code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def preprocess(spark, slide_nums, folder="data", training=True, tile_size=1024, overlap=0, tissue_threshold=0.9, sample_size=256, grayscale=False, normalize_stains=True, num_partitions=20000): <NEW_LINE> <INDENT> slides = (spark.sparkContext .parallelize(slide_nums) .filter(lambda slide: open_slide(slide, folder, training) is not None)) <NEW_LINE> tile_indices = (slides.flatMap( lambda slide: process_slide(slide, folder, training, tile_size, overlap))) <NEW_LINE> tile_indices = tile_indices.repartition(num_partitions) <NEW_LINE> tile_indices.cache() <NEW_LINE> tiles = tile_indices.map(lambda tile_index: process_tile_index(tile_index, folder, training)) <NEW_LINE> filtered_tiles = tiles.filter(lambda tile: keep_tile(tile, tile_size, tissue_threshold)) <NEW_LINE> samples = filtered_tiles.flatMap(lambda tile: process_tile(tile, sample_size, grayscale)) <NEW_LINE> if normalize_stains: <NEW_LINE> <INDENT> samples = samples.map(lambda sample: normalize_staining(sample)) <NEW_LINE> <DEDENT> samples = samples.map(lambda sample: flatten_sample(sample)) <NEW_LINE> if training: <NEW_LINE> <INDENT> labels_df = get_labels_df(folder) <NEW_LINE> samples_with_labels = (samples.map( lambda tup: (int(tup[0]), int(labels_df.at[tup[0],"tumor_score"]), float(labels_df.at[tup[0],"molecular_score"]), Vectors.dense(tup[1])))) <NEW_LINE> df = samples_with_labels.toDF(["slide_num", "tumor_score", "molecular_score", "sample"]) <NEW_LINE> df = df.select(df.slide_num.astype("int"), df.tumor_score.astype("int"), df.molecular_score, df["sample"]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> df = samples.toDF(["slide_num", "sample"]) <NEW_LINE> df = df.select(df.slide_num.astype("int"), df["sample"]) <NEW_LINE> <DEDENT> return df
|
Preprocess a set of whole-slide images.
Preprocess a set of whole-slide images as follows:
1. Tile the slides into tiles of size (tile_size, tile_size, 3).
2. Filter the tiles to remove unnecessary tissue.
3. Cut the remaining tiles into samples of size
(sample_size, sample_size, ch), where `ch` is 1 if `grayscale`
is true, or 3 otherwise.
Args:
spark: SparkSession.
slide_nums: List of whole-slide numbers to process.
folder: Local directory in which the slides folder and ground truth
file is stored, as a string. This should contain a
`training_image_data` folder with images in the format
`TUPAC-TR-###.svs`, as well as a `training_ground_truth.csv` file
containing the ground truth "tumor_score" and "molecular_score"
labels for each slide. Alternatively, the folder should contain a
`testing_image_data` folder with images in the format
`TUPAC-TE-###.svs`.
training: Boolean for training or testing datasets.
tile_size: The width and height of a square tile to be generated.
overlap: Number of pixels by which to overlap the tiles.
tissue_threshold: Tissue percentage threshold for filtering.
sample_size: The new width and height of the square samples to be
generated.
grayscale: Whether or not to generate grayscale samples, rather
than RGB.
normalize_stains: Whether or not to apply stain normalization.
num_partitions: Number of partitions to use during processing.
Returns:
A Spark DataFrame in which each row contains the slide number, tumor
score, molecular score, and the sample stretched out into a Vector.
|
625941b8b545ff76a8913c70
|
def ExportGetFatherComponent(self, ObjectId, FatherComponentId): <NEW_LINE> <INDENT> pass
|
ExportGetFatherComponent(self: DelegateFake, ObjectId: int, FatherComponentId: int) -> (int, int)
|
625941b8d164cc6175782b9f
|
def __connections(user, content_type_id, current_level, target_level): <NEW_LINE> <INDENT> target_position = target_level <NEW_LINE> target_company = 1 <NEW_LINE> shortlisted_profiles = UserProfile.objects.get_all_profiles_by(content_type_id, target_position) <NEW_LINE> aggregated_data = __aggregate_statistics(shortlisted_profiles) <NEW_LINE> user_exp = user.userprofiles.get_default_profile().total_experience() <NEW_LINE> result="" <NEW_LINE> if user_exp < aggregated_data.get("avg_exp"): <NEW_LINE> <INDENT> result= "You need approximately " + str(aggregated_data["avg_exp"]) + " of experience." <NEW_LINE> <DEDENT> for skill, count in aggregated_data.get("skill_set").iteritems(): <NEW_LINE> <INDENT> result+=" Required Skill: " + skill <NEW_LINE> <DEDENT> return result
|
1. identify target organization
2. identify target position
3. Identify list of ppl in target position
3.1 Gather profile data
3.1.1 Number of years work ex
3.1.2 Age
3.1.3 Highest degree
3.2 Aggregate data
4 return data
|
625941b89b70327d1c4e0c25
|
def __init__(self): <NEW_LINE> <INDENT> self.identifier = 0 <NEW_LINE> self.name = '' <NEW_LINE> self.level = 10 <NEW_LINE> self.created_at = '' <NEW_LINE> self.avatar_id = '' <NEW_LINE> self.post_count = 0 <NEW_LINE> self.del_post_count = 0 <NEW_LINE> self.edit_count = 0 <NEW_LINE> self.favorite_count = 0 <NEW_LINE> self.wiki_count = 0 <NEW_LINE> self.forum_post_count = 0 <NEW_LINE> self.note_count = 0 <NEW_LINE> self.edit_count = 0 <NEW_LINE> self.comment_count = 0 <NEW_LINE> self.blip_count = 0 <NEW_LINE> self.set_count = 0 <NEW_LINE> self.pool_update_count = 0 <NEW_LINE> self.pos_user_records = 0 <NEW_LINE> self.neutral_user_records = 0 <NEW_LINE> self.neg_user_records = 0 <NEW_LINE> self.artist_tag = []
|
Initiate properties
|
625941b80a366e3fb873e668
|
def update_multi_precision(self, index, weight, grad, state): <NEW_LINE> <INDENT> if self.multi_precision and weight.dtype == numpy.float16: <NEW_LINE> <INDENT> weight_master_copy = state[0] <NEW_LINE> original_state = state[1] <NEW_LINE> grad32 = grad.astype(numpy.float32) <NEW_LINE> self.update(index, weight_master_copy, grad32, original_state) <NEW_LINE> cast(weight_master_copy, dtype=weight.dtype, out=weight) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.update(index, weight, grad, state)
|
Updates the given parameter using the corresponding gradient and state.
Mixed precision version.
Parameters
----------
index : int
The unique index of the parameter into the individual learning
rates and weight decays. Learning rates and weight decay
may be set via `set_lr_mult()` and `set_wd_mult()`, respectively.
weight : NDArray
The parameter to be updated.
grad : NDArray
The gradient of the objective with respect to this parameter.
state : any obj
The state returned by `create_state()`.
|
625941b80fa83653e4656e0e
|
def _render_grid_horlines(self, w, h, x2, y2, w2, h2, min_div_hpix=50.): <NEW_LINE> <INDENT> assert h > 1. <NEW_LINE> ch = self.channels[0] <NEW_LINE> if abs(h2) < 0.000001: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> v1 = y2 <NEW_LINE> v2 = y2 + h2 <NEW_LINE> if v2 < v1: <NEW_LINE> <INDENT> v1, v2 = v2, v1 <NEW_LINE> <DEDENT> volts_per_min_div = (v2 - v1) / (h - 1.) * min_div_hpix <NEW_LINE> pixels_per_volt = (h - 1.) / (v2 - v1) <NEW_LINE> v_step = math.pow(2, math.ceil(math.log(volts_per_min_div, 2))) <NEW_LINE> v_begin = math.floor(v1 / v_step) * v_step + v_step <NEW_LINE> px_begin = self._sample_to_pixel(v_begin, y2, h2, h) <NEW_LINE> px_end = self._sample_to_pixel(v2, y2, h2, h) <NEW_LINE> sign = 1 if px_end > px_begin else -1 <NEW_LINE> px_step = pixels_per_volt * v_step * sign <NEW_LINE> gl.glBegin(gl.GL_LINES) <NEW_LINE> px = px_begin <NEW_LINE> while px * sign < px_end: <NEW_LINE> <INDENT> gl.glVertex3f( 0., px, 0. ) <NEW_LINE> gl.glVertex3f( w, px, 0. ) <NEW_LINE> px += px_step <NEW_LINE> <DEDENT> gl.glEnd()
|
min_div_hpix : minimum division height (grid line distance) in pixels
|
625941b899fddb7c1c9de1e4
|
def testApproachSpeedDoNotExceed(self): <NEW_LINE> <INDENT> self.controller.approachSpeed = 3.99 <NEW_LINE> self.controller._approach(0.5) <NEW_LINE> self.assertEqual(self.controller.approachSpeed,4)
|
Test that the incremented speed doesn't exceed approachSpeed
|
625941b8e64d504609d74692
|
def __init__(self, config): <NEW_LINE> <INDENT> self.contextualStructure = config["contextualStructure"] <NEW_LINE> self.contextualDependencies = {} <NEW_LINE> self.contextualGenerationProcess = {} <NEW_LINE> if "contextualDependencies" in config: <NEW_LINE> <INDENT> self.contextualDependencies = config["contextualDependencies"] <NEW_LINE> <DEDENT> if "contextualGenerationProcess" in config: <NEW_LINE> <INDENT> self.contextualGenerationProcess = config["contextualGenerationProcess"] <NEW_LINE> for key in self.contextualGenerationProcess: <NEW_LINE> <INDENT> if not isinstance(self.contextualGenerationProcess[key], dict): <NEW_LINE> <INDENT> self.contextualGenerationProcess[key] = self.__getNormalizedDistribution(self.contextualGenerationProcess[key]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> for innerKey in self.contextualGenerationProcess[key]: <NEW_LINE> <INDENT> self.contextualGenerationProcess[key][innerKey] = self.__getNormalizedDistribution(self.contextualGenerationProcess[key][innerKey])
|
config is json and must declare:
contextualStructure: iterable where each entry is a contextual variable.
entries > 0 indicate a categorical variable with that number of options.
entries = -1 indicate a continuous variable.
May also declare: contextualDependencies, contextualGenerationProcess which impact generateContext.
contextualDependencies: dictionary with string keys corresponding to any variables that are dependent
on the value of other variables. We require that the original structure be partially ordered such that
a contextual variable that is dependent on other variables comes later in the structure than those it's
dependent on. (So variable 0 is always lacking dependencies on other variables.)
contextualGenerationProcess: dictionary with string keys, where if a variable appears as a key,
the value specifies the distribution for generating context. (currently only categorical distributions
are allowed.) If the variable is not specified, its value is generated uniformly at random. If the variable
is dependent on another variable, then the keys are of the form "i-v" where i is the index of the variable
and v is the value. If it's dependent on multiple variables, these are comma separated (e.g., "i-v1,j-v2").
|
625941b876d4e153a657e981
|
def flush(self): <NEW_LINE> <INDENT> if self._flush_passthru: <NEW_LINE> <INDENT> return bytearray() <NEW_LINE> <DEDENT> return self._comp.flush()
|
Flush the data internally if required.
|
625941b87cff6e4e811177d7
|
def get_libris_edition(raw): <NEW_LINE> <INDENT> control_number = raw["controlNumber"] <NEW_LINE> if is_libris_edition_id(control_number): <NEW_LINE> <INDENT> return control_number <NEW_LINE> <DEDENT> return None
|
Extract old-format Libris ID.
@param raw: json object of a Libris edition
@type raw: dictionary
|
625941b8046cf37aa974cb9c
|
def _calculate_eac(self): <NEW_LINE> <INDENT> self.workpackage.eac = self.workpackage.etc_costs + self.workpackage.ac_costs
|
Calculates the EAC
|
625941b8377c676e91271ffc
|
def _format_data(self, data): <NEW_LINE> <INDENT> return [spectrum for spectrum in sorted(data if isinstance(data, (list, tuple)) else [data], key=lambda x: x.disp[0]) if np.any(np.isfinite(spectrum.flux))]
|
Sort the data in blue wavelengths to red, and ignore any spectra that
have entirely non-finite or negative fluxes.
|
625941b863d6d428bbe44341
|
def updateKeyCombinations(self): <NEW_LINE> <INDENT> label = self.grabKeyLabel <NEW_LINE> label.setText('Shortcut to paste the resized image: ') <NEW_LINE> [label.setText(label.text() + k + '+') for k, v in Setup.config['keys'].items() if k != 'Extra' and v == True] <NEW_LINE> if Setup.config['keys'].get('Extra'): <NEW_LINE> <INDENT> label.setText(label.text() + Setup.config['keys'].get('Extra')) <NEW_LINE> <DEDENT> logger.debug('shortcut is updated: {}'.format(Setup.config['keys']))
|
update the key combination label
in the settings window according to Setup.config
|
625941b8462c4b4f79d1d522
|
def get_direction(position, next_position): <NEW_LINE> <INDENT> x, y = position <NEW_LINE> nx, ny = next_position <NEW_LINE> if x == nx: <NEW_LINE> <INDENT> if y < ny: <NEW_LINE> <INDENT> return constants.Action.Right <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return constants.Action.Left <NEW_LINE> <DEDENT> <DEDENT> elif y == ny: <NEW_LINE> <INDENT> if x < nx: <NEW_LINE> <INDENT> return constants.Action.Down <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return constants.Action.Up <NEW_LINE> <DEDENT> <DEDENT> raise constants.InvalidAction("We did not receive a valid position transition.")
|
Get the direction such that position --> next_position.
We assume that they are adjacent.
|
625941b8baa26c4b54cb0f75
|
def show(*args): <NEW_LINE> <INDENT> context = XSCRIPTCONTEXT.getComponentContext() <NEW_LINE> shell = context.ServiceManager.createInstanceWithContext( "com.sun.star.system.SystemShellExecute", context ) <NEW_LINE> fileAccess = context.ServiceManager.createInstance( "com.sun.star.ucb.SimpleFileAccess" ) <NEW_LINE> tempFile = tempfile.NamedTemporaryFile( delete=False, prefix="help-", suffix=".html" ) <NEW_LINE> tempFileUrl = uno.systemPathToFileUrl(tempFile.name) <NEW_LINE> helpFileUrl = "vnd.sun.star.tdoc:/{}/Scripts/python/doc/help.html".format( XSCRIPTCONTEXT.getDocument().RuntimeUID ) <NEW_LINE> tempFile.close() <NEW_LINE> fileAccess.copy(helpFileUrl, tempFileUrl) <NEW_LINE> shell.execute( "file://" + tempFile.name, "", 0 )
|
Показать справочное руководство.
|
625941b882261d6c526ab2f5
|
def copy(self): <NEW_LINE> <INDENT> attrib = ItemAttribute() <NEW_LINE> for k, v in self._attribs(): <NEW_LINE> <INDENT> setattr(attrib, k, v.copy() if hasattr(v, 'copy') else v) <NEW_LINE> <DEDENT> return attrib
|
Performs a deep copy of the ItemAttribute, including all values
of any dynamically added attributes.
:return:
|
625941b830c21e258bdfa2ef
|
def DbGetDeviceExportedList(self, argin): <NEW_LINE> <INDENT> self.debug_stream("In " + self.get_name() + ".DbGetDeviceExportedList()") <NEW_LINE> argout = [''] <NEW_LINE> return argout
|
Get a list of exported devices whose names satisfy the filter (wildcard is
:param argin: filter
:type: PyTango.DevString
:return: list of exported devices
:rtype: PyTango.DevVarStringArray
|
625941b8a219f33f346287c6
|
def GetOutputHistogram(self): <NEW_LINE> <INDENT> return _itkHistogramMatchingImageFilterPython.itkHistogramMatchingImageFilterID3ID3_GetOutputHistogram(self)
|
GetOutputHistogram(self) -> itkHistogramD
|
625941b8498bea3a759b9903
|
def mta013(self): <NEW_LINE> <INDENT> fromaddr = self.testaddr <NEW_LINE> toaddr = self.pconfig.get( 'noeaito') <NEW_LINE> pmsg = self.domsg('eaisubj', From=fromaddr, To=toaddr, submit=True, eaiflag=True, getrmt=True, maxcheck=3) <NEW_LINE> if pmsg: <NEW_LINE> <INDENT> return ('Fail', "Message sent anyway") <NEW_LINE> <DEDENT> pmsg = self.getmori(maxcheck=1, maxage=180) <NEW_LINE> if pmsg: <NEW_LINE> <INDENT> (dhdrs, lhdrs, body) = self.parsemsg(pmsg) <NEW_LINE> dl = tuple(l for l in body if 'Diagnostic' in l) <NEW_LINE> if dl: <NEW_LINE> <INDENT> bm = dl[0] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> bm = dhdrs['subject'][0] <NEW_LINE> <DEDENT> return ('Pass', "Test message not received, likely bounce "+bm) <NEW_LINE> <DEDENT> return ('Pass', "Test message not received")
|
check that EAI message to non-EAI server fails
submit locally, check on home server, then check for local bounce
|
625941b85f7d997b871748ed
|
def negotiate_session_async( self, session_compression: str, session_encryption: str ) -> Awaitable[Session]: <NEW_LINE> <INDENT> self.ensure_state([SessionState.NEGOTIATING], True) <NEW_LINE> loop = get_running_loop() <NEW_LINE> future = loop.create_future() <NEW_LINE> self.on_session_authenticating = future.set_result <NEW_LINE> self.__on_session_failed = future.set_exception <NEW_LINE> session = Session( SessionState.NEGOTIATING, encryption=session_encryption, compression=session_compression ) <NEW_LINE> session.id = self.session_id <NEW_LINE> self.send_session(session) <NEW_LINE> return future
|
Handle session in negotiating state.
Args:
session_compression (str): session compression type
session_encryption (str): session encryption type
Returns:
Future: A negotiated Session
|
625941b80fa83653e4656e0f
|
def _calculate_bilinear_cost( op, coeff, num_alive_inputs, num_alive_outputs, batch_size): <NEW_LINE> <INDENT> if op.type == 'DepthwiseConv2dNative': <NEW_LINE> <INDENT> return batch_size * coeff * num_alive_outputs <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return batch_size * coeff * num_alive_inputs * num_alive_outputs
|
Calculates bilinear cost for an op.
Args:
op: A tf.Operation.
coeff: A float coefficient for the bilinear function.
num_alive_inputs: Scalar Tensor indicating how many input channels are
considered alive.
num_alive_outputs: Scalar Tensor indicating how many output channels are
considered alive.
batch_size: Integer batch size to calculate cost/loss for.
Returns:
Tensor with the cost of the op.
|
625941b88e71fb1e9831d5ff
|
def set_bit_rate(self, rate): <NEW_LINE> <INDENT> if rate == 12: <NEW_LINE> <INDENT> self.__adc1_conf = self.__adc1_conf & ~(1 << 2) & ~(1 << 3) <NEW_LINE> self.__adc2_conf = self.__adc2_conf & ~(1 << 2) & ~(1 << 3) <NEW_LINE> self.__bitrate = 12 <NEW_LINE> self.__lsb = 0.0005 <NEW_LINE> <DEDENT> elif rate == 14: <NEW_LINE> <INDENT> self.__adc1_conf = self.__adc1_conf & ~(1 << 3) | (1 << 2) <NEW_LINE> self.__adc2_conf = self.__adc2_conf & ~(1 << 3) | (1 << 2) <NEW_LINE> self.__bitrate = 14 <NEW_LINE> self.__lsb = 0.000125 <NEW_LINE> <DEDENT> elif rate == 16: <NEW_LINE> <INDENT> self.__adc1_conf = self.__adc1_conf & ~(1 << 2) | (1 << 3) <NEW_LINE> self.__adc2_conf = self.__adc2_conf & ~(1 << 2) | (1 << 3) <NEW_LINE> self.__bitrate = 16 <NEW_LINE> self.__lsb = 0.00003125 <NEW_LINE> <DEDENT> elif rate == 18: <NEW_LINE> <INDENT> self.__adc1_conf = self.__adc1_conf | (1 << 2) | (1 << 3) <NEW_LINE> self.__adc2_conf = self.__adc2_conf | (1 << 2) | (1 << 3) <NEW_LINE> self.__bitrate = 18 <NEW_LINE> self.__lsb = 0.0000078125 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ValueError('set_bit_rate: rate out of range') <NEW_LINE> <DEDENT> self.__bus.write_byte(self.__adc1_address, self.__adc1_conf) <NEW_LINE> self.__bus.write_byte(self.__adc2_address, self.__adc2_conf) <NEW_LINE> return
|
sample rate and resolution
12 = 12 bit (240SPS max)
14 = 14 bit (60SPS max)
16 = 16 bit (15SPS max)
18 = 18 bit (3.75SPS max)
|
625941b8a8370b77170526f2
|
def diff(a, b, segmenter=None): <NEW_LINE> <INDENT> a, b = list(a), list(b) <NEW_LINE> segmenter = segmenter or SEGMENTER <NEW_LINE> a_segments = segmenter.segment(a) <NEW_LINE> b_segments = segmenter.segment(b) <NEW_LINE> return diff_segments(a_segments, b_segments)
|
Performs a diff comparison between two sequences of tokens (`a` and `b`)
using `segmenter` to cluster and match
:class:`deltas.MatchableSegment`.
:Example:
>>> from deltas import segment_matcher, text_split
>>>
>>> a = text_split.tokenize("This is some text. This is some other text.")
>>> b = text_split.tokenize("This is some other text. This is some text.")
>>> operations = segment_matcher.diff(a, b)
>>>
>>> for op in operations:
... print(op.name, repr(''.join(a[op.a1:op.a2])),
... repr(''.join(b[op.b1:op.b2])))
...
equal 'This is some other text.' 'This is some other text.'
insert '' ' '
equal 'This is some text.' 'This is some text.'
delete ' ' ''
:Parameters:
a : `list`(:class:`deltas.tokenizers.Token`)
Initial sequence
b : `list`(:class:`deltas.tokenizers.Token`)
Changed sequence
segmenter : :class:`deltas.Segmenter`
A segmenter to use on the tokens.
:Returns:
An `iterable` of operations.
|
625941b8283ffb24f3c5575e
|
def get_crosslingual_wordsim_scores(lang1, word2id1, embeddings1, lang2, word2id2, embeddings2, lower=True): <NEW_LINE> <INDENT> if lang1 > lang2: <NEW_LINE> <INDENT> return get_crosslingual_wordsim_scores(lang2, word2id2, embeddings2, lang1, word2id1, embeddings1, lower) <NEW_LINE> <DEDENT> dirpath = os.path.join(SEMEVAL17_EVAL_PATH, '%s-%s' % (lang1, lang2)) <NEW_LINE> if not os.path.isdir(dirpath): <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> scores = {} <NEW_LINE> separator = "=" * (30 + 1 + 10 + 1 + 13 + 1 + 12) <NEW_LINE> pattern = "%30s %10s %13s %12s" <NEW_LINE> logger.info(separator) <NEW_LINE> logger.info(pattern % ("Dataset", "Found", "Not found", "Rho")) <NEW_LINE> logger.info(separator) <NEW_LINE> for filename in list(os.listdir(dirpath)): <NEW_LINE> <INDENT> if 'SEMEVAL17' not in filename: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> filepath = os.path.join(dirpath, filename) <NEW_LINE> assert len(filename.split('_')) >= 2 <NEW_LINE> split = filename.split('_')[0].split('-') <NEW_LINE> assert len(split) == 2 <NEW_LINE> if split[0] == lang1.upper() and split[1] == lang2.upper(): <NEW_LINE> <INDENT> coeff, found, not_found = get_spearman_rho( word2id1, embeddings1, filepath, lower, word2id2, embeddings2 ) <NEW_LINE> <DEDENT> elif split[0] == lang2.upper() and split[1] == lang1.upper(): <NEW_LINE> <INDENT> coeff, found, not_found = get_spearman_rho( word2id2, embeddings2, filepath, lower, word2id1, embeddings1 ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise Exception('Unexpected parse: %s' % filename) <NEW_LINE> <DEDENT> logger.info(pattern % (filename[:-4], str(found), str(not_found), "%.4f" % coeff)) <NEW_LINE> scores[filename[:-4]] = coeff <NEW_LINE> <DEDENT> if not scores: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> logger.info(separator) <NEW_LINE> return scores
|
Return cross-lingual word similarity scores.
|
625941b88a43f66fc4b53ebb
|
def check_jmespath_match(parsed_response, query, expected=None): <NEW_LINE> <INDENT> actual = jmespath.search(query, parsed_response) <NEW_LINE> msg = "JMES path '{}' not found in response".format(query) <NEW_LINE> if actual is None: <NEW_LINE> <INDENT> raise exceptions.JMESError(msg) <NEW_LINE> <DEDENT> if expected is not None: <NEW_LINE> <INDENT> check_keys_match_recursive(expected, actual, [], True) <NEW_LINE> <DEDENT> elif not actual and not (actual == expected): <NEW_LINE> <INDENT> raise exceptions.JMESError(msg) <NEW_LINE> <DEDENT> return actual
|
Check that the JMES path given in 'query' is present in the given response
Args:
parsed_response (dict, list): Response list or dict
query (str): JMES query
expected (str, optional): Possible value to match against. If None,
'query' will just check that _something_ is present
|
625941b894891a1f4081b8fa
|
def email_results(message, recipients): <NEW_LINE> <INDENT> if not settings.FR_EMAIL_ENABLED: <NEW_LINE> <INDENT> print("Email not configured.") <NEW_LINE> return <NEW_LINE> <DEDENT> email_from = "FireRoad <{}>".format(settings.EMAIL_HOST_USER) <NEW_LINE> send_mail("Daily update", message, email_from, recipients)
|
Sends an email to the given recipients with the given message. Prints to
the console if email is not set up.
|
625941b8507cdc57c6306b25
|
def gps_raw_encode(self, usec, fix_type, lat, lon, alt, eph, epv, v, hdg): <NEW_LINE> <INDENT> msg = MAVLink_gps_raw_message(usec, fix_type, lat, lon, alt, eph, epv, v, hdg) <NEW_LINE> msg.pack(self) <NEW_LINE> return msg
|
The global position, as returned by the Global Positioning System
(GPS). This is NOT the global position estimate of the
sytem, but rather a RAW sensor value. See message
GLOBAL_POSITION for the global position estimate.
Coordinate frame is right-handed, Z-axis up (GPS
frame)
usec : Timestamp (microseconds since UNIX epoch or microseconds since system boot) (uint64_t)
fix_type : 0-1: no fix, 2: 2D fix, 3: 3D fix. Some applications will not use the value of this field unless it is at least two, so always correctly fill in the fix. (uint8_t)
lat : Latitude in degrees (float)
lon : Longitude in degrees (float)
alt : Altitude in meters (float)
eph : GPS HDOP (float)
epv : GPS VDOP (float)
v : GPS ground speed (float)
hdg : Compass heading in degrees, 0..360 degrees (float)
|
625941b8656771135c3eb6c4
|
def getblockheader(self, block_hash, verbose=False): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> block_hash = b2lx(block_hash) <NEW_LINE> <DEDENT> except TypeError: <NEW_LINE> <INDENT> raise TypeError('%s.getblockheader(): block_hash must be bytes; got %r instance' % (self.__class__.__name__, block_hash.__class__)) <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> r = self._call('getblockheader', block_hash, verbose) <NEW_LINE> <DEDENT> except InvalidAddressOrKeyError as ex: <NEW_LINE> <INDENT> raise IndexError('%s.getblockheader(): %s (%d)' % (self.__class__.__name__, ex.error['message'], ex.error['code'])) <NEW_LINE> <DEDENT> if verbose: <NEW_LINE> <INDENT> nextblockhash = None <NEW_LINE> if 'nextblockhash' in r: <NEW_LINE> <INDENT> nextblockhash = lx(r['nextblockhash']) <NEW_LINE> <DEDENT> return {'confirmations':r['confirmations'], 'height':r['height'], 'mediantime':r['mediantime'], 'nextblockhash':nextblockhash, 'chainwork':x(r['chainwork'])} <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return CBlockHeader.deserialize(unhexlify_str(r))
|
Get block header <block_hash>
verbose - If true a dict is returned with the values returned by
getblockheader that are not in the block header itself
(height, nextblockhash, etc.)
Raises IndexError if block_hash is not valid.
|
625941b88e7ae83300e4ae1d
|
def extend(self, *args, **kwargs): <NEW_LINE> <INDENT> if len(args) > 1: <NEW_LINE> <INDENT> raise TypeError('expected at most 1 arguments, got %d' % len(args)) <NEW_LINE> <DEDENT> iterable = args[0] if args else None <NEW_LINE> if iterable: <NEW_LINE> <INDENT> if isinstance(iterable, Mapping) or hasattr(iterable, 'items'): <NEW_LINE> <INDENT> for key, value in iterable.items(): <NEW_LINE> <INDENT> self.append(key, value) <NEW_LINE> <DEDENT> <DEDENT> elif hasattr(iterable, 'keys'): <NEW_LINE> <INDENT> for key in iterable.keys(): <NEW_LINE> <INDENT> self.append(key, iterable[key]) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> for key, value in iterable: <NEW_LINE> <INDENT> self.append(key, value) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> for key, value in kwargs.items(): <NEW_LINE> <INDENT> self.append(key, value)
|
Add key value pairs for an iterable.
|
625941b8b5575c28eb68de4f
|
def _sell_limit(self, amount, price): <NEW_LINE> <INDENT> res = self.trade_client.place_order( str(amount), str(price), 'sell', 'exchange limit', symbol=self.pair_code) <NEW_LINE> return res['order_id']
|
Create a sell limit order
|
625941b8d10714528d5ffb31
|
@pytest.mark.skip(reason='Test is flaky.') <NEW_LINE> @pytest.mark.jira('ASC-891') <NEW_LINE> @pytest.mark.test_id('747b5458-aafb-11e8-bfa2-0025227c8120') <NEW_LINE> def test_skip(): <NEW_LINE> <INDENT> assert True is False
|
Verify that a test can be skipped.
|
625941b876e4537e8c3514c9
|
def get_attribute(self, attribute_name: str) -> str: <NEW_LINE> <INDENT> if hasattr(self, '__' + attribute_name): <NEW_LINE> <INDENT> return getattr(self, '__' + attribute_name) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None
|
获取属性,如ClassAsClass.get_attribute('summary')
|
625941b8de87d2750b85fbe0
|
def get_invalid_double( self, custom_headers={}, raw=False, **operation_config): <NEW_LINE> <INDENT> url = '/number/invaliddouble' <NEW_LINE> query_parameters = {} <NEW_LINE> header_parameters = {} <NEW_LINE> header_parameters['Content-Type'] = 'application/json; charset=utf-8' <NEW_LINE> if custom_headers: <NEW_LINE> <INDENT> header_parameters.update(custom_headers) <NEW_LINE> <DEDENT> request = self._client.get(url, query_parameters) <NEW_LINE> response = self._client.send(request, header_parameters, **operation_config) <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> raise models.ErrorException(self._deserialize, response) <NEW_LINE> <DEDENT> deserialized = None <NEW_LINE> if response.status_code == 200: <NEW_LINE> <INDENT> deserialized = self._deserialize('float', response) <NEW_LINE> <DEDENT> if raw: <NEW_LINE> <INDENT> client_raw_response = ClientRawResponse(deserialized, response) <NEW_LINE> return client_raw_response <NEW_LINE> <DEDENT> return deserialized
|
Get invalid double Number value
:param dict custom_headers: headers that will be added to the request
:param bool raw: returns the direct response alongside the
deserialized response
:param operation_config: :ref:`Operation configuration
overrides<msrest:optionsforoperations>`.
:rtype: float
:rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>`
if raw=true
|
625941b8d18da76e23532324
|
def compute_numerial_gradient(cost_func, theta): <NEW_LINE> <INDENT> numgrad = np.zeros(theta.size) <NEW_LINE> perturb = np.zeros(theta.size) <NEW_LINE> e = 1e-4 <NEW_LINE> for p in range(theta.size): <NEW_LINE> <INDENT> perturb[p] = e <NEW_LINE> loss1, grad1 = cost_func(theta-perturb) <NEW_LINE> loss2, grad2 = cost_func(theta+perturb) <NEW_LINE> numgrad[p] = (loss2-loss1)/(2*e) <NEW_LINE> perturb[p] = 0 <NEW_LINE> <DEDENT> return numgrad
|
numerically compute gradients
|
625941b84527f215b584c2ad
|
def lemonade_change(self, bills: List[int]) -> bool: <NEW_LINE> <INDENT> five_money, ten_money = 0, 0 <NEW_LINE> for bill in bills: <NEW_LINE> <INDENT> if bill == 5: <NEW_LINE> <INDENT> five_money += 1 <NEW_LINE> <DEDENT> if bill == 10: <NEW_LINE> <INDENT> if five_money > 0: <NEW_LINE> <INDENT> five_money -= 1 <NEW_LINE> ten_money += 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> if bill == 20: <NEW_LINE> <INDENT> if five_money > 0 and ten_money > 0: <NEW_LINE> <INDENT> five_money -= 1 <NEW_LINE> ten_money -= 1 <NEW_LINE> <DEDENT> elif five_money > 2: <NEW_LINE> <INDENT> five_money -= 3 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return True
|
计算是否能够换钱
Args:
bills: 账单数据-
Returns:
布尔值
|
625941b8a17c0f6771cbdea6
|
def __init__(self, dataset: DiscreteDataset, **kwargs): <NEW_LINE> <INDENT> super(TFBind10Oracle, self).__init__( dataset, is_batched=False, internal_batch_size=1, internal_measurements=1, expect_normalized_y=False, expect_normalized_x=False, expect_logits=False, **kwargs) <NEW_LINE> self.sequence_to_score = dict() <NEW_LINE> self.internal_dataset._disable_transform = True <NEW_LINE> for x, y in self.internal_dataset.iterate_samples(): <NEW_LINE> <INDENT> self.sequence_to_score[tuple(x.tolist())] = y <NEW_LINE> <DEDENT> self.internal_dataset._disable_transform = False
|
Initialize the ground truth score function f(x) for a model-based
optimization problem, which involves loading the parameters of an
oracle model and estimating its computational cost
Arguments:
dataset: DiscreteDataset
an instance of a subclass of the DatasetBuilder class which has
a set of design values 'x' and prediction values 'y', and defines
batching and sampling methods for those attributes
|
625941b8a79ad161976cbf98
|
def testCSApiResponseBoolean(self): <NEW_LINE> <INDENT> pass
|
Test CSApiResponseBoolean
|
625941b8dd821e528d63affd
|
def latestKarma(quantity=25): <NEW_LINE> <INDENT> pass
|
Return the latest karma actions for this person.
Return no more than the number given as quantity.
|
625941b86aa9bd52df036bf4
|
def task_2(): <NEW_LINE> <INDENT> mylist_42 = [1, 2, 4, 8] <NEW_LINE> print(mylist_42) <NEW_LINE> mylist_42.append(16) <NEW_LINE> print(16)
|
2) В вашем распоряжении список mylist_42, состоящий из 4-х значений: 1,2,4,8.
Выполните команду для определения списка, напечатайте его.
Напишите команду для добавления к этому списку значения 16, снова напечатайте список.
|
625941b8e8904600ed9f1d7b
|
def to_intel64(self): <NEW_LINE> <INDENT> intel64.check_ideep_available() <NEW_LINE> d = self.__dict__ <NEW_LINE> for name in self._params: <NEW_LINE> <INDENT> d[name].to_intel64() <NEW_LINE> <DEDENT> for name in self._persistent: <NEW_LINE> <INDENT> value = d[name] <NEW_LINE> if isinstance(value, cuda.ndarray): <NEW_LINE> <INDENT> value = value.get() <NEW_LINE> <DEDENT> if (isinstance(value, numpy.ndarray) and value.ndim in (1, 2, 4)): <NEW_LINE> <INDENT> value = intel64.ideep.array( value, itype=intel64.ideep.wgt_array) <NEW_LINE> <DEDENT> d[name] = value <NEW_LINE> <DEDENT> self._cpu = True <NEW_LINE> self._device_id = None <NEW_LINE> return self
|
Copies parameter variables and persistent values to CPU.
|
625941b815fb5d323cde095c
|
def _stats_veloc_forward(physics): <NEW_LINE> <INDENT> return player.walker.observables.veloc_forward(physics)
|
Player's forward velocity.
|
625941b84a966d76dd550e5e
|
def __iter__(self): <NEW_LINE> <INDENT> for tag, name in self.__tags_to_names.items(): <NEW_LINE> <INDENT> yield (tag, name, self.__tags_to_types[tag], self.__flags[tag])
|
Iterates over all fields.
|
625941b8be8e80087fb20aa2
|
def __init__(self): <NEW_LINE> <INDENT> super(SISR, self).__init__() <NEW_LINE> self.model = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(in_channels=32, out_channels=12, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.PixelShuffle(2) )
|
Load the pretrained ResNet-152 and replace top fc layer.
|
625941b8b830903b967e9769
|
def step_into(self): <NEW_LINE> <INDENT> self.main_window.set_debugging_status(4) <NEW_LINE> self.debugger.step_into()
|
Issue a step into continuation command on the debugger
This gets called when the "Step into" action button is pressed.
|
625941b84c3428357757c17d
|
def build_url(self): <NEW_LINE> <INDENT> if self.by == "friendly_string": <NEW_LINE> <INDENT> self.base_url = "https://api.companieshouse.gov.uk/search/companies?q=" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.base_url = "https://api.companieshouse.gov.uk/company/" <NEW_LINE> <DEDENT> self.request_url = self.base_url + self.company_query_string
|
Creates self.request_url and adds parameters to request_kwargs if
self.by is set to "friendly_string"
Called when parent class is instantiated
|
625941b81f037a2d8b946051
|
def tradfri_get_lightbulb(hubip, apiuser, apikey, deviceid): <NEW_LINE> <INDENT> tradfriHub = 'coaps://{}:5684/15001/{}' .format(hubip, deviceid) <NEW_LINE> api = '{} -m get -u "{}" -k "{}" "{}" -B {} 2> /dev/null' .format(coap, apiuser, apikey, tradfriHub, timeout) <NEW_LINE> if os.path.exists(coap): <NEW_LINE> <INDENT> result = os.popen(api) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> sys.stderr.write('[-] libcoap: could not find libcoap.\n') <NEW_LINE> sys.exit(1) <NEW_LINE> <DEDENT> return json.loads(result.read().strip('\n'))
|
function for getting tradfri lightbulb information
|
625941b8ab23a570cc24ffd2
|
def destroy(self, request, uuid): <NEW_LINE> <INDENT> draft_repo = DraftRepo(SnapshotRepo()) <NEW_LINE> draft_repo.delete(uuid) <NEW_LINE> return super().destroy(request, uuid)
|
This removes any files that were staged along with the database entry.
|
625941b8ff9c53063f47c050
|
def random_element(self, num_bound=None, den_bound=None, *args, **kwds): <NEW_LINE> <INDENT> global ZZ <NEW_LINE> if ZZ is None: <NEW_LINE> <INDENT> from . import integer_ring <NEW_LINE> ZZ = integer_ring.ZZ <NEW_LINE> <DEDENT> if num_bound is None: <NEW_LINE> <INDENT> num = ZZ.random_element(*args, **kwds) <NEW_LINE> den = ZZ.random_element(*args, **kwds) <NEW_LINE> while den == 0: den = ZZ.random_element(*args, **kwds) <NEW_LINE> return self((num, den)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if num_bound == 0: <NEW_LINE> <INDENT> num_bound = 2 <NEW_LINE> <DEDENT> if den_bound is None: <NEW_LINE> <INDENT> den_bound = num_bound <NEW_LINE> if den_bound < 1: <NEW_LINE> <INDENT> den_bound = 2 <NEW_LINE> <DEDENT> <DEDENT> num = ZZ.random_element(-num_bound, num_bound+1, *args, **kwds) <NEW_LINE> den = ZZ.random_element(1, den_bound+1, *args, **kwds) <NEW_LINE> while den == 0: den = ZZ.random_element(1, den_bound+1, *args, **kwds) <NEW_LINE> return self((num,den))
|
Return an random element of `\QQ`.
Elements are constructed by randomly choosing integers
for the numerator and denominator, not neccessarily coprime.
INPUT:
- ``num_bound`` -- a positive integer, specifying a bound
on the absolute value of the numerator.
If absent, no bound is enforced.
- ``den_bound`` -- a positive integer, specifying a bound
on the value of the denominator.
If absent, the bound for the numerator will be reused.
Any extra positional or keyword arguments are passed through to
:meth:`sage.rings.integer_ring.IntegerRing_class.random_element`.
EXAMPLES::
sage: QQ.random_element()
-4
sage: QQ.random_element()
0
sage: QQ.random_element()
-1/2
In the following example, the resulting numbers range from
-5/1 to 5/1 (both inclusive),
while the smallest possible positive value is 1/10::
sage: QQ.random_element(5, 10)
-2/7
Extra positional or keyword arguments are passed through::
sage: QQ.random_element(distribution='1/n')
0
sage: QQ.random_element(distribution='1/n')
-1
|
625941b8a4f1c619b28afe94
|
def get_name() -> str: <NEW_LINE> <INDENT> global used_names <NEW_LINE> name = names.get_full_name() <NEW_LINE> while name in used_names: <NEW_LINE> <INDENT> name = names.get_full_name() <NEW_LINE> <DEDENT> used_names.append(name) <NEW_LINE> return name
|
Used to generate a full name that has not been previously used
|
625941b8507cdc57c6306b26
|
def InstallImportant(self): <NEW_LINE> <INDENT> self.whitelist = [entry for entry in self.states if not self.states[entry]] <NEW_LINE> if not self.setup['file']: <NEW_LINE> <INDENT> if self.setup['decision'] == 'whitelist': <NEW_LINE> <INDENT> dwl = self.setup['decision_list'] <NEW_LINE> w_to_rem = [e for e in self.whitelist if not matches_white_list(e, dwl)] <NEW_LINE> if w_to_rem: <NEW_LINE> <INDENT> self.logger.info("In whitelist mode: suppressing installation of:") <NEW_LINE> self.logger.info(["%s:%s" % (e.tag, e.get('name')) for e in w_to_rem]) <NEW_LINE> self.whitelist = [x for x in self.whitelist if x not in w_to_rem] <NEW_LINE> <DEDENT> <DEDENT> elif self.setup['decision'] == 'blacklist': <NEW_LINE> <INDENT> b_to_rem = [e for e in self.whitelist if not passes_black_list(e, self.setup['decision_list'])] <NEW_LINE> if b_to_rem: <NEW_LINE> <INDENT> self.logger.info("In blacklist mode: suppressing installation of:") <NEW_LINE> self.logger.info(["%s:%s" % (e.tag, e.get('name')) for e in b_to_rem]) <NEW_LINE> self.whitelist = [x for x in self.whitelist if x not in b_to_rem] <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> if not self.dryrun: <NEW_LINE> <INDENT> for cfile in self.config.findall(".//Path"): <NEW_LINE> <INDENT> if (cfile.get('name') not in self.__important__ or cfile.get('type') != 'file' or cfile not in self.whitelist): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> parent = cfile.getparent() <NEW_LINE> if ((parent.tag == "Bundle" and ((self.setup['bundle'] and parent.get("name") not in self.setup['bundle']) or (self.setup['skipbundle'] and parent.get("name") in self.setup['skipbundle']))) or (parent.tag == "Independent" and (self.setup['bundle'] or self.setup['skipindep']))): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> tl = [t for t in self.tools if t.handlesEntry(cfile) and t.canVerify(cfile)] <NEW_LINE> if tl: <NEW_LINE> <INDENT> if self.setup['interactive'] and not promptFilter("Install %s: %s? (y/N):", [cfile]): <NEW_LINE> <INDENT> self.whitelist.remove(cfile) <NEW_LINE> continue <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> self.states[cfile] = tl[0].InstallPath(cfile) <NEW_LINE> if self.states[cfile]: <NEW_LINE> <INDENT> tl[0].modified.append(cfile) <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> self.logger.error("Unexpected tool failure", exc_info=1) <NEW_LINE> <DEDENT> cfile.set('qtext', '') <NEW_LINE> if tl[0].VerifyPath(cfile, []): <NEW_LINE> <INDENT> self.whitelist.remove(cfile)
|
Install important entries
We also process the decision mode stuff here because we want to prevent
non-whitelisted/blacklisted 'important' entries from being installed
prior to determining the decision mode on the client.
|
625941b891f36d47f21ac349
|
def __init__(self, other_block=-1, other_face=-1, orientation=0, filename="udf.lua", is_wall=0, sets_conv_flux=0, sets_visc_flux=0, reorient_vector_quantities=False, Rmatrix=[1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0], label=""): <NEW_LINE> <INDENT> BoundaryCondition.__init__(self, type_of_BC=ADJACENT_PLUS_UDF, other_block=other_block, other_face=other_face, orientation=orientation, filename=filename, is_wall=is_wall, sets_conv_flux=sets_conv_flux, sets_visc_flux=sets_visc_flux, reorient_vector_quantities=reorient_vector_quantities, Rmatrix=Rmatrix, label=label) <NEW_LINE> return
|
Construct a connecting boundary condition that also has some user-defined behaviour.
:param other_block: index to an adjacent block, if any.
A value of -1 will indicate that there is no adjacent block.
:param other_face: index of the adjacent face of the other block, if any.
:param orientation: for 3D connections the other block face can have one of
4 rotational orientations.
:param filename: Name of the file containing the Lua functions.
:param is_wall: Flag to indicate that various parts of the simulation code
should treat this boundary as a solid wall.
:param sets_conv_flux: For this boundary, the fluxes are computed directly.
Typically, this relates to using a user-supplied Lus script which
provides a convective_flux() function. This pretty much ignores the ghost-cell
data, however, it does not relieve the user of supplying a suitable
function for setting that data.
:param sets_visc_flux: As for sets_conv_flux except that this relates to
setting the viscous component of flux due to the effect of the boundary.
:param reorient_vector_quantities: for exchange of vector quantities between adjacent boundaries
:param Rmatrix: the 9 elements of the rotation matrix
:param label: A string that may be used to assist in identifying the boundary
in the post-processing phase of a simulation.
|
625941b87d43ff24873a2af6
|
def calculate_best_confidence(choices, metadata): <NEW_LINE> <INDENT> best_confidence = 0 <NEW_LINE> for path, line in choices: <NEW_LINE> <INDENT> confidence = calculate_confidence(path, line, metadata) <NEW_LINE> best_confidence = max(confidence, best_confidence) <NEW_LINE> <DEDENT> return best_confidence
|
:type choices: tuple[tuple[str, int]]
:type metadata: Metadata
:rtype: int
|
625941b8d10714528d5ffb32
|
def test_doc_equality(self): <NEW_LINE> <INDENT> text = "My name is Inigo Montoya." <NEW_LINE> doc1 = API.annotate(text) <NEW_LINE> doc2 = API.annotate(text) <NEW_LINE> self.assertEqual(doc1, doc2, "two .annotate calls on same text did not produce equivalent Documents") <NEW_LINE> self.assertEqual(doc1, Document.load_from_JSON(json.loads(doc2.to_JSON())), "loading JSON dumped from one Document should produce an equivalent Document")
|
Two calls to API.annotate using the same text should produce equivalent Documents
|
625941b8627d3e7fe0d68ca1
|
def test_Square(self): <NEW_LINE> <INDENT> s1 = Square(1) <NEW_LINE> self.assertTrue(isinstance(s1, Base))
|
Check if is instance
|
625941b8baa26c4b54cb0f76
|
def define_xml_path(path, **kwargs): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with salt.utils.files.fopen(path, 'r') as fp_: <NEW_LINE> <INDENT> return define_xml_str( salt.utils.stringutils.to_unicode(fp_.read()), **kwargs ) <NEW_LINE> <DEDENT> <DEDENT> except (OSError, IOError): <NEW_LINE> <INDENT> return False
|
Define a persistent domain based on the XML-file path passed to the function
:param path: path to a file containing the libvirt XML definition of the domain
:param connection: libvirt connection URI, overriding defaults
.. versionadded:: Fluorine
:param username: username to connect with, overriding defaults
.. versionadded:: Fluorine
:param password: password to connect with, overriding defaults
.. versionadded:: Fluorine
CLI Example:
.. code-block:: bash
salt '*' virt.define_xml_path <path to XML file on the node>
|
625941b87c178a314d6ef2ac
|
def resetStopOnReset(self, software_reset = None): <NEW_LINE> <INDENT> logging.debug("reset stop on Reset") <NEW_LINE> self.halt() <NEW_LINE> demcr = self.readMemory(DEMCR) <NEW_LINE> self.writeMemory(DEMCR, demcr | VC_CORERESET) <NEW_LINE> self.reset(software_reset) <NEW_LINE> while (self.getState() == TARGET_RUNNING): <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> self.writeMemory(DEMCR, demcr)
|
perform a reset and stop the core on the reset handler
|
625941b88c3a873295158211
|
def fib_gen(): <NEW_LINE> <INDENT> first_no = 0 <NEW_LINE> second_no = 1 <NEW_LINE> yield first_no <NEW_LINE> while True: <NEW_LINE> <INDENT> yield second_no <NEW_LINE> second_no, first_no = second_no + first_no, second_no
|
Method: Generator
Yield statement is immediately recognized by the computer
and it treats this code as a Generator. One cannot have
return and yield statements in the same function.
.next() in the for loop is another special call that the
generator recognizes
:return:
|
625941b826068e7796caeb2c
|
def set_thread_by_index(self, thread_id): <NEW_LINE> <INDENT> result = self.debugger.communicator.send( "-thread-select {0}".format(thread_id)).is_success() <NEW_LINE> if result: <NEW_LINE> <INDENT> self.debugger.on_thread_changed.notify( self.get_thread_info().selected_thread) <NEW_LINE> self.debugger.on_frame_changed.notify(self.get_current_frame()) <NEW_LINE> util.Logger.debug("Changed to thread with id {0}".format( thread_id)) <NEW_LINE> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False
|
@type thread_id: int
@rtype: bool
|
625941b8dc8b845886cb5388
|
def serialize(self, view): <NEW_LINE> <INDENT> return collections.OrderedDict([ ('id', self.id), ('flavor_id', self.flavor_id), ('chassis_model_id', self.chassis_model_id), ('schedule_priority', self.schedule_priority), ('deleted', self.deleted) ])
|
Turn a FlavorProvider into a dict.
|
625941b8fff4ab517eb2f28d
|
@app.get('/form') <NEW_LINE> def form(request: Request, csrf_protect:CsrfProtect = Depends()): <NEW_LINE> <INDENT> csrf_token = csrf_protect.generate_csrf() <NEW_LINE> response = templates.TemplateResponse('form.html', { 'request': request, 'csrf_token': csrf_token }) <NEW_LINE> return response
|
Returns form template.
|
625941b8d6c5a10208143e9a
|
def queryset(self, request, queryset): <NEW_LINE> <INDENT> field_key = 'class_day' <NEW_LINE> if queryset.model == Registration: <NEW_LINE> <INDENT> field_key = 'classoffer__' + field_key <NEW_LINE> <DEDENT> return queryset.filter(**{field_key: self.value()}) if self.value() else queryset
|
Returns the filtered queryset based on value provided in the query string, retrievable via self.value().
|
625941b8442bda511e8be279
|
def build_params_from_flags(): <NEW_LINE> <INDENT> FLAGS = flags.FLAGS <NEW_LINE> if FLAGS.task_mode == 'evals': <NEW_LINE> <INDENT> assert not FLAGS.reset_output_dir, '`eval` tasks cannot `reset_output_dir`' <NEW_LINE> <DEDENT> output_dir = FLAGS.output_dir <NEW_LINE> logging.info(f'Checkpoints are at: {output_dir}') <NEW_LINE> if not gfile.IsDirectory(output_dir): <NEW_LINE> <INDENT> logging.info(f'Path `{output_dir}` does not exist. Creating') <NEW_LINE> gfile.MakeDirs(output_dir) <NEW_LINE> <DEDENT> elif FLAGS.reset_output_dir: <NEW_LINE> <INDENT> logging.info(f'Path `{output_dir}` exists. Removing') <NEW_LINE> gfile.DeleteRecursively(output_dir) <NEW_LINE> gfile.MakeDirs(output_dir) <NEW_LINE> <DEDENT> global _flags <NEW_LINE> params = HParams( inf=float('inf'), output_dir=output_dir, ) <NEW_LINE> for flag_name in _flags: <NEW_LINE> <INDENT> flag_value = getattr(FLAGS, flag_name) <NEW_LINE> if flag_name not in params: <NEW_LINE> <INDENT> params.add_hparam(flag_name, flag_value) <NEW_LINE> <DEDENT> <DEDENT> _deduce_num_classes(params) <NEW_LINE> pretty_print_params = params.to_json(indent=2) <NEW_LINE> logging.info(pretty_print_params) <NEW_LINE> if params.task_mode not in ['inference', 'evals', 'eval_forever']: <NEW_LINE> <INDENT> params_filename = os.path.join(params.output_dir, 'hparams.json') <NEW_LINE> if not gfile.Exists(params_filename): <NEW_LINE> <INDENT> with gfile.GFile(params_filename, 'w') as fout: <NEW_LINE> <INDENT> fout.write(pretty_print_params) <NEW_LINE> fout.flush() <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return params
|
Build and return a `tf.HParams` object.
|
625941b830c21e258bdfa2f0
|
def _recover_auth_meta(self, auth_id, auth_meta): <NEW_LINE> <INDENT> remove_subvolumes = [] <NEW_LINE> for subvol, subvol_data in auth_meta['subvolumes'].items(): <NEW_LINE> <INDENT> if not subvol_data['dirty']: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> (group_name, subvol_name) = subvol.split('/') <NEW_LINE> group_name = group_name if group_name != 'None' else Group.NO_GROUP_NAME <NEW_LINE> access_level = subvol_data['access_level'] <NEW_LINE> with self.auth_mdata_mgr.subvol_metadata_lock(group_name, subvol_name): <NEW_LINE> <INDENT> subvol_meta = self.auth_mdata_mgr.subvol_metadata_get(group_name, subvol_name) <NEW_LINE> if not subvol_meta or auth_id not in subvol_meta['auths']: <NEW_LINE> <INDENT> remove_subvolumes.append(subvol) <NEW_LINE> continue <NEW_LINE> <DEDENT> want_auth = { 'access_level': access_level, 'dirty': False, } <NEW_LINE> if subvol_meta['auths'][auth_id] == want_auth: <NEW_LINE> <INDENT> auth_meta['subvolumes'][subvol]['dirty'] = False <NEW_LINE> self.auth_mdata_mgr.auth_metadata_set(auth_id, auth_meta) <NEW_LINE> continue <NEW_LINE> <DEDENT> client_entity = "client.{0}".format(auth_id) <NEW_LINE> ret, out, err = self.mgr.mon_command( { 'prefix': 'auth get', 'entity': client_entity, 'format': 'json' }) <NEW_LINE> if ret == 0: <NEW_LINE> <INDENT> existing_caps = json.loads(out) <NEW_LINE> <DEDENT> elif ret == -errno.ENOENT: <NEW_LINE> <INDENT> existing_caps = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> log.error(err) <NEW_LINE> raise VolumeException(ret, err) <NEW_LINE> <DEDENT> self._authorize_subvolume(auth_id, access_level, existing_caps) <NEW_LINE> <DEDENT> auth_meta['subvolumes'][subvol]['dirty'] = False <NEW_LINE> self.auth_mdata_mgr.auth_metadata_set(auth_id, auth_meta) <NEW_LINE> <DEDENT> for subvol in remove_subvolumes: <NEW_LINE> <INDENT> del auth_meta['subvolumes'][subvol] <NEW_LINE> <DEDENT> if not auth_meta['subvolumes']: <NEW_LINE> <INDENT> self.fs.unlink(self.auth_mdata_mgr._auth_metadata_path(auth_id)) <NEW_LINE> return <NEW_LINE> <DEDENT> auth_meta['dirty'] = False <NEW_LINE> self.auth_mdata_mgr.auth_metadata_set(auth_id, auth_meta)
|
Call me after locking the auth meta file.
|
625941b8de87d2750b85fbe1
|
def load_pkl( file_name ) : <NEW_LINE> <INDENT> with open( file_name, "r" ) as f : <NEW_LINE> <INDENT> return pickle.load( f )
|
Load a python object back from the pickle file.
|
625941b80fa83653e4656e10
|
def find_kth_node_from_end(self, k): <NEW_LINE> <INDENT> node1 = self.head <NEW_LINE> node2 = self.head <NEW_LINE> i = 0 <NEW_LINE> while i < k: <NEW_LINE> <INDENT> node1 = node1.next <NEW_LINE> i += 1 <NEW_LINE> if node1.next is None: <NEW_LINE> <INDENT> print('%d is larger than length of LinkedList '%k) <NEW_LINE> break <NEW_LINE> <DEDENT> <DEDENT> if node1.next is not None: <NEW_LINE> <INDENT> while node1 is not None: <NEW_LINE> <INDENT> node1 = node1.next <NEW_LINE> node2 = node2.next <NEW_LINE> <DEDENT> print('value of kth node from end is %d'%node2.value) <NEW_LINE> return node2.value
|
Given a linked list, find 'n'th node from the end for a given value of n (n > 0)
idea: make 1 pointer move k nodes and then move both 1 node
complexity is O(n) and extra space used is O(1).
http://www.ideserve.co.in/learn/find-nth-node-from-the-end-of-linked-list
|
625941b899fddb7c1c9de1e6
|
def abort(self, jobid, reason, code): <NEW_LINE> <INDENT> self.execute('UPDATE jobs SET abort_code = ?, aborted_by = ?, abort_time = ? WHERE jobid = ?', (code, reason, _now_ts(), jobid))
|
codes:
0 - error during submission
1 - error with parent
2 - got killed by SGE/job scheduler
|
625941b876d4e153a657e983
|
def main(): <NEW_LINE> <INDENT> opt = docopt(__doc__, options_first=True) <NEW_LINE> if opt['--day'] is None: <NEW_LINE> <INDENT> thisday = None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> thisday = int(opt['--day']) <NEW_LINE> <DEDENT> jbt.get_background(float(opt['<ra>']), float(opt['<dec>']), float(opt['<wavelength>']), thresh=float(opt['--thresh']), thisday=thisday, showsubbkgs=opt['--showsubbkgs'], background_file=opt['--background_file'], bathtub_file=opt['--bathtub_file'])
|
Main CLI entrypoint.
|
625941b8e64d504609d74694
|
def _mapped_to_this_conductor(self, node_uuid, driver): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> ring = self.ring_manager[driver] <NEW_LINE> <DEDENT> except exception.DriverNotFound: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return self.host in ring.get_nodes( node_uuid.encode('utf-8'), replicas=CONF.hash_distribution_replicas)
|
Check that node is mapped to this conductor.
Note that because mappings are eventually consistent, it is possible
for two conductors to simultaneously believe that a node is mapped to
them. Any operation that depends on exclusive control of a node should
take out a lock.
|
625941b80c0af96317bb803d
|
def Dispose(self): <NEW_LINE> <INDENT> pass
|
Dispose(self: FamilyTypeSetIterator,A_0: bool)
|
625941b8091ae35668666db9
|
def _upsample_add(self, x, y): <NEW_LINE> <INDENT> _, _, H, W = y.size() <NEW_LINE> return F.upsample(x, size=(H, W), mode='bilinear') + y
|
Upsample and add two feature maps.
|
625941b8796e427e537b0416
|
def clean_internal_terms(self): <NEW_LINE> <INDENT> for term in self.connection[self.numTerms:]: <NEW_LINE> <INDENT> self.disconnect(term) <NEW_LINE> <DEDENT> self.connection = self.connection[:self.numTerms] <NEW_LINE> self.localReference = 0
|
Disconnect any internal terms,
Normally used before calling process_params() for a second
time or when an element is removed from circuit.
|
625941b8d18da76e23532325
|
def test_get_history_dicts(self): <NEW_LINE> <INDENT> self.resource_monitor.check_resources() <NEW_LINE> cpu_dict = self.resource_monitor.get_cpu_history_dict() <NEW_LINE> self.assertIsInstance(cpu_dict, list) <NEW_LINE> memory_dict = self.resource_monitor.get_memory_history_dict() <NEW_LINE> self.assertIsInstance(memory_dict, list)
|
Test the CPU/memory history dictionary of a resource monitor
|
625941b8f548e778e58cd3cf
|
def test_player_get_max_payoff(self): <NEW_LINE> <INDENT> game = gambit.read_game("test_games/payoff_game.nfg") <NEW_LINE> assert game.players[0].max_payoff == fractions.Fraction(10,1) <NEW_LINE> assert game.players["Player 1"].max_payoff == fractions.Fraction(10,1) <NEW_LINE> assert game.players[1].max_payoff == fractions.Fraction(8,1) <NEW_LINE> assert game.players["Player 2"].max_payoff == fractions.Fraction(8,1)
|
To test getting the maximum payoff for the players
|
625941b8e5267d203edcdaf4
|
def __addRows( self, aValueList ): <NEW_LINE> <INDENT> for aValue in aValueList: <NEW_LINE> <INDENT> anIter = self.theListStore.append( ) <NEW_LINE> self.theListStore.set_value ( anIter, 0 , aValue[0] ) <NEW_LINE> self.theListStore.set_value ( anIter, 1 , aValue[1] ) <NEW_LINE> self.theListStore.set_value ( anIter, 2 , aValue[2] ) <NEW_LINE> self.theListStore.set_value ( anIter, 3 , aValue[3] ) <NEW_LINE> self.theListStore.set_value ( anIter, 4 , aValue[4] ) <NEW_LINE> self.theListStore.set_value ( anIter, 5 , aValue[5] ) <NEW_LINE> self.theListStore.set_value ( anIter, 6 , aValue[6] ) <NEW_LINE> self.theListStore.set_value ( anIter, 7 , aValue[7] ) <NEW_LINE> self.theListStore.set_value ( anIter, 8 , aValue[8] )
|
in: list of [Name, Value, Settable, Creator Flag]
|
625941b8b57a9660fec336d4
|
def list_virtual_machine_scale_set_vm_network_interfaces( self, resource_group_name, virtual_machine_scale_set_name, virtualmachine_index, custom_headers=None, raw=False, **operation_config): <NEW_LINE> <INDENT> def internal_paging(next_link=None, raw=False): <NEW_LINE> <INDENT> if not next_link: <NEW_LINE> <INDENT> url = '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/microsoft.Compute/virtualMachineScaleSets/{virtualMachineScaleSetName}/virtualMachines/{virtualmachineIndex}/networkInterfaces' <NEW_LINE> path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualMachineScaleSetName': self._serialize.url("virtual_machine_scale_set_name", virtual_machine_scale_set_name, 'str'), 'virtualmachineIndex': self._serialize.url("virtualmachine_index", virtualmachine_index, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } <NEW_LINE> url = self._client.format_url(url, **path_format_arguments) <NEW_LINE> query_parameters = {} <NEW_LINE> query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> url = next_link <NEW_LINE> query_parameters = {} <NEW_LINE> <DEDENT> header_parameters = {} <NEW_LINE> header_parameters['Content-Type'] = 'application/json; charset=utf-8' <NEW_LINE> if self.config.generate_client_request_id: <NEW_LINE> <INDENT> header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) <NEW_LINE> <DEDENT> if custom_headers: <NEW_LINE> <INDENT> header_parameters.update(custom_headers) <NEW_LINE> <DEDENT> if self.config.accept_language is not None: <NEW_LINE> <INDENT> header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') <NEW_LINE> <DEDENT> request = self._client.get(url, query_parameters) <NEW_LINE> response = self._client.send( request, header_parameters, **operation_config) <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> exp = CloudError(response) <NEW_LINE> exp.request_id = response.headers.get('x-ms-request-id') <NEW_LINE> raise exp <NEW_LINE> <DEDENT> return response <NEW_LINE> <DEDENT> deserialized = models.NetworkInterfacePaged(internal_paging, self._deserialize.dependencies) <NEW_LINE> if raw: <NEW_LINE> <INDENT> header_dict = {} <NEW_LINE> client_raw_response = models.NetworkInterfacePaged(internal_paging, self._deserialize.dependencies, header_dict) <NEW_LINE> return client_raw_response <NEW_LINE> <DEDENT> return deserialized
|
Gets information about all network interfaces in a virtual machine in a
virtual machine scale set.
:param resource_group_name: The name of the resource group.
:type resource_group_name: str
:param virtual_machine_scale_set_name: The name of the virtual machine
scale set.
:type virtual_machine_scale_set_name: str
:param virtualmachine_index: The virtual machine index.
:type virtualmachine_index: str
:param dict custom_headers: headers that will be added to the request
:param bool raw: returns the direct response alongside the
deserialized response
:param operation_config: :ref:`Operation configuration
overrides<msrest:optionsforoperations>`.
:return: An iterator like instance of NetworkInterface
:rtype:
~azure.mgmt.network.v2016_09_01.models.NetworkInterfacePaged[~azure.mgmt.network.v2016_09_01.models.NetworkInterface]
:raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>`
|
625941b85166f23b2e1a4fad
|
def add_tweet_enqueue_reply(output_obj, parent): <NEW_LINE> <INDENT> reply_queue = dataqueue.DataQueue('tweet-reply') <NEW_LINE> link = settings.WEB_LINK + '/?lat=%s&lng=%s&o=t' % ( output_obj['lat'], output_obj['lon'] ) <NEW_LINE> reply_data = { 'in_reply_to_status_id': output_obj['id'], 'screen_name': output_obj['screen_name'], 'link': link, 'status': "you're on the map! %s" % link, 'parent': parent, } <NEW_LINE> reply_queue.add(reply_data, output_obj['id'])
|
Enqueue the reply now we've worked out where it's for.
|
625941b8b7558d58953c4d6f
|
def _execute_single_test(self, config, failure_handler, naarad_obj, test): <NEW_LINE> <INDENT> if not failure_handler.get_abort_status(): <NEW_LINE> <INDENT> test.result = constants.SKIPPED <NEW_LINE> test.message += error_messages.TEST_ABORT <NEW_LINE> logger.debug("Skipping" + test.name + "due to too many setup/teardown failures") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> setup_fail = False <NEW_LINE> if not self.master_config.mapping.get("no-perf", False): <NEW_LINE> <INDENT> test.naarad_config = self.dynamic_config_module.naarad_config(config.mapping, test_name=test.name) <NEW_LINE> test.naarad_id = naarad_obj.signal_start(test.naarad_config) <NEW_LINE> <DEDENT> test.start_time = time.time() <NEW_LINE> logger.debug("Setting up test: " + test.name) <NEW_LINE> try: <NEW_LINE> <INDENT> if hasattr(self.deployment_module, 'setup'): <NEW_LINE> <INDENT> self.deployment_module.setup() <NEW_LINE> <DEDENT> <DEDENT> except BaseException: <NEW_LINE> <INDENT> test.result = constants.SKIPPED <NEW_LINE> test.message += error_messages.SETUP_FAILED + traceback.format_exc() <NEW_LINE> setup_fail = True <NEW_LINE> failure_handler.notify_failure() <NEW_LINE> logger.debug("Aborting {0} due to setup failure:\n{1}".format(test.name, traceback.format_exc())) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> logger.debug("Executing test: " + test.name) <NEW_LINE> while (test.current_iteration < test.total_number_iterations): <NEW_LINE> <INDENT> test.current_iteration = test.current_iteration + 1 <NEW_LINE> if ( (test.result != constants.FAILED) or (runtime.get_active_config("consecutive_failures_per_test",0) > test.consecutive_failures) ): <NEW_LINE> <INDENT> self._run_and_verify_test(test) <NEW_LINE> <DEDENT> if ((test.current_iteration % (test.total_number_iterations/int(runtime.get_active_config("loop_all_tests",1))))== 0): <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> logger.debug("Tearing down test: " + test.name) <NEW_LINE> try: <NEW_LINE> <INDENT> if hasattr(self.deployment_module, 'teardown'): <NEW_LINE> <INDENT> self.deployment_module.teardown() <NEW_LINE> <DEDENT> if not setup_fail: <NEW_LINE> <INDENT> failure_handler.notify_success() <NEW_LINE> <DEDENT> <DEDENT> except BaseException: <NEW_LINE> <INDENT> test.message += error_messages.TEARDOWN_FAILED + traceback.format_exc() <NEW_LINE> if not setup_fail: <NEW_LINE> <INDENT> failure_handler.notify_failure() <NEW_LINE> <DEDENT> logger.debug(test.name + "failed teardown():\n{0}".format(traceback.format_exc())) <NEW_LINE> <DEDENT> test.end_time = time.time() <NEW_LINE> if not self.master_config.mapping.get("no-display", False): <NEW_LINE> <INDENT> naarad_obj.signal_stop(test.naarad_id) <NEW_LINE> <DEDENT> logger.debug("Execution of test: " + test.name + " complete")
|
Evaluates a single test
:param config:
:param failure_handler:
:param naarad_obj:
:param test:
:return:
|
625941b863d6d428bbe44343
|
def main(): <NEW_LINE> <INDENT> new_products_inventory_df = run_site_crawl(BRANDS_PAGE_LINK) <NEW_LINE> save_data_to_database(new_products_inventory_df) <NEW_LINE> print('Total run time:', datetime.now() - startTime) <NEW_LINE> return
|
Main Function
1. Runs site crawl
2. Saves crawled data to the database
|
625941b87cff6e4e811177da
|
def test_gathernd(): <NEW_LINE> <INDENT> a = np.arange(12).reshape((2,2,3)) <NEW_LINE> print(a) <NEW_LINE> indice0 = [[[1],[0]]] <NEW_LINE> indice1 = [[[0,0], [1,1]]] <NEW_LINE> indice2 = [[[0,0,0], [1,1,2]]] <NEW_LINE> v0 = tf.gather_nd(a, indice0) <NEW_LINE> v1 = tf.gather_nd(a, indice1) <NEW_LINE> v2 = tf.gather_nd(a, indice2) <NEW_LINE> test_variable(v0) <NEW_LINE> test_variable(v1) <NEW_LINE> test_variable(v2)
|
tf.gather_nd()函数使用indice参数的前N-1维与之前的tf.gather的意义相同,第N维上的内容即为在param数组中
的索引,如果是一个元素则由N-1维的tensor的该位置将填充param[",".join(第N维的内容)]
:return:
|
625941b850812a4eaa59c179
|
def create_recurring_invoice(self, product): <NEW_LINE> <INDENT> product['is_recurring'] = True <NEW_LINE> product['client_id'] = self.client['data']['id'] <NEW_LINE> product['auto_bill'] = True <NEW_LINE> today = datetime.datetime.now().date() <NEW_LINE> product['start_date'] = today.isoformat() <NEW_LINE> if product['recurring'] == 'monthly': <NEW_LINE> <INDENT> end_date = (today + datetime.timedelta(days=365)).isoformat() <NEW_LINE> end_date = (today + relativedelta(months=1)).isoformat() <NEW_LINE> product['end_date'] = end_date <NEW_LINE> product['frequency_id'] = self.get_frequency_id('monthly') <NEW_LINE> <DEDENT> if product['recurring'] == 'annually': <NEW_LINE> <INDENT> end_date = (today + relativedelta(years=1)).isoformat() <NEW_LINE> product['end_date'] = end_date <NEW_LINE> product['frequency_id'] = self.get_frequency_id('annually') <NEW_LINE> <DEDENT> del product['recurring'] <NEW_LINE> res = requests.post(self.url + 'invoices?include=invitations', json=product, headers=self.headers) <NEW_LINE> if res.status_code == 200: <NEW_LINE> <INDENT> self.invoice = res.json() <NEW_LINE> return self.invoice <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return res.json()
|
Create a recurring invoice for a client.
|
625941b84428ac0f6e5ba646
|
def unload(self): <NEW_LINE> <INDENT> for action in self.actions: <NEW_LINE> <INDENT> self.iface.removePluginMenu( self.tr(u"&Jacquez's Q Visualization"), action) <NEW_LINE> self.iface.removeToolBarIcon(action) <NEW_LINE> <DEDENT> del self.toolbar
|
Removes the plugin menu item and icon from QGIS GUI.
|
625941b897e22403b379cdec
|
def _set_state(self,inport): <NEW_LINE> <INDENT> self.logger.error( "_set_state: Switch method should be replaced by subclass") <NEW_LINE> self.state = inport <NEW_LINE> return self.state
|
Stub for real device method
|
625941b8283ffb24f3c55760
|
def _schedule_update_to_recheck_turn_off_sensor(self): <NEW_LINE> <INDENT> if not self.is_on: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> if not self.hass: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> @callback <NEW_LINE> def _scheduled_update(now): <NEW_LINE> <INDENT> self._check_for_off_update_listener = None <NEW_LINE> self._update_from_data() <NEW_LINE> if not self.is_on: <NEW_LINE> <INDENT> self.async_write_ha_state() <NEW_LINE> <DEDENT> <DEDENT> self._check_for_off_update_listener = async_call_later( self.hass, TIME_TO_RECHECK_DETECTION.total_seconds(), _scheduled_update )
|
Schedule an update to recheck the sensor to see if it is ready to turn off.
|
625941b88a43f66fc4b53ebd
|
def get_calib_data(self, channel): <NEW_LINE> <INDENT> slope = float(self.send_message( "?AI{{{0}}}:SLOPE".format(channel)).split('=')[1]) <NEW_LINE> offset = float(self.send_message( "?AI{{{0}}}:OFFSET".format(channel)).split('=')[1]) <NEW_LINE> return slope, offset
|
Query the calibration parameters slope and offset for a given channel.
The returned values are only valid for the currently selected
voltage range.
:param channel: the analog input channel to calibrate
|
625941b897e22403b379cded
|
def save_all(db: DB, settings: ty.Iterable[model.Setting]) -> None: <NEW_LINE> <INDENT> rows = [setting.to_row() for setting in settings] <NEW_LINE> with db.cursor() as cur: <NEW_LINE> <INDENT> cur.executemany( "DELETE FROM user_settings WHERE key=%s AND user_id=%s", [(setting.key, setting.user_id) for setting in settings], ) <NEW_LINE> cur.executemany(_INSERT_SQL, rows)
|
Save all settings
|
625941b83346ee7daa2b2bbd
|
def colorize(self, deg): <NEW_LINE> <INDENT> h, l, s = self.tohls() <NEW_LINE> h = clamp(deg * HUE_SCALE, 0.0, 1.0) <NEW_LINE> self.fromhls(h, l, s)
|
Colorize the color with the given hue.
|
625941b855399d3f05588507
|
def execute_function(self, func): <NEW_LINE> <INDENT> logging.info('Importing the function: %s' % func) <NEW_LINE> with h5py.File(self.filename, 'a') as h5_file: <NEW_LINE> <INDENT> input_cubes = [] <NEW_LINE> for input_cube_name in func.input_cube_names: <NEW_LINE> <INDENT> input_cubes.append(h5_file[input_cube_name]) <NEW_LINE> <DEDENT> logging.info('Executing the function: %s' % func) <NEW_LINE> func.__call__(input_cubes, func.output_cube_names, func.params) <NEW_LINE> sdcubes = load_attribute(h5_file, 'sdcubes') <NEW_LINE> for output_cube_name in func.output_cube_names: <NEW_LINE> <INDENT> sdcubes[output_cube_name] = self.filename <NEW_LINE> logging.info('Set the dirty status for the output datasets') <NEW_LINE> h5_file[output_cube_name].attrs['dirty'] = True <NEW_LINE> <DEDENT> store_attribute(h5_file, 'sdcubes', sdcubes)
|
Executes a function and set the output dataset status to dirty.
|
625941b899cbb53fe6792a3b
|
def collate(batch): <NEW_LINE> <INDENT> elem = batch[0] <NEW_LINE> elem_type = type(elem) <NEW_LINE> if isinstance(elem, torch.Tensor): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> out = None <NEW_LINE> if torch.utils.data.get_worker_info() is not None: <NEW_LINE> <INDENT> numel = sum([x.numel() for x in batch]) <NEW_LINE> storage = elem.storage()._new_shared(numel) <NEW_LINE> out = elem.new(storage) <NEW_LINE> <DEDENT> return torch.stack(batch, 0, out=out) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> return torch.nn.utils.rnn.pad_sequence(batch, batch_first=True) <NEW_LINE> <DEDENT> <DEDENT> elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' and elem_type.__name__ != 'string_': <NEW_LINE> <INDENT> elem = batch[0] <NEW_LINE> if elem_type.__name__ == 'ndarray': <NEW_LINE> <INDENT> if np_str_obj_array_pattern.search(elem.dtype.str) is not None: <NEW_LINE> <INDENT> raise TypeError(default_collate_err_msg_format.format(elem.dtype)) <NEW_LINE> <DEDENT> return collate([torch.as_tensor(b) for b in batch]) <NEW_LINE> <DEDENT> elif elem.shape == (): <NEW_LINE> <INDENT> return torch.as_tensor(batch) <NEW_LINE> <DEDENT> <DEDENT> elif isinstance(elem, float): <NEW_LINE> <INDENT> return torch.tensor(batch, dtype=torch.float64) <NEW_LINE> <DEDENT> elif isinstance(elem, int_classes): <NEW_LINE> <INDENT> return torch.tensor(batch) <NEW_LINE> <DEDENT> elif isinstance(elem, string_classes): <NEW_LINE> <INDENT> return batch <NEW_LINE> <DEDENT> elif isinstance(elem, container_abcs.Mapping): <NEW_LINE> <INDENT> return {key: collate([d[key] for d in batch]) for key in elem} <NEW_LINE> <DEDENT> elif isinstance(elem, tuple) and hasattr(elem, '_fields'): <NEW_LINE> <INDENT> return elem_type(*(collate(samples) for samples in zip(*batch))) <NEW_LINE> <DEDENT> elif isinstance(elem, container_abcs.Sequence): <NEW_LINE> <INDENT> batch = [torch.stack(it) for it in batch] <NEW_LINE> elem_sizes = [it.shape for it in batch] <NEW_LINE> max_sizes = (max(sizes) for sizes in zip(*elem_sizes)) <NEW_LINE> batched = torch.zeros(len(batch), *max_sizes, dtype=batch[0].dtype) <NEW_LINE> for idx, (elem, elem_size) in enumerate(zip(batch, elem_sizes)): <NEW_LINE> <INDENT> size_1, size_2 = elem_size <NEW_LINE> batched[idx, :size_1, :size_2] = elem <NEW_LINE> <DEDENT> return batched <NEW_LINE> <DEDENT> raise TypeError(default_collate_err_msg_format.format(elem_type))
|
Puts each data field into a tensor with outer dimension batch size
|
625941b876e4537e8c3514cb
|
def setup_class(cls): <NEW_LINE> <INDENT> Data.shared = Data.testsuites[__class__.__name__]['shared_data'] <NEW_LINE> Data.cfm2utilapi.device.disconnect() <NEW_LINE> time.sleep(2) <NEW_LINE> Data.cfm2masterutilapi.zeroize_hsm(**Data.shared) <NEW_LINE> Data.cfm2masterutilapi.login_hsm_default_co(**Data.shared) <NEW_LINE> Data.cfm2masterutilapi.init_hsm1(**Data.shared) <NEW_LINE> Data.cfm2masterutilapi.login_hsm(**Data.shared) <NEW_LINE> Data.cfm2masterutilapi.create_partition2(**Data.shared) <NEW_LINE> Data.cfm2utilapi.device.connect() <NEW_LINE> time.sleep(2) <NEW_LINE> Data.cfm2utilapi.get_hsm_info() <NEW_LINE> Data.cfm2utilapi.zeroize_hsm() <NEW_LINE> Data.cfm2utilapi.login_default() <NEW_LINE> Data.cfm2utilapi.init_hsm4(**Data.shared) <NEW_LINE> Data.cfm2utilapi.login_hsm(**Data.shared) <NEW_LINE> Data.cfm2utilapi.create_user(**Data.shared) <NEW_LINE> cu_username = ['crypto_user%s '%str(i) for i in range(1, 11)] <NEW_LINE> for crypto_user in cu_username: <NEW_LINE> <INDENT> Data.shared["create_user"].update({'username': crypto_user}) <NEW_LINE> Data.cfm2utilapi.create_user(**Data.shared) <NEW_LINE> <DEDENT> part_name = Data.shared['partition_name'] <NEW_LINE> dev = connect_session(device=Data.cfm2utilapi, part_name=part_name) <NEW_LINE> dev.get_hsm_info() <NEW_LINE> dev.zeroize_hsm() <NEW_LINE> dev.login_default() <NEW_LINE> dev.init_hsm4(**Data.shared) <NEW_LINE> dev.login_hsm(**Data.shared) <NEW_LINE> Data.shared["create_user"].update({'username': 'crypto_user'}) <NEW_LINE> dev.create_user(**Data.shared) <NEW_LINE> cu_username = ['crypto_user%s '%str(i) for i in range(1, 8)] <NEW_LINE> for crypto_user in cu_username: <NEW_LINE> <INDENT> Data.shared["create_user"].update({'username': crypto_user}) <NEW_LINE> dev.create_user(**Data.shared)
|
This method sets the FIPS state of the HSM to 2.
Create and Initialize Partitions.
Create crypto_users.
|
625941b8046cf37aa974cb9f
|
def get_token(self): <NEW_LINE> <INDENT> url = base_url + "token/" <NEW_LINE> headers = {"Content-Type" : "application/json"} <NEW_LINE> obj = { "username" : self.username, "password" : self.password } <NEW_LINE> data = json.dumps(obj).encode("utf-8") <NEW_LINE> response = requests.post(url, data, headers=headers) <NEW_LINE> token = response.json()['token'] <NEW_LINE> return token
|
CALL /token
|
625941b82c8b7c6e89b35618
|
def model_dataset(input_dataset, output_types, output_shapes, algorithm=0, cpu_budget=0, name=None): <NEW_LINE> <INDENT> _ctx = _context._context or _context.context() <NEW_LINE> tld = _ctx._thread_local_data <NEW_LINE> if tld.is_eager: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> _result = pywrap_tfe.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "ModelDataset", name, tld.op_callbacks, input_dataset, "algorithm", algorithm, "cpu_budget", cpu_budget, "output_types", output_types, "output_shapes", output_shapes) <NEW_LINE> return _result <NEW_LINE> <DEDENT> except _core._NotOkStatusException as e: <NEW_LINE> <INDENT> _ops.raise_from_not_ok_status(e, name) <NEW_LINE> <DEDENT> except _core._FallbackException: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> return model_dataset_eager_fallback( input_dataset, algorithm=algorithm, cpu_budget=cpu_budget, output_types=output_types, output_shapes=output_shapes, name=name, ctx=_ctx) <NEW_LINE> <DEDENT> except _core._SymbolicException: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> if not isinstance(output_types, (list, tuple)): <NEW_LINE> <INDENT> raise TypeError( "Expected list for 'output_types' argument to " "'model_dataset' Op, not %r." % output_types) <NEW_LINE> <DEDENT> output_types = [_execute.make_type(_t, "output_types") for _t in output_types] <NEW_LINE> if not isinstance(output_shapes, (list, tuple)): <NEW_LINE> <INDENT> raise TypeError( "Expected list for 'output_shapes' argument to " "'model_dataset' Op, not %r." % output_shapes) <NEW_LINE> <DEDENT> output_shapes = [_execute.make_shape(_s, "output_shapes") for _s in output_shapes] <NEW_LINE> if algorithm is None: <NEW_LINE> <INDENT> algorithm = 0 <NEW_LINE> <DEDENT> algorithm = _execute.make_int(algorithm, "algorithm") <NEW_LINE> if cpu_budget is None: <NEW_LINE> <INDENT> cpu_budget = 0 <NEW_LINE> <DEDENT> cpu_budget = _execute.make_int(cpu_budget, "cpu_budget") <NEW_LINE> _, _, _op, _outputs = _op_def_library._apply_op_helper( "ModelDataset", input_dataset=input_dataset, output_types=output_types, output_shapes=output_shapes, algorithm=algorithm, cpu_budget=cpu_budget, name=name) <NEW_LINE> _result = _outputs[:] <NEW_LINE> if _execute.must_record_gradient(): <NEW_LINE> <INDENT> _attrs = ("algorithm", _op._get_attr_int("algorithm"), "cpu_budget", _op._get_attr_int("cpu_budget"), "output_types", _op.get_attr("output_types"), "output_shapes", _op.get_attr("output_shapes")) <NEW_LINE> _inputs_flat = _op.inputs <NEW_LINE> _execute.record_gradient( "ModelDataset", _inputs_flat, _attrs, _result) <NEW_LINE> <DEDENT> _result, = _result <NEW_LINE> return _result
|
Identity transformation that models performance.
Identity transformation that models performance.
Args:
input_dataset: A `Tensor` of type `variant`.
A variant tensor representing the input dataset.
output_types: A list of `tf.DTypes` that has length `>= 1`.
output_shapes: A list of shapes (each a `tf.TensorShape` or list of `ints`) that has length `>= 1`.
algorithm: An optional `int`. Defaults to `0`.
cpu_budget: An optional `int`. Defaults to `0`.
name: A name for the operation (optional).
Returns:
A `Tensor` of type `variant`.
|
625941b8d58c6744b4257ab5
|
def getVelocity(r, Xi, ws): <NEW_LINE> <INDENT> nw = len(ws) <NEW_LINE> dr = np.zeros([3,nw], dtype=complex) <NEW_LINE> v = np.zeros([3,nw], dtype=complex) <NEW_LINE> a = np.zeros([3,nw], dtype=complex) <NEW_LINE> for i in range(nw): <NEW_LINE> <INDENT> dr[:,i] = Xi[:3,i] + SmallRotate(r, Xi[3:,i]) <NEW_LINE> v[ :,i] = 1j*ws[i]*dr[:,i] <NEW_LINE> a[ :,i] = 1j*ws[i]*v[ :,i] <NEW_LINE> <DEDENT> return dr, v, a
|
Get node complex velocity spectrum based on platform motion's and relative position from PRP
|
625941b8460517430c393fe2
|
def get_initial(self): <NEW_LINE> <INDENT> initial_args = self.initial.copy() <NEW_LINE> if 'username' in self.kwargs: <NEW_LINE> <INDENT> initial_args['owed_username'] = self.kwargs.get('username') <NEW_LINE> <DEDENT> initial_args['amount'] = 1 <NEW_LINE> return initial_args
|
Used to get the username if the form is going to be paid
|
625941b8a17c0f6771cbdea8
|
def decrypt_message(self): <NEW_LINE> <INDENT> testdict = {} <NEW_LINE> for s in range(27): <NEW_LINE> <INDENT> wordCount = 0 <NEW_LINE> decrypted = Message.apply_shift(self, s) <NEW_LINE> for word in decrypted.split(' '): <NEW_LINE> <INDENT> if is_word(self.valid_words, word): <NEW_LINE> <INDENT> wordCount += 1 <NEW_LINE> <DEDENT> <DEDENT> testdict[s] = wordCount <NEW_LINE> <DEDENT> bestVal = max(testdict, key=testdict.get) <NEW_LINE> answer = (bestVal, Message.apply_shift(self,bestVal)) <NEW_LINE> return answer
|
Decrypt self.message_text by trying every possible shift value
and find the "best" one. We will define "best" as the shift that
creates the maximum number of real words when we use apply_shift(shift)
on the message text. If s is the original shift value used to encrypt
the message, then we would expect 26 - s to be the best shift value
for decrypting it.
Note: if multiple shifts are equally good such that they all create
the maximum number of you may choose any of those shifts (and their
corresponding decrypted messages) to return
Returns: a tuple of the best shift value used to decrypt the message
and the decrypted message text using that shift value
|
625941b88e7ae83300e4ae20
|
def cmd_line_parse(iargs=None): <NEW_LINE> <INDENT> parser = create_parser() <NEW_LINE> inps = parser.parse_args(args=iargs) <NEW_LINE> atr1 = readfile.read_attribute(inps.dis_file) <NEW_LINE> atr2 = readfile.read_attribute(inps.geom_file) <NEW_LINE> coord1 = 'geo' if 'Y_FIRST' in atr1.keys() else 'radar' <NEW_LINE> coord2 = 'geo' if 'Y_FIRST' in atr2.keys() else 'radar' <NEW_LINE> proc = atr1.get('PROCESSOR', 'isce') <NEW_LINE> if coord1 == 'radar' and proc in ['gamma', 'roipac']: <NEW_LINE> <INDENT> msg = 'Radar-coded file from {} is NOT supported!'.format(proc) <NEW_LINE> msg += '\n Try to geocode the time-series and geometry files and re-run with them instead.' <NEW_LINE> raise ValueError(msg) <NEW_LINE> <DEDENT> if coord1 != coord2: <NEW_LINE> <INDENT> n = max(len(os.path.basename(i)) for i in [inps.dis_file, inps.geom_file]) <NEW_LINE> msg = 'Input time-series and geometry file are NOT in the same coordinate!' <NEW_LINE> msg += '\n file {f:<{n}} coordinate: {c}'.format(f=os.path.basename(inps.dis_file), n=n, c=coord1) <NEW_LINE> msg += '\n file {f:<{n}} coordinate: {c}'.format(f=os.path.basename(inps.geom_file), n=n, c=coord2) <NEW_LINE> raise ValueError(msg) <NEW_LINE> <DEDENT> if not inps.set_file: <NEW_LINE> <INDENT> geom_dir = os.path.dirname(inps.geom_file) <NEW_LINE> inps.set_file = os.path.join(geom_dir, 'SET.h5') <NEW_LINE> <DEDENT> if not inps.cor_dis_file: <NEW_LINE> <INDENT> dis_dir = os.path.dirname(inps.dis_file) <NEW_LINE> fbase, fext = os.path.splitext(os.path.basename(inps.dis_file)) <NEW_LINE> inps.cor_dis_file = os.path.join(dis_dir, '{}_SET{}'.format(fbase, fext)) <NEW_LINE> <DEDENT> return inps
|
Command line parser.
|
625941b860cbc95b062c639d
|
def info(self, task): <NEW_LINE> <INDENT> self.print_log('_______________dataX_______________') <NEW_LINE> self.print_log('dataX Shape: %s' % str(self.dataX.shape)) <NEW_LINE> self.print_log('_______________dataY_______________') <NEW_LINE> self.print_log('dataY Shape: %s' % str(self.dataY.shape)) <NEW_LINE> self.print_log('***************The %s Finished.****************\n' % task)
|
Print the status, dataX.shape, dataY.shape.
:param task: task name.
:return:
|
625941b8ec188e330fd5a5fa
|
def is_validated_english_sentence(user_input): <NEW_LINE> <INDENT> result = True <NEW_LINE> if re.search("[0-9]+", user_input) is not None: <NEW_LINE> <INDENT> result = False <NEW_LINE> <DEDENT> elif re.search(r"[^a-zA-Z|\s|\.|,|\?|!]", user_input) is not None: <NEW_LINE> <INDENT> result = False <NEW_LINE> <DEDENT> elif user_input == "" or re.fullmatch(r"[\s|\.|,|\?|!]+", user_input) is not None: <NEW_LINE> <INDENT> result = False <NEW_LINE> <DEDENT> return result
|
Input:
- user_input : 문자열값으로 사용자가 입력하는 문자
Output:
- 입력한 값이 아래에 해당될 경우 False, 그렇지 않으면 True
1) 숫자가 포함되어 있거나,
2) _@#$%^&*()-+=[]{}"';:\|`~ 와 같은 특수문자가 포함되어 있거나
3) 문장부호(.,!?)를 제외하면 입력값이 없거나 빈칸만 입력했을 경우
Examples:
>>> import morsecode as mc
>>> mc.is_validated_english_sentence("Hello 123")
False
>>> mc.is_validated_english_sentence("Hi!")
True
>>> mc.is_validated_english_sentence(".!.")
False
>>> mc.is_validated_english_sentence("!.!")
False
>>> mc.is_validated_english_sentence("kkkkk... ^^;")
False
>>> mc.is_validated_english_sentence("This is Gachon University.")
True
|
625941b826238365f5f0ecbe
|
def compute_title(src, sdate, edate): <NEW_LINE> <INDENT> if src in ["mrms", "ifc"]: <NEW_LINE> <INDENT> if sdate == edate: <NEW_LINE> <INDENT> title = sdate.strftime("%-d %B %Y") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> title = f"{sdate:%-d %b} to {edate:%-d %b %Y} (inclusive)" <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if sdate == edate: <NEW_LINE> <INDENT> title = ( f"{(sdate - timedelta(days=1)):%-d %B %Y} ~12z to " f"{edate:%-d %B %Y} ~12z" ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> title = ( f"{(sdate - timedelta(days=1)):%-d %B %Y} ~12z to " f"{(edate + timedelta(days=1)):%-d %B %Y} ~12z" ) <NEW_LINE> <DEDENT> <DEDENT> return title
|
Figure out how to label this fun.
|
625941b845492302aab5e114
|
def send_artifact(artifact, destination=None): <NEW_LINE> <INDENT> return get_experiment().log_artifact(artifact, destination)
|
Save an artifact (file) in experiment storage.
Alias for :meth:`~neptune.experiments.Experiment.log_artifact`
|
625941b86aa9bd52df036bf7
|
def download_program(self): <NEW_LINE> <INDENT> self.request = requests.get(self.download_url) <NEW_LINE> self.request_content = self.request.content <NEW_LINE> self.file = open(self.file_name, mode="wb") <NEW_LINE> self.file.write(self.request_content) <NEW_LINE> self.file.close()
|
Downloads actual program executable
|
625941b892d797404e303fde
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.