Add task category, library name, and update paper links

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +9 -4
README.md CHANGED
@@ -1,19 +1,23 @@
1
  ---
2
  license: cc-by-sa-4.0
3
- pretty_name: TerraMesh
4
  size_categories:
5
  - 1M<n<10M
 
6
  viewer: false
7
  tags:
8
  - Earth observation
9
  - Multimodal
10
  - Pre-training
 
 
 
11
  ---
12
 
13
  # TerraMesh
14
 
15
  > **A planetary‑scale, multimodal analysis‑ready dataset for Earth‑Observation foundation models.**
16
 
 
17
 
18
  **TerraMesh** merges data from **Sentinel‑1 SAR, Sentinel‑2 optical, Copernicus DEM, NDVI and land‑cover** sources into more than **9 million co‑registered patches** ready for large‑scale representation learning.
19
 
@@ -89,7 +93,7 @@ Heat map of the sample count in a one-degree grid. | Monthly distribution of al
89
  TerraMesh was used to pre-train [TerraMind-B](https://huggingface.co/ibm-esa-geospatial/TerraMind-1.0-base).
90
  On the six evaluated segmentation tasks from PANGAEA bench, TerraMind‑B reaches an average mIoU of 66.6%, the best overall score with an average rank of 2.33. This amounts to roughly a 3pp improvement over the next‑best open model (CROMA), underscoring the benefits of pre‑training on TerraMesh.
91
  Compared to an ablation model pre-trained only on SSL4EO-S12 locations TerraMind-B performs overall 1pp better with better global generalization on more remote tasks like CTM-SS.
92
- More details in our [paper](https://arxiv.org/abs/2504.11172).
93
 
94
  ---
95
 
@@ -260,7 +264,8 @@ If you use TerraMesh, please cite:
260
  title={Terramesh: A planetary mosaic of multimodal earth observation data},
261
  author={Blumenstiel, Benedikt and Fraccaro, Paolo and Marsocci, Valerio and Jakubik, Johannes and Maurogiovanni, Stefano and Czerkawski, Mikolaj and Sedona, Rocco and Cavallaro, Gabriele and Brunschwiler, Thomas and Bernabe-Moreno, Juan and others},
262
  journal={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
263
- year={2025}
 
264
  }
265
  ```
266
 
@@ -282,4 +287,4 @@ The LULC data is provided by [ESRI, Impact Observatory, and Microsoft](https://p
282
 
283
  The cloud masks used for augmentating the LULC maps and provided as metadata are produced using the [SEnSeIv2](https://github.com/aliFrancis/SEnSeIv2/tree/main?tab=readme-ov-file) model.
284
 
285
- The DEM data is produced using [Copernicus WorldDEM-30](https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM) © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved
 
1
  ---
2
  license: cc-by-sa-4.0
 
3
  size_categories:
4
  - 1M<n<10M
5
+ pretty_name: TerraMesh
6
  viewer: false
7
  tags:
8
  - Earth observation
9
  - Multimodal
10
  - Pre-training
11
+ task_categories:
12
+ - image-feature-extraction
13
+ library_name: webdataset
14
  ---
15
 
16
  # TerraMesh
17
 
18
  > **A planetary‑scale, multimodal analysis‑ready dataset for Earth‑Observation foundation models.**
19
 
20
+ Paper: [TerraMesh: A Planetary Mosaic of Multimodal Earth Observation Data](https://huggingface.co/papers/2504.11172)
21
 
22
  **TerraMesh** merges data from **Sentinel‑1 SAR, Sentinel‑2 optical, Copernicus DEM, NDVI and land‑cover** sources into more than **9 million co‑registered patches** ready for large‑scale representation learning.
23
 
 
93
  TerraMesh was used to pre-train [TerraMind-B](https://huggingface.co/ibm-esa-geospatial/TerraMind-1.0-base).
94
  On the six evaluated segmentation tasks from PANGAEA bench, TerraMind‑B reaches an average mIoU of 66.6%, the best overall score with an average rank of 2.33. This amounts to roughly a 3pp improvement over the next‑best open model (CROMA), underscoring the benefits of pre‑training on TerraMesh.
95
  Compared to an ablation model pre-trained only on SSL4EO-S12 locations TerraMind-B performs overall 1pp better with better global generalization on more remote tasks like CTM-SS.
96
+ More details in our [paper](https://huggingface.co/papers/2504.11172).
97
 
98
  ---
99
 
 
264
  title={Terramesh: A planetary mosaic of multimodal earth observation data},
265
  author={Blumenstiel, Benedikt and Fraccaro, Paolo and Marsocci, Valerio and Jakubik, Johannes and Maurogiovanni, Stefano and Czerkawski, Mikolaj and Sedona, Rocco and Cavallaro, Gabriele and Brunschwiler, Thomas and Bernabe-Moreno, Juan and others},
266
  journal={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
267
+ year={2025},
268
+ url={https://huggingface.co/papers/2504.11172}
269
  }
270
  ```
271
 
 
287
 
288
  The cloud masks used for augmentating the LULC maps and provided as metadata are produced using the [SEnSeIv2](https://github.com/aliFrancis/SEnSeIv2/tree/main?tab=readme-ov-file) model.
289
 
290
+ The DEM data is produced using [Copernicus WorldDEM-30](https://dataspace.copernicus.eu/explore-data/data-collections/copernicus-contributing-missions/collections-description/COP-DEM) © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved