code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def set_search_area(self, search_area): <NEW_LINE> <INDENT> min_col, max_col, min_row, max_row = search_area <NEW_LINE> ml.log_event('search area set..\n min_col: \'{}\'\n max_col: \'{}\'\n min_row: \'{}\'\n max_row: \'{}\''.format( min_col, max_col, min_row, max_row)) <NEW_LINE> self.min_col = min_col <NEW_LINE> self.max_col = max_col <NEW_LINE> self.min_row = min_row <NEW_LINE> self.max_row = max_row
set_search_area does the following.. 1. allows the user to set a custom search area for all spreadsheets, smaller is faster :param search_area: a tuple containing.. ..min_col: far left, ..max_col: far right, ..min_row: top, ..max_row: bottom :return:
625941b66fece00bbac2d54e
def forwards(self, orm): <NEW_LINE> <INDENT> spot_test = orm.GamificationBadgeTemplate.objects.create(name="Spot Test", image="img/OP_Badge_Event_01_SpotTest.png") <NEW_LINE> five_spot_test = orm.GamificationBadgeTemplate.objects.create(name="5 Spot Tests", image="img/OP_Badge_Event_02_5SpotTests.png") <NEW_LINE> exam = orm.GamificationBadgeTemplate.objects.create(name="Exam", image="img/OP_Badge_Event_03_Exam.png") <NEW_LINE> spot_test_champ = orm.GamificationBadgeTemplate.objects.create(name="Spot Test Champ", image="img/OP_Badge_Event_04_SpotTestChamp.png") <NEW_LINE> exam_champ = orm.GamificationBadgeTemplate.objects.create(name="Exam Champ", image="img/OP_Badge_Event_05_ExamChamp.png") <NEW_LINE> orm.GamificationScenario.objects.create(name="Spot Test", badge=spot_test, event="SPOT_TEST") <NEW_LINE> orm.GamificationScenario.objects.create(name="5 Spot Tests", badge=five_spot_test, event="5_SPOT_TEST") <NEW_LINE> orm.GamificationScenario.objects.create(name="Exam", badge=exam, event="EXAM") <NEW_LINE> orm.GamificationScenario.objects.create(name="Spot Test Champ", badge=spot_test_champ, event="SPOT_TEST_CHAMP") <NEW_LINE> orm.GamificationScenario.objects.create(name="Exam Champ", badge=exam_champ, event="EXAM_CHAMP")
Write your forwards methods here.
625941b650812a4eaa59c139
@process <NEW_LINE> def server(host, port): <NEW_LINE> <INDENT> sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) <NEW_LINE> sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) <NEW_LINE> sock.bind((host, port)) <NEW_LINE> sock.listen(5) <NEW_LINE> while True: <NEW_LINE> <INDENT> conn_sock, conn_addr = sock.accept() <NEW_LINE> request = conn_sock.recv(4096).strip() <NEW_LINE> if request.startswith('GET'): <NEW_LINE> <INDENT> handler_ok(request, conn_sock).start() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> handler_not_found(request, conn_sock).start()
Simple CSP based web server.
625941b64c3428357757c13e
def load_batch_of_images(path, dirs, labels, image_shape, loader, num_per_class, batch_size=None, random=False, indices=None, normalize=0): <NEW_LINE> <INDENT> dirs = np.array(dirs) <NEW_LINE> if batch_size == None: <NEW_LINE> <INDENT> batch_dirs = dirs <NEW_LINE> <DEDENT> elif random == True: <NEW_LINE> <INDENT> assert batch_size != None <NEW_LINE> batch_dirs = np.random.choice(dirs, batch_size) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> assert (batch_size != None) & (indices is not None) <NEW_LINE> batch_dirs = dirs[indices] <NEW_LINE> <DEDENT> samples = np.zeros((num_per_class * len(batch_dirs), *image_shape)) <NEW_LINE> batch_labels = np.ones(num_per_class * len(batch_dirs)).astype(int) <NEW_LINE> for i, dir_name in enumerate(batch_dirs): <NEW_LINE> <INDENT> dir_path = os.path.join(path, dir_name) <NEW_LINE> filenames = os.listdir(dir_path) <NEW_LINE> filenames = np.random.choice(filenames, num_per_class) <NEW_LINE> batch = np.zeros((num_per_class, *image_shape)) <NEW_LINE> for j, filename in enumerate(filenames): <NEW_LINE> <INDENT> batch[j,:,:,:] = loader(os.path.join(dir_path, filename), image_shape) <NEW_LINE> <DEDENT> samples[i*num_per_class: i*num_per_class + num_per_class, :, :, :] = batch <NEW_LINE> batch_labels[i*num_per_class: i*num_per_class + num_per_class] = batch_labels[i*num_per_class: i*num_per_class + num_per_class] * labels[i] <NEW_LINE> <DEDENT> if normalize == 1: <NEW_LINE> <INDENT> samples = (samples - 127.5) / 127.5 <NEW_LINE> <DEDENT> elif normalize == 2: <NEW_LINE> <INDENT> samples = samples / 255 <NEW_LINE> <DEDENT> return samples, batch_labels
Loads a random batch of images Keyword Arguments: ----------- - path: string Path to the image source directory on disk. Source directory should be divided into directories, one directory per class. - dirs: [string] List of directories to be considered in the path. Every directory should contain images of a single class. - labels: [int] Class labels. Should correspond to classes. - image_shape: tuple (H,W,C) H - image height W - image width C - number of channels - loader: Function Should take path to image file and image_shape as parameters. Should return numpy array - num_per_class: int Number of images that should be randomly chosen from each class. - batch_size: int Number of classes to use in a single batch. Total number of samples will be batch_size * num_per_class. If batch_size == None, samples will be taken from every one of dirs. - random: bool If classes for a batch should be chosen randomly. - start_idx: int Start index, if batch is not random. - end_idx: int End index, if batch is not random. - normalize: int If images should be normalized. 0 - do not normalize, 1 - normalize between -1 and 1, 2 - normalize between 0 and 1. Returns: -------- - samples: ndarray (N, H, W, C) Numpy array of randomly chosen images resized according to model's input shape. N - number of samples H - height W - width C - number of channels - batch_labels: [int] Sample labels.
625941b6ec188e330fd5a5bb
def addDigits(self, num): <NEW_LINE> <INDENT> while len(str(num))!=1: <NEW_LINE> <INDENT> num = sum([int(x) for x in str(num)]) <NEW_LINE> <DEDENT> return num
:type num: int :rtype: int
625941b6d18da76e235322e5
def tree_csv(self, file_name=None, leaves_only=False): <NEW_LINE> <INDENT> if self.boosting: <NEW_LINE> <INDENT> raise AttributeError("This method is not available for boosting" " models.") <NEW_LINE> <DEDENT> headers_names = [] <NEW_LINE> if self.regression: <NEW_LINE> <INDENT> headers_names.append( self.fields[self.tree.objective_id]['name']) <NEW_LINE> headers_names.append("error") <NEW_LINE> for index in range(0, self._max_bins): <NEW_LINE> <INDENT> headers_names.append("bin%s_value" % index) <NEW_LINE> headers_names.append("bin%s_instances" % index) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> headers_names.append( self.fields[self.tree.objective_id]['name']) <NEW_LINE> headers_names.append("confidence") <NEW_LINE> headers_names.append("impurity") <NEW_LINE> for category, _ in self.tree.distribution: <NEW_LINE> <INDENT> headers_names.append(category) <NEW_LINE> <DEDENT> <DEDENT> nodes_generator = self.get_nodes_info(headers_names, leaves_only=leaves_only) <NEW_LINE> if file_name is not None: <NEW_LINE> <INDENT> with UnicodeWriter(file_name) as writer: <NEW_LINE> <INDENT> writer.writerow([header.encode("utf-8") for header in headers_names]) <NEW_LINE> for row in nodes_generator: <NEW_LINE> <INDENT> writer.writerow([item if not isinstance(item, basestring) else item.encode("utf-8") for item in row]) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> rows = [] <NEW_LINE> rows.append(headers_names) <NEW_LINE> for row in nodes_generator: <NEW_LINE> <INDENT> rows.append(row) <NEW_LINE> <DEDENT> return rows
Outputs the node structure to a CSV file or array
625941b6cc0a2c11143dccac
def getOthers(self): <NEW_LINE> <INDENT> return self.others
Objective: To return the othets value of the object. Input Parameters: self: (implicit) node object Output: others of the object
625941b6adb09d7d5db6c5a7
def scale(self, **kwargs): <NEW_LINE> <INDENT> return type(self)(affinity.scale(self.shape, **kwargs), name=self.name, fid=self.fid)
Returns a scaled geometry, scaled by factors 'xfact' and 'yfact' along each dimension. The 'origin' keyword can be 'center' for the object bounding box center (default), 'centroid' for the geometry’s centroid, or coordinate tuple (x0, y0) for fixed point. Negative scale factors will mirror or reflect coordinates. Kwargs: xfact=1.0 yfact=1.0 origin='center'
625941b6fff4ab517eb2f24d
def delete_application_snapshot(ApplicationName=None, SnapshotName=None, SnapshotCreationTimestamp=None): <NEW_LINE> <INDENT> pass
Deletes a snapshot of application state. See also: AWS API Documentation Exceptions :example: response = client.delete_application_snapshot( ApplicationName='string', SnapshotName='string', SnapshotCreationTimestamp=datetime(2015, 1, 1) ) :type ApplicationName: string :param ApplicationName: [REQUIRED] The name of an existing application. :type SnapshotName: string :param SnapshotName: [REQUIRED] The identifier for the snapshot delete. :type SnapshotCreationTimestamp: datetime :param SnapshotCreationTimestamp: [REQUIRED] The creation timestamp of the application snapshot to delete. You can retrieve this value using or . :rtype: dict ReturnsResponse Syntax {} Response Structure (dict) -- Exceptions KinesisAnalyticsV2.Client.exceptions.ResourceInUseException KinesisAnalyticsV2.Client.exceptions.InvalidArgumentException KinesisAnalyticsV2.Client.exceptions.UnsupportedOperationException KinesisAnalyticsV2.Client.exceptions.InvalidRequestException KinesisAnalyticsV2.Client.exceptions.ResourceNotFoundException :return: {} :returns: (dict) --
625941b67c178a314d6ef26c
def pc_nproduced_avg(self): <NEW_LINE> <INDENT> return _ccsds_swig.mpsk_ambiguity_resolver_f_sptr_pc_nproduced_avg(self)
pc_nproduced_avg(mpsk_ambiguity_resolver_f_sptr self) -> float
625941b6a17c0f6771cbde68
def read_config(filenames=None): <NEW_LINE> <INDENT> default_configs = ['/etc/obs/services/git-buildpackage', '~/.obs/git-buildpackage'] <NEW_LINE> defaults = {'repo-cache-dir': '/var/cache/obs/git-buildpackage-repos/', 'gbp-tmp-dir': '/tmp/obs-service-gbp/', 'gbp-user': None, 'gbp-group': None, 'repo-cache-refs-hack': 'no'} <NEW_LINE> configs = default_configs if filenames is None else filenames <NEW_LINE> configs = [os.path.expanduser(fname) for fname in configs] <NEW_LINE> LOGGER.debug('Trying %s config files: %s', len(configs), configs) <NEW_LINE> parser = SafeConfigParser(defaults=defaults) <NEW_LINE> read = parser.read(configs) <NEW_LINE> LOGGER.debug('Read %s config files: %s', len(read), read) <NEW_LINE> if not parser.has_section('general'): <NEW_LINE> <INDENT> parser.add_section('general') <NEW_LINE> <DEDENT> for key in defaults.keys(): <NEW_LINE> <INDENT> envvar ='OBS_GIT_BUILDPACKAGE_%s' % key.replace('-', '_').upper() <NEW_LINE> if envvar in os.environ: <NEW_LINE> <INDENT> parser.set('general', key, os.environ[envvar]) <NEW_LINE> <DEDENT> <DEDENT> return dict(parser.items('general'))
Read configuration file(s)
625941b6b57a9660fec33693
def test_spell_activity_date_started_field(self): <NEW_LINE> <INDENT> field = self.spell_activity_record.find('field[@name=\'date_started\']') <NEW_LINE> regex_match = re.match(self.eval_regex, field.attrib['eval']) <NEW_LINE> self.assertEqual(len(regex_match.groups()), 1, 'Incorrect date_started eval on activity')
Make sure the state field for the spell activity is correct
625941b6eab8aa0e5d26d972
def existeAresta(self, v1, v2): <NEW_LINE> <INDENT> for v in self.adj[v1]: <NEW_LINE> <INDENT> if v.vertice == v2: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> for v22 in self.adj[v2]: <NEW_LINE> <INDENT> if v22.vertice == v1: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> return False
Retorna se existe uma aresta entre v1 -> v2
625941b60a366e3fb873e62b
def calc_global_palette(self): <NEW_LINE> <INDENT> seencolors = {self.backdrop: 0} <NEW_LINE> self.global_to_local = {} <NEW_LINE> for paletteid, colors in self.palettes.items(): <NEW_LINE> <INDENT> self.global_to_local[paletteid] = g2l = bytearray(256) <NEW_LINE> for color, index in colors: <NEW_LINE> <INDENT> seencolors.setdefault(color, len(seencolors)) <NEW_LINE> g2l[seencolors[color]] = index <NEW_LINE> <DEDENT> <DEDENT> palette = [bytes(self.backdrop)] * 256 <NEW_LINE> for color, index in seencolors.items(): <NEW_LINE> <INDENT> palette[index] = bytes(color) <NEW_LINE> <DEDENT> self.global_palette = b"".join(palette)
Calculate a 256-entry palette containing all subpalettes. Convert self.palette to these: - self.global_palette, a 768-byte bytes containing the backdrop and all subpalettes defined in the cel list - self.global_to_local, a dict from self.palettes keys to 256-byte bytes representing mappings from indices in self.global_palette to indices in the subpalette, intended as LUTs for im.point()
625941b6be7bc26dc91cd41a
def test_get(self): <NEW_LINE> <INDENT> self.assertEqual(200, self.resp.status_code)
get /inscricao/ must return status code 200
625941b6b5575c28eb68de11
def moderator_statistics(contributions): <NEW_LINE> <INDENT> moderators = {} <NEW_LINE> for contribution in contributions: <NEW_LINE> <INDENT> if contribution["status"] == "unreviewed": <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> moderator = contribution["moderator"] <NEW_LINE> if moderator == "BANNED": <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> moderators.setdefault( moderator, { "moderator": moderator, "category": [], "average_score": [], "average_without_0": [] } ) <NEW_LINE> moderators[moderator]["average_score"].append(contribution["score"]) <NEW_LINE> moderators[moderator]["category"].append(contribution["category"]) <NEW_LINE> if contribution["score"] > 0: <NEW_LINE> <INDENT> moderators[moderator]["average_without_0"].append( contribution["score"]) <NEW_LINE> <DEDENT> <DEDENT> moderator_list = [] <NEW_LINE> for moderator, value in moderators.items(): <NEW_LINE> <INDENT> value["category"] = Counter(value["category"]).most_common() <NEW_LINE> value["average_score"] = average(value["average_score"]) <NEW_LINE> value["average_without_0"] = average(value["average_without_0"]) <NEW_LINE> moderator_list.append(value) <NEW_LINE> <DEDENT> return {"moderators": moderator_list}
Returns a dictionary containing statistics about all moderators.
625941b650485f2cf553cbad
def blitme(self) -> object: <NEW_LINE> <INDENT> self.screen.blit(self.image, self.rect)
Draw the ship at its current location.
625941b6f9cc0f698b14041a
def w_grad(weigth, center, sig, xs, ys): <NEW_LINE> <INDENT> pass
Params: weigth,center - neuron params sig - sigma, neighborhood_radius xs - array of x ys - array of target value
625941b6046cf37aa974cb5f
def startsWith(self, prefix): <NEW_LINE> <INDENT> root = self.root <NEW_LINE> for c in prefix: <NEW_LINE> <INDENT> ind = ord(c) - ord('a') <NEW_LINE> if not root or not root.children[ind]: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> root = root.children[ind] <NEW_LINE> <DEDENT> return True
Returns if there is any word in the trie that starts with the given prefix. :type prefix: str :rtype: bool
625941b64527f215b584c26f
@register.filter(name='cut') <NEW_LINE> def cut(value,arg): <NEW_LINE> <INDENT> return value.replace(arg, '')
This cuts out all values of 'arg from the String'
625941b64e4d5625662d41f2
def nsca_unknown(host_name, service_name, text_output, remote_host, **kwargs): <NEW_LINE> <INDENT> return send_nsca( status=STATE_UNKNOWN, host_name=host_name, service_name=service_name, text_output=text_output, remote_host=remote_host, **kwargs )
Wrapper for the send_nsca() function to easily send an UNKNONW Arguments: host_name: Host name to report as service_name: Service to report as text_output: Freeform text, should be under 1kb remote_host: Host name to send to All other arguments are passed to the NscaSender constructor
625941b6f548e778e58cd390
def getSelectedObject(self): <NEW_LINE> <INDENT> sel = DCC.getSelectedObjects() <NEW_LINE> if not sel: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> newObj = sel[0] <NEW_LINE> if not newObj: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> self.loadObject(newObj)
Load the first selected DCC object into the UI
625941b691af0d3eaac9b828
def test(self, model, test_set: pd.DataFrame, test_label: pd.Series, args): <NEW_LINE> <INDENT> score = model.score(test_set, test_label) <NEW_LINE> self.logger.info('Test set score: %.2f' % score)
Test the model with test set :param test_set pd.DataFrame The vectorized test dataset :param test_label pd.Series The test set label
625941b632920d7e50b27fe0
def join_iostat_to_sard(self, list_sar_d, list_iostat, disk_map): <NEW_LINE> <INDENT> list_join = [] <NEW_LINE> for sar_line in list_sar_d: <NEW_LINE> <INDENT> dev = sar_line[constant.DICT_KEYS_DEV] <NEW_LINE> device_dict = Common.get_dict_by_name(constant.DICT_KEYS_DEVNAME, dev, disk_map) <NEW_LINE> if not device_dict or constant.DICT_KEYS_NAME not in device_dict: <NEW_LINE> <INDENT> sar_line[constant.DICT_KEYS_RRQM] = "0.00" <NEW_LINE> sar_line[constant.DICT_KEYS_WRQM] = "0.00" <NEW_LINE> list_join.append(sar_line) <NEW_LINE> continue <NEW_LINE> <DEDENT> device_name = device_dict[constant.DICT_KEYS_NAME] <NEW_LINE> iostat = Common.get_dict_by_name(constant.DICT_KEYS_DEVICE, device_name, list_iostat) <NEW_LINE> if not iostat or constant.DICT_KEYS_RRQM not in iostat or constant.DICT_KEYS_WRQM not in iostat: <NEW_LINE> <INDENT> sar_line[constant.DICT_KEYS_RRQM] = "0.00" <NEW_LINE> sar_line[constant.DICT_KEYS_WRQM] = "0.00" <NEW_LINE> list_join.append(sar_line) <NEW_LINE> continue <NEW_LINE> <DEDENT> sar_line[constant.DICT_KEYS_RRQM] = iostat[constant.DICT_KEYS_RRQM] <NEW_LINE> sar_line[constant.DICT_KEYS_WRQM] = iostat[constant.DICT_KEYS_WRQM] <NEW_LINE> list_join.append(sar_line) <NEW_LINE> <DEDENT> return list_join
join list_iostat to list_sar_d disk_map:translate DEV to Device :param list_sar_d: :param list_iostat: :param disk_map: :return:
625941b64527f215b584c270
def map_user_movies(data): <NEW_LINE> <INDENT> dict_user_movies = dict() <NEW_LINE> for i in range( data.shape[0]): <NEW_LINE> <INDENT> user = data.loc[i, 'user'] <NEW_LINE> movie = data.loc[i, 'movie'] <NEW_LINE> if (user in dict_user_movies): <NEW_LINE> <INDENT> dict_user_movies[user].add(movie) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> dict_user_movies[user] = set() <NEW_LINE> dict_user_movies[user].add(movie) <NEW_LINE> <DEDENT> <DEDENT> return dict_user_movies
Getting all watched movies by the user ARGS: All data which is users and movies, also the rating RETURN: Dict: A dictionary with all users and their watched movies (key = userId and values = List of watched movies)
625941b6f8510a7c17cf9519
def add_event_listener(self, event_type, callback): <NEW_LINE> <INDENT> logger.debug("adding event listener %s", event_type) <NEW_LINE> if event_type not in self.__listeners: <NEW_LINE> <INDENT> self.__listeners[event_type] = [] <NEW_LINE> <DEDENT> self.__listeners[event_type].append(callback)
Adds an event listener for the given type and callback function.
625941b667a9b606de4a7cd1
def close(entries, date, conversion_currency, account_conversions): <NEW_LINE> <INDENT> if date is not None: <NEW_LINE> <INDENT> entries = truncate(entries, date) <NEW_LINE> <DEDENT> index = len(entries) <NEW_LINE> entries = conversions(entries, account_conversions, conversion_currency, date) <NEW_LINE> return entries, index
Truncate entries that occur after a particular date and ensure balance. This method essentially removes entries after a date. It truncates the future. To do so, it will 1. Remove all entries which occur after 'date', if given. 2. Insert conversion transactions at the end of the list of entries to ensure that the total balance of all postings sums up to empty. The result is a list of entries with a total balance of zero, with possibly non-zero balances for the income/expense accounts. To produce a final balance sheet, use transfer() to move the net income to the equity accounts. Args: entries: A list of directive tuples. date: A datetime.date instance, one day beyond the end of the period. This date can be optionally left to None in order to close at the end of the list of entries. conversion_currency: A string, the transfer currency to use for zero prices on the conversion entry. account_conversions: A string, tne name of the equity account to book currency conversions against. Returns: A new list of entries is returned, and the index that points to one beyond the last original transaction that was provided. Further entries may have been inserted to normalize conversions and ensure the total balance sums to zero.
625941b63c8af77a43ae35b2
def __sub__(self,fraction2): <NEW_LINE> <INDENT> return Fraction(self.num * fraction2.den - self.den * fraction2.num, self.den * fraction2.den).reduire()
Permet de redéfinir la soustraction
625941b6d486a94d0b98df63
def parse_test(self): <NEW_LINE> <INDENT> self.assertEqual( [ { 'commit': '9093ace390c4e44910774ebddef403689435f046', 'author': 'Some Author <some.author@example.com>', 'date': datetime(2015, 1, 1, 12, 34, 56, tzinfo=timezone(timedelta(0, 3600))), 'count': 4, }, ], self.parser.parse(self.complete_commit, ignore=["ignored/*"]) )
The correct git commit dicts should be retrieved
625941b6004d5f362079a14c
def ping(): <NEW_LINE> <INDENT> warnings.warn(DeprecationWarning( "The ping task has been deprecated and will be removed in Celery " "v2.3. Please use inspect.ping instead.")) <NEW_LINE> return PingTask.apply_async().get()
Deprecated and scheduled for removal in Celery 2.3. Please use :meth:`celery.task.control.ping` instead.
625941b616aa5153ce36228d
def reset(self): <NEW_LINE> <INDENT> pass
Reset :py:class:`pyctrl.block.Block`. Does nothing here but allows another :py:class:`pyctrl.block.Block` to reset itself.
625941b624f1403a9260097f
def __iter__(self): <NEW_LINE> <INDENT> self._fetch() <NEW_LINE> return iter(self._cache)
Return iterator over the current object.
625941b6d164cc6175782b62
def get(self): <NEW_LINE> <INDENT> self.checkpoison() <NEW_LINE> item = self._store <NEW_LINE> self._store = None <NEW_LINE> return item
Get a Python object from a process-safe store.
625941b6090684286d50eaf4
def close(self): <NEW_LINE> <INDENT> if self.closed: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> io.RawIOBase.close(self) <NEW_LINE> self._sock = None
Close the SocketIO object. This doesn't close the underlying socket, except if all references to it have disappeared.
625941b6ab23a570cc24ff95
def set_AccessToken(self, value): <NEW_LINE> <INDENT> super(ListSearchResultsInputSet, self)._set_input('AccessToken', value)
Set the value of the AccessToken input for this Choreo. ((optional, string) A valid access token retrieved during the OAuth process. This is required for OAuth authentication unless you provide the ClientID, ClientSecret, and RefreshToken to generate a new access token.)
625941b630dc7b766590177f
def serialize(self): <NEW_LINE> <INDENT> return { 'id': self.id, 'user_type_id': self.user_type_id, 'name': self.name, 'email': self.email, 'created': self.created.strftime("%Y-%m-%d %H:%M:%S"), 'update': self.update.strftime("%Y-%m-%d %H:%M:%S"), 'active': self.active, }
Serialize object for json :param self:
625941b6462c4b4f79d1d4e5
def betterEvaluationFunction(currentGameState): <NEW_LINE> <INDENT> score = currentGameState.getScore() <NEW_LINE> newPos = currentGameState.getPacmanPosition() <NEW_LINE> newFood = currentGameState.getFood() <NEW_LINE> newGhostStates = currentGameState.getGhostStates() <NEW_LINE> newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates] <NEW_LINE> if currentGameState.isWin(): <NEW_LINE> <INDENT> return float("inf") <NEW_LINE> <DEDENT> if currentGameState.isLose(): <NEW_LINE> <INDENT> return -float("inf") <NEW_LINE> <DEDENT> closestGhost = min([util.manhattanDistance(newPos,ghostState.getPosition()) for ghostState in newGhostStates]) <NEW_LINE> closestFood = min([util.manhattanDistance(newPos,foodPos) for foodPos in newFood.asList()]) <NEW_LINE> score += closestFood - 2*closestGhost <NEW_LINE> return score
Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable evaluation function (question 5). DESCRIPTION: <write something here so we know what you did>
625941b656ac1b37e6263ff5
def convert_column_to_ndarray(col: ColumnObject) -> pa.Array: <NEW_LINE> <INDENT> if col.offset != 0: <NEW_LINE> <INDENT> raise NotImplementedError("column.offset > 0 not handled yet") <NEW_LINE> <DEDENT> if col.describe_null[0] not in (0, 1, 3, 4): <NEW_LINE> <INDENT> raise NotImplementedError("Null values represented as" "sentinel values not handled yet") <NEW_LINE> <DEDENT> _buffer, _dtype = col.get_buffers()["data"] <NEW_LINE> x = buffer_to_ndarray(_buffer, _dtype) <NEW_LINE> if col.describe_null[0] in (3, 4) and col.null_count > 0: <NEW_LINE> <INDENT> mask_buffer, mask_dtype = col._get_validity_buffer() <NEW_LINE> mask = buffer_to_ndarray(mask_buffer, mask_dtype) <NEW_LINE> x = pa.array(x, mask=mask) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> x = pa.array(x) <NEW_LINE> <DEDENT> return x, _buffer
Convert an int, uint, float or bool column to an arrow array
625941b6460517430c393fa4
def negabs_off_diagonal_elements(self): <NEW_LINE> <INDENT> for i in range(self.nbasis): <NEW_LINE> <INDENT> for j in range(i+1,self.nbasis): <NEW_LINE> <INDENT> self.hamil[i][j] = -abs(self.hamil[i][j]) <NEW_LINE> self.hamil[j][i] = -abs(self.hamil[j][i])
Set off-diagonal elements of the Hamiltonian matrix to be negative. This converts the Hamiltonian into the lesser sign-problem matrix discussed by Spencer, Blunt and Foulkes.
625941b6e5267d203edcdab6
def swap(self, fpos, spos): <NEW_LINE> <INDENT> self.heap[fpos], self.heap[spos] = self.heap[spos], self.heap[fpos]
Swap the two nodes
625941b6be7bc26dc91cd41b
def is_wild(self): <NEW_LINE> <INDENT> return self.denomination in ('wild', 'wild4')
Return True if wild or wild4.
625941b65fcc89381b1e14d9
def testCaptureDepthImageThenBurstImage100Times(self): <NEW_LINE> <INDENT> for i in range(100): <NEW_LINE> <INDENT> sm.switchCaptureMode('depth') <NEW_LINE> tb.captureAndCheckPicCount('single',2) <NEW_LINE> sm.switchCaptureMode('burstfast') <NEW_LINE> tb.captureAndCheckPicCount('single',2) <NEW_LINE> time.sleep(2)
test capture depth image and then capture burst image 100 times. back camera
625941b615fb5d323cde091e
def install_proxy(proxy_handler): <NEW_LINE> <INDENT> proxy_support = urllib2.ProxyHandler(proxy_handler) <NEW_LINE> opener = urllib2.build_opener(proxy_support) <NEW_LINE> urllib2.install_opener(opener)
install global proxy. :param proxy_handler: :samp:`{"http":"http://my.proxy.com:1234", "https":"https://my.proxy.com:1234"}` :return:
625941b68a43f66fc4b53e7f
def getSFPFGUrls(self): <NEW_LINE> <INDENT> pc = getToolByName(self.context, "portal_catalog") <NEW_LINE> return [{'url':b.getURL(), 'title':b.Title,} for b in pc(portal_type="SalesforcePFGAdapter", path='/'.join(self.context.getPhysicalPath()))]
Return a list of the full urls and titles of the SalesforcePFGAdapters in the form (we support multiple because they can be chained. But the wizard only would create at most one.)
625941b6b5575c28eb68de12
def feed(self, name_in): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> name = name_in.replace("-", "_") <NEW_LINE> try: <NEW_LINE> <INDENT> metadata_dir = pkg_resources.get_distribution(name).egg_info <NEW_LINE> <DEDENT> except (pkg_resources.DistributionNotFound,) as e: <NEW_LINE> <INDENT> msg = "%s:%s" % (name_in, e) <NEW_LINE> logger.warning(msg) <NEW_LINE> self.mgr.s_pip_wo_packageinfo.add(name_in) <NEW_LINE> self.mgr._debug[name_in] = msg <NEW_LINE> return <NEW_LINE> <DEDENT> fnp = os.path.join(metadata_dir, "top_level.txt") <NEW_LINE> try: <NEW_LINE> <INDENT> with open(fnp) as fi: <NEW_LINE> <INDENT> packagenames = fi.readlines() <NEW_LINE> <DEDENT> <DEDENT> except (IOError,) as e: <NEW_LINE> <INDENT> msg = "%s:IOError reading top_level.txt" % (name_in) <NEW_LINE> logger.warning(msg) <NEW_LINE> self.mgr.s_pip_wo_packageinfo.add(name_in) <NEW_LINE> self.mgr._debug[name_in] = msg <NEW_LINE> return <NEW_LINE> <DEDENT> packagenames = [pn.strip() for pn in packagenames if pn.strip()] <NEW_LINE> len_packagenames = len(packagenames) <NEW_LINE> if len_packagenames == 1: <NEW_LINE> <INDENT> self.mgr.di_pip_imp[name_in] = packagenames[0] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if name in packagenames: <NEW_LINE> <INDENT> self.mgr.di_pip_imp[name_in] = name <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> msg = "%s:too many packagenames in %s" % (name_in, packagenames) <NEW_LINE> logger.warning(msg) <NEW_LINE> self.mgr.s_pip_wo_packageinfo.add(name_in) <NEW_LINE> self.mgr._debug[name_in] = msg <NEW_LINE> return <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> except (Exception,) as e: <NEW_LINE> <INDENT> if cpdb(): <NEW_LINE> <INDENT> pdb.set_trace() <NEW_LINE> <DEDENT> raise
credit for pkg_resources code belongs to https://stackoverflow.com/a/54853084
625941b663d6d428bbe44304
def get_metric(self, measurand: str): <NEW_LINE> <INDENT> return self._metrics[measurand].value
Return last known value for given measurand.
625941b68e7ae83300e4ade0
def update(self,users): <NEW_LINE> <INDENT> dict.update(self,{}) <NEW_LINE> for entry in users: <NEW_LINE> <INDENT> self[entry.login] = entry.passwd
Update the user cache from database results. This is actually called from ClientSessionManager.
625941b6d18da76e235322e6
@contextmanager <NEW_LINE> def get_cursor(): <NEW_LINE> <INDENT> db = connect() <NEW_LINE> cursor = db.cursor() <NEW_LINE> yield cursor <NEW_LINE> db.commit() <NEW_LINE> cursor.close() <NEW_LINE> db.close()
Helper function that takes care of the db connection and cursor
625941b6ac7a0e7691ed3eef
def change_pt_crs(x, y, in_epsg, out_epsg): <NEW_LINE> <INDENT> in_crs = pyproj.Proj("+init=EPSG:" + str(in_epsg)) <NEW_LINE> out_crs = pyproj.Proj("+init=EPSG:" + str(out_epsg)) <NEW_LINE> return pyproj.transform(in_crs, out_crs, x, y)
Purpose: To return the coordinates of given points in a different coordinate system. Description of arguments: x (int or float, single or list): The horizontal position of the input point. y (int or float, single or list): The vertical position of the input point. Note: In case of x and y in list form, the output is also in a list form. in_epsg (string or int): The EPSG code of the input coordinate system out_epsg (string or int): The EPSG code of the output coordinate system
625941b6099cdd3c635f0a72
def getBestLearner(self, meanErrors, paramDict, X, y, idx=None): <NEW_LINE> <INDENT> if idx == None: <NEW_LINE> <INDENT> return super(DecisionTreeLearner, self).getBestLearner(meanErrors, paramDict, X, y, idx) <NEW_LINE> <DEDENT> bestInds = numpy.unravel_index(numpy.argmin(meanErrors), meanErrors.shape) <NEW_LINE> currentInd = 0 <NEW_LINE> learner = self.copy() <NEW_LINE> for key, val in paramDict.items(): <NEW_LINE> <INDENT> method = getattr(learner, key) <NEW_LINE> method(val[bestInds[currentInd]]) <NEW_LINE> currentInd += 1 <NEW_LINE> <DEDENT> treeSizes = [] <NEW_LINE> for trainInds, testInds in idx: <NEW_LINE> <INDENT> validX = X[trainInds, :] <NEW_LINE> validY = y[trainInds] <NEW_LINE> learner.learnModel(validX, validY) <NEW_LINE> treeSizes.append(learner.tree.getNumVertices()) <NEW_LINE> <DEDENT> bestGamma = int(numpy.round(numpy.array(treeSizes).mean())) <NEW_LINE> learner.setGamma(bestGamma) <NEW_LINE> learner.learnModel(X, y) <NEW_LINE> return learner
Given a grid of errors, paramDict and examples, labels, find the best learner and train it. In this case we set gamma to the real size of the tree as learnt using CV. If idx == None then we simply use the gamma corresponding to the lowest error.
625941b6e1aae11d1e749ac9
def execute(self, parents=None): <NEW_LINE> <INDENT> results = OrderedDict() <NEW_LINE> for row in self.data_query(parents=parents): <NEW_LINE> <INDENT> data = row._asdict() <NEW_LINE> id = data.get('id') <NEW_LINE> if id not in results: <NEW_LINE> <INDENT> results[id] = self.base_object(data) <NEW_LINE> <DEDENT> value = data.get('value') <NEW_LINE> attr = qualified[data.get('attribute')] <NEW_LINE> if attr.data_type not in ['type', 'entity']: <NEW_LINE> <INDENT> conv = attr.converter(attr) <NEW_LINE> value = conv.deserialize_safe(value) <NEW_LINE> <DEDENT> node = self.get_node(attr.name) <NEW_LINE> if attr.many if node is None else node.many: <NEW_LINE> <INDENT> if attr.name not in results[id]: <NEW_LINE> <INDENT> results[id][attr.name] = [] <NEW_LINE> <DEDENT> results[id][attr.name].append(value) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> results[id][attr.name] = value <NEW_LINE> <DEDENT> <DEDENT> return results
Run the data query and construct entities from it's results.
625941b67d43ff24873a2ab9
def dailyClose(self, type): <NEW_LINE> <INDENT> raise NotImplementedError
Cierre Z (diario) o X (parcial) @param type Z (diario), X (parcial)
625941b63eb6a72ae02ec2ef
def factorise(n): <NEW_LINE> <INDENT> if n < 2: <NEW_LINE> <INDENT> return [] <NEW_LINE> <DEDENT> factors = [] <NEW_LINE> p = 2 <NEW_LINE> while True: <NEW_LINE> <INDENT> if n == 1: <NEW_LINE> <INDENT> return factors <NEW_LINE> <DEDENT> r = n % p <NEW_LINE> if r == 0: <NEW_LINE> <INDENT> factors.append(p) <NEW_LINE> n /= p <NEW_LINE> <DEDENT> elif p * p >= n: <NEW_LINE> <INDENT> factors.append(n) <NEW_LINE> return factors <NEW_LINE> <DEDENT> elif p > 2: <NEW_LINE> <INDENT> p += 2 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> p += 1
Factorise an input integer n.
625941b6379a373c97cfa960
def isCell(): <NEW_LINE> <INDENT> if not isPPC(): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> with open('/proc/cpuinfo', 'r') as f: <NEW_LINE> <INDENT> for line in f: <NEW_LINE> <INDENT> if 'Cell' in line: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return False
:return: True if the hardware is the Cell platform, False otherwise. :rtype: boolean
625941b68e71fb1e9831d5c3
def get(self): <NEW_LINE> <INDENT> if self._expired_exception: <NEW_LINE> <INDENT> raise self._expired_exception <NEW_LINE> <DEDENT> if self._not_ready_exception: <NEW_LINE> <INDENT> raise self._not_ready_exception <NEW_LINE> <DEDENT> return self.results
Return the results now. :return: the membership request results :rtype: :class:`~groupy.api.memberships.MembershipResult.Results` :raises groupy.exceptions.ResultsNotReady: if the results are not ready :raises groupy.exceptions.ResultsExpired: if the results have expired
625941b66e29344779a6242b
def init_tworld(self): <NEW_LINE> <INDENT> self.twopts = opts <NEW_LINE> self.twlog = logging.getLogger("tornado.general") <NEW_LINE> self.mongodb = None <NEW_LINE> self.twlocalize = twcommon.localize.Localization() <NEW_LINE> self.twsessionmgr = tweblib.session.SessionMgr(self) <NEW_LINE> self.twservermgr = tweblib.servers.ServerMgr(self) <NEW_LINE> self.twconntable = tweblib.connections.ConnectionTable(self) <NEW_LINE> tornado.ioloop.IOLoop.instance().add_callback(self.init_timers)
Perform app-specific initialization.
625941b6004d5f362079a14d
def set_image(self, image): <NEW_LINE> <INDENT> self.image = image <NEW_LINE> return image
Set wrapper's content. Returns: object: return wrapper's content.
625941b62c8b7c6e89b355d9
def add(self, ob: Array[float, OB], act: int, val: int, rew: float) -> None: <NEW_LINE> <INDENT> self.obs.append(ob) <NEW_LINE> self.acts.append(act) <NEW_LINE> self.vals.append(val) <NEW_LINE> self.rews.append(rew)
Add an observation, action, and reward to storage.
625941b6e8904600ed9f1d3e
def normalize(self, x, train=True): <NEW_LINE> <INDENT> if True: <NEW_LINE> <INDENT> mean, variance = tf.nn.moments(x, [0,1,2]) <NEW_LINE> assign_mean = self.mean.assign(mean) <NEW_LINE> assign_variance = self.variance.assign(variance) <NEW_LINE> with tf.control_dependencies([assign_mean, assign_variance]): <NEW_LINE> <INDENT> return tf.nn.batch_norm_with_global_normalization( x, mean, variance, self.beta, self.gamma, self.epsilon, self.scale_after_norm) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> mean = self.ewma_trainer.average(self.mean) <NEW_LINE> variance = self.ewma_trainer.average(self.variance) <NEW_LINE> local_beta = tf.identity(self.beta) <NEW_LINE> local_gamma = tf.identity(self.gamma) <NEW_LINE> return tf.nn.batch_norm_with_global_normalization( x, mean, variance, local_beta, local_gamma, self.epsilon, self.scale_after_norm)
Returns a batch-normalized version of x.
625941b6091ae35668666d7b
def __init__(self, timeoutSecs=5): <NEW_LINE> <INDENT> self.timeoutSecs = timeoutSecs
Initialize. timeoutSecs: Seconds to wait before timing out.
625941b6097d151d1a222c72
def on_touch_up(self, touch) -> bool: <NEW_LINE> <INDENT> bRet:bool = False <NEW_LINE> if oDownWidget is not None: <NEW_LINE> <INDENT> if not oDownWidget.bProcessUp: <NEW_LINE> <INDENT> oDownWidget.bProcessUp = True <NEW_LINE> return oDownWidget.on_touch_up(touch) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if hasattr(self,"oOrcaWidget"): <NEW_LINE> <INDENT> if self.oOrcaWidget is not None: <NEW_LINE> <INDENT> Logger.error ("on_touch_up: Up without Down on Widget:"+self.oOrcaWidget.uName) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> Logger.error ("on_touch_up: Up without Down") <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if self.bProcessUp: <NEW_LINE> <INDENT> self.bIsDown = False <NEW_LINE> self.Delete_LongPressClock(touch) <NEW_LINE> self.Delete_RepeatClock(touch) <NEW_LINE> if self.bForceUp: <NEW_LINE> <INDENT> self.bProcessed = False <NEW_LINE> touch.is_double_tap = False <NEW_LINE> <DEDENT> if self.uTapType == u'' or self.uTapType == u'down' or self.uTapType == u'long_up' or self.uTapType == u'repeat_down': <NEW_LINE> <INDENT> self.uTapType ="up" <NEW_LINE> <DEDENT> if not self.bProcessed and not self.bWaitForDouble: <NEW_LINE> <INDENT> if self.fDoublePress(touch): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> <DEDENT> if 'line' in touch.ud: <NEW_LINE> <INDENT> self.aActions=GetTouchActions(touch,self.dGestures) <NEW_LINE> if self.aActions: <NEW_LINE> <INDENT> self.dispatch('on_gesture') <NEW_LINE> <DEDENT> <DEDENT> return bRet <NEW_LINE> <DEDENT> return bRet
called by the framework, if the touch ends
625941b650812a4eaa59c13b
def get_content_type(self, headers, args): <NEW_LINE> <INDENT> content_type = 'application/json' <NEW_LINE> format_ = args.get('f') <NEW_LINE> if headers and 'Accept' in headers: <NEW_LINE> <INDENT> if 'text/html' in headers['Accept']: <NEW_LINE> <INDENT> content_type = 'text/html' <NEW_LINE> <DEDENT> elif 'application/xml' in headers['Accept']: <NEW_LINE> <INDENT> content_type = 'application/xml' <NEW_LINE> <DEDENT> <DEDENT> if format_ is not None: <NEW_LINE> <INDENT> if format_ == 'json': <NEW_LINE> <INDENT> content_type = 'application/json' <NEW_LINE> <DEDENT> elif format_ == 'xml': <NEW_LINE> <INDENT> content_type = 'application/xml' <NEW_LINE> <DEDENT> elif format_ == 'html': <NEW_LINE> <INDENT> content_type = 'text/html' <NEW_LINE> <DEDENT> <DEDENT> return content_type
Decipher content type requested :param headers: `dict` of HTTP request headers :param args: `dict` of query arguments :returns: `str` of response content type
625941b694891a1f4081b8bd
def get_best(self): <NEW_LINE> <INDENT> pass
Abstract method for getting the best instance of this strategy.
625941b60383005118ecf3fa
def PullFeeds(self, req): <NEW_LINE> <INDENT> self.send_PullFeeds(req) <NEW_LINE> return self.recv_PullFeeds()
Parameters: - req
625941b6f548e778e58cd391
def get_schema_fields(self, collection): <NEW_LINE> <INDENT> res, con_info = self.solr.transport.send_request(endpoint='schema/fields',collection=collection) <NEW_LINE> return res
Returns Schema Fields from a Solr Collection
625941b6d10714528d5ffaf5
def p_program_b(p): <NEW_LINE> <INDENT> pass
program_b : let prog1 | class prog2
625941b68c0ade5d55d3e7d5
def __str__(self): <NEW_LINE> <INDENT> s = self.entete_str() <NEW_LINE> totalPrix = 0.0 <NEW_LINE> totalTVA = 0.0 <NEW_LINE> for art in self.articles() : <NEW_LINE> <INDENT> s += self.article_str(art) <NEW_LINE> totalPrix = totalPrix + art.prix() <NEW_LINE> totalTVA = totalTVA + art.tva() <NEW_LINE> <DEDENT> s += self.totaux_str(totalPrix, totalTVA) <NEW_LINE> return s
Retourne la représentation string d'une facture, à imprimer avec la méthode print().
625941b630c21e258bdfa2b3
def FetchFonts(self, currentobject): <NEW_LINE> <INDENT> pdf_fonts = {} <NEW_LINE> fonts = currentobject["/Resources"].getObject()['/Font'] <NEW_LINE> for key in fonts: <NEW_LINE> <INDENT> pdf_fonts[key] = fonts[key]['/BaseFont'][1:] <NEW_LINE> <DEDENT> return pdf_fonts
Return the standard fonts in current page or form.
625941b64c3428357757c141
def setDisplayWidth(self, val): <NEW_LINE> <INDENT> self.displayWidth = val
Sets self.displayWidth the the argument value.
625941b6a219f33f3462878b
def create_user(self, phone_number, password=None, **extra_fields): <NEW_LINE> <INDENT> if not phone_number: <NEW_LINE> <INDENT> raise ValueError('This object requires an phone number') <NEW_LINE> <DEDENT> user = self.model(phone_number=phone_number, **extra_fields) <NEW_LINE> user.set_password(password) <NEW_LINE> user.save(using=self._db) <NEW_LINE> return user
Creates and saves a new user
625941b67c178a314d6ef26e
def get(self, key, fallback=None): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return self[key] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> return fallback
Return the key's value, or fallback in case of KeyError.
625941b6d8ef3951e3243353
def permute(self, nums): <NEW_LINE> <INDENT> def recurse(nums, i, sol): <NEW_LINE> <INDENT> if i == len(nums)-1: <NEW_LINE> <INDENT> sol.append(nums) <NEW_LINE> <DEDENT> for j in range(i, len(nums)): <NEW_LINE> <INDENT> nums = list(nums) <NEW_LINE> nums[i], nums[j] = nums[j], nums[i] <NEW_LINE> recurse(nums, i+1, sol) <NEW_LINE> <DEDENT> <DEDENT> sol = [] <NEW_LINE> recurse(nums, 0, sol) <NEW_LINE> return sol
:type nums: List[int] :rtype: List[List[int]]
625941b623e79379d52ee37e
def resolve_names(self): <NEW_LINE> <INDENT> replace_names = { "id": "id", "name": "name", "restaurant": "restaurant", "can_scrape": "can_scrape", "image_link": "image_link", } <NEW_LINE> retval = dict() <NEW_LINE> return APIHelper.resolve_names(self, replace_names, retval)
Creates a dictionary representation of this object. This method converts an object to a dictionary that represents the format that the model should be in when passed into an API Request. Because of this, the generated dictionary may have different property names to that of the model itself. Returns: dict: The dictionary representing the object.
625941b60a366e3fb873e62c
def procs_per_node(system = system()): <NEW_LINE> <INDENT> if has_gpu(system): <NEW_LINE> <INDENT> return gpus_per_node(system) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return 2
Default number of processes per node.
625941b699fddb7c1c9de1a9
@bp.route('/', methods=['GET']) <NEW_LINE> def home(): <NEW_LINE> <INDENT> if request.method == 'GET': <NEW_LINE> <INDENT> player_name = request.args.get("player-name") <NEW_LINE> if player_name: <NEW_LINE> <INDENT> player_id = get_player_id(player_name)['player_id'] <NEW_LINE> return redirect(url_for('baseball.player', player_id=player_id)) <NEW_LINE> <DEDENT> <DEDENT> return render_template('baseball/home.html')
Returns HTML template for baseball homepage. Checks to see if a player is searched for.
625941b62c8b7c6e89b355da
def _add_scalars(self, epoch, train_log, valid_log): <NEW_LINE> <INDENT> for key in train_log: <NEW_LINE> <INDENT> self.writer.add_scalars(key, {'train': train_log[key], 'valid': valid_log[key]}, epoch)
Plot the training curves. Args: epoch (int): The number of trained epochs. train_log (dict): The training log information. valid_log (dict): The validation log information.
625941b682261d6c526ab2b9
def start(self, group, params): <NEW_LINE> <INDENT> raise NotImplementedError
Override this method. Begin writing an output representation. GROUP is the name of the configuration file group which is causing this output to be produced. PARAMS is a dictionary of any named subexpressions of regular expressions defined in the configuration file, plus the key 'author' contains the author of the action being reported.
625941b6eab8aa0e5d26d974
def set_min_thresholded_stack(self, resized_stack, plot_results): <NEW_LINE> <INDENT> thresholded_stack = [] <NEW_LINE> for i in range(0, len(resized_stack)): <NEW_LINE> <INDENT> print("Applying minimum threshold to image %s of %s" % (i, len(resized_stack)-1)) <NEW_LINE> image = resized_stack[i] <NEW_LINE> thresh = threshold_minimum(image) <NEW_LINE> binary = image > thresh <NEW_LINE> thresholded_stack.append(binary) <NEW_LINE> if plot_results == True: <NEW_LINE> <INDENT> fig, axes = plt.subplots(ncols=2, figsize=(8, 3)) <NEW_LINE> ax = axes.ravel() <NEW_LINE> ax[0].imshow(image, cmap=plt.cm.gray) <NEW_LINE> ax[0].set_title('Original image') <NEW_LINE> ax[1].imshow(binary, cmap=plt.cm.gray) <NEW_LINE> ax[1].set_title('Minimum Threshold') <NEW_LINE> for a in ax: <NEW_LINE> <INDENT> a.axis('off') <NEW_LINE> <DEDENT> plt.show() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> return thresholded_stack
Return a minimum thresholded version of resized_stack. Note that the returned image is a matrix of booleans, not integers. The stack can be converted to integers using skimage.io.img_as_uint. plot_results is a boolean for whether to plot the results of thresholding for quality control. I typically set this to False. Cell area in the returned stack is True, everywhere else is False.
625941b6fb3f5b602dac34a4
def sql_and(a: Any, b: Any) -> bool: <NEW_LINE> <INDENT> return a and b
SQL-AND Operator.
625941b61b99ca400220a8c6
def decrypt_aes(c1_message: bytes, priv_key_AES: bytes = None): <NEW_LINE> <INDENT> if priv_key_AES is None: <NEW_LINE> <INDENT> priv_key_AES = aes_crypto._key_open_AESPriv() <NEW_LINE> <DEDENT> decoded = aes_crypto.decrypt_aes(c1_message, priv_key_AES) <NEW_LINE> return decoded.decode("utf-8")
AES priv key already in position
625941b65fdd1c0f98dc0048
def __init__(self, accel, lights=None, volume_region=None): <NEW_LINE> <INDENT> self.aggregate = accel <NEW_LINE> if lights: <NEW_LINE> <INDENT> self.lights = lights <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.lights = [] <NEW_LINE> <DEDENT> self.volume_region = volume_region <NEW_LINE> self.bound = self.aggregate.world_bound() <NEW_LINE> if self.volume_region: <NEW_LINE> <INDENT> self.bound = union(self.bound, self.volume_region.world_bound())
Default constructor for Scene.
625941b6167d2b6e312189b4
def __init__(self, description: str = None, item_list: list({str})=None, item_dict: dict({str: str})=None, auto_display: bool = False): <NEW_LINE> <INDENT> if item_list: <NEW_LINE> <INDENT> self._item_list = item_list <NEW_LINE> self._item_dict = None <NEW_LINE> self.value = item_list[0] <NEW_LINE> <DEDENT> elif item_dict: <NEW_LINE> <INDENT> self._item_list = list(item_dict.keys()) <NEW_LINE> self._item_dict = item_dict <NEW_LINE> self.value = list(self._item_dict.values())[0] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError( "One of item_list or item_dict must be supplied.") <NEW_LINE> <DEDENT> self._wgt_select = widgets.Select(options=self._item_list, description=description, layout=Layout( width='50%', height='100px'), style={'description_width': 'initial'}) <NEW_LINE> if auto_display: <NEW_LINE> <INDENT> self.display()
Initialize and display list picker. :param description=None: List label :param item_list=None: Item List :param item_dict=None: Item dictionary { display_string: value }
625941b65166f23b2e1a4f6f
def formats(): <NEW_LINE> <INDENT> from atooms import trajectory <NEW_LINE> txt = 'available trajectory formats:\n' <NEW_LINE> fmts = trajectory.Trajectory.formats <NEW_LINE> maxlen = max([len(name) for name in fmts]) <NEW_LINE> for name in sorted(fmts): <NEW_LINE> <INDENT> class_name = fmts[name] <NEW_LINE> if class_name.__doc__: <NEW_LINE> <INDENT> docline = class_name.__doc__.split('\n')[0].rstrip('.') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> docline = '...no description...' <NEW_LINE> <DEDENT> fmt = ' %-' + str(maxlen) + 's : %s\n' <NEW_LINE> txt += fmt % (name, docline) <NEW_LINE> <DEDENT> return txt
Return a string with the available trajectory formats.
625941b645492302aab5e0d6
@pytest.yield_fixture(scope="function") <NEW_LINE> def new_program_rest(): <NEW_LINE> <INDENT> service = ProgramsService() <NEW_LINE> yield service.create_programs(1)[0]
Creates Program via REST API
625941b6b57a9660fec33696
def return_answer(self, value1, value2): <NEW_LINE> <INDENT> return self.strategy.calculate(value1, value2)
:param value1: Integer or Float :param value2: Integer or Float :return: Calls the calculate() method of the object defined in self.strategy
625941b61f5feb6acb0c496b
def __getitem__(self, idx): <NEW_LINE> <INDENT> return self.cvc1s[idx], self.cvc2s[idx], self.gts[idx]
return: (tensor) data send to network obj[idx] == obj.__getitem__(idx)
625941b691af0d3eaac9b82a
def why_not_bookable(self, time, machine, user): <NEW_LINE> <INDENT> if hasattr(self, 'bookable_cache'): <NEW_LINE> <INDENT> why = self.bookable_cache[machine.number] <NEW_LINE> if isinstance(why, int): <NEW_LINE> <INDENT> return why <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> why = why[user.username] <NEW_LINE> if isinstance(why, int): <NEW_LINE> <INDENT> return why <NEW_LINE> <DEDENT> return why[time] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> if not machine.isAvailable: <NEW_LINE> <INDENT> return 21 <NEW_LINE> <DEDENT> if not user.groups.filter(name='enduser').exists(): <NEW_LINE> <INDENT> return 31 <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> washuser = WashUser.objects.get(pk=user) <NEW_LINE> if not washuser.isActivated: <NEW_LINE> <INDENT> return 31 <NEW_LINE> <DEDENT> if washuser.remaining_ration < 1: <NEW_LINE> <INDENT> return 32 <NEW_LINE> <DEDENT> <DEDENT> except WashUser.DoesNotExist: <NEW_LINE> <INDENT> return 31 <NEW_LINE> <DEDENT> if self.appointment_exists(time, machine): <NEW_LINE> <INDENT> return 41 <NEW_LINE> <DEDENT> if time not in self.scheduled_appointment_times(): <NEW_LINE> <INDENT> return 11
Reason of why an appointment for the machine at this time can not be booked by the user. Return None if bookable.
625941b632920d7e50b27fe2
def get_mimutes_to_start(self): <NEW_LINE> <INDENT> if self.event is not None: <NEW_LINE> <INDENT> return floor((self.event.get('dtstart').dt - datetime.now(_TIME_ZONE)).total_seconds() / 60) <NEW_LINE> <DEDENT> return None
Return the current meeting
625941b6d53ae8145f87a08d
def closed(self, event): <NEW_LINE> <INDENT> raise NotImplementedError
Abstract method to handle a `ServerClosedEvent`. :Parameters: - `event`: An instance of :class:`ServerClosedEvent`.
625941b64527f215b584c272
def __init__( self, types, dtype ): <NEW_LINE> <INDENT> super( Uniform, self ).__init__() <NEW_LINE> self._types = _generate_enum_map( types ) <NEW_LINE> self._dtype = dtype <NEW_LINE> self._program = None <NEW_LINE> self._name = None <NEW_LINE> self._type = None <NEW_LINE> self._func = None <NEW_LINE> self._num_values = None <NEW_LINE> self._location = None
Creates a new Uniform object. This should only be called by inherited Uniform classes. Types is a dictionary with the following format: key: GL enumeration type as a string, Eg. 'GL_FLOAT_VEC4'. value: (uniform setter function, number of values per variable) The function is used when setting the uniform value. The number of values per variable is used to determine the number of variables passed to a uniform. Ie. Numver of variables = number of values / values per variable
625941b667a9b606de4a7cd3
def get_signature(self): <NEW_LINE> <INDENT> return self.oauth_params['oauth_signature']
Returns the signature string.
625941b6f8510a7c17cf951b
def read_data(data_dir): <NEW_LINE> <INDENT> files = glob.glob('data/{}/*.txt'.format(data_dir)) <NEW_LINE> df_dict = {} <NEW_LINE> for file in files: <NEW_LINE> <INDENT> key = file.split('/')[-1][:-4].lower() <NEW_LINE> df_dict[key] = pd.read_csv(file) <NEW_LINE> rows = len(df_dict[key].index) <NEW_LINE> df_dict[key].rename( columns=lambda x: '{}.'.format(key) + x.lower(), inplace = True) <NEW_LINE> print('Read {} records from {}'.format( rows, file)) <NEW_LINE> <DEDENT> return df_dict
returns all .txt files in specified directory as a dict of DataFrames
625941b63346ee7daa2b2b7f
def my_gaussian_elimination(A, partial_pivoting=True): <NEW_LINE> <INDENT> import numpy as np <NEW_LINE> A_type = A.dtype <NEW_LINE> if A_type != 'complex_': <NEW_LINE> <INDENT> A_type = 'float64' <NEW_LINE> A = A.astype(A_type) <NEW_LINE> <DEDENT> m = np.shape(A)[0] <NEW_LINE> n = np.shape(A)[1] <NEW_LINE> assert (n == m), '\n\n\tMATRIX MUST BE SQUARE TO PERFORM GAUSS ' + 'ELIMINATION! \n'+ '\n\t\t\tNo. of ROWS: \t\t m = '+str(m)+'\n' + '\t\t\tNo. of COLUMNS: \t n = '+str(n)+'\n' <NEW_LINE> L = np.eye(m, dtype=A_type) <NEW_LINE> U = np.copy(A) <NEW_LINE> if partial_pivoting: <NEW_LINE> <INDENT> P = np.eye(m, dtype=A_type) <NEW_LINE> <DEDENT> for k in range(m-1): <NEW_LINE> <INDENT> if partial_pivoting: <NEW_LINE> <INDENT> possible_pivots = [abs(U[row_index][k]) for row_index in range(k,m)] <NEW_LINE> i = k + possible_pivots.index(max(possible_pivots)) <NEW_LINE> row_k = np.copy(U[k][k:m]) <NEW_LINE> U[k][k:m] = U[i][k:m] <NEW_LINE> U[i][k:m] = row_k <NEW_LINE> row_k = np.copy(L[k][:k]) <NEW_LINE> L[k][:k] = L[i][:k] <NEW_LINE> L[i][:k] = row_k <NEW_LINE> row_k = np.copy(P[k]) <NEW_LINE> P[k] = P[i] <NEW_LINE> P[i] = row_k <NEW_LINE> <DEDENT> for j in range(k+1,m): <NEW_LINE> <INDENT> L[j][k] = U[j][k]/U[k][k] <NEW_LINE> U[j][k:m] = U[j][k:m] - L[j][k]*U[k][k:m] <NEW_LINE> <DEDENT> <DEDENT> if partial_pivoting: <NEW_LINE> <INDENT> return P, L, U <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return L, U
this function performs Gaussian Elimination with partial pivioting on the given m x m matrix. it returns the lower- and upper-triangular decomposition (L and U) along with the corresponding permutation matrix, P. if partial pivoting is turned off, then only L and U are returned.
625941b6566aa707497f4391
def make_params(self, **params): <NEW_LINE> <INDENT> p = lmfit.Parameters() <NEW_LINE> for k in self.param_names: <NEW_LINE> <INDENT> p.add(k) <NEW_LINE> <DEDENT> for param,val in params.items(): <NEW_LINE> <INDENT> if param not in p: <NEW_LINE> <INDENT> p.add(param) <NEW_LINE> <DEDENT> if isinstance(val, str): <NEW_LINE> <INDENT> p[param].expr = val <NEW_LINE> <DEDENT> elif np.isscalar(val): <NEW_LINE> <INDENT> p[param].value = val <NEW_LINE> <DEDENT> elif isinstance(val, tuple): <NEW_LINE> <INDENT> if len(val) == 2: <NEW_LINE> <INDENT> assert val[1] == 'fixed' <NEW_LINE> p[param].value = val[0] <NEW_LINE> p[param].vary = False <NEW_LINE> <DEDENT> elif len(val) == 3: <NEW_LINE> <INDENT> p[param].value = val[0] <NEW_LINE> p[param].min = val[1] if val[1] is not None else -float('inf') <NEW_LINE> p[param].max = val[2] if val[2] is not None else float('inf') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise TypeError("Tuple parameter specifications must be (val, 'fixed')" " or (val, min, max).") <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise TypeError("Invalid parameter specification: %r" % val) <NEW_LINE> <DEDENT> <DEDENT> global_ns = np.__dict__ <NEW_LINE> for param,val in params.items(): <NEW_LINE> <INDENT> if isinstance(val, str): <NEW_LINE> <INDENT> p[param].value = eval(val, global_ns, p.valuesdict()) <NEW_LINE> <DEDENT> <DEDENT> return p
Make parameters used for fitting with this model. Keyword arguments are used to generate parameters for the fit. Each parameter may be specified by the following formats: param=value : The initial value of the parameter param=(value, 'fixed') : Fixed value for the parameter param=(value, min, max) : Initial value and min, max values, which may be float or None param='expression' : Expression used to compute parameter value. See: http://lmfit.github.io/lmfit-py/constraints.html#constraints-chapter
625941b63c8af77a43ae35b5
def get_predicate_sort(self, predicate_uuid): <NEW_LINE> <INDENT> pred = self.get_predicate_item(predicate_uuid) <NEW_LINE> if pred is not False: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> sort = float(pred.sort) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> sort = 0 <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> sort = 0 <NEW_LINE> <DEDENT> return sort
gets a predicate data type
625941b61f037a2d8b946015
def addCell(self, dest, source, **kwargs): <NEW_LINE> <INDENT> return self.doCellTimes(source, self.inc(), dest=dest, **kwargs)
Add contents of source to dest. :param dest: destination to be added to :param source: cell to be added to dest :param kwargs: destructive :return: brainfuck commands
625941b624f1403a92600981
def index(request): <NEW_LINE> <INDENT> return render(request, 'maps/index.html')
Place holder. probably where the main map page will go
625941b624f1403a92600980
def main(): <NEW_LINE> <INDENT> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'celery_exm.settings') <NEW_LINE> try: <NEW_LINE> <INDENT> from django.core.management import execute_from_command_line <NEW_LINE> <DEDENT> except ImportError as exc: <NEW_LINE> <INDENT> raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc <NEW_LINE> <DEDENT> execute_from_command_line(sys.argv)
Run administrative tasks.
625941b6090684286d50eaf6
def test_302_neutron_dhcp_agent_config(self): <NEW_LINE> <INDENT> u.log.debug('Checking neutron gateway dhcp agent config file data...') <NEW_LINE> unit = self.neutron_gateway_sentry <NEW_LINE> conf = '/etc/neutron/dhcp_agent.ini' <NEW_LINE> expected = { 'state_path': '/var/lib/neutron', 'interface_driver': 'neutron.agent.linux.interface.' 'OVSInterfaceDriver', 'dhcp_driver': 'neutron.agent.linux.dhcp.Dnsmasq', 'root_helper': 'sudo /usr/bin/neutron-rootwrap ' '/etc/neutron/rootwrap.conf', 'ovs_use_veth': 'True' } <NEW_LINE> section = 'DEFAULT' <NEW_LINE> ret = u.validate_config_data(unit, conf, section, expected) <NEW_LINE> if ret: <NEW_LINE> <INDENT> message = "dhcp agent config error: {}".format(ret) <NEW_LINE> amulet.raise_status(amulet.FAIL, msg=message)
Verify the data in the dhcp agent config file.
625941b6462c4b4f79d1d4e7
def getCoordinateSystems(self): <NEW_LINE> <INDENT> return self._CoordinateSystems
All coordinate systems used to describe position points of this location.
625941b699fddb7c1c9de1aa