Serial Number
int64
1
6k
Issue Number
int64
75.6k
112k
Title
stringlengths
3
357
Labels
stringlengths
3
241
βŒ€
Body
stringlengths
9
74.5k
βŒ€
Comments
int64
0
867
601
110,361
BatchNorm layer 'num_batches_tracked' overwritten with default value when loading empty state_dict
module: nn, triaged
### πŸ› Describe the bug BatchNorm layer 'num_batches_tracked' overwritten with default value when loading empty state_dict. Probably should be fixed in: /torch/nn/modules/batchnorm.py lines 103-108 by checking if a value already exists. ```python from collections import OrderedDict from torchvision.models import mobilenet_v2, MobileNet_V2_Weights sd_key = 'features.0.1.num_batches_tracked' model = mobilenet_v2(weights=MobileNet_V2_Weights.IMAGENET1K_V1.DEFAULT) print(f"before loading: {model.state_dict()['features.0.1.num_batches_tracked']}") empty_dict = OrderedDict() model.load_state_dict(empty_dict, strict=False) print(f"after loading: {model.state_dict()['features.0.1.num_batches_tracked']}") ``` expected output: ``` before loading: 736839 after loading: 736839 ``` actual output: ``` before loading: 736839 after loading: 0 ``` ### Versions Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4 (x86_64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: Could not collect Libc version: N/A Python version: 3.9.10 (main, Jan 15 2022, 11:48:04) [Clang 13.0.0 (clang-1300.0.29.3)] (64-bit runtime) Python platform: macOS-13.4-x86_64-i386-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.25.1 [pip3] torch==2.0.1 [pip3] torchinfo==1.8.0 [pip3] torchvision==0.15.2 [pip3] torchviz==0.0.2 cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
1
602
110,356
Dropout signature inconsistent between `torch.dropout`, `torch.nn.Dropout` and `torch.nn.functional.dropout`
module: nn, triaged, module: python frontend
### πŸ› Describe the bug Both `torch.nn.Dropout` and `torch.nn.functional.dropout` default to `p=0.5` and `train=True`. However, `torch.dropout` requires them to be set manually. ```python >>> import torch >>> x = torch.randn(10, 20) >>> torch.nn.Dropout()(x) ... >>> torch.nn.functional.dropout(x) ... >>> torch.dropout(x) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: dropout() missing 2 required positional argument: "p", "train" ``` Other functions are affected similarly: - `torch.nn.functional.alpha_dropout` - `torch.nn.functional.feature_alpha_dropout` For consistency, we should also set the defaults for these functions in the `torch.*` module. ### Versions Tested on `torch==2.0.1` and `torch==2.2.0.dev20230912+cu121` cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
0
603
110,354
[dynamo] Added support for type for generated custom object
triaged, open source, module: dynamo, ciflow/inductor
Fixes #109056 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @ezyang for the issue. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
7
604
110,353
feat(inductor): Improve compilation speed and add `SGD` Optimizer back to Inductor
triaged, open source, topic: not user facing, module: inductor, module: dynamo, ciflow/inductor
Originally disabled in https://github.com/pytorch/pytorch/pull/105438 However, compilation times are plenty speedy to me: ![image](https://github.com/pytorch/pytorch/assets/9093549/023a7001-6a25-426d-9535-537d400e8bd3) Could have benefited from perf changes to scheduler like cycle-detection optimizations. CC @mlazos as original code author cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
8
605
110,351
feat(inductor): Add `RAdam` to Inductor by converting data-dependent control-flow to `torch.where`
triaged, open source, module: inductor, module: dynamo, ciflow/inductor, release notes: optim
For small epochs (adaptive learning rate = 1), this will be more costly than not computing `rect` and `adaptive_lr`, but unlikely by much - they are all fused into a single kernel anyway. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
3
606
110,347
ONNX export: TransformerEncoder is exported with fixed input dims
module: onnx, triaged
## Issue description When exporting to ONNX a module that contains `torch.nn.TransformerEncoder`, the time dimention is fixed to the one used during export, and the model fails to deal with arbitrary sequence lengths. ## Code example Given the following module: ```python from torch import nn class Model(nn.Module): def __init__(self): super().__init__() self.emb = nn.Embedding(15, 96) enc_layer = nn.TransformerEncoderLayer ( 96, nhead=12, dim_feedforward=96, dropout=0.2, batch_first=True ) self.attn_layers = nn.TransformerEncoder( enc_layer, num_layers=10, enable_nested_tensor=True ) def forward(self, x): x = self.emb(x) return self.attn_layers(x) ``` Exported as follows: ```python import torch model = Model() torch.onnx.export( model, args=(torch.randint(0, 15, (1, 20))), f="model.onnx", opset_version=16, export_params=True, do_constant_folding=True, input_names=["input"], output_names=["output"], dynamic_axes={ "input": {0: "batch_size", 1: "time"}, "output": {0: "batch_size", 1: "time"}, } ) ``` and ran using `onnxruntime` as follows: ```python import numpy as np import onnxruntime sess = onnxruntime.InferenceSession("model.onnx") input = np.expand_dims( np.array([1, 2, 3], dtype=np.int64), 0 ) output = sess.run(None, {"input": input}) ``` I get the following error: ```python Traceback (most recent call last): File "D:\lab\issue_with_enc.py", line 49, in <module> output = sess.run(None, {"input": input}) File "D:\lab\.env\lib\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py", line 217, in run return self._sess.run(output_names, input_feed, run_options) onnxruntime.capi.onnxruntime_pybind11_state.RuntimeException: [ONNXRuntimeError] : 6 : RUNTIME_EXCEPTION : Non-zero status code returned while running Reshape node. Name:'/attn_layers/layers.0/self_attn/Reshape_4' Status Message: C:\a\_work\1\s\onnxruntime\core\providers\cpu\tensor\reshape_helper.h:41 onnxruntime::ReshapeHelper::ReshapeHelper gsl::narrow_cast<int64_t>(input_shape.Size()) == size was false. The input tensor cannot be reshaped to the requested shape. Input shape:{3,1,96}, requested shape:{20,12,8} ``` ## System Info PyTorch version: 2.2.0.dev20230930+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Pro GCC version: Could not collect Clang version: 15.0.2 CMake version: version 3.26.3 Libc version: N/A Python version: 3.10.10 (tags/v3.10.10:aad5f6a, Feb 7 2023, 17:20:36) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22621-SP0 Is CUDA available: False CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce MX350 Nvidia driver version: 528.49 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=2918 DeviceID=CPU0 Family=198 L2CacheSize=5120 L2CacheSpeed= Manufacturer=GenuineIntel MaxClockSpeed=2918 Name=11th Gen Intel(R) Core(TM) i7-1195G7 @ 2.90GHz ProcessorType=3 Revision= Versions of relevant libraries: [pip3] numpy==1.24.3 [pip3] pytorch-lightning==2.0.6 [pip3] torch==2.2.0.dev20230930+cpu [pip3] torchmetrics==1.0.1 [conda] Could not collect
1
607
110,345
feat(inductor): Improve `Adamax` to be better fused by Inductor and enable it
triaged, open source, module: inductor, module: dynamo, ciflow/inductor, release notes: optim
In order to avoid running into https://github.com/pytorch/pytorch/issues/110342, we replace complicated `cat + max` logic into a simple `torch.maximum`. (see also [here](https://github.com/facebookresearch/fairseq/blob/7409af7f9a7b6ddac4cbfe7cafccc715b3c1b21e/fairseq/optim/adamax.py#L151) in fairseq repo - the same operation with a different, less-explicit syntax). Like https://github.com/pytorch/pytorch/pull/110339, we also ensure that `step` is on device. As noted in https://github.com/pytorch/pytorch/issues/107006#issuecomment-1741841283, it is likely that `num_kernels=2` is optimal, unless one can move the `numel=1, shape=(0,)` scalar computations entirely into CPU. That being said, in the foreach case, a parallel foreach scalar computation on GPU doesn't seem too bad. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
1
608
110,342
[inductor]: Not handling `ConcatKernel/NopKernel` fusions leads to suboptimal fusions
oncall: pt2
### πŸš€ The feature, motivation and pitch Instead, perhaps try to refactor it as `ComputedBuffer` Examples: Adamax Already bad with `config.aggressive_fusion = True`: ![image](https://github.com/pytorch/pytorch/assets/9093549/b9679690-e984-48ae-83e6-ea77db55243f) Worse when `config.aggressive_fusion = False`: ![image](https://github.com/pytorch/pytorch/assets/9093549/96d30ee2-0dcc-4b56-942b-fc70513dd3d9) With `config.aggressive_fusion = False`, these kernels are treated as not sharing reads/writes. Further, the presence of these `ConcatKernel` nodes seems to obstruct fusion of other kernels, despite later being partly pruned away during kernel codegen. ### Alternatives _No response_ ### Additional context _No response_ cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
4
609
110,340
[dynamo] Add support for itertools.repeat
triaged, open source, topic: not user facing, module: dynamo, ciflow/inductor
Implemented call_repeat function in builtin.py to handle itertools.repeat within the Dynamo context. This addresses issue #110286 where support for itertools.repeat was requested. Fixes #110286 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
3
610
110,339
feat(optimizer): `Adagrad` will use `device` when `capturable` - True always when compiling with dynamo
triaged, open source, module: inductor, release notes: optim
Partial fix: https://github.com/pytorch/pytorch/issues/107006 CC: @mlazos as issue creator cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
3
611
110,338
[cpu] explicitly vectorize trigamma & polygamma
module: cpu, open source, topic: not user facing
Fixes #ISSUE_NUMBER cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10
3
612
110,336
fix(inductor): `ForeachKernelSchedulerNode` group shape should be opaque for graph debug
triaged, open source, release notes: fx, module: inductor, ciflow/inductor
~~Shape is assumed by `TensorMetadata` to be torch.Shape/tuple, however, some of the scheduler node groups utilize `int`, so convert to tuple.~~ Root cause is actually `foreach` scheduler node having silent-error group of int, when in fact it ought to be opaque `foreach`. **Previously:** silent error / confusing shape of (0,) ![image](https://github.com/pytorch/pytorch/assets/9093549/5bc2a3c7-151f-4433-bbf8-044c7b03e989) **Now:** clear that it is foreach which does not have well-defined shape: ![image](https://github.com/pytorch/pytorch/assets/9093549/8373080d-4519-4e74-8a3b-da463e9968da) ~~Alternate might be to create list of shapes for each of its subnodes. Actually, for debuggability sake, I may prefer this. We can ensure that the recursive generation of this string is only done dynamically in a debug code path. Else, incrementally computing it on initialization of ForeachKernel may also be feasible.~~ This is quite infeasible for 100s of params. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
1
613
110,334
Perf-Drop (factor=2) Ubuntu-vs-Windows on same PC (dual-boot)
module: windows, module: cuda, triaged
### πŸ› Describe the bug On my Dual-Boot-PC (Ubuntu + Windows) same Torch-Code (same folder on NTFS-drive) shows factor 2 runtime slowdown on Windows. I disabled write Parquet-Files and shuffle turned off, to exclude Filesystem or other issues. I do not use the Compile-feature, afaik. Both: torch.device("cuda"), torch.get_default_dtype=torch.float32, torch.cuda.is_available()=True python -m cProfile -o test.cprof mnistBenchmark.py # (.cprof attached for both systems) Overall Runtume: Windows=30s, Ubtuntu=15s, Ubuntu+cProfile=23s (cProfile does some Ubuntu-only slowdown, but this is not the issue here). It would need some hours to cleanup the code form confidential details, so I dont want to upload it to public at the moment, but could send python files on a non-public-channel. I think the issue is of general nature as it happens with textbook-MNIST-examples and affects all solvers (at least Adam and my own new solver in the same way). ### Versions Hardware: PC, 32GB-DDR5, Intel i5-12400, RTX-4060-GPU, fast M2-PCIe4-SSD. Common-Software: Python 3.11.5, CUDA-12.2-Update2, all System-Updates. Linux: Ubuntu 22.04, NVIDIA-Linux-x86_64-535.113.01 Windows 10, 537.32 (but last 2 verions had same issue). Simple Net-config: MNIST, 7960 parameter, Float32, Relu, Shuffle=Off, WriteToParquet=Off, 60000/256=235 steps x 10 epochs, many optimizers (e.g. Adam). pip list # Windows 10 + Python 3.11.5 + Cuda-12.2 numpy 1.25.2 torch 2.2.0.dev20230929+cu121 # use dev for Cuda on Windows // no nvidia- modules pip list # Ubuntu 22.04 + Python 3.11.5 + Cuda-12.2 numpy 1.26.0 nvidia-cublas-cu11 11.10.3.66 nvidia-cuda-runtime-cu11 11.7.99 nvidia-cudnn-cu11 8.5.0.96 torch 2.0.1 ################################## Collecting environment information... PyTorch version: 2.2.0.dev20230929+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Pro GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.11.5 (tags/v3.11.5:cce6ba9, Aug 24 2023, 14:38:34) [MSC v.1936 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Nvidia driver version: 537.42 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=2500 DeviceID=CPU0 Family=205 L2CacheSize=7680 L2CacheSpeed= Manufacturer=GenuineIntel MaxClockSpeed=2500 Name=12th Gen Intel(R) Core(TM) i5-12400 ProcessorType=3 Revision= Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.2.0.dev20230929+cu121 [pip3] torchaudio==2.2.0.dev20230929+cu121 [pip3] torchvideo==0.0.0 [pip3] torchvision==0.17.0.dev20230929+cu121 [conda] Could not collect cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @vladimir-aubrecht @iremyux @Blackhex @cristianPanaite @ptrblck
7
614
110,332
`torch.jit.load()` might unresponsive in IBM s390x when loading some certain torchscript saved by x86 machine.
oncall: jit
### πŸ› Describe the bug ## Step to reproduce 1. Load a `resnet50` model on a **x86 machine** and save it as an torchscript. ```python # load modules import torch import numpy as np model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True).to('cuda') model.eval() # Try to export the model to torchscript import torch.jit jit_script = torch.jit.script(model) jit_script.save('resnet50.pt') ``` 2. Copy the exported torchscript file `resnet50.pt` to a linuxone (IBM s390X) machine, then run the following code to load the model: ```python import torch import torch.jit from torch.serialization import LoadEndianness torch.serialization.set_default_load_endianness(LoadEndianness.LITTLE) jit_script = torch.jit.load('resnet50.pt', map_location='cpu') ``` 3. Then the loading process never completed, and if you inspect the os with `top` command, you will find `python` is keep allocating memory, until the system kill the process. ![image](https://github.com/pytorch/pytorch/assets/29349119/ac7fd15e-3267-4c14-85e0-ba4c95df1c22) 4. As a contract, if I complete the Step1 with a s390x machine, then everything works as expected. ## Other information I believe this error may be related to the `byteorder` used when loading the torchscript, as discussed in issues #101688 and #101973. Although this problem should have been resolved in version 2.1.0, there might still be some bugs when loading a torchscript, which could be causing the issue. ### Versions 1. x86 machine used to save the `resnet50.pt` torchscript: ``` Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Pro Insider Preview GCC version: Could not collect Clang version: Could not collect CMake version: version 3.25.1 Libc version: N/A Python version: 3.11.4 | packaged by Anaconda, Inc. | (main, Jul 5 2023, 13:47:18) [MSC v.1916 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.23550-SP0 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 537.13 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=3201 DeviceID=CPU0 Family=107 L2CacheSize=4096 L2CacheSpeed= Manufacturer=AuthenticAMD MaxClockSpeed=3201 Name=AMD Ryzen 7 5800H with Radeon Graphics ProcessorType=3 Revision=20480 Versions of relevant libraries: [pip3] numpy==1.25.2 [pip3] torch==2.0.1 [pip3] torchaudio==2.0.2 [pip3] torchvision==0.15.2 [conda] Could not collect ``` 2. s390x machine (aka LinuxOne) used to load the `resnet50.pt` torchscript: ``` PyTorch version: 2.1.0a0+git591cb77 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (s390x) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.14.0-284.25.1.el9_2.s390x-s390x-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: False CPU: Architecture: s390x CPU op-mode(s): 32-bit, 64-bit Byte Order: Big Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: IBM/S390 Machine type: 8561 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s) per book: 1 Book(s) per drawer: 1 Drawer(s): 2 CPU dynamic MHz: 5200 CPU static MHz: 5200 BogoMIPS: 3241.00 Dispatching mode: horizontal Flags: esan3 zarch stfle msa ldisp eimm dfp edat etf3eh highgprs te vx vxd vxe gs vxe2 vxp sort dflt sie Hypervisor: z/VM 7.2.0 Hypervisor vendor: IBM Virtualization type: full L1d cache: 256 KiB (2 instances) L1i cache: 256 KiB (2 instances) L2d cache: 4 MiB (1 instance) L2i cache: 4 MiB (1 instance) L3 cache: 256 MiB L4 cache: 960 MiB NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Not affected Vulnerability Spectre v1: Mitigation; __user pointer sanitization Vulnerability Spectre v2: Mitigation; etokens Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.21.5 [pip3] torch==2.1.0a0+git591cb77 [conda] Could not collect ``` cc @EikanWang @jgong5 @wenzhe-nrv @sanchitintel
0
615
110,331
torch.Tensor.__repr__ causes torch.compile to error: "got an unexpected keyword argument 'tensor_contents'"
oncall: pt2
### πŸ› Describe the bug It seems PyTorch's compile machinery somewhere is dependent on `torch.Tensor.__repr__`!! I always change `torch.Tensor.__repr__` so I can see the shape of the tensor right away and it's great debugging aid. This is normal and, in Python, one may change `__repr__` and therefore it is not very "pythonic" for any code to strongly depend on this. The string returned by __repr__ is for humans. However, after I change torch.Tensor.__repr__, compiled model's forward throws below error: ``` debug_wrapper raised TypeError: <lambda>() got an unexpected keyword argument 'tensor_contents' Set torch._dynamo.config.verbose=True for more information You can suppress this exception and fall back to eager by setting: torch._dynamo.config.suppress_errors = True File "/home/shitals/GitHubSrc/gptplay/scripts/play.py", line 301, in <lambda> torch.Tensor.__repr__ = lambda self: f"{tuple(self.shape)}:{normal_repr(self)}" # type: ignore TypeError: <lambda>() got an unexpected keyword argument 'tensor_contents' The above exception was the direct cause of the following exception: File "/home/shitals/GitHubSrc/gptplay/scripts/play.py", line 55, in forward y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.flash_attn_dropout_val if self.training else 0, is_causal=True) File "/home/shitals/GitHubSrc/gptplay/scripts/play.py", line 95, in forward x = x + self.attn(self.ln_1(x)) File "/home/shitals/GitHubSrc/gptplay/scripts/play.py", line 164, in forward x = block(x) File "/home/shitals/GitHubSrc/gptplay/scripts/play.py", line 322, in <module> y = model(x) torch._dynamo.exc.BackendCompilerFailed: debug_wrapper raised TypeError: <lambda>() got an unexpected keyword argument 'tensor_contents' Set torch._dynamo.config.verbose=True for more information You can suppress this exception and fall back to eager by setting: torch._dynamo.config.suppress_errors = True ``` Above behavior happens in current 2.0.1 stable release as well as 2.2 nightly build. Below is complete code that reproduces the error: ``` import math import inspect from dataclasses import dataclass import torch import torch.nn as nn from torch.nn import functional as F class LayerNorm(nn.Module): """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ def __init__(self, ndim, bias): super().__init__() self.weight = nn.Parameter(torch.ones(ndim)) self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None def forward(self, input): return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 # key, query, value projections for all heads, but in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.attn_kv_bias) # output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.attn_proj_bias) # regularization self.attn_dropout = nn.Dropout(config.attn_dropout) self.resid_dropout = nn.Dropout(config.resid_dropout) self.n_head = config.n_head self.n_embd = config.n_embd self.flash_attn_dropout_val = config.attn_dropout # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0 self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') if not self.flash: print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0") # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T) if self.flash: # efficient attention using Flash Attention CUDA kernels y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.flash_attn_dropout_val if self.training else 0, is_causal=True) else: # manual implementation of attention att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs) y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.mlp_bias) self.gelu = nn.GELU() self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.mlp_bias) self.dropout = nn.Dropout(config.mlp_dropout) def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) x = self.dropout(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = LayerNorm(config.n_embd, bias=config.layer_norm_bias) self.attn = CausalSelfAttention(config) self.ln_2 = LayerNorm(config.n_embd, bias=config.layer_norm_bias) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency n_layer: int = 12 n_head: int = 12 n_embd: int = 768 mlp_bias: bool = True attn_proj_bias: bool = True attn_kv_bias: bool = False layer_norm_bias: bool = True attn_dropout: float = 0.0 # applied on softmax of QK^T mlp_dropout: float = 0.0 resid_dropout: float = 0.0 embed_dropout: float = 0.0 class GPT(nn.Module): def __init__(self, config): super().__init__() assert config.vocab_size is not None assert config.block_size is not None self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), embed_dropout = nn.Dropout(config.embed_dropout), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = LayerNorm(config.n_embd, bias=config.layer_norm_bias), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # with weight tying when using torch.compile() some warnings get generated: # "UserWarning: functional_call was passed multiple values for tied weights. # This behavior is deprecated and will be an error in future versions" # not 100% sure what this is, so far seems to be harmless. TODO investigate self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying # init all weights self.apply(self._init_weights) # apply special scaled init to the residual projections, per GPT-2 paper for pn, p in self.named_parameters(): if pn.endswith('c_proj.weight'): torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) def _init_weights(self, module): if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) def forward(self, idx, only_last=False): device = idx.device b, t = idx.size() assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t) # forward the GPT model itself tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd) x = self.transformer.embed_dropout(tok_emb + pos_emb) for block in self.transformer.h: x = block(x) x = self.transformer.ln_f(x) if not only_last: logits = self.lm_head(x) else: # inference-time mini-optimization: only forward the lm_head on the very last position logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim return logits def crop_block_size(self, block_size): # model surgery to decrease the block size if necessary # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024) # but want to use a smaller block size for some smaller, simpler model assert block_size <= self.config.block_size self.config.block_size = block_size self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size]) for block in self.transformer.h: if hasattr(block.attn, 'bias'): block.attn.bias = block.attn.bias[:,:,:block_size,:block_size] @classmethod def from_pretrained(cls, model_type, override_args=None): assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} override_args = override_args or {} # default to empty dict # only dropout can be overridden see more notes below assert all(k == 'dropout' for k in override_args) from transformers import GPT2LMHeadModel print("loading weights from pretrained gpt: %s" % model_type) # n_layer, n_head and n_embd are determined from model_type config_args = { 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params }[model_type] print("forcing vocab_size=50257, block_size=1024, bias=True") config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints config_args['bias'] = True # always True for GPT model checkpoints # we can override the dropout rate, if desired if 'dropout' in override_args: print(f"overriding dropout rate to {override_args['dropout']}") config_args['dropout'] = override_args['dropout'] # create a from-scratch initialized minGPT model config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param # init a huggingface/transformers model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() # copy while ensuring all of the parameters are aligned and match in names and shapes sd_keys_hf = sd_hf.keys() sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # this means that we have to transpose these weights when we import them assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx def get_model(n_layer: int, n_embd: int, n_head: int, vocab_size: int, context_length: int, mlp_bias: bool, attn_proj_bias: bool, # for projection layers in attention attn_kv_bias: bool, # for kv in attention attn_dropout: float, # dropout for attention layer mlp_dropout: float, # dropout for feedforward layer layer_norm_bias: bool, # for layer norm resid_dropout: float, # dropout for residual in attention embed_dropout: float # dropout for embedding layer ): gpt_config = GPTConfig(block_size=context_length, vocab_size=vocab_size, n_layer=n_layer, n_head=n_head, n_embd=n_embd, mlp_bias=mlp_bias, attn_proj_bias=attn_proj_bias, attn_kv_bias=attn_kv_bias, layer_norm_bias=layer_norm_bias, attn_dropout=attn_dropout, mlp_dropout=mlp_dropout, resid_dropout=resid_dropout, embed_dropout=embed_dropout) return GPT(gpt_config) if __name__ == '__main__': # comment out below to get rid of error normal_repr = torch.Tensor.__repr__ torch.Tensor.__repr__ = lambda self: f"{tuple(self.shape)}:{normal_repr(self)}" # type: ignore # simple test of model creation and forward pass model = get_model(n_layer=6, n_embd=384, n_head=6, vocab_size=230, context_length=256, mlp_bias=False, attn_proj_bias=False, attn_kv_bias=True, attn_dropout=0.2, mlp_dropout=0.2, layer_norm_bias=False, resid_dropout=0.2, embed_dropout=0.2) model = model.to('cuda') model = torch.compile(model) model.train() x = torch.randint(0, 10, (64, 256), dtype=torch.int64).to('cuda') amp_ctx = torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16) with amp_ctx: y = model(x) print(y) ``` I think the bug is important because it indicates somewhere in PyTorch code base there is a strong dependency on exactly what is returned by `torch.Tensor.__repr__`. This makes that implementation very fragile and I think it could most likely be changed simply by using proper API. ### Versions PyTorch version: 2.2.0.dev20230929+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: Could not collect CMake version: version 3.27.2 Libc version: glibc-2.31 Python version: 3.11.4 (main, Jul 5 2023, 14:15:25) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-1046-azure-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe Nvidia driver version: 535.104.05 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 24 On-line CPU(s) list: 0-23 Thread(s) per core: 1 Core(s) per socket: 24 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7V13 64-Core Processor Stepping: 1 CPU MHz: 2445.433 BogoMIPS: 4890.86 Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 768 KiB L1i cache: 768 KiB L2 cache: 12 MiB L3 cache: 96 MiB NUMA node0 CPU(s): 0-23 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, STIBP disabled, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm Versions of relevant libraries: [pip3] flake8==6.0.0 [pip3] mypy-extensions==0.4.3 [pip3] numpy==1.23.5 [pip3] numpydoc==1.5.0 [pip3] pytorch-triton==2.1.0+6e4932cda8 [pip3] torch==2.2.0.dev20230929+cu118 [pip3] torchaudio==2.2.0.dev20230929+cu118 [pip3] torchvision==0.17.0.dev20230929+cu118 [pip3] triton==2.0.0 [conda] _tflow_select 2.3.0 mkl [conda] blas 1.0 mkl [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py311h5eee18b_1 [conda] mkl_fft 1.3.6 py311ha02d727_1 [conda] mkl_random 1.2.2 py311ha02d727_1 [conda] numpy 1.23.5 py311h08b1b3b_1 [conda] numpy-base 1.23.5 py311hf175353_1 [conda] numpydoc 1.5.0 py311h06a4308_0 [conda] pytorch-cuda 11.8 h7e8668a_5 pytorch [conda] pytorch-mutex 1.0 cuda pytorch [conda] pytorch-triton 2.1.0+6e4932cda8 pypi_0 pypi [conda] tensorflow 2.12.0 mkl_py311h34a0fa1_0 [conda] tensorflow-base 2.12.0 mkl_py311he5f8e37_0 [conda] torch 2.2.0.dev20230929+cu118 pypi_0 pypi [conda] torchaudio 2.2.0.dev20230929+cu118 pypi_0 pypi [conda] torchtriton 2.0.0 py311 pytorch [conda] torchvision 0.17.0.dev20230929+cu118 pypi_0 pypi cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
5
616
110,329
[vision hash update] update the pinned vision hash
open source, ciflow/trunk, topic: not user facing, ciflow/inductor
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/_update-commit-hash.yml). Update the pinned vision hash.
4
617
110,327
[pytorch] add should_deepcopy flag to AveragedModel
fb-exported, release notes: optim
Summary: # Context AveragedModel always deepcopies the passed in model. This can pose an issue if the model cannot be deepcopied, like FSDP models. Furthermore, users may want to do this logic themselves # This diff Adds `should_deepcopy` flag (default=True for backwards compatibility) so that if users want to pass an FSDP model, they can by turning the flag off Test Plan: existing unit tests pass Differential Revision: D49622071
4
618
110,325
[wip, dynamo] run all guard fail hooks after cache miss
module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110325 Attempt number 2 at https://github.com/pytorch/pytorch/issues/108950. Will do testing before this PR is ready for review. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
2
619
110,315
torch._dynamo.exc.Unsupported: unexpected sourceless type bases: (<class 'torchrec.streamable.Pipelineable'>,)
good first issue, ezyang's list, oncall: pt2, module: dynamo, module: export
This is happening when trying to use `torch.export` on some code involving KJTs. Internal stack trace: P840857345 Repro: P840859224 Notes: - This is happening when we trace the construction of KJT, then pass that KJT as input to a module that we have configured to be `preserve_module_call_signature`. - If I remove the KJT construction, and pass a KJT we got directly from the input, things work (strange!) - Ed suggested commenting out [this check](https://github.com/pytorch/pytorch/blob/359c2a53f59aab460fb15ba60f40fda537c33aeb/torch/_dynamo/variables/builtin.py#L1113). When we do this, things will pass, although I gather that this is unsafe because we would not be properly installing guards. @ezyang says he knows what's going on and can post an OSS repro when he has some time cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @avikchaudhuri @gmagogsfm
3
620
110,313
[ONNX][DO NOT REVIEW] Experiment passing 'dynamic' to dort backend
open source, release notes: onnx, module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110313 * #110477 * #110178 * #108376 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
1
621
110,311
[inductor] Decompose boolean min/max into all/any
open source, topic: not user facing, module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110311 * #110310 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
1
622
110,310
[ATen] Support multi dim any and all reductions
open source, release notes: python_frontend, topic: new features, ciflow/mps
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110310 This adds a new overload to `all` and `any` with support for multiple reduction dims. ``` all.dims(Tensor self, int[1]? dim=None, bool keepdim=False) -> Tensor any.dims(Tensor self, int[1]? dim=None, bool keepdim=False) -> Tensor ```
13
623
110,304
pytorch_stargan: "_inductor/fx_passes/joint_graph.py", line 166, in constant_fold_uniform_value KeyError "val"
triaged, oncall: pt2
Repro: ``` python benchmarks/dynamo/torchbench.py --bfloat16 --accuracy --inference --device cuda --export-aot-inductor --only pytorch_stargan ```
0
624
110,303
Fix for out of bounds read in mobile interpreter FORMAT opcode handler
fb-exported, release notes: jit
Summary: The FORMAT opcode for the mobile TorchScript interpreter contained an out of bounds read issue leading to memory corruption. This change adds an explicit check that the number of inputs passed to the format method called when handling the FORMAT opcode is a valid and within bounds of the stack. Test Plan: contbuild + OSS signals Differential Revision: D49739095
2
625
110,301
Fix for out of bounds read in mobile interpreter INTERFACE_CALL opcode handler
fb-exported, release notes: mobile
Summary: The INTERFACE_CALL opcode for the mobile TorchScript interpreter contained an out of bounds read issue leading to memory corruption. This change adds an explicit check that the number of inputs passed to the format method called when handling the INTERFACE_CALL opcode is a valid and within bounds of the stack. Test Plan: contbuild + OSS signals Differential Revision: D49739450
2
626
110,300
Fix for out of bounds registers_ access in mobile TorchScript interpreter
fb-exported, release notes: mobile
Summary: The TorchScript interpreter had multiple opcodes whose logic had the potential to access the registers_ array out of bounds. This change ensures that all registers_ accesses are in bounds or an exception will be thrown. Test Plan: contbuild + OSS signals Differential Revision: D49748737
2
627
110,295
Tests modify global state cause later tests to fail
module: ci, triaged, module: devx
This is more of a tracker for tests that modify global state somehow, and then tests that run after them change outcome depending on whether the first test was run or not. I want to keep track of this to see how often it happens and why it happens. The tests afterwards generally get marked as flaky because they usually succeed on file level retry, which starts at the failing test and doesn't run the first test. Examples of this include: * Test 1 adds to dictionary that is imported or declared at the module level. Test 2 reads that dictionary and changes outcome after seeing the new addition * Test 1 imports extra modules. Test 2 crawls through imports to check functions in each module. The new module causes the outcome to change. * Test 1 sets an attribute. Test 2 sees the new attribute. (https://github.com/pytorch/pytorch/pull/110254) Fixes can include cleaning up after the function or moving tests to run in different files (then CI will run in different processes). cc @seemethere @malfet @pytorch/pytorch-dev-infra @ZainRizvi @kit1980 @huydhn
0
628
110,291
AOT Autograd Neg View Support
triaged, module: functionalization, oncall: pt2, module: aotdispatch
### πŸ› Describe the bug The following fails with aot_eager. It would be great if aot autograd could both a) handle neg_view correctly and b) remove ._neg_view() from the graph that is passed to inductor. ``` import torch device = torch.device def forward(inp): a = inp._neg_view() b = a.add_(3) return a, b inp = torch.rand([5, 5]).cuda() out_eager = forward(inp.clone()) out_comp = torch._dynamo.optimize("aot_eager")(forward)(inp) torch.testing.assert_close(out_comp, out_eager) ``` > AssertionError: Tensor-likes are not close! ### Versions master cc @bdhirsh @ezyang @msaroufim @wconstab @anijain2305
5
629
110,288
PYTORCH_TEST_WITH_DYNAMO=1 pytest -n 4 test/test_nestedtensor.py fails
high priority, triaged, module: nestedtensor, oncall: pt2
Running `PYTORCH_TEST_WITH_DYNAMO=1 pytest -n 4 test/test_nestedtensor.py` causes a non-deterministic number of failures (ranging between 14-70 for me). Perturbing the Dynamo config in CI (e.g. https://github.com/pytorch/pytorch/pull/110107) seems to expose the failures in CI, but CI is otherwise green. I might disable them for now so that we can land stuff without risking flaky CI. Opening this issue to track the problem. ![image](https://github.com/pytorch/pytorch/assets/5652049/40ae91fa-b8ff-482e-8895-c97e867e912e) cc @ezyang @gchanan @kadeng @cpuhrsch @jbschlosser @bhosmer @drisspg @msaroufim @wconstab @bdhirsh @anijain2305
2
630
110,285
TypeError: Got unsupported ScalarType BFloat16
triaged, module: numpy
### πŸ› Describe the bug Converting bfloat16 to numpy fails: ```python tensor = torch.ones((10, ), dtype=torch.bfloat16) item.numpy() ``` ### Versions ```python (.venv) ➜ lightning git:(introduce_cache) βœ— python collect_env.py Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.5.2 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: Could not collect Libc version: N/A Python version: 3.9.15 (main, Dec 5 2022, 15:51:18) [Clang 14.0.0 (clang-1400.0.29.202)] (64-bit runtime) Python platform: macOS-13.5.2-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Max Versions of relevant libraries: [pip3] mypy==1.0.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.24.1 [pip3] pytorch-lightning==1.9.0 [pip3] torch==2.0.1 [pip3] torchdata==0.6.1 [pip3] torchmetrics==0.11.1 [pip3] torchvision==0.15.1 [conda] Could not collect ``` cc @mruberry @rgommers
4
631
110,281
feat(Pipeline Parallelism): use mincut optimization for local communication optimization
oncall: distributed
### πŸš€ The feature, motivation and pitch Currently, the pipeline parallelism API requires the user to make a decision about the partitioning: https://github.com/pytorch/pytorch/blob/758735b739e119dfa66c447b81e8bd391ab765f7/torch/distributed/pipeline/sync/pipe.py#L224 However, I believe an _automated partitioner_ that reduces the cross-device communication could be employed. ### Proposal Of course, the device placement issue is hard enough (partitioning the bwd + fwd workload / memory to be evenly distributed across devices), but even once the graphs have been approximately placed, one may still want to search over a small radius to repartition operations so as to reduce cross-device communication. To do so, one may employ the mincut optimization to find the minimum cut of communication in a local region, similar to the min_cut_partitioner in inductor: https://github.com/pytorch/pytorch/blob/758735b739e119dfa66c447b81e8bd391ab765f7/torch/_functorch/partitioners.py#L253 ### Considerations 1. In e.g. [torchgpipe](https://arxiv.org/pdf/2004.09910.pdf) only a coarse-grained global partitioning strategy (`torchgpipe.balance`) is utilized, but not a local strategy. ### Alternatives 1. Unclear if this should be the role of PyTorch, which should provide the _capability_ for pipeline parallelism but not necessarily the fine-grained decisions. - Nonetheless, I believe that providing a default Torch partitioner / local repartitioner may still be useful to many users. ### References 1. [Alpa - Inter+Intra Operator Parallelism](https://www.usenix.org/system/files/osdi22-zheng-lianmin.pdf) - unclear if the "local" min cut approach would be complementary with e2e principled, topology-aware approach with cost model like Alpa. CC @wconstab cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu
0
632
110,277
Allow nn.Transformer to be exported as ONNX.
module: onnx, triaged, open source, release notes: onnx
Fixes #110255. During ONNX export tracing, the `is_causal` parameter is not actually a `bool` but instead `tensor(bool)`. The native function `scaled_dot_product_attention` does not seem to handle this case, so we can just cast it to a Python `bool` for now.
1
633
110,272
Update hipify mappings and rocm_version.h path
module: rocm, open source, topic: not user facing
cc @jeffdaily @sunway513 @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang
1
634
110,269
[DO NOT MERGE] Fix CMake static build
triaged, open source, ciflow/binaries, ciflow/trunk, topic: not user facing
This PR tries to solve the static build issues in CMake build system. Fixes #110238
16
635
110,268
[S366352] Avoid creating ncclStartEvent for deadlocking
fb-exported, release notes: distributed (c10d)
Summary: enableTiming will make us create one more cudaEvent per collective: https://fburl.com/code/6hqzik63. From S366352, it looks we run into deadlock in cudaEventDestroy() so reducing the number of events may help. Also I don't really see ncclStartEvent used anywhere for desyncDebug. Test Plan: sandcastle Differential Revision: D49760869
2
636
110,266
[FX/const_fold][bugfix] Set codegen on wrapping GraphModule
fb-exported, release notes: fx
Summary: The split module pass does not respect retaining custom codegen. This meant const fold was broken if we use concrete args or torch.export etc. that set codegen. Fix this by copying over codegen from the original graph we're doing folding on. Test Plan: Added test to test_fx_const_fold. Differential Revision: D49760518
12
637
110,265
[dynamo][guard-refactor] Global Guard Accessor
module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #110590 * #110735 * #110589 * __->__ #110265 * #108839 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
1
638
110,259
Cannot avoid kineto_LIBRARY-NOTFOUND error when using pre-built pytorch
oncall: binaries, oncall: profiler
### πŸ› Describe the bug When using the pre-built pytorch like this example in the docs: https://pytorch.org/cppdocs/installing.html I am getting the following error: ``` CMake Warning at cmake-build-debug/_deps/pytorch-src/torch/share/cmake/Torch/TorchConfig.cmake:22 (message): static library kineto_LIBRARY-NOTFOUND not found. ``` I inspected the zip and saw that Kineto is expected to be `ON`, and will warn with that message. However, Kineto is not included in the releases. ### Versions N/A cc @seemethere @malfet @robieta @chaekit @aaronenyeshi @nbcsm @guotuofeng @guyang3532 @gaoteng-git @tiffzhaofb @dzhulgakov @davidberard98
0
639
110,255
ONNX export of torch.nn.Transformer still fails
module: onnx, triaged, oncall: transformer/mha
### πŸ› Describe the bug ```python import numpy as np import torch model = torch.nn.Transformer(d_model=16, nhead=4, num_encoder_layers=1, num_decoder_layers=1, batch_first=False) src = torch.tensor(np.random.randn(3,1,16).astype(np.float32)) tgt = torch.tensor(np.random.randn(5,1,16).astype(np.float32)) torch.onnx.export(model, {'src':src, 'tgt':tgt}, 'torch_nn_transformer.onnx', verbose=False, input_names=['src', 'tgt'], opset_version=15, output_names=['out'], dynamic_axes={ 'src': {0: 'src_len'}, 'tgt': {0: 'tgt_len'}, 'out': {0: 'tgt_len'} }) ``` ``` C:\Program Files\Python310\lib\site-packages\torch\nn\modules\transformer.py:282: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance) warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}") Traceback (most recent call last): File "D:\ROOT\PythonExperiments\onnx_export_fail.py", line 13, in <module> torch.onnx.export(model, File "C:\Program Files\Python310\lib\site-packages\torch\onnx\utils.py", line 516, in export _export( File "C:\Program Files\Python310\lib\site-packages\torch\onnx\utils.py", line 1613, in _export graph, params_dict, torch_out = _model_to_graph( File "C:\Program Files\Python310\lib\site-packages\torch\onnx\utils.py", line 1135, in _model_to_graph graph, params, torch_out, module = _create_jit_graph(model, args) File "C:\Program Files\Python310\lib\site-packages\torch\onnx\utils.py", line 1011, in _create_jit_graph graph, torch_out = _trace_and_get_graph_from_model(model, args) File "C:\Program Files\Python310\lib\site-packages\torch\onnx\utils.py", line 915, in _trace_and_get_graph_from_model trace_graph, torch_out, inputs_states = torch.jit._get_trace_graph( File "C:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 1290, in _get_trace_graph outs = ONNXTracedModule( File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 138, in forward graph, out = torch._C._create_graph_by_tracing( File "C:\Program Files\Python310\lib\site-packages\torch\jit\_trace.py", line 129, in wrapper outs.append(self.inner(*trace_inputs)) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1509, in _slow_forward result = self.forward(*input, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\transformer.py", line 206, in forward output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask, File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1509, in _slow_forward result = self.forward(*input, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\transformer.py", line 460, in forward output = mod(output, memory, tgt_mask=tgt_mask, File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1509, in _slow_forward result = self.forward(*input, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\transformer.py", line 847, in forward x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal)) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\transformer.py", line 865, in _mha_block x = self.multihead_attn(x, mem, mem, File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\module.py", line 1509, in _slow_forward result = self.forward(*input, **kwargs) File "C:\Program Files\Python310\lib\site-packages\torch\nn\modules\activation.py", line 1241, in forward attn_output, attn_output_weights = F.multi_head_attention_forward( File "C:\Program Files\Python310\lib\site-packages\torch\nn\functional.py", line 5440, in multi_head_attention_forward attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal) TypeError: scaled_dot_product_attention(): argument 'is_causal' (position 6) must be bool, not Tensor ``` BTW: 1. I'm using nightly build because otherwise I have problems with torch.nn.MultiHeadAttention export (see #110070 ) 2. Mb it's a good idea to add some part of this to onnx tests. What do you think? It will show any problems with export of any part of the transformer (attention/decoder/encoder/normalization). And I think you will be getting a lot of issues like this one because of transformers popularity... ### Versions Collecting environment information... PyTorch version: 2.2.0.dev20230928+cpu Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Microsoft Windows 10 Enterprise GCC version: Could not collect Clang version: Could not collect CMake version: version 3.27.0-rc2 Libc version: N/A Python version: 3.10.11 (tags/v3.10.11:7d4cc5a, Apr 5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.19045-SP0 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4070 Laptop GPU Nvidia driver version: 536.23 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=3601 DeviceID=CPU0 Family=107 L2CacheSize=8192 L2CacheSpeed= Manufacturer=AuthenticAMD MaxClockSpeed=3601 Name=AMD Ryzen 7 7745HX with Radeon Graphics ProcessorType=3 Revision=24834 Versions of relevant libraries: [pip3] numpy==1.26.0 [pip3] torch==2.2.0.dev20230928+cpu [pip3] torchaudio==2.2.0.dev20230928+cpu [pip3] torchvision==0.17.0.dev20230928+cpu [conda] Could not collect cc @jbschlosser @bhosmer @cpuhrsch @erichan1 @drisspg
1
640
110,253
[fbcode] s,\bnp\.bool\b,bool,
caffe2, module: mkldnn, fb-exported
Test Plan: sandcastle and visual inspection Differential Revision: D49196618 cc @gujinghui @PenghuiCheng @XiaobingSuper @jianyuh @jgong5 @mingfeima @sanchitintel @ashokei @jingxu10 @min-jean-cho @yanbing-j @Guobing-Chen @Xia-Weiwen
11
641
110,252
cuda/tf32 docs are outdated
module: docs, module: cuda, triaged, module: tf32
### πŸ“š The doc issue Would it be possible to update: https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices 1. there is the new way to define precision which is not just `torch.backends.cuda.matmul.allow_tf32` but 3 levels as defined by: https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision it'd be awesome to update the cuda doc to reflect that and to update the benchmarks and the error with medium precision. 2. I'd imagine that `torch.set_float32_matmul_precision("medium")` is really relevant for H100 as it says: > if a fast matrix multiplication algorithm using that datatype internally is available. or is it available in A100 as well? Thank you! cc @svekars @carljparker @ptrblck @zasdfgbnm
4
642
110,250
Accessing Particular Nightly Builds Don't Work
oncall: binaries, triaged
### πŸ› Describe the bug I would like to use a particular nightly release version of libtorch. I need to do this because: 1. Official version releases are sparse 2. Relying on "latest" is dangerous -- consistent builds/deployments is much safer On the official page: https://pytorch.org/get-started/locally/ I can only see the official releases or the nightly releases: ![image](https://github.com/pytorch/pytorch/assets/17555572/d3f36dcb-5767-4dee-b737-7834e13f9798) However, in the github workflows, I can see that date stamped releases are being uploaded as well. For example, with this run flavor: https://github.com/pytorch/pytorch/actions/runs/6335907738/job/17207923080 I can see: ``` record_file=libtorch-cxx11-abi-shared-with-deps-2.2.0.dev20230928+cpu.zip .. record_file=libtorch-cxx11-abi-shared-with-deps-latest.zip ``` However, attempting to access these urls results in an 404. If I attempt a similar URL with the wheel storage: https://download.pytorch.org/whl/nightly/cpu/torch-2.1.0.dev20230901-cp310-none-macosx_11_0_arm64.whl It works as expected. Can this be fixed? Thanks, Anthony ### Versions N/A cc @seemethere @malfet
7
643
110,249
`torch.func.functional_call` does not work with `__torch_function__ ` Tensor-like objects
triaged, enhancement, module: __torch_function__, module: functorch
### πŸ› Describe the bug The [documentation](https://pytorch.org/docs/stable/notes/extending.html#extending-torch-with-a-tensor-like-type) indicates that `torch` can be extended with `torch.Tensor`-like objects via the `__torch_function__` mechanism for dynamic dispatch. However, `torch.func.functional_call` does not accept such objects as inputs. For example, ```py # begin code copied from the documentation: https://pytorch.org/docs/stable/notes/extending.html#extending-torch-with-a-tensor-like-type HANDLED_FUNCTIONS = {} class ScalarTensor(object): def __init__(self, N, value): self._N = N self._value = value def __repr__(self): return "ScalarTensor(N={}, value={})".format(self._N, self._value) def tensor(self): return self._value * torch.eye(self._N) @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): if kwargs is None: kwargs = {} if func not in HANDLED_FUNCTIONS or not all( issubclass(t, (torch.Tensor, ScalarTensor)) for t in types ): return NotImplemented return HANDLED_FUNCTIONS[func](*args, **kwargs) import functools def implements(torch_function): """Register a torch function override for ScalarTensor""" def decorator(func): functools.update_wrapper(func, torch_function) HANDLED_FUNCTIONS[torch_function] = func return func return decorator @implements(torch.mean) def mean(input): return float(input._value) / input._N # end code copied from documentation model = torch.nn.Linear(3, 3, bias=False) input = torch.randn(5, 3) torch.func.functional_call(model, {"weight": ScalarTensor(3, 0.1)}, (input,)) ``` produces an error ``` /usr/local/lib/python3.10/dist-packages/torch/nn/utils/_named_member_accessor.py in swap_tensor(module, name, tensor, allow_missing) 40 and tensor is not None 41 ): ---> 42 raise TypeError(f"{tensor} is not an instance of torch.Tensor") 43 if "." in name: 44 raise KeyError('tensor name can\'t contain "."') ``` ### Versions Collecting environment information... PyTorch version: 2.0.1+cu118 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.2 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.27.4 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.120+-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 2 On-line CPU(s) list: 0,1 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 79 Thread(s) per core: 2 Core(s) per socket: 1 Socket(s): 1 Stepping: 0 BogoMIPS: 4399.99 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm rdseed adx smap xsaveopt arat md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 32 KiB (1 instance) L1i cache: 32 KiB (1 instance) L2 cache: 256 KiB (1 instance) L3 cache: 55 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0,1 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable; SMT Host state unknown Vulnerability Meltdown: Vulnerable Vulnerability Mmio stale data: Vulnerable Vulnerability Retbleed: Vulnerable Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled, PBRSB-eIBRS: Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.23.5 [pip3] torch==2.0.1+cu118 [pip3] torchaudio==2.0.2+cu118 [pip3] torchdata==0.6.1 [pip3] torchsummary==1.5.1 [pip3] torchtext==0.15.2 [pip3] torchvision==0.15.2+cu118 [pip3] triton==2.0.0 [conda] Could not collect cc @hameerabbasi @rgommers @peterbell10 @ezyang @zou3519 @Chillee @samdow @kshitij12345 @janeyx99
3
644
110,248
DISABLED test_detach_cpu_float16 (__main__.TestNestedTensorDeviceTypeCPU)
triaged, module: flaky-tests, module: nestedtensor, skipped, oncall: pt2
Platforms: dynamo This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_detach_cpu_float16&suite=TestNestedTensorDeviceTypeCPU) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/17230279068). Over the past 3 hours, it has been determined flaky in 11 workflow(s) with 33 failures and 11 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_detach_cpu_float16` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_nestedtensor.py` cc @cpuhrsch @jbschlosser @bhosmer @drisspg @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
3
645
110,243
[inductor] Triton mm codegen uses `make_block_ptr`
triaged, open source, topic: not user facing, module: inductor, ciflow/inductor
Partially fixes: https://github.com/pytorch/pytorch/issues/109420 No perf degr (on RTX 4070 Laptop Ada Lovelace): Before: ![image](https://github.com/pytorch/pytorch/assets/9093549/a87fd2c7-2ee4-415c-9006-93c7337bc956) After: ![image](https://github.com/pytorch/pytorch/assets/9093549/ab173ed8-b277-46a7-b3b7-41f5992fca12) The reason that the curve is not equal to cublas/triton for smaller M/N is because the triton autotune configs are not tuned for commercial GPUs. See: https://github.com/pytorch/pytorch/issues/109489 `uint4x2_mixed_mm` is skipped due to complicated use of the ptrs to do bitwise hacks. CC: @jansel @drisspg cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
3
646
110,241
[ONNX] Replace torchscript with new graph building
module: onnx, open source, release notes: onnx
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110241 This PR works with https://github.com/microsoft/onnxscript/pull/1071, providing a general idea/starting point of new graph building without TorchScriptGraph. Tested with only `test_add` unittest case in `test_fx_to_onnx_onnxruntime.py`. NOTE: still need to test with: 1. `add_module_call` 2. multiple outputs 3. initializers 4. sequence type and split node More detail should be found in https://github.com/microsoft/onnxscript/pull/1071
1
647
110,238
PyTorch with non-shared build (building a single shared lib) is unsupported
module: build, triaged, module: static linking
### πŸ› Describe the bug Building with `BUILD_SHARED_LIBS=0` to produce a single `libtorch.so` appears to be broken when using Python/torch rather than C++/libtorch. Full build command: ``` BUILD_SHARED_LIBS=0 TORCH_CUDA_ARCH_LIST="9.0" CUDA_HOME="/usr/local/cuda" CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" USE_SYSTEM_NCCL=1 USE_MAGMA=1 USE_OPENCV=1 BUILD_CAFFE2=0 BUILD_CAFFE2_OPS=0 BUILD_TEST=0 USE_CUSPARSELT=1 USE_FBGEMM=0 USE_KINETO=0 USE_METAL=0 USE_NATIVE_ARCH=1 USE_NNPACK=0 USE_QNNPACK=0 USE_VALGRIND=0 USE_XNNPACK=0 USE_ITT=0 USE_C10D_UCC=0 USE_GLOO=0 USE_C10D_MPI=0 ONNX_ML=0 USE_TENSORPIPE=0 BUILD_NVFUSER=0 BUILD_FUNCTORCH=1 BUILD_SPLIT_CUDA=0 python3 setup.py develop ``` The following output is observed: ``` >>> import torch Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/workspace/pytorch/torch/__init__.py", line 235, in <module> _load_global_deps() File "/workspace/pytorch/torch/__init__.py", line 194, in _load_global_deps raise err File "/workspace/pytorch/torch/__init__.py", line 175, in _load_global_deps ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL) File "/usr/lib/python3.10/ctypes/__init__.py", line 374, in __init__ self._handle = _dlopen(self._name, mode) OSError: /workspace/pytorch/torch/lib/libtorch_global_deps.so: cannot open shared object file: No such file or directory ``` Running with ` TORCH_USE_RTLD_GLOBAL=1` to bypass the above failure seems to indicate that something is being loaded twice: ``` >>> import torch terminate called after throwing an instance of 'c10::Error' what(): Tried to register multiple backend fallbacks for the same dispatch key Conjugate; previous registration registered at /workspace/pytorch/aten/src/ATen/ConjugateFallback.cpp:17, new registration registered at /workspace/pytorch/aten/src/ATen/ConjugateFallback.cpp:17 Exception raised from registerFallback at /workspace/pytorch/aten/src/ATen/core/dispatch/Dispatcher.cpp:401 (most recent call first): frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0xfffe1caf24d8 in /workspace/pytorch/torch/lib/libshm.so) frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xf8 (0xfffe16cbdd28 in /workspace/pytorch/torch/lib/libshm.so) frame #2: c10::Dispatcher::registerFallback(c10::DispatchKey, c10::KernelFunction, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x558 (0xfffe27e16a88 in /workspace/pytorch/torch/lib/libtorch_python.so) frame #3: torch::Library::_fallback(torch::CppFunction&&) & + 0x1c4 (0xfffe27e53e54 in /workspace/pytorch/torch/lib/libtorch_python.so) frame #4: <unknown function> + 0x21b8790 (0xfffe27bd8790 in /workspace/pytorch/torch/lib/libtorch_python.so) frame #5: <unknown function> + 0x21bc00c (0xfffe27bdc00c in /workspace/pytorch/torch/lib/libtorch_python.so) frame #6: <unknown function> + 0x16824d4 (0xfffe270a24d4 in /workspace/pytorch/torch/lib/libtorch_python.so) frame #7: <unknown function> + 0x5624 (0xfffe37405624 in /lib/ld-linux-aarch64.so.1) frame #8: <unknown function> + 0x572c (0xfffe3740572c in /lib/ld-linux-aarch64.so.1) frame #9: _dl_catch_exception + 0xd0 (0xfffe3722d1f0 in /usr/lib/aarch64-linux-gnu/libc.so.6) frame #10: <unknown function> + 0xbf5c (0xfffe3740bf5c in /lib/ld-linux-aarch64.so.1) frame #11: _dl_catch_exception + 0x78 (0xfffe3722d198 in /usr/lib/aarch64-linux-gnu/libc.so.6) frame #12: <unknown function> + 0xc2fc (0xfffe3740c2fc in /lib/ld-linux-aarch64.so.1) frame #13: <unknown function> + 0x796e4 (0xfffe371796e4 in /usr/lib/aarch64-linux-gnu/libc.so.6) frame #14: _dl_catch_exception + 0x78 (0xfffe3722d198 in /usr/lib/aarch64-linux-gnu/libc.so.6) frame #15: _dl_catch_error + 0x40 (0xfffe3722d260 in /usr/lib/aarch64-linux-gnu/libc.so.6) frame #16: <unknown function> + 0x791c0 (0xfffe371791c0 in /usr/lib/aarch64-linux-gnu/libc.so.6) frame #17: dlopen + 0x54 (0xfffe37179784 in /usr/lib/aarch64-linux-gnu/libc.so.6) <omitting python frames> Aborted (core dumped) ``` ### Versions (upstream source build) ``` Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (aarch64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.27.5 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.2.0-1008-nvidia-64k-aarch64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA Graphics Device Nvidia driver version: 535.115 ``` cc @malfet @seemethere
7
648
110,234
add full permuted
module: inductor, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110234 * #110242 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
1
649
110,231
[fbcode] small fix on dataloader and content_understanding/main
fb-exported, release notes: dataloader
Summary: * when dl shuts down, sometimes the order of object `__del__` and object clean up may mess up, which may raise exception complaining certain properties of the obj is not defined. adding a catch to avoid it from happening. * remove the extra `register_new_resolver` as pointed in https://www.internalfb.com/diff/D49448666?dst_version_fbid=132094109961892&transaction_fbid=1285292328796395 Test Plan: cu-cli launch -p xray_video -c xrv_mae_vit_test --no-maybe-pull -l Reviewed By: ejguan Differential Revision: D49710645
8
650
110,222
[RELAND] Disallow skipping dynamo
ciflow/trunk, topic: not user facing, module: dynamo, ciflow/inductor, module: export
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110222 Previous discussion: https://github.com/pytorch/pytorch/pull/109476 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
1
651
110,210
DISABLED test_noncontiguous_samples__native_batch_norm_legit_cuda_float32 (__main__.TestCommonCUDA)
triaged, module: flaky-tests, skipped, oncall: pt2
Platforms: inductor This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_noncontiguous_samples__native_batch_norm_legit_cuda_float32&suite=TestCommonCUDA) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/17203542961). Over the past 3 hours, it has been determined flaky in 2 workflow(s) with 2 failures and 2 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_noncontiguous_samples__native_batch_norm_legit_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_ops.py` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
2
652
110,205
RuntimeError: Expected packed scalar Tensor to be of dimension 1. Got 0 instead.
module: optimizer, triaged, module: regression, actionable
### πŸ› Describe the bug This code used to work with previous versions of torch. The bug happens when passing the betas-parameter as a tensor. It only occurs when running on GPU. ```python import torch from torch import Tensor, jit, nn device = torch.device("cuda") model = nn.Linear(4,4).to(device=device) optimizer_config = { "lr": 0.001, "betas": torch.tensor([0.9000, 0.9990]), } optim = torch.optim.Adam(model.parameters(), **optimizer_config) x = torch.randn(5, 4, device=device) model(x).norm().backward() optim.step() ``` ### Versions <details> ``` PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.27.5 Libc version: glibc-2.35 Python version: 3.10.12 (main, Jun 11 2023, 05:26:28) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.2.0-33-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.2.140 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Nvidia driver version: 535.104.12 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.5 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.5 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: GenuineIntel Model name: 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz CPU family: 6 Model: 141 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 1 CPU max MHz: 4800,0000 CPU min MHz: 800,0000 BogoMIPS: 4992.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l2 invpcid_single cdp_l2 ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves split_lock_detect dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid movdiri movdir64b fsrm avx512_vp2intersect md_clear ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 384 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 10 MiB (8 instances) L3 cache: 24 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] flake8-annotations==3.0.1 [pip3] flake8-bugbear==23.9.16 [pip3] flake8-comprehensions==3.14.0 [pip3] flake8-docstrings==1.7.0 [pip3] flake8-pyi==23.6.0 [pip3] flake8-rst==0.8.0 [pip3] flake8-rst-docstrings==0.3.0 [pip3] mypy==1.5.1 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.0 [pip3] torch==2.0.1 [pip3] torchinfo==1.8.0 [pip3] triton==2.0.0 [conda] Could not collect ``` </details> cc @vincentqb @jbschlosser @albanD @janeyx99 @crcrpar
4
653
110,194
cudaMallocAsync cause too much fragmentation.
module: cuda, module: memory usage, triaged, module: CUDACachingAllocator
### πŸ› Describe the bug I try to use [CUDA’s built-in asynchronous allocator](https://developer.nvidia.com/blog/using-cuda-stream-ordered-memory-allocator-part-1/) by setting `PYTORCH_CUDA_ALLOC_CONF=backend:cudaMallocAsync`. Then I encounter OOM with over 20GB memory 'missing': ``` torch.cuda.OutOfMemoryError: Allocation on device 5 would exceed allowed memory. (out of memory) Currently allocated : 54.14 GiB Requested : 686.41 MiB Device limit : 79.35 GiB Free (according to CUDA): 27.19 MiB PyTorch limit (set by user-supplied memory fraction) : 17179869184.00 GiB ``` This dose not like what the [post](https://developer.nvidia.com/blog/using-cuda-stream-ordered-memory-allocator-part-1/) saying: If a memory allocation request made using cudaMallocAsync can’t be serviced due to fragmentation of the corresponding memory pool, the CUDA driver defragments the pool by remapping unused memory in the pool to a contiguous portion of the GPU’s virtual address space. Remapping existing pool memory instead of allocating new memory from the OS also helps keep the application’s memory footprint low. This task can barely run with PyTorch's allocator, yet, still with significant fragmentation: ``` (after 3 iterations) memory (MB) | allocated: 50900.0244140625 | max allocated: 68742.84326171875 | reserved: 76064.0 | max reserved: 76064.0 ``` ### Versions Collecting environment information... PyTorch version: 2.0.1+cu117 Is debug build: False CUDA used to build PyTorch: 11.7 ROCM used to build PyTorch: N/A OS: Alibaba Group Enterprise Linux Server 7.2 (Paladin) (x86_64) GCC version: (GCC) 8.3.1 20190311 (Red Hat 8.3.1-3) Clang version: Could not collect CMake version: version 3.27.4 Libc version: glibc-2.32 Python version: 3.8.13 (default, Mar 28 2022, 11:38:47) [GCC 7.5.0] (64-bit runtime) Python platform: Is CUDA available: True CUDA runtime version: 11.7.64 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100-SXM4-80GB GPU 1: NVIDIA A100-SXM4-80GB GPU 2: NVIDIA A100-SXM4-80GB GPU 3: NVIDIA A100-SXM4-80GB GPU 4: NVIDIA A100-SXM4-80GB GPU 5: NVIDIA A100-SXM4-80GB GPU 6: NVIDIA A100-SXM4-80GB GPU 7: NVIDIA A100-SXM4-80GB Nvidia driver version: 470.154 cuDNN version: Probably one of the following: /usr/lib64/libcudnn.so.8.9.1 /usr/lib64/libcudnn_adv_infer.so.8.9.1 /usr/lib64/libcudnn_adv_train.so.8.9.1 /usr/lib64/libcudnn_cnn_infer.so.8.9.1 /usr/lib64/libcudnn_cnn_train.so.8.9.1 /usr/lib64/libcudnn_ops_infer.so.8.9.1 /usr/lib64/libcudnn_ops_train.so.8.9.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-75,124-127 Off-line CPU(s) list: 76-123 Thread(s) per core: 1 Core(s) per socket: 32 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 106 Model name: Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz Stepping: 6 CPU MHz: 3440.970 CPU max MHz: 3500.0000 CPU min MHz: 800.0000 BogoMIPS: 5800.00 Virtualization: VT-x L1d cache: 48K L1i cache: 32K L2 cache: 1280K L3 cache: 49152K NUMA node0 CPU(s): 0-31,64-95 NUMA node1 CPU(s): 32-63,96-127 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid fsrm md_clear pconfig flush_l1d arch_capabilities Versions of relevant libraries: [pip3] numpy==1.19.5 [pip3] torch==2.0.1+cu117 [pip3] torchaudio==2.0.2+cu117 [pip3] torchmetrics==1.1.2 [pip3] torchvision==0.15.2+cu117 [pip3] triton==2.0.0 [conda] magma-cuda117 2.6.1 1 pytorch [conda] mkl 2023.2.0 pypi_0 pypi [conda] mkl-include 2023.2.0 pypi_0 pypi [conda] numpy 1.19.5 pypi_0 pypi [conda] torch 2.0.1+cu117 pypi_0 pypi [conda] torchaudio 2.0.2+cu117 pypi_0 pypi [conda] torchmetrics 1.1.2 pypi_0 pypi [conda] torchvision 0.15.2+cu117 pypi_0 pypi [conda] triton 2.0.0 pypi_0 pypi cc @ptrblck
1
654
110,181
CI: rocm `(default, 1, 3, linux.rocm.gpu)` is very slow
module: rocm, module: ci, triaged, module: devx
## Current Status ongoing ## Issue looks like Taking ~2.5 hours on https://github.com/pytorch/pytorch/pull/110167 ![image](https://github.com/pytorch/pytorch/assets/9093549/f36d4d3b-93eb-48ee-a0f9-e945643376c6) Taking 3.5+ hours on https://github.com/pytorch/pytorch/pull/109976 ![image](https://github.com/pytorch/pytorch/assets/9093549/68af3813-84be-4034-ac24-2e61ec4e1856) ## User impact Slower merging ## Root cause Seems like it may have been introduced in https://github.com/pytorch/pytorch/pull/109817 @malfet ![image](https://github.com/pytorch/pytorch/assets/9093549/18b78912-8304-4e95-bc80-a65b4b88e41d) ## Mitigation Not sure ## Prevention/followups Investigate cause of slow running time or split up tests into smaller test jobs. Try to make the tests run in similar time to CUDA tests (~1.5 hours) cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @seemethere @malfet @pytorch/pytorch-dev-infra @ZainRizvi @kit1980 @huydhn @clee2000 ```[tasklist] ### Tasks ```
5
655
110,180
Squeeze and unsqeeze 3d to 4d for sdpa
null
# Summary If input two SDPA is 3 dimensional we expand it to be 4 dimensional by adding an outer "unsqueezed" dimension. This enables the 3 dimensional input to not immediately fail the fused_attention checks.
2
656
110,178
[ONNX] Add sanity check in CI for onnxbench
open source, topic: not user facing
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * #110313 * #110477 * __->__ #110178 * #108376 ONNX CI to run benchmark with `--quick` to validate the onnxbench infra.
1
657
110,175
Module-level bufferization for torch dynamo module spanning multiple `fx.GraphModule`
feature, triaged, oncall: pt2, module: aotdispatch
### πŸš€ The feature, motivation and pitch Some details across: https://github.com/pytorch/pytorch/issues/109240#issuecomment-1737764251 https://github.com/pytorch/pytorch/issues/106596#issuecomment-1737835937 In summary: 1. It is likely that since we do not analyze buffer aliases (read/write) which may occur in graph breaks, we require copying inputs whenever they are mutated by the fx graphs. (TODO: add source reference?) 2. This can be complicated for scenarios like https://github.com/pytorch/pytorch/issues/109240#issuecomment-1737764251 where we are unsure when we want to commit the mutations back to the original buffer - which would be unnecessarily constrained by the time-sensitive nature of potential eager-mode mutations. Solution: 1. If we can analyze the code in the eager mode computations (r/w accesses to given buffer), then we can better plan for bufferization across the entire module, reducing copies in between graph breaks and fx graphs. However, pointer alias analysis is generally impossible to do in opaque code (due to pointer encapsulation), so this may be completely infeasible. However, it _may_ be the case that we know that _certain_ fx graph ouputs can _never_ be mutated by eager code - because they are **owned** (i.e. created) by the graph, hence there can be no pointer alias to it without explicit reference to the pointer in the eager code. ### Alternatives Unclear ### Additional context Unclear if any of this is already tracked in torch dynamo [`SideEffects`](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/side_effects.py) cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
658
110,170
[inductor] Added decomposition for _upsample_bilinear2d_aa
open source, topic: not user facing, module: inductor, ciflow/inductor
Description: - Added decomposition for _upsample_bilinear2d_aa Benchmark results: ``` [----------------------------------- Interpolate bilinear, AA=true, cpu ----------------------------------] | Eager | Compiled 1 threads: ------------------------------------------------------------------------------------------------ Input (1, 3, 345, 456) -> (271, 272), torch.uint8, torch.contiguous_format | 623.0 | 1882.2 Input (1, 3, 345, 456) -> (271, 272), torch.float32, torch.contiguous_format | 1014.1 | 1466.0 Input (1, 3, 345, 456) -> (271, 272), torch.uint8, torch.channels_last | 251.3 | 2232.1 Input (1, 3, 345, 456) -> (271, 272), torch.float32, torch.channels_last | 1537.4 | 1764.9 Input (4, 3, 345, 456) -> (271, 272), torch.uint8, torch.contiguous_format | 2333.5 | 7733.9 Input (4, 3, 345, 456) -> (271, 272), torch.float32, torch.contiguous_format | 4366.2 | 5806.6 Input (4, 3, 345, 456) -> (271, 272), torch.uint8, torch.channels_last | 925.6 | 8910.6 Input (4, 3, 345, 456) -> (271, 272), torch.float32, torch.channels_last | 6194.6 | 7525.3 Input (1, 3, 345, 456) -> (567, 678), torch.uint8, torch.contiguous_format | 2170.2 | 3020.9 Input (1, 3, 345, 456) -> (567, 678), torch.float32, torch.contiguous_format | 2483.4 | 2512.8 Input (1, 3, 345, 456) -> (567, 678), torch.uint8, torch.channels_last | 534.7 | 4060.9 Input (1, 3, 345, 456) -> (567, 678), torch.float32, torch.channels_last | 5169.1 | 3782.0 Input (4, 3, 345, 456) -> (567, 678), torch.uint8, torch.contiguous_format | 7954.9 | 12137.4 Input (4, 3, 345, 456) -> (567, 678), torch.float32, torch.contiguous_format | 9919.4 | 9874.2 Input (4, 3, 345, 456) -> (567, 678), torch.uint8, torch.channels_last | 2021.2 | 16475.9 Input (4, 3, 345, 456) -> (567, 678), torch.float32, torch.channels_last | 20689.3 | 14815.4 Times are in microseconds (us). [--------------------------------- Interpolate bilinear, AA=true, cuda ---------------------------------] | Eager | Compiled 1 threads: ---------------------------------------------------------------------------------------------- Input (1, 3, 345, 456) -> (271, 272), torch.float32, torch.contiguous_format | 11.7 | 92.8 Input (1, 3, 345, 456) -> (271, 272), torch.float32, torch.channels_last | 31.8 | 101.2 Input (4, 3, 345, 456) -> (271, 272), torch.float32, torch.contiguous_format | 42.2 | 100.5 Input (4, 3, 345, 456) -> (271, 272), torch.float32, torch.channels_last | 84.8 | 109.9 Input (1, 3, 345, 456) -> (567, 678), torch.float32, torch.contiguous_format | 29.3 | 109.3 Input (1, 3, 345, 456) -> (567, 678), torch.float32, torch.channels_last | 52.8 | 109.6 Input (4, 3, 345, 456) -> (567, 678), torch.float32, torch.contiguous_format | 94.8 | 144.2 Input (4, 3, 345, 456) -> (567, 678), torch.float32, torch.channels_last | 187.4 | 112.3 Times are in microseconds (us). ``` [Source](https://github.com/vfdev-5/pth-inductor-dev/blob/master/perf_interp_bilinear_aa.py) cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov @ColinPeppler
4
659
110,168
Add cuSPARSELt to the nightlies
oncall: binaries, module: build, triaged
## Issue description cuSPASRELt is a library that offers accelerated semi-structured sparse matmul. We are looking to integrate v0.5.0 The download link can be found here: https://developer.nvidia.com/cusparselt-downloads The library is ~ 20 Mb. We merged build support for cuSPASRELt in [this PR](https://github.com/pytorch/pytorch/pull/103700) To build pytorch with cuSPASRELt, we need to set two env variables, ``` USE_CUSPARSELT=1 CUSPARSELT_ROOT=/path/to/cusparselt/download ``` cc @seemethere @malfet
3
660
110,165
[DeviceMesh] Record PT-D API usage on parent mesh dim in MeshEnv
release notes: distributed (fsdp)
https://github.com/pytorch/pytorch/issues/109392 When we have different compositions, we need to know whether we need to turn on TP extension inside FSDP. Recording the PT-D API usage on parent mesh dim can help us detect this.
1
661
110,162
Fix for PyTorch mobile flatbuffer loader out of bounds reads
fb-exported, release notes: mobile
Summary: The mobile_ivalue_size field in the mobile_bytecode flatbuffer schema can be larger than the ivalues vector. This introduces potential for memory corruption when parsing the mobile_bytecode Module. This diff fixes the issue by ensuring that mobile_ivalue_size is less than the size of the ivalues vector. Test Plan: contbuild & OSS CI Differential Revision: D49687548
2
662
110,156
Add _worker_end_fn_t to the DataLoader
module: dataloader, triaged, module: data
### πŸš€ The feature, motivation and pitch For my particular use case, I need the dataset to perform some operations when the data loaders workers are terminated. When the `iteration_end` value in the `worker.py` file is True. Similar to `_worker_init_fn_t` for setting the seeds, I would like to have a `_worker_end_fn_t` that takes the dataset as an argument. ### Alternatives I haven't considered any other solutions but right now, I need to patch PyTorch. ### Additional context This is required for the dataset to persist some data on termination. cc @SsnL @VitalyFedyunin @ejguan @dzhulgakov
2
663
110,155
[TESTING] Capture scalar/dynamic by default
module: dynamo, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110155 * #109893 Signed-off-by: Edward Z. Yang <ezyang@meta.com> cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
1
664
110,154
ValueError: args contained 2 None's after flattening. When exporting a ScriptModule or ScriptFunction, no args may be None because that breaks type propagation.
module: onnx, triaged, module: multi-headed-attention
### πŸ› Describe the bug when I export model to ONNX I found the error `RuntimeError: ScalarType UNKNOWN_SCALAR is an unexpected tensor scalar type`. then I debug 1 line to 1 line , I found `torch.nn.MultiheadAttention` thrown it ! I pick a small unit to debug it ```python import torch from torch import Tensor, nn d_model = 256 dropout = 0.0 n_heads = 8 model = nn.MultiheadAttention(d_model, n_heads, dropout=dropout) tgt = torch.randn(6, 1, 256, dtype=torch.float32) q = torch.randn(6, 1, 256, dtype=torch.float32) k = torch.randn(6, 1, 256, dtype=torch.float32) args = ( tgt, q, k ) scripted_model = torch.jit.script(model) scripted_model.save("model.pt") torch.onnx.export(model=scripted_model, args=args, f="model.onnx", verbose=True,opset_version=17) ``` then an error thrown ```sh =========== Diagnostic Run torch.onnx.export version 2.1.0a0+b5021ba =========== verbose: False, log level: 40 ======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ======================== Traceback (most recent call last): File "script_save_export_onnx.py", line 331, in <module> torch.onnx.export(model=scripted_model, args=args, f="model.onnx", verbose=True,opset_version=17) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 507, in export _export( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 1567, in _export graph, params_dict, torch_out = _model_to_graph( File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 1124, in _model_to_graph graph, params, torch_out, module = _create_jit_graph(model, args) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 968, in _create_jit_graph _check_flatten_did_not_remove(args, flattened_args) File "/usr/local/lib/python3.10/dist-packages/torch/onnx/utils.py", line 956, in _check_flatten_did_not_remove raise ValueError( ValueError: args contained 2 None's after flattening. When exporting a ScriptModule or ScriptFunction, no args may be None because that breaks type propagation. ``` ### Versions docker pull nvcr.io/nvidia/pytorch:23.07-py3
0
665
110,148
Torch.onnx.dynamo_export stuck at reshape
module: onnx, triaged, module: dynamo, module: export
## Issue description I am trying out dynamo_export to convert my pytorch model to onnx and it seemed to be stuck at reshaping a tensor of all things. ## Code example The model code can be found [here](https://github.com/andresprados/SPIGA/blob/main/spiga/models/spiga.py), and the portion that caused the error is in the trace stack below: <details> <summary>Click to expand</summary> > /home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/onnx/_internal/exporter.py:130: UserWarning: torch.onnx.dynamo_export only implements opset version 18 for now. If you need to use a different opset version, please register them with register_custom_op. > warnings.warn( > /home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/nn/functional.py:4358: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. > warnings.warn( > /home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/nn/functional.py:4296: UserWarning: Default grid_sample and affine_grid behavior has changed to align_corners=False since 1.3.0. Please specify align_corners=True if the old behavior is desired. See the documentation of grid_sample for details. > warnings.warn( > Traceback (most recent call last): > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 1433, in run_node > return getattr(args[0], node.target)(*args[1:], **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/utils/_stats.py”, line 20, in wrapper > return fn(*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py”, line 1304, in torch_dispatch > return self.dispatch(func, types, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py”, line 1510, in dispatch > return decomposition_table[func](*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_refs/init.py”, line 4450, in view > return _reshape_view_helper(a, shape, allow_copy=False) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_refs/init.py”, line 3583, in reshape_view_helper > shape = utils.infer_size(shape, a.numel()) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/prims_common/init.py”, line 824, in infer_size > numel == newsize or (dim is not None and newsize > 0 and numel % newsize == 0), > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/init.py”, line 361, in bool > return self.node.bool() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 1036, in bool > return self.guard_bool(β€œβ€, 0) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 1006, in guard_bool > r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/recording.py”, line 246, in wrapper > return event.run(self) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/recording.py”, line 151, in run > return self.f(args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 3834, in evaluate_expr > concrete_val = self.size_hint(orig_expr) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 3633, in size_hint > raise self._make_data_dependent_error(result_expr, expr) > torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode: It appears that you’re trying to get a value out of symbolic int/float whose value is data-dependent (and thus we do not know the true value.) The expression we were trying to evaluate is Eq(2i0, 98) (unhinted: Eq(2i0, 98)). Scroll up to see where each of these data-dependent accesses originally occurred. > > The above exception was the direct cause of the following exception: > > Traceback (most recent call last): > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 1352, in get_fake_value > return wrap_fake_exception( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 921, in wrap_fake_exception > return fn() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 1353, in > lambda: run_node(tx.output, node, args, kwargs, nnmodule) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 1452, in run_node > raise RuntimeError(fn_str + str(e)).with_traceback(e.traceback) from e > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 1433, in run_node > return getattr(args[0], node.target)(*args[1:], **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/utils/_stats.py”, line 20, in wrapper > return fn(*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py”, line 1304, in torch_dispatch > return self.dispatch(func, types, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py”, line 1510, in dispatch > return decomposition_table[func](args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_refs/init.py”, line 4450, in view > return _reshape_view_helper(a, shape, allow_copy=False) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_refs/init.py”, line 3583, in reshape_view_helper > shape = utils.infer_size(shape, a.numel()) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/prims_common/init.py”, line 824, in infer_size > numel == newsize or (dim is not None and newsize > 0 and numel % newsize == 0), > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/init.py”, line 361, in bool > return self.node.bool() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 1036, in bool > return self.guard_bool(β€œβ€, 0) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 1006, in guard_bool > r = self.shape_env.evaluate_expr(self.expr, self.hint, fx_node=self.fx_node) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/recording.py”, line 246, in wrapper > return event.run(self) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/recording.py”, line 151, in run > return self.f(args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 3834, in evaluate_expr > concrete_val = self.size_hint(orig_expr) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/fx/experimental/symbolic_shapes.py”, line 3633, in size_hint > raise self._make_data_dependent_error(result_expr, expr) > RuntimeError: Failed running call_method reshape((FakeTensor(…, device=β€˜cuda:0’, size=(1, i0, 2), grad_fn=), 1, 98, -1), **{}): > It appears that you’re trying to get a value out of symbolic int/float whose value is data-dependent (and thus we do not know the true value.) The expression we were trying to evaluate is Eq(2i0, 98) (unhinted: Eq(2i0, 98)). Scroll up to see where each of these data-dependent accesses originally occurred. > > During handling of the above exception, another exception occurred: > > Traceback (most recent call last): > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/onnx/_internal/exporter.py”, line 1195, in dynamo_export > ).export() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/onnx/_internal/exporter.py”, line 941, in export > graph_module = self.options.fx_tracer.generate_fx( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/onnx/_internal/fx/dynamo_graph_extractor.py”, line 199, in generate_fx > graph_module, graph_guard = torch._dynamo.export( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py”, line 1216, in inner > result_traced = opt_f(*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py”, line 406, in _fn > return fn(*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/onnx/_internal/fx/dynamo_graph_extractor.py”, line 154, in wrapped > return output_adapter.apply(model_func(*args, **kwargs)) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/eval_frame.py”, line 554, in catch_errors > return callback(frame, cache_entry, hooks, frame_state) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py”, line 140, in _fn > return fn(*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py”, line 380, in _convert_frame_assert > return _compile( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py”, line 559, in _compile > guarded_code = compile_inner(code, one_graph, hooks, transform) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 190, in time_wrapper > r = func(*args, **kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py”, line 481, in compile_inner > out_code = transform_code_object(code, transform) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/bytecode_transformation.py”, line 1028, in transform_code_object > transformations(instructions, code_options) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/convert_frame.py”, line 451, in transform > tracer.run() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 2094, in run > super().run() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 739, in run > and self.step() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 702, in step > getattr(self, inst.opname)(inst) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 403, in wrapper > return inner_fn(self, inst) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 1135, in CALL_FUNCTION > self.call_function(fn, args, {}) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 576, in call_function > self.push(fn.call_function(self, args, kwargs)) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py”, line 307, in call_function > return super().call_function(tx, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py”, line 261, in call_function > return super().call_function(tx, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py”, line 90, in call_function > return tx.inline_user_function_return( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 612, in inline_user_function_return > result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/dynamo/symbolic_convert.py”, line 2221, in inline_call > return cls.inline_call(parent, func, args, kwargs) > File "/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/dynamo/symbolic_convert.py", line 2343, in inline_call > tracer.run() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 739, in run > and self.step() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 702, in step > getattr(self, inst.opname)(inst) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 403, in wrapper > return inner_fn(self, inst) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 1135, in CALL_FUNCTION > self.call_function(fn, args, {}) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 576, in call_function > self.push(fn.call_function(self, args, kwargs)) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py”, line 307, in call_function > return super().call_function(tx, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py”, line 261, in call_function > return super().call_function(tx, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/functions.py”, line 90, in call_function > return tx.inline_user_function_return( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 612, in inline_user_function_return > result = InliningInstructionTranslator.inline_call(self, fn, args, kwargs) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/dynamo/symbolic_convert.py”, line 2221, in inline_call > return cls.inline_call(parent, func, args, kwargs) > File "/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/dynamo/symbolic_convert.py", line 2343, in inline_call > tracer.run() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 739, in run > and self.step() > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 702, in step > getattr(self, inst.opname)(inst) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 403, in wrapper > return inner_fn(self, inst) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 1135, in CALL_FUNCTION > self.call_function(fn, args, {}) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/symbolic_convert.py”, line 576, in call_function > self.push(fn.call_function(self, args, kwargs)) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/misc.py”, line 617, in call_function > return self.obj.call_method(tx, self.name, args, kwargs).add_options(self) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/tensor.py”, line 693, in call_method > return wrap_fx_proxy( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py”, line 1289, in wrap_fx_proxy > return wrap_fx_proxy_cls( > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/variables/builder.py”, line 1376, in wrap_fx_proxy_cls > example_value = get_fake_value(proxy.node, tx) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/_dynamo/utils.py”, line 1381, in get_fake_value > raise UserError( > torch._dynamo.exc.UserError: Tried to use data-dependent value in the subsequent computation. This can happen when we encounter unbounded dynamic value that is unknown during tracing time.You will need to explicitly give hint to the compiler. Please take a look at constrain_as_value OR constrain_as_size APIs > > from user code: > File β€œ/home/evas/Downloads/SPIGA/SPIGA/spiga/models/spiga.py”, line 82, in forward > embedded_ft = self.extract_embedded(pts_proj, visual_field, step) > File β€œ/home/evas/Downloads/SPIGA/SPIGA/spiga/models/spiga.py”, line 124, in extract_embedded > shape_ft = self.calculate_distances(pts_proj) > File β€œ/home/evas/Downloads/SPIGA/SPIGA/spiga/models/spiga.py”, line 163, in calculate_distances > dist_wo_self = dist[:, self.diagonal_mask, :].reshape(B, L, -1) > > dist: tensor([[[-0.0072, -0.0387], > [-0.0144, -0.0772], > [-0.0311, -0.1161], > ..., > [ 0.1014, -0.2628], > [ 0.1312, -0.2631], > [ 0.2310, -0.0109]]], device='cuda:0', grad_fn=<IndexBackward0>) > shape: (1, 98) > The above exception was the direct cause of the following exception: > > Traceback (most recent call last): > File β€œ/home/evas/Downloads/SPIGA/SPIGA/app_CH.py”, line 74, in > tracked_obj = processor.process_frame(frame, [faces[0]]) > File β€œ/home/evas/Downloads/SPIGA/SPIGA/spiga/demo/analyze/extract/spiga_processor.py”, line 35, in process_frame > features = self.processor.inference(frame, bboxes) > File β€œ/home/evas/Downloads/SPIGA/SPIGA/spiga/inference/framework.py”, line 70, in inference > outputs = self.net_forward(batch_crops) > File β€œ/home/evas/Downloads/SPIGA/SPIGA/spiga/inference/framework.py”, line 98, in net_forward > torch.onnx.dynamo_export(self.model, inputs).save(β€œwflw.onnx”) > File β€œ/home/evas/anaconda3/envs/CH_test/lib/python3.10/site-packages/torch/onnx/_internal/exporter.py”, line 1206, in dynamo_export > raise OnnxExporterError( > torch.onnx.OnnxExporterError: Failed to export the model to ONNX. Generating SARIF report at β€˜report_dynamo_export.sarif’. SARIF is a standard format for the output of static analysis tools. SARIF logs can be loaded in VS Code SARIF viewer extension, or SARIF web viewer ([Sarif Viewer](https://microsoft.github.io/sarif-web-component/)). Please report a bug on PyTorch Github: [Issues Β· pytorch/pytorch Β· GitHub](https://github.com/pytorch/pytorch/issues) </details> OS: Ubuntu 20.04 | package | Version | | ------------- | ------------- | | torch | 2.1.0.dev20230830+cu118 | | torchaudio | 2.1.0.dev20230830+cu118 | |torchmetrics |0.11.4| |torchvision |0.16.0.dev20230830+cu118 | |onnx |1.14.0 | |onnxruntime-gpu |1.15.1 | |onnxscript-preview |0.1.0.dev20230905 | cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan
4
666
110,146
[DONT MERGE][ROCm] Update magma to 2.7.2 version
module: rocm, open source, ciflow/trunk, topic: not user facing
cc @jeffdaily @sunway513 @jithunnair-amd @ROCmSupport @dllehr-amd @jataylo @hongxiayang
2
667
110,137
custom_ops._destroy("test::foo") doesn't remove abstract_impl
triaged, oncall: pt2
### πŸ› Describe the bug self explanatory cc @msaroufim @wconstab @bdhirsh @anijain2305 @zou3519 ### Versions main
0
668
110,136
Unbacked SymInts get reallocated whenever you repropagate fake tensors
triaged, oncall: pt2, module: fakeTensor, module: dynamic shapes
### πŸ› Describe the bug (to be filled) ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305 @eellison
0
669
110,135
logging stack_info doesn't do anything
triaged, oncall: pt2, module: ProxyTensor
### πŸ› Describe the bug as stated ### Versions main cc @msaroufim @wconstab @bdhirsh @anijain2305
0
670
110,131
Some ONNX tests have been disabled because of new tensor.split signature
module: onnx, triaged, onnx-triaged
### πŸ› Describe the bug #107484 adds a new drop_remainder=False attribute to tensor.split. This causes some ONNX tests to fail, because the [corresponding op in ONNXScript](https://github.com/microsoft/onnxscript/blob/b6c5e3bb9729f939e979a41d8d724009df9f3b58/onnxscript/function_libs/torch_lib/ops/core.py#L6918) has the previous signature. `torch.onnx._internal.diagnostics.infra.context.RuntimeErrorWithDiagnostic: Cannot find any perfect/nearest match of symbolic function for aten::split.Tensor,which should be registered under aten.split.Tensor. ` Once the PR is merged, and the ONNX op script op is updated, I will fix this issue and re-enable the tests. ### Versions Not needed cc @seemethere @malfet @pytorch/pytorch-dev-infra
4
671
110,130
Create a new heuristic TD rule for failures coming from base commit of the pull requests
triaged, module: devx
Here is the thoughts behind this feature request: * If a test is failing on the base commit, we might want to run it **last** on the PR knowing that it's going to fail. This allows other failures to surface and prevent the situation where reverting a change surfaces other failures hidden by the broken trunk. * ~~On the other hand, if a pull request is deliberately created to forward fix trunk failures, running base failures **first** makes sense as this help validate the fix faster.~~ However, this should be the minority because: * We revert first, ask question later * Even if the fix works and the failed tests pass right away. It's the usual requirement to wait for the whole job finishes before merging, i.e. dynamo job has passed cc @ZainRizvi @kit1980 @clee2000
1
672
110,129
[manual] Rewrite remaining mock external_deps
caffe2, fb-exported
Summary: Remove dependencies on mock from external_deps. Test Plan: Visual inspection and sandcastle Reviewed By: aleivag, igorsugak Differential Revision: D49337369
6
673
110,120
[MPS] Fix output stride holistically when input isn't contiguous
open source, release notes: mps, ciflow/mps
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110120 * #109584 * #109574 * #109557 This is a long lasting bug, related issues: https://github.com/pytorch/pytorch/issues/107694, https://github.com/pytorch/pytorch/issues/94396 (and more). In general, we want to gather cached contiguous input tensors so that we don't need to make non-contiguous input tensors contiguous before the mps graph is run, since making tensors contiguous is an inefficient operation. However, when the output has been pre-set a non-contiguous stride, which usually happens when the kernel is structured or in-place, the result becomes incorrect because the gathered input tensors are contiguous, thereby producing a contiguous output. Therefore, this PR makes output tensor's stride contiguous when cached input tensors are gathered. This is a POC PR which only applies the fix to `clamp` & `masked_fill_`. If it is feasible, we could think about how to apply it to every MPS Graph kernel.
1
674
110,119
[WIP] Cache `FakeTensor` propagation.
open source, ciflow/inductor
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110119 Discussion at PoC PR: #109485
1
675
110,116
Skip cuda kernel launch with torch.sum when dimension length is 0
module: performance, module: cuda, triaged
### πŸš€ The feature, motivation and pitch If there is a torch tensor, e.g. `a = torch.ones([1, 1000])` and I call `a.sum(dim=0)`, torch will launch a cuda kernel for this when it's really just a view. Torch should special case this or include it inside the compiler in `torch.compile` as it is leads to significant wins in certain settings. ### Alternatives _No response_ ### Additional context _No response_ cc @ptrblck
0
676
110,107
torch._dynamo.reset() before and after running each test
ciflow/trunk, release notes: releng, module: dynamo, ciflow/inductor, keep-going
Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom): * __->__ #110107 Previously, running tests with PYTORCH_TEST_WITH_DYNAMO=1 ran some tests in eager-mode pytorch because the Dynamo cache filled up. We need to reset the Dynamo state before each test in order to actually run each test using Dynamo instead of non-deterministically falling back to eager-mode. Test Plan: - CI cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
4
677
110,100
torch.export.export does not support already-fakefied inputs within FakeTensorMode
triaged, onnx-triaged, module: fakeTensor, module: export, release notes: export
### πŸ› Describe the bug Apparently `torch.export.export` does not support already fakefied inputs that `torch._dynamo.export` does ```python import torch from torch._subclasses import fake_tensor fake_mode = fake_tensor.FakeTensorMode() class Model(torch.nn.Module): def __init__(self) -> None: super().__init__() self.linear = torch.nn.Linear(2, 2) def forward(self, x): out = self.linear(x) return out with fake_mode: x = torch.rand(5, 2, 2) model = Model() # gm, _ = torch._dynamo.export(model, x) # this works exported_program = torch.export.export(model, (x,)) # this fails with AssertionError: fake mode (<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7fe4259ac760>) from active fake mode 0 doesn't match mode (<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7fe355ae0760>) from fake tensor input 0 ``` The error is ```bash [2023-09-26 19:46:35,122] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect) /opt/conda/envs/ptca/lib/python3.8/site-packages/onnxruntime/capi/onnxruntime_validation.py:114: UserWarning: WARNING: failed to get cudart_version from onnxruntime build info. warnings.warn("WARNING: failed to get cudart_version from onnxruntime build info.") Traceback (most recent call last): File "repro_fake_tensor_exception_with_torch_export_export.py", line 19, in <module> gm, _ = torch.export.export(model, x) File "/opt/pytorch/torch/export/__init__.py", line 587, in export return export__RC__(f, args, kwargs, dynamic_shapes=dynamic_shapes) File "/opt/pytorch/torch/_export/__init__.py", line 92, in export__RC__ return export(f, args, kwargs) File "/opt/pytorch/torch/_export/__init__.py", line 395, in export raise UserError(UserErrorType.INVALID_INPUT, torch._dynamo.exc.UserError: Expecting `args` to be a tuple of example positional inputs, got <class 'torch._subclasses.fake_tensor.FakeTensor'> (ptca) root@88c3e49b4bcf:/opt/pytorch# python repro_fake_tensor_exception_with_torch_export_export.py [2023-09-26 19:46:56,376] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect) /opt/conda/envs/ptca/lib/python3.8/site-packages/onnxruntime/capi/onnxruntime_validation.py:114: UserWarning: WARNING: failed to get cudart_version from onnxruntime build info. warnings.warn("WARNING: failed to get cudart_version from onnxruntime build info.") > /opt/pytorch/torch/_export/__init__.py(430)export() -> fake_args, fake_kwargs, fake_mode = _convert_input_to_fake(gm_torch_level, args, kwargs) (Pdb) c Traceback (most recent call last): File "repro_fake_tensor_exception_with_torch_export_export.py", line 19, in <module> gm, _ = torch.export.export(model, (x,)) File "/opt/pytorch/torch/export/__init__.py", line 587, in export return export__RC__(f, args, kwargs, dynamic_shapes=dynamic_shapes) File "/opt/pytorch/torch/_export/__init__.py", line 92, in export__RC__ return export(f, args, kwargs) File "/opt/pytorch/torch/_export/__init__.py", line 430, in export fake_args, fake_kwargs, fake_mode = _convert_input_to_fake(gm_torch_level, args, kwargs) File "/opt/pytorch/torch/_export/__init__.py", line 289, in _convert_input_to_fake if detected_fake_mode := detect_fake_mode(fake_inps): File "/opt/pytorch/torch/_guards.py", line 829, in detect_fake_mode assert fake_mode is m, ( AssertionError: fake mode (<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7fe4259ac760>) from active fake mode 0 doesn't match mode (<torch._subclasses.fake_tensor.FakeTensorMode object at 0x7fe355ae0760>) from fake tensor input 0 fake mode from active fake mode 0 allocated at: File "repro_fake_tensor_exception_with_torch_export_export.py", line 4, in <module> fake_mode = fake_tensor.FakeTensorMode() File "/opt/pytorch/torch/_subclasses/fake_tensor.py", line 1273, in __init__ self.stack = "".join(traceback.format_stack()) fake mode from fake tensor input 0 allocated at: File "repro_fake_tensor_exception_with_torch_export_export.py", line 19, in <module> gm, _ = torch.export.export(model, (x,)) File "/opt/pytorch/torch/export/__init__.py", line 587, in export return export__RC__(f, args, kwargs, dynamic_shapes=dynamic_shapes) File "/opt/pytorch/torch/_export/__init__.py", line 92, in export__RC__ return export(f, args, kwargs) File "/opt/pytorch/torch/_export/__init__.py", line 407, in export gm_torch_level, _ = torch._dynamo.export( File "/opt/pytorch/torch/_dynamo/eval_frame.py", line 1216, in inner result_traced = opt_f(*args, **kwargs) File "/opt/pytorch/torch/nn/modules/module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/pytorch/torch/nn/modules/module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "/opt/pytorch/torch/_dynamo/eval_frame.py", line 406, in _fn return fn(*args, **kwargs) File "/opt/pytorch/torch/nn/modules/module.py", line 1519, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/opt/pytorch/torch/nn/modules/module.py", line 1528, in _call_impl return forward_call(*args, **kwargs) File "/opt/pytorch/torch/_dynamo/eval_frame.py", line 554, in catch_errors return callback(frame, cache_entry, hooks, frame_state) File "/opt/pytorch/torch/_dynamo/convert_frame.py", line 140, in _fn return fn(*args, **kwargs) File "/opt/pytorch/torch/_dynamo/convert_frame.py", line 380, in _convert_frame_assert return _compile( File "/opt/pytorch/torch/_dynamo/convert_frame.py", line 559, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/opt/pytorch/torch/_dynamo/utils.py", line 190, in time_wrapper r = func(*args, **kwargs) File "/opt/pytorch/torch/_dynamo/convert_frame.py", line 481, in compile_inner out_code = transform_code_object(code, transform) File "/opt/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/opt/pytorch/torch/_dynamo/convert_frame.py", line 434, in transform tracer = InstructionTranslator( File "/opt/pytorch/torch/_dynamo/symbolic_convert.py", line 2007, in __init__ output=OutputGraph( File "/opt/pytorch/torch/_dynamo/output_graph.py", line 291, in __init__ fake_mode = torch._subclasses.FakeTensorMode( File "/opt/pytorch/torch/_subclasses/fake_tensor.py", line 1273, in __init__ self.stack = "".join(traceback.format_stack()) (ptca) root@88c3e49b4bcf:/opt/pytorch# ``` ### Versions pytorch main branch cc @eellison @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan
3
678
110,098
Dynamo tests in CI seem to not run at times
high priority, triaged, oncall: pt2
We landed https://github.com/pytorch/pytorch/pull/109427. ~10-20 commits later, The Dynamo CI shard consistently started failing (repro: `PYTORCH_TEST_WITH_DYNAMO=1 python test_ops.py -k test_out_warning__refs_cat_cpu`, [example logs](https://github.com/pytorch/pytorch/actions/runs/6315629259/job/17148986023)). We are not sure why this happened. Possibly related: - https://github.com/pytorch/pytorch/issues/107444 cc @ezyang @gchanan @kadeng @seemethere @malfet @pytorch/pytorch-dev-infra @msaroufim @wconstab @bdhirsh @anijain2305
7
679
110,096
GPT2ForSequenceClassification, LayoutLMForSequenceClassification: "torch._dynamo.exc.Unsupported: call_function BuiltinVariable(setattr) [HFPretrainedConfigVariable(), ConstantVariable(str), ConstantVariable(str)] {}"
triaged, oncall: pt2
Repro: ``` python benchmarks/dynamo/huggingface.py --bfloat16 --accuracy --inference --device cuda --export-aot-inductor --only GPT2ForSequenceClassification ``` Error: ``` File "/home/binbao/pytorch/torch/_dynamo/convert_frame.py", line 559, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/binbao/pytorch/torch/_dynamo/utils.py", line 190, in time_wrapper r = func(*args, **kwargs) File "/home/binbao/pytorch/torch/_dynamo/convert_frame.py", line 481, in compile_inner out_code = transform_code_object(code, transform) File "/home/binbao/pytorch/torch/_dynamo/bytecode_transformation.py", line 1028, in transform_code_object transformations(instructions, code_options) File "/home/binbao/pytorch/torch/_dynamo/convert_frame.py", line 451, in transform tracer.run() File "/home/binbao/pytorch/torch/_dynamo/symbolic_convert.py", line 2103, in run super().run() File "/home/binbao/pytorch/torch/_dynamo/symbolic_convert.py", line 743, in run and self.step() File "/home/binbao/pytorch/torch/_dynamo/symbolic_convert.py", line 706, in step getattr(self, inst.opname)(inst) File "/home/binbao/pytorch/torch/_dynamo/symbolic_convert.py", line 1234, in STORE_ATTR .call_function( File "/home/binbao/pytorch/torch/_dynamo/variables/builtin.py", line 656, in call_function return super().call_function(tx, args, kwargs) File "/home/binbao/pytorch/torch/_dynamo/variables/base.py", line 306, in call_function unimplemented(f"call_function {self} {args} {kwargs}") File "/home/binbao/pytorch/torch/_dynamo/exc.py", line 176, in unimplemented raise Unsupported(msg) torch._dynamo.exc.Unsupported: call_function BuiltinVariable(setattr) [HFPretrainedConfigVariable(), ConstantVariable(str), ConstantVariable(str)] {} ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
0
680
110,091
[inductor][Optimus]Improve logging for Optimus
fb-exported, module: inductor, ciflow/inductor
Summary: It is based on the diff D49340843. We add more logs for better debug and logging purposes. Test Plan: N4248219 Differential Revision: D49422563 cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
12
681
110,089
sam: AssertionError at torch/_inductor/graph.py `assert isinstance(value, (TensorBox, sympy.Expr))`
triaged, oncall: pt2, module: inductor
Repro: ``` python benchmarks/dynamo/torchbench.py --bfloat16 --accuracy --inference --device cuda --inductor --only sam ``` Error: ``` File "/home/binbao/pytorch/torch/_inductor/graph.py", line 464, in run return super().run(*args) File "/home/binbao/pytorch/torch/fx/interpreter.py", line 138, in run self.env[node] = self.run_node(node) File "/home/binbao/pytorch/torch/_inductor/graph.py", line 735, in run_node result = super().run_node(n) File "/home/binbao/pytorch/torch/fx/interpreter.py", line 195, in run_node return getattr(self, n.op)(n.target, args, kwargs) File "/home/binbao/pytorch/torch/_inductor/graph.py", line 674, in output assert isinstance(value, (TensorBox, sympy.Expr)) AssertionError ``` cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305 @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @peterbell10 @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @aakhundov
9
682
110,084
scatter_add: Mixing 0-dim and 1-dim tensors
module: docs, triaged, module: python frontend, module: edge cases
### πŸ› Describe the bug scatter_add currently allows 0-dim and 1-dim tensors to be mixed together ``` import torch op = torch.ops.aten.scatter_add.default op(torch.zeros([1]), 0, torch.zeros([], dtype=torch.long), torch.ones([2])) op(torch.zeros([]), 0, torch.zeros([2], dtype=torch.long), torch.ones([3])) torch.zeros([1]).scatter_add_(0, torch.zeros([], dtype=torch.long), torch.ones([2])) torch.zeros([]).scatter_add_(0, torch.zeros([2], dtype=torch.long), torch.ones([3])) ``` However, documentation explicitly says that all three tensors should have the same number of dimensions https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_add_.html Code comments and error messages also state that the tensors should have the same dimensionality. The behavior is caused by the use of `ensure_nonempty_dim` in line 73 here: https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/ScatterGatherChecks.h#L66-L74 Notice code comment (line 66) and error message (line 74) stating number of dimensions must be the same Is this behavior desired? If so, then we need to update code comment/error message/documentation. ### Versions . cc @svekars @carljparker @albanD
0
683
110,080
Devices API
feature, triaged, needs design, topic: new features, module: python frontend
### πŸš€ The feature, motivation and pitch Hi, I would like to propose a new device API that is device-type (cuda, xla, npu, …) agnostic. For example, you could do: ``` torch.devices.count(type='cuda') torch.devices.is_available(type='npu') torch.devices.seed(42, type='xla') ``` Instead of: ``` torch.cuda.device_count() torch_npu.npu.is_available() torch_xla.set_rng_state(42) ``` This would greatly help with making 3rd party code device-type agnostic because, at the moment, each device type has its own API. I would be happy to implement such an API if there is support from the community. #108046 is loossly related and could be put under the same API namespace (cc team: @AnthonyBarbier @HMellor) ### Alternatives _No response_ ### Additional context _No response_ cc @albanD
2
684
110,078
Fix linalg_vector_norm ONNX export with wrong output dtype
module: onnx, triaged, open source, release notes: onnx
Up to now, the export of `aten::linalg_vector_norm` was wrongly giving as output dtype `torch.float32` although the input may be of other dtype. This does not match PyTorch behavior (e.g. see https://github.com/pytorch/pytorch/blob/23938640706214921c0c0c29b1ed4855a0536cd8/torch/_refs/linalg/__init__.py#L72 or https://github.com/pytorch/pytorch/blob/23938640706214921c0c0c29b1ed4855a0536cd8/aten/src/ATen/native/LinearAlgebra.cpp#L2713 - though the second one is quite unreadable to me, I would need to compile pytorch with `DEBUG=1` and use `TORCH_SHOW_DISPATCH_TRACE=1` to understand where the output is allocated). Example of the issue: ```python import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super().__init__() self.lin = nn.Linear(10, 20) self.eps = 1e-12 self.dim = -1 def forward(self, x): denom = x.norm(2.0, self.dim, keepdim=True) print("denom", denom.dtype) return denom model = MyModel() model = model.eval().to(torch.float16).to("cuda") inp = torch.rand(8, 10, device="cuda", dtype=torch.float16) with torch.no_grad(): res = model(inp) torch.onnx.export(model, (inp,), f="normalize.onnx") ``` giving out ![image](https://github.com/pytorch/pytorch/assets/9808326/44b3ea0b-e1d2-4f23-a963-e8bc8e7cb9df) with the current implementation, while giving ![image](https://github.com/pytorch/pytorch/assets/9808326/dc737a45-bcc1-464e-bce0-d68728033a79) in this proposed PR. WDYT @justinchuby @BowenBao? This is an issue for the ONNX export in fp16 for some models, where ORT later raise at load time the error `FAIL : Load model from speecht5_onnx/decoder_model.onnx failed:Type Error: Type parameter (T) of Optype (MatMul) bound to different types (tensor(float) and tensor(float16)` due to this bug.
8
685
110,074
ImportError: libc10_cuda.so: cannot open shared object file: No such file or directory
oncall: binaries, module: build
### πŸ› Describe the bug So, I am trying to run a command of mmdeploy, a repor from openmmlab, and I am having a hard time with this error, can somebody help me pls ? For you to have the full scope of the bug : reipig1@varntvar:~/Documents/binedge$ python mmdeploy/tools/deploy.py mmdeploy/configs/mmpose/pose-detection_onnxruntime_static.py mmpose/configs/wholebody_2d_keypoint/topdown_heatmap/coco-wholebody/cspnext-m_udp_8xb64-210e_coco-wholebody-256x192.py cspnext-m_udp-coco-wholebody_pt-in1k_210e-256x192-320fa258_20230123.pth mmpose/tests/data/coco/000000000785.jpg --work-dir mmdeploy_model/cpsnext_optimized --device cpu --dump-info Traceback (most recent call last): File "/m/home/home3/34/reipig1/data/Documents/binedge/mmdeploy/tools/deploy.py", line 335, in <module> main() File "/m/home/home3/34/reipig1/data/Documents/binedge/mmdeploy/tools/deploy.py", line 129, in main export2SDK( File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/backend/sdk/export_info.py", line 352, in export2SDK deploy_info = get_deploy(deploy_cfg, model_cfg, work_dir, device) File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/backend/sdk/export_info.py", line 267, in get_deploy _, customs = get_model_name_customs( File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/backend/sdk/export_info.py", line 61, in get_model_name_customs task_processor = build_task_processor( File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/apis/utils/utils.py", line 46, in build_task_processor import_codebase(codebase_type, custom_module_list) File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/codebase/__init__.py", line 37, in import_codebase codebase.register_all_modules() File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/codebase/mmpose/deploy/pose_detection.py", line 133, in register_all_modules cls.register_deploy_modules() File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/codebase/mmpose/deploy/pose_detection.py", line 123, in register_deploy_modules import mmdeploy.codebase.mmdet.models File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/codebase/mmdet/models/__init__.py", line 3, in <module> from . import dense_heads # noqa: F401,F403 File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/codebase/mmdet/models/dense_heads/__init__.py", line 2, in <module> from . import base_dense_head # noqa: F401,F403 File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdeploy/codebase/mmdet/models/dense_heads/base_dense_head.py", line 5, in <module> from mmdet.models.dense_heads import PAAHead File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdet/models/__init__.py", line 2, in <module> from .backbones import * # noqa: F401,F403 File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdet/models/backbones/__init__.py", line 2, in <module> from .csp_darknet import CSPDarknet File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdet/models/backbones/csp_darknet.py", line 11, in <module> from ..layers import CSPLayer File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdet/models/layers/__init__.py", line 3, in <module> from .bbox_nms import fast_nms, multiclass_nms File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/site-packages/mmdet/models/layers/bbox_nms.py", line 5, in <module> from mmcv.ops.nms import batched_nms File "/u/34/reipig1/unix/.local/lib/python3.10/site-packages/mmcv/ops/__init__.py", line 2, in <module> from .active_rotated_filter import active_rotated_filter File "/u/34/reipig1/unix/.local/lib/python3.10/site-packages/mmcv/ops/active_rotated_filter.py", line 10, in <module> ext_module = ext_loader.load_ext( File "/u/34/reipig1/unix/.local/lib/python3.10/site-packages/mmcv/utils/ext_loader.py", line 13, in load_ext ext = importlib.import_module('mmcv.' + name) File "/u/34/reipig1/unix/.conda/envs/mmdeploy/lib/python3.10/importlib/__init__.py", line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) ImportError: libc10_cuda.so: cannot open shared object file: No such file or directory ### Error logs _No response_ ### Minified repro _No response_ ### Versions % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 21709 100 21709 0 0 67116 0 --:--:-- --:--:-- --:--:-- 67003 mmdeploy) reipig1@varntvar:~/Documents/binedge$ python3 collect_env.py Collecting environment information... PyTorch version: 2.0.0 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.3 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.8 (main, Nov 24 2022, 14:13:03) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-79-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: 9.0.176 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: Could not collect Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 4 CPU max MHz: 3900.0000 CPU min MHz: 1200.0000 BogoMIPS: 7200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 6 MiB (6 instances) L3 cache: 8.3 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS, IBPB conditional, STIBP conditional, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT vulnerable Versions of relevant libraries: [pip3] flake8==6.1.0 [pip3] numpy==1.23.5 [pip3] torch==2.0.0 [pip3] torchaudio==2.0.0 [pip3] torchvision==0.15.0 [conda] blas 1.0 mkl [conda] cpuonly 2.0 0 pytorch [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.8 py310h5eee18b_0 [conda] mkl_random 1.2.4 py310hdb19cb5_0 [conda] numpy 1.23.5 pypi_0 pypi [conda] numpy-base 1.25.2 py310hb5e798b_0 [conda] pytorch 2.0.0 py3.10_cpu_0 pytorch [conda] pytorch-cuda 11.7 h778d358_5 pytorch [conda] pytorch-mutex 1.0 cpu pytorch [conda] torchaudio 2.0.0 py310_cpu pytorch [conda] torchvision 0.15.0 py310_cpu pytorch cc @seemethere @malfet @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
1
686
110,072
test_complex_div_underflow_overflow: increase amount of input data
triaged, open source, topic: not user facing
This ensures that even for complex float and AVX512 there would be enough data to use vectorized path. Without this change test test_complex_div_underflow_overflow_cpu_complex64 would use non-vectorized algorithm while test test_complex_div_underflow_overflow_cpu_complex128 would use vectorized algorithm on s390x. Same behaviour is happening on x86_64 with AVX2.
2
687
110,071
Fix clang-tidy errors misc-definitions-in-headers
fb-exported, release notes: jit
Summary: Issue in graph_task.h seeme to be very real because each translation unit that includes this header will have own copy of the variable so IDs might repeat. Differential Revision: D49635426
8
688
110,067
Add IWYU pragma for umbrella header
fb-exported
Summary: Include cleaner tools would benefit from IWYU pragmas that define implementation headers and exported headers. See for more information. ``` https://github.com/include-what-you-use/include-what-you-use/blob/master/docs/IWYUPragmas.md ``` Test Plan: sandcastle_pass Differential Revision: D49632855
4
689
110,065
[BUG] Elastic cannot kill all subprocesses after sending sigterm.
oncall: distributed, module: multiprocessing, triaged, module: elastic
### πŸ› Describe the bug ```python def _close(self, death_sig: signal.Signals, timeout: int = 30) -> None: if not self.subprocess_handlers: return for handler in self.subprocess_handlers.values(): if handler.proc.poll() is None: log.warning( "Sending process %s closing signal %s", handler.proc.pid, death_sig.name ) handler.close(death_sig=death_sig) end = time.monotonic() + timeout for handler in self.subprocess_handlers.values(): time_to_wait = end - time.monotonic() if time_to_wait <= 0: break try: handler.proc.wait(time_to_wait) except subprocess.TimeoutExpired: # Ignore the timeout expired exception, since # the child process will be forcefully terminated via SIGKILL pass for handler in self.subprocess_handlers.values(): if handler.proc.poll() is None: log.warning( "Unable to shutdown process %s via %s, forcefully exiting via %s", handler.proc.pid, death_sig, _get_kill_signal() ) handler.close(death_sig=_get_kill_signal()) handler.proc.wait() ``` The main process has timed out for 30 seconds and has not been terminated by funcition 'handler.close'. Using the sigkill to terminate the main process will cause the ppid of the child process under the main process to change to 1, making it impossible to completely clean up, causing the remaining processes to occupy resources. In some third-party device scenarios, the training script cannot be launched for the second time. Only after using pkill can work. Thus, I offer a solution which will record pids of all subprocesses and check whether all the subprocesses have been killed, if not, sigkill will be send to those subprocesses. ```python import psutil def get_child_processes(parent_pid): parent = psutil.Process(parent_pid) children = parent.children(recursive=True) return children #before kill parent_pid = os.getpid() parent_pid = handler.proc.pid child_processes = [] child_processes.append(get_child_processes(parent_pid)) #after kill for children in child_processes: for child in children: if child.poll() is None: os.kill(child.pid, _get_kill_signal()) ``` ### Versions [pip3] flake8==6.0.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.11.1 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==0.960 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.23.1 [pip3] torch==2.1.0.dev20230810+cpu [pip3] torchvision==0.15.1 [conda] numpy 1.23.1 pypi_0 pypi [conda] torchvision 0.15.1 pypi_0 pypi cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @VitalyFedyunin @dzhulgakov
2
690
110,062
DISABLED test_tags_recomputed_rand (__main__.ActivationCheckpointingViaTagsTests)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: linux, rocm, slow This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_tags_recomputed_rand&suite=ActivationCheckpointingViaTagsTests) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/17123686365). Over the past 3 hours, it has been determined flaky in 15 workflow(s) with 45 failures and 15 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_tags_recomputed_rand` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_activation_checkpointing.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
5
691
110,057
[dynamo] Fix comparison between SymNodeVariable and ListVariable
triaged, open source, topic: not user facing, module: dynamo, ciflow/inductor
Fixes #109504 Shuffled around an if statement to cause mis-matching types with 'is' operator to return False instead of triggering unimplemented exception cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
4
692
110,056
torch.onnx.export causes floating point exception with core dump for empty slice assignment
module: onnx, triaged
### πŸ› Describe the bug A simple slice assignment called inside a module causes a floating point exception when the module is exported into the ONNX via `torch.onnx.export`. * The full error message on a Ubuntu server is `Floating point exception (core dumped)`. * Note that I was able to reproduce this behavior only on the Ubuntu server. The behavior on Macbook M1 Pro was just a few warning messages without failure. See the last section for more details. # The code for reproducing the error Let's call it `repro.py` ```python import io import torch class SliceAssignZeros(torch.nn.Module): def forward(self, x: torch.Tensor): x[1:-1] = 0 return x def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('-s', '--size', type=int, default=2) args = parser.parse_args() x = torch.ones(args.size) model = SliceAssignZeros() print(f'input: {x}') print(f'output: {model(x)}') with io.BytesIO() as f: torch.onnx.export(model, (x, ), f) if __name__ == '__main__': main() ``` # Steps to reproduce ## 1. Set up environment See the details about the environment in the **Versions** section. ``` conda create -n issue python=3.10 -y conda activate issue conda install pytorch -c pytorch -y pip install onnx ``` ## 2. Run the following command ``` python repro.py -s 2 ``` **NOTE**: If you give any positive integer value to other than 2 to the `-s` flag, the script runs normally. # The Output In my opinion, expected behavior are: 1. the model is exported into ONNX normally; or 2. torch warns (or throws an exception) with message indicating that the index range used for slice assignment is empty. However, the error message on Ubuntu wasn't helpful to find out the root cause of the core dump. (Empty slice assignment doesn't look very relevant to floating point exception in my opinion.) It was nice that the code worked on MacOS, but the warning message was still not very helpful. ## Ubuntu 22.04 ``` input: tensor([1., 1.]) output: tensor([1., 1.]) Floating point exception (core dumped) ``` ## MacOS Ventura 13.4.1 ``` input: tensor([1., 1.]) output: tensor([1., 1.]) /Users/choijiwoong/miniconda3/envs/issue/lib/python3.10/site-packages/torch/onnx/_internal/jit_utils.py:306: UserWarning: ComputeShapeFromReshape(), shape_ratio overflows, skip shape inference. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1682343686130/work/torch/csrc/jit/passes/onnx/shape_type_inference.cpp:495.) _C._jit_pass_onnx_node_shape_type_inference(node, params_dict, opset_version) /Users/choijiwoong/miniconda3/envs/issue/lib/python3.10/site-packages/torch/onnx/utils.py:689: UserWarning: ComputeShapeFromReshape(), shape_ratio overflows, skip shape inference. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1682343686130/work/torch/csrc/jit/passes/onnx/shape_type_inference.cpp:495.) _C._jit_pass_onnx_graph_shape_type_inference( /Users/choijiwoong/miniconda3/envs/issue/lib/python3.10/site-packages/torch/onnx/utils.py:1186: UserWarning: ComputeShapeFromReshape(), shape_ratio overflows, skip shape inference. (Triggered internally at /Users/runner/work/_temp/anaconda/conda-bld/pytorch_1682343686130/work/torch/csrc/jit/passes/onnx/shape_type_inference.cpp:495.) _C._jit_pass_onnx_graph_shape_type_inference( ================ Diagnostic Run torch.onnx.export version 2.0.1 ================ verbose: False, log level: Level.ERROR ======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ======================== ``` ### Versions # Ubuntu server ```bash (issue) $ python collect_env.py Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: Could not collect ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.1 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.19.0-41-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA RTX A6000 GPU 1: NVIDIA RTX A6000 Nvidia driver version: 510.108.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 43 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD Model name: AMD Ryzen Threadripper PRO 3955WX 16-Cores CPU family: 23 Model: 49 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 0 Frequency boost: enabled CPU max MHz: 4402.7339 CPU min MHz: 2200.0000 BogoMIPS: 7786.12 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip rdpid overflow_recov succor smca sev sev_es Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 8 MiB (16 instances) L3 cache: 64 MiB (4 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; untrained return thunk; SMT enabled with STIBP protection Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==1.26.0 [pip3] torch==2.0.1 [conda] blas 1.0 mkl [conda] mkl 2023.1.0 h213fc3f_46343 [conda] numpy 1.26.0 pypi_0 pypi [conda] pytorch 2.0.1 py3.10_cpu_0 pytorch [conda] pytorch-mutex 1.0 cpu pytorch (issue) $ conda env export name: issue channels: - pytorch - defaults dependencies: - _libgcc_mutex=0.1=main - _openmp_mutex=5.1=1_gnu - blas=1.0=mkl - bzip2=1.0.8=h7b6447c_0 - ca-certificates=2023.08.22=h06a4308_0 - filelock=3.9.0=py310h06a4308_0 - gmp=6.2.1=h295c915_3 - gmpy2=2.1.2=py310heeb90bb_0 - intel-openmp=2023.1.0=hdb19cb5_46305 - jinja2=3.1.2=py310h06a4308_0 - ld_impl_linux-64=2.38=h1181459_1 - libffi=3.4.4=h6a678d5_0 - libgcc-ng=11.2.0=h1234567_1 - libgomp=11.2.0=h1234567_1 - libstdcxx-ng=11.2.0=h1234567_1 - libuuid=1.41.5=h5eee18b_0 - markupsafe=2.1.1=py310h7f8727e_0 - mkl=2023.1.0=h213fc3f_46343 - mpc=1.1.0=h10f8cd9_1 - mpfr=4.0.2=hb69a4c5_1 - mpmath=1.3.0=py310h06a4308_0 - ncurses=6.4=h6a678d5_0 - networkx=3.1=py310h06a4308_0 - openssl=3.0.11=h7f8727e_2 - pip=23.2.1=py310h06a4308_0 - python=3.10.13=h955ad1f_0 - pytorch=2.0.1=py3.10_cpu_0 - pytorch-mutex=1.0=cpu - readline=8.2=h5eee18b_0 - setuptools=68.0.0=py310h06a4308_0 - sqlite=3.41.2=h5eee18b_0 - sympy=1.11.1=py310h06a4308_0 - tbb=2021.8.0=hdb19cb5_0 - tk=8.6.12=h1ccaba5_0 - typing_extensions=4.7.1=py310h06a4308_0 - tzdata=2023c=h04d1e81_0 - wheel=0.38.4=py310h06a4308_0 - xz=5.4.2=h5eee18b_0 - zlib=1.2.13=h5eee18b_0 - pip: - numpy==1.26.0 - onnx==1.14.1 - protobuf==4.24.3 prefix: /home/jiwoongchoi/anaconda3/envs/issue ``` # MacOS laptop ```bash (issue) $ python collect_env.py Collecting environment information... PyTorch version: 2.0.1 Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: macOS 13.4.1 (arm64) GCC version: Could not collect Clang version: 14.0.3 (clang-1403.0.22.14.1) CMake version: version 3.25.1 Libc version: N/A Python version: 3.10.13 (main, Sep 11 2023, 08:16:02) [Clang 14.0.6 ] (64-bit runtime) Python platform: macOS-13.4.1-arm64-arm-64bit Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Apple M1 Pro Versions of relevant libraries: [pip3] numpy==1.26.0 [pip3] torch==2.0.1 [conda] numpy 1.26.0 pypi_0 pypi [conda] pytorch 2.0.1 py3.10_0 pytorch (issue) $ conda env export name: issue channels: - pytorch - defaults dependencies: - bzip2=1.0.8=h620ffc9_4 - ca-certificates=2023.08.22=hca03da5_0 - filelock=3.9.0=py310hca03da5_0 - gmp=6.2.1=hc377ac9_3 - gmpy2=2.1.2=py310h8c48613_0 - jinja2=3.1.2=py310hca03da5_0 - libcxx=14.0.6=h848a8c0_0 - libffi=3.4.4=hca03da5_0 - markupsafe=2.1.1=py310h1a28f6b_0 - mpc=1.1.0=h8c48613_1 - mpfr=4.0.2=h695f6f0_1 - mpmath=1.3.0=py310hca03da5_0 - ncurses=6.4=h313beb8_0 - networkx=3.1=py310hca03da5_0 - openssl=3.0.11=h1a28f6b_2 - pip=23.2.1=py310hca03da5_0 - python=3.10.13=hb885b13_0 - pytorch=2.0.1=py3.10_0 - readline=8.2=h1a28f6b_0 - setuptools=68.0.0=py310hca03da5_0 - sqlite=3.41.2=h80987f9_0 - sympy=1.11.1=py310hca03da5_0 - tk=8.6.12=hb8d0fd4_0 - typing_extensions=4.7.1=py310hca03da5_0 - tzdata=2023c=h04d1e81_0 - wheel=0.38.4=py310hca03da5_0 - xz=5.4.2=h80987f9_0 - zlib=1.2.13=h5a0b063_0 - pip: - numpy==1.26.0 - onnx==1.14.1 - protobuf==4.24.3 prefix: /Users/choijiwoong/miniconda3/envs/issue ```
0
693
110,052
[Dynamo][Test] reland testcase with state again
triaged, open source, topic: not user facing, module: dynamo
The PR https://github.com/pytorch/pytorch/pull/109713 was reverted due to a mistake. Reland the code again. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng @anijain2305 @PaliC
4
694
110,051
DISABLED test_tags_rand (__main__.ActivationCheckpointingViaTagsTests)
triaged, module: flaky-tests, skipped, module: dynamo
Platforms: linux, rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_tags_rand&suite=ActivationCheckpointingViaTagsTests) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/17118349065). Over the past 3 hours, it has been determined flaky in 10 workflow(s) with 30 failures and 10 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_tags_rand` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `dynamo/test_activation_checkpointing.py` cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx @chenyang78 @aakhundov @kadeng
6
695
110,049
[vision hash update] update the pinned vision hash
open source, ciflow/trunk, topic: not user facing, ciflow/inductor
This PR is auto-generated nightly by [this action](https://github.com/pytorch/pytorch/blob/main/.github/workflows/_update-commit-hash.yml). Update the pinned vision hash.
4
696
110,047
Grouped query attention
null
# Summary Closed: #106730 in favor of this PR since the rebase would have been more difficult then just recreating. There is still some edge cases I need to appropriately handle but this is how it could look.#109887 ## Design choices This is currently implemented by looking at the "num heads" dimension, size(1) and determining if it can be repeat_interleaved to fill the query num_heads. Another option would be to pass in an explicit `groups` parameter to the top level SDPA and passing down.
2
697
110,040
DISABLED test_circular_dependencies (__main__.TestImports)
module: rocm, module: tests, triaged, module: flaky-tests, skipped
Platforms: rocm This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_circular_dependencies&suite=TestImports) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/17106258267). Over the past 3 hours, it has been determined flaky in 3 workflow(s) with 3 failures and 3 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_circular_dependencies` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. Test file path: `test_testing.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @mruberry
3
698
110,038
DISABLED test_tags_multiple_checkpoints (__main__.ActivationCheckpointingViaTagsTests)
triaged, skipped, oncall: pt2
Platforms: linux, rocm, slow https://github.com/pytorch/pytorch/actions/runs/6303967068/job/17115576334 This test was disabled because it is failing on main branch ([recent examples](http://torch-ci.com/failure/dynamo%2Ftest_activation_checkpointing.py%3A%3AActivationCheckpointingViaTagsTests%3A%3Atest_tags_multiple_checkpoints)). cc @ezyang @msaroufim @wconstab @bdhirsh @anijain2305
8
699
110,037
[experiment] rename distributed tests with backend
topic: not user facing, test-config/distributed
Fixes #ISSUE_NUMBER
1
700
110,036
Update caffe2 with LLVM-18 API change to CreateMalloc/CreateFree
fb-exported, NNC, release notes: jit
Summary: https://reviews.llvm.org/D158861 and https://reviews.llvm.org/D159418 modified the APIs for `CreateMalloc` and `CreateFree` respectively from being based off of `CallInst` to `IRBuilderBase`. Use the new API under LLVM version guards Test Plan: CI Differential Revision: D49612136 cc @EikanWang @jgong5
6