code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def receive(): <NEW_LINE> <INDENT> while True: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> msg = client_socket.recv(BUFSIZ).decode("utf8") <NEW_LINE> msg_list.insert(tkinter.END, msg) <NEW_LINE> <DEDENT> except OSError: <NEW_LINE> <INDENT> break
|
Handle receiving of messages.
|
625941b556ac1b37e6263fe5
|
@login_required <NEW_LINE> def start_process_view(request): <NEW_LINE> <INDENT> next_users = None <NEW_LINE> current_user_position_id = request.user.position_id <NEW_LINE> if current_user_position_id < 3: <NEW_LINE> <INDENT> next_users = MyUser.objects.filter(position_id=current_user_position_id + 1).all() <NEW_LINE> <DEDENT> if next_users is None: <NEW_LINE> <INDENT> messages.add_message(request, messages.INFO, "You need not create process!") <NEW_LINE> return HttpResponseRedirect(reverse('OAsysterm:index')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if request.method == 'POST': <NEW_LINE> <INDENT> contets_md = markdown.markdown(request.POST.get('contents')) <NEW_LINE> Processes.objects.create( theme=request.POST.get('theme'), contents=contets_md, next_approver=request.POST.get('nextuser'), level=request.POST.get('level'), author=request.user ) <NEW_LINE> return HttpResponseRedirect(reverse('OAsysterm:index')) <NEW_LINE> <DEDENT> <DEDENT> return render(request, template_name='main/startprocess.html', context={'next_users': next_users})
|
发起流程.有两种情况,一种是当前用户职位是Boss,则无需发流程;
其他情况发流程则需要选中下一个比自己职级高一级的人员
|
625941b515fb5d323cde090d
|
def validate_authorization_request(self): <NEW_LINE> <INDENT> return validate_code_authorization_request(self)
|
The client constructs the request URI by adding the following
parameters to the query component of the authorization endpoint URI
using the "application/x-www-form-urlencoded" format.
Per `Section 4.1.1`_.
response_type
REQUIRED. Value MUST be set to "code".
client_id
REQUIRED. The client identifier as described in Section 2.2.
redirect_uri
OPTIONAL. As described in Section 3.1.2.
scope
OPTIONAL. The scope of the access request as described by
Section 3.3.
state
RECOMMENDED. An opaque value used by the client to maintain
state between the request and callback. The authorization
server includes this value when redirecting the user-agent back
to the client. The parameter SHOULD be used for preventing
cross-site request forgery as described in Section 10.12.
The client directs the resource owner to the constructed URI using an
HTTP redirection response, or by other means available to it via the
user-agent.
For example, the client directs the user-agent to make the following
HTTP request using TLS (with extra line breaks for display purposes
only):
.. code-block:: http
GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz
&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1
Host: server.example.com
The authorization server validates the request to ensure that all
required parameters are present and valid. If the request is valid,
the authorization server authenticates the resource owner and obtains
an authorization decision (by asking the resource owner or by
establishing approval via other means).
.. _`Section 4.1.1`: https://tools.ietf.org/html/rfc6749#section-4.1.1
|
625941b5e8904600ed9f1d2d
|
def make_instance(self, include_optional): <NEW_LINE> <INDENT> if include_optional : <NEW_LINE> <INDENT> return StatusGroupInnerResult( status = 'None', total = 56 ) <NEW_LINE> <DEDENT> else : <NEW_LINE> <INDENT> return StatusGroupInnerResult( )
|
Test StatusGroupInnerResult
include_option is a boolean, when False only required
params are included, when True both required and
optional params are included
|
625941b5462c4b4f79d1d4d5
|
def delete_project(self, id): <NEW_LINE> <INDENT> url = "{}/api/projects/{}".format(self.base_url, id) <NEW_LINE> response = self.client.delete(url) <NEW_LINE> return response
|
DELETE /api/projects/<id>
|
625941b5009cb60464c631c2
|
def _block_index_(ii, block_number, length, mode = 'sequential'): <NEW_LINE> <INDENT> block_length = int(numpy.round(length / block_number)) <NEW_LINE> index = numpy.arange(length) <NEW_LINE> if (mode == 'sequential')|(mode is None): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> elif mode == 'random': <NEW_LINE> <INDENT> random.shuffle(index) <NEW_LINE> <DEDENT> elif mode == 'equidistant': <NEW_LINE> <INDENT> index = numpy.mod(numpy.arange(length) * block_length, length) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError('Indexer type not recognized! Use: sequential/random/equidistant') <NEW_LINE> <DEDENT> first = ii * block_length <NEW_LINE> last = min((length + 1, (ii + 1) * block_length)) <NEW_LINE> return index[first:last]
|
Create a slice for a projection block
|
625941b55e10d32532c5ed34
|
def displayable(inputstr, strip=True): <NEW_LINE> <INDENT> return clean(str(inputstr), strip, rem_indents=False, encoding_errors="backslashreplace")
|
Make a string displayable with minimal loss of information.
|
625941b566656f66f7cbbfaf
|
def findKey(lis, key): <NEW_LINE> <INDENT> ret = [] <NEW_LINE> for (fst, snd, trd) in lis: <NEW_LINE> <INDENT> if fst == key or snd == key: <NEW_LINE> <INDENT> ret.append(trd) <NEW_LINE> <DEDENT> <DEDENT> return ret
|
W liście trzykrotek szuka key jako pierwszego
lub drugiego elementu i zwraca trzeci element.
|
625941b5b7558d58953c4d21
|
@pytest.mark.skip(reason="Now seems to raise TypeError: readonly attribute?") <NEW_LINE> def test_printer_none_encoding(monkeypatch): <NEW_LINE> <INDENT> monkeypatch.setattr("sys.stdout.encoding", None) <NEW_LINE> p = Printer()
|
Test that printer works even if sys.stdout.encoding is set to None. This
previously caused a very confusing error.
|
625941b596565a6dacc8f4da
|
def load_model_weights(self, model_name, weights_file): <NEW_LINE> <INDENT> net = getattr(self, f"net_{model_name}") <NEW_LINE> print(f"loading the model {model_name} from {weights_file}") <NEW_LINE> state_dict = torch.load(weights_file, map_location=self.device) <NEW_LINE> if hasattr(state_dict, "_metadata"): <NEW_LINE> <INDENT> del state_dict._metadata <NEW_LINE> <DEDENT> net.load_state_dict(state_dict) <NEW_LINE> return self
|
Loads the weights for a single model
Args:
model_name: name of the model to load parameters into
weights_file: path to weights file
|
625941b59c8ee82313fbb57a
|
def do_cluster_state(self, args): <NEW_LINE> <INDENT> params = ( ('pretty', ''), ) <NEW_LINE> try: <NEW_LINE> <INDENT> response = requests.get('http://{}:{}/_cluster/state'.format(self.host, self.port), params=params) <NEW_LINE> if not response: <NEW_LINE> <INDENT> print(response.status_code) <NEW_LINE> sys.stdout.buffer.write(response.content) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> sys.stdout.buffer.write(response.content) <NEW_LINE> <DEDENT> <DEDENT> except HTTPError as http_err: <NEW_LINE> <INDENT> print('HTTP error occurred: {}'.format(http_err)) <NEW_LINE> <DEDENT> except Exception as err: <NEW_LINE> <INDENT> print("Other error occurred: {}".format(err))
|
Show cluster state
|
625941b515fb5d323cde090e
|
def clone(self, table_restrictions=None, clone_factory=None): <NEW_LINE> <INDENT> clone_factory = clone_factory or PanDatFactory <NEW_LINE> from ticdat import TicDatFactory <NEW_LINE> no_copy_predicate_kwargs_maker = clone_factory == TicDatFactory <NEW_LINE> if hasattr(clone_factory, "create_from_full_schema"): <NEW_LINE> <INDENT> clone_factory = clone_factory.create_from_full_schema <NEW_LINE> <DEDENT> full_schema = utils.clone_a_anchillary_info_schema(self.schema(include_ancillary_info=True), table_restrictions) <NEW_LINE> rtn = clone_factory(full_schema) <NEW_LINE> for tbl, row_predicates in self._data_row_predicates.items(): <NEW_LINE> <INDENT> if table_restrictions is None or tbl in table_restrictions: <NEW_LINE> <INDENT> for pn, rpi in row_predicates.items(): <NEW_LINE> <INDENT> if not (rpi.predicate_kwargs_maker and no_copy_predicate_kwargs_maker): <NEW_LINE> <INDENT> rtn.add_data_row_predicate(tbl, predicate=rpi.predicate, predicate_name=pn, predicate_kwargs_maker=rpi.predicate_kwargs_maker, predicate_failure_response=rpi.predicate_failure_response) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return rtn
|
clones the PanDatFactory
:param table_restrictions : if None, then argument is ignored. Otherwise, a container listing the
tables to keep in the clone. Tables outside table_restrictions are removed from
the clone.
:param clone_factory : optional. Defaults to PanDatFactory. Can also be TicDatFactory. Can also be a function,
in which case it should behave similarly to create_from_full_schema.
If clone_factory=TicDatFactory, the row predicates that use predicate_kwargs_maker
won't be copied over.
:return: a clone of the PanDatFactory. Returned object will be based on clone_factory, if provided.
|
625941b5283ffb24f3c55712
|
def action(a, b): <NEW_LINE> <INDENT> return multVect(a, b)
|
This function returns the action of a matrix on a vector
:param a: Vector
:param b: Matrix
:return: Array
|
625941b6091ae35668666d6b
|
def create_mgmt_port(self, tenant_id, hostname, mgmt_sec_grp): <NEW_LINE> <INDENT> mgmt_net_id = cfg.CONF.lbaas_settings.management_network <NEW_LINE> neutron = self.get_neutron_client() <NEW_LINE> port = { "port": { "admin_state_up": True, "name": "mgmt-%s" % hostname, "network_id": mgmt_net_id, "security_groups": [mgmt_sec_grp], "tenant_id": tenant_id } } <NEW_LINE> mgmt_port = neutron.create_port(port) <NEW_LINE> return mgmt_port
|
Creates a port for management traffic.
|
625941b6b5575c28eb68de02
|
def setUp(self): <NEW_LINE> <INDENT> self.config_dir = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', 'data', 'client_tests')) <NEW_LINE> if os.path.isdir(self.config_dir): <NEW_LINE> <INDENT> shutil.rmtree(os.path.join(self.config_dir)) <NEW_LINE> <DEDENT> os.makedirs(os.path.join(self.config_dir)) <NEW_LINE> config_data_file = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'data', 'resourceclient.conf') <NEW_LINE> self.server_bin = os.path.abspath( os.path.join(os.path.dirname(__file__), '..', '..', '..', 'bin', 'sb-resourceserver')) <NEW_LINE> resource_config = _create_resource_configs() <NEW_LINE> _create_server_config(self.config_dir, resource_config) <NEW_LINE> config_file = _create_client_config(self.config_dir) <NEW_LINE> self.config = Config() <NEW_LINE> self.config.init_default_config(config_data_file) <NEW_LINE> self.config.load(config_file)
|
Setup the test case. Nothing to yet.
|
625941b6d18da76e235322d6
|
def build_record_sample_form (app_name) : <NEW_LINE> <INDENT> sample_information = {} <NEW_LINE> sample_information['species'] = get_species() <NEW_LINE> sample_information['lab_requested'] = get_lab_requested() <NEW_LINE> sample_information['sampleType'] = get_sample_type(app_name) <NEW_LINE> sample_information['sample_project'] = get_defined_sample_projects (app_name) <NEW_LINE> sample_information['sample_project'].insert(0,'None') <NEW_LINE> return sample_information
|
Description:
The function collect the stored information of species, sample origin and sample type to use in the
selected form.
Input:
Functions:
get_species located at this file
get_lab_requested located at this file
get_sample_type located at this file
Variables:
sample_information: Dictionnary to collect the information
Return:
sample_information
|
625941b6796e427e537b03c7
|
def make_tree_dag(self, request): <NEW_LINE> <INDENT> with transaction.atomic(): <NEW_LINE> <INDENT> assert self.path_type==LP_SEQUENCE <NEW_LINE> self.select_for_update() <NEW_LINE> nodes = self.get_ordered_nodes() <NEW_LINE> edges = PathEdge.objects.filter(parent__path=self) <NEW_LINE> for edge in edges: <NEW_LINE> <INDENT> edge.delete() <NEW_LINE> <DEDENT> self.path_type = LP_DAG <NEW_LINE> self.save() <NEW_LINE> root = nodes[0] <NEW_LINE> max_order = 0 <NEW_LINE> for node in nodes[1:]: <NEW_LINE> <INDENT> max_order += 10 <NEW_LINE> self.add_edge(root, node, request, order=max_order) <NEW_LINE> <DEDENT> return root
|
convert from LP_COLLECTION to LP_DAG, making all other nodes children of the root node
and adding explicit ordering to edges
|
625941b62c8b7c6e89b355c9
|
def _show_menu (self, actions, menu_args): <NEW_LINE> <INDENT> if not actions: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> for i in (0, -1): <NEW_LINE> <INDENT> if actions[i] is None: <NEW_LINE> <INDENT> actions.pop(i) <NEW_LINE> <DEDENT> <DEDENT> if not actions: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> menu = self._temp_menu = gtk.Menu() <NEW_LINE> f = lambda widget, cb, *args: cb(*args) <NEW_LINE> for x in actions: <NEW_LINE> <INDENT> if x is None: <NEW_LINE> <INDENT> item = gtk.SeparatorMenuItem() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> name, tooltip, cb, *cb_args = x <NEW_LINE> item = gtk.ImageMenuItem(name) <NEW_LINE> if name.startswith('gtk-'): <NEW_LINE> <INDENT> item.set_use_stock(True) <NEW_LINE> <DEDENT> elif '_' in name: <NEW_LINE> <INDENT> item.set_use_underline(True) <NEW_LINE> <DEDENT> if tooltip is not None: <NEW_LINE> <INDENT> item.set_tooltip_text(tooltip) <NEW_LINE> <DEDENT> item.connect('activate', f, cb, *cb_args) <NEW_LINE> <DEDENT> menu.append(item) <NEW_LINE> <DEDENT> menu.show_all() <NEW_LINE> menu.popup(*menu_args)
|
Create a display a popup menu.
|
625941b666673b3332b91e9c
|
def Ts(Ref, Tmin=None, Tmax=None, show=False, axis=None, *args, **kwargs): <NEW_LINE> <INDENT> plt = PropsPlot(Ref, 'Ts', smin=Tmin, smax=Tmax, axis=axis, *args, **kwargs) <NEW_LINE> plt._draw_graph() <NEW_LINE> if show: <NEW_LINE> <INDENT> plt.show() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> plt._draw_graph() <NEW_LINE> <DEDENT> return plt.axis
|
Deprecated. Use :py:func:`CoolProps.Plots.PropsPlot`
|
625941b6fb3f5b602dac3494
|
def encrypted_dict(self): <NEW_LINE> <INDENT> keyword_encrypt_dict = {letter: keyletter for letter, keyletter in zip(self.alphabet_list, self.encrypted_list)} <NEW_LINE> return keyword_encrypt_dict
|
dict comprehension so i can enter the dict's value's and key's easily.
|
625941b615baa723493c3d77
|
def sched_move(self, track): <NEW_LINE> <INDENT> assert(not self.busy) <NEW_LINE> self.busy = True <NEW_LINE> self.cart.start_moving(track.dst) <NEW_LINE> s.enter(track.cost, 0, self.perform_move)
|
schedule a move
|
625941b6498bea3a759b98b8
|
def __init__(self, ent): <NEW_LINE> <INDENT> self.ent = ent
|
Creation.
|
625941b6507cdc57c6306ad8
|
def make_query_dict_interactively(): <NEW_LINE> <INDENT> query_dict = make_query_dict() <NEW_LINE> query_dict["all"] = [] <NEW_LINE> query_dict["exact"] = [] <NEW_LINE> query_dict["none"] = [] <NEW_LINE> query_dict["language"] = [] <NEW_LINE> query_dict["region"] = [] <NEW_LINE> query_dict["date"] = [] <NEW_LINE> query_dict["site"] = [] <NEW_LINE> return query_dict
|
Fill a query dictionary asking questions to the user.
|
625941b621a7993f00bc7aee
|
def create_unit_procedure( self, name, start_batch_tag, stop_batch_tag, order, start_rule, stop_rule, asset_list ): <NEW_LINE> <INDENT> from quartic_sdk.core.entity_helpers.entity_factory import EntityFactory <NEW_LINE> try: <NEW_LINE> <INDENT> start_rule.validate_rule_raw_json() <NEW_LINE> stop_rule.validate_rule_raw_json() <NEW_LINE> unit_procedure_request_body = { "name": name, "start_batch_tag": start_batch_tag.id, "stop_batch_tag": stop_batch_tag.id, "step_type": self.UNIT_PROCEDURE, "procedure": self.id, "order": order, "start_rule": start_rule.rule_schema(), "stop_rule": stop_rule.rule_schema(), "assets": asset_list } <NEW_LINE> unit_procedure_creation_response = self.api_helper.call_api( Constants.PROCEDURE_STEPS, method_type=Constants.API_POST, body=unit_procedure_request_body ).json() <NEW_LINE> return EntityFactory(Constants.PROCEDURE_STEP_ENTITY, unit_procedure_creation_response, self.api_helper) <NEW_LINE> <DEDENT> except HTTPError as exception: <NEW_LINE> <INDENT> raise Exception(f'Exception in creating Unit Procedure: {exception.response.content.decode()}')
|
This method is used to create UnitProcedure inside a particular Procedure
:param name: UnitProcedure Name
:param start_batch_tag: Tag Object
:param stop_batch_tag: Tag Object
:param order: sequence in which we want to add child nodes inside parent(procedure) node
:param start_rule: Rule (Util Class) Object
:param stop_rule: Rule (Util Class) Object
:param asset_list: List containing asset ids
:return: UnitProcedure(ProcedureStep Entity) Object
|
625941b6dc8b845886cb533a
|
def columnarize(instances): <NEW_LINE> <INDENT> columns = collections.defaultdict(list) <NEW_LINE> for instance in instances: <NEW_LINE> <INDENT> for k, v in six.iteritems(instance): <NEW_LINE> <INDENT> columns[k].append(v) <NEW_LINE> <DEDENT> <DEDENT> return columns
|
Columnarize inputs.
Each line in the input is a dictionary of input names to the value
for that input (a single instance). For each input "column", this method
appends each of the input values to a list. The result is a dict mapping
input names to a batch of input data. This can be directly used as the
feed dict during prediction.
For example,
instances = [{"a": [1.0, 2.0], "b": "a"},
{"a": [3.0, 4.0], "b": "c"},
{"a": [5.0, 6.0], "b": "e"},]
batch = prediction_server_lib.columnarize(instances)
assert batch == {"a": [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]],
"b": ["a", "c", "e"]}
Arguments:
instances: (list of dict) where the dictionaries map input names
to the values for those inputs.
Returns:
A dictionary mapping input names to values, as described above.
|
625941b60fa83653e4656dc4
|
def number_class(self, context=None): <NEW_LINE> <INDENT> if self.is_snan(): <NEW_LINE> <INDENT> return 'sNaN' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if self.is_qnan(): <NEW_LINE> <INDENT> return 'NaN' <NEW_LINE> <DEDENT> inf = self._isinfinity() <NEW_LINE> if inf == 1: <NEW_LINE> <INDENT> return '+Infinity' <NEW_LINE> <DEDENT> if inf == -1: <NEW_LINE> <INDENT> return '-Infinity' <NEW_LINE> <DEDENT> if self.is_zero(): <NEW_LINE> <INDENT> if self._sign: <NEW_LINE> <INDENT> return '-Zero' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return '+Zero' <NEW_LINE> <DEDENT> <DEDENT> if context is None: <NEW_LINE> <INDENT> context = getcontext() <NEW_LINE> <DEDENT> if self.is_subnormal(context=context): <NEW_LINE> <INDENT> if self._sign: <NEW_LINE> <INDENT> return '-Subnormal' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return '+Subnormal' <NEW_LINE> <DEDENT> <DEDENT> if self._sign: <NEW_LINE> <INDENT> return '-Normal' <NEW_LINE> <DEDENT> return '+Normal' <NEW_LINE> return
|
Returns an indication of the class of self.
The class is one of the following strings:
sNaN
NaN
-Infinity
-Normal
-Subnormal
-Zero
+Zero
+Subnormal
+Normal
+Infinity
|
625941b65fc7496912cc378b
|
@nb.jit <NEW_LINE> def plotyz(sol,S=100): <NEW_LINE> <INDENT> N = (int)(S/(sol["t"][1]-sol["t"][0])) <NEW_LINE> s = plt.figure(figsize=(8,6)) <NEW_LINE> a = plt.axes() <NEW_LINE> yvals = sol["y"] <NEW_LINE> zvals = sol["z"] <NEW_LINE> a.plot(yvals[N:],zvals[N:], color = "green") <NEW_LINE> a.set_xlabel("y values") <NEW_LINE> a.set_ylabel("z values") <NEW_LINE> a.set_title("z vs y") <NEW_LINE> plt.show()
|
plotyz
Args: sol - the panda dataframe
Returns: Plots y v z
|
625941b68a349b6b435e7f7a
|
def testIndicateReschedule(self): <NEW_LINE> <INDENT> missed_future_date = date(2200,5,1) <NEW_LINE> original_visit = Visit.objects.get(te_visit_id='01-123456789') <NEW_LINE> self.assertTrue(original_visit.date < missed_future_date) <NEW_LINE> visit = self.importer.update_local_missed_visit( self.user, self.clinic, create_instance(MissedVisit, { 'key_id': '01-123456789', 'te_id': '01-12345', 'missed_date': '%s 00:00:00' % missed_future_date }) ) <NEW_LINE> visit = reload_record(visit) <NEW_LINE> self.assertEqual(visit.history.latest().get_history_type_display(), 'Changed') <NEW_LINE> self.assertEquals(visit.status, 'r') <NEW_LINE> self.assertEquals(visit.date, date(2200, 5, 1))
|
reschedule a visit
|
625941b67047854f462a1213
|
def _create_main_architecture(self, x_input: 'Input') -> 'Model': <NEW_LINE> <INDENT> y = Dense( self.main_layers[1], activation=self.activation, name="hidden_layer_{}".format(1), kernel_initializer=RandomUniform( minval=-self.s, maxval=self.s, seed=self.seed ), bias_initializer=RandomUniform( minval=-self.s, maxval=self.s, seed=self._update_seed(self.seed, 1) ), kernel_regularizer=l2(self.l2reg), bias_regularizer=l2(self.l2reg), trainable=not self.RSN )(x_input) <NEW_LINE> if self.dropout_prob != 0: <NEW_LINE> <INDENT> y = Dropout(self.dropout_prob)(y) <NEW_LINE> <DEDENT> for i, n in enumerate(self.main_layers[2: -1]): <NEW_LINE> <INDENT> y = Dense( n, activation=self.activation, name="hidden_layer_{}".format(i + 2), kernel_initializer=RandomUniform( minval=-self.s, maxval=self.s, seed=self._update_seed(self.seed, 2 * i + 2) ), bias_initializer=RandomUniform( minval=-self.s, maxval=self.s, seed=self._update_seed(self.seed, 2 * i + 3) ), kernel_regularizer=l2(self.l2reg), bias_regularizer=l2(self.l2reg), trainable=not self.RSN )(y) <NEW_LINE> <DEDENT> if self.dropout_prob != 0: <NEW_LINE> <INDENT> y = Dropout(self.dropout_prob)(y) <NEW_LINE> <DEDENT> y_output = Dense( self.main_layers[-1], activation='linear', name="output_layer", kernel_initializer=RandomUniform( minval=-self.s, maxval=self.s, seed=self._update_seed(self.seed, -1) ), bias_initializer=RandomUniform( minval=-self.s, maxval=self.s, seed=self._update_seed(self.seed, -2) ), kernel_regularizer=l2(self.l2reg), bias_regularizer=l2(self.l2reg) )(y) <NEW_LINE> return y, y_output
|
creates the model structure for the main met which is responsible for the learning and prediction of
the y value.
:param x_input: Input layer
:return: constructed network model of the main net
|
625941b6090684286d50eae5
|
def test_unexpected_add_service_event(self): <NEW_LINE> <INDENT> event = { 'type': 'ADDED', 'object': V1Service(api_version='v1', kind='Service', metadata=V1ObjectMeta(name='someservice', namespace='othernamespace', ), spec=V1ServiceSpec(cluster_ip='10.0.0.5'), ), } <NEW_LINE> watcher = hostess.Watcher(env=self.envvars) <NEW_LINE> log = logging.getLogger() <NEW_LINE> log.setLevel(logging.INFO) <NEW_LINE> with self.assertLogs(log, level='DEBUG') as context_manager: <NEW_LINE> <INDENT> watcher.handle_service_event(event) <NEW_LINE> self.assertIn('DEBUG:hostess.watcher:Ignoring event for {} in {}'.format( 'someservice', 'othernamespace'), context_manager.output)
|
test recieving a normal added event for a service we are not expecting
|
625941b64c3428357757c131
|
def numEdges(graph): <NEW_LINE> <INDENT> return gr.numEdges(graph)
|
Retorna el numero de arcos en el grafo graph
Args:
graph: El grafo sobre el que se ejecuta la operacion
Returns:
El numero de vertices del grafo
Raises:
Exception
|
625941b60383005118ecf3ea
|
def cat_to_json(item): <NEW_LINE> <INDENT> return { 'id': item.id, 'name': item.name, 'path': item.path, 'icon': item.icon, 'parentId': item.parent_id }
|
Turn nested dictionary to json
|
625941b6e64d504609d74646
|
def __populate_levels(): <NEW_LINE> <INDENT> for n in _names: <NEW_LINE> <INDENT> i = eval(n) <NEW_LINE> _levels[n] = i <NEW_LINE> _level_names[i] = n
|
Fills in the _levels and _level_names dictionaries.
|
625941b68da39b475bd64d7c
|
def apply_transformation(X, T): <NEW_LINE> <INDENT> if X.shape[1] != 2 and X.shape[1] != 3: <NEW_LINE> <INDENT> warnings.warn("Input array must be of shape Nx2 or Nx3!") <NEW_LINE> <DEDENT> X = np.vstack([X.T, np.ones(X.shape[0])]) <NEW_LINE> t_X = T.dot(X).T <NEW_LINE> t_X = np.asarray([row/row[-1] for row in t_X]) <NEW_LINE> return t_X[:,0:-1]
|
Applies the 2D or 3D transformation matrix T to 2D or 3D data points in X.
:param X: Nx2 or Nx3 numpy ndarray
:param T: 3x3 (2D) or 4x4 (3D) numpy ndarray
:return: Transformed points
|
625941b64e696a04525c925a
|
def invokeFunction(func, args): <NEW_LINE> <INDENT> if len(args) != len(func.params): <NEW_LINE> <INDENT> raise LJTypeErr('incorrect no. of arguments ... (%s)' % lj_repr(args)[1:-1]); <NEW_LINE> <DEDENT> if func.crEnv is None: raise Exception(); <NEW_LINE> assert func.crEnv is not None; <NEW_LINE> newEnv = func.crEnv.makeChild(func.params, args); <NEW_LINE> newEnv.setDepth(env.depth + 1); <NEW_LINE> treeClone = cloneLi(func.tree); <NEW_LINE> try: <NEW_LINE> <INDENT> run(treeClone, newEnv, maxLoopTime, writer); <NEW_LINE> <DEDENT> except LJReturn as r: <NEW_LINE> <INDENT> inter = r.args[0]; <NEW_LINE> return inter; <NEW_LINE> <DEDENT> raise LJTypeErr('non-returning function');
|
Helps invokes non-native functions.
|
625941b630c21e258bdfa2a2
|
def get_for_qs(get, qs): <NEW_LINE> <INDENT> kwargs = {} <NEW_LINE> for k, v in get.iteritems(): <NEW_LINE> <INDENT> if not (k == 'page' or k == 'pop' or k == 'q'): <NEW_LINE> <INDENT> if not k == 'o': <NEW_LINE> <INDENT> if k == "ot": <NEW_LINE> <INDENT> qs = query_ordena(qs, get["o"], get["ot"]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> kwargs[str(k)] = v <NEW_LINE> qs = qs.filter(**kwargs) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return qs
|
Verifica atributos do GET e retorna queryset correspondente
|
625941b630c21e258bdfa2a3
|
def test_array_split(self): <NEW_LINE> <INDENT> items = range(90) <NEW_LINE> expected_lengths = (50, 40) <NEW_LINE> batches = util.array_split(items, 50) <NEW_LINE> for idx, batch in enumerate(batches): <NEW_LINE> <INDENT> assert len(batch) == expected_lengths[idx]
|
Test ``util.array_split()``
|
625941b676d4e153a657e936
|
def find(self, colname): <NEW_LINE> <INDENT> for index in range(len(self.columns)): <NEW_LINE> <INDENT> if self.columns[index].colname == colname: <NEW_LINE> <INDENT> return index <NEW_LINE> <DEDENT> <DEDENT> return -1
|
Finds the column number for a name.
The method looks through all columns of the instance
for a matching column name. In case the column name exists,
the column index is returned. If the column name does
not exist, -1 is returned.
@param colname: the name of the column
@type colname: string
@return: the index of the column, or -1
@rtype: integer
|
625941b6d6c5a10208143e4c
|
def is_square(n): <NEW_LINE> <INDENT> if n < 0: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> elif n == 0: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> elif (n ** 0.5).is_integer(): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False
|
A square of squares
You like building blocks. You especially like building blocks that are squares. And what you even like more, is to arrange them into a square of square building blocks!
However, sometimes, you can't arrange them into a square. Instead, you end up with an ordinary rectangle! Those blasted things! If you just had a way to know, whether you're currently working in vain… Wait! That's it! You just have to check if your number of building blocks is a perfect square.
Task
Given an integral number, determine if it's a square number:
In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself.
The tests will always use some integral number, so don't worry about that in dynamic typed languages.
Examples
-1 => false
0 => true
3 => false
4 => true
25 => true
26 => false
|
625941b62eb69b55b151c6b0
|
def flush(): <NEW_LINE> <INDENT> logging.info('flushing...') <NEW_LINE> send_command(b'#XS') <NEW_LINE> send_command(b'#E0')
|
remove pending data in socket stream
|
625941b645492302aab5e0c5
|
def handle(verb, arg): <NEW_LINE> <INDENT> for listener in listeners: <NEW_LINE> <INDENT> handler = getattr(listener, verb, None) <NEW_LINE> if handler: <NEW_LINE> <INDENT> log_call(listener, verb) <NEW_LINE> listener = listener() <NEW_LINE> listener.action = action <NEW_LINE> listener.request = request <NEW_LINE> arg = handler(listener, arg) <NEW_LINE> <DEDENT> <DEDENT> return arg
|
Обработка данных @arg подписанными слушателями, которые имеют
обработчик @verb
|
625941b663d6d428bbe442f5
|
def all(self): <NEW_LINE> <INDENT> return [dict(product) for product in db['products'].all()]
|
Get all products
|
625941b6fff4ab517eb2f23f
|
def workflows_stepCompleted( self, *, workflow_step_execute_id: str, outputs: dict = None, **kwargs ) -> Union[Future, SlackResponse]: <NEW_LINE> <INDENT> kwargs.update({"workflow_step_execute_id": workflow_step_execute_id}) <NEW_LINE> if outputs: <NEW_LINE> <INDENT> kwargs.update({"outputs": outputs}) <NEW_LINE> <DEDENT> return self.api_call("workflows.stepCompleted", json=kwargs)
|
Indicate a successful outcome of a workflow step's execution.
Args:
workflow_step_execute_id (str): A unique identifier of the workflow step to be updated.
e.g. 'add_task'
outputs (dict): A key-value object of outputs from your step.
e.g. { 'task_name': 'Task Name' }
|
625941b68c0ade5d55d3e7c5
|
def registered_module_names(): <NEW_LINE> <INDENT> apm_reg_names = VitalObject.VITAL_LIB.vital_apm_registered_module_names <NEW_LINE> sl_free = VitalObject.VITAL_LIB.vital_common_free_string_list <NEW_LINE> apm_reg_names.argtypes = [ctypes.POINTER(ctypes.c_uint), ctypes.POINTER(ctypes.POINTER(ctypes.c_char_p))] <NEW_LINE> sl_free.argtypes = [ctypes.c_uint, ctypes.POINTER(ctypes.c_char_p)] <NEW_LINE> length = ctypes.c_uint(0) <NEW_LINE> keys = ctypes.POINTER(ctypes.c_char_p)() <NEW_LINE> apm_reg_names(ctypes.byref(length), ctypes.byref(keys)) <NEW_LINE> r = [] <NEW_LINE> for i in range(length.value): <NEW_LINE> <INDENT> r.append(keys[i]) <NEW_LINE> <DEDENT> sl_free(length, keys) <NEW_LINE> return r
|
Get a list of registered module name strings
A module's name is defined as the filename minus the standard platform
module library suffix. For example, on Windows, if a module library was
named ``vital_foo.dll``, the module's name would be "vital_foo".
Similarly on a unix system, ``vital_bar.so`` would have the name
"vital_bar".
:return: List of registered module names
:rtype: list of str
|
625941b64f88993c3716be7a
|
def tune_auth_backend(self, backend_type, mount_point=None, default_lease_ttl=None, max_lease_ttl=None, description=None, audit_non_hmac_request_keys=None, audit_non_hmac_response_keys=None, listing_visibility=None, passthrough_request_headers=None): <NEW_LINE> <INDENT> if not mount_point: <NEW_LINE> <INDENT> mount_point = backend_type <NEW_LINE> <DEDENT> optional_parameters = [ 'default_lease_ttl', 'max_lease_ttl', 'description', 'audit_non_hmac_request_keys', 'audit_non_hmac_response_keys', 'listing_visibility', 'passthrough_request_headers', ] <NEW_LINE> params = {} <NEW_LINE> for optional_parameter in optional_parameters: <NEW_LINE> <INDENT> if locals().get(optional_parameter) is not None: <NEW_LINE> <INDENT> params[optional_parameter] = locals().get(optional_parameter) <NEW_LINE> <DEDENT> <DEDENT> return self._post('/v1/sys/auth/{0}/tune'.format(mount_point), json=params)
|
POST /sys/auth/<mount point>/tune
:param backend_type: str, Name of the auth backend to modify (e.g., token, approle, etc.)
:param mount_point: str, The path the associated auth backend is mounted under.
:param description: str, Specifies the description of the mount. This overrides the current stored value, if any.
:param default_lease_ttl: int,
:param max_lease_ttl: int,
:param audit_non_hmac_request_keys: list, Specifies the comma-separated list of keys that will not be HMAC'd by
audit devices in the request data object.
:param audit_non_hmac_response_keys: list, Specifies the comma-separated list of keys that will not be HMAC'd
by audit devices in the response data object.
:param listing_visibility: str, Speficies whether to show this mount in the UI-specific listing endpoint.
Valid values are "unauth" or "".
:param passthrough_request_headers: list, Comma-separated list of headers to whitelist and pass from the request
to the backend.
:return: dict, The JSON response from Vault
|
625941b650812a4eaa59c12c
|
def reformat_lig_pdb(ligands): <NEW_LINE> <INDENT> for lig_pdb in ligands: <NEW_LINE> <INDENT> with open(lig_pdb, 'r') as f: <NEW_LINE> <INDENT> write_lines = [] <NEW_LINE> for line in f: <NEW_LINE> <INDENT> if 'HETATM' in line and 'LG1 X' not in line: <NEW_LINE> <INDENT> line_list = re.split(r'(\s+)', line) <NEW_LINE> line_list[6] = 'LG1 X' <NEW_LINE> line_list[8] = '1' <NEW_LINE> write_line = ''.join(line_list) <NEW_LINE> write_lines.append(write_line) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> write_lines.append(line) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> with open(lig_pdb, 'w') as f: <NEW_LINE> <INDENT> f.writelines(write_lines)
|
reformat conformer file so that output is Rosetta compatible
|
625941b6be383301e01b5293
|
def contour_psf(self, id=None, **kwargs): <NEW_LINE> <INDENT> self._contour(id, self._psfcontour, **kwargs)
|
Contour the PSF applied to the model of an image data set.
If the data set has no PSF applied to it, the model is
displayed.
Parameters
----------
id : int or str, optional
The data set that provides the model. If not given then the
default identifier is used, as returned by `get_default_id`.
replot : bool, optional
Set to ``True`` to use the values calculated by the last
call to `contour_psf`. The default is ``False``.
overcontour : bool, optional
If ``True`` then add the data to an exsiting plot, otherwise
create a new contour plot. The default is ``False``.
See Also
--------
get_psf_contour : Return the data used by contour_psf.
get_default_id : Return the default data set identifier.
contour : Create one or more plot types.
contour_kernel : Contour the kernel applied to the model of an image data set.
sherpa.astro.ui.set_coord : Set the coordinate system to use for image analysis.
set_psf : Add a PSF model to a data set.
|
625941b6b57a9660fec33685
|
def setCursor(self, row=0, col=0): <NEW_LINE> <INDENT> print("\x1b[%d;%dH" % (row, col), end="")
|
Sets cursor position.
Parameters:
- `row`: The row to set the cursor position (row 1 is the top)
- `col`: The column to set the cursor position (column 0 is the leftmost column)
|
625941b6a934411ee37514a1
|
def produce_features(self, chip): <NEW_LINE> <INDENT> img = self.get_image(chip) <NEW_LINE> img = img.resize(self.image_size, Image.BICUBIC) <NEW_LINE> img_x, img_y = img.size <NEW_LINE> channels = img.split() <NEW_LINE> hist_features = np.full(shape=3 * self.histogram_bins_per_channel, fill_value=-1) <NEW_LINE> if len(channels) < 3: <NEW_LINE> <INDENT> print("Non-RBG image! Vector will be padded with -1!") <NEW_LINE> <DEDENT> if len(channels) > 3: <NEW_LINE> <INDENT> print("Non-RBG image! Channels beyond the first three will be ignored!") <NEW_LINE> channels = channel[:3] <NEW_LINE> <DEDENT> for i, channel in enumerate(channels): <NEW_LINE> <INDENT> channel_array = np.array(channel) <NEW_LINE> values, _ = np.histogram(channel_array.flat, bins=self.histogram_bins_per_channel) <NEW_LINE> start = i * self.histogram_bins_per_channel <NEW_LINE> end = (i+1) * self.histogram_bins_per_channel <NEW_LINE> hist_features[start:end] = values <NEW_LINE> <DEDENT> img = color.rgb2gray(np.array(img)) <NEW_LINE> features = hog( img, orientations=self.orientations, pixels_per_cell=(img_x / self.cells[0], img_y / self.cells[1]), cells_per_block=self.cells, ) <NEW_LINE> return np.concatenate((features, hist_features))
|
Takes a chip object and returns a feature vector of size
self.feat_size.
|
625941b6b5575c28eb68de03
|
def save_nodenet(nodenet_uid): <NEW_LINE> <INDENT> nodenet = nodenets[nodenet_uid] <NEW_LINE> nodenet.save(os.path.join(RESOURCE_PATH, NODENET_DIRECTORY, nodenet_uid + '.json')) <NEW_LINE> nodenet_data[nodenet_uid] = Bunch(**nodenet.data) <NEW_LINE> return True
|
Stores the nodenet on the server (but keeps it open).
|
625941b66fece00bbac2d541
|
def getRepositoriesURI(response): <NEW_LINE> <INDENT> git_uris = [] <NEW_LINE> for page in response.keys(): <NEW_LINE> <INDENT> for value in response[page]['values']: <NEW_LINE> <INDENT> git_uris.append(value['links']['clone'][0]['href']) <NEW_LINE> <DEDENT> <DEDENT> return sorted(git_uris)
|
Get repositories URIs
:param response: dictionary
:return: list
|
625941b6d99f1b3c44c6739e
|
def archives(request, year, month): <NEW_LINE> <INDENT> posts = Post.objects.filter(create_time__year=year, create_time__month=month ) <NEW_LINE> return posts_paginator(posts, request)
|
归档(按照年月)
|
625941b610dbd63aa1bd29b6
|
@api_view(['GET', 'POST']) <NEW_LINE> def comment_post_form(request): <NEW_LINE> <INDENT> if request.method == 'GET': <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> elif request.method == 'POST': <NEW_LINE> <INDENT> user = User.objects.get(username=request.user) <NEW_LINE> print(request.data) <NEW_LINE> param = { 'user': user.pk, 'post': int(request.data['post']), 'text': request.data['text'], } <NEW_LINE> serializer = CommentSerializer(data=param) <NEW_LINE> if serializer.is_valid(): <NEW_LINE> <INDENT> serializer.save() <NEW_LINE> return JsonResponse(serializer.data) <NEW_LINE> <DEDENT> return JsonResponse(serializer.errors, status=400)
|
With POST method comment form submit. In this view the recieved data updated and pass to serializer
Inputs: data from POST => post,text,user.id that get from request.user
Outputs: Serializer.data [not impostant becuase in the js if request is success alert with notificatin
|
625941b66fb2d068a760eea8
|
def check_repo(repodir, keys, fmri_dic, expected): <NEW_LINE> <INDENT> sr = self.get_repo(repodir) <NEW_LINE> for key in keys: <NEW_LINE> <INDENT> f = fmri_dic[key] <NEW_LINE> with open(sr.manifest(f), "rb") as manf: <NEW_LINE> <INDENT> actual = "".join( sorted(l for l in manf)).strip() <NEW_LINE> <DEDENT> self.assertEqualDiff(expected[f], actual) <NEW_LINE> <DEDENT> fmris = [fmri_dic[key] for key in keys] <NEW_LINE> pubs = set([fmri.PkgFmri(entry).get_publisher() for entry in fmris]) <NEW_LINE> known_pubs = set( [p.prefix for p in sr.get_publishers()]) <NEW_LINE> self.assert_(pubs == known_pubs, "Repository at %s didn't contain the " "expected set of publishers") <NEW_LINE> for pub in sr.get_publishers(): <NEW_LINE> <INDENT> cat = sr.get_catalog(pub=p.prefix) <NEW_LINE> for f in cat.fmris(): <NEW_LINE> <INDENT> if f.get_fmri() not in fmris: <NEW_LINE> <INDENT> self.assert_(False, "%s not in repository" % f)
|
Check that packages corresponding to the list of
keys 'keys' to items in 'fmri_dic' are present in the
repository, and match the contents from the dictionary
'expected'. We also check that the repository has no
packages other than those specified by 'keys', and no
more publishers than are present in those packages.
|
625941b61f5feb6acb0c495c
|
def update_key(self, key): <NEW_LINE> <INDENT> url = urljoin(self.url_key, '%d/' % int(key.id)) <NEW_LINE> r = requests.put(url, data=key.serialize(), headers=self.headers) <NEW_LINE> r.raise_for_status() <NEW_LINE> return models.JSONModel.deserialize(json_obj=r.json())
|
update a key
|
625941b6cb5e8a47e48b78b6
|
def log_images(self, images, num_images, epoch, n_batch, num_batches, normalize=True): <NEW_LINE> <INDENT> if type(images) == np.ndarray: <NEW_LINE> <INDENT> images = torch.from_numpy(images) <NEW_LINE> <DEDENT> images = images.transpose(1,3) <NEW_LINE> step = Logger._step(epoch, n_batch, num_batches) <NEW_LINE> img_name = '{}/images{}'.format(self.comment, '') <NEW_LINE> horizontal_grid = vutils.make_grid( images, normalize=normalize, scale_each=True) <NEW_LINE> nrows = int(np.sqrt(num_images)) <NEW_LINE> grid = vutils.make_grid( images, nrow=nrows, normalize=True, scale_each=True) <NEW_LINE> self.writer.add_image(img_name, horizontal_grid, step) <NEW_LINE> self.save_torch_images(horizontal_grid, grid, epoch, n_batch)
|
input images are expected in format (NHWC)
|
625941b6b7558d58953c4d22
|
def download_publication(self, publication): <NEW_LINE> <INDENT> r = get(self.url, self.timeout) <NEW_LINE> html = BeautifulSoup(r.text, 'html.parser') <NEW_LINE> download_url = self.get_download_url(html) <NEW_LINE> if download_url is None: <NEW_LINE> <INDENT> raise CouldntFindDownloadUrl(self.url) <NEW_LINE> <DEDENT> filename = publication.filename() <NEW_LINE> print(f"Downloading '{filename}'") <NEW_LINE> data = get(download_url, self.timeout, stream=True) <NEW_LINE> save_file(filename, data)
|
Downloads a publication from 'self.url'.
|
625941b697e22403b379cd9f
|
def sample_graph_client_with_per_request_retry_options(): <NEW_LINE> <INDENT> client = GraphClient(credential=browser_credential) <NEW_LINE> result = client.get( '/me/messages', scopes=['mail.read'], retry_on_status_codes=[429, 502, 503, 504] ) <NEW_LINE> pprint(result.json())
|
Sending a request using the graph client with retry options for that specific request.
This will override the default config for the retry handler
|
625941b6d58c6744b4257a67
|
def __call__(self, sid): <NEW_LINE> <INDENT> return ServiceContext(self._version, sid=sid, )
|
Constructs a ServiceContext
:param sid: The sid
:returns: twilio.rest.preview.sync.service.ServiceContext
:rtype: twilio.rest.preview.sync.service.ServiceContext
|
625941b6f548e778e58cd382
|
def copy( self, file_id, title=None, copy_permissions=False, folder_id=None, copy_comments=True, ): <NEW_LINE> <INDENT> url = "{}/{}/copy".format(DRIVE_FILES_API_V2_URL, file_id) <NEW_LINE> payload = { "title": title, "mimeType": "application/vnd.google-apps.spreadsheet", } <NEW_LINE> if folder_id is not None: <NEW_LINE> <INDENT> payload["parents"] = [{"id": folder_id}] <NEW_LINE> <DEDENT> params = {"supportsAllDrives": True} <NEW_LINE> r = self.request("post", url, json=payload, params=params) <NEW_LINE> spreadsheet_id = r.json()["id"] <NEW_LINE> new_spreadsheet = self.open_by_key(spreadsheet_id) <NEW_LINE> if copy_permissions is True: <NEW_LINE> <INDENT> original = self.open_by_key(file_id) <NEW_LINE> permissions = original.list_permissions() <NEW_LINE> for p in permissions: <NEW_LINE> <INDENT> if p.get("deleted"): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> new_spreadsheet.share( value=p["emailAddress"], perm_type=p["type"], role=p["role"], notify=False, ) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if copy_comments is True: <NEW_LINE> <INDENT> source_url = DRIVE_FILES_API_V3_COMMENTS_URL % (file_id) <NEW_LINE> page_token = "" <NEW_LINE> comments = [] <NEW_LINE> params = { "fields": "comments/content,comments/anchor,nextPageToken", "includeDeleted": False, "pageSize": 100, } <NEW_LINE> while page_token is not None: <NEW_LINE> <INDENT> params["pageToken"] = page_token <NEW_LINE> res = self.request("get", source_url, params=params).json() <NEW_LINE> comments.extend(res["comments"]) <NEW_LINE> page_token = res.get("nextPageToken", None) <NEW_LINE> <DEDENT> destination_url = DRIVE_FILES_API_V3_COMMENTS_URL % (new_spreadsheet.id) <NEW_LINE> params = {"fields": "id"} <NEW_LINE> for comment in comments: <NEW_LINE> <INDENT> self.request("post", destination_url, json=comment, params=params) <NEW_LINE> <DEDENT> <DEDENT> return new_spreadsheet
|
Copies a spreadsheet.
:param str file_id: A key of a spreadsheet to copy.
:param str title: (optional) A title for the new spreadsheet.
:param bool copy_permissions: (optional) If True, copy permissions from
the original spreadsheet to the new spreadsheet.
:param str folder_id: Id of the folder where we want to save
the spreadsheet.
:param bool copy_comments: (optional) If True, copy the comments from
the original spreadsheet to the new spreadsheet.
:returns: a :class:`~gspread.models.Spreadsheet` instance.
.. versionadded:: 3.1.0
.. note::
If you're using custom credentials without the Drive scope, you need to add
``https://www.googleapis.com/auth/drive`` to your OAuth scope in order to use
this method.
Example::
scope = [
'https://www.googleapis.com/auth/spreadsheets',
'https://www.googleapis.com/auth/drive'
]
Otherwise, you will get an ``Insufficient Permission`` error
when you try to copy a spreadsheet.
|
625941b6de87d2750b85fb94
|
def find_blade_root_dir(working_dir): <NEW_LINE> <INDENT> blade_root_dir = working_dir <NEW_LINE> if blade_root_dir.endswith('/'): <NEW_LINE> <INDENT> blade_root_dir = blade_root_dir[:-1] <NEW_LINE> <DEDENT> while blade_root_dir and blade_root_dir != "/": <NEW_LINE> <INDENT> if os.path.isfile(os.path.join(blade_root_dir, "BLADE_ROOT")): <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> blade_root_dir = os.path.dirname(blade_root_dir) <NEW_LINE> <DEDENT> if not blade_root_dir or blade_root_dir == "/": <NEW_LINE> <INDENT> error_exit("Can't find the file 'BLADE_ROOT' in this or any upper directory.\n" "Blade need this file as a placeholder to locate the root source directory " "(aka the directory where you #include start from).\n" "You should create it manually at the first time.") <NEW_LINE> <DEDENT> return blade_root_dir
|
find_blade_root_dir to find the dir holds the BLADE_ROOT file.
The blade_root_dir is the directory which is the closest upper level
directory of the current working directory, and containing a file
named BLADE_ROOT.
|
625941b632920d7e50b27fd2
|
def _get(self, obj, type=None): <NEW_LINE> <INDENT> def start(): <NEW_LINE> <INDENT> json = RequestApis.Timer.start(obj.connection, obj.json) <NEW_LINE> obj.updateJson(json) <NEW_LINE> <DEDENT> return start
|
Return a method to start the Timer
|
625941b624f1403a92600970
|
def stats(update, context): <NEW_LINE> <INDENT> total_data = f"Total Confirmed Cases : {total_cases:,}\nTotal Active Cases : {total_active:,}\nTotal Recovered : {total_recovered:,}\nTotal Deaths : {total_deaths:,}" <NEW_LINE> update.message.reply_text(total_data)
|
COVID CASES UPDATE
|
625941b6b545ff76a8913c26
|
def __init__(self, a): <NEW_LINE> <INDENT> self.a = float(a) <NEW_LINE> self.f_0 = (jnjnp_zeros(2)[0][1] * c / (2 * pi * self.a)) <NEW_LINE> self.f_max = (self.LARGEST_ZERO * c / (2 * pi * self.a))
|
Return a Circular waveguide with radius a in meters.
|
625941b6925a0f43d2549c7a
|
def set_lines(self, lines): <NEW_LINE> <INDENT> self.lines = lines
|
Set the lines
|
625941b644b2445a33931ea7
|
def _add_example(self, example): <NEW_LINE> <INDENT> if len(example.fields) != 1: <NEW_LINE> <INDENT> raise InvalidSpec( 'Example for union must specify exactly one tag.', example.lineno, example.path) <NEW_LINE> <DEDENT> example_field = list(example.fields.values())[0] <NEW_LINE> tag = example_field.name <NEW_LINE> for field in self.all_fields: <NEW_LINE> <INDENT> if tag == field.name: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise InvalidSpec( "Unknown tag '%s' in example." % tag, example.lineno, example.path ) <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> field.data_type.check_example(example_field) <NEW_LINE> <DEDENT> except InvalidSpec as e: <NEW_LINE> <INDENT> e.msg = "Bad example for field '{}': {}".format( field.name, e.msg) <NEW_LINE> raise e <NEW_LINE> <DEDENT> self._raw_examples[example.label] = example
|
Adds a "raw example" for this type.
This does basic sanity checking to ensure that the example is valid
(required fields specified, no unknown fields, correct types, ...).
The example is not available via :meth:`get_examples` until
:meth:`_compute_examples` is called.
Args:
example (stone.stone.parser.StoneExample): An example of this
type.
|
625941b6711fe17d82542182
|
def get_length(buf): <NEW_LINE> <INDENT> (v,l,p) = _unpack_preamble(buf) <NEW_LINE> return l
|
Returns the length of the Radiotap header.
Use this to determine where the start of the next
header in the packet is.
|
625941b6a4f1c619b28afe49
|
def do_or_form(vals, env): <NEW_LINE> <INDENT> num_vals = len(vals) <NEW_LINE> if num_vals == 0: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> for i, val in enumerate(vals): <NEW_LINE> <INDENT> if i == num_vals - 1: <NEW_LINE> <INDENT> return val <NEW_LINE> <DEDENT> evaluated = scheme_eval(val, env) <NEW_LINE> if scheme_true(evaluated): <NEW_LINE> <INDENT> return quote(evaluated)
|
Evaluate short-circuited or with parameters VALS in environment ENV.
|
625941b6be7bc26dc91cd40d
|
def add_dataset(doc, uri, index, sources_policy=None, update=None, **kwargs): <NEW_LINE> <INDENT> from datacube.index.hl import Doc2Dataset <NEW_LINE> from datacube.utils import changes <NEW_LINE> resolver = Doc2Dataset(index, **kwargs) <NEW_LINE> dataset, err = resolver(sanitize_inf(doc), uri) <NEW_LINE> buff = io.StringIO() <NEW_LINE> if err is None: <NEW_LINE> <INDENT> with redirect_stderr(buff): <NEW_LINE> <INDENT> if update and index.datasets.get(dataset.id): <NEW_LINE> <INDENT> index.datasets.update(dataset, {tuple(): changes.allow_any}) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> index.datasets.add(dataset, sources_policy=sources_policy) <NEW_LINE> <DEDENT> <DEDENT> val = buff.getvalue() <NEW_LINE> if val.count('is already in the database'): <NEW_LINE> <INDENT> def warning_without_trace(message, *args, **kwargs): <NEW_LINE> <INDENT> return f'{message}' <NEW_LINE> <DEDENT> warnings.formatwarning = warning_without_trace <NEW_LINE> warnings.warn(val) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError(err) <NEW_LINE> <DEDENT> return dataset
|
Add a dataset document to the index database.
Args:
doc: The dataset document.
uri: Some URI to point to the document (this doesn't have to actually point anywhere).
index: An instance of a datacube index.
sources_policy (optional): The source policy to be checked.
update: Update datasets if they already exist.
Returns: The dataset to be indexed and any errors encountered.
|
625941b663f4b57ef0000f29
|
def __setitem__(name, other): <NEW_LINE> <INDENT> pass
|
Set object ``other' into this folder under the name ``name``.
``name`` must be a Unicode object or a bytestring object.
If ``name`` is a bytestring object, it must be decodable using the
system default encoding or the UTF-8 encoding.
``name`` cannot be the empty string.
When ``other`` is seated into this folder, it will also be
decorated with a ``__parent__`` attribute (a reference to the
folder into which it is being seated) and ``__name__``
attribute (the name passed in to this function.
If a value already exists in the foldr under the name ``name``, raise
:exc:`KeyError`.
When this method is called, emit an ``IObjectWillBeAdded`` event
before the object obtains a ``__name__`` or ``__parent__`` value.
Emit an ``IObjectAdded`` event after the object obtains a ``__name__``
and ``__parent__`` value.
|
625941b6460517430c393f96
|
def bread(): <NEW_LINE> <INDENT> flour_menu = ["0: all purpose", "1: bread", "2: whole wheat", "3: oat", "4: rye", "5: spelt", "6: barley"] <NEW_LINE> print("\n".join(flour_menu), "\npick up to three by number") <NEW_LINE> flour_list = [] <NEW_LINE> for i in range(3): <NEW_LINE> <INDENT> flour = input("select a flour type or finish with flours\n> ") <NEW_LINE> if flour.isnumeric() and int(flour) in range(7): <NEW_LINE> <INDENT> flour_list.append(flour_menu[int(flour)]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> bread_recipe = [] <NEW_LINE> total_flour = 0 <NEW_LINE> for item in flour_list: <NEW_LINE> <INDENT> test = input("how much " + item + "? (format: \"x g\" or \"y %\")\n> ") <NEW_LINE> amount = g_or_p(test) <NEW_LINE> if amount < 1: <NEW_LINE> <INDENT> bread_recipe.append(Entry((amount * 433.5), 'g', item)) <NEW_LINE> total_flour += (amount * 433.5) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> bread_recipe.append(Entry(amount, 'g', item)) <NEW_LINE> total_flour += amount <NEW_LINE> <DEDENT> <DEDENT> water = input("what percent hydration?" "(just a number, if unsure, \"80\")\n> ") <NEW_LINE> bread_recipe.append(Entry(((float(water) / 100) * total_flour), 'g', "water")) <NEW_LINE> salt = input("how much salt? (just a number in grams. if unsure, \"9\"\n> ") <NEW_LINE> bread_recipe.append(Entry(float(salt), 'g', "salt")) <NEW_LINE> bread_recipe.append(Entry(92, 'g', "starter")) <NEW_LINE> return bread_recipe
|
Builds a bread recipe. Steps:
Prompt number of loaves (a loaf is about 880g)
List flours, by grams or percentage of each, based on a total
Numbered list, pick by number
Hydration percentage or grams
(starting with 346g/loaf, maybe adjust for flour types)
Default 9g salt per loaf
Default 92g starter per loaf
Generate file for finished recipe.
This is not quite finished, but it mostly works. Current problem:
there is a "close" for the recipe file, but bread never opens it.
solution is probably a flag.
|
625941b67047854f462a1214
|
def bb_norm_to_corner_pixels(bb_vertices, img_shape): <NEW_LINE> <INDENT> y_pix, x_pix = img_shape[0], img_shape[1] <NEW_LINE> width_pix = int((bb_vertices[1]['x'] - bb_vertices[0]['x']) * x_pix) <NEW_LINE> height_pix = int((bb_vertices[2]['y'] - bb_vertices[1]['y']) * y_pix) <NEW_LINE> upper_left_x = int(bb_vertices[0]['x'] * x_pix) <NEW_LINE> upper_left_y = int(bb_vertices[0]['y'] * y_pix) <NEW_LINE> upper_right_x = upper_left_x + width_pix <NEW_LINE> upper_right_y = upper_left_y <NEW_LINE> lower_left_x = upper_left_x <NEW_LINE> lower_left_y = upper_left_y + height_pix <NEW_LINE> lower_right_x = lower_left_x + width_pix <NEW_LINE> lower_right_y = lower_left_y <NEW_LINE> return [ {'x': upper_left_x, 'y': upper_left_y}, {'x': upper_right_x, 'y': upper_right_y}, {'x': lower_right_x, 'y': lower_right_y}, {'x': lower_left_x, 'y': lower_left_y} ]
|
Takes in a list of {'x': x_val, 'y': y_val} dicts and transforms the values to fit pixel values of an img.
|
625941b6e8904600ed9f1d2f
|
def average_performance(self): <NEW_LINE> <INDENT> return (self.sensitivity() + self.positive_predictive_value()) / 2.
|
(sensitivity()+positive_predictive_value())/2
|
625941b6099cdd3c635f0a63
|
def encode_multipart_formdata(fields, files): <NEW_LINE> <INDENT> BOUNDARY = 'xYzZY' <NEW_LINE> CRLF = '\r\n' <NEW_LINE> L = [] <NEW_LINE> for (key, value) in fields: <NEW_LINE> <INDENT> L.append('--' + BOUNDARY) <NEW_LINE> L.append('Content-Disposition: form-data; name="%s"' % key) <NEW_LINE> L.append('') <NEW_LINE> L.append(value) <NEW_LINE> <DEDENT> for (key, filename, value) in files: <NEW_LINE> <INDENT> L.append('--' + BOUNDARY) <NEW_LINE> L.append('Content-Disposition: form-data; name="%s"; filename="%s"' % (key, filename)) <NEW_LINE> L.append('Content-Type: %s' % get_content_type(filename)) <NEW_LINE> L.append('') <NEW_LINE> L.append(value) <NEW_LINE> <DEDENT> L.append('--' + BOUNDARY + '--') <NEW_LINE> L.append('') <NEW_LINE> body = CRLF.join(L) <NEW_LINE> content_type = 'multipart/form-data' <NEW_LINE> return content_type, body
|
fields is a sequence of (name, value) elements for regular form fields.
files is a sequence of (name, filename, value) elements for data to be
uploaded as files
Return (content_type, body) ready for httplib.HTTP instance
|
625941b631939e2706e4cc78
|
def addResultsTransform(self, id, transformData): <NEW_LINE> <INDENT> kparams = KalturaParams() <NEW_LINE> kparams.addIntIfDefined("id", id); <NEW_LINE> kparams.addStringIfDefined("transformData", transformData) <NEW_LINE> self.client.queueServiceActionCall("contentdistribution_genericdistributionprovideraction", "addResultsTransform", "KalturaGenericDistributionProviderAction", kparams) <NEW_LINE> if self.client.isMultiRequest(): <NEW_LINE> <INDENT> return self.client.getMultiRequestResult() <NEW_LINE> <DEDENT> resultNode = self.client.doQueue() <NEW_LINE> return KalturaObjectFactory.create(resultNode, 'KalturaGenericDistributionProviderAction')
|
Add results transform file to generic distribution provider action
|
625941b65e10d32532c5ed36
|
def clone(self): <NEW_LINE> <INDENT> newChamfer=Chamfer(self._obj1 , self._obj2 , self.distance1, self.distance2, self.pointClick1, self.pointClick2) <NEW_LINE> return newChamfer
|
Clone the Chamfer ..
I do not why somone whant to clone a chamfer ..
But Tis is the functionality .. :-)
|
625941b6a8370b77170526a8
|
def DualDemandLevel(Sizes,Demand,Areas,RainData,drop=0.1): <NEW_LINE> <INDENT> SizeA,SizeB=Sizes <NEW_LINE> AreaA,AreaB=Areas <NEW_LINE> containerA=[SizeA] <NEW_LINE> containerB=[SizeB] <NEW_LINE> HarvestedA,HarvestedB=AreaA*RainData,AreaB*RainData <NEW_LINE> if type(Demand)==int or type(Demand)==float: <NEW_LINE> <INDENT> Static=True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> Static=False <NEW_LINE> <DEDENT> if Static: <NEW_LINE> <INDENT> lastSizeA,lastSizeB=SizeA-Demand,SizeB <NEW_LINE> Index=[ val for val in zip(HarvestedA,HarvestedB)] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> lastSizeA,lastSizeB=SizeA-Demand[0],SizeB <NEW_LINE> Index=[val for val in zip(HarvestedA,HarvestedB,Demand)] <NEW_LINE> <DEDENT> for inx in Index: <NEW_LINE> <INDENT> if Static: <NEW_LINE> <INDENT> val,sal=inx <NEW_LINE> dal=Demand <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> val,sal,dal=inx <NEW_LINE> <DEDENT> containerA.append(lastSizeA) <NEW_LINE> lastSizeA=min([lastSizeA-dal+val,SizeA]) <NEW_LINE> if lastSizeA<SizeA*(1-drop): <NEW_LINE> <INDENT> demandB=SizeA-lastSizeA <NEW_LINE> if demandB>containerB[-1]: <NEW_LINE> <INDENT> lastSizeB=containerB[-1] <NEW_LINE> containerB.append(lastSizeB+sal) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> lastSizeB=min([lastSizeB-demandB+sal,SizeB]) <NEW_LINE> lastSizeA=SizeA <NEW_LINE> containerB.append(lastSizeB) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> lastSizeB=min([containerB[-1]+sal,SizeB]) <NEW_LINE> containerB.append(lastSizeB) <NEW_LINE> <DEDENT> <DEDENT> return containerA,containerB
|
Discrete model of the evolution of two water sources. A fish tank used for fertirrigation
and a reserve tank used to replenish the fish tank.
Parameters
----------
Sizes : list
Sizes of the fish tank and the reserve tank in liters .
Demand : float,array-like
Dayly crop irrigation demand in liters. If float a fixed demand, else an
array that contains the daily crop demand.
Areas: list
Cointains the sizes of the rain water harvesting systems that feeds the fish tank and
the reserve tank
RainData : array-like
Contains the daily rain water fall in the region.
drop: float (0,1)
Max level drop at the fish tank before being replenished by the reserve tank
Returns
-------
containerA : list
Fish tank level evolution.
containerB : list
Reserve tank level evolution.
|
625941b6fbf16365ca6f5fc2
|
def __dummyProcess(self, item): <NEW_LINE> <INDENT> return (1,1)
|
Pretends to work, but does nothing -- for debugging
|
625941b63c8af77a43ae35a5
|
def collect_results(name: str) -> dict: <NEW_LINE> <INDENT> full_response = {} <NEW_LINE> fllresponse = {} <NEW_LINE> target_name = dns.name.from_text(name) <NEW_LINE> response = lookup(target_name, dns.rdatatype.CNAME, ip) <NEW_LINE> cnames = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> for answer in answers: <NEW_LINE> <INDENT> cnames.append({"name": answer, "alias": name}) <NEW_LINE> <DEDENT> <DEDENT> response = lookup(target_name, dns.rdatatype.A, ip) <NEW_LINE> arecords = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> a_name = answers.name <NEW_LINE> for answer in answers: <NEW_LINE> <INDENT> if answer.rdtype == 1: <NEW_LINE> <INDENT> arecords.append({"name": a_name, "address": str(answer)}) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> response = lookup(target_name, dns.rdatatype.AAAA, ip) <NEW_LINE> aaaarecords = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> aaaa_name = answers.name <NEW_LINE> for answer in answers: <NEW_LINE> <INDENT> if answer.rdtype == 28: <NEW_LINE> <INDENT> aaaarecords.append({"name": aaaa_name, "address": str(answer)}) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> response = lookup(target_name, dns.rdatatype.MX, ip) <NEW_LINE> mxrecords = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> mx_name = answers.name <NEW_LINE> for answer in answers: <NEW_LINE> <INDENT> if answer.rdtype == 15: <NEW_LINE> <INDENT> mxrecords.append({"name": mx_name, "preference": answer.preference, "exchange": str(answer.exchange)}) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if (not arecords and not aaaarecords and not mxrecords and cnames): <NEW_LINE> <INDENT> cname = str(cnames) <NEW_LINE> cnamesplit = cname.split("rdata: ") <NEW_LINE> cnamesplit1 = cnamesplit[1].split(".>,") <NEW_LINE> target_name = str(cnamesplit1[0]) <NEW_LINE> response = lookup(target_name, dns.rdatatype.A, ip) <NEW_LINE> arecords = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> a_name = answers.name <NEW_LINE> for answer in answers: <NEW_LINE> <INDENT> if answer.rdtype == 1: <NEW_LINE> <INDENT> arecords.append({"name": a_name, "address": str(answer)}) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> response = lookup(target_name, dns.rdatatype.AAAA, ip) <NEW_LINE> aaaarecords = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> aaaa_name = answers.name <NEW_LINE> for answer in answers: <NEW_LINE> <INDENT> if answer.rdtype == 28: <NEW_LINE> <INDENT> aaaarecords.append({"name": aaaa_name, "address": str(answer)}) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> response = lookup(target_name, dns.rdatatype.MX, ip) <NEW_LINE> mxrecords = [] <NEW_LINE> for answers in response.answer: <NEW_LINE> <INDENT> mx_name = answers.name <NEW_LINE> for answer in answers: <NEW_LINE> <INDENT> if answer.rdtype == 15: <NEW_LINE> <INDENT> mxrecords.append({"name": mx_name, "preference": answer.preference, "exchange": str(answer.exchange)}) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> full_response["CNAME"] = cnames <NEW_LINE> full_response["A"] = arecords <NEW_LINE> full_response["AAAA"] = aaaarecords <NEW_LINE> full_response["MX"] = mxrecords <NEW_LINE> return full_response
|
This function parses final answers into the proper data structure that
print_results requires. The main work is done within the `lookup` function.
|
625941b63317a56b86939a71
|
def dummy_decorator(name, fn): <NEW_LINE> <INDENT> def wrapped_func(*args, **kwarg): <NEW_LINE> <INDENT> return fn(*args, **kwarg) <NEW_LINE> <DEDENT> return wrapped_func
|
Dummy decorator which is used from utils.monkey_patch().
:param name: name of the function
:param fn: - object of the function
:returns: fn -- decorated function
|
625941b6d8ef3951e3243344
|
def get_season_in_year(self, isText=False): <NEW_LINE> <INDENT> if isText: <NEW_LINE> <INDENT> return self.SEASON_ORDER[int(self.data['db']['time']['CURRENT_DAY'] % self.days_in_a_year / self.days_in_a_season)] <NEW_LINE> <DEDENT> return int(self.data['db']['time']['CURRENT_DAY'] % self.days_in_a_year / self.days_in_a_season) + 1
|
第几季(年内):春/夏/秋/冬
|
625941b61d351010ab855924
|
def short_uuid4(uid): <NEW_LINE> <INDENT> return str(uid)[:8]
|
When seeing a glimpse of the UID is enough.
|
625941b666656f66f7cbbfb1
|
def list_languages(self): <NEW_LINE> <INDENT> url = self._build_url('languages', base_url=self._api) <NEW_LINE> json = self._json(self._get(url), 200) <NEW_LINE> return [(k, v) for k, v in json.items()]
|
List the programming languages used in the repository.
:returns: list of tuples
|
625941b6ac7a0e7691ed3ee1
|
def tensor_array_gather(handle, indices, flow_in, dtype, element_shape=None, name=None): <NEW_LINE> <INDENT> _ctx = _context._context or _context.context() <NEW_LINE> tld = _ctx._thread_local_data <NEW_LINE> if tld.is_eager: <NEW_LINE> <INDENT> raise RuntimeError("tensor_array_gather op does not support eager execution. Arg 'handle' is a ref.") <NEW_LINE> <DEDENT> dtype = _execute.make_type(dtype, "dtype") <NEW_LINE> if element_shape is None: <NEW_LINE> <INDENT> element_shape = None <NEW_LINE> <DEDENT> element_shape = _execute.make_shape(element_shape, "element_shape") <NEW_LINE> _, _, _op, _outputs = _op_def_library._apply_op_helper( "TensorArrayGather", handle=handle, indices=indices, flow_in=flow_in, dtype=dtype, element_shape=element_shape, name=name) <NEW_LINE> _result = _outputs[:] <NEW_LINE> if _execute.must_record_gradient(): <NEW_LINE> <INDENT> _attrs = ("dtype", _op._get_attr_type("dtype"), "element_shape", _op.get_attr("element_shape")) <NEW_LINE> _inputs_flat = _op.inputs <NEW_LINE> _execute.record_gradient( "TensorArrayGather", _inputs_flat, _attrs, _result) <NEW_LINE> <DEDENT> _result, = _result <NEW_LINE> return _result
|
TODO: add doc.
Args:
handle: A `Tensor` of type mutable `string`.
indices: A `Tensor` of type `int32`.
flow_in: A `Tensor` of type `float32`.
dtype: A `tf.DType`.
element_shape: An optional `tf.TensorShape` or list of `ints`. Defaults to `None`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `dtype`.
|
625941b61d351010ab855925
|
def pause(self): <NEW_LINE> <INDENT> self.__lifecycle.mark_test_finished() <NEW_LINE> self._is_idle_evt.wait() <NEW_LINE> self._await_primaries() <NEW_LINE> self._do_wait_for_mongos_retarget()
|
Pause the thread.
|
625941b6d58c6744b4257a68
|
def create(self, validated_data): <NEW_LINE> <INDENT> return Property_2.objects.create(**validated_data)
|
Create and return a new `Snippet` instance, given the validated data.
|
625941b6fff4ab517eb2f240
|
def connect_to(self, *neighbor_ids): <NEW_LINE> <INDENT> for neigh_id in neighbor_ids: <NEW_LINE> <INDENT> neigh = SimpleGraphNode.node_from_id[neigh_id] <NEW_LINE> if neigh is not None: <NEW_LINE> <INDENT> self._adjacent.add(neigh_id) <NEW_LINE> neigh._adjacent.add(self._node_id)
|
Add an undirected (two-way) edge from this node to other(s).
Parameters
----------
*neighbor_ids : int or sequence of int
ID(s) of node(s) to make adjacent to this one, possibly empty.
|
625941b6498bea3a759b98b9
|
def findMinArrowShots(self, points): <NEW_LINE> <INDENT> if not points: return 0 <NEW_LINE> def cmpPoints(a, b): <NEW_LINE> <INDENT> diff = a[1] - b[1] <NEW_LINE> return diff if diff != 0 else a[0] - b[0] <NEW_LINE> <DEDENT> points = sorted(points, key=cmp_to_key(cmpPoints)) <NEW_LINE> count = 1 <NEW_LINE> top = points[0] <NEW_LINE> length = len(points) <NEW_LINE> for i in range(1, length): <NEW_LINE> <INDENT> below = points[i] <NEW_LINE> if below[0] > top[1]: <NEW_LINE> <INDENT> count += 1 <NEW_LINE> top = points[i] <NEW_LINE> <DEDENT> <DEDENT> return count
|
:type points: List[List[int]]
:rtype: int
|
625941b62eb69b55b151c6b1
|
def dnac_get_module_count(dnac_session, dnac_host, dnac_headers, device_id): <NEW_LINE> <INDENT> tmp_url = 'https://%s/dna/intent/api/v1/network-device/module/MISSION' % dnac_host <NEW_LINE> tmp_params = {'deviceId': device_id} <NEW_LINE> r = dnac_session.get(tmp_url, verify=False, headers=dnac_headers, params=tmp_params) <NEW_LINE> r.raise_for_status() <NEW_LINE> return r.json()['response']
|
DNAC Module Count of a Network Device
|
625941b6b830903b967e971f
|
def test_intersection_with_stability_selection_one_threshold(): <NEW_LINE> <INDENT> coefs = np.array([ [[2, 1, -1, 0, 4], [4, 0, 2, -1, 5], [1, 2, 3, 4, 5]], [[2, 0, 0, 0, 0], [3, 1, 1, 0, 3], [6, 7, 8, 9, 10]], [[2, 0, 0, 0, 0], [2, -1, 3, 0, 2], [2, 4, 6, 8, 9]]]) <NEW_LINE> true_intersection = np.array([ [True, False, False, False, False], [True, True, True, False, True], [True, True, True, True, True]]) <NEW_LINE> selection_thresholds = np.array([2]) <NEW_LINE> estimated_intersection = intersection( coefs=coefs, selection_thresholds=selection_thresholds) <NEW_LINE> assert_array_equal( np.sort(true_intersection, axis=0), np.sort(estimated_intersection, axis=0))
|
Tests whether intersection correctly performs a soft intersection.
|
625941b685dfad0860c3ac60
|
def make_car(make, model, **options): <NEW_LINE> <INDENT> car = {} <NEW_LINE> car['make'], car['model'] = make, model <NEW_LINE> for key, value in options.items(): <NEW_LINE> <INDENT> car[key] = value <NEW_LINE> <DEDENT> return car
|
Creates dictionary of a car.
|
625941b6e1aae11d1e749abb
|
def __getitem__(self, label): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return self.bands[label] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> message = "The label '{}' was not found in the defined bands.".format(label) <NEW_LINE> raise ValueError(message) from None
|
Define indexing as returning the definition of a requested band label.
|
625941b6377c676e91271fb2
|
def create_zone(zone, private=False, vpc_id=None, vpc_region=None, region=None, key=None, keyid=None, profile=None): <NEW_LINE> <INDENT> if region is None: <NEW_LINE> <INDENT> region = 'universal' <NEW_LINE> <DEDENT> conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile) <NEW_LINE> _zone = conn.get_zone(zone, private_zone=private, vpc_id=vpc_id, vpc_region=vpc_region) <NEW_LINE> if _zone: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> conn.create_zone(zone) <NEW_LINE> return True
|
Create a Route53 hosted zone.
.. versionadded:: 2015.8.0
CLI Example::
salt myminion boto_route53.create_zone example.org
|
625941b68e7ae83300e4add3
|
def show_frame(self, frame=None): <NEW_LINE> <INDENT> if frame is not None: <NEW_LINE> <INDENT> cv2.imshow(self.video_name, frame) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> cv2.imshow(self.video_name, self.frame)
|
Display the frame in the Capture's window using cv2.imshow
If no frame is provided, the previous frame is used.
|
625941b623849d37ff7b2e99
|
def IsVertical(self): <NEW_LINE> <INDENT> fld = self.GetParent().GetGrandParent() <NEW_LINE> if isinstance(fld, FoldPanelBar): <NEW_LINE> <INDENT> return self.GetParent().GetGrandParent().IsVertical() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise "ERROR: Wrong Parent " + repr(fld)
|
Returns wether the CaptionBar Has Default Orientation Or Not.
Default is vertical.
|
625941b67d43ff24873a2aab
|
def write_async(self, fname: str, compression: bool = False): <NEW_LINE> <INDENT> worker = Thread( target=self.write, args=(fname,), kwargs={"compression": compression} ) <NEW_LINE> worker.daemon = True <NEW_LINE> worker.start()
|
!EXPERIMENTAL
Write data to disk async, only works if this file is
not manipulated until the operation is finished.
|
625941b650485f2cf553cba0
|
def _insert_and_compare(self, importer, model, samples): <NEW_LINE> <INDENT> importer(model, ['data'], [[sample] for sample in samples]) <NEW_LINE> for (a, b) in zip(model.objects.all(), samples): <NEW_LINE> <INDENT> self.assertJSONEqual("[{}]".format(json.dumps(a.data)), [b])
|
Inserts sample data using the given importer and
asserts that the 'data' attribute of the objects
are equal as JSON
|
625941b6004d5f362079a13f
|
def test_chickadee_force_single(self): <NEW_LINE> <INDENT> expected_results = self.expected_result <NEW_LINE> class MockResolver: <NEW_LINE> <INDENT> def __init__(self, *args, **kwargs): <NEW_LINE> <INDENT> self.data = None <NEW_LINE> <DEDENT> def single(self): <NEW_LINE> <INDENT> return [x for x in expected_results if x['query'] == self.data] <NEW_LINE> <DEDENT> <DEDENT> chickadee = Chickadee() <NEW_LINE> chickadee.ignore_bogon = False <NEW_LINE> chickadee.force_single = True <NEW_LINE> chickadee.fields = self.fields <NEW_LINE> with patch("libchickadee.chickadee.ipapi.Resolver", MockResolver): <NEW_LINE> <INDENT> data = chickadee.run(','.join(self.test_data_ips)) <NEW_LINE> <DEDENT> self.assertCountEqual(data, self.expected_result)
|
Batch Query Method Test
|
625941b650812a4eaa59c12d
|
def startsWith(self, prefix): <NEW_LINE> <INDENT> top = self.root <NEW_LINE> for c in prefix: <NEW_LINE> <INDENT> i = self.char2num(c) <NEW_LINE> if not top.child[i]: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> top = top.child[i] <NEW_LINE> <DEDENT> return True
|
Returns if there is any word in the trie
that starts with the given prefix.
:type prefix: str
:rtype: bool
|
625941b6e8904600ed9f1d30
|
def test_repeat_decorator_error(self): <NEW_LINE> <INDENT> @pool_manager.re_request() <NEW_LINE> def function(): <NEW_LINE> <INDENT> raise pool_manager.DBManagerError <NEW_LINE> <DEDENT> nose.tools.assert_raises(pool_manager.DBManagerError, function())
|
test if decorator raise error
|
625941b60c0af96317bb7ff1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.