parameter containing: tensor([ 0.0698, 0.1423, -0.0210, -0.0220, 0.1001, 0.1764, -0.1697, 0.0057, 0.1385, -0.1068, -0.1130, -0.0255, -0.1064, 0.1258, 0.1567, -0.0853, 0.0319, 0.0120, 0.0847, -0.1106, 0.0755, 0.0322, 0.0279, -0.1470, -0.1333, 0.0607, 0.0515, -0.1195, -0.1491, 0.0726, -0.1084, 0.1267, -0.1031, 0.0062, 0.1640, -0.0104, -0.0157, -0.1091, 0.0904, 0.1325, -0.1592, -0.0774, 0.0814, 0.0034, 0.0211, 0.1304, 0.1630, 0.0069, -0.1333, 0.1403, 0.1562, 0.0679, -0.1202, 0.0201, 0.1482, -0.1630, 0.1039, -0.1758, 0.1112, 0.0051, -0.0909, 0.1661, 0.0383, -0.1568, -0.0799, -0.0284, -0.1319, 0.1042, 0.0036, -0.0238, -0.0283, 0.0488, 0.0003, 0.1377, 0.1479, -0.1500, -0.0282, -0.0816, 0.0874, 0.0337, 0.0751, 0.1523, 0.0758, -0.1458, -0.0024, -0.0427, -0.0908, -0.1383, -0.1672, -0.0800, 0.0409, -0.1399, -0.0732, 0.0321, -0.0251, 0.1068, -0.0486, 0.0953, -0.0917, -0.0501, 0.1601, 0.0244, -0.1500, -0.0720, -0.1479, -0.0894, -0.1014, 0.0321, -0.0648, 0.1300, -0.0359, 0.1623, -0.0691, -0.1325, 0.1291, 0.0251, -0.0148, -0.0885, -0.1415, -0.0860, -0.0983, -0.1115, -0.1256, 0.1620, 0.0293, 0.0540, -0.1512, -0.0097], device='cuda:0', requires_grad=True) ), GradTrackingTensor(lvl=1, value= Parameter containing: tensor([ 0.0405, -0.0769, -0.1045, -0.0878, 0.1220, -0.1439, -0.1761, 0.0604, 0.0725, 0.0428, 0.1289, 0.1255, -0.0375, 0.1240, -0.0087, -0.0632, 0.0611, -0.0453, -0.1217, -0.1690, -0.0899, 0.0293, -0.0544, -0.1171, -0.0123, 0.1762, -0.0029, -0.0878, 0.0648, -0.1616, 0.0643, 0.0523, -0.0807, 0.0242, 0.0982, 0.1478, -0.0666, 0.0869, 0.0363, -0.0100, -0.0016, 0.1506, 0.1727, 0.0422, 0.1144, -0.0533, -0.1611, 0.1124, 0.0476, -0.0143, 0.1005, 0.0768, -0.0520, 0.0885, -0.0570, -0.0359, 0.0745, -0.0665, -0.1128, -0.1228, 0.1578, -0.0029, 0.0960, 0.0956, 0.1746, 0.0738, -0.1099, 0.1381, -0.1351, 0.0500, -0.0044, 0.1273, -0.1468, -0.0626, -0.0234, 0.1047, 0.1232, 0.0216, 0.1043, 0.0513, 0.1348, -0.0211, 0.1674, 0.1112, 0.1559, 0.0566, 0.0557, -0.1758, -0.1657, 0.0520, -0.0968, -0.1095, 0.1301, -0.0020, -0.1110, 0.1186, 0.0253, 0.1311, 0.0609, 0.0973, -0.0177, -0.0587, 0.1651, 0.1012, 0.1693, -0.1229, 0.0474, -0.0748, 0.1236, 0.0510, -0.0586, 0.1208, -0.1384, -0.0365, -0.0905, 0.0042, 0.1580, -0.0101, -0.1153, -0.1726, -0.1128, -0.1615, -0.0982, -0.1030, -0.1070, 0.1587, -0.1468, -0.1594], device='cuda:0', requires_grad=True) )] ``` ### Versions Collecting environment information... PyTorch version: 2.0.0+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Arch Linux (x86_64) GCC version: (GCC) 13.1.1 20230429 Clang version: Could not collect CMake version: version 3.26.3 Libc version: glibc-2.37 Python version: 3.10.11 (main, Apr 20 2023, 19:02:41) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.3.6-arch1-1-x86_64-with-glibc2.37 Is CUDA available: True CUDA runtime version: 12.1.105 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2080 Ti Nvidia driver version: 530.41.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz CPU family: 6 Model: 158 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 12 CPU(s) scaling MHz: 84% CPU max MHz: 5000.0000 CPU min MHz: 800.0000 BogoMIPS: 7202.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust sgx bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp sgx_lc md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 2 MiB (8 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Not affected Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Mitigation; TSX disabled Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.0+cu118 [pip3] triton==2.0.0 [conda] numpy 1.23.5 pypi_0 pypi [conda] torch 2.0.0+cu118 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi python collect_env.py 4.94s user 0.91s system 123% cpu 4.747 total cc @zou3519 @Chillee @samdow @kshitij12345 @janeyx99 ```[tasklist] ### Tasks ```
5
2,379
103,160
Allow overriding __repr__ to call dataclass_repr (infinite recursion right now)
triaged, better-engineering, module: codegen
### πŸ› Describe the bug dataclass_repr is great and I want it as the default for most complicated dataclasses I define. However, I cannot actually define `__repr__` to call into `dataclass_repr` because this triggers an infinite loop. ### Versions master cc @bhosmer @bdhirsh
0
2,380
103,150
Build fails at linking torch_shm_manager on aarch64
module: build, triaged
On a Neoverse N1 server CPU (aarch64) using NVIDIA Tesla V100S GPUs, I am trying to build pytorch version 1.11.0 with Cuda 11.3. It ultimately fails due to a linker error in torch_shm_manager. I am using this command: ``` export CMAKE_PREFIX_PATH=${CONDA_PREFIX:-"$(dirname $(which conda))/../"} python setup.py install ``` The error is the following: ``` [3631/3634] Linking CXX executable bin/torch_shm_manager FAILED: bin/torch_shm_manager : && /home/users/kaftan/anaconda3/envs/pt110cu113/bin/aarch64-conda-linux-gnu-c++ -fvisibility-inlines-hidden -std=c++17 -fmessage-length=0 -ftree-vectorize -fPIC -fstack-protector-strong -fno-plt -O3 -pipe -isystem /home/users/kaftan/anaconda3/envs/pt110cu113/include -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -g -fno-omit-frame-pointer -O0 -Wl,-O2 -Wl,--sort-common -Wl,--as-needed -Wl,-z,relro -Wl,-z,now -Wl,--allow-shlib-undefined -Wl,-rpath,/home/users/kaftan/anaconda3/envs/pt110cu113/lib -Wl,-rpath-link,/home/users/kaftan/anaconda3/envs/pt110cu113/lib -L/home/users/kaftan/anaconda3/envs/pt110cu113/lib -rdynamic -rdynamic caffe2/torch/lib/libshm/CMakeFiles/torch_shm_manager.dir/manager.cpp.o -o bin/torch_shm_manager -Wl,-rpath,/home/users/kaftan/pytorch/build/lib:/usr/local/cuda-11.3/lib64: lib/libshm.so -lrt lib/libtorch.so -Wl,--no-as-needed,"/home/users/kaftan/pytorch/build/lib/libtorch_cpu.so" -Wl,--as-needed lib/libprotobufd.a -pthread -Wl,--no-as-needed,"/home/users/kaftan/pytorch/build/lib/libtorch_cuda.so" -Wl,--as-needed lib/libc10_cuda.so /usr/local/cuda-11.3/lib64/libcudart.so /usr/local/cuda-11.3/lib64/libnvToolsExt.so /usr/local/cuda-11.3/lib64/libcufft.so /usr/local/cuda-11.3/lib64/libcurand.so /usr/local/cuda-11.3/lib64/libcublas.so lib/libc10.so && : /home/users/kaftan/anaconda3/envs/pt110cu113/bin/../lib/gcc/aarch64-conda-linux-gnu/10.4.0/../../../../aarch64-conda-linux-gnu/bin/ld: bin/torch_shm_manager: hidden symbol `__aarch64_cas4_sync' in /home/users/kaftan/anaconda3/envs/pt110cu113/bin/../lib/gcc/aarch64-conda-linux-gnu/10.4.0/libgcc.a(cas_4_5.o) is referenced by DSO /home/users/kaftan/anaconda3/envs/pt110cu113/bin/../lib/gcc/aarch64-conda-linux-gnu/10.4.0/../../../../aarch64-conda-linux-gnu/bin/ld: final link failed: bad value collect2: error: ld returned 1 exit status [3632/3634] Linking CXX shared library lib/libtorch_python.so ninja: build stopped: subcommand failed. ``` I have already disabled some elements that caused the build to fail, setting ```BUILD_TEST=0```, ```USE_BREAKPAD=0``` and ```_GLIBCXX_USE_CXX11_ABI=0``` in the environment. The build summary is the following: ``` -- ******** Summary ******** -- General: -- CMake version : 3.22.1 -- CMake command : /home/users/kaftan/anaconda3/envs/pt110cu113/bin/cmake -- System : Linux -- C++ compiler : /home/users/kaftan/anaconda3/envs/pt110cu113/bin/aarch64-conda-linux-gnu-c++ -- C++ compiler id : GNU -- C++ compiler version : 10.4.0 -- Using ccache if found : ON -- Found ccache : CCACHE_PROGRAM-NOTFOUND -- CXX flags : -fvisibility-inlines-hidden -std=c++17 -fmessage-length=0 -ftree-vectorize -fPIC -fstack-protector-strong -fno-plt -O3 -pipe -isystem /home/users/kaftan/anaconda3/envs/pt110cu113/include -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -- Build type : Debug -- Compile definitions : ONNX_ML=1;ONNXIFI_ENABLE_EXT=1;ONNX_NAMESPACE=onnx_torch;HAVE_MMAP=1;_FILE_OFFSET_BITS=64;HAVE_SHM_OPEN=1;HAVE_SHM_UNLINK=1;HAVE_MALLOC_USABLE_SIZE=1;USE_EXTERNAL_MZCRC;MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -- CMAKE_PREFIX_PATH : /home/users/kaftan/anaconda3/envs/pt110cu113/lib/python3.9/site-packages;/home/users/kaftan/anaconda3/envs/pt110cu113;/usr/local/cuda-11.3 -- CMAKE_INSTALL_PREFIX : /home/users/kaftan/pytorch/torch -- USE_GOLD_LINKER : OFF -- -- TORCH_VERSION : 1.11.0 -- CAFFE2_VERSION : 1.11.0 -- BUILD_CAFFE2 : OFF -- BUILD_CAFFE2_OPS : OFF -- BUILD_CAFFE2_MOBILE : OFF -- BUILD_STATIC_RUNTIME_BENCHMARK: OFF -- BUILD_TENSOREXPR_BENCHMARK: OFF -- BUILD_NVFUSER_BENCHMARK: OFF -- BUILD_BINARY : OFF -- BUILD_CUSTOM_PROTOBUF : ON -- Link local protobuf : ON -- BUILD_DOCS : OFF -- BUILD_PYTHON : True -- Python version : 3.9.12 -- Python executable : /home/users/kaftan/anaconda3/envs/pt110cu113/bin/python -- Pythonlibs version : 3.9.12 -- Python library : /home/users/kaftan/anaconda3/envs/pt110cu113/lib/libpython3.9.a -- Python includes : /home/users/kaftan/anaconda3/envs/pt110cu113/include/python3.9 -- Python site-packages: lib/python3.9/site-packages -- BUILD_SHARED_LIBS : ON -- CAFFE2_USE_MSVC_STATIC_RUNTIME : OFF -- BUILD_TEST : False -- BUILD_JNI : OFF -- BUILD_MOBILE_AUTOGRAD : OFF -- BUILD_LITE_INTERPRETER: OFF -- INTERN_BUILD_MOBILE : -- USE_BLAS : 1 -- BLAS : open -- BLAS_HAS_SBGEMM : -- USE_LAPACK : 1 -- LAPACK : open -- USE_ASAN : OFF -- USE_CPP_CODE_COVERAGE : OFF -- USE_CUDA : ON -- Split CUDA : OFF -- CUDA static link : OFF -- USE_CUDNN : OFF -- USE_EXPERIMENTAL_CUDNN_V8_API: OFF -- CUDA version : 11.3 -- CUDA root directory : /usr/local/cuda-11.3 -- CUDA library : /usr/local/cuda-11.3/lib64/stubs/libcuda.so -- cudart library : /usr/local/cuda-11.3/lib64/libcudart.so -- cublas library : /usr/local/cuda-11.3/lib64/libcublas.so -- cufft library : /usr/local/cuda-11.3/lib64/libcufft.so -- curand library : /usr/local/cuda-11.3/lib64/libcurand.so -- nvrtc : /usr/local/cuda-11.3/lib64/libnvrtc.so -- CUDA include path : /usr/local/cuda-11.3/include -- NVCC executable : /usr/local/cuda-11.3/bin/nvcc -- CUDA compiler : /usr/local/cuda-11.3/bin/nvcc -- CUDA flags : -Xfatbin -compress-all -DONNX_NAMESPACE=onnx_torch -gencode arch=compute_70,code=sm_70 -Xcudafe --diag_suppress=cc_clobber_ignored,--diag_suppress=integer_sign_change,--diag_suppress=useless_using_declaration,--diag_suppress=set_but_not_used,--diag_suppress=field_without_dll_interface,--diag_suppress=base_class_has_different_dll_interface,--diag_suppress=dll_interface_conflict_none_assumed,--diag_suppress=dll_interface_conflict_dllexport_assumed,--diag_suppress=implicit_return_from_non_void_function,--diag_suppress=unsigned_compare_with_zero,--diag_suppress=declared_but_not_referenced,--diag_suppress=bad_friend_decl --expt-relaxed-constexpr --expt-extended-lambda -Wno-deprecated-gpu-targets --expt-extended-lambda -DCUDA_HAS_FP16=1 -D__CUDA_NO_HALF_OPERATORS__ -D__CUDA_NO_HALF_CONVERSIONS__ -D__CUDA_NO_HALF2_OPERATORS__ -D__CUDA_NO_BFLOAT16_CONVERSIONS__ -- CUDA host compiler : -- CUDA --device-c : OFF -- USE_TENSORRT : OFF -- USE_ROCM : OFF -- USE_EIGEN_FOR_BLAS : ON -- USE_FBGEMM : OFF -- USE_FAKELOWP : OFF -- USE_KINETO : ON -- USE_FFMPEG : OFF -- USE_GFLAGS : OFF -- USE_GLOG : OFF -- USE_LEVELDB : OFF -- USE_LITE_PROTO : OFF -- USE_LMDB : OFF -- USE_METAL : OFF -- USE_PYTORCH_METAL : OFF -- USE_PYTORCH_METAL_EXPORT : OFF -- USE_FFTW : OFF -- USE_MKL : OFF -- USE_MKLDNN : OFF -- USE_NCCL : ON -- USE_SYSTEM_NCCL : OFF -- USE_NNPACK : ON -- USE_NUMPY : ON -- USE_OBSERVERS : ON -- USE_OPENCL : OFF -- USE_OPENCV : OFF -- USE_OPENMP : ON -- USE_TBB : OFF -- USE_VULKAN : OFF -- USE_PROF : OFF -- USE_QNNPACK : ON -- USE_PYTORCH_QNNPACK : ON -- USE_REDIS : OFF -- USE_ROCKSDB : OFF -- USE_ZMQ : OFF -- USE_DISTRIBUTED : ON -- USE_MPI : OFF -- USE_GLOO : ON -- USE_GLOO_WITH_OPENSSL : OFF -- USE_TENSORPIPE : ON -- USE_DEPLOY : OFF -- USE_BREAKPAD : 0 -- Public Dependencies : caffe2::Threads -- Private Dependencies : pthreadpool;cpuinfo;qnnpack;pytorch_qnnpack;nnpack;XNNPACK;fp16;gloo;tensorpipe;foxi_loader;rt;fmt::fmt-header-only;kineto;gcc_s;gcc;dl -- USE_COREML_DELEGATE : OFF ``` Please let me know if you need any more details on my build environment, thank you for your help. ### Versions PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (aarch64) GCC version: (conda-forge gcc 10.4.0-17) 10.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.9.12 (main, Jun 1 2022, 11:39:41) [GCC 10.2.0] (64-bit runtime) Python platform: Linux-5.15.0-73-generic-aarch64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 11.3.109 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: Tesla V100S-PCIE-32GB GPU 1: Tesla V100S-PCIE-32GB GPU 2: Tesla V100S-PCIE-32GB Nvidia driver version: 530.30.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: aarch64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 80 On-line CPU(s) list: 0-79 Vendor ID: ARM Model name: Neoverse-N1 Model: 1 Thread(s) per core: 1 Core(s) per socket: 80 Socket(s): 1 Stepping: r3p1 Frequency boost: disabled CPU max MHz: 3300.0000 CPU min MHz: 1000.0000 BogoMIPS: 50.00 Flags: fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm lrcpc dcpop asimddp ssbs L1d cache: 5 MiB (80 instances) L1i cache: 5 MiB (80 instances) L2 cache: 80 MiB (80 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-79 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; CSV2, BHB Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.24.3 [conda] numpy 1.24.3 py39h8708280_0 [conda] numpy-base 1.24.3 py39h4a83355_0 cc @malfet @seemethere
1
2,381
103,148
Optimize the copy of Half to Float and Float to Half on CPU
module: cpu, open source, ciflow/trunk, topic: not user facing, ciflow/periodic
### Description Optimize the copy of Half to Float and Float to Half on CPU. ### Testing Single core: shape | fp16 -> fp32 / ms | fp32 -> fp16 / ms | bf16 -> fp32 / ms | fp32 -> bf16 / ms -- | -- | -- | -- | -- size: (1, 777) | 0.00345 | 0.00344 | 0.00411 | 0.00410 size: (2, 512) | 0.00355 | 0.00344 | 0.00431 | 0.00400 size: (10, 555) | 0.00473 | 0.00391 | 0.00562 | 0.00477 size: (1, 2048, 1024) | 0.488 | 0.480 | 0.498 | 0.499 size: (32, 100, 777) | 0.584 | 0.568 | 0.571 | 0.587 28 cores: shape | fp16 -> fp32 / ms | fp32 -> fp16 / ms | bf16 -> fp32 / ms | fp32 -> bf16 / ms -- | -- | -- | -- | -- size: (10, 555) | 0.00472 | 0.00369 | 0.00576 | 0.00481 size: (1, 2048, 1024) | 0.0189 | 0.0188 | 0.0173 | 0.0251 size: (64, 512, 1024) | 3.159 | 2.375 | 3.152 | 2.358 size: (32, 100, 777) | 0.0225 | 0.0195 | 0.0193 | 0.0261 cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
4
2,382
103,131
error: β€˜aligned_alloc’ was not declared in this scope static_cast<char*>(aligned_alloc(FLATBUFFERS_MAX_ALIGNMENT, size)), free);
module: build, triaged
### πŸ› Describe the bug [100%] Building CXX object caffe2/torch/CMakeFiles/torch_python.dir/csrc/init_flatbuffer_module.cpp.o /data/meda_home/hongbin/pytorch/torch/csrc/init_flatbuffer_module.cpp: In function β€˜std::shared_ptr<char> copyStr(const string&)’: /data/meda_home/hongbin/pytorch/torch/csrc/init_flatbuffer_module.cpp:37:26: error: β€˜aligned_alloc’ was not declared in this scope static_cast<char*>(aligned_alloc(FLATBUFFERS_MAX_ALIGNMENT, size)), free); ^~~~~~~~~~~~~ gmake[2]: *** [caffe2/torch/CMakeFiles/torch_python.dir/build.make:1630: caffe2/torch/CMakeFiles/torch_python.dir/csrc/init_flatbuffer_module.cpp.o] Error 1 gmake[2]: *** Waiting for unfinished jobs.... gmake[1]: *** [CMakeFiles/Makefile2:4151: caffe2/torch/CMakeFiles/torch_python.dir/all] Error 2 gmake: *** [Makefile:146: all] Error 2 ### Versions (base) -bash-4.1$ python torch/utils/collect_env.py Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: CentOS release 6.9 (Final) (x86_64) GCC version: (GCC) 7.3.1 20180303 (Red Hat 7.3.1-5) Clang version: Could not collect CMake version: version 3.21.3 Libc version: glibc-2.10 Python version: 3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0] (64-bit runtime) Python platform: Linux-2.6.32-696.el6.x86_64-x86_64-with-centos-6.9-Final Is CUDA available: N/A CUDA runtime version: 10.1.105 GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A Versions of relevant libraries: [pip3] numpy==1.21.6 [pip3] torch==1.12.0a0+git664058f [conda] numpy 1.21.6 pypi_0 pypi [conda] torch 1.12.0a0+git664058f pypi_0 pypi cc @malfet @seemethere
1
2,383
103,117
Observed regress in DataLoader spawn from PyTorch1.13 to PyTorch2.0
high priority, module: performance, triaged, module: regression, module: data
## Issue description Observed a performance regression between PyTorch 1.13.1 and PyTorch 2.0.0 when using DataLoader to spawn processes. With the example code below, I have observed 37.5% performance regress. ## Code example ```python import time from torch.utils.data import Dataset, IterableDataset, DataLoader from torchvision.datasets import MNIST def one_experiment(data_train): dataloader = DataLoader( dataset = data_train, batch_size=2, num_workers=8, drop_last=True, multiprocessing_context="spawn" ) start_time = time.perf_counter() dataloader._get_iterator() end_time = time.perf_counter() elapsed_time = end_time - start_time print("DataLoader Create Process Time = ", elapsed_time, " seconds") return elapsed_time def main() -> None: num_tries = 5 total_time = 0 results = [] data_train = MNIST('/tmp/mnist_data', train=True, download=True) for _ in range(num_tries): elapsed_time = one_experiment(data_train) results.append(elapsed_time) total_time = sum(results) averaged_time = total_time / float(num_tries) print("Number of tries = ", num_tries) print("Total time = ", total_time) print("Averaged time = ", averaged_time) print("Individual time = ", results) if __name__ == "__main__": main() ``` If I run the above binary with PyTorch1.13, the averaged time of spawning the processes is about 6 seconds. On the other hand, if I run the same code with PyTorch2.0, the averaged time of spawning the processes becomes 9 seconds. ## System Info Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: Could not collect CMake version: Could not collect Libc version: glibc-2.31 Python version: 3.8.10 (default, Mar 13 2023, 10:26:41) [GCC 9.4.0] (64-bit runtime) Python platform: Linux-5.15.0-1035-gcp-x86_64-with-glibc2.29 Is CUDA available: N/A CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 63 Model name: Intel(R) Xeon(R) CPU @ 2.30GHz Stepping: 0 CPU MHz: 2299.998 BogoMIPS: 4599.99 Virtualization: VT-x Hypervisor vendor: KVM Virtualization type: full L1d cache: 128 KiB L1i cache: 128 KiB L2 cache: 1 MiB L3 cache: 45 MiB NUMA node0 CPU(s): 0-7 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion; VMX flush not necessary, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid xsaveopt arat md_clear arch_capabilities Versions of relevant libraries: [pip3] No relevant packages [conda] Could not collect - PyTorch or Caffe2: - PyTorch - How you installed PyTorch (conda, pip, source): - Source - Build command you used (if compiling from source): - Internal build system - PyTorch version: - 1.13 and 2.0 cc @ezyang @gchanan @zou3519 @VitalyFedyunin @ejguan @dzhulgakov
6
2,384
103,111
Turn on Inductor Max Pool2d Backward Lowering For Channels Last
feature, good first issue, triaged, oncall: pt2, module: inductor
### πŸš€ The feature, motivation and pitch We currently disable max_pool2d_with_indices_backward when [an input is in channels last](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/lowering.py#L3063-L3066) due to slow kernel generation. This is reproducible in https://github.com/pytorch/pytorch/blob/main/benchmarks/dynamo/microbenchmarks/operatorbench.py with a few local changes, shared below. `python /scratch/eellison/work/pytorch/benchmarks/dynamo/microbenchmarks/operatorbench.py --suite=timm --op=aten.max_pool2d_with_indices_backward.default --max-samples=5 --dtype=float16 --channels-last` > Inductor Speedups : [0.8040992530735804, 0.8699831653183436, 1.059330068525701] However, when we run with `TORCHINDUCTOR_COORDINATE_DESCENT_TUNING=1` those regressions turn into speedups: > Inductor Speedups : [1.1356843331778068, 1.2388101486725653, 1.5219576909790553] We should investigate updating our pointwise heuristics when running channels last kernels and turn back on kernel. You'll need to get the changes from https://github.com/pytorch/pytorch/pull/103110 and disable the [fallback](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/lowering.py#L3063-L3066). ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225
0
2,385
103,109
Increased / more verbose type aliases for improved readability of user defined content
module: typing, triaged, enhancement, needs research
### πŸš€ The feature, motivation and pitch Right now PyTorch exports a few classes and has a few type aliases under `torch.types`. While these are useful, for those working with pytorch there may be a case to use `TypeAlias` to help clarify arguments and return statements. For example consider just a few of the following aliases: ```python TorchDevice: TypeAlias = Union[Device, TorchDeviceTypes] TorchTensor: TypeAlias = Union[tuple(torch._tensor_classes)] # could be just torch.Tensor, but doesn't offer all the hints TorchTensors: TypeAlias = Sequence[TorchTensor] TorchLayer: TypeAlias = torch.nn.Module TorchLayers: TypeAlias = Sequence[TorchLayer] TorchLoss: TypeAlias = torch.nn.Module TorchLosses: TypeAlias = Sequence[TorchLoss] StateDict: TypeAlias = dict MaskTensor: TypeAlias = Union[torch.BoolTensor, torch.IntTensor] HiddenState: TypeAlias = TorchTensor CellState: TypeAlias = TorchTensor GRUState: TypeAlias = HiddenState LSTMStates: TypeAlias = Tuple[HiddenState, CellState] RNNStates: TypeAlias = Union[GRUState, LSTMStates] ``` Suppose someone is defining custom layer that users can initialize with either a `GRU` or `LSTM`. Showing that the forward call returns `Tuple[Tensor, RNNStates]` may help developer more readily remember that `RNNStates` is either a single `tensor`, or a `tuple`, which could otherwise be overlooked. Likewise `TorchLayer` and `TorchLoss`, while both an alias for `nn.Module` would help clarify if someone is passing a loss function or a layer into a model a wider variety of what expect input is. Does PyTorch need an `torch.aliases` submodule with a bunch of different aliases to use? Not technically. I do, however, find working with others on projects where doing so can make things much more clear for collaboration. One could also just use longer type annotations, but I find those eventually clutter code e.g. ``` def foo(..., rnn_states: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], ...): pass ``` It is just a preference. ### Alternatives _No response_ ### Additional context I put it in a [PR](https://github.com/pytorch/pytorch/pull/102914#issuecomment-1578935718) cc @ezyang @malfet @rgommers @xuzhao9 @gramster
7
2,386
103,104
PyTorch should not use `windows.8xlarge.nvidia.gpu` to test binary builds
module: ci, triaged
### πŸ› Describe the bug Because binary tests are tiny, so smallest machine we can get is better, and also `windows.8xlarge.nvidia.gpu` are often queued. From [hud/metircs](https://hud.pytorch.org/metrics): <img width="668" alt="image" src="https://github.com/pytorch/pytorch/assets/2453524/27bc37f2-6e51-4a04-a084-b4ef76f16b96"> ### Versions CI cc @seemethere @pytorch/pytorch-dev-infra
0
2,387
103,101
Refactor mm_plus_mm to check conditions upfront
feature, good first issue, triaged, oncall: pt2, module: inductor
### πŸš€ The feature, motivation and pitch We always lower `x @ y + a @ b` to [tuned_mm_plus_mm](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/fx_passes/post_grad.py#L138-L139) even though we only lower to the fused op in special conditions, see https://github.com/pytorch/pytorch/blob/08c4a442fd589f380ac0dd6f1126d6e144f449e5/torch/_inductor/kernel/mm_plus_mm.py#L154-L159. We could refactor this check to occur in the pattern matching pass so that these mms/adds aren't prevented from participating in other patterns or fusions. ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @ngimel @yf225
2
2,388
103,099
torch.compile specializes on output name
high priority, triaged, oncall: pt2
### πŸ› Describe the bug x-posting https://discuss.pytorch.org/t/pytorch-compile-requires-fixed-input-naming/181323 ```python import torch torch._dynamo.config.verbose=True class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(100, 10) def forward(self, x, step): return {f'output_{step}': self.lin(x[f'input_{step}'])} mod = MyModule() opt_mod = torch.compile(mod) my_input = { 'input_0': torch.ones([100]), 'input_1': torch.ones([100]) } for step in range(2): output = opt_mod(my_input, step) print(output.keys()) ``` ### Error logs ### Expected Output ``` dict_keys(['output_0']) dict_keys(['output_1']) ``` ### Actual Output ``` dict_keys(['output_0']) dict_keys(['output_0']) ``` ### Minified repro n/a ### Versions . cc @ezyang @gchanan @zou3519 @wconstab @bdhirsh @anijain2305
3
2,389
103,093
Inconsistent memory allocation using FSDP between PT 2.0 and Nightlies
high priority, triage review, oncall: distributed, triaged, module: fsdp
### πŸ› Describe the bug I am running the multi-node training of T5-11B using FSDP. Running this with 5 nodes each 8 A100 40 GB works fine with PT 1.13.1 and PT 2.0, however this runs into OOM with Pytorch Nightlies, (2.1.0.dev20230606+cu118) and even like nightlies from two weeks ago. This kind of continue even if I scale nodes to 7-8 nodes still the same issue. I would appreciate any thoughts on the root cause/ debugging steps. Also wanted to mention that PT 1.13.1 and PT 2.0 were tested with cuda 11.7 vs PT nightlies is on cuda 11.8. **memory stats on different versions** - PT 1.13.1 reserved memory: 37.043 GB, allocate memory: 21.1228 - PT 2.0 reserved memory: 37.6172 GB, allocate memory: 21.1387 - PT nightlies OOM **Repro steps** ```bash git clone https://github.com/HamidShojanazeri/examples.git cd examples git checkout repro cd distributed/FSDP pip install -r requirements.txt sh download_dataset.sh sbatch t5.slurm ``` PT 1.13 successful run[ logs](https://gist.github.com/HamidShojanazeri/901927f6b2290c3c3548f95e761d6355) PT 2.0 successful run[ logs](https://gist.github.com/HamidShojanazeri/4b9f16cd758a05595cb9d3ca22536495) PT Nightlies failure [logs](https://gist.github.com/HamidShojanazeri/fe9831f6f401524c4235c5a36d9d678b) ### Versions ```bash Collecting environment information... PyTorch version: 2.1.0.dev20230606+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.5 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 Clang version: 10.0.0-4ubuntu1 CMake version: version 3.26.3 Libc version: glibc-2.31 Python version: 3.10.11 (main, Apr 20 2023, 19:02:41) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1019-aws-x86_64-with-glibc2.31 Is CUDA available: False CUDA runtime version: 11.2.152 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 46 bits physical, 48 bits virtual CPU(s): 96 On-line CPU(s) list: 0-95 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz Stepping: 7 CPU MHz: 2977.283 BogoMIPS: 4999.99 Hypervisor vendor: KVM Virtualization type: full L1d cache: 1.5 MiB L1i cache: 1.5 MiB L2 cache: 48 MiB L3 cache: 71.5 MiB NUMA node0 CPU(s): 0-23,48-71 NUMA node1 CPU(s): 24-47,72-95 Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves ida arat pku ospke Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.5 [pip3] pytorch-triton==2.1.0+9820899b38 [pip3] torch==2.1.0.dev20230606+cu118 [pip3] torch-model-archiver==0.8.0 [pip3] torch-workflow-archiver==0.2.8 [pip3] torchaudio==2.1.0.dev20230606+cu118 [pip3] torchpippy==0.1.1+3edf3ab [pip3] torchserve==0.8.0 [pip3] torchvision==0.16.0.dev20230606+cu118 [pip3] triton==2.0.0 [pip3] vit-pytorch==1.2.2 [conda] numpy 1.23.5 pypi_0 pypi [conda] pytorch-triton 2.1.0+9820899b38 pypi_0 pypi [conda] torch 2.1.0.dev20230606+cu118 pypi_0 pypi [conda] torch-model-archiver 0.8.0 pypi_0 pypi [conda] torch-workflow-archiver 0.2.8 pypi_0 pypi [conda] torchaudio 2.1.0.dev20230606+cu118 pypi_0 pypi [conda] torchpippy 0.1.1+3edf3ab pypi_0 pypi [conda] torchserve 0.8.0 pypi_0 pypi [conda] torchvision 0.16.0.dev20230606+cu118 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi [conda] vit-pytorch 1.2.2 pypi_0 pypi ``` cc @ezyang @gchanan @zou3519 @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu
5
2,390
103,089
[OOM] Unable to convert 30B model to ONNX, using 4x A100's
module: onnx, triaged
### πŸ› Describe the bug Unable to convert 30B model to ONNX. I am using 4x A100's , 500GB RAM, 2.5TB Memory, still running out of memory. <img width="1510" alt="image" src="https://github.com/pytorch/pytorch/assets/124602977/b1dfb61d-d21b-47fa-86f0-62e9ebf6832b"> Here's the repro: I believe this is reproable in any container, but here's the container setup step: 1) Create a container on Runpod from winglian/axolotl-runpod:main-py3.9-cu118-2.0.0 - Runpod.io -> My Templates -> New Template -> winglian/axolotl-runpod:main-py3.9-cu118-2.0.0 <img width="985" alt="Screenshot 2023-06-05 at 23 47 34" src="https://github.com/pytorch/pytorch/assets/124602977/8341a58e-f996-4607-98db-58a7ee317b8f"> Then deploy 4x A100 in Secure cloud, search for the Template just created: <img width="307" alt="image" src="https://github.com/pytorch/pytorch/assets/124602977/923a11df-4fd3-4202-8a14-228a33773a67"> 2) Once it loads, start the terminal and: ``` mkdir tmp && ln -s /workspace/tmp /tmp pip install optimum && pip install onnx && pip install onnxruntime-gpu git lfs install git clone https://huggingface.co/ehartford/WizardLM-30B-Uncensored ``` 3) Paste the following inference file using vim: ``` touch fp16_to_onnx.py vim fp16_to_onnx.py ``` Paste this: ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM from optimum.onnxruntime import ORTModelForCausalLM import argparse import os parser = argparse.ArgumentParser(description="Convert fp16 model to onnx") parser.add_argument("model_dir", type=str, help="fp16 model folder") parser.add_argument("--device", type=str, default="cuda:0", help="device") args = parser.parse_args() model_dir = args.model_dir device = torch.device("cuda") tokenizer = AutoTokenizer.from_pretrained(model_dir) save_directory = "onnx_wiz/" print("Loading") ort_model = ORTModelForCausalLM.from_pretrained( model_dir, export=True).to(device) print("Saving") ort_model.save_pretrained(save_directory) tokenizer.save_pretrained(save_directory) ``` To exit vim, Esc -> Shift + Z -> Shift + Z 4) Now, run the conversion: python fp16_to_onnx.py WizardLM-30B-Uncensored This will take about 45 minutes, which already sounds a bit wrong as it should take 5m. gpt2 takes 30 seconds to convert. Then , it will fail with this: <img width="1510" alt="image" src="https://github.com/pytorch/pytorch/assets/124602977/d1f795fb-4cc7-4427-893b-2ab275772cf3"> Can you please help unblock? I have been trying to convert this to ONNX for days already Many thanks ### Versions ``` CPU min MHz: 1500.0000 CPU min MHz: 1500.0000 BogoMIPS: 5600.16 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxs r_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe p opcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rd t_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoin vd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmul qdq rdpid overflow_recov succor smca Virtualization: AMD-V L1d cache: 2 MiB (64 instances) L1i cache: 2 MiB (64 instances) L2 cache: 32 MiB (64 instances) L3 cache: 512 MiB (16 instances) NUMA node(s): 2 NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.3 [pip3] torch==2.0.0 [pip3] torchaudio==2.0.1+cu118 [pip3] torchvision==0.15.1+cu118 [pip3] triton==2.0.0 [conda] No relevant packages ```
0
2,391
103,082
Ambiguitiy in causal-mask in scaled_dot_product_attention
oncall: transformer/mha
### πŸ› Describe the bug When `is_causal=True`, `torch.nn.functional.scaled_dot_product_attention` is defined as an efficient implementation of the following ``` # Q: (N, ..., L, E) # K: (N, ..., S, E) # V: (N, ..., S, Ev) attn_mask = torch.ones((L, S), dtype=torch.bool).tril(diagonal=0) attn_mask = attn_mask.maksed_fill(not attn_mask, -float('inf')) attn_weight = torch.softmax((Q @ K.transpose(-2, -1) / math.sqrt(Q.size(-1))) + attn_mask, dim=-1) out = attn_weight @ V ``` If `L != S`, the definition of attn_mask may be ambiguous. For example, during the auto-regressive generation process of a GPT-like model, when kv-cache is enabled, usually `L=1`. In this case, ```python In [1]: attn_mask = torch.ones((1, S), dtype=torch.bool).tril(diagonal=0); attn_mask Out[1]: tensor([[ True, False, False, False, False, False, False, False]]) ``` However, the correct `attn_mask` in this scenario should be `[True, True, ..., True]`. I'm not sure it's a bug or feature. I guess there must be a reason why the causal mask is designed in the current way. It would be helpful to discuss. ### Versions 2.0 cc @jbschlosser @bhosmer @cpuhrsch @erichan1 @drisspg
0
2,392
103,073
torch.compile crash for tensor computing when tensor size is bigger
needs reproduction, triaged, oncall: pt2
### πŸ› Describe the bug torch.compile crash for tensor computing when tensor size increase from 100_00 to 100_000: ```python import pyarrow as pa import torch def test(): n = 100_000 my_arrow = pa.Table.from_pydict( {f"c{i}": [float(x) for x in range(n)] for i in range(10)}) torch_tensors = [torch.tensor(c.to_numpy()) for c in my_arrow.columns] def test_torch(tensors): t0 = tensors[0] r = t0 for idx, t in enumerate(tensors): r += (t * t + idx) / 2 return r test_torch_compiled = torch.compile(test_torch) result = test_torch_compiled(torch_tensors) print(result) if __name__ == '__main__': test() ``` The script succeeds when n == 10_000 but crash with 139 exit code when n == 100_000 Crash with 139 exit code. LLDB stack: ``` * thread #1 * frame #0: 0x00007ff80ee9b694 libsystem_platform.dylib`_platform_bzero$VARIANT$Haswell + 84 frame #1: 0x000000010a6f5f93 libomp.dylib`___kmp_allocate_align(unsigned long, unsigned long) + 66 frame #2: 0x000000010a70dea0 libomp.dylib`__kmp_allocate_thread + 426 frame #3: 0x000000010a709409 libomp.dylib`__kmp_allocate_team + 1587 frame #4: 0x000000010a70ad43 libomp.dylib`__kmp_fork_call + 5423 frame #5: 0x000000010a6ff6dd libomp.dylib`__kmpc_fork_call + 283 frame #6: 0x000000010377fc3c c2o4qtgl5x6zyriivqmcubbwcdqfyrfmw25gf72it576dqtdfimc.so`kernel + 188 frame #7: 0x00000001020f2d92 libffi.8.dylib`ffi_call_unix64 + 82 frame #8: 0x00000001020f2429 libffi.8.dylib`ffi_call_int + 761 frame #9: 0x00000001027137ef _ctypes.cpython-38-darwin.so`_ctypes_callproc + 671 frame #10: 0x000000010270e0f0 _ctypes.cpython-38-darwin.so`PyCFuncPtr_call + 272 frame #11: 0x0000000101c6c058 python3.8`_PyEval_EvalFrameDefault + 39112 frame #12: 0x0000000101b536d5 python3.8`_PyFunction_Vectorcall + 421 frame #13: 0x0000000101c6be73 python3.8`_PyEval_EvalFrameDefault + 38627 frame #14: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #15: 0x0000000101c6c73c python3.8`_PyEval_EvalFrameDefault + 40876 frame #16: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #17: 0x0000000101c6d935 python3.8`_PyEval_EvalFrameDefault + 45477 frame #18: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #19: 0x0000000101c6be73 python3.8`_PyEval_EvalFrameDefault + 38627 frame #20: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #21: 0x0000000101c6d935 python3.8`_PyEval_EvalFrameDefault + 45477 frame #22: 0x000000011a1ed23f libtorch_python.dylib`custom_eval_frame_shim + 159 frame #23: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #24: 0x0000000101c6be73 python3.8`_PyEval_EvalFrameDefault + 38627 frame #25: 0x000000011a1ed7ac libtorch_python.dylib`eval_custom_code + 220 frame #26: 0x000000011a1ed3ff libtorch_python.dylib`custom_eval_frame_shim + 607 frame #27: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #28: 0x0000000101c6d935 python3.8`_PyEval_EvalFrameDefault + 45477 frame #29: 0x0000000101b53a74 python3.8`_PyFunction_Vectorcall + 1348 frame #30: 0x0000000101c6be73 python3.8`_PyEval_EvalFrameDefault + 38627 frame #31: 0x0000000101b536d5 python3.8`_PyFunction_Vectorcall + 421 frame #32: 0x0000000101c6be73 python3.8`_PyEval_EvalFrameDefault + 38627 frame #33: 0x0000000101c609a8 python3.8`_PyEval_EvalCodeWithName + 712 frame #34: 0x0000000101ce0696 python3.8`run_mod + 166 frame #35: 0x0000000101cdf215 python3.8`pyrun_file + 133 frame #36: 0x0000000101cdedbc python3.8`pyrun_simple_file + 460 frame #37: 0x0000000101cdebc5 python3.8`PyRun_SimpleFileExFlags + 53 frame #38: 0x0000000101d02887 python3.8`pymain_run_file + 279 frame #39: 0x0000000101d0204b python3.8`pymain_run_python + 411 frame #40: 0x0000000101d01e65 python3.8`Py_RunMain + 37 frame #41: 0x0000000101b224c8 python3.8`main + 56 frame #42: 0x00000001031304fe dyld`start + 462 ``` ### Versions PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 12.1 (x86_64) GCC version: Could not collect Clang version: 13.1.6 (clang-1316.0.21.2.5) CMake version: Could not collect Libc version: N/A Python version: 3.8.16 | packaged by conda-forge | (default, Feb 1 2023, 16:05:36) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-10.16-x86_64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz Versions of relevant libraries: [pip3] flake8==3.9.1 [pip3] flake8-bugbear==23.3.12 [pip3] flake8-quotes==3.3.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.2 [pip3] torch==2.0.1 [pip3] torchvision==0.15.2 [conda] numpy 1.23.5 pypi_0 pypi [conda] torch 2.0.1 pypi_0 pypi [conda] torchvision 0.15.2 pypi_0 pypi cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
5
2,393
103,070
Unexpected failure in LLVM JIT when running TorchScript model in C++
oncall: jit
### πŸ› Describe the bug I have a [TorchScript model](https://github.com/pytorch/pytorch/files/11661294/model.zip) that I exported from Python and loaded in C++ via the following snippet (network is member of a class) ```c++ network = torch::jit::load(request_msg.torch_script_path); network.eval(); ``` The model is a standard feedforward model with [1024, 512, 256, 256] linear units and ELU activations and producing 4 output values with a final linear layer. When I try to execute the loaded model via ```c++ std::vector<c10::IValue> inputs; inputs.emplace_back(torch::zeros({1, 275}, torch::kFloat32)); auto network_effort_internal = network.forward(inputs); ``` I get the following error on the second time I try to call the network ``` terminate called after throwing an instance of 'c10::Error' what(): valOrErr INTERNAL ASSERT FAILED at "../torch/csrc/jit/tensorexpr/llvm_jit.h":33, please report a bug to PyTorch. Unexpected failure in LLVM JIT: Unable to find target for this triple (no targets are registered) ``` Interestingly, I can prevent the error from appearing by cloning the network prior to each call ``` network = network.clone(); ``` which is however not a solution since this can be a rather costly operation compared to the execution of the model. This error has also[ been mentioned in the PyTorch discussion forum](https://discuss.pytorch.org/t/calling-forward-on-torchscript-model-multiple-times-leads-to-error/154990), however has not seen much discussion so far. ### Versions I am using libtorch in Version 2.0.1. The model has been exported from PyTorch 1.11.0 but I also checked with Python version 2.0.1 with no change in behavior. cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
3
2,394
103,060
Symbolic trace error about torch.nn.functional.pad
triaged, module: fx
### πŸ› Describe the bug Symbolic trace failed with `torch.nn.functional.pad`. I found a similar issue here https://github.com/pytorch/vision/issues/6166. That exact issue have been fixed, but if we modify the code snippet as following, the error still exists. ```python import torch import torch.fx import torch.nn.functional as F class CustomModule(torch.nn.Module): def forward(self, x): bs, c, h, w = x.shape return F.pad(x, (w, h)) m = CustomModule() x = torch.rand(1, 3, 4, 4) m_fx = torch.fx.symbolic_trace(m) ``` ``` TypeError: pad(): argument 'pad' (position 2) must be tuple of ints, not tuple ``` It seems that if there is not any straight interger value in the padding sizes, symbolic trace will be not able to correctly parse the params. ### Versions PyTorch version: 1.13.0+cu116 Is debug build: False CUDA used to build PyTorch: 11.6 ROCM used to build PyTorch: N/A OS: CentOS Linux 7 (Core) (x86_64) GCC version: (GCC) 7.3.1 20180303 (Red Hat 7.3.1-5) Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.17 Python version: 3.8.15 (default, Nov 24 2022, 15:19:38) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-3.10.0-1160.el7.x86_64-x86_64-with-glibc2.17 Is CUDA available: True CUDA runtime version: 11.6.55 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3090 GPU 1: NVIDIA GeForce RTX 3090 GPU 2: NVIDIA GeForce RTX 3090 GPU 3: NVIDIA GeForce RTX 3090 Nvidia driver version: 515.76 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 96 On-line CPU(s) list: 0-95 Thread(s) per core: 2 Core(s) per socket: 24 Versions of relevant libraries: [pip3] flake8==3.9.2 [pip3] flake8-bugbear==21.4.3 [pip3] flake8-comprehensions==3.6.0 [pip3] flake8-polyfill==1.0.2 [pip3] flake8-tidy-imports==4.5.0 [pip3] horizon-plugin-pytorch==1.7.1.dev20230602+cu116.torch1130.f854a [pip3] msgpack-numpy==0.4.8 [pip3] mypy==0.910 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.5 [pip3] pytorch-crf==0.7.2 [pip3] pytorch3d==0.7.2 [pip3] torch==1.13.0+cu116 [pip3] torchaudio==0.13.0+cu116 [pip3] torchmetrics==0.5.0 [pip3] torchvision==0.14.0+cu116 [conda] blas 1.0 mkl [conda] mkl 2023.1.0 h6d00ec8_46342 [conda] mkl-service 2.4.0 py38h5eee18b_1 [conda] mkl_fft 1.3.6 py38h417a72b_1 [conda] mkl_random 1.2.2 py38h417a72b_1 [conda] msgpack-numpy 0.4.8 pypi_0 pypi [conda] numpy 1.19.5 pypi_0 pypi [conda] numpy-base 1.23.5 py38h060ed82_1 [conda] pytorch-crf 0.7.2 pypi_0 pypi [conda] pytorch3d 0.7.2 pypi_0 pypi [conda] torch 1.13.0+cu116 pypi_0 pypi [conda] torchaudio 0.13.0+cu116 pypi_0 pypi [conda] torchmetrics 0.5.0 pypi_0 pypi [conda] torchvision 0.14.0+cu116 pypi_0 pypi cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv
1
2,395
103,056
[Pytorch 2.0] torch::nn::Dropout output is incorrect on Windows
oncall: binaries, module: windows, module: cpp, triaged, module: regression
### πŸ› Describe the bug Reproduce steps: 1. refer to https://pytorch.org/cppdocs/installing.html 2. download pytorch 2.0.1 windows libtorch package from https://pytorch.org/ 3. update the example-app.cpp ```cpp #include <torch/torch.h> #include <iostream> int main() { auto m = torch::nn::Dropout(torch::nn::DropoutOptions().p(0.42)); std::cout << "module : " << std::endl << m << std::endl << std::endl; std::cin.get(); } ``` 4. build and run ``` mkdir build cd build cmake -G "Visual Studio 16 2019" -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch .. cmake --build . --config Release Release\example-app.exe ``` 5. the p in the output is incorrect if libtorch is libtorch-win-shared-with-deps-2.0.1+cu117, the p is a random value. ``` module : torch::nn::Dropout(p=8.749e+99, inplace=false) ``` if libtorch is libtorch-win-shared-with-deps-2.0.1+cpu, the p is zero `torch::nn::Dropout(p=0, inplace=false)` The result is correct on Linux or Libtorch1.13 on Windows. ``` module : torch::nn::Dropout(p=0.42, inplace=true) ``` ### Versions Stable(2.0.1) LibTorch The output isn't correct with CPU or CUDA binaries. cc @seemethere @malfet @peterjc123 @skyline75489 @nbcsm @vladimir-aubrecht @iremyux @Blackhex @cristianPanaite @jbschlosser @ezyang @gchanan @zou3519
1
2,396
103,055
lit-llama lora fine tuning NetworkXUnbounded: Infinite capacity path, flow unbounded above
high priority, triaged, oncall: pt2, module: dynamic shapes
### πŸ› Describe the bug lit-llama version 8aa65ba33e844c283c0a84b9758445fe0c6aab2d Enable torch.compile with ``` diff --git a/finetune/lora.py b/finetune/lora.py index 1873701..2d18ee8 100644 --- a/finetune/lora.py +++ b/finetune/lora.py @@ -73,6 +73,8 @@ def main( mark_only_lora_as_trainable(model) + model = torch.compile(model, dynamic=True) + optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) model, optimizer = fabric.setup(model, optimizer) train(fabric, model, optimizer, train_data, val_data, tokenizer_path, out_dir) ``` Work around unrelated bug with ``` diff --git a/lit_llama/lora.py b/lit_llama/lora.py index 0f644e2..3f46d1a 100644 --- a/lit_llama/lora.py +++ b/lit_llama/lora.py @@ -320,7 +320,7 @@ class MergedLinear(nn.Linear, LoRALayer): self.lora_B.unsqueeze(-1), # (256, 2) -> (256, 2, 1) groups=sum(self.enable_lora) ).transpose(-2, -1) # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256) - result += self.zero_pad(after_B) * self.scaling # (64, 64, 256) after zero_pad (64, 64, 384) + result = result + self.zero_pad(after_B) * self.scaling # (64, 64, 256) after zero_pad (64, 64, 384) return result ``` Patch in Triton fix https://github.com/openai/triton/pull/1741 Use standard setup instructions, `python finetune/lora.py` Fails with ``` NetworkXUnbounded: Infinite capacity path, flow unbounded above ``` The graph that was generated: https://gist.github.com/ezyang/71460c07dfc86d297090888e077bd88e I think this is the corresponding joint graph https://gist.github.com/ezyang/65e55a66c9cee4120c1ba242bbaef358 This also affects finetune/adapter.py, so it's probably an issue in the llama model itself cc @gchanan @zou3519 @msaroufim @wconstab @bdhirsh @anijain2305 @Chillee ### Versions main
2
2,397
103,023
MPS bug: padding_idx in nn.Embedding does not prevent gradient accumulation
triaged, module: mps
### The `padding_idx` in `nn.Embedding` does not prevent gradient accumulation when run on MPS Expected behaviour: ```python import torch embedding = torch.nn.Embedding(5, 3, padding_idx=0) input_ids = torch.LongTensor([[0, 1, 1, 2]]) # padding_token, token_1, token_1, token_2 loss = torch.sum(embedding(input_ids)) loss.backward() # expect to see zeros for the padding token, 2 for token_1, 1 for token_2, and 0 for other tokens expected = torch.tensor([0, 2, 1, 0, 0]).repeat(3, 1).T assert torch.all(torch.eq(embedding.weight.grad, expected)), embedding.weight.grad # all good ``` On MPS the gradient accumulates for the padding_idx: ```python embedding = torch.nn.Embedding(5, 3, padding_idx=0).to('mps') input_ids = torch.LongTensor([[0, 1, 1, 2]]).to('mps') # padding_token, token_1, token_1, token_2 loss = torch.sum(embedding(input_ids)) loss.backward() # expect to see zeros for the padding token, 2 for token_1, 1 for token_2, and 0 for other tokens expected = torch.tensor([0, 2, 1, 0, 0]).repeat(3, 1).T.to('mps') assert torch.all(torch.eq(embedding.weight.grad, expected)), embedding.weight.grad # fails ``` ```python --------------------------------------------------------------------------- AssertionError Traceback (most recent call last) Cell In[10], line 7 5 # expect to see zeros for the padding token, 2 for token_1, 1 for token_2, and 0 for other tokens 6 expected = torch.tensor([0, 2, 1, 0, 0]).repeat(3, 1).T.to('mps') ----> 7 assert torch.all(torch.eq(embedding.weight.grad, expected)), embedding.weight.grad AssertionError: tensor([[1., 1., 1.], [2., 2., 2.], [1., 1., 1.], [0., 0., 0.], [0., 0., 0.]], device='mps:0') ``` This would lead to the padding vector being updated unexpectedly during training on MPS. ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.3.1 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: Could not collect Libc version: N/A Python version: 3.10.10 | packaged by conda-forge | (main, Mar 24 2023, 20:12:31) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-13.3.1-arm64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] flake8==4.0.1 [pip3] numpy==1.22.4 [pip3] torch==2.0.1 [conda] numpy 1.22.4 py310h0a343b5_0 conda-forge [conda] pytorch 2.0.1 py3.10_0 pytorch cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev
1
2,398
102,999
Preserve weight_g/weight_v accessors on new weight_norm
module: nn, triaged, module: nn.utils.parametrize
### πŸ› Describe the bug Parametrizations don't let you control what the original parameters are called; they're always original0, original1, etc. For weight_norm, this new naming is a bit obtuse; the original naming of g/v was better. Not sure if this is actually worth fixing, holler if you think it is. cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @lezcano ### Versions main
10
2,399
102,977
raise `RuntimeError` faster when loading an object with a torch CUDA tensor on a CPU-only machine
module: nn, module: serialization, triaged, actionable
### πŸš€ The feature, motivation and pitch Currently when loading an object with a torch CUDA tensor on a CPU-only machine, torch will raise a `RuntimeError` like https://github.com/pytorch/pytorch/issues/16797 mentioned. A problem in this situation is that torch will spend time (maybe trying to load the tensor bytes) before raise that `RuntimeError`. This extra time is proportional to the size of the tensor. Hence when loading a huge tensor, the extra time may be noticeable for performance-critical applications. To give a concrete example, I have the following codes: ```python def _safe_torch_tensor_loads(bs: bytes) -> t.Any: import torch f = io.BytesIO(bs) if not torch.cuda.is_available(): return torch.load(f, map_location="cpu") else: return torch.load(f) class FixTorchUnpickler(pickle.Unpickler): def find_class(self, module: str, name: str) -> t.Callable[[bytes], t.Any]: if module == "torch.storage" and name == "_load_from_bytes": return _safe_torch_tensor_loads else: return super().find_class(module, name) def _fix_torch_loads(bs: bytes) -> t.Any: f = io.BytesIO(bs) unpickler = FixTorchUnpickler(f) return unpickler.load() def loads_or_fix_torch(bs: bytes): try: return pickle.loads(bs) except RuntimeError: return _fix_torch_loads(bs) ``` where `_fix_torch_loads` will directly loads a object containing cuda tensors even on a CPU-only machine and `loads_or_fix_torch` will first try to load the object and only use `_fix_torch_loads` when it met the `RuntimeError`. In my benchmark (I actually have a benchmark repo [here](https://github.com/larme/pytorch_unpickler_benchmark)), `loads_or_fix_torch` will be 60%-70% slower than `_fix_torch_loads` for different sizes of objects. For a large enough tensor (like (25000, 25000) fp32 tensor), the difference could be 500-600ms. My application is distributed model inference serving so 500-600ms is quite a lot from end user's point of view. I'd like to help improving this situation but I need some input from more experienced pytorch developer. I tried to dive in `torch.serialization` and `torch.storage` but they are a little bit complex so if some pointer will be helpful! ### Alternatives _No response_ ### Additional context _No response_ cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
2
2,400
102,971
Discussion and Design for Masked Loss Functions which can be used with PackedSequence training (but not exclusively)
module: loss, triaged, module: masked operators
### πŸš€ The feature, motivation and pitch Original idea for these come from [Github Gist] that helps reproduce [Issue 102911][packed seqs on mps] ([PackedSequences on MPS accelerator yields grad_y missing or crashes the kernel][packed seqs on mps]) See: [PR][Pull Request] [packed seqs on mps]: https://github.com/pytorch/pytorch/issues/102911 [packed sequence failure]: https://github.com/pytorch/pytorch/issues/97552 [loss error on m1]: https://github.com/pytorch/pytorch/issues/96416 [grad_y missing fix]: https://github.com/pytorch/pytorch/pull/96601 [gru nan]: https://github.com/pytorch/pytorch/issues/94691 [Github Gist]: https://gist.github.com/dsm-72/1cea0601145a8b92155d8d08c90bf998 [Results]: https://github.com/pytorch/pytorch/issues/94691#issuecomment-1574365231 [Pull Request]: https://github.com/pytorch/pytorch/pull/102915#issuecomment-1576748710 ### Alternatives _No response_ ### Additional context [packed seqs on mps]: https://github.com/pytorch/pytorch/issues/102911 The [Issue 102911][packed seqs on mps] stated above is related to: - [Issue 96416][loss error on m1] ([Loss.backward() error when using MPS on M1 #96416][loss error on m1]), - [Issue 94691][gru nan] ([Nan is output by GRU on mps #94691][gru nan]), - [Issue 97552][packed sequence failure] ([PackedSequence failure with MPS #97552][packed sequence failure]), and - [PR 96601][grad_y missing fix] ([[MPS] LSTM grad_y missing fix #96601][grad_y missing fix]). cc @kulinseth @albanD @malfet @DenisVieriu97 @razarmehr @abhudev ### Description When training it can be useful to either pad input **_or_** mask parts of the expected output to increase efficiency and / or robustness. The example above demonstrates this with a RNN for time series where each sequence may have variable length utilizes padded sequences and `PackedSequence` to improve throughput. The use of padded output (since this was a Seq2Seq model the padded input is the output) or masked output motivates a loss function that can handle this, without having to adjust the dataset / dataloaders / training method. Such occurs enough to motivate even a base `MaskedLoss` class that can be used to, in a standardized way, quickly and easily generate other masked loss functions e.g. `MaskedMSELoss`, `MaskedL1Loss`, etc. The [PR][Pull Request] offers an example of how one might achieve this.
6