code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a :str = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self , _a , _a , _a = None , _a = None ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = None
SCREAMING_SNAKE_CASE__ : Tuple = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) )
SCREAMING_SNAKE_CASE__ : Tuple = os.path.abspath("""examples""" )
for item in os.listdir(lowerCAmelCase__ ):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE__ : str = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ) and ".py" in item_path:
with self.subTest(
tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section="""main()""" if parser_only else """training_function()""" , ):
SCREAMING_SNAKE_CASE__ : int = compare_against_test(
os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = """\n""".join(lowerCAmelCase__ )
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE__ : int = diff.replace(lowerCAmelCase__ , """""" )
self.assertEqual(lowerCAmelCase__ , """""" )
def _a ( self ) -> Dict:
"""simple docstring"""
self.one_complete_example("""complete_nlp_example.py""" , lowerCAmelCase__ )
self.one_complete_example("""complete_nlp_example.py""" , lowerCAmelCase__ )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) )
SCREAMING_SNAKE_CASE__ : Dict = [
""" """ * 16 + """{\n\n""",
""" """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""",
""" """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""",
""" """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""",
""" """ * 20 + """\"epoch\": epoch,\n\n""",
""" """ * 16 + """},\n\n""",
""" """ * 16 + """step=epoch,\n""",
""" """ * 12,
""" """ * 8 + """for step, batch in enumerate(active_dataloader):\n""",
]
self.one_complete_example("""complete_cv_example.py""" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.one_complete_example("""complete_cv_example.py""" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""})
class __a (_snake_case):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = False
@classmethod
def _a ( cls ) -> Optional[Any]:
"""simple docstring"""
super().setUpClass()
SCREAMING_SNAKE_CASE__ : Dict = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(cls._tmpdir , """default_config.yml""" )
write_basic_config(save_location=cls.configPath )
SCREAMING_SNAKE_CASE__ : List[str] = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def _a ( cls ) -> str:
"""simple docstring"""
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = f'''\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '''.split()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n '''.split()
SCREAMING_SNAKE_CASE__ : Tuple = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
self.assertNotIn("""epoch 0:""" , lowerCAmelCase__ )
self.assertIn("""epoch 1:""" , lowerCAmelCase__ )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = f'''\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n '''.split()
SCREAMING_SNAKE_CASE__ : Tuple = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE__ : int = 1
if num_processes > 1:
self.assertNotIn("""epoch 0:""" , lowerCAmelCase__ )
self.assertIn("""epoch 1:""" , lowerCAmelCase__ )
else:
self.assertIn("""epoch 0:""" , lowerCAmelCase__ )
self.assertIn("""epoch 1:""" , lowerCAmelCase__ )
@slow
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = """\n examples/by_feature/cross_validation.py\n --num_folds 2\n """.split()
with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ):
SCREAMING_SNAKE_CASE__ : int = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : List[Any] = re.findall("""({.+})""" , lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = [r for r in results if """accuracy""" in r][-1]
SCREAMING_SNAKE_CASE__ : List[Any] = ast.literal_eval(lowerCAmelCase__ )
self.assertGreaterEqual(results["""accuracy"""] , 0.75 )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = ["""examples/by_feature/multi_process_metrics.py"""]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE__ : Tuple = f'''\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , """tracking""" ) ) )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = ["""examples/by_feature/gradient_accumulation.py"""]
run_command(self._launch_args + testargs )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""examples/by_feature/local_sgd.py"""]
run_command(self._launch_args + testargs )
| 701 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,)
def _a ( self , **_a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_a )
return config
def _a ( self ) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def _a ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_a )
def _a ( self ) -> Any:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_a )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def _a ( self ) -> int:
"""simple docstring"""
self.check_over_configs(thresholding=_a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , )
def _a ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def _a ( self ) -> str:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Any = len(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : str = pred_prev_sample
SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Dict = len(_a )
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample
SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps
for i, timestep in enumerate(_a ):
if i == len(_a ) - 1:
SCREAMING_SNAKE_CASE__ : Optional[Any] = -1
else:
SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1]
SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item()
self.assertEqual(_a , _a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0]
SCREAMING_SNAKE_CASE__ : List[str] = len(_a )
with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_a )
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowercase ( __lowerCAmelCase = 4 ) -> list[list[int]]:
SCREAMING_SNAKE_CASE__ : str = abs(_SCREAMING_SNAKE_CASE ) or 4
return [[1 + x + y * row_size for x in range(_SCREAMING_SNAKE_CASE )] for y in range(_SCREAMING_SNAKE_CASE )]
def _lowercase ( __lowerCAmelCase ) -> list[list[int]]:
return reverse_row(transpose(_SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_column(matrix))
def _lowercase ( __lowerCAmelCase ) -> list[list[int]]:
return reverse_row(reverse_column(_SCREAMING_SNAKE_CASE ) )
# OR.. reverse_column(reverse_row(matrix))
def _lowercase ( __lowerCAmelCase ) -> list[list[int]]:
return reverse_column(transpose(_SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_row(matrix))
def _lowercase ( __lowerCAmelCase ) -> list[list[int]]:
SCREAMING_SNAKE_CASE__ : int = [list(_SCREAMING_SNAKE_CASE ) for x in zip(*_SCREAMING_SNAKE_CASE )]
return matrix
def _lowercase ( __lowerCAmelCase ) -> list[list[int]]:
SCREAMING_SNAKE_CASE__ : str = matrix[::-1]
return matrix
def _lowercase ( __lowerCAmelCase ) -> list[list[int]]:
SCREAMING_SNAKE_CASE__ : Tuple = [x[::-1] for x in matrix]
return matrix
def _lowercase ( __lowerCAmelCase ) -> None:
for i in matrix:
print(*_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
a :int = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 90 counterclockwise:\n")
print_matrix(rotate_aa(matrix))
a :Tuple = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 180:\n")
print_matrix(rotate_aaa(matrix))
a :Optional[int] = make_matrix()
print("\norigin:\n")
print_matrix(matrix)
print("\nrotate 270 counterclockwise:\n")
print_matrix(rotate_aaa(matrix))
| 702 |
"""simple docstring"""
import os
a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
while index < len(__lowerCAmelCase ) - 1:
SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]]
SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = """"""
SCREAMING_SNAKE_CASE__ : int = num // 1000
numerals += m_count * "M"
num %= 1000
SCREAMING_SNAKE_CASE__ : List[str] = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
SCREAMING_SNAKE_CASE__ : List[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int:
SCREAMING_SNAKE_CASE__ : int = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
SCREAMING_SNAKE_CASE__ : str = filea.readlines()
for line in lines:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip()
SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
a :Any = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
def _lowercase ( __lowerCAmelCase = "dhaka" , __lowerCAmelCase = 5 ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(__lowerCAmelCase , 50 ) # Prevent abuse!
SCREAMING_SNAKE_CASE__ : Any = {
"""q""": query,
"""tbm""": """isch""",
"""hl""": """en""",
"""ijn""": """0""",
}
SCREAMING_SNAKE_CASE__ : Dict = requests.get("""https://www.google.com/search""" , params=__lowerCAmelCase , headers=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = BeautifulSoup(html.text , """html.parser""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = """""".join(
re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) )
SCREAMING_SNAKE_CASE__ : List[Any] = json.dumps(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.loads(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = re.findall(
r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , __lowerCAmelCase , )
if not matched_google_image_data:
return 0
SCREAMING_SNAKE_CASE__ : Any = re.sub(
r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(__lowerCAmelCase ) , )
SCREAMING_SNAKE_CASE__ : Dict = re.findall(
r"""(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , __lowerCAmelCase , )
for index, fixed_full_res_image in enumerate(__lowerCAmelCase ):
if index >= max_images:
return index
SCREAMING_SNAKE_CASE__ : Optional[int] = bytes(__lowerCAmelCase , """ascii""" ).decode(
"""unicode-escape""" )
SCREAMING_SNAKE_CASE__ : List[Any] = bytes(__lowerCAmelCase , """ascii""" ).decode(
"""unicode-escape""" )
SCREAMING_SNAKE_CASE__ : Dict = urllib.request.build_opener()
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
(
"""User-Agent""",
"""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"""
""" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""",
)
]
urllib.request.install_opener(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = F'''query_{query.replace(' ' , '_' )}'''
if not os.path.exists(__lowerCAmelCase ):
os.makedirs(__lowerCAmelCase )
urllib.request.urlretrieve( # noqa: S310
__lowerCAmelCase , F'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
a :str = download_images_from_google_query(sys.argv[1])
print(f'{image_count} images were downloaded to disk.')
except IndexError:
print("Please provide a search term.")
raise
| 703 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
a :Union[str, Any] = logging.getLogger()
def _lowercase ( __lowerCAmelCase ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : Dict = {}
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(_lowercase , """all_results.json""" )
if os.path.exists(_lowercase ):
with open(_lowercase , """r""" ) as f:
SCREAMING_SNAKE_CASE__ : int = json.load(_lowercase )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
a :Optional[int] = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self ) -> Tuple:
"""simple docstring"""
import xla_spawn
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE__ : List[str] = f'''
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(UpperCamelCase_ , """argv""" , UpperCamelCase_ ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = time()
xla_spawn.main()
SCREAMING_SNAKE_CASE__ : Tuple = time()
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_results(UpperCamelCase_ )
self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 500 )
def _a ( self ) -> List[str]:
"""simple docstring"""
import xla_spawn
SCREAMING_SNAKE_CASE__ : List[str] = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split()
with patch.object(UpperCamelCase_ , """argv""" , UpperCamelCase_ ):
xla_spawn.main()
| 704 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a :List[Any] = logging.get_logger(__name__)
a :Optional[int] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __a (UpperCamelCase_ , UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = """focalnet"""
def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size
SCREAMING_SNAKE_CASE__ : str = patch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim
SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed
SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE__ : Optional[int] = depths
SCREAMING_SNAKE_CASE__ : Any = focal_levels
SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate
SCREAMING_SNAKE_CASE__ : str = use_layerscale
SCREAMING_SNAKE_CASE__ : int = layerscale_value
SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm
SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation
SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator
SCREAMING_SNAKE_CASE__ : str = initializer_range
SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Any = encoder_stride
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a :int = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Dict = ["MBartTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Dict = ["MBartTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[int] = [
"MBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"MBartForCausalLM",
"MBartForConditionalGeneration",
"MBartForQuestionAnswering",
"MBartForSequenceClassification",
"MBartModel",
"MBartPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"TFMBartForConditionalGeneration",
"TFMBartModel",
"TFMBartPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"FlaxMBartForConditionalGeneration",
"FlaxMBartForQuestionAnswering",
"FlaxMBartForSequenceClassification",
"FlaxMBartModel",
"FlaxMBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
a :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 705 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = parent
SCREAMING_SNAKE_CASE__ : Tuple = batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask
SCREAMING_SNAKE_CASE__ : Tuple = use_token_type_ids
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Dict = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE__ : int = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __a (UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = True
_SCREAMING_SNAKE_CASE :Optional[Any] = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerModelTester(self )
@slow
def _a ( self ) -> int:
"""simple docstring"""
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a )
SCREAMING_SNAKE_CASE__ : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
SCREAMING_SNAKE_CASE__ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE__ : str = model(_a )[0]
SCREAMING_SNAKE_CASE__ : List[Any] = 50_000
SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 6, vocab_size)
self.assertEqual(output.shape , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class __a :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=64 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = parent
SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = seq_length
SCREAMING_SNAKE_CASE__ : Tuple = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_input_mask
SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids
SCREAMING_SNAKE_CASE__ : List[Any] = use_labels
SCREAMING_SNAKE_CASE__ : Any = vocab_size
SCREAMING_SNAKE_CASE__ : List[str] = hidden_size
SCREAMING_SNAKE_CASE__ : Dict = embedding_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : str = num_attention_heads
SCREAMING_SNAKE_CASE__ : str = intermediate_size
SCREAMING_SNAKE_CASE__ : List[str] = hidden_act
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : str = max_position_embeddings
SCREAMING_SNAKE_CASE__ : List[str] = type_vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE__ : Any = num_labels
SCREAMING_SNAKE_CASE__ : List[str] = num_choices
SCREAMING_SNAKE_CASE__ : List[str] = scope
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : List[str] = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Any = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : List[Any] = None
SCREAMING_SNAKE_CASE__ : List[str] = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ : List[str] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _a ( self ) -> str:
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MegatronBertModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Any = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Dict = model(UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = MegatronBertForMaskedLM(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = MegatronBertForCausalLM(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = MegatronBertForNextSentencePrediction(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : int = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = MegatronBertForPreTraining(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = MegatronBertForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : List[str] = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.num_labels
SCREAMING_SNAKE_CASE__ : Optional[int] = MegatronBertForSequenceClassification(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.num_labels
SCREAMING_SNAKE_CASE__ : Any = MegatronBertForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : List[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _a ( self , _a , _a , _a , _a , _a , _a , _a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.num_choices
SCREAMING_SNAKE_CASE__ : str = MegatronBertForMultipleChoice(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
SCREAMING_SNAKE_CASE__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ : List[str] = model(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs()
(
SCREAMING_SNAKE_CASE__
) : Dict = config_and_inputs
SCREAMING_SNAKE_CASE__ : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __a (__lowerCamelCase , __lowerCamelCase , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE :Dict = (
{
"""feature-extraction""": MegatronBertModel,
"""fill-mask""": MegatronBertForMaskedLM,
"""question-answering""": MegatronBertForQuestionAnswering,
"""text-classification""": MegatronBertForSequenceClassification,
"""text-generation""": MegatronBertForCausalLM,
"""token-classification""": MegatronBertForTokenClassification,
"""zero-shot""": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :int = True
# test_resize_embeddings = False
_SCREAMING_SNAKE_CASE :Any = False
def _a ( self , _a , _a , _a=False ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ )
if return_labels:
if model_class in get_values(UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ )
return inputs_dict
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = MegatronBertModelTester(self )
SCREAMING_SNAKE_CASE__ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def _a ( self ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase_ )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase_ )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase_ )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase_ )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase_ )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase_ )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase_ )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase_ )
def _lowercase ( __lowerCAmelCase ) -> Optional[int]:
return torch.tensor(
lowerCamelCase_ , dtype=torch.long , device=lowerCamelCase_ , )
a :Optional[int] = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
@unittest.skip("""Model is not available.""" )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = 'nvidia/megatron-bert-uncased-345m'
if "MYDIR" in os.environ:
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(os.environ["""MYDIR"""] , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = MegatronBertModel.from_pretrained(UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.half()
SCREAMING_SNAKE_CASE__ : Optional[int] = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : List[str] = model(UpperCAmelCase_ )[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Size((1, 9, 1_024) )
self.assertEqual(output.shape , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Any = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728]
for ii in range(3 ):
for jj in range(3 ):
SCREAMING_SNAKE_CASE__ : Tuple = output[0, ii, jj]
SCREAMING_SNAKE_CASE__ : Optional[Any] = expected[3 * ii + jj]
SCREAMING_SNAKE_CASE__ : Optional[Any] = 'ii={} jj={} a={} b={}'.format(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
self.assertTrue(math.isclose(UpperCAmelCase_ , UpperCAmelCase_ , rel_tol=UpperCAmelCase_ , abs_tol=UpperCAmelCase_ ) , msg=UpperCAmelCase_ )
| 706 |
"""simple docstring"""
a :List[str] = [
(1_000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
SCREAMING_SNAKE_CASE__ : List[Any] = 0
SCREAMING_SNAKE_CASE__ : List[str] = 0
while place < len(__lowerCAmelCase ):
if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Any = []
for arabic, roman in ROMAN:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import baseaa
def _lowercase ( __lowerCAmelCase ) -> bytes:
return baseaa.aaaencode(string.encode("""utf-8""" ) )
def _lowercase ( __lowerCAmelCase ) -> str:
return baseaa.aaadecode(__lowerCAmelCase ).decode("""utf-8""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 707 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a :Any = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 12 | 0 |
"""simple docstring"""
import unittest
from diffusers import FlaxAutoencoderKL
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax
from .test_modeling_common_flax import FlaxModelTesterMixin
if is_flax_available():
import jax
@require_flax
class __a (__A , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = FlaxAutoencoderKL
@property
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = 4
SCREAMING_SNAKE_CASE__ : Optional[Any] = 3
SCREAMING_SNAKE_CASE__ : Dict = (32, 32)
SCREAMING_SNAKE_CASE__ : int = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ : List[Any] = jax.random.uniform(_a , ((batch_size, num_channels) + sizes) )
return {"sample": image, "prng_key": prng_key}
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 4,
}
SCREAMING_SNAKE_CASE__ : Tuple = self.dummy_input
return init_dict, inputs_dict
| 708 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Dict = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_a , _a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> Any:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a )
SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _a )
self.assertIsInstance(processor_fast.tokenizer , _a )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _a )
self.assertIsInstance(processor_fast.image_processor , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a )
SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 12 | 0 |
"""simple docstring"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
a :Optional[Any] = logging.get_logger(__name__)
def _lowercase ( __lowerCAmelCase ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : List[str] = SwinConfig.from_pretrained(
"""microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
SCREAMING_SNAKE_CASE__ : str = MaskFormerConfig(backbone_config=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Any = """huggingface/label-files"""
if "ade20k-full" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ : List[str] = 847
SCREAMING_SNAKE_CASE__ : Optional[Any] = """maskformer-ade20k-full-id2label.json"""
elif "ade" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ : Dict = 150
SCREAMING_SNAKE_CASE__ : Tuple = """ade20k-id2label.json"""
elif "coco-stuff" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ : int = 171
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """maskformer-coco-stuff-id2label.json"""
elif "coco" in model_name:
# TODO
SCREAMING_SNAKE_CASE__ : int = 133
SCREAMING_SNAKE_CASE__ : Any = """coco-panoptic-id2label.json"""
elif "cityscapes" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ : Any = 19
SCREAMING_SNAKE_CASE__ : List[Any] = """cityscapes-id2label.json"""
elif "vistas" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ : int = 65
SCREAMING_SNAKE_CASE__ : int = """mapillary-vistas-id2label.json"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
return config
def _lowercase ( __lowerCAmelCase ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ : Any = []
# stem
# fmt: off
rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") )
rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") )
# heads on top
rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") )
for i in range(3 ):
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') )
rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
SCREAMING_SNAKE_CASE__ : int = dct.pop(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = val
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__ : int = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE__ : Tuple = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ : List[str] = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE__ : Any = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[-dim :]
# fmt: on
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
# fmt: off
SCREAMING_SNAKE_CASE__ : List[Any] = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ : Optional[Any] = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ : Optional[int] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ : str = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ : Dict = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ : Dict = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ : Any = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ : int = in_proj_bias[-hidden_size :]
# fmt: on
def _lowercase ( ) -> str:
SCREAMING_SNAKE_CASE__ : List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw )
return im
@torch.no_grad()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> str:
SCREAMING_SNAKE_CASE__ : Dict = get_maskformer_config(__lowerCAmelCase )
# load original state_dict
with open(__lowerCAmelCase , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ : Tuple = pickle.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = data["""model"""]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
SCREAMING_SNAKE_CASE__ : List[str] = create_rename_keys(__lowerCAmelCase )
for src, dest in rename_keys:
rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config )
read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase )
# update to torch tensors
for key, value in state_dict.items():
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.from_numpy(__lowerCAmelCase )
# load 🤗 model
SCREAMING_SNAKE_CASE__ : List[str] = MaskFormerForInstanceSegmentation(__lowerCAmelCase )
model.eval()
for name, param in model.named_parameters():
print(__lowerCAmelCase , param.shape )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(__lowerCAmelCase ) == 0, F'''Unexpected keys: {unexpected_keys}'''
# verify results
SCREAMING_SNAKE_CASE__ : List[Any] = prepare_img()
if "vistas" in model_name:
SCREAMING_SNAKE_CASE__ : str = 65
elif "cityscapes" in model_name:
SCREAMING_SNAKE_CASE__ : Optional[int] = 6_5535
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 255
SCREAMING_SNAKE_CASE__ : Dict = True if """ade""" in model_name else False
SCREAMING_SNAKE_CASE__ : List[str] = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor(__lowerCAmelCase , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ : int = model(**__lowerCAmelCase )
print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1E-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase )
model.save_pretrained(__lowerCAmelCase )
image_processor.save_pretrained(__lowerCAmelCase )
if push_to_hub:
print("""Pushing model and image processor to the hub...""" )
model.push_to_hub(F'''nielsr/{model_name}''' )
image_processor.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
a :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="maskformer-swin-tiny-ade",
type=str,
help=("Name of the MaskFormer model you\'d like to convert",),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl",
type=str,
help="Path to the original state dict (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
a :Optional[Any] = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 709 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a :Optional[Any] = logging.get_logger(__name__)
a :Union[str, Any] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """t5"""
_SCREAMING_SNAKE_CASE :List[str] = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , _a=32_128 , _a=512 , _a=64 , _a=2_048 , _a=6 , _a=None , _a=8 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="relu" , _a=True , _a=True , _a=0 , _a=1 , **_a , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : int = d_kv
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_ff
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_layers
SCREAMING_SNAKE_CASE__ : int = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE__ : Tuple = num_heads
SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : str = relative_attention_max_distance
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_factor
SCREAMING_SNAKE_CASE__ : Tuple = feed_forward_proj
SCREAMING_SNAKE_CASE__ : str = use_cache
SCREAMING_SNAKE_CASE__ : List[str] = self.feed_forward_proj.split("""-""" )
SCREAMING_SNAKE_CASE__ : Dict = act_info[-1]
SCREAMING_SNAKE_CASE__ : str = act_info[0] == """gated"""
if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE__ : List[Any] = """gelu_new"""
super().__init__(
pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
class __a (UpperCamelCase_):
'''simple docstring'''
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""input_ids""": {0: """batch""", 1: """encoder_sequence"""},
"""attention_mask""": {0: """batch""", 1: """encoder_sequence"""},
}
if self.use_past:
SCREAMING_SNAKE_CASE__ : Tuple = """past_encoder_sequence + sequence"""
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch"""}
SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""}
SCREAMING_SNAKE_CASE__ : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_a , direction="""inputs""" )
return common_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return 13
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
a :List[Any] = "2020.9.26"
a :int = "xcodz-dot, cclaus, dhruvmanila"
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> tuple[float, float]:
if not all(isinstance(lowerCamelCase__ , (float, int) ) for val in locals().values() ):
SCREAMING_SNAKE_CASE__ : Dict = F'''Input values must either be float or int: {list(locals().values() )}'''
raise TypeError(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = ((x * distance) / (z + distance)) * scale
SCREAMING_SNAKE_CASE__ : Dict = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> tuple[float, float, float]:
if not isinstance(lowerCamelCase__ , lowerCamelCase__ ):
raise TypeError("""Axis must be a str""" )
SCREAMING_SNAKE_CASE__ : int = locals()
del input_variables["axis"]
if not all(isinstance(lowerCamelCase__ , (float, int) ) for val in input_variables.values() ):
SCREAMING_SNAKE_CASE__ : int = (
"Input values except axis must either be float or int: "
F'''{list(input_variables.values() )}'''
)
raise TypeError(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
SCREAMING_SNAKE_CASE__ : Any = x * math.cos(lowerCamelCase__ ) - y * math.sin(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[Any] = y * math.cos(lowerCamelCase__ ) + x * math.sin(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[Any] = z
elif axis == "x":
SCREAMING_SNAKE_CASE__ : Union[str, Any] = y * math.cos(lowerCamelCase__ ) - z * math.sin(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = z * math.cos(lowerCamelCase__ ) + y * math.sin(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : Dict = x
elif axis == "y":
SCREAMING_SNAKE_CASE__ : Optional[int] = x * math.cos(lowerCamelCase__ ) - z * math.sin(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = z * math.cos(lowerCamelCase__ ) + x * math.sin(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : Tuple = y
else:
raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" )
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }')
print(f'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
| 710 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
a :Optional[Any] = [8, 5, 9, 7]
a :List[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
a :int = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = claim_vector
SCREAMING_SNAKE_CASE__ : Any = allocated_resources_table
SCREAMING_SNAKE_CASE__ : Any = maximum_claim_table
def _a ( self ) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _a ( self ) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _a ( self ) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _a ( self ) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(_a ): i for i in self.__need()}
def _a ( self , **_a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.__need()
SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table
SCREAMING_SNAKE_CASE__ : Dict = self.__available_resources()
SCREAMING_SNAKE_CASE__ : Dict = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 50 + """\n""" )
while need_list:
SCREAMING_SNAKE_CASE__ : List[str] = False
for each_need in need_list:
SCREAMING_SNAKE_CASE__ : Dict = True
for index, need in enumerate(_a ):
if need > available_resources[index]:
SCREAMING_SNAKE_CASE__ : Optional[int] = False
break
if execution:
SCREAMING_SNAKE_CASE__ : Any = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
SCREAMING_SNAKE_CASE__ : Tuple = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(_a )
# update available/freed resources stack
SCREAMING_SNAKE_CASE__ : Dict = np.array(_a ) + np.array(
alloc_resources_table[process_number] )
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(_a ) for x in available_resources] ) )
break
if safe:
print("""The process is in a safe state.\n""" )
else:
print("""System in unsafe state. Aborting...\n""" )
break
def _a ( self ) -> Any:
"""simple docstring"""
print(""" """ * 9 + """Allocated Resource Table""" )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(""" """ * 9 + """System Resource Table""" )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(_a ) for x in self.__claim_vector ) )
print(
"""Initial Available Resources: """
+ """ """.join(str(_a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
a :Optional[Any] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
a :List[Any] = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
a :int = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __a (datasets.Metric):
'''simple docstring'''
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"""
] , )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("""float""" ) ),
"references": datasets.Sequence(datasets.Value("""float""" ) ),
}
else:
return {
"predictions": datasets.Value("""float""" ),
"references": datasets.Value("""float""" ),
}
def _a ( self , _a , _a , _a=None , _a="uniform_average" , _a=True ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = mean_squared_error(
__A , __A , sample_weight=__A , multioutput=__A , squared=__A )
return {"mse": mse}
| 711 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a :List[Any] = None
a :Optional[int] = logging.get_logger(__name__)
a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
a :Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
a :Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
a :int = "▁"
# Segments (not really needed)
a :Dict = 0
a :Optional[int] = 1
a :Tuple = 2
a :List[str] = 3
a :Optional[Any] = 4
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = """left"""
_SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE__ : List[str] = remove_space
SCREAMING_SNAKE_CASE__ : int = keep_accents
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a :Optional[int] = {
"configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[int] = [
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
"NezhaForNextSentencePrediction",
"NezhaForMaskedLM",
"NezhaForPreTraining",
"NezhaForMultipleChoice",
"NezhaForQuestionAnswering",
"NezhaForSequenceClassification",
"NezhaForTokenClassification",
"NezhaModel",
"NezhaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 712 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )]
# since string of zero length match pattern of zero length
SCREAMING_SNAKE_CASE__ : Dict = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , __lowerCAmelCase ):
for j in range(1 , __lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
SCREAMING_SNAKE_CASE__ : List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE__ : Dict = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a :Any = "aab"
a :Optional[Any] = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'{input_string} matches the given pattern {pattern}')
else:
print(f'{input_string} does not match with the given pattern {pattern}')
| 12 | 0 |
"""simple docstring"""
import heapq
import sys
import numpy as np
a :str = tuple[int, int]
class __a :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = []
SCREAMING_SNAKE_CASE__ : str = set()
def _a ( self ) -> Optional[int]:
"""simple docstring"""
if not self.empty():
return self.elements[0][0]
else:
return float("""inf""" )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return len(self.elements ) == 0
def _a ( self , _a , _a ) -> Union[str, Any]:
"""simple docstring"""
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(_UpperCAmelCase )
else:
# update
# print("update", item)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = []
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[Any] = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Optional[Any] = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _a ( self , _a ) -> Optional[Any]:
"""simple docstring"""
if item in self.set:
self.set.remove(_UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = []
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Tuple = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : str = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.elements[0][1]
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Tuple = heapq.heappop(self.elements )
self.set.remove(_UpperCAmelCase )
return (priority, item)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
# euclidean distance
SCREAMING_SNAKE_CASE__ : Optional[int] = np.array(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array(lowerCAmelCase__ )
return np.linalg.norm(a - b )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
# integer division by time variable
return consistent_heuristic(lowerCAmelCase__ , lowerCAmelCase__ ) // t
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : int = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ , lowerCAmelCase__ )
return ans
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Tuple = np.chararray((n, n) )
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE__ : Any = """*"""
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
if (j, (n - 1) - i) in blocks:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """#"""
SCREAMING_SNAKE_CASE__ : Any = """-"""
SCREAMING_SNAKE_CASE__ : int = back_pointer[goal]
while x != start:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = x
# print(x)
SCREAMING_SNAKE_CASE__ : List[Any] = """-"""
SCREAMING_SNAKE_CASE__ : Any = back_pointer[x]
SCREAMING_SNAKE_CASE__ : str = """-"""
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=""" """ )
print("""<-- End position""" , end=""" """ )
else:
print(grid[i][j] , end=""" """ )
print()
print("""^""" )
print("""Start position""" )
print()
print("""# is an obstacle""" )
print("""- is the path taken by algorithm""" )
print("""PATH TAKEN BY THE ALGORITHM IS:-""" )
SCREAMING_SNAKE_CASE__ : str = back_pointer[goal]
while x != start:
print(lowerCAmelCase__ , end=""" """ )
SCREAMING_SNAKE_CASE__ : int = back_pointer[x]
print(lowerCAmelCase__ )
sys.exit()
def _lowercase ( __lowerCAmelCase ) -> Any:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Dict:
for itera in range(lowerCAmelCase__ ):
open_list[itera].remove_element(lowerCAmelCase__ )
# print("s", s)
# print("j", j)
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : Any = s
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (x - 1, y)
SCREAMING_SNAKE_CASE__ : Any = (x + 1, y)
SCREAMING_SNAKE_CASE__ : List[Any] = (x, y + 1)
SCREAMING_SNAKE_CASE__ : int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(lowerCAmelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : Dict = -1
SCREAMING_SNAKE_CASE__ : Any = float("""inf""" )
if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1:
SCREAMING_SNAKE_CASE__ : int = g_function[s] + 1
SCREAMING_SNAKE_CASE__ : List[Any] = s
if neighbours not in close_list_anchor:
open_list[0].put(lowerCAmelCase__ , key(lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , lowerCAmelCase__ ):
if key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) <= Wa * key(
lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ):
open_list[j].put(
lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) )
def _lowercase ( ) -> str:
SCREAMING_SNAKE_CASE__ : List[str] = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
a :str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
a :Optional[int] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
a :int = make_common_ground()
a :List[Any] = blocks_blk
# hyper parameters
a :str = 1
a :List[str] = 1
a :Optional[int] = 20
a :List[str] = 3 # one consistent and two other inconsistent
# start and end destination
a :str = (0, 0)
a :Tuple = (n - 1, n - 1)
a :Tuple = 1
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Optional[int] = {start: 0, goal: float("""inf""" )}
SCREAMING_SNAKE_CASE__ : Optional[int] = {start: -1, goal: -1}
SCREAMING_SNAKE_CASE__ : Optional[int] = []
SCREAMING_SNAKE_CASE__ : str = set()
for i in range(lowerCAmelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) )
SCREAMING_SNAKE_CASE__ : int = []
SCREAMING_SNAKE_CASE__ : Any = []
while open_list[0].minkey() < float("""inf""" ):
for i in range(1 , lowerCAmelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("""inf""" ):
do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = open_list[i].top_show()
visited.add(lowerCAmelCase__ )
expand_state(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
close_list_inad.append(lowerCAmelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("""inf""" ):
do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
else:
SCREAMING_SNAKE_CASE__ : List[str] = open_list[0].top_show()
visited.add(lowerCAmelCase__ )
expand_state(
lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
close_list_anchor.append(lowerCAmelCase__ )
print("""No path found to goal""" )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(lowerCAmelCase__ ):
if (j, i) in blocks:
print("""#""" , end=""" """ )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("""*""" , end=""" """ )
else:
print("""-""" , end=""" """ )
else:
print("""*""" , end=""" """ )
if (j, i) == (n - 1, n - 1):
print("""<-- End position""" , end=""" """ )
print()
print("""^""" )
print("""Start position""" )
print()
print("""# is an obstacle""" )
print("""- is the path taken by algorithm""" )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 713 |
"""simple docstring"""
from math import sqrt
def _lowercase ( __lowerCAmelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = 0
SCREAMING_SNAKE_CASE__ : Tuple = 1
while count != nth and number < 3:
number += 1
if is_prime(__lowerCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(__lowerCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
a :int = logging.get_logger(__name__)
a :Any = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __a (__lowerCAmelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = """deberta-v2"""
def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ) -> Any:
"""simple docstring"""
super().__init__(**_UpperCamelCase )
SCREAMING_SNAKE_CASE__ : Dict = hidden_size
SCREAMING_SNAKE_CASE__ : str = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size
SCREAMING_SNAKE_CASE__ : Tuple = hidden_act
SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : int = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Any = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Any = type_vocab_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_range
SCREAMING_SNAKE_CASE__ : Union[str, Any] = relative_attention
SCREAMING_SNAKE_CASE__ : int = max_relative_positions
SCREAMING_SNAKE_CASE__ : str = pad_token_id
SCREAMING_SNAKE_CASE__ : int = position_biased_input
# Backwards compatibility
if type(_UpperCamelCase ) == str:
SCREAMING_SNAKE_CASE__ : List[str] = [x.strip() for x in pos_att_type.lower().split("""|""" )]
SCREAMING_SNAKE_CASE__ : List[Any] = pos_att_type
SCREAMING_SNAKE_CASE__ : Dict = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE__ : int = kwargs.get("""pooler_hidden_size""" , _UpperCamelCase )
SCREAMING_SNAKE_CASE__ : str = pooler_dropout
SCREAMING_SNAKE_CASE__ : Optional[Any] = pooler_hidden_act
class __a (__lowerCAmelCase):
'''simple docstring'''
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
SCREAMING_SNAKE_CASE__ : int = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def _a ( self ) -> int:
"""simple docstring"""
return 12
def _a ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ) -> Mapping[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = super().generate_dummy_inputs(preprocessor=_UpperCamelCase , framework=_UpperCamelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 714 |
"""simple docstring"""
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = value
SCREAMING_SNAKE_CASE__ : List[Any] = weight
def __repr__( self ) -> List[Any]:
"""simple docstring"""
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value
def _a ( self ) -> int:
"""simple docstring"""
return self.name
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.weight
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value / self.weight
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : Any = []
for i in range(len(__lowerCAmelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0, 0.0
for i in range(len(__lowerCAmelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _lowercase ( ) -> List[str]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class __a (a__):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :int = ["""image_processor""", """tokenizer"""]
_SCREAMING_SNAKE_CASE :Tuple = """BlipImageProcessor"""
_SCREAMING_SNAKE_CASE :int = """AutoTokenizer"""
def __init__( self , _a , _a , _a ) -> List[str]:
"""simple docstring"""
super().__init__(_A , _A )
# add QFormer tokenizer
SCREAMING_SNAKE_CASE__ : str = qformer_tokenizer
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> int:
"""simple docstring"""
if images is None and text is None:
raise ValueError("""You have to specify at least images or text.""" )
SCREAMING_SNAKE_CASE__ : List[str] = BatchFeature()
if text is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer(
text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , )
encoding.update(_A )
SCREAMING_SNAKE_CASE__ : Any = self.qformer_tokenizer(
text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , )
SCREAMING_SNAKE_CASE__ : List[str] = qformer_text_encoding.pop("""input_ids""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = qformer_text_encoding.pop("""attention_mask""" )
if images is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor(_A , return_tensors=_A )
encoding.update(_A )
return encoding
def _a ( self , *_a , **_a ) -> Dict:
"""simple docstring"""
return self.tokenizer.batch_decode(*_A , **_A )
def _a ( self , *_a , **_a ) -> Dict:
"""simple docstring"""
return self.tokenizer.decode(*_A , **_A )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.tokenizer.model_input_names
SCREAMING_SNAKE_CASE__ : str = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _a ( self , _a , **_a ) -> Dict:
"""simple docstring"""
if os.path.isfile(_A ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(_A , exist_ok=_A )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(_A , """qformer_tokenizer""" )
self.qformer_tokenizer.save_pretrained(_A )
return super().save_pretrained(_A , **_A )
@classmethod
def _a ( cls , _a , **_a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained(_A , subfolder="""qformer_tokenizer""" )
SCREAMING_SNAKE_CASE__ : Dict = cls._get_arguments_from_pretrained(_A , **_A )
args.append(_A )
return cls(*_A )
| 715 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
a :Optional[int] = None
a :Optional[Any] = logging.get_logger(__name__)
a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
a :Union[str, Any] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
a :Any = {
"facebook/nllb-large-en-ro": 1_024,
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""]
_SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer
_SCREAMING_SNAKE_CASE :List[int] = []
_SCREAMING_SNAKE_CASE :List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
SCREAMING_SNAKE_CASE__ : List[str] = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn"""
SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _a ( self ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
SCREAMING_SNAKE_CASE__ : Dict = src_lang
SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id
return inputs
def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = src_lang
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _a ( self ) -> str:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
# Load checkpoint
SCREAMING_SNAKE_CASE__ : Tuple = torch.load(_lowerCamelCase , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ : int = chkpt["model"]
# We have the base model one level deeper than the original XLM repository
SCREAMING_SNAKE_CASE__ : Tuple = {}
for k, v in state_dict.items():
if "pred_layer" in k:
SCREAMING_SNAKE_CASE__ : Tuple = v
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = v
SCREAMING_SNAKE_CASE__ : str = chkpt["params"]
SCREAMING_SNAKE_CASE__ : List[Any] = {n: v for n, v in config.items() if not isinstance(_lowerCamelCase , (torch.FloatTensor, numpy.ndarray) )}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = chkpt["dico_word2id"]
SCREAMING_SNAKE_CASE__ : List[Any] = {s + "</w>" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""" , """""" ): i for s, i in vocab.items()}
# Save pytorch-model
SCREAMING_SNAKE_CASE__ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
SCREAMING_SNAKE_CASE__ : Any = pytorch_dump_folder_path + "/" + CONFIG_NAME
SCREAMING_SNAKE_CASE__ : Optional[Any] = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"]
print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(_lowerCamelCase , _lowerCamelCase )
print(F'''Save configuration file to {pytorch_config_dump_path}''' )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" )
print(F'''Save vocab file to {pytorch_config_dump_path}''' )
with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(_lowerCamelCase , indent=2 ) + """\n""" )
if __name__ == "__main__":
a :List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a :Optional[Any] = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 716 |
"""simple docstring"""
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any:
# Format the message.
if name is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
else:
SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase )
# Print and recurse (if needed).
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
if msg is not None:
print(__lowerCAmelCase )
for k in val.keys():
recursive_print(__lowerCAmelCase , val[k] , spaces + 2 )
elif isinstance(__lowerCAmelCase , torch.Tensor ):
print(__lowerCAmelCase , """:""" , val.size() )
else:
print(__lowerCAmelCase , """:""" , __lowerCAmelCase )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
SCREAMING_SNAKE_CASE__ : Tuple = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 )
SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase )
return param
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
# The converted output model.
SCREAMING_SNAKE_CASE__ : List[str] = {}
# old versions did not store training args
SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers
SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
SCREAMING_SNAKE_CASE__ : List[str] = config.n_head
# The hidden_size per head.
SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""]
else:
SCREAMING_SNAKE_CASE__ : Tuple = 0.0
# The model.
SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""]
# The language model.
SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""]
# The embeddings.
SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""]
# The word embeddings.
SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :]
SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings
# The position embeddings.
SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings
# The transformer.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) )
# The name of the operation.
SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
SCREAMING_SNAKE_CASE__ : str = m.group(3 )
# The name of the layer.
SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
SCREAMING_SNAKE_CASE__ : List[Any] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = causal_mask
# Insert a "dummy" tensor for masked_bias.
SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ : List[str] = masked_bias
SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous()
# Store.
SCREAMING_SNAKE_CASE__ : Dict = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Store. No change of shape.
SCREAMING_SNAKE_CASE__ : str = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : Dict = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""]
SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings
# It should be done!
return output_state_dict
def _lowercase ( ) -> List[Any]:
# Create the argument parser.
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , )
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
# Extract the basename.
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" )
else:
SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast"""
elif ds_args.openai_gelu:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new"""
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
SCREAMING_SNAKE_CASE__ : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig(
vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , )
else:
SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file )
SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__lowerCAmelCase , __lowerCAmelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
SCREAMING_SNAKE_CASE__ : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path
else:
raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__
SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(__lowerCAmelCase )
# Save tokenizer based on args
print(F'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(__lowerCAmelCase )
# Store the state_dict to file.
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" )
print(F'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 12 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a :Any = logging.get_logger(__name__)
a :Optional[int] = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __a (_UpperCAmelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """trocr"""
_SCREAMING_SNAKE_CASE :Dict = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :Tuple = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self , _a=50_265 , _a=1_024 , _a=12 , _a=16 , _a=4_096 , _a="gelu" , _a=512 , _a=0.1 , _a=0.0 , _a=0.0 , _a=2 , _a=0.02 , _a=0.0 , _a=True , _a=False , _a=True , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : List[str] = decoder_layers
SCREAMING_SNAKE_CASE__ : Any = decoder_attention_heads
SCREAMING_SNAKE_CASE__ : Any = decoder_ffn_dim
SCREAMING_SNAKE_CASE__ : List[str] = activation_function
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Optional[int] = dropout
SCREAMING_SNAKE_CASE__ : List[str] = attention_dropout
SCREAMING_SNAKE_CASE__ : str = activation_dropout
SCREAMING_SNAKE_CASE__ : Dict = init_std
SCREAMING_SNAKE_CASE__ : Tuple = decoder_layerdrop
SCREAMING_SNAKE_CASE__ : List[str] = use_cache
SCREAMING_SNAKE_CASE__ : List[str] = scale_embedding
SCREAMING_SNAKE_CASE__ : str = use_learned_position_embeddings
SCREAMING_SNAKE_CASE__ : Tuple = layernorm_embedding
super().__init__(
pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
| 717 |
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read()
SCREAMING_SNAKE_CASE__ : str = regexp.search(_a )
return match
def _a ( self , _a ) -> Optional[Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a )
SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_a ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(_a ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 12 | 0 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a :int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
a :List[str] = ''' \"""
Output class for the scheduler\'s step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample (x_{0}) based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
\"""
prev_sample: torch.FloatTensor
pred_original_sample: Optional[torch.FloatTensor] = None
'''
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
SCREAMING_SNAKE_CASE__ : Tuple = self.diffusers_dir
shutil.copy(
os.path.join(__UpperCamelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = """src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def _a ( self , _a , _a , _a , _a=None ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
SCREAMING_SNAKE_CASE__ : str = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
SCREAMING_SNAKE_CASE__ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
SCREAMING_SNAKE_CASE__ : List[Any] = black.format_str(__UpperCamelCase , mode=__UpperCamelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.diffusers_dir , """new_code.py""" )
with open(__UpperCamelCase , """w""" , newline="""\n""" ) as f:
f.write(__UpperCamelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__UpperCamelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__UpperCamelCase )
with open(__UpperCamelCase , """r""" ) as f:
self.assertTrue(f.read() , __UpperCamelCase )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , __UpperCamelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , __UpperCamelCase ) , )
# Copy consistency with a really long name
SCREAMING_SNAKE_CASE__ : int = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , __UpperCamelCase , __UpperCamelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , __UpperCamelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , __UpperCamelCase ) , )
| 718 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __a :
'''simple docstring'''
def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length
SCREAMING_SNAKE_CASE__ : str = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length
SCREAMING_SNAKE_CASE__ : Tuple = is_training
SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask
SCREAMING_SNAKE_CASE__ : List[str] = use_labels
SCREAMING_SNAKE_CASE__ : str = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Any = num_attention_heads
SCREAMING_SNAKE_CASE__ : Any = d_ff
SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor
SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id
SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id
SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id
SCREAMING_SNAKE_CASE__ : Any = None
SCREAMING_SNAKE_CASE__ : str = decoder_layers
def _a ( self ) -> Tuple:
"""simple docstring"""
return TaConfig.from_pretrained("""google/umt5-base""" )
def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_a )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config()
SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a )
return config, input_dict
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs()
return config, inputs_dict
def _a ( self ) -> List[str]:
"""simple docstring"""
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Dict = model(
input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state
SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values
SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_a ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval()
# first forward pass
SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a )
SCREAMING_SNAKE_CASE__ : str = model(_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a )
self.parent.assertTrue(len(_a ) == len(_a ) )
self.parent.assertTrue(len(_a ) == len(_a ) + 1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""]
# select random slice
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) )
def _a ( self , _a , _a , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(_a ).any().item() )
@require_torch
class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE :List[str] = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
_SCREAMING_SNAKE_CASE :Tuple = False
_SCREAMING_SNAKE_CASE :Optional[Any] = False
_SCREAMING_SNAKE_CASE :List[Any] = True
_SCREAMING_SNAKE_CASE :List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9]
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_a )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0]
SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval()
model.to(_a )
SCREAMING_SNAKE_CASE__ : List[str] = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
}
for attn_name, (name, mask) in zip(_a , head_masking.items() ):
SCREAMING_SNAKE_CASE__ : List[str] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
SCREAMING_SNAKE_CASE__ : str = torch.ones(
config.num_decoder_layers , config.num_heads , device=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , )
# We check the state of decoder_attentions and cross_attentions just from the last step
SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a )
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids
# fmt: off
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) )
SCREAMING_SNAKE_CASE__ : int = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a )
self.assertEqual(_a , _a )
| 12 | 0 |
from __future__ import annotations
from typing import Any
class __a :
'''simple docstring'''
def __init__( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = num_of_nodes
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : str = {}
def _a ( self , _a , _a , _a ) -> None:
"""simple docstring"""
self.m_edges.append([u_node, v_node, weight] )
def _a ( self , _a ) -> int:
"""simple docstring"""
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def _a ( self , _a ) -> None:
"""simple docstring"""
if self.m_component[u_node] != u_node:
for k in self.m_component:
SCREAMING_SNAKE_CASE__ : Dict = self.find_component(snake_case_ )
def _a ( self , _a , _a , _a ) -> None:
"""simple docstring"""
if component_size[u_node] <= component_size[v_node]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = v_node
component_size[v_node] += component_size[u_node]
self.set_component(snake_case_ )
elif component_size[u_node] >= component_size[v_node]:
SCREAMING_SNAKE_CASE__ : Optional[int] = self.find_component(snake_case_ )
component_size[u_node] += component_size[v_node]
self.set_component(snake_case_ )
def _a ( self ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
SCREAMING_SNAKE_CASE__ : List[str] = 0
SCREAMING_SNAKE_CASE__ : str = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
SCREAMING_SNAKE_CASE__ : Any = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = edge
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.m_component[u]
SCREAMING_SNAKE_CASE__ : str = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
SCREAMING_SNAKE_CASE__ : Optional[Any] = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(snake_case_ , snake_case_ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = edge
SCREAMING_SNAKE_CASE__ : List[Any] = self.m_component[u]
SCREAMING_SNAKE_CASE__ : Dict = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(snake_case_ , snake_case_ , snake_case_ )
print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' )
num_of_components -= 1
SCREAMING_SNAKE_CASE__ : Tuple = [-1] * self.m_num_of_nodes
print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' )
def _lowercase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
SCREAMING_SNAKE_CASE__ : List[Any] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : Optional[int] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
SCREAMING_SNAKE_CASE__ : int = dataset
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = con
SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
SCREAMING_SNAKE_CASE__ : int = num_proc
SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs )
return written
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args
SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
SCREAMING_SNAKE_CASE__ : Any = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas()
SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def _a ( self , _a , **_a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 12 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class __a (SCREAMING_SNAKE_CASE__):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = 42
class __a (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__):
'''simple docstring'''
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Dict:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ : Tuple = num_attention_heads
SCREAMING_SNAKE_CASE__ : str = attention_head_dim
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads * attention_head_dim
SCREAMING_SNAKE_CASE__ : List[str] = additional_embeddings
SCREAMING_SNAKE_CASE__ : Any = time_embed_dim or inner_dim
SCREAMING_SNAKE_CASE__ : Any = embedding_proj_dim or embedding_dim
SCREAMING_SNAKE_CASE__ : List[str] = clip_embed_dim or embedding_dim
SCREAMING_SNAKE_CASE__ : int = Timesteps(_lowercase , _lowercase , 0 )
SCREAMING_SNAKE_CASE__ : Dict = TimestepEmbedding(_lowercase , _lowercase , out_dim=_lowercase , act_fn=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = nn.Linear(_lowercase , _lowercase )
if embedding_proj_norm_type is None:
SCREAMING_SNAKE_CASE__ : List[str] = None
elif embedding_proj_norm_type == "layer":
SCREAMING_SNAKE_CASE__ : Dict = nn.LayerNorm(_lowercase )
else:
raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
SCREAMING_SNAKE_CASE__ : Any = nn.Linear(_lowercase , _lowercase )
if encoder_hid_proj_type is None:
SCREAMING_SNAKE_CASE__ : str = None
elif encoder_hid_proj_type == "linear":
SCREAMING_SNAKE_CASE__ : List[str] = nn.Linear(_lowercase , _lowercase )
else:
raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
SCREAMING_SNAKE_CASE__ : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _lowercase ) )
if added_emb_type == "prd":
SCREAMING_SNAKE_CASE__ : Dict = nn.Parameter(torch.zeros(1 , 1 , _lowercase ) )
elif added_emb_type is None:
SCREAMING_SNAKE_CASE__ : int = None
else:
raise ValueError(
f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
SCREAMING_SNAKE_CASE__ : Tuple = nn.ModuleList(
[
BasicTransformerBlock(
_lowercase , _lowercase , _lowercase , dropout=_lowercase , activation_fn="""gelu""" , attention_bias=_lowercase , )
for d in range(_lowercase )
] )
if norm_in_type == "layer":
SCREAMING_SNAKE_CASE__ : Optional[Any] = nn.LayerNorm(_lowercase )
elif norm_in_type is None:
SCREAMING_SNAKE_CASE__ : List[str] = None
else:
raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' )
SCREAMING_SNAKE_CASE__ : int = nn.LayerNorm(_lowercase )
SCREAMING_SNAKE_CASE__ : str = nn.Linear(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 )
causal_attention_mask.triu_(1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _lowercase , persistent=_lowercase )
SCREAMING_SNAKE_CASE__ : Any = nn.Parameter(torch.zeros(1 , _lowercase ) )
SCREAMING_SNAKE_CASE__ : Dict = nn.Parameter(torch.zeros(1 , _lowercase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _a ( self ) -> Dict[str, AttentionProcessor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_lowercase , """set_processor""" ):
SCREAMING_SNAKE_CASE__ : str = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f'''{name}.{sub_name}''' , _lowercase , _lowercase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_lowercase , _lowercase , _lowercase )
return processors
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != count:
raise ValueError(
f'''A dict of processors was passed, but the number of processors {len(_lowercase )} does not match the'''
f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_lowercase , """set_processor""" ):
if not isinstance(_lowercase , _lowercase ):
module.set_processor(_lowercase )
else:
module.set_processor(processor.pop(f'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f'''{name}.{sub_name}''' , _lowercase , _lowercase )
for name, module in self.named_children():
fn_recursive_attn_processor(_lowercase , _lowercase , _lowercase )
def _a ( self ) -> int:
"""simple docstring"""
self.set_attn_processor(AttnProcessor() )
def _a ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = hidden_states.shape[0]
SCREAMING_SNAKE_CASE__ : List[Any] = timestep
if not torch.is_tensor(_lowercase ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0:
SCREAMING_SNAKE_CASE__ : str = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
SCREAMING_SNAKE_CASE__ : Optional[Any] = timesteps * torch.ones(_lowercase , dtype=timesteps.dtype , device=timesteps.device )
SCREAMING_SNAKE_CASE__ : Tuple = self.time_proj(_lowercase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
SCREAMING_SNAKE_CASE__ : List[Any] = timesteps_projected.to(dtype=self.dtype )
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.time_embedding(_lowercase )
if self.embedding_proj_norm is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.embedding_proj_norm(_lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] = self.embedding_proj(_lowercase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
SCREAMING_SNAKE_CASE__ : List[Any] = self.encoder_hidden_states_proj(_lowercase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
SCREAMING_SNAKE_CASE__ : Dict = self.proj_in(_lowercase )
SCREAMING_SNAKE_CASE__ : str = self.positional_embedding.to(hidden_states.dtype )
SCREAMING_SNAKE_CASE__ : Any = []
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_lowercase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
SCREAMING_SNAKE_CASE__ : str = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
SCREAMING_SNAKE_CASE__ : Dict = hidden_states[:, None, :]
SCREAMING_SNAKE_CASE__ : List[str] = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_lowercase , -1 , -1 )
additional_embeds.append(_lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] = torch.cat(
_lowercase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
SCREAMING_SNAKE_CASE__ : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
SCREAMING_SNAKE_CASE__ : List[Any] = F.pad(
_lowercase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
SCREAMING_SNAKE_CASE__ : int = hidden_states + positional_embeddings
if attention_mask is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0
SCREAMING_SNAKE_CASE__ : Dict = F.pad(_lowercase , (0, self.additional_embeddings) , value=0.0 )
SCREAMING_SNAKE_CASE__ : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
SCREAMING_SNAKE_CASE__ : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
SCREAMING_SNAKE_CASE__ : List[str] = self.norm_in(_lowercase )
for block in self.transformer_blocks:
SCREAMING_SNAKE_CASE__ : Optional[Any] = block(_lowercase , attention_mask=_lowercase )
SCREAMING_SNAKE_CASE__ : int = self.norm_out(_lowercase )
if self.prd_embedding is not None:
SCREAMING_SNAKE_CASE__ : Dict = hidden_states[:, -1]
else:
SCREAMING_SNAKE_CASE__ : Tuple = hidden_states[:, additional_embeddings_len:]
SCREAMING_SNAKE_CASE__ : List[Any] = self.proj_to_clip_embeddings(_lowercase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_lowercase )
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 720 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : int = 1
while repunit:
SCREAMING_SNAKE_CASE__ : str = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def _lowercase ( __lowerCAmelCase = 100_0000 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class __a :
'''simple docstring'''
def __init__( self , _a , _a = 13 , _a = 64 , _a = 2 , _a = 3 , _a = 3 , _a = True , _a = True , _a = 128 , _a=[16, 32, 64, 128] , _a = 7 , _a = 4 , _a = 37 , _a = "gelu" , _a = 0.1 , _a = 0.1 , _a = 10 , _a = 0.02 , _a = 2 , _a = 1 , _a = 128 , _a = [2, 2, 2, 2] , _a = 2 , _a = 2 , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = parent
SCREAMING_SNAKE_CASE__ : str = batch_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = image_size
SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_channels
SCREAMING_SNAKE_CASE__ : List[str] = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_labels
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = intermediate_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_act
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Tuple = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : Any = initializer_range
SCREAMING_SNAKE_CASE__ : List[str] = encoder_stride
SCREAMING_SNAKE_CASE__ : Dict = num_attention_outputs
SCREAMING_SNAKE_CASE__ : Any = embed_dim
SCREAMING_SNAKE_CASE__ : Any = embed_dim + 1
SCREAMING_SNAKE_CASE__ : Any = resolution
SCREAMING_SNAKE_CASE__ : str = depths
SCREAMING_SNAKE_CASE__ : List[Any] = hidden_sizes
SCREAMING_SNAKE_CASE__ : Dict = dim
SCREAMING_SNAKE_CASE__ : Union[str, Any] = mlp_expansion_ratio
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ : str = self.get_config()
return config, pixel_values, labels
def _a ( self ) -> List[str]:
"""simple docstring"""
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def _a ( self , _a , _a , _a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = TFEfficientFormerModel(config=A_ )
SCREAMING_SNAKE_CASE__ : Any = model(A_ , training=A_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self , _a , _a , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.type_sequence_label_size
SCREAMING_SNAKE_CASE__ : Optional[int] = TFEfficientFormerForImageClassification(A_ )
SCREAMING_SNAKE_CASE__ : str = model(A_ , labels=A_ , training=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE__ : Any = 1
SCREAMING_SNAKE_CASE__ : Dict = TFEfficientFormerForImageClassification(A_ )
SCREAMING_SNAKE_CASE__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : int = model(A_ , labels=A_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs
SCREAMING_SNAKE_CASE__ : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __a (_lowercase , _lowercase , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = (
{
'''feature-extraction''': TFEfficientFormerModel,
'''image-classification''': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
_SCREAMING_SNAKE_CASE :int = False
_SCREAMING_SNAKE_CASE :Tuple = False
_SCREAMING_SNAKE_CASE :Dict = False
_SCREAMING_SNAKE_CASE :Dict = False
_SCREAMING_SNAKE_CASE :Any = False
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = TFEfficientFormerModelTester(self )
SCREAMING_SNAKE_CASE__ : Any = ConfigTester(
self , config_class=A_ , has_text_modality=A_ , hidden_size=37 )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" )
def _a ( self ) -> Any:
"""simple docstring"""
pass
@unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(A_ )
SCREAMING_SNAKE_CASE__ : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ : Tuple = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , A_ )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
def check_hidden_states_output(_a , _a , _a ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(A_ )
SCREAMING_SNAKE_CASE__ : Any = model(**self._prepare_for_class(A_ , A_ ) , training=A_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(A_ ) , A_ )
if hasattr(self.model_tester , """encoder_seq_length""" ):
SCREAMING_SNAKE_CASE__ : int = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , """chunk_length""" ) and self.model_tester.chunk_length > 1:
SCREAMING_SNAKE_CASE__ : List[str] = seq_length * self.model_tester.chunk_length
else:
SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
SCREAMING_SNAKE_CASE__ : List[Any] = outputs.decoder_hidden_states
self.asseretIsInstance(A_ , (list, tuple) )
self.assertEqual(len(A_ ) , A_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(self.model_tester , """seq_length""" , A_ )
SCREAMING_SNAKE_CASE__ : Tuple = getattr(self.model_tester , """decoder_seq_length""" , A_ )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Dict = True
check_hidden_states_output(A_ , A_ , A_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE__ : int = True
check_hidden_states_output(A_ , A_ , A_ )
def _a ( self , _a , _a , _a=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = super()._prepare_for_class(A_ , A_ , return_labels=A_ )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*A_ )
@unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*A_ )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*A_ )
@slow
def _a ( self ) -> Any:
"""simple docstring"""
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ : Dict = TFEfficientFormerModel.from_pretrained(A_ )
self.assertIsNotNone(A_ )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(self.model_tester , """seq_length""" , A_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(self.model_tester , """encoder_seq_length""" , A_ )
SCREAMING_SNAKE_CASE__ : Dict = getattr(self.model_tester , """key_length""" , A_ )
SCREAMING_SNAKE_CASE__ : Dict = getattr(self.model_tester , """chunk_length""" , A_ )
if chunk_length is not None and hasattr(self.model_tester , """num_hashes""" ):
SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Dict = True
SCREAMING_SNAKE_CASE__ : int = False
SCREAMING_SNAKE_CASE__ : str = True
SCREAMING_SNAKE_CASE__ : List[Any] = model_class(A_ )
SCREAMING_SNAKE_CASE__ : int = model(**self._prepare_for_class(A_ , A_ ) , training=A_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE__ : str = True
SCREAMING_SNAKE_CASE__ : int = model_class(A_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**self._prepare_for_class(A_ , A_ ) , training=A_ )
SCREAMING_SNAKE_CASE__ : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(A_ ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_class(A_ )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
SCREAMING_SNAKE_CASE__ : Optional[int] = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=A_ )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
SCREAMING_SNAKE_CASE__ : Any = model(A_ )
self.assertTrue(outputs_dict is not None )
def _lowercase ( ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
@cached_property
def _a ( self ) -> List[Any]:
"""simple docstring"""
return (
EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" )
if is_vision_available()
else None
)
@slow
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.default_image_processor
SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img()
SCREAMING_SNAKE_CASE__ : Optional[int] = image_processor(images=A_ , return_tensors="""tf""" )
# forward pass
SCREAMING_SNAKE_CASE__ : List[str] = model(**A_ , training=A_ )
# verify the logits
SCREAMING_SNAKE_CASE__ : int = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , A_ )
SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant([-0.0_555, 0.4_825, -0.0_852] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
@slow
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
"""snap-research/efficientformer-l1-300""" )
SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor
SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_img()
SCREAMING_SNAKE_CASE__ : str = image_processor(images=A_ , return_tensors="""tf""" )
# forward pass
SCREAMING_SNAKE_CASE__ : int = model(**A_ , training=A_ )
# verify the logits
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.TensorShape((1, 1_000) )
self.assertEqual(outputs.logits.shape , A_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.constant([-0.1_312, 0.4_353, -1.0_499] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
| 721 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a :Union[str, Any] = logging.getLogger(__name__)
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""})
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
_SCREAMING_SNAKE_CASE :Optional[bool] = field(
default=UpperCamelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
_SCREAMING_SNAKE_CASE :str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , )
def _lowercase ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_xnli""" , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : List[Any] = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
datasets.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE__ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset(
"""xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
SCREAMING_SNAKE_CASE__ : str = load_dataset(
"""xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = train_dataset.features["""label"""].names
if training_args.do_eval:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.features["""label"""].names
if training_args.do_predict:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.features["""label"""].names
# Labels
SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : str = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : str = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
def preprocess_function(__lowerCAmelCase ):
# Tokenize the texts
return tokenizer(
examples["""premise"""] , examples["""hypothesis"""] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(len(__lowerCAmelCase ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE__ : str = train_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ):
logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE__ : Any = min(len(__lowerCAmelCase ) , data_args.max_eval_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE__ : int = min(len(__lowerCAmelCase ) , data_args.max_predict_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = predict_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , )
# Get the metric function
SCREAMING_SNAKE_CASE__ : Optional[Any] = evaluate.load("""xnli""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Dict = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 )
return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : List[Any] = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE__ : int = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE__ : Dict = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_checkpoint
SCREAMING_SNAKE_CASE__ : str = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = train_result.metrics
SCREAMING_SNAKE_CASE__ : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : Dict = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __lowerCAmelCase )
trainer.save_metrics("""train""" , __lowerCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE__ : Any = trainer.evaluate(eval_dataset=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""eval""" , __lowerCAmelCase )
trainer.save_metrics("""eval""" , __lowerCAmelCase )
# Prediction
if training_args.do_predict:
logger.info("""*** Predict ***""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = trainer.predict(__lowerCAmelCase , metric_key_prefix="""predict""" )
SCREAMING_SNAKE_CASE__ : List[str] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : int = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""predict""" , __lowerCAmelCase )
trainer.save_metrics("""predict""" , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = np.argmax(__lowerCAmelCase , axis=1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , """predictions.txt""" )
if trainer.is_world_process_zero():
with open(__lowerCAmelCase , """w""" ) as writer:
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[int] = label_list[item]
writer.write(F'''{index}\t{item}\n''' )
if __name__ == "__main__":
main()
| 12 | 0 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
a :List[str] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __a (lowercase__):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = ['pixel_values']
def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , **_a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**_a )
SCREAMING_SNAKE_CASE__ : str = size if size is not None else {"""shortest_edge""": 224}
SCREAMING_SNAKE_CASE__ : List[str] = get_size_dict(_a , default_to_square=_a )
SCREAMING_SNAKE_CASE__ : Any = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
SCREAMING_SNAKE_CASE__ : Optional[int] = get_size_dict(_a , default_to_square=_a , param_name="""crop_size""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize
SCREAMING_SNAKE_CASE__ : Union[str, Any] = size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = resample
SCREAMING_SNAKE_CASE__ : Optional[int] = do_center_crop
SCREAMING_SNAKE_CASE__ : Optional[int] = crop_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_rescale
SCREAMING_SNAKE_CASE__ : str = rescale_factor
SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize
SCREAMING_SNAKE_CASE__ : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE__ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_convert_rgb
def _a ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_size_dict(_a , default_to_square=_a )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
SCREAMING_SNAKE_CASE__ : str = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a )
return resize(_a , size=_a , resample=_a , data_format=_a , **_a )
def _a ( self , _a , _a , _a = None , **_a , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a )
def _a ( self , _a , _a , _a = None , **_a , ) -> Optional[int]:
"""simple docstring"""
return rescale(_a , scale=_a , data_format=_a , **_a )
def _a ( self , _a , _a , _a , _a = None , **_a , ) -> Tuple:
"""simple docstring"""
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def _a ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE__ : Dict = size if size is not None else self.size
SCREAMING_SNAKE_CASE__ : Tuple = get_size_dict(_a , param_name="""size""" , default_to_square=_a )
SCREAMING_SNAKE_CASE__ : str = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE__ : str = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE__ : Dict = get_size_dict(_a , param_name="""crop_size""" , default_to_square=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE__ : str = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE__ : Dict = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE__ : int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE__ : int = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE__ : Dict = [convert_to_rgb(_a ) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE__ : Tuple = [to_numpy_array(_a ) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.resize(image=_a , size=_a , resample=_a ) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE__ : int = [self.center_crop(image=_a , size=_a ) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE__ : int = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE__ : Tuple = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [to_channel_dimension_format(_a , _a ) for image in images]
SCREAMING_SNAKE_CASE__ : Any = {"""pixel_values""": images}
return BatchFeature(data=_a , tensor_type=_a )
| 700 |
"""simple docstring"""
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
a :str = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
a :int = {
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
a :Dict = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
a :List[Any] = "facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
a :str = "allenai"
def _lowercase ( __lowerCAmelCase ) -> Any:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
SCREAMING_SNAKE_CASE__ : str = dict((re.sub(r"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() )
SCREAMING_SNAKE_CASE__ : Tuple = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d[k] # restore
return da
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
# prep
assert os.path.exists(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
SCREAMING_SNAKE_CASE__ : Optional[Any] = basename(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
SCREAMING_SNAKE_CASE__ : Optional[int] = cls.hub_models()
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """."""
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F'''using checkpoint {checkpoint_file}''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hub_utils.from_pretrained(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = vars(chkpt["""args"""]["""model"""] )
SCREAMING_SNAKE_CASE__ : Any = args["""source_lang"""]
SCREAMING_SNAKE_CASE__ : Any = args["""target_lang"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = basename(__lowerCAmelCase )
# dicts
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(__lowerCAmelCase , F'''dict.{src_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , F'''dict.{tgt_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = rewrite_dict_keys(src_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[int] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """vocab-src.json""" )
print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
for k in src_vocab.keys():
if not k.islower():
SCREAMING_SNAKE_CASE__ : Tuple = False
break
SCREAMING_SNAKE_CASE__ : Optional[Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """vocab-tgt.json""" )
print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# merges_file (bpecodes)
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
break
with open(__lowerCAmelCase , encoding="""utf-8""" ) as fin:
SCREAMING_SNAKE_CASE__ : Any = fin.read()
SCREAMING_SNAKE_CASE__ : Tuple = re.sub(r""" \d+$""" , """""" , __lowerCAmelCase , 0 , re.M ) # remove frequency number
print(F'''Generating {merges_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout:
fout.write(__lowerCAmelCase )
# model config
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """config.json""" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}'''
assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}'''
SCREAMING_SNAKE_CASE__ : str = {
"""architectures""": ["""FSMTForConditionalGeneration"""],
"""model_type""": """fsmt""",
"""activation_dropout""": args["""activation_dropout"""],
"""activation_function""": """relu""",
"""attention_dropout""": args["""attention_dropout"""],
"""d_model""": args["""decoder_embed_dim"""],
"""dropout""": args["""dropout"""],
"""init_std""": 0.02,
"""max_position_embeddings""": args["""max_source_positions"""],
"""num_hidden_layers""": args["""encoder_layers"""],
"""src_vocab_size""": src_vocab_size,
"""tgt_vocab_size""": tgt_vocab_size,
"""langs""": [src_lang, tgt_lang],
"""encoder_attention_heads""": args["""encoder_attention_heads"""],
"""encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""],
"""encoder_layerdrop""": args["""encoder_layerdrop"""],
"""encoder_layers""": args["""encoder_layers"""],
"""decoder_attention_heads""": args["""decoder_attention_heads"""],
"""decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""],
"""decoder_layerdrop""": args["""decoder_layerdrop"""],
"""decoder_layers""": args["""decoder_layers"""],
"""bos_token_id""": 0,
"""pad_token_id""": 1,
"""eos_token_id""": 2,
"""is_encoder_decoder""": True,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_all_embeddings"""],
}
# good hparam defaults to start with
SCREAMING_SNAKE_CASE__ : Tuple = 5
SCREAMING_SNAKE_CASE__ : str = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
SCREAMING_SNAKE_CASE__ : Tuple = best_score_hparams[model_dir]["""length_penalty"""]
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1.0
print(F'''Generating {fsmt_model_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# tokenizer config
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = {
"""langs""": [src_lang, tgt_lang],
"""model_max_length""": 1024,
"""do_lower_case""": do_lower_case,
}
print(F'''Generating {fsmt_tokenizer_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# model
SCREAMING_SNAKE_CASE__ : Dict = chkpt["""models"""][0]
SCREAMING_SNAKE_CASE__ : int = model.state_dict()
# rename keys to start with 'model.'
SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
SCREAMING_SNAKE_CASE__ : str = [
"""model.model""",
"""model.encoder.version""",
"""model.decoder.version""",
"""model.encoder_embed_tokens.weight""",
"""model.decoder_embed_tokens.weight""",
"""model.encoder.embed_positions._float_tensor""",
"""model.decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = FSMTConfig.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTForConditionalGeneration(__lowerCAmelCase )
# check that it loads ok
model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
# save
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
print("""Conversion is done!""" )
print("""\nLast step is to upload the files to s3""" )
print(F'''cd {data_root}''' )
print(F'''transformers-cli upload {model_dir}''' )
if __name__ == "__main__":
a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a :List[str] = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Tuple = []
create_all_state(1 , __lowerCAmelCase , __lowerCAmelCase , [] , __lowerCAmelCase )
return result
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Any:
if level == 0:
total_list.append(current_list[:] )
return
for i in range(__lowerCAmelCase , total_number - level + 2 ):
current_list.append(__lowerCAmelCase )
create_all_state(i + 1 , __lowerCAmelCase , level - 1 , __lowerCAmelCase , __lowerCAmelCase )
current_list.pop()
def _lowercase ( __lowerCAmelCase ) -> List[Any]:
for i in total_list:
print(*__lowerCAmelCase )
if __name__ == "__main__":
a :Union[str, Any] = 4
a :List[Any] = 2
a :Tuple = generate_all_combinations(n, k)
print_all_state(total_list)
| 701 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,)
def _a ( self , **_a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_a )
return config
def _a ( self ) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def _a ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_a )
def _a ( self ) -> Any:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_a )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def _a ( self ) -> int:
"""simple docstring"""
self.check_over_configs(thresholding=_a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , )
def _a ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def _a ( self ) -> str:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Any = len(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : str = pred_prev_sample
SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Dict = len(_a )
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample
SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps
for i, timestep in enumerate(_a ):
if i == len(_a ) - 1:
SCREAMING_SNAKE_CASE__ : Optional[Any] = -1
else:
SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1]
SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item()
self.assertEqual(_a , _a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0]
SCREAMING_SNAKE_CASE__ : List[str] = len(_a )
with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_a )
| 12 | 0 |
"""simple docstring"""
a :int = range(2, 20 + 1)
a :int = [10**k for k in range(ks[-1] + 1)]
a :dict[int, dict[int, list[list[int]]]] = {}
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Optional[int] = sum(a_i[j] for j in range(snake_case_ , len(snake_case_ ) ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = sum(a_i[j] * base[j] for j in range(min(len(snake_case_ ) , snake_case_ ) ) )
SCREAMING_SNAKE_CASE__ : Tuple = 0, 0
SCREAMING_SNAKE_CASE__ : Tuple = n - i
SCREAMING_SNAKE_CASE__ : int = memo.get(snake_case_ )
if sub_memo is not None:
SCREAMING_SNAKE_CASE__ : Tuple = sub_memo.get(snake_case_ )
if jumps is not None and len(snake_case_ ) > 0:
# find and make the largest jump without going over
SCREAMING_SNAKE_CASE__ : Dict = -1
for _k in range(len(snake_case_ ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = _k
break
if max_jump >= 0:
SCREAMING_SNAKE_CASE__ : Any = jumps[max_jump]
# since the difference between jumps is cached, add c
SCREAMING_SNAKE_CASE__ : str = diff + c
for j in range(min(snake_case_ , len(snake_case_ ) ) ):
SCREAMING_SNAKE_CASE__ : List[Any] = divmod(snake_case_ , 10 )
if new_c > 0:
add(snake_case_ , snake_case_ , snake_case_ )
else:
SCREAMING_SNAKE_CASE__ : List[Any] = []
else:
SCREAMING_SNAKE_CASE__ : str = {c: []}
SCREAMING_SNAKE_CASE__ : str = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
SCREAMING_SNAKE_CASE__ : Any = next_term(snake_case_ , k - 1 , i + dn , snake_case_ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
SCREAMING_SNAKE_CASE__ : List[Any] = compute(snake_case_ , snake_case_ , i + dn , snake_case_ )
diff += _diff
dn += terms_jumped
SCREAMING_SNAKE_CASE__ : Optional[Any] = sub_memo[c]
# keep jumps sorted by # of terms skipped
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
while j < len(snake_case_ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(snake_case_ , (diff, dn, k) )
return (diff, dn)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
if i >= n:
return 0, i
if k > len(snake_case_ ):
a_i.extend([0 for _ in range(k - len(snake_case_ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
SCREAMING_SNAKE_CASE__ : Tuple = i
SCREAMING_SNAKE_CASE__ : List[Any] = 0, 0, 0
for j in range(len(snake_case_ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
SCREAMING_SNAKE_CASE__ : str = ds_c + ds_b
diff += addend
SCREAMING_SNAKE_CASE__ : Any = 0
for j in range(snake_case_ ):
SCREAMING_SNAKE_CASE__ : Optional[int] = a_i[j] + addend
SCREAMING_SNAKE_CASE__ : str = divmod(snake_case_ , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(snake_case_ , snake_case_ , snake_case_ )
return diff, i - start_i
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
for j in range(snake_case_ , len(snake_case_ ) ):
SCREAMING_SNAKE_CASE__ : int = digits[j] + addend
if s >= 10:
SCREAMING_SNAKE_CASE__ : List[Any] = divmod(snake_case_ , 10 )
SCREAMING_SNAKE_CASE__ : Optional[int] = addend // 10 + quotient
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = s
SCREAMING_SNAKE_CASE__ : Optional[Any] = addend // 10
if addend == 0:
break
while addend > 0:
SCREAMING_SNAKE_CASE__ : List[str] = divmod(snake_case_ , 10 )
digits.append(snake_case_ )
def _lowercase ( __lowerCAmelCase = 10**15 ) -> str:
SCREAMING_SNAKE_CASE__ : List[Any] = [1]
SCREAMING_SNAKE_CASE__ : int = 1
SCREAMING_SNAKE_CASE__ : List[Any] = 0
while True:
SCREAMING_SNAKE_CASE__ : Optional[Any] = next_term(snake_case_ , 20 , i + dn , snake_case_ )
dn += terms_jumped
if dn == n - i:
break
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
for j in range(len(snake_case_ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f'{solution() = }')
| 702 |
"""simple docstring"""
import os
a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
while index < len(__lowerCAmelCase ) - 1:
SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]]
SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = """"""
SCREAMING_SNAKE_CASE__ : int = num // 1000
numerals += m_count * "M"
num %= 1000
SCREAMING_SNAKE_CASE__ : List[str] = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
SCREAMING_SNAKE_CASE__ : List[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int:
SCREAMING_SNAKE_CASE__ : int = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
SCREAMING_SNAKE_CASE__ : str = filea.readlines()
for line in lines:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip()
SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
from decimal import Decimal, getcontext
from math import ceil, factorial
def _lowercase ( __lowerCAmelCase ) -> Dict:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
SCREAMING_SNAKE_CASE__ : Any = precision
SCREAMING_SNAKE_CASE__ : List[str] = ceil(precision / 14 )
SCREAMING_SNAKE_CASE__ : Optional[int] = 42_6880 * Decimal(1_0005 ).sqrt()
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1
SCREAMING_SNAKE_CASE__ : Optional[int] = 1359_1409
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Decimal(_lowerCamelCase )
for k in range(1 , _lowerCamelCase ):
SCREAMING_SNAKE_CASE__ : Optional[int] = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCamelCase ) ** 3)
linear_term += 5_4514_0134
exponential_term *= -26_2537_4126_4076_8000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
a :Optional[Any] = 50
print(f'The first {n} digits of pi is: {pi(n)}')
| 703 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
from collections.abc import Callable
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : float = a
SCREAMING_SNAKE_CASE__ : float = b
if function(__lowerCAmelCase ) == 0: # one of the a or b is a root for the function
return a
elif function(__lowerCAmelCase ) == 0:
return b
elif (
function(__lowerCAmelCase ) * function(__lowerCAmelCase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
SCREAMING_SNAKE_CASE__ : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(__lowerCAmelCase ) == 0:
return mid
elif function(__lowerCAmelCase ) * function(__lowerCAmelCase ) < 0:
SCREAMING_SNAKE_CASE__ : List[str] = mid
else:
SCREAMING_SNAKE_CASE__ : Dict = mid
SCREAMING_SNAKE_CASE__ : Any = start + (end - start) / 2.0
return mid
def _lowercase ( __lowerCAmelCase ) -> List[str]:
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 704 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a :List[Any] = logging.get_logger(__name__)
a :Optional[int] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __a (UpperCamelCase_ , UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = """focalnet"""
def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size
SCREAMING_SNAKE_CASE__ : str = patch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim
SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed
SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE__ : Optional[int] = depths
SCREAMING_SNAKE_CASE__ : Any = focal_levels
SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate
SCREAMING_SNAKE_CASE__ : str = use_layerscale
SCREAMING_SNAKE_CASE__ : int = layerscale_value
SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm
SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation
SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator
SCREAMING_SNAKE_CASE__ : str = initializer_range
SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Any = encoder_stride
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowercase ( __lowerCAmelCase ) -> Any:
create_state_space_tree(snake_case__ , [] , 0 , [0 for i in range(len(snake_case__ ) )] )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> Optional[Any]:
if index == len(snake_case__ ):
print(snake_case__ )
return
for i in range(len(snake_case__ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
create_state_space_tree(snake_case__ , snake_case__ , index + 1 , snake_case__ )
current_sequence.pop()
SCREAMING_SNAKE_CASE__ : Optional[int] = False
a :Optional[int] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a :Dict = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 705 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = parent
SCREAMING_SNAKE_CASE__ : Tuple = batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask
SCREAMING_SNAKE_CASE__ : Tuple = use_token_type_ids
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Dict = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE__ : int = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __a (UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = True
_SCREAMING_SNAKE_CASE :Optional[Any] = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerModelTester(self )
@slow
def _a ( self ) -> int:
"""simple docstring"""
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a )
SCREAMING_SNAKE_CASE__ : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
SCREAMING_SNAKE_CASE__ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE__ : str = model(_a )[0]
SCREAMING_SNAKE_CASE__ : List[Any] = 50_000
SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 6, vocab_size)
self.assertEqual(output.shape , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a :Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
a :Optional[int] = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
SCREAMING_SNAKE_CASE__ : List[str] = self.diffusers_dir
shutil.copy(
os.path.join(__lowerCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = """src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def _a ( self , _a , _a , _a , _a=None ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
SCREAMING_SNAKE_CASE__ : Dict = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
SCREAMING_SNAKE_CASE__ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
SCREAMING_SNAKE_CASE__ : List[Any] = black.format_str(__lowerCAmelCase , mode=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.diffusers_dir , """new_code.py""" )
with open(__lowerCAmelCase , """w""" , newline="""\n""" ) as f:
f.write(__lowerCAmelCase )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__lowerCAmelCase ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__lowerCAmelCase )
with open(__lowerCAmelCase , """r""" ) as f:
self.assertTrue(f.read() , __lowerCAmelCase )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(__lowerCAmelCase , __lowerCAmelCase )
def _a ( self ) -> Dict:
"""simple docstring"""
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , __lowerCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , __lowerCAmelCase ) , )
# Copy consistency with a really long name
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , __lowerCAmelCase , __lowerCAmelCase ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , __lowerCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , __lowerCAmelCase ) , )
| 706 |
"""simple docstring"""
a :List[str] = [
(1_000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
SCREAMING_SNAKE_CASE__ : List[Any] = 0
SCREAMING_SNAKE_CASE__ : List[str] = 0
while place < len(__lowerCAmelCase ):
if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Any = []
for arabic, roman in ROMAN:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
a :List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , ) -> List[str]:
output_path.parent.mkdir(parents=UpperCAmelCase__ , exist_ok=UpperCAmelCase__ )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , use_external_data_format=UpperCAmelCase__ , enable_onnx_checker=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , )
else:
export(
UpperCAmelCase__ , UpperCAmelCase__ , f=output_path.as_posix() , input_names=UpperCAmelCase__ , output_names=UpperCAmelCase__ , dynamic_axes=UpperCAmelCase__ , do_constant_folding=UpperCAmelCase__ , opset_version=UpperCAmelCase__ , )
@torch.no_grad()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Dict = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
SCREAMING_SNAKE_CASE__ : Tuple = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """cpu"""
SCREAMING_SNAKE_CASE__ : List[str] = Path(UpperCAmelCase__ )
# VAE DECODER
SCREAMING_SNAKE_CASE__ : Dict = AutoencoderKL.from_pretrained(model_path + """/vae""" )
SCREAMING_SNAKE_CASE__ : Any = vae_decoder.config.latent_channels
# forward only through the decoder part
SCREAMING_SNAKE_CASE__ : Optional[int] = vae_decoder.decode
onnx_export(
UpperCAmelCase__ , model_args=(
torch.randn(1 , UpperCAmelCase__ , 25 , 25 ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=UpperCAmelCase__ , )
del vae_decoder
if __name__ == "__main__":
a :Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
a :Dict = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 707 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a :Any = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 12 | 0 |
"""simple docstring"""
import math
import qiskit
def _lowercase ( __lowerCAmelCase = 1 , __lowerCAmelCase = 1 , __lowerCAmelCase = 1 ) -> qiskit.result.counts.Counts:
if (
isinstance(_lowercase , _lowercase )
or isinstance(_lowercase , _lowercase )
or isinstance(_lowercase , _lowercase )
):
raise TypeError("""inputs must be integers.""" )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("""inputs must be positive.""" )
if (
(math.floor(_lowercase ) != input_a)
or (math.floor(_lowercase ) != input_a)
or (math.floor(_lowercase ) != carry_in)
):
raise ValueError("""inputs must be exact integers.""" )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("""inputs must be less or equal to 2.""" )
# build registers
SCREAMING_SNAKE_CASE__ : Optional[int] = qiskit.QuantumRegister(4 , """qr""" )
SCREAMING_SNAKE_CASE__ : Any = qiskit.ClassicalRegister(2 , """cr""" )
# list the entries
SCREAMING_SNAKE_CASE__ : List[str] = [input_a, input_a, carry_in]
SCREAMING_SNAKE_CASE__ : List[str] = qiskit.QuantumCircuit(_lowercase , _lowercase )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(_lowercase ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(_lowercase ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(_lowercase ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , _lowercase ) # measure the last two qbits
SCREAMING_SNAKE_CASE__ : int = qiskit.Aer.get_backend("""aer_simulator""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = qiskit.execute(_lowercase , _lowercase , shots=1000 )
return job.result().get_counts(_lowercase )
if __name__ == "__main__":
print(f'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
| 708 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Dict = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_a , _a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> Any:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a )
SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _a )
self.assertIsInstance(processor_fast.tokenizer , _a )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _a )
self.assertIsInstance(processor_fast.image_processor , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a )
SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 12 | 0 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = get_activation("""swish""" )
self.assertIsInstance(__lowerCAmelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = get_activation("""silu""" )
self.assertIsInstance(__lowerCAmelCase , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = get_activation("""mish""" )
self.assertIsInstance(__lowerCAmelCase , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = get_activation("""gelu""" )
self.assertIsInstance(__lowerCAmelCase , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 709 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a :Optional[Any] = logging.get_logger(__name__)
a :Union[str, Any] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """t5"""
_SCREAMING_SNAKE_CASE :List[str] = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , _a=32_128 , _a=512 , _a=64 , _a=2_048 , _a=6 , _a=None , _a=8 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="relu" , _a=True , _a=True , _a=0 , _a=1 , **_a , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : int = d_kv
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_ff
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_layers
SCREAMING_SNAKE_CASE__ : int = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE__ : Tuple = num_heads
SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : str = relative_attention_max_distance
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_factor
SCREAMING_SNAKE_CASE__ : Tuple = feed_forward_proj
SCREAMING_SNAKE_CASE__ : str = use_cache
SCREAMING_SNAKE_CASE__ : List[str] = self.feed_forward_proj.split("""-""" )
SCREAMING_SNAKE_CASE__ : Dict = act_info[-1]
SCREAMING_SNAKE_CASE__ : str = act_info[0] == """gated"""
if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE__ : List[Any] = """gelu_new"""
super().__init__(
pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
class __a (UpperCamelCase_):
'''simple docstring'''
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""input_ids""": {0: """batch""", 1: """encoder_sequence"""},
"""attention_mask""": {0: """batch""", 1: """encoder_sequence"""},
}
if self.use_past:
SCREAMING_SNAKE_CASE__ : Tuple = """past_encoder_sequence + sequence"""
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch"""}
SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""}
SCREAMING_SNAKE_CASE__ : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_a , direction="""inputs""" )
return common_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return 13
| 12 | 0 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __a (__UpperCAmelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = ["""image_processor""", """tokenizer"""]
_SCREAMING_SNAKE_CASE :List[str] = """OwlViTImageProcessor"""
_SCREAMING_SNAKE_CASE :List[Any] = ("""CLIPTokenizer""", """CLIPTokenizerFast""")
def __init__( self , _a=None , _a=None , **_a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , UpperCAmelCase_ , )
SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(UpperCAmelCase_ , UpperCAmelCase_ )
def __call__( self , _a=None , _a=None , _a=None , _a="max_length" , _a="np" , **_a ) -> Dict:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and not isinstance(text[0] , UpperCAmelCase_ )):
SCREAMING_SNAKE_CASE__ : Tuple = [self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )]
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(text[0] , UpperCAmelCase_ ):
SCREAMING_SNAKE_CASE__ : int = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ : Optional[Any] = max([len(UpperCAmelCase_ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(UpperCAmelCase_ ) != max_num_queries:
SCREAMING_SNAKE_CASE__ : Tuple = t + [""" """] * (max_num_queries - len(UpperCAmelCase_ ))
SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
encodings.append(UpperCAmelCase_ )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ : List[str] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ : Any = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ : int = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ : str = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ : Any = BatchEncoding()
SCREAMING_SNAKE_CASE__ : str = input_ids
SCREAMING_SNAKE_CASE__ : Dict = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ : Any = BatchEncoding()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processor(
UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ).pixel_values
SCREAMING_SNAKE_CASE__ : Union[str, Any] = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ : int = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase_ ) , tensor_type=UpperCAmelCase_ )
def _a ( self , *_a , **_a ) -> Any:
"""simple docstring"""
return self.image_processor.post_process(*UpperCAmelCase_ , **UpperCAmelCase_ )
def _a ( self , *_a , **_a ) -> Union[str, Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*UpperCAmelCase_ , **UpperCAmelCase_ )
def _a ( self , *_a , **_a ) -> Union[str, Any]:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*UpperCAmelCase_ , **UpperCAmelCase_ )
def _a ( self , *_a , **_a ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
def _a ( self , *_a , **_a ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ )
@property
def _a ( self ) -> List[str]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , UpperCAmelCase_ , )
return self.image_processor_class
@property
def _a ( self ) -> str:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , UpperCAmelCase_ , )
return self.image_processor
| 710 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
a :Optional[Any] = [8, 5, 9, 7]
a :List[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
a :int = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = claim_vector
SCREAMING_SNAKE_CASE__ : Any = allocated_resources_table
SCREAMING_SNAKE_CASE__ : Any = maximum_claim_table
def _a ( self ) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _a ( self ) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _a ( self ) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _a ( self ) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(_a ): i for i in self.__need()}
def _a ( self , **_a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.__need()
SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table
SCREAMING_SNAKE_CASE__ : Dict = self.__available_resources()
SCREAMING_SNAKE_CASE__ : Dict = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 50 + """\n""" )
while need_list:
SCREAMING_SNAKE_CASE__ : List[str] = False
for each_need in need_list:
SCREAMING_SNAKE_CASE__ : Dict = True
for index, need in enumerate(_a ):
if need > available_resources[index]:
SCREAMING_SNAKE_CASE__ : Optional[int] = False
break
if execution:
SCREAMING_SNAKE_CASE__ : Any = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
SCREAMING_SNAKE_CASE__ : Tuple = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(_a )
# update available/freed resources stack
SCREAMING_SNAKE_CASE__ : Dict = np.array(_a ) + np.array(
alloc_resources_table[process_number] )
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(_a ) for x in available_resources] ) )
break
if safe:
print("""The process is in a safe state.\n""" )
else:
print("""System in unsafe state. Aborting...\n""" )
break
def _a ( self ) -> Any:
"""simple docstring"""
print(""" """ * 9 + """Allocated Resource Table""" )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(""" """ * 9 + """System Resource Table""" )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(_a ) for x in self.__claim_vector ) )
print(
"""Initial Available Resources: """
+ """ """.join(str(_a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
class __a :
'''simple docstring'''
def __init__( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = data
SCREAMING_SNAKE_CASE__ : Node | None = None
SCREAMING_SNAKE_CASE__ : Node | None = None
def _lowercase ( __lowerCAmelCase ) -> Any: # In Order traversal of the tree
if tree:
display(tree.left )
print(tree.data )
display(tree.right )
def _lowercase ( __lowerCAmelCase ) -> Optional[int]:
return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0
def _lowercase ( __lowerCAmelCase ) -> List[str]:
if not tree:
return True
if tree.left and tree.right:
return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right )
else:
return not tree.left and not tree.right
def _lowercase ( ) -> int: # Main function for testing.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Node(1 )
SCREAMING_SNAKE_CASE__ : List[str] = Node(2 )
SCREAMING_SNAKE_CASE__ : List[str] = Node(3 )
SCREAMING_SNAKE_CASE__ : Optional[int] = Node(4 )
SCREAMING_SNAKE_CASE__ : Tuple = Node(5 )
SCREAMING_SNAKE_CASE__ : Dict = Node(6 )
SCREAMING_SNAKE_CASE__ : Optional[int] = Node(7 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = Node(8 )
SCREAMING_SNAKE_CASE__ : List[str] = Node(9 )
print(is_full_binary_tree(_lowercase ) )
print(depth_of_tree(_lowercase ) )
print("""Tree is: """ )
display(_lowercase )
if __name__ == "__main__":
main()
| 711 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a :List[Any] = None
a :Optional[int] = logging.get_logger(__name__)
a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
a :Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
a :Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
a :int = "▁"
# Segments (not really needed)
a :Dict = 0
a :Optional[int] = 1
a :Tuple = 2
a :List[str] = 3
a :Optional[Any] = 4
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = """left"""
_SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE__ : List[str] = remove_space
SCREAMING_SNAKE_CASE__ : int = keep_accents
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
from argparse import ArgumentParser, Namespace
from ..utils import logging
from . import BaseTransformersCLICommand
def _lowercase ( __lowerCAmelCase ) -> str:
return ConvertCommand(
args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name )
a :Any = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n"
class __a (UpperCamelCase_):
'''simple docstring'''
@staticmethod
def _a ( _a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.add_parser(
"""convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , )
train_parser.add_argument("""--model_type""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Model's type.""" )
train_parser.add_argument(
"""--tf_checkpoint""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""TensorFlow checkpoint path or folder.""" )
train_parser.add_argument(
"""--pytorch_dump_output""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to the PyTorch saved model output.""" )
train_parser.add_argument("""--config""" , type=_SCREAMING_SNAKE_CASE , default="""""" , help="""Configuration file path or folder.""" )
train_parser.add_argument(
"""--finetuning_task_name""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , )
train_parser.set_defaults(func=_SCREAMING_SNAKE_CASE )
def __init__( self , _a , _a , _a , _a , _a , *_a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger("""transformers-cli/converting""" )
self._logger.info(f'''Loading model {model_type}''' )
SCREAMING_SNAKE_CASE__ : int = model_type
SCREAMING_SNAKE_CASE__ : int = tf_checkpoint
SCREAMING_SNAKE_CASE__ : Dict = pytorch_dump_output
SCREAMING_SNAKE_CASE__ : List[Any] = config
SCREAMING_SNAKE_CASE__ : Any = finetuning_task_name
def _a ( self ) -> Dict:
"""simple docstring"""
if self._model_type == "albert":
try:
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "bert":
try:
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "funnel":
try:
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
convert_tf_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "t5":
try:
from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "gpt":
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
convert_openai_checkpoint_to_pytorch,
)
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "transfo_xl":
try:
from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import (
convert_transfo_xl_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
if "ckpt" in self._tf_checkpoint.lower():
SCREAMING_SNAKE_CASE__ : Tuple = self._tf_checkpoint
SCREAMING_SNAKE_CASE__ : Tuple = """"""
else:
SCREAMING_SNAKE_CASE__ : Tuple = self._tf_checkpoint
SCREAMING_SNAKE_CASE__ : Tuple = """"""
convert_transfo_xl_checkpoint_to_pytorch(
_SCREAMING_SNAKE_CASE , self._config , self._pytorch_dump_output , _SCREAMING_SNAKE_CASE )
elif self._model_type == "gpt2":
try:
from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import (
convert_gpta_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
elif self._model_type == "xlnet":
try:
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
convert_xlnet_checkpoint_to_pytorch,
)
except ImportError:
raise ImportError(_SCREAMING_SNAKE_CASE )
convert_xlnet_checkpoint_to_pytorch(
self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name )
elif self._model_type == "xlm":
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
convert_xlm_checkpoint_to_pytorch,
)
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "lxmert":
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
convert_lxmert_checkpoint_to_pytorch,
)
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output )
elif self._model_type == "rembert":
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
convert_rembert_tf_checkpoint_to_pytorch,
)
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output )
else:
raise ValueError(
"""--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
| 712 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )]
# since string of zero length match pattern of zero length
SCREAMING_SNAKE_CASE__ : Dict = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , __lowerCAmelCase ):
for j in range(1 , __lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
SCREAMING_SNAKE_CASE__ : List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE__ : Dict = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a :Any = "aab"
a :Optional[Any] = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'{input_string} matches the given pattern {pattern}')
else:
print(f'{input_string} does not match with the given pattern {pattern}')
| 12 | 0 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 713 |
"""simple docstring"""
from math import sqrt
def _lowercase ( __lowerCAmelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = 0
SCREAMING_SNAKE_CASE__ : Tuple = 1
while count != nth and number < 3:
number += 1
if is_prime(__lowerCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(__lowerCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a :Dict = logging.get_logger(__name__)
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Dict = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
SCREAMING_SNAKE_CASE__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> str:
for i in range(config.num_hidden_layers ):
if base_model:
SCREAMING_SNAKE_CASE__ : List[str] = """"""
else:
SCREAMING_SNAKE_CASE__ : str = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ : str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ : int = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE__ : Optional[int] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE__ : Any = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[-config.hidden_size :]
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Tuple = dct.pop(SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : int = val
def _lowercase ( ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ : Dict = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw )
return im
@torch.no_grad()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : List[Any] = DeiTConfig()
# all deit models have fine-tuned heads
SCREAMING_SNAKE_CASE__ : Optional[int] = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
SCREAMING_SNAKE_CASE__ : str = 1000
SCREAMING_SNAKE_CASE__ : Dict = """huggingface/label-files"""
SCREAMING_SNAKE_CASE__ : str = """imagenet-1k-id2label.json"""
SCREAMING_SNAKE_CASE__ : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ : Optional[int] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : Tuple = idalabel
SCREAMING_SNAKE_CASE__ : Tuple = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ : str = int(deit_name[-6:-4] )
SCREAMING_SNAKE_CASE__ : Any = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
SCREAMING_SNAKE_CASE__ : Tuple = 192
SCREAMING_SNAKE_CASE__ : int = 768
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 12
SCREAMING_SNAKE_CASE__ : int = 3
elif deit_name[9:].startswith("""small""" ):
SCREAMING_SNAKE_CASE__ : List[Any] = 384
SCREAMING_SNAKE_CASE__ : Any = 1536
SCREAMING_SNAKE_CASE__ : Optional[int] = 12
SCREAMING_SNAKE_CASE__ : Any = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
SCREAMING_SNAKE_CASE__ : int = 1024
SCREAMING_SNAKE_CASE__ : Optional[int] = 4096
SCREAMING_SNAKE_CASE__ : List[Any] = 24
SCREAMING_SNAKE_CASE__ : List[Any] = 16
# load original model from timm
SCREAMING_SNAKE_CASE__ : List[Any] = timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE__ : Dict = timm_model.state_dict()
SCREAMING_SNAKE_CASE__ : Dict = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# load HuggingFace model
SCREAMING_SNAKE_CASE__ : Optional[int] = DeiTForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE_ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE_ )
# Check outputs on an image, prepared by DeiTImageProcessor
SCREAMING_SNAKE_CASE__ : Optional[int] = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
SCREAMING_SNAKE_CASE__ : int = DeiTImageProcessor(size=SCREAMING_SNAKE_CASE_ , crop_size=config.image_size )
SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = encoding["""pixel_values"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : List[Any] = timm_model(SCREAMING_SNAKE_CASE_ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(SCREAMING_SNAKE_CASE_ , outputs.logits , atol=1E-3 )
Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ )
print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(SCREAMING_SNAKE_CASE_ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
a :str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--deit_name",
default="vit_deit_base_distilled_patch16_224",
type=str,
help="Name of the DeiT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
a :List[str] = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
| 714 |
"""simple docstring"""
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = value
SCREAMING_SNAKE_CASE__ : List[Any] = weight
def __repr__( self ) -> List[Any]:
"""simple docstring"""
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value
def _a ( self ) -> int:
"""simple docstring"""
return self.name
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.weight
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value / self.weight
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : Any = []
for i in range(len(__lowerCAmelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0, 0.0
for i in range(len(__lowerCAmelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _lowercase ( ) -> List[str]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import math
def _lowercase ( __lowerCAmelCase ) -> int:
if not isinstance(_lowerCAmelCase , _lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : List[Any] = F'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowerCAmelCase )
if number < 1:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = F'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowerCAmelCase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
SCREAMING_SNAKE_CASE__ : List[Any] = int(math.log(number // 3 , 2 ) ) + 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = [3, 5]
SCREAMING_SNAKE_CASE__ : Optional[int] = 2
SCREAMING_SNAKE_CASE__ : int = 3
for block in range(1 , _lowerCAmelCase ):
for _ in range(_lowerCAmelCase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
a :List[str] = 0
try:
a :Optional[Any] = proth(number)
except ValueError:
print(f'ValueError: there is no {number}th Proth number')
continue
print(f'The {number}th Proth number: {value}')
| 715 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
a :Optional[int] = None
a :Optional[Any] = logging.get_logger(__name__)
a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
a :Union[str, Any] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
a :Any = {
"facebook/nllb-large-en-ro": 1_024,
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""]
_SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer
_SCREAMING_SNAKE_CASE :List[int] = []
_SCREAMING_SNAKE_CASE :List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
SCREAMING_SNAKE_CASE__ : List[str] = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn"""
SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _a ( self ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
SCREAMING_SNAKE_CASE__ : Dict = src_lang
SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id
return inputs
def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = src_lang
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _a ( self ) -> str:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
import os
def _lowercase ( __lowerCAmelCase = "input.txt" ) -> Union[str, Any]:
with open(os.path.join(os.path.dirname(__lowerCAmelCase ) , __lowerCAmelCase ) ) as input_file:
SCREAMING_SNAKE_CASE__ : int = [
[int(__lowerCAmelCase ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = len(matrix[0] )
SCREAMING_SNAKE_CASE__ : int = [[-1 for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Tuple = matrix[i][0]
for j in range(1 , __lowerCAmelCase ):
for i in range(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
SCREAMING_SNAKE_CASE__ : int = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 716 |
"""simple docstring"""
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any:
# Format the message.
if name is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
else:
SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase )
# Print and recurse (if needed).
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
if msg is not None:
print(__lowerCAmelCase )
for k in val.keys():
recursive_print(__lowerCAmelCase , val[k] , spaces + 2 )
elif isinstance(__lowerCAmelCase , torch.Tensor ):
print(__lowerCAmelCase , """:""" , val.size() )
else:
print(__lowerCAmelCase , """:""" , __lowerCAmelCase )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
SCREAMING_SNAKE_CASE__ : Tuple = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 )
SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase )
return param
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
# The converted output model.
SCREAMING_SNAKE_CASE__ : List[str] = {}
# old versions did not store training args
SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers
SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
SCREAMING_SNAKE_CASE__ : List[str] = config.n_head
# The hidden_size per head.
SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""]
else:
SCREAMING_SNAKE_CASE__ : Tuple = 0.0
# The model.
SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""]
# The language model.
SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""]
# The embeddings.
SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""]
# The word embeddings.
SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :]
SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings
# The position embeddings.
SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings
# The transformer.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) )
# The name of the operation.
SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
SCREAMING_SNAKE_CASE__ : str = m.group(3 )
# The name of the layer.
SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
SCREAMING_SNAKE_CASE__ : List[Any] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = causal_mask
# Insert a "dummy" tensor for masked_bias.
SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ : List[str] = masked_bias
SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous()
# Store.
SCREAMING_SNAKE_CASE__ : Dict = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Store. No change of shape.
SCREAMING_SNAKE_CASE__ : str = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : Dict = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""]
SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings
# It should be done!
return output_state_dict
def _lowercase ( ) -> List[Any]:
# Create the argument parser.
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , )
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
# Extract the basename.
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" )
else:
SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast"""
elif ds_args.openai_gelu:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new"""
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
SCREAMING_SNAKE_CASE__ : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig(
vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , )
else:
SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file )
SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__lowerCAmelCase , __lowerCAmelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
SCREAMING_SNAKE_CASE__ : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path
else:
raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__
SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(__lowerCAmelCase )
# Save tokenizer based on args
print(F'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(__lowerCAmelCase )
# Store the state_dict to file.
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" )
print(F'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 12 | 0 |
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
a :List[Any] = random.Random()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=1.0 , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> List[str]:
if rng is None:
SCREAMING_SNAKE_CASE__ : List[str] = global_rng
SCREAMING_SNAKE_CASE__ : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=7 , _a=400 , _a=2_000 , _a=1 , _a=0.0 , _a=16_000 , _a=True , _a=True , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : List[str] = batch_size
SCREAMING_SNAKE_CASE__ : Dict = min_seq_length
SCREAMING_SNAKE_CASE__ : int = max_seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE__ : List[Any] = feature_size
SCREAMING_SNAKE_CASE__ : int = padding_value
SCREAMING_SNAKE_CASE__ : str = sampling_rate
SCREAMING_SNAKE_CASE__ : List[str] = return_attention_mask
SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_normalize
def _a ( self ) -> List[Any]:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _a ( self , _a=False , _a=False ) -> Optional[int]:
"""simple docstring"""
def _flatten(_a ):
return list(itertools.chain(*lowerCamelCase__ ) )
if equal_length:
SCREAMING_SNAKE_CASE__ : Any = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE__ : List[str] = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.asarray(lowerCamelCase__ ) for x in speech_inputs]
return speech_inputs
class __a (UpperCAmelCase__ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = WavaVecaFeatureExtractor
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaFeatureExtractionTester(self )
def _a ( self , _a ) -> Tuple:
"""simple docstring"""
self.assertTrue(np.all(np.mean(lowerCamelCase__ , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__ , axis=0 ) - 1 ) < 1E-3 ) )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs]
# Test not batched input
SCREAMING_SNAKE_CASE__ : str = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE__ : Dict = feat_extract(lowerCamelCase__ , return_tensors="""np""" ).input_values
SCREAMING_SNAKE_CASE__ : Optional[Any] = feat_extract(lowerCamelCase__ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE__ : List[Any] = np.asarray(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(lowerCamelCase__ , return_tensors="""np""" ).input_values
SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract(lowerCamelCase__ , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE__ : Optional[int] = ["longest", "max_length", "do_not_pad"]
SCREAMING_SNAKE_CASE__ : int = [None, 1_600, None]
for max_length, padding in zip(lowerCamelCase__ , lowerCamelCase__ ):
SCREAMING_SNAKE_CASE__ : Any = feat_extract(lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Any = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self.assertTrue(input_values[0][1_000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ : int = range(800 , 1_400 , 200 )
SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in lengths]
SCREAMING_SNAKE_CASE__ : List[str] = ["longest", "max_length", "do_not_pad"]
SCREAMING_SNAKE_CASE__ : List[Any] = [None, 1_600, None]
for max_length, padding in zip(lowerCamelCase__ , lowerCamelCase__ ):
SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract(lowerCamelCase__ , max_length=lowerCamelCase__ , padding=lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : str = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1_000] )
self._check_zero_mean_unit_variance(input_values[2][:1_200] )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract(
lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=1_000 , padding="""max_length""" , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(
lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=1_000 , padding="""longest""" , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1_000) )
SCREAMING_SNAKE_CASE__ : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )]
SCREAMING_SNAKE_CASE__ : Dict = feat_extract(
lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=2_000 , padding="""longest""" , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1_000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1_200) )
@require_torch
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.random.rand(100 ).astype(np.floataa )
SCREAMING_SNAKE_CASE__ : List[str] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE__ : int = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def _a ( self ) -> Dict:
"""simple docstring"""
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
SCREAMING_SNAKE_CASE__ : List[Any] = WavaVecaConfig.from_pretrained(lowerCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == """layer""" )
| 717 |
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read()
SCREAMING_SNAKE_CASE__ : str = regexp.search(_a )
return match
def _a ( self , _a ) -> Optional[Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a )
SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_a ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(_a ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 12 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
a :Union[str, Any] = logging.get_logger(__name__)
a :Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
a :List[str] = {
"vocab_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json"
),
},
}
a :List[str] = {
"yjernite/retribert-base-uncased": 512,
}
a :List[str] = {
"yjernite/retribert-base-uncased": {"do_lower_case": True},
}
class __a (__a):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :int = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE :Dict = RetriBertTokenizer
_SCREAMING_SNAKE_CASE :str = ["input_ids", "attention_mask"]
def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> List[Any]:
"""simple docstring"""
super().__init__(
lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , )
SCREAMING_SNAKE_CASE__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowerCAmelCase_ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowerCAmelCase_ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase_ ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE__ : Optional[int] = getattr(lowerCAmelCase_ , normalizer_state.pop("""type""" ) )
SCREAMING_SNAKE_CASE__ : Tuple = do_lower_case
SCREAMING_SNAKE_CASE__ : Any = strip_accents
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE__ : str = normalizer_class(**lowerCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[str] = do_lower_case
def _a ( self , _a , _a=None ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ )
return tuple(lowerCAmelCase_ )
| 718 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __a :
'''simple docstring'''
def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length
SCREAMING_SNAKE_CASE__ : str = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length
SCREAMING_SNAKE_CASE__ : Tuple = is_training
SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask
SCREAMING_SNAKE_CASE__ : List[str] = use_labels
SCREAMING_SNAKE_CASE__ : str = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Any = num_attention_heads
SCREAMING_SNAKE_CASE__ : Any = d_ff
SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor
SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id
SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id
SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id
SCREAMING_SNAKE_CASE__ : Any = None
SCREAMING_SNAKE_CASE__ : str = decoder_layers
def _a ( self ) -> Tuple:
"""simple docstring"""
return TaConfig.from_pretrained("""google/umt5-base""" )
def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_a )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config()
SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a )
return config, input_dict
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs()
return config, inputs_dict
def _a ( self ) -> List[str]:
"""simple docstring"""
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Dict = model(
input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state
SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values
SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_a ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval()
# first forward pass
SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a )
SCREAMING_SNAKE_CASE__ : str = model(_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a )
self.parent.assertTrue(len(_a ) == len(_a ) )
self.parent.assertTrue(len(_a ) == len(_a ) + 1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""]
# select random slice
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) )
def _a ( self , _a , _a , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(_a ).any().item() )
@require_torch
class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE :List[str] = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
_SCREAMING_SNAKE_CASE :Tuple = False
_SCREAMING_SNAKE_CASE :Optional[Any] = False
_SCREAMING_SNAKE_CASE :List[Any] = True
_SCREAMING_SNAKE_CASE :List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9]
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_a )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0]
SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval()
model.to(_a )
SCREAMING_SNAKE_CASE__ : List[str] = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
}
for attn_name, (name, mask) in zip(_a , head_masking.items() ):
SCREAMING_SNAKE_CASE__ : List[str] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
SCREAMING_SNAKE_CASE__ : str = torch.ones(
config.num_decoder_layers , config.num_heads , device=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , )
# We check the state of decoder_attentions and cross_attentions just from the last step
SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a )
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids
# fmt: off
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) )
SCREAMING_SNAKE_CASE__ : int = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a )
self.assertEqual(_a , _a )
| 12 | 0 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowercase)
class __a (__lowercase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True})
_SCREAMING_SNAKE_CASE :ClassVar[Features] = Features({"""text""": Value("""string""")})
_SCREAMING_SNAKE_CASE :ClassVar[Features] = Features({"""labels""": ClassLabel})
_SCREAMING_SNAKE_CASE :str = "text"
_SCREAMING_SNAKE_CASE :str = "labels"
def _a ( self , _a ) -> Dict:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __a ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE__ : Dict = copy.deepcopy(self )
SCREAMING_SNAKE_CASE__ : str = self.label_schema.copy()
SCREAMING_SNAKE_CASE__ : Tuple = features[self.label_column]
SCREAMING_SNAKE_CASE__ : int = label_schema
return task_template
@property
def _a ( self ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
}
| 719 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
SCREAMING_SNAKE_CASE__ : List[Any] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : Optional[int] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
SCREAMING_SNAKE_CASE__ : int = dataset
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = con
SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
SCREAMING_SNAKE_CASE__ : int = num_proc
SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs )
return written
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args
SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
SCREAMING_SNAKE_CASE__ : Any = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas()
SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def _a ( self , _a , **_a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 12 | 0 |
"""simple docstring"""
from collections import deque
from .hash_table import HashTable
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , *_a , **_a ) -> Tuple:
"""simple docstring"""
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
def _a ( self , _a , _a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(UpperCAmelCase__ )
SCREAMING_SNAKE_CASE__ : int = self.values[key]
def _a ( self ) -> Tuple:
"""simple docstring"""
return (
sum(self.charge_factor - len(UpperCAmelCase__ ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _a ( self , _a , _a=None ) -> List[Any]:
"""simple docstring"""
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(UpperCAmelCase__ ) == 0
):
return key
return super()._collision_resolution(UpperCAmelCase__ , UpperCAmelCase__ )
| 720 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : int = 1
while repunit:
SCREAMING_SNAKE_CASE__ : str = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def _lowercase ( __lowerCAmelCase = 100_0000 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
a :Optional[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class __a (datasets.BuilderConfig):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = 1_00_00
_SCREAMING_SNAKE_CASE :Optional[Any] = None
_SCREAMING_SNAKE_CASE :Any = None
class __a (datasets.ArrowBasedBuilder):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = ParquetConfig
def _a ( self ) -> Tuple:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _a ( self , _a ) -> str:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
SCREAMING_SNAKE_CASE__ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(A__ , (str, list, tuple) ):
SCREAMING_SNAKE_CASE__ : Tuple = data_files
if isinstance(A__ , A__ ):
SCREAMING_SNAKE_CASE__ : Optional[int] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
SCREAMING_SNAKE_CASE__ : Dict = [dl_manager.iter_files(A__ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
SCREAMING_SNAKE_CASE__ : List[Any] = []
for split_name, files in data_files.items():
if isinstance(A__ , A__ ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
SCREAMING_SNAKE_CASE__ : Any = [dl_manager.iter_files(A__ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(A__ ):
with open(A__ , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ : List[Any] = datasets.Features.from_arrow_schema(pq.read_schema(A__ ) )
break
splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"""files""": files} ) )
return splits
def _a ( self , _a ) -> pa.Table:
"""simple docstring"""
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
SCREAMING_SNAKE_CASE__ : int = table_cast(A__ , self.info.features.arrow_schema )
return pa_table
def _a ( self , _a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' )
for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ):
with open(A__ , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ : List[Any] = pq.ParquetFile(A__ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
SCREAMING_SNAKE_CASE__ : str = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f'''{file_idx}_{batch_idx}''', self._cast_table(A__ )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(A__ )}: {e}''' )
raise
| 721 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a :Union[str, Any] = logging.getLogger(__name__)
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""})
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
_SCREAMING_SNAKE_CASE :Optional[bool] = field(
default=UpperCamelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
_SCREAMING_SNAKE_CASE :str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , )
def _lowercase ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_xnli""" , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : List[Any] = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
datasets.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE__ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset(
"""xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
SCREAMING_SNAKE_CASE__ : str = load_dataset(
"""xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = train_dataset.features["""label"""].names
if training_args.do_eval:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.features["""label"""].names
if training_args.do_predict:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.features["""label"""].names
# Labels
SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : str = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : str = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
def preprocess_function(__lowerCAmelCase ):
# Tokenize the texts
return tokenizer(
examples["""premise"""] , examples["""hypothesis"""] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(len(__lowerCAmelCase ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE__ : str = train_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ):
logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE__ : Any = min(len(__lowerCAmelCase ) , data_args.max_eval_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE__ : int = min(len(__lowerCAmelCase ) , data_args.max_predict_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = predict_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , )
# Get the metric function
SCREAMING_SNAKE_CASE__ : Optional[Any] = evaluate.load("""xnli""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Dict = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 )
return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : List[Any] = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE__ : int = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE__ : Dict = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_checkpoint
SCREAMING_SNAKE_CASE__ : str = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = train_result.metrics
SCREAMING_SNAKE_CASE__ : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : Dict = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __lowerCAmelCase )
trainer.save_metrics("""train""" , __lowerCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE__ : Any = trainer.evaluate(eval_dataset=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""eval""" , __lowerCAmelCase )
trainer.save_metrics("""eval""" , __lowerCAmelCase )
# Prediction
if training_args.do_predict:
logger.info("""*** Predict ***""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = trainer.predict(__lowerCAmelCase , metric_key_prefix="""predict""" )
SCREAMING_SNAKE_CASE__ : List[str] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : int = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""predict""" , __lowerCAmelCase )
trainer.save_metrics("""predict""" , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = np.argmax(__lowerCAmelCase , axis=1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , """predictions.txt""" )
if trainer.is_world_process_zero():
with open(__lowerCAmelCase , """w""" ) as writer:
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[int] = label_list[item]
writer.write(F'''{index}\t{item}\n''' )
if __name__ == "__main__":
main()
| 12 | 0 |
"""simple docstring"""
from random import shuffle
import tensorflow as tf
from numpy import array
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Any = int(_SCREAMING_SNAKE_CASE )
assert noofclusters < len(_SCREAMING_SNAKE_CASE )
# Find out the dimensionality
SCREAMING_SNAKE_CASE__ : Optional[int] = len(vectors[0] )
# Will help select random centroids from among the available vectors
SCREAMING_SNAKE_CASE__ : Optional[int] = list(range(len(_SCREAMING_SNAKE_CASE ) ) )
shuffle(_SCREAMING_SNAKE_CASE )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
SCREAMING_SNAKE_CASE__ : List[Any] = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(_SCREAMING_SNAKE_CASE )
]
##These nodes will assign the centroid Variables the appropriate
##values
SCREAMING_SNAKE_CASE__ : List[Any] = tf.placeholder("""float64""" , [dim] )
SCREAMING_SNAKE_CASE__ : int = []
for centroid in centroids:
cent_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
SCREAMING_SNAKE_CASE__ : str = [tf.Variable(0 ) for i in range(len(_SCREAMING_SNAKE_CASE ) )]
##These nodes will assign an assignment Variable the appropriate
##value
SCREAMING_SNAKE_CASE__ : Tuple = tf.placeholder("""int32""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
for assignment in assignments:
cluster_assigns.append(tf.assign(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
SCREAMING_SNAKE_CASE__ : Tuple = tf.placeholder("""float""" , [None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
SCREAMING_SNAKE_CASE__ : Any = tf.reduce_mean(_SCREAMING_SNAKE_CASE , 0 )
##Node for computing Euclidean distances
# Placeholders for input
SCREAMING_SNAKE_CASE__ : List[Any] = tf.placeholder("""float""" , [dim] )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.placeholder("""float""" , [dim] )
SCREAMING_SNAKE_CASE__ : Tuple = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , 2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
SCREAMING_SNAKE_CASE__ : int = tf.placeholder("""float""" , [noofclusters] )
SCREAMING_SNAKE_CASE__ : List[str] = tf.argmin(_SCREAMING_SNAKE_CASE , 0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
SCREAMING_SNAKE_CASE__ : str = tf.initialize_all_variables()
# Initialize all variables
sess.run(_SCREAMING_SNAKE_CASE )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 100
for _ in range(_SCREAMING_SNAKE_CASE ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(_SCREAMING_SNAKE_CASE ) ):
SCREAMING_SNAKE_CASE__ : List[Any] = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
SCREAMING_SNAKE_CASE__ : List[str] = [
sess.run(_SCREAMING_SNAKE_CASE , feed_dict={va: vect, va: sess.run(_SCREAMING_SNAKE_CASE )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
SCREAMING_SNAKE_CASE__ : Tuple = sess.run(
_SCREAMING_SNAKE_CASE , feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(_SCREAMING_SNAKE_CASE ):
# Collect all the vectors assigned to this cluster
SCREAMING_SNAKE_CASE__ : Dict = [
vectors[i]
for i in range(len(_SCREAMING_SNAKE_CASE ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
SCREAMING_SNAKE_CASE__ : Union[str, Any] = sess.run(
_SCREAMING_SNAKE_CASE , feed_dict={mean_input: array(_SCREAMING_SNAKE_CASE )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} )
# Return centroids and assignments
SCREAMING_SNAKE_CASE__ : Optional[Any] = sess.run(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE__ : Any = sess.run(_SCREAMING_SNAKE_CASE )
return centroids, assignments
| 700 |
"""simple docstring"""
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
a :str = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
a :int = {
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
a :Dict = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
a :List[Any] = "facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
a :str = "allenai"
def _lowercase ( __lowerCAmelCase ) -> Any:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
SCREAMING_SNAKE_CASE__ : str = dict((re.sub(r"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() )
SCREAMING_SNAKE_CASE__ : Tuple = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d[k] # restore
return da
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
# prep
assert os.path.exists(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
SCREAMING_SNAKE_CASE__ : Optional[Any] = basename(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
SCREAMING_SNAKE_CASE__ : Optional[int] = cls.hub_models()
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """."""
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F'''using checkpoint {checkpoint_file}''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hub_utils.from_pretrained(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = vars(chkpt["""args"""]["""model"""] )
SCREAMING_SNAKE_CASE__ : Any = args["""source_lang"""]
SCREAMING_SNAKE_CASE__ : Any = args["""target_lang"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = basename(__lowerCAmelCase )
# dicts
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(__lowerCAmelCase , F'''dict.{src_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , F'''dict.{tgt_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = rewrite_dict_keys(src_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[int] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """vocab-src.json""" )
print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
for k in src_vocab.keys():
if not k.islower():
SCREAMING_SNAKE_CASE__ : Tuple = False
break
SCREAMING_SNAKE_CASE__ : Optional[Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """vocab-tgt.json""" )
print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# merges_file (bpecodes)
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
break
with open(__lowerCAmelCase , encoding="""utf-8""" ) as fin:
SCREAMING_SNAKE_CASE__ : Any = fin.read()
SCREAMING_SNAKE_CASE__ : Tuple = re.sub(r""" \d+$""" , """""" , __lowerCAmelCase , 0 , re.M ) # remove frequency number
print(F'''Generating {merges_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout:
fout.write(__lowerCAmelCase )
# model config
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """config.json""" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}'''
assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}'''
SCREAMING_SNAKE_CASE__ : str = {
"""architectures""": ["""FSMTForConditionalGeneration"""],
"""model_type""": """fsmt""",
"""activation_dropout""": args["""activation_dropout"""],
"""activation_function""": """relu""",
"""attention_dropout""": args["""attention_dropout"""],
"""d_model""": args["""decoder_embed_dim"""],
"""dropout""": args["""dropout"""],
"""init_std""": 0.02,
"""max_position_embeddings""": args["""max_source_positions"""],
"""num_hidden_layers""": args["""encoder_layers"""],
"""src_vocab_size""": src_vocab_size,
"""tgt_vocab_size""": tgt_vocab_size,
"""langs""": [src_lang, tgt_lang],
"""encoder_attention_heads""": args["""encoder_attention_heads"""],
"""encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""],
"""encoder_layerdrop""": args["""encoder_layerdrop"""],
"""encoder_layers""": args["""encoder_layers"""],
"""decoder_attention_heads""": args["""decoder_attention_heads"""],
"""decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""],
"""decoder_layerdrop""": args["""decoder_layerdrop"""],
"""decoder_layers""": args["""decoder_layers"""],
"""bos_token_id""": 0,
"""pad_token_id""": 1,
"""eos_token_id""": 2,
"""is_encoder_decoder""": True,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_all_embeddings"""],
}
# good hparam defaults to start with
SCREAMING_SNAKE_CASE__ : Tuple = 5
SCREAMING_SNAKE_CASE__ : str = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
SCREAMING_SNAKE_CASE__ : Tuple = best_score_hparams[model_dir]["""length_penalty"""]
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1.0
print(F'''Generating {fsmt_model_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# tokenizer config
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = {
"""langs""": [src_lang, tgt_lang],
"""model_max_length""": 1024,
"""do_lower_case""": do_lower_case,
}
print(F'''Generating {fsmt_tokenizer_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# model
SCREAMING_SNAKE_CASE__ : Dict = chkpt["""models"""][0]
SCREAMING_SNAKE_CASE__ : int = model.state_dict()
# rename keys to start with 'model.'
SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
SCREAMING_SNAKE_CASE__ : str = [
"""model.model""",
"""model.encoder.version""",
"""model.decoder.version""",
"""model.encoder_embed_tokens.weight""",
"""model.decoder_embed_tokens.weight""",
"""model.encoder.embed_positions._float_tensor""",
"""model.decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = FSMTConfig.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTForConditionalGeneration(__lowerCAmelCase )
# check that it loads ok
model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
# save
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
print("""Conversion is done!""" )
print("""\nLast step is to upload the files to s3""" )
print(F'''cd {data_root}''' )
print(F'''transformers-cli upload {model_dir}''' )
if __name__ == "__main__":
a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a :List[str] = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 2 , __lowerCAmelCase = 1 , __lowerCAmelCase = 3 , ) -> Any:
# A value less than 2 can cause an infinite loop in the algorithm.
if num < 2:
raise ValueError("""The input value cannot be less than 2""" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
return (pow(lowercase__ , 2 ) + step) % modulus
for _ in range(lowercase__ ):
# These track the position within the cycle detection logic.
SCREAMING_SNAKE_CASE__ : List[str] = seed
SCREAMING_SNAKE_CASE__ : Optional[Any] = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
SCREAMING_SNAKE_CASE__ : List[str] = rand_fn(lowercase__ , lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE__ : str = rand_fn(lowercase__ , lowercase__ , lowercase__ )
SCREAMING_SNAKE_CASE__ : List[str] = rand_fn(lowercase__ , lowercase__ , lowercase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
SCREAMING_SNAKE_CASE__ : Any = gcd(hare - tortoise , lowercase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
SCREAMING_SNAKE_CASE__ : str = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
a :str = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
a :Tuple = parser.parse_args()
a :int = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(f'{args.num} is probably prime')
else:
a :Tuple = args.num // divisor
print(f'{args.num} = {divisor} * {quotient}')
| 701 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,)
def _a ( self , **_a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_a )
return config
def _a ( self ) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def _a ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_a )
def _a ( self ) -> Any:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_a )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def _a ( self ) -> int:
"""simple docstring"""
self.check_over_configs(thresholding=_a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , )
def _a ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def _a ( self ) -> str:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Any = len(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : str = pred_prev_sample
SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Dict = len(_a )
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample
SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps
for i, timestep in enumerate(_a ):
if i == len(_a ) - 1:
SCREAMING_SNAKE_CASE__ : Optional[Any] = -1
else:
SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1]
SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item()
self.assertEqual(_a , _a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0]
SCREAMING_SNAKE_CASE__ : List[str] = len(_a )
with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_a )
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a :Dict = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = ['XLNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :int = ['XLNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'XLNetForMultipleChoice',
'XLNetForQuestionAnswering',
'XLNetForQuestionAnsweringSimple',
'XLNetForSequenceClassification',
'XLNetForTokenClassification',
'XLNetLMHeadModel',
'XLNetModel',
'XLNetPreTrainedModel',
'load_tf_weights_in_xlnet',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Dict = [
'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFXLNetForMultipleChoice',
'TFXLNetForQuestionAnsweringSimple',
'TFXLNetForSequenceClassification',
'TFXLNetForTokenClassification',
'TFXLNetLMHeadModel',
'TFXLNetMainLayer',
'TFXLNetModel',
'TFXLNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
a :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 702 |
"""simple docstring"""
import os
a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
while index < len(__lowerCAmelCase ) - 1:
SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]]
SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = """"""
SCREAMING_SNAKE_CASE__ : int = num // 1000
numerals += m_count * "M"
num %= 1000
SCREAMING_SNAKE_CASE__ : List[str] = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
SCREAMING_SNAKE_CASE__ : List[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int:
SCREAMING_SNAKE_CASE__ : int = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
SCREAMING_SNAKE_CASE__ : str = filea.readlines()
for line in lines:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip()
SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a :Optional[int] = logging.get_logger(__name__)
a :Tuple = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class __a (_UpperCAmelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = """trocr"""
_SCREAMING_SNAKE_CASE :Union[str, Any] = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :str = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self , _a=50_265 , _a=1_024 , _a=12 , _a=16 , _a=4_096 , _a="gelu" , _a=512 , _a=0.1 , _a=0.0 , _a=0.0 , _a=2 , _a=0.02 , _a=0.0 , _a=True , _a=False , _a=True , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = vocab_size
SCREAMING_SNAKE_CASE__ : int = d_model
SCREAMING_SNAKE_CASE__ : Any = decoder_layers
SCREAMING_SNAKE_CASE__ : str = decoder_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_ffn_dim
SCREAMING_SNAKE_CASE__ : str = activation_function
SCREAMING_SNAKE_CASE__ : Dict = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = dropout
SCREAMING_SNAKE_CASE__ : Optional[int] = attention_dropout
SCREAMING_SNAKE_CASE__ : Dict = activation_dropout
SCREAMING_SNAKE_CASE__ : Tuple = init_std
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_layerdrop
SCREAMING_SNAKE_CASE__ : Optional[int] = use_cache
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scale_embedding
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_learned_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = layernorm_embedding
super().__init__(
pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , decoder_start_token_id=lowercase__ , **lowercase__ , )
| 703 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a (__SCREAMING_SNAKE_CASE , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = LEDTokenizer
_SCREAMING_SNAKE_CASE :List[Any] = LEDTokenizerFast
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
def _a ( self ) -> Tuple:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE__ : Any = dict(zip(__snake_case , range(len(__snake_case ) ) ) )
SCREAMING_SNAKE_CASE__ : List[str] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
SCREAMING_SNAKE_CASE__ : int = {'''unk_token''': '''<unk>'''}
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
SCREAMING_SNAKE_CASE__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__snake_case ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__snake_case ) )
def _a ( self , **_a ) -> Optional[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case )
def _a ( self , **_a ) -> Dict:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__snake_case )
def _a ( self , _a ) -> Optional[int]:
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def _a ( self ) -> Optional[int]:
"""simple docstring"""
return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" )
@cached_property
def _a ( self ) -> str:
"""simple docstring"""
return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" )
@require_torch
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
SCREAMING_SNAKE_CASE__ : List[Any] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(__snake_case , max_length=len(__snake_case ) , padding=__snake_case , return_tensors="""pt""" )
self.assertIsInstance(__snake_case , __snake_case )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE__ : List[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(__snake_case , __snake_case )
@require_torch
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(__snake_case , padding=__snake_case , return_tensors="""pt""" )
self.assertIn("""input_ids""" , __snake_case )
self.assertIn("""attention_mask""" , __snake_case )
self.assertNotIn("""labels""" , __snake_case )
self.assertNotIn("""decoder_attention_mask""" , __snake_case )
@require_torch
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer(text_target=__snake_case , max_length=32 , padding="""max_length""" , return_tensors="""pt""" )
self.assertEqual(32 , targets["""input_ids"""].shape[1] )
@require_torch
def _a ( self ) -> Tuple:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(
["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=__snake_case , truncation=__snake_case , return_tensors="""pt""" )
self.assertIsInstance(__snake_case , __snake_case )
self.assertEqual(batch.input_ids.shape , (2, 5_122) )
@require_torch
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''A long paragraph for summarization.''']
SCREAMING_SNAKE_CASE__ : Any = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(__snake_case , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ : Any = tokenizer(text_target=__snake_case , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = inputs['''input_ids''']
SCREAMING_SNAKE_CASE__ : Any = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _a ( self ) -> int:
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE__ : Optional[int] = ['''Summary of the text.''', '''Another summary.''']
SCREAMING_SNAKE_CASE__ : List[Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer(__snake_case , padding=__snake_case )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0] * len(__snake_case ) for x in encoded_output['''input_ids''']]
SCREAMING_SNAKE_CASE__ : str = tokenizer.pad(__snake_case )
self.assertSequenceEqual(outputs["""global_attention_mask"""] , __snake_case )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case )
SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer_class.from_pretrained(__snake_case , **__snake_case )
SCREAMING_SNAKE_CASE__ : int = '''A, <mask> AllenNLP sentence.'''
SCREAMING_SNAKE_CASE__ : str = tokenizer_r.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case )
SCREAMING_SNAKE_CASE__ : str = tokenizer_p.encode_plus(__snake_case , add_special_tokens=__snake_case , return_token_type_ids=__snake_case )
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] )
self.assertSequenceEqual(
__snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
__snake_case , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
| 704 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a :List[Any] = logging.get_logger(__name__)
a :Optional[int] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __a (UpperCamelCase_ , UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = """focalnet"""
def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size
SCREAMING_SNAKE_CASE__ : str = patch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim
SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed
SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE__ : Optional[int] = depths
SCREAMING_SNAKE_CASE__ : Any = focal_levels
SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate
SCREAMING_SNAKE_CASE__ : str = use_layerscale
SCREAMING_SNAKE_CASE__ : int = layerscale_value
SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm
SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation
SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator
SCREAMING_SNAKE_CASE__ : str = initializer_range
SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Any = encoder_stride
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 12 | 0 |
"""simple docstring"""
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
a :int = """true"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=82 , __lowerCAmelCase=16 ) -> Tuple:
set_seed(42 )
SCREAMING_SNAKE_CASE__ : Tuple = RegressionModel()
SCREAMING_SNAKE_CASE__ : Optional[int] = deepcopy(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = RegressionDataset(length=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Any = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase )
model.to(accelerator.device )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
return model, ddp_model, dataloader
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" )
SCREAMING_SNAKE_CASE__ : str = load_dataset("""glue""" , """mrpc""" , split="""validation""" )
def tokenize_function(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Dict = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase )
return outputs
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE__ : Tuple = dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
SCREAMING_SNAKE_CASE__ : str = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__lowerCAmelCase ):
if use_longest:
return tokenizer.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )
return tokenizer.pad(__lowerCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Optional[int] = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_dataloader(__lowerCAmelCase , not dispatch_batches )
SCREAMING_SNAKE_CASE__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained(
"""hf-internal-testing/mrpc-bert-base-cased""" , return_dict=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
SCREAMING_SNAKE_CASE__ : List[Any] = []
for batch in dataloader:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = batch.values()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : int = model(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = [], []
for logit, targ in logits_and_targets:
logits.append(__lowerCAmelCase )
targs.append(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase )
return logits, targs
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=82 , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=16 ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
assert (
len(__lowerCAmelCase ) == num_samples
), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}'''
def _lowercase ( __lowerCAmelCase = False , __lowerCAmelCase = False ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : List[str] = evaluate.load("""glue""" , """mrpc""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase )
# First do baseline
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = setup["""no"""]
model.to(__lowerCAmelCase )
model.eval()
for batch in dataloader:
batch.to(__lowerCAmelCase )
with torch.inference_mode():
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=__lowerCAmelCase , references=batch["""labels"""] )
SCREAMING_SNAKE_CASE__ : Optional[Any] = metric.compute()
# Then do distributed
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = setup["""ddp"""]
model.eval()
for batch in dataloader:
with torch.inference_mode():
SCREAMING_SNAKE_CASE__ : Any = model(**__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE__ : int = batch["""labels"""]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n'''
def _lowercase ( ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : int = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("""**Testing gather_for_metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' )
test_mrpc(__lowerCAmelCase , __lowerCAmelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test torch metrics**""" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
SCREAMING_SNAKE_CASE__ : Dict = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase )
if accelerator.is_local_main_process:
print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' )
test_torch_metrics(__lowerCAmelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("""**Test last batch is not dropped when perfectly divisible**""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = Accelerator()
test_torch_metrics(__lowerCAmelCase , 512 )
accelerator.state._reset_state()
def _lowercase ( __lowerCAmelCase ) -> Tuple:
main()
if __name__ == "__main__":
main()
| 705 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = parent
SCREAMING_SNAKE_CASE__ : Tuple = batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask
SCREAMING_SNAKE_CASE__ : Tuple = use_token_type_ids
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Dict = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE__ : int = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __a (UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = True
_SCREAMING_SNAKE_CASE :Optional[Any] = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerModelTester(self )
@slow
def _a ( self ) -> int:
"""simple docstring"""
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a )
SCREAMING_SNAKE_CASE__ : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
SCREAMING_SNAKE_CASE__ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE__ : str = model(_a )[0]
SCREAMING_SNAKE_CASE__ : List[Any] = 50_000
SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 6, vocab_size)
self.assertEqual(output.shape , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __a (_UpperCamelCase , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = ConsistencyModelPipeline
_SCREAMING_SNAKE_CASE :Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
_SCREAMING_SNAKE_CASE :Dict = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
_SCREAMING_SNAKE_CASE :List[str] = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""output_type""",
"""return_dict""",
"""callback""",
"""callback_steps""",
])
@property
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = UNetaDModel.from_pretrained(
"""diffusers/consistency-models-test""" , subfolder="""test_unet""" , )
return unet
@property
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = UNetaDModel.from_pretrained(
"""diffusers/consistency-models-test""" , subfolder="""test_unet_class_cond""" , )
return unet
def _a ( self , _a=False ) -> Tuple:
"""simple docstring"""
if class_cond:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_cond_unet
else:
SCREAMING_SNAKE_CASE__ : Any = self.dummy_uncond_unet
# Default to CM multistep sampler
SCREAMING_SNAKE_CASE__ : List[Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"unet": unet,
"scheduler": scheduler,
}
return components
def _a ( self , _a , _a=0 ) -> Optional[int]:
"""simple docstring"""
if str(__a ).startswith("""mps""" ):
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.manual_seed(__a )
else:
SCREAMING_SNAKE_CASE__ : List[str] = torch.Generator(device=__a ).manual_seed(__a )
SCREAMING_SNAKE_CASE__ : Any = {
"batch_size": 1,
"num_inference_steps": None,
"timesteps": [22, 0],
"generator": generator,
"output_type": "np",
}
return inputs
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ : Optional[int] = ConsistencyModelPipeline(**__a )
SCREAMING_SNAKE_CASE__ : int = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_inputs(__a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_components(class_cond=__a )
SCREAMING_SNAKE_CASE__ : List[Any] = ConsistencyModelPipeline(**__a )
SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_inputs(__a )
SCREAMING_SNAKE_CASE__ : Tuple = 0
SCREAMING_SNAKE_CASE__ : List[str] = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ : List[Any] = ConsistencyModelPipeline(**__a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(__a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Optional[int] = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE__ : str = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components(class_cond=__a )
SCREAMING_SNAKE_CASE__ : List[str] = ConsistencyModelPipeline(**__a )
SCREAMING_SNAKE_CASE__ : List[str] = pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(__a )
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : List[str] = None
SCREAMING_SNAKE_CASE__ : int = 0
SCREAMING_SNAKE_CASE__ : int = pipe(**__a ).images
assert image.shape == (1, 32, 32, 3)
SCREAMING_SNAKE_CASE__ : Tuple = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : Any = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _a ( self , _a=0 , _a=False , _a="cpu" , _a=torch.floataa , _a=(1, 3, 64, 64) ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.manual_seed(__a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"num_inference_steps": None,
"timesteps": [22, 0],
"class_labels": 0,
"generator": generator,
"output_type": "np",
}
if get_fixed_latents:
SCREAMING_SNAKE_CASE__ : List[str] = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a )
SCREAMING_SNAKE_CASE__ : List[Any] = latents
return inputs
def _a ( self , _a=0 , _a="cpu" , _a=torch.floataa , _a=(1, 3, 64, 64) ) -> Dict:
"""simple docstring"""
if type(__a ) == str:
SCREAMING_SNAKE_CASE__ : int = torch.device(__a )
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Generator(device=__a ).manual_seed(__a )
SCREAMING_SNAKE_CASE__ : List[Any] = randn_tensor(__a , generator=__a , device=__a , dtype=__a )
return latents
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
SCREAMING_SNAKE_CASE__ : List[Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
SCREAMING_SNAKE_CASE__ : List[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : Any = self.get_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ : int = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : Tuple = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
SCREAMING_SNAKE_CASE__ : List[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : List[str] = self.get_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = 1
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Optional[int] = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ : Optional[Any] = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : int = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
@require_torch_a
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
SCREAMING_SNAKE_CASE__ : Any = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_inputs(get_fixed_latents=__a , device=__a )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : Tuple = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@require_torch_a
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDModel.from_pretrained("""diffusers/consistency_models""" , subfolder="""diffusers_cd_imagenet64_l2""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a )
pipe.to(torch_device=__a , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__a )
SCREAMING_SNAKE_CASE__ : int = self.get_inputs(get_fixed_latents=__a , device=__a )
SCREAMING_SNAKE_CASE__ : Any = 1
SCREAMING_SNAKE_CASE__ : Any = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ):
SCREAMING_SNAKE_CASE__ : int = pipe(**__a ).images
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ : Any = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 706 |
"""simple docstring"""
a :List[str] = [
(1_000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
SCREAMING_SNAKE_CASE__ : List[Any] = 0
SCREAMING_SNAKE_CASE__ : List[str] = 0
while place < len(__lowerCAmelCase ):
if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Any = []
for arabic, roman in ROMAN:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import webbrowser
from sys import argv
from urllib.parse import parse_qs, quote
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
a :Optional[Any] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: ")))
print("Googling.....")
a :Tuple = f'https://www.google.com/search?q={query}&num=100'
a :Optional[Any] = requests.get(
url,
headers={"User-Agent": str(UserAgent().random)},
)
try:
a :str = (
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "yuRUbf"})
.find("a")
.get("href")
)
except AttributeError:
a :List[str] = parse_qs(
BeautifulSoup(res.text, "html.parser")
.find("div", attrs={"class": "kCrYT"})
.find("a")
.get("href")
)["url"][0]
webbrowser.open(link)
| 707 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a :Any = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 12 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=_lowerCAmelCase)
class __a (_lowerCAmelCase):
'''simple docstring'''
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
_SCREAMING_SNAKE_CASE :str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True})
_SCREAMING_SNAKE_CASE :ClassVar[Features] = Features({"""question""": Value("""string"""), """context""": Value("""string""")})
_SCREAMING_SNAKE_CASE :ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string"""),
"""answer_start""": Value("""int32"""),
})
})
_SCREAMING_SNAKE_CASE :str = "question"
_SCREAMING_SNAKE_CASE :str = "context"
_SCREAMING_SNAKE_CASE :str = "answers"
@property
def _a ( self ) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 708 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Dict = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_a , _a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> Any:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a )
SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _a )
self.assertIsInstance(processor_fast.tokenizer , _a )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _a )
self.assertIsInstance(processor_fast.image_processor , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a )
SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
if len(snake_case_ ) == 0:
return False
SCREAMING_SNAKE_CASE__ : str = len(snake_case_ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , snake_case_ )
else:
return binary_search(a_list[midpoint + 1 :] , snake_case_ )
if __name__ == "__main__":
a :List[str] = input("Enter numbers separated by comma:\n").strip()
a :List[Any] = [int(item.strip()) for item in user_input.split(",")]
a :List[Any] = int(input("Enter the number to be found in the list:\n").strip())
a :Dict = "" if binary_search(sequence, target) else "not "
print(f'{target} was {not_str}found in {sequence}')
| 709 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a :Optional[Any] = logging.get_logger(__name__)
a :Union[str, Any] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """t5"""
_SCREAMING_SNAKE_CASE :List[str] = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , _a=32_128 , _a=512 , _a=64 , _a=2_048 , _a=6 , _a=None , _a=8 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="relu" , _a=True , _a=True , _a=0 , _a=1 , **_a , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : int = d_kv
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_ff
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_layers
SCREAMING_SNAKE_CASE__ : int = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE__ : Tuple = num_heads
SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : str = relative_attention_max_distance
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_factor
SCREAMING_SNAKE_CASE__ : Tuple = feed_forward_proj
SCREAMING_SNAKE_CASE__ : str = use_cache
SCREAMING_SNAKE_CASE__ : List[str] = self.feed_forward_proj.split("""-""" )
SCREAMING_SNAKE_CASE__ : Dict = act_info[-1]
SCREAMING_SNAKE_CASE__ : str = act_info[0] == """gated"""
if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE__ : List[Any] = """gelu_new"""
super().__init__(
pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
class __a (UpperCamelCase_):
'''simple docstring'''
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""input_ids""": {0: """batch""", 1: """encoder_sequence"""},
"""attention_mask""": {0: """batch""", 1: """encoder_sequence"""},
}
if self.use_past:
SCREAMING_SNAKE_CASE__ : Tuple = """past_encoder_sequence + sequence"""
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch"""}
SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""}
SCREAMING_SNAKE_CASE__ : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_a , direction="""inputs""" )
return common_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return 13
| 12 | 0 |
"""simple docstring"""
from timeit import timeit
def _lowercase ( __lowerCAmelCase ) -> int:
if number < 0:
raise ValueError("""the value of input must not be negative""" )
SCREAMING_SNAKE_CASE__ : int = 0
while number:
number &= number - 1
result += 1
return result
def _lowercase ( __lowerCAmelCase ) -> int:
if number < 0:
raise ValueError("""the value of input must not be negative""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def _lowercase ( ) -> None:
def do_benchmark(__lowerCAmelCase ) -> None:
SCREAMING_SNAKE_CASE__ : List[str] = '''import __main__ as z'''
print(F'''Benchmark when {number = }:''' )
print(F'''{get_set_bits_count_using_modulo_operator(__UpperCamelCase ) = }''' )
SCREAMING_SNAKE_CASE__ : int = timeit("""z.get_set_bits_count_using_modulo_operator(25)""" , setup=__UpperCamelCase )
print(F'''timeit() runs in {timing} seconds''' )
print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCamelCase ) = }''' )
SCREAMING_SNAKE_CASE__ : Any = timeit(
"""z.get_set_bits_count_using_brian_kernighans_algorithm(25)""" , setup=__UpperCamelCase , )
print(F'''timeit() runs in {timing} seconds''' )
for number in (25, 37, 58, 0):
do_benchmark(__UpperCamelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 710 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
a :Optional[Any] = [8, 5, 9, 7]
a :List[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
a :int = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = claim_vector
SCREAMING_SNAKE_CASE__ : Any = allocated_resources_table
SCREAMING_SNAKE_CASE__ : Any = maximum_claim_table
def _a ( self ) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _a ( self ) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _a ( self ) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _a ( self ) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(_a ): i for i in self.__need()}
def _a ( self , **_a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.__need()
SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table
SCREAMING_SNAKE_CASE__ : Dict = self.__available_resources()
SCREAMING_SNAKE_CASE__ : Dict = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 50 + """\n""" )
while need_list:
SCREAMING_SNAKE_CASE__ : List[str] = False
for each_need in need_list:
SCREAMING_SNAKE_CASE__ : Dict = True
for index, need in enumerate(_a ):
if need > available_resources[index]:
SCREAMING_SNAKE_CASE__ : Optional[int] = False
break
if execution:
SCREAMING_SNAKE_CASE__ : Any = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
SCREAMING_SNAKE_CASE__ : Tuple = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(_a )
# update available/freed resources stack
SCREAMING_SNAKE_CASE__ : Dict = np.array(_a ) + np.array(
alloc_resources_table[process_number] )
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(_a ) for x in available_resources] ) )
break
if safe:
print("""The process is in a safe state.\n""" )
else:
print("""System in unsafe state. Aborting...\n""" )
break
def _a ( self ) -> Any:
"""simple docstring"""
print(""" """ * 9 + """Allocated Resource Table""" )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(""" """ * 9 + """System Resource Table""" )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(_a ) for x in self.__claim_vector ) )
print(
"""Initial Available Resources: """
+ """ """.join(str(_a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
a :List[str] = logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase__)
class __a (lowerCAmelCase__):
'''simple docstring'''
def __init__( self , *_a , **_a ) -> int:
"""simple docstring"""
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
self.check_model_type(_lowerCamelCase )
def _a ( self , _a=None , _a=None , _a=None , **_a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = {}, {}
if padding is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = padding
if truncation is not None:
SCREAMING_SNAKE_CASE__ : str = truncation
if top_k is not None:
SCREAMING_SNAKE_CASE__ : Tuple = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , _a , _a = None , **_a ) -> str:
"""simple docstring"""
if isinstance(_lowerCamelCase , (Image.Image, str) ) and isinstance(_lowerCamelCase , _lowerCamelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""image""": image, """question""": question}
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = image
SCREAMING_SNAKE_CASE__ : str = super().__call__(_lowerCamelCase , **_lowerCamelCase )
return results
def _a ( self , _a , _a=False , _a=False ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = load_image(inputs["""image"""] )
SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer(
inputs["""question"""] , return_tensors=self.framework , padding=_lowerCamelCase , truncation=_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Any = self.image_processor(images=_lowerCamelCase , return_tensors=self.framework )
model_inputs.update(_lowerCamelCase )
return model_inputs
def _a ( self , _a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model(**_lowerCamelCase )
return model_outputs
def _a ( self , _a , _a=5 ) -> Tuple:
"""simple docstring"""
if top_k > self.model.config.num_labels:
SCREAMING_SNAKE_CASE__ : List[Any] = self.model.config.num_labels
if self.framework == "pt":
SCREAMING_SNAKE_CASE__ : Optional[int] = model_outputs.logits.sigmoid()[0]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = probs.topk(_lowerCamelCase )
else:
raise ValueError(f'''Unsupported framework: {self.framework}''' )
SCREAMING_SNAKE_CASE__ : List[Any] = scores.tolist()
SCREAMING_SNAKE_CASE__ : str = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
| 711 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a :List[Any] = None
a :Optional[int] = logging.get_logger(__name__)
a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
a :Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
a :Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
a :int = "▁"
# Segments (not really needed)
a :Dict = 0
a :Optional[int] = 1
a :Tuple = 2
a :List[str] = 3
a :Optional[Any] = 4
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = """left"""
_SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE__ : List[str] = remove_space
SCREAMING_SNAKE_CASE__ : int = keep_accents
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Dict = ""
for i in table:
res += inp[i - 1]
return res
def _lowercase ( __lowerCAmelCase ) -> int:
return data[1:] + data[0]
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ""
for i in range(len(__snake_case ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : int = int("""0b""" + data[0] + data[-1] , 2 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Tuple = message[:4]
SCREAMING_SNAKE_CASE__ : int = message[4:]
SCREAMING_SNAKE_CASE__ : int = apply_table(__snake_case , __snake_case )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = xor(__snake_case , __snake_case )
SCREAMING_SNAKE_CASE__ : Tuple = apply_sbox(__snake_case , temp[:4] ) # noqa: E741
SCREAMING_SNAKE_CASE__ : List[str] = apply_sbox(__snake_case , temp[4:] )
SCREAMING_SNAKE_CASE__ : int = "0" * (2 - len(__snake_case )) + l # noqa: E741
SCREAMING_SNAKE_CASE__ : int = "0" * (2 - len(__snake_case )) + r
SCREAMING_SNAKE_CASE__ : Optional[Any] = apply_table(l + r , __snake_case )
SCREAMING_SNAKE_CASE__ : Tuple = xor(__snake_case , __snake_case )
return temp + right
if __name__ == "__main__":
a :Dict = input("Enter 10 bit key: ")
a :Tuple = input("Enter 8 bit message: ")
a :Any = [6, 3, 7, 4, 8, 5, 10, 9]
a :List[str] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
a :Tuple = [2, 4, 3, 1]
a :List[Any] = [2, 6, 3, 1, 4, 8, 5, 7]
a :Optional[Any] = [4, 1, 3, 5, 7, 2, 8, 6]
a :Optional[int] = [4, 1, 2, 3, 2, 3, 4, 1]
a :List[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
a :Union[str, Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
a :int = apply_table(key, paa_table)
a :Dict = temp[:5]
a :Optional[int] = temp[5:]
a :Optional[int] = left_shift(left)
a :Union[str, Any] = left_shift(right)
a :int = apply_table(left + right, pa_table)
a :Tuple = left_shift(left)
a :Union[str, Any] = left_shift(right)
a :Dict = left_shift(left)
a :Optional[Any] = left_shift(right)
a :Optional[int] = apply_table(left + right, pa_table)
# encryption
a :Tuple = apply_table(message, IP)
a :Tuple = function(expansion, sa, sa, keya, temp)
a :List[Any] = temp[4:] + temp[:4]
a :int = function(expansion, sa, sa, keya, temp)
a :Union[str, Any] = apply_table(temp, IP_inv)
print("Cipher text is:", CT)
# decryption
a :List[Any] = apply_table(CT, IP)
a :List[Any] = function(expansion, sa, sa, keya, temp)
a :int = temp[4:] + temp[:4]
a :Union[str, Any] = function(expansion, sa, sa, keya, temp)
a :Union[str, Any] = apply_table(temp, IP_inv)
print("Plain text after decypting is:", PT)
| 712 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )]
# since string of zero length match pattern of zero length
SCREAMING_SNAKE_CASE__ : Dict = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , __lowerCAmelCase ):
for j in range(1 , __lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
SCREAMING_SNAKE_CASE__ : List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE__ : Dict = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a :Any = "aab"
a :Optional[Any] = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'{input_string} matches the given pattern {pattern}')
else:
print(f'{input_string} does not match with the given pattern {pattern}')
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
a :List[Any] = "#"
class __a :
'''simple docstring'''
def __init__( self ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = {}
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self._trie
for char in text:
if char not in trie:
SCREAMING_SNAKE_CASE__ : str = {}
SCREAMING_SNAKE_CASE__ : Union[str, Any] = trie[char]
SCREAMING_SNAKE_CASE__ : str = True
def _a ( self , _a ) -> tuple | list:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self._trie
for char in prefix:
if char in trie:
SCREAMING_SNAKE_CASE__ : List[str] = trie[char]
else:
return []
return self._elements(__A )
def _a ( self , _a ) -> tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = []
for c, v in d.items():
SCREAMING_SNAKE_CASE__ : Dict = [""" """] if c == END else [(c + s) for s in self._elements(__A )]
result.extend(__A )
return tuple(__A )
a :Optional[int] = Trie()
a :Optional[Any] = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def _lowercase ( __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Optional[int] = trie.find_word(a__ )
return tuple(string + word for word in suffixes )
def _lowercase ( ) -> str:
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 713 |
"""simple docstring"""
from math import sqrt
def _lowercase ( __lowerCAmelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = 0
SCREAMING_SNAKE_CASE__ : Tuple = 1
while count != nth and number < 3:
number += 1
if is_prime(__lowerCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(__lowerCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def _lowercase ( __lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"""`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """
F'''{test_file} instead.''' )
SCREAMING_SNAKE_CASE__ : int = components[-1]
if not test_fn.endswith("""py""" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("""test_modeling_""" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
SCREAMING_SNAKE_CASE__ : int = components[:-1] + [test_fn.replace(""".py""" , """""" )]
SCREAMING_SNAKE_CASE__ : int = """.""".join(UpperCamelCase__ )
return test_module_path
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_module_path(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : int = importlib.import_module(UpperCamelCase__ )
return test_module
def _lowercase ( __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : Tuple = get_test_module(UpperCamelCase__ )
for attr in dir(UpperCamelCase__ ):
if attr.endswith("""ModelTester""" ):
tester_classes.append(getattr(UpperCamelCase__ , UpperCamelCase__ ) )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda __lowerCAmelCase : x.__name__ )
def _lowercase ( __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = []
SCREAMING_SNAKE_CASE__ : List[str] = get_test_module(UpperCamelCase__ )
for attr in dir(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr(UpperCamelCase__ , UpperCamelCase__ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
SCREAMING_SNAKE_CASE__ : int = getattr(UpperCamelCase__ , """all_model_classes""" , [] )
if len(UpperCamelCase__ ) > 0:
test_classes.append(UpperCamelCase__ )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda __lowerCAmelCase : x.__name__ )
def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_test_classes(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda __lowerCAmelCase : x.__name__ )
def _lowercase ( __lowerCAmelCase ) -> List[Any]:
SCREAMING_SNAKE_CASE__ : Dict = test_class()
if hasattr(UpperCamelCase__ , """setUp""" ):
test.setUp()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if hasattr(UpperCamelCase__ , """model_tester""" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
SCREAMING_SNAKE_CASE__ : Tuple = test.model_tester.__class__
return model_tester
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : List[str] = get_test_classes(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Any = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(UpperCamelCase__ )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda __lowerCAmelCase : x.__name__ )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[int] = get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Dict = []
for test_class in test_classes:
SCREAMING_SNAKE_CASE__ : str = get_model_tester_from_test_class(UpperCamelCase__ )
if tester_class is not None:
tester_classes.append(UpperCamelCase__ )
# sort with class names
return sorted(UpperCamelCase__ , key=lambda __lowerCAmelCase : x.__name__ )
def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : str = get_test_classes(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(UpperCamelCase__ ) for test_class in test_classes}
return test_tester_mapping
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Tuple = get_model_classes(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : str = {
model_class: get_test_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes
}
return model_test_mapping
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[int] = get_model_classes(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Dict = {
model_class: get_tester_classes_for_model(UpperCamelCase__ , UpperCamelCase__ ) for model_class in model_classes
}
return model_to_tester_mapping
def _lowercase ( __lowerCAmelCase ) -> str:
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return o
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return o.__name__
elif isinstance(UpperCamelCase__ , (list, tuple) ):
return [to_json(UpperCamelCase__ ) for x in o]
elif isinstance(UpperCamelCase__ , UpperCamelCase__ ):
return {to_json(UpperCamelCase__ ): to_json(UpperCamelCase__ ) for k, v in o.items()}
else:
return o
| 714 |
"""simple docstring"""
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = value
SCREAMING_SNAKE_CASE__ : List[Any] = weight
def __repr__( self ) -> List[Any]:
"""simple docstring"""
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value
def _a ( self ) -> int:
"""simple docstring"""
return self.name
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.weight
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value / self.weight
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : Any = []
for i in range(len(__lowerCAmelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0, 0.0
for i in range(len(__lowerCAmelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _lowercase ( ) -> List[str]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
a :Optional[int] = {
'''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''],
'''processing_speech_to_text''': ['''Speech2TextProcessor'''],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :int = ['''Speech2TextTokenizer''']
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[str] = ['''Speech2TextFeatureExtractor''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :int = [
'''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFSpeech2TextForConditionalGeneration''',
'''TFSpeech2TextModel''',
'''TFSpeech2TextPreTrainedModel''',
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
'''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Speech2TextForConditionalGeneration''',
'''Speech2TextModel''',
'''Speech2TextPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
a :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 715 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
a :Optional[int] = None
a :Optional[Any] = logging.get_logger(__name__)
a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
a :Union[str, Any] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
a :Any = {
"facebook/nllb-large-en-ro": 1_024,
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""]
_SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer
_SCREAMING_SNAKE_CASE :List[int] = []
_SCREAMING_SNAKE_CASE :List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
SCREAMING_SNAKE_CASE__ : List[str] = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn"""
SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _a ( self ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
SCREAMING_SNAKE_CASE__ : Dict = src_lang
SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id
return inputs
def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = src_lang
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _a ( self ) -> str:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class __a :
'''simple docstring'''
def __init__( self , _a=2 , _a=3 , _a=64 , _a=None ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = np.random.default_rng(__a )
SCREAMING_SNAKE_CASE__ : Dict = length
SCREAMING_SNAKE_CASE__ : str = rng.normal(size=(length,) ).astype(np.floataa )
SCREAMING_SNAKE_CASE__ : int = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Union[str, Any]:
"""simple docstring"""
return self.length
def __getitem__( self , _a ) -> Optional[int]:
"""simple docstring"""
return {"x": self.x[i], "y": self.y[i]}
class __a (torch.nn.Module):
'''simple docstring'''
def __init__( self , _a=0 , _a=0 , _a=False ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE__ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
SCREAMING_SNAKE_CASE__ : str = True
def _a ( self , _a=None ) -> Optional[Any]:
"""simple docstring"""
if self.first_batch:
print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' )
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
return x * self.a[0] + self.b[0]
class __a (torch.nn.Module):
'''simple docstring'''
def __init__( self , _a=0 , _a=0 , _a=False ) -> List[str]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ : int = torch.nn.Parameter(torch.tensor(__a ).float() )
SCREAMING_SNAKE_CASE__ : Tuple = torch.nn.Parameter(torch.tensor(__a ).float() )
SCREAMING_SNAKE_CASE__ : List[str] = True
def _a ( self , _a=None ) -> List[Any]:
"""simple docstring"""
if self.first_batch:
print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' )
SCREAMING_SNAKE_CASE__ : Dict = False
return x * self.a + self.b
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = 16 ) -> int:
from datasets import load_dataset
from transformers import AutoTokenizer
SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'}
SCREAMING_SNAKE_CASE__ : Tuple = load_dataset("""csv""" , data_files=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = datasets['train'].unique("""label""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {v: i for i, v in enumerate(__lowerCAmelCase )}
def tokenize_function(__lowerCAmelCase ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(
examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding="""max_length""" )
if "label" in examples:
SCREAMING_SNAKE_CASE__ : Tuple = [label_to_id[l] for l in examples['label']]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
SCREAMING_SNAKE_CASE__ : List[str] = datasets.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=["""sentence1""", """sentence2""", """label"""] , )
def collate_fn(__lowerCAmelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__lowerCAmelCase , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(__lowerCAmelCase , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE__ : Tuple = DataLoader(tokenized_datasets["""train"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader(tokenized_datasets["""validation"""] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 )
return train_dataloader, eval_dataloader
| 716 |
"""simple docstring"""
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any:
# Format the message.
if name is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
else:
SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase )
# Print and recurse (if needed).
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
if msg is not None:
print(__lowerCAmelCase )
for k in val.keys():
recursive_print(__lowerCAmelCase , val[k] , spaces + 2 )
elif isinstance(__lowerCAmelCase , torch.Tensor ):
print(__lowerCAmelCase , """:""" , val.size() )
else:
print(__lowerCAmelCase , """:""" , __lowerCAmelCase )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
SCREAMING_SNAKE_CASE__ : Tuple = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 )
SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase )
return param
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
# The converted output model.
SCREAMING_SNAKE_CASE__ : List[str] = {}
# old versions did not store training args
SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers
SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
SCREAMING_SNAKE_CASE__ : List[str] = config.n_head
# The hidden_size per head.
SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""]
else:
SCREAMING_SNAKE_CASE__ : Tuple = 0.0
# The model.
SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""]
# The language model.
SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""]
# The embeddings.
SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""]
# The word embeddings.
SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :]
SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings
# The position embeddings.
SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings
# The transformer.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) )
# The name of the operation.
SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
SCREAMING_SNAKE_CASE__ : str = m.group(3 )
# The name of the layer.
SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
SCREAMING_SNAKE_CASE__ : List[Any] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = causal_mask
# Insert a "dummy" tensor for masked_bias.
SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ : List[str] = masked_bias
SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous()
# Store.
SCREAMING_SNAKE_CASE__ : Dict = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Store. No change of shape.
SCREAMING_SNAKE_CASE__ : str = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : Dict = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""]
SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings
# It should be done!
return output_state_dict
def _lowercase ( ) -> List[Any]:
# Create the argument parser.
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , )
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
# Extract the basename.
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" )
else:
SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast"""
elif ds_args.openai_gelu:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new"""
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
SCREAMING_SNAKE_CASE__ : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig(
vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , )
else:
SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file )
SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__lowerCAmelCase , __lowerCAmelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
SCREAMING_SNAKE_CASE__ : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path
else:
raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__
SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(__lowerCAmelCase )
# Save tokenizer based on args
print(F'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(__lowerCAmelCase )
# Store the state_dict to file.
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" )
print(F'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 12 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a :List[str] = logging.get_logger(__name__)
a :int = {
"EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """gptj"""
_SCREAMING_SNAKE_CASE :Union[str, Any] = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , _a=50_400 , _a=2_048 , _a=4_096 , _a=28 , _a=16 , _a=64 , _a=None , _a="gelu_new" , _a=0.0 , _a=0.0 , _a=0.0 , _a=1E-5 , _a=0.02 , _a=True , _a=50_256 , _a=50_256 , _a=False , **_a , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_size
SCREAMING_SNAKE_CASE__ : List[str] = n_positions
SCREAMING_SNAKE_CASE__ : Tuple = n_embd
SCREAMING_SNAKE_CASE__ : List[str] = n_layer
SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_head
SCREAMING_SNAKE_CASE__ : Optional[int] = n_inner
SCREAMING_SNAKE_CASE__ : str = rotary_dim
SCREAMING_SNAKE_CASE__ : Optional[Any] = activation_function
SCREAMING_SNAKE_CASE__ : Optional[Any] = resid_pdrop
SCREAMING_SNAKE_CASE__ : Dict = embd_pdrop
SCREAMING_SNAKE_CASE__ : Optional[int] = attn_pdrop
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE__ : str = use_cache
SCREAMING_SNAKE_CASE__ : str = bos_token_id
SCREAMING_SNAKE_CASE__ : int = eos_token_id
super().__init__(
bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A )
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , _a , _a = "default" , _a = None , _a = False , ) -> List[str]:
"""simple docstring"""
super().__init__(__A , task=__A , patching_specs=__A , use_past=__A )
if not getattr(self._config , """pad_token_id""" , __A ):
# TODO: how to do that better?
SCREAMING_SNAKE_CASE__ : List[Any] = 0
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__A , direction="""inputs""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return self._config.n_layer
@property
def _a ( self ) -> int:
"""simple docstring"""
return self._config.n_head
def _a ( self , _a , _a = -1 , _a = -1 , _a = False , _a = None , ) -> Mapping[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = super(__A , self ).generate_dummy_inputs(
__A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE__ : str = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE__ : Optional[int] = seqlen + 2
SCREAMING_SNAKE_CASE__ : Tuple = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE__ : Any = [
(torch.zeros(__A ), torch.zeros(__A )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE__ : int = common_inputs["""attention_mask"""]
if self.use_past:
SCREAMING_SNAKE_CASE__ : int = ordered_inputs["""attention_mask"""].dtype
SCREAMING_SNAKE_CASE__ : Any = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 )
return ordered_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return 13
| 717 |
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read()
SCREAMING_SNAKE_CASE__ : str = regexp.search(_a )
return match
def _a ( self , _a ) -> Optional[Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a )
SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_a ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(_a ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 12 | 0 |
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def _lowercase ( __lowerCAmelCase="" ) -> int:
SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp()
return os.path.join(_lowerCamelCase , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = torch.rand(12 , dtype=torch.floataa ) - 0.5
SCREAMING_SNAKE_CASE__ : str = AgentAudio(_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_lowercase , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(_lowercase ) )
# Ensure that the file contains the same value as the original tensor
SCREAMING_SNAKE_CASE__ : str = sf.read(_lowercase )
self.assertTrue(torch.allclose(_lowercase , torch.tensor(_lowercase ) , atol=1E-4 ) )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5
SCREAMING_SNAKE_CASE__ : Optional[int] = get_new_path(suffix=""".wav""" )
sf.write(_lowercase , _lowercase , 16_000 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AgentAudio(_lowercase )
self.assertTrue(torch.allclose(_lowercase , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , _lowercase )
@require_vision
@require_torch
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = torch.randint(0 , 256 , (64, 64, 3) )
SCREAMING_SNAKE_CASE__ : Dict = AgentImage(_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(_lowercase , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_lowercase ) )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
SCREAMING_SNAKE_CASE__ : List[str] = Image.open(_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] = AgentImage(_lowercase )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_lowercase ) )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png"""
SCREAMING_SNAKE_CASE__ : List[str] = Image.open(_lowercase )
SCREAMING_SNAKE_CASE__ : str = AgentImage(_lowercase )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(_lowercase ) )
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = """Hey!"""
SCREAMING_SNAKE_CASE__ : int = AgentText(_lowercase )
self.assertEqual(_lowercase , agent_type.to_string() )
self.assertEqual(_lowercase , agent_type.to_raw() )
self.assertEqual(_lowercase , _lowercase )
| 718 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __a :
'''simple docstring'''
def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length
SCREAMING_SNAKE_CASE__ : str = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length
SCREAMING_SNAKE_CASE__ : Tuple = is_training
SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask
SCREAMING_SNAKE_CASE__ : List[str] = use_labels
SCREAMING_SNAKE_CASE__ : str = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Any = num_attention_heads
SCREAMING_SNAKE_CASE__ : Any = d_ff
SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor
SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id
SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id
SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id
SCREAMING_SNAKE_CASE__ : Any = None
SCREAMING_SNAKE_CASE__ : str = decoder_layers
def _a ( self ) -> Tuple:
"""simple docstring"""
return TaConfig.from_pretrained("""google/umt5-base""" )
def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_a )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config()
SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a )
return config, input_dict
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs()
return config, inputs_dict
def _a ( self ) -> List[str]:
"""simple docstring"""
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Dict = model(
input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state
SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values
SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_a ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval()
# first forward pass
SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a )
SCREAMING_SNAKE_CASE__ : str = model(_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a )
self.parent.assertTrue(len(_a ) == len(_a ) )
self.parent.assertTrue(len(_a ) == len(_a ) + 1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""]
# select random slice
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) )
def _a ( self , _a , _a , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(_a ).any().item() )
@require_torch
class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE :List[str] = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
_SCREAMING_SNAKE_CASE :Tuple = False
_SCREAMING_SNAKE_CASE :Optional[Any] = False
_SCREAMING_SNAKE_CASE :List[Any] = True
_SCREAMING_SNAKE_CASE :List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9]
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_a )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0]
SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval()
model.to(_a )
SCREAMING_SNAKE_CASE__ : List[str] = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
}
for attn_name, (name, mask) in zip(_a , head_masking.items() ):
SCREAMING_SNAKE_CASE__ : List[str] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
SCREAMING_SNAKE_CASE__ : str = torch.ones(
config.num_decoder_layers , config.num_heads , device=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , )
# We check the state of decoder_attentions and cross_attentions just from the last step
SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a )
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids
# fmt: off
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) )
SCREAMING_SNAKE_CASE__ : int = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a )
self.assertEqual(_a , _a )
| 12 | 0 |
a :Any = [
'DownloadConfig',
'DownloadManager',
'DownloadMode',
'StreamingDownloadManager',
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 719 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
SCREAMING_SNAKE_CASE__ : List[Any] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : Optional[int] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
SCREAMING_SNAKE_CASE__ : int = dataset
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = con
SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
SCREAMING_SNAKE_CASE__ : int = num_proc
SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs )
return written
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args
SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
SCREAMING_SNAKE_CASE__ : Any = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas()
SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def _a ( self , _a , **_a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a :Union[str, Any] = {
"configuration_longt5": ["LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongT5Config", "LongT5OnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[str] = [
"LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"LongT5EncoderModel",
"LongT5ForConditionalGeneration",
"LongT5Model",
"LongT5PreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Tuple = [
"FlaxLongT5ForConditionalGeneration",
"FlaxLongT5Model",
"FlaxLongT5PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
a :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 720 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : int = 1
while repunit:
SCREAMING_SNAKE_CASE__ : str = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def _lowercase ( __lowerCAmelCase = 100_0000 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
a :Any = {"""configuration_dpt""": ["""DPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DPTConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = ["""DPTFeatureExtractor"""]
a :int = ["""DPTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Tuple = [
"""DPT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""DPTForDepthEstimation""",
"""DPTForSemanticSegmentation""",
"""DPTModel""",
"""DPTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
a :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 721 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a :Union[str, Any] = logging.getLogger(__name__)
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""})
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
_SCREAMING_SNAKE_CASE :Optional[bool] = field(
default=UpperCamelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
_SCREAMING_SNAKE_CASE :str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , )
def _lowercase ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_xnli""" , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : List[Any] = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
datasets.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE__ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset(
"""xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
SCREAMING_SNAKE_CASE__ : str = load_dataset(
"""xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = train_dataset.features["""label"""].names
if training_args.do_eval:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.features["""label"""].names
if training_args.do_predict:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.features["""label"""].names
# Labels
SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : str = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : str = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
def preprocess_function(__lowerCAmelCase ):
# Tokenize the texts
return tokenizer(
examples["""premise"""] , examples["""hypothesis"""] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(len(__lowerCAmelCase ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE__ : str = train_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ):
logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE__ : Any = min(len(__lowerCAmelCase ) , data_args.max_eval_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE__ : int = min(len(__lowerCAmelCase ) , data_args.max_predict_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = predict_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , )
# Get the metric function
SCREAMING_SNAKE_CASE__ : Optional[Any] = evaluate.load("""xnli""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Dict = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 )
return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : List[Any] = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE__ : int = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE__ : Dict = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_checkpoint
SCREAMING_SNAKE_CASE__ : str = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = train_result.metrics
SCREAMING_SNAKE_CASE__ : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : Dict = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __lowerCAmelCase )
trainer.save_metrics("""train""" , __lowerCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE__ : Any = trainer.evaluate(eval_dataset=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""eval""" , __lowerCAmelCase )
trainer.save_metrics("""eval""" , __lowerCAmelCase )
# Prediction
if training_args.do_predict:
logger.info("""*** Predict ***""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = trainer.predict(__lowerCAmelCase , metric_key_prefix="""predict""" )
SCREAMING_SNAKE_CASE__ : List[str] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : int = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""predict""" , __lowerCAmelCase )
trainer.save_metrics("""predict""" , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = np.argmax(__lowerCAmelCase , axis=1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , """predictions.txt""" )
if trainer.is_world_process_zero():
with open(__lowerCAmelCase , """w""" ) as writer:
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[int] = label_list[item]
writer.write(F'''{index}\t{item}\n''' )
if __name__ == "__main__":
main()
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
a :Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
a :List[Any] = typing.Union[np.floataa, int, float] # noqa: UP007
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
return np.sqrt(np.sum((np.asarray(__lowerCAmelCase ) - np.asarray(__lowerCAmelCase )) ** 2 ) )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
return sum((va - va) ** 2 for va, va in zip(__lowerCAmelCase , __lowerCAmelCase ) ) ** (1 / 2)
if __name__ == "__main__":
def _lowercase ( ) -> int:
from timeit import timeit
print("""Without Numpy""" )
print(
timeit(
"""euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=1_0000 , globals=globals() , ) )
print("""With Numpy""" )
print(
timeit(
"""euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=1_0000 , globals=globals() , ) )
benchmark()
| 700 |
"""simple docstring"""
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
a :str = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
a :int = {
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
a :Dict = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
a :List[Any] = "facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
a :str = "allenai"
def _lowercase ( __lowerCAmelCase ) -> Any:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
SCREAMING_SNAKE_CASE__ : str = dict((re.sub(r"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() )
SCREAMING_SNAKE_CASE__ : Tuple = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d[k] # restore
return da
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
# prep
assert os.path.exists(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
SCREAMING_SNAKE_CASE__ : Optional[Any] = basename(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
SCREAMING_SNAKE_CASE__ : Optional[int] = cls.hub_models()
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """."""
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F'''using checkpoint {checkpoint_file}''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hub_utils.from_pretrained(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = vars(chkpt["""args"""]["""model"""] )
SCREAMING_SNAKE_CASE__ : Any = args["""source_lang"""]
SCREAMING_SNAKE_CASE__ : Any = args["""target_lang"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = basename(__lowerCAmelCase )
# dicts
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(__lowerCAmelCase , F'''dict.{src_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , F'''dict.{tgt_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = rewrite_dict_keys(src_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[int] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """vocab-src.json""" )
print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
for k in src_vocab.keys():
if not k.islower():
SCREAMING_SNAKE_CASE__ : Tuple = False
break
SCREAMING_SNAKE_CASE__ : Optional[Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """vocab-tgt.json""" )
print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# merges_file (bpecodes)
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
break
with open(__lowerCAmelCase , encoding="""utf-8""" ) as fin:
SCREAMING_SNAKE_CASE__ : Any = fin.read()
SCREAMING_SNAKE_CASE__ : Tuple = re.sub(r""" \d+$""" , """""" , __lowerCAmelCase , 0 , re.M ) # remove frequency number
print(F'''Generating {merges_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout:
fout.write(__lowerCAmelCase )
# model config
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """config.json""" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}'''
assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}'''
SCREAMING_SNAKE_CASE__ : str = {
"""architectures""": ["""FSMTForConditionalGeneration"""],
"""model_type""": """fsmt""",
"""activation_dropout""": args["""activation_dropout"""],
"""activation_function""": """relu""",
"""attention_dropout""": args["""attention_dropout"""],
"""d_model""": args["""decoder_embed_dim"""],
"""dropout""": args["""dropout"""],
"""init_std""": 0.02,
"""max_position_embeddings""": args["""max_source_positions"""],
"""num_hidden_layers""": args["""encoder_layers"""],
"""src_vocab_size""": src_vocab_size,
"""tgt_vocab_size""": tgt_vocab_size,
"""langs""": [src_lang, tgt_lang],
"""encoder_attention_heads""": args["""encoder_attention_heads"""],
"""encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""],
"""encoder_layerdrop""": args["""encoder_layerdrop"""],
"""encoder_layers""": args["""encoder_layers"""],
"""decoder_attention_heads""": args["""decoder_attention_heads"""],
"""decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""],
"""decoder_layerdrop""": args["""decoder_layerdrop"""],
"""decoder_layers""": args["""decoder_layers"""],
"""bos_token_id""": 0,
"""pad_token_id""": 1,
"""eos_token_id""": 2,
"""is_encoder_decoder""": True,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_all_embeddings"""],
}
# good hparam defaults to start with
SCREAMING_SNAKE_CASE__ : Tuple = 5
SCREAMING_SNAKE_CASE__ : str = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
SCREAMING_SNAKE_CASE__ : Tuple = best_score_hparams[model_dir]["""length_penalty"""]
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1.0
print(F'''Generating {fsmt_model_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# tokenizer config
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = {
"""langs""": [src_lang, tgt_lang],
"""model_max_length""": 1024,
"""do_lower_case""": do_lower_case,
}
print(F'''Generating {fsmt_tokenizer_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# model
SCREAMING_SNAKE_CASE__ : Dict = chkpt["""models"""][0]
SCREAMING_SNAKE_CASE__ : int = model.state_dict()
# rename keys to start with 'model.'
SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
SCREAMING_SNAKE_CASE__ : str = [
"""model.model""",
"""model.encoder.version""",
"""model.decoder.version""",
"""model.encoder_embed_tokens.weight""",
"""model.decoder_embed_tokens.weight""",
"""model.encoder.embed_positions._float_tensor""",
"""model.decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = FSMTConfig.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTForConditionalGeneration(__lowerCAmelCase )
# check that it loads ok
model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
# save
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
print("""Conversion is done!""" )
print("""\nLast step is to upload the files to s3""" )
print(F'''cd {data_root}''' )
print(F'''transformers-cli upload {model_dir}''' )
if __name__ == "__main__":
a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a :List[str] = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 12 | 0 |
"""simple docstring"""
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
a :Optional[Any] = logging.get_logger(__name__)
a :int = {"vocab_file": "vocab.txt"}
a :Optional[int] = {
"vocab_file": {
"facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt",
"facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt",
},
}
a :Optional[int] = {
"facebook/esm2_t6_8M_UR50D": 1_024,
"facebook/esm2_t12_35M_UR50D": 1_024,
}
def _lowercase ( __lowerCAmelCase ) -> List[Any]:
with open(SCREAMING_SNAKE_CASE_ , """r""" ) as f:
SCREAMING_SNAKE_CASE__ : Tuple = f.read().splitlines()
return [l.strip() for l in lines]
class __a (_UpperCAmelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Optional[int] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :Any = ["""input_ids""", """attention_mask"""]
def __init__( self , _a , _a="<unk>" , _a="<cls>" , _a="<pad>" , _a="<mask>" , _a="<eos>" , **_a , ) -> Tuple:
"""simple docstring"""
super().__init__(**lowercase__ )
SCREAMING_SNAKE_CASE__ : Optional[int] = load_vocab_file(lowercase__ )
SCREAMING_SNAKE_CASE__ : List[Any] = dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE__ : Any = unk_token
SCREAMING_SNAKE_CASE__ : str = cls_token
SCREAMING_SNAKE_CASE__ : Dict = pad_token
SCREAMING_SNAKE_CASE__ : Tuple = mask_token
SCREAMING_SNAKE_CASE__ : Any = eos_token
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _a ( self , _a ) -> str:
"""simple docstring"""
return self._id_to_token.get(lowercase__ , self.unk_token )
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
return self._token_to_id.get(lowercase__ , self._token_to_id.get(self.unk_token ) )
def _a ( self , _a , **_a ) -> Any:
"""simple docstring"""
return text.split()
def _a ( self , _a=False ) -> Tuple:
"""simple docstring"""
return len(self._id_to_token )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
return {token: i for i, token in enumerate(self.all_tokens )}
def _a ( self , _a ) -> Any:
"""simple docstring"""
return self._token_to_id.get(lowercase__ , self._token_to_id.get(self.unk_token ) )
def _a ( self , _a ) -> List[Any]:
"""simple docstring"""
return self._id_to_token.get(lowercase__ , self.unk_token )
def _a ( self , _a , _a = None ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _a ( self , _a , _a = None , _a = False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [1] + ([0] * len(lowercase__ )) + [1]
if token_ids_a is not None:
mask += [0] * len(lowercase__ ) + [1]
return mask
def _a ( self , _a , _a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(lowercase__ , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" )
with open(lowercase__ , """w""" ) as f:
f.write("""\n""".join(self.all_tokens ) )
return (vocab_file,)
@property
def _a ( self ) -> List[Any]:
"""simple docstring"""
return self.get_vocab_size(with_added_tokens=lowercase__ )
def _a ( self , _a , _a = False ) -> List[Any]:
"""simple docstring"""
return super()._add_tokens(lowercase__ , special_tokens=lowercase__ )
| 701 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,)
def _a ( self , **_a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_a )
return config
def _a ( self ) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def _a ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_a )
def _a ( self ) -> Any:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_a )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def _a ( self ) -> int:
"""simple docstring"""
self.check_over_configs(thresholding=_a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , )
def _a ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def _a ( self ) -> str:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Any = len(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : str = pred_prev_sample
SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Dict = len(_a )
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample
SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps
for i, timestep in enumerate(_a ):
if i == len(_a ) - 1:
SCREAMING_SNAKE_CASE__ : Optional[Any] = -1
else:
SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1]
SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item()
self.assertEqual(_a , _a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0]
SCREAMING_SNAKE_CASE__ : List[str] = len(_a )
with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_a )
| 12 | 0 |
"""simple docstring"""
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
a :Dict = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
def _lowercase ( __lowerCAmelCase = "dhaka" , __lowerCAmelCase = 5 ) -> int:
SCREAMING_SNAKE_CASE__ : List[str] = min(SCREAMING_SNAKE_CASE_ , 50 ) # Prevent abuse!
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
'q': query,
'tbm': 'isch',
'hl': 'en',
'ijn': '0',
}
SCREAMING_SNAKE_CASE__ : Optional[Any] = requests.get("""https://www.google.com/search""" , params=SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = BeautifulSoup(html.text , """html.parser""" )
SCREAMING_SNAKE_CASE__ : List[Any] = ''.join(
re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) )
SCREAMING_SNAKE_CASE__ : List[str] = json.dumps(SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : Any = json.loads(SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : str = re.findall(
r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , SCREAMING_SNAKE_CASE_ , )
if not matched_google_image_data:
return 0
SCREAMING_SNAKE_CASE__ : Dict = re.sub(
r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(SCREAMING_SNAKE_CASE_ ) , )
SCREAMING_SNAKE_CASE__ : Optional[int] = re.findall(
r"""(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , SCREAMING_SNAKE_CASE_ , )
for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE_ ):
if index >= max_images:
return index
SCREAMING_SNAKE_CASE__ : Any = bytes(SCREAMING_SNAKE_CASE_ , """ascii""" ).decode(
"""unicode-escape""" )
SCREAMING_SNAKE_CASE__ : Tuple = bytes(SCREAMING_SNAKE_CASE_ , """ascii""" ).decode(
"""unicode-escape""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = urllib.request.build_opener()
SCREAMING_SNAKE_CASE__ : Optional[int] = [
(
'User-Agent',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582',
)
]
urllib.request.install_opener(SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : str = F'''query_{query.replace(' ' , '_' )}'''
if not os.path.exists(SCREAMING_SNAKE_CASE_ ):
os.makedirs(SCREAMING_SNAKE_CASE_ )
urllib.request.urlretrieve( # noqa: S310
SCREAMING_SNAKE_CASE_ , F'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
a :Any = download_images_from_google_query(sys.argv[1])
print(f'{image_count} images were downloaded to disk.')
except IndexError:
print("Please provide a search term.")
raise
| 702 |
"""simple docstring"""
import os
a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
while index < len(__lowerCAmelCase ) - 1:
SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]]
SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = """"""
SCREAMING_SNAKE_CASE__ : int = num // 1000
numerals += m_count * "M"
num %= 1000
SCREAMING_SNAKE_CASE__ : List[str] = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
SCREAMING_SNAKE_CASE__ : List[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int:
SCREAMING_SNAKE_CASE__ : int = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
SCREAMING_SNAKE_CASE__ : str = filea.readlines()
for line in lines:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip()
SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
while second != 0:
SCREAMING_SNAKE_CASE__ : List[str] = first & second
first ^= second
SCREAMING_SNAKE_CASE__ : str = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
a :Tuple = int(input("Enter the first number: ").strip())
a :Tuple = int(input("Enter the second number: ").strip())
print(f'{add(first, second) = }')
| 703 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
a :Dict = {
"configuration_gpt_neox_japanese": ["GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXJapaneseConfig"],
"tokenization_gpt_neox_japanese": ["GPTNeoXJapaneseTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Tuple = [
"GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoXJapaneseForCausalLM",
"GPTNeoXJapaneseLayer",
"GPTNeoXJapaneseModel",
"GPTNeoXJapanesePreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 704 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a :List[Any] = logging.get_logger(__name__)
a :Optional[int] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __a (UpperCamelCase_ , UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = """focalnet"""
def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size
SCREAMING_SNAKE_CASE__ : str = patch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim
SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed
SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE__ : Optional[int] = depths
SCREAMING_SNAKE_CASE__ : Any = focal_levels
SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate
SCREAMING_SNAKE_CASE__ : str = use_layerscale
SCREAMING_SNAKE_CASE__ : int = layerscale_value
SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm
SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation
SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator
SCREAMING_SNAKE_CASE__ : str = initializer_range
SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Any = encoder_stride
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 12 | 0 |
"""simple docstring"""
import math
import os
import sys
def _lowercase ( __lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__ : List[str] = """"""
try:
with open(lowerCAmelCase__ , """rb""" ) as binary_file:
SCREAMING_SNAKE_CASE__ : str = binary_file.read()
for dat in data:
SCREAMING_SNAKE_CASE__ : Optional[int] = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
lexicon.pop(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : Any = last_match_id
if math.loga(lowerCAmelCase__ ).is_integer():
for curr_key in lexicon:
SCREAMING_SNAKE_CASE__ : Any = """0""" + lexicon[curr_key]
SCREAMING_SNAKE_CASE__ : Dict = bin(lowerCAmelCase__ )[2:]
def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : str = {"""0""": """0""", """1""": """1"""}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = """""", """"""
SCREAMING_SNAKE_CASE__ : str = len(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
SCREAMING_SNAKE_CASE__ : Dict = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
index += 1
SCREAMING_SNAKE_CASE__ : Any = """"""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
SCREAMING_SNAKE_CASE__ : Optional[int] = lexicon[curr_string]
result += last_match_id
return result
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__ : Any = os.path.getsize(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = bin(lowerCAmelCase__ )[2:]
SCREAMING_SNAKE_CASE__ : int = len(lowerCAmelCase__ )
return "0" * (length_length - 1) + file_length_binary + compressed
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : str = 8
try:
with open(lowerCAmelCase__ , """wb""" ) as opened_file:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
to_write[i : i + byte_length]
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : int = read_file_binary(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : str = compress_data(lowerCAmelCase__ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ )
write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 705 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = parent
SCREAMING_SNAKE_CASE__ : Tuple = batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask
SCREAMING_SNAKE_CASE__ : Tuple = use_token_type_ids
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Dict = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE__ : int = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __a (UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = True
_SCREAMING_SNAKE_CASE :Optional[Any] = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerModelTester(self )
@slow
def _a ( self ) -> int:
"""simple docstring"""
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a )
SCREAMING_SNAKE_CASE__ : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
SCREAMING_SNAKE_CASE__ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE__ : str = model(_a )[0]
SCREAMING_SNAKE_CASE__ : List[Any] = 50_000
SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 6, vocab_size)
self.assertEqual(output.shape , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = size if size is not None else {"height": 18, "width": 18}
SCREAMING_SNAKE_CASE__ : str = parent
SCREAMING_SNAKE_CASE__ : str = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = num_channels
SCREAMING_SNAKE_CASE__ : Optional[int] = image_size
SCREAMING_SNAKE_CASE__ : List[str] = min_resolution
SCREAMING_SNAKE_CASE__ : Tuple = max_resolution
SCREAMING_SNAKE_CASE__ : Tuple = do_resize
SCREAMING_SNAKE_CASE__ : Dict = size
SCREAMING_SNAKE_CASE__ : List[str] = apply_ocr
def _a ( self ) -> Tuple:
"""simple docstring"""
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class __a (__lowerCamelCase , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = LayoutLMvaImageProcessingTester(self )
@property
def _a ( self ) -> List[str]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , """do_resize""" ) )
self.assertTrue(hasattr(a_ , """size""" ) )
self.assertTrue(hasattr(a_ , """apply_ocr""" ) )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
SCREAMING_SNAKE_CASE__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def _a ( self ) -> Tuple:
"""simple docstring"""
pass
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , a_ )
self.assertIsInstance(encoding.boxes , a_ )
# Test batched
SCREAMING_SNAKE_CASE__ : int = image_processing(a_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE__ : Any = image_processing(a_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processing(a_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = LayoutLMvaImageProcessor()
from datasets import load_dataset
SCREAMING_SNAKE_CASE__ : Optional[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
SCREAMING_SNAKE_CASE__ : List[Any] = image_processing(a_ , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
SCREAMING_SNAKE_CASE__ : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231
SCREAMING_SNAKE_CASE__ : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , a_ )
self.assertListEqual(encoding.boxes , a_ )
# with apply_OCR = False
SCREAMING_SNAKE_CASE__ : List[str] = LayoutLMvaImageProcessor(apply_ocr=a_ )
SCREAMING_SNAKE_CASE__ : List[str] = image_processing(a_ , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
| 706 |
"""simple docstring"""
a :List[str] = [
(1_000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
SCREAMING_SNAKE_CASE__ : List[Any] = 0
SCREAMING_SNAKE_CASE__ : List[str] = 0
while place < len(__lowerCAmelCase ):
if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Any = []
for arabic, roman in ROMAN:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices(_a , _a , _a )
self.assertEqual(_a , ["""c"""] )
self.assertEqual(_a , [2] )
# Out indices set to match out features
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = get_aligned_output_features_output_indices(["""a""", """c"""] , _a , _a )
self.assertEqual(_a , ["""a""", """c"""] )
self.assertEqual(_a , [0, 2] )
# Out features set to match out indices
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = get_aligned_output_features_output_indices(_a , [0, 2] , _a )
self.assertEqual(_a , ["""a""", """c"""] )
self.assertEqual(_a , [0, 2] )
# Out features selected from negative indices
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = get_aligned_output_features_output_indices(_a , [-3, -1] , _a )
self.assertEqual(_a , ["""a""", """c"""] )
self.assertEqual(_a , [-3, -1] )
def _a ( self ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_a ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _a )
# Out features must be a list
with self.assertRaises(_a ):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] )
# Out features must be a subset of stage names
with self.assertRaises(_a ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] )
# Out indices must be a list or tuple
with self.assertRaises(_a ):
verify_out_features_out_indices(_a , 0 , ["""a""", """b"""] )
# Out indices must be a subset of stage names
with self.assertRaises(_a ):
verify_out_features_out_indices(_a , (0, 1) , ["""a"""] )
# Out features and out indices must be the same length
with self.assertRaises(_a ):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] )
# Out features should match out indices
with self.assertRaises(_a ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] )
# Out features and out indices should be in order
with self.assertRaises(_a ):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] )
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = BackboneMixin()
SCREAMING_SNAKE_CASE__ : str = ["""a""", """b""", """c"""]
SCREAMING_SNAKE_CASE__ : str = ["""a""", """c"""]
SCREAMING_SNAKE_CASE__ : Tuple = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""] )
self.assertEqual(backbone.out_indices , [0, 1] )
SCREAMING_SNAKE_CASE__ : Tuple = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 707 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a :Any = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a :Tuple = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Tuple = ['ReformerTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Tuple = ['ReformerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :int = [
'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'ReformerAttention',
'ReformerForMaskedLM',
'ReformerForQuestionAnswering',
'ReformerForSequenceClassification',
'ReformerLayer',
'ReformerModel',
'ReformerModelWithLMHead',
'ReformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a :Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 708 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Dict = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_a , _a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> Any:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a )
SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _a )
self.assertIsInstance(processor_fast.tokenizer , _a )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _a )
self.assertIsInstance(processor_fast.image_processor , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a )
SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 12 | 0 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
if not (isinstance(A_ , A_ ) and isinstance(A_ , A_ )):
raise ValueError("""longest_common_substring() takes two strings for inputs""" )
SCREAMING_SNAKE_CASE__ : List[str] = len(A_ )
SCREAMING_SNAKE_CASE__ : List[str] = len(A_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
SCREAMING_SNAKE_CASE__ : int = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
SCREAMING_SNAKE_CASE__ : Tuple = i
SCREAMING_SNAKE_CASE__ : Tuple = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 709 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a :Optional[Any] = logging.get_logger(__name__)
a :Union[str, Any] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """t5"""
_SCREAMING_SNAKE_CASE :List[str] = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , _a=32_128 , _a=512 , _a=64 , _a=2_048 , _a=6 , _a=None , _a=8 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="relu" , _a=True , _a=True , _a=0 , _a=1 , **_a , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : int = d_kv
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_ff
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_layers
SCREAMING_SNAKE_CASE__ : int = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE__ : Tuple = num_heads
SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : str = relative_attention_max_distance
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_factor
SCREAMING_SNAKE_CASE__ : Tuple = feed_forward_proj
SCREAMING_SNAKE_CASE__ : str = use_cache
SCREAMING_SNAKE_CASE__ : List[str] = self.feed_forward_proj.split("""-""" )
SCREAMING_SNAKE_CASE__ : Dict = act_info[-1]
SCREAMING_SNAKE_CASE__ : str = act_info[0] == """gated"""
if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE__ : List[Any] = """gelu_new"""
super().__init__(
pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
class __a (UpperCamelCase_):
'''simple docstring'''
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""input_ids""": {0: """batch""", 1: """encoder_sequence"""},
"""attention_mask""": {0: """batch""", 1: """encoder_sequence"""},
}
if self.use_past:
SCREAMING_SNAKE_CASE__ : Tuple = """past_encoder_sequence + sequence"""
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch"""}
SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""}
SCREAMING_SNAKE_CASE__ : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_a , direction="""inputs""" )
return common_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return 13
| 12 | 0 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = (
first_str_length if first_str_length > second_str_length else second_str_length
)
SCREAMING_SNAKE_CASE__ : list = []
for char_count in range(__lowerCAmelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(__lowerCAmelCase )
if __name__ == "__main__":
print(alternative_string_arrange("AB", "XYZ"), end=" ")
| 710 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
a :Optional[Any] = [8, 5, 9, 7]
a :List[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
a :int = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = claim_vector
SCREAMING_SNAKE_CASE__ : Any = allocated_resources_table
SCREAMING_SNAKE_CASE__ : Any = maximum_claim_table
def _a ( self ) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _a ( self ) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _a ( self ) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _a ( self ) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(_a ): i for i in self.__need()}
def _a ( self , **_a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.__need()
SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table
SCREAMING_SNAKE_CASE__ : Dict = self.__available_resources()
SCREAMING_SNAKE_CASE__ : Dict = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 50 + """\n""" )
while need_list:
SCREAMING_SNAKE_CASE__ : List[str] = False
for each_need in need_list:
SCREAMING_SNAKE_CASE__ : Dict = True
for index, need in enumerate(_a ):
if need > available_resources[index]:
SCREAMING_SNAKE_CASE__ : Optional[int] = False
break
if execution:
SCREAMING_SNAKE_CASE__ : Any = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
SCREAMING_SNAKE_CASE__ : Tuple = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(_a )
# update available/freed resources stack
SCREAMING_SNAKE_CASE__ : Dict = np.array(_a ) + np.array(
alloc_resources_table[process_number] )
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(_a ) for x in available_resources] ) )
break
if safe:
print("""The process is in a safe state.\n""" )
else:
print("""System in unsafe state. Aborting...\n""" )
break
def _a ( self ) -> Any:
"""simple docstring"""
print(""" """ * 9 + """Allocated Resource Table""" )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(""" """ * 9 + """System Resource Table""" )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(_a ) for x in self.__claim_vector ) )
print(
"""Initial Available Resources: """
+ """ """.join(str(_a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 711 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a :List[Any] = None
a :Optional[int] = logging.get_logger(__name__)
a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
a :Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
a :Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
a :int = "▁"
# Segments (not really needed)
a :Dict = 0
a :Optional[int] = 1
a :Tuple = 2
a :List[str] = 3
a :Optional[Any] = 4
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = """left"""
_SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE__ : List[str] = remove_space
SCREAMING_SNAKE_CASE__ : int = keep_accents
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
import json
import sys
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
with open(lowerCamelCase_ , encoding="""utf-8""" ) as f:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = json.load(lowerCamelCase_ )
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """]
for benchmark_name in sorted(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE__ : str = results[benchmark_name]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = benchmark_name.split("""/""" )[-1]
output_md.append(F'''### Benchmark: {benchmark_file_name}''' )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """| metric |"""
SCREAMING_SNAKE_CASE__ : Dict = """|--------|"""
SCREAMING_SNAKE_CASE__ : int = """| new / old (diff) |"""
for metric_name in sorted(lowerCamelCase_ ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = benchmark_res[metric_name]
SCREAMING_SNAKE_CASE__ : Tuple = metric_vals["""new"""]
SCREAMING_SNAKE_CASE__ : Optional[int] = metric_vals.get("""old""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE__ : Tuple = metric_vals.get("""diff""" , lowerCamelCase_ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = F''' {new_val:f}''' if isinstance(lowerCamelCase_ , (int, float) ) else """None"""
if old_val is not None:
val_str += F''' / {old_val:f}''' if isinstance(lowerCamelCase_ , (int, float) ) else "None"
if dif_val is not None:
val_str += F''' ({dif_val:f})''' if isinstance(lowerCamelCase_ , (int, float) ) else "None"
title += " " + metric_name + " |"
lines += "---|"
value += val_str + " |"
output_md += [title, lines, value, " "]
output_md.append("""</details>""" )
with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" ) as f:
f.writelines("""\n""".join(lowerCamelCase_ ) )
if __name__ == "__main__":
a :Dict = sys.argv[1]
a :Any = sys.argv[2]
format_json_to_md(input_json_file, output_md_file)
| 712 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )]
# since string of zero length match pattern of zero length
SCREAMING_SNAKE_CASE__ : Dict = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , __lowerCAmelCase ):
for j in range(1 , __lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
SCREAMING_SNAKE_CASE__ : List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE__ : Dict = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a :Any = "aab"
a :Optional[Any] = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'{input_string} matches the given pattern {pattern}')
else:
print(f'{input_string} does not match with the given pattern {pattern}')
| 12 | 0 |
"""simple docstring"""
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
a :Optional[Any] = 0
a :int = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
a :int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
a :List[str] = tuple[int, int]
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = pos_x
SCREAMING_SNAKE_CASE__ : str = pos_y
SCREAMING_SNAKE_CASE__ : List[str] = (pos_y, pos_x)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = goal_x
SCREAMING_SNAKE_CASE__ : Dict = goal_y
SCREAMING_SNAKE_CASE__ : List[Any] = g_cost
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : str = self.calculate_heuristic()
SCREAMING_SNAKE_CASE__ : Optional[int] = self.g_cost + self.h_cost
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.pos_x - self.goal_x
SCREAMING_SNAKE_CASE__ : List[str] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(UpperCamelCase_ ) + abs(UpperCamelCase_ )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self , _a ) -> str:
"""simple docstring"""
return self.f_cost < other.f_cost
class __a :
'''simple docstring'''
def __init__( self , _a , _a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : List[str] = [self.start]
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
SCREAMING_SNAKE_CASE__ : Any = False
def _a ( self ) -> Optional[int]:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(UpperCamelCase_ )
self.closed_nodes.append(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : Tuple = self.get_successors(UpperCamelCase_ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(UpperCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(UpperCamelCase_ )
else:
self.open_nodes.append(UpperCamelCase_ )
return [self.start.pos]
def _a ( self , _a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = []
for action in delta:
SCREAMING_SNAKE_CASE__ : Tuple = parent.pos_x + action[1]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase_ , ) )
return successors
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = node
SCREAMING_SNAKE_CASE__ : Optional[int] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_node.parent
path.reverse()
return path
class __a :
'''simple docstring'''
def __init__( self , _a , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AStar(UpperCamelCase_ , UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : Any = AStar(UpperCamelCase_ , UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : Any = False
def _a ( self ) -> str:
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
SCREAMING_SNAKE_CASE__ : Optional[int] = self.fwd_astar.open_nodes.pop(0 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
UpperCamelCase_ , UpperCamelCase_ )
self.fwd_astar.closed_nodes.append(UpperCamelCase_ )
self.bwd_astar.closed_nodes.append(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : str = current_bwd_node
SCREAMING_SNAKE_CASE__ : Any = current_fwd_node
SCREAMING_SNAKE_CASE__ : Dict = {
self.fwd_astar: self.fwd_astar.get_successors(UpperCamelCase_ ),
self.bwd_astar: self.bwd_astar.get_successors(UpperCamelCase_ ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(UpperCamelCase_ )
else:
# retrieve the best current path
SCREAMING_SNAKE_CASE__ : str = astar.open_nodes.pop(
astar.open_nodes.index(UpperCamelCase_ ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(UpperCamelCase_ )
else:
astar.open_nodes.append(UpperCamelCase_ )
return [self.fwd_astar.start.pos]
def _a ( self , _a , _a ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.fwd_astar.retrace_path(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ : List[Any] = self.bwd_astar.retrace_path(UpperCamelCase_ )
bwd_path.pop()
bwd_path.reverse()
SCREAMING_SNAKE_CASE__ : str = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
a :Any = (0, 0)
a :Optional[int] = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
a :List[Any] = time.time()
a :Dict = AStar(init, goal)
a :Dict = a_star.search()
a :int = time.time() - start_time
print(f'AStar execution time = {end_time:f} seconds')
a :str = time.time()
a :Any = BidirectionalAStar(init, goal)
a :Tuple = time.time() - bd_start_time
print(f'BidirectionalAStar execution time = {bd_end_time:f} seconds')
| 713 |
"""simple docstring"""
from math import sqrt
def _lowercase ( __lowerCAmelCase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _lowercase ( __lowerCAmelCase = 1_0001 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = 0
SCREAMING_SNAKE_CASE__ : Tuple = 1
while count != nth and number < 3:
number += 1
if is_prime(__lowerCAmelCase ):
count += 1
while count != nth:
number += 2
if is_prime(__lowerCAmelCase ):
count += 1
return number
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a (_UpperCamelCase , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = GPTaTokenizer
_SCREAMING_SNAKE_CASE :List[Any] = GPTaTokenizerFast
_SCREAMING_SNAKE_CASE :Any = True
_SCREAMING_SNAKE_CASE :List[str] = {"""add_prefix_space""": True}
_SCREAMING_SNAKE_CASE :Union[str, Any] = False
def _a ( self ) -> int:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) )
SCREAMING_SNAKE_CASE__ : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
SCREAMING_SNAKE_CASE__ : List[str] = {"unk_token": "<unk>"}
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_a ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_a ) )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> Optional[int]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def _a ( self , _a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = "lower newer"
SCREAMING_SNAKE_CASE__ : Optional[Any] = "lower newer"
return input_text, output_text
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
SCREAMING_SNAKE_CASE__ : Dict = "lower newer"
SCREAMING_SNAKE_CASE__ : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_a , add_prefix_space=_a )
self.assertListEqual(_a , _a )
SCREAMING_SNAKE_CASE__ : Any = tokens + [tokenizer.unk_token]
SCREAMING_SNAKE_CASE__ : str = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
def _a ( self ) -> List[str]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=_a )
SCREAMING_SNAKE_CASE__ : int = "lower newer"
# Testing tokenization
SCREAMING_SNAKE_CASE__ : str = tokenizer.tokenize(_a , add_prefix_space=_a )
SCREAMING_SNAKE_CASE__ : int = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
# Testing conversion to ids without special tokens
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.encode(_a , add_special_tokens=_a , add_prefix_space=_a )
SCREAMING_SNAKE_CASE__ : Dict = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
# Testing conversion to ids with special tokens
SCREAMING_SNAKE_CASE__ : List[str] = self.get_rust_tokenizer(add_prefix_space=_a )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.encode(_a , add_prefix_space=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# Testing the unknown token
SCREAMING_SNAKE_CASE__ : List[Any] = tokens + [rust_tokenizer.unk_token]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_a ) , _a )
def _a ( self , *_a , **_a ) -> Dict:
"""simple docstring"""
pass
def _a ( self , _a=15 ) -> Dict:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_a , **_a )
# Simple input
SCREAMING_SNAKE_CASE__ : Dict = "This is a simple input"
SCREAMING_SNAKE_CASE__ : List[str] = ["This is a simple input 1", "This is a simple input 2"]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = ("This is a simple input", "This is a pair")
SCREAMING_SNAKE_CASE__ : Optional[int] = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="""max_length""" )
# Simple input
self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="""max_length""" )
# Simple input
self.assertRaises(
_a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="""max_length""" , )
# Pair input
self.assertRaises(_a , tokenizer_r.encode , _a , max_length=_a , padding="""max_length""" )
# Pair input
self.assertRaises(_a , tokenizer_r.encode_plus , _a , max_length=_a , padding="""max_length""" )
# Pair input
self.assertRaises(
_a , tokenizer_r.batch_encode_plus , _a , max_length=_a , padding="""max_length""" , )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" )
# Simple input
SCREAMING_SNAKE_CASE__ : Optional[int] = "This is a simple input"
SCREAMING_SNAKE_CASE__ : List[str] = ["This is a simple input looooooooong", "This is a simple input"]
SCREAMING_SNAKE_CASE__ : List[Any] = ("This is a simple input", "This is a pair")
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
SCREAMING_SNAKE_CASE__ : Any = tokenizer.pad_token_id
SCREAMING_SNAKE_CASE__ : Dict = tokenizer(_a , padding="""max_length""" , max_length=30 , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(_a , padding=_a , truncate=_a , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(*_a , padding="""max_length""" , max_length=60 , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(_a , padding=_a , truncate=_a , return_tensors="""np""" )
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["""input_ids"""] )
self.assertTrue(0 in out_s["""attention_mask"""] )
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] )
self.assertFalse(0 in out_sa["""attention_mask"""][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] )
self.assertTrue(0 in out_sa["""attention_mask"""][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["""input_ids"""] )
self.assertTrue(0 in out_p["""attention_mask"""] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] )
self.assertFalse(0 in out_pa["""attention_mask"""][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] )
self.assertTrue(0 in out_pa["""attention_mask"""][1] )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = "$$$"
SCREAMING_SNAKE_CASE__ : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_a , add_bos_token=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = "This is a simple input"
SCREAMING_SNAKE_CASE__ : Dict = ["This is a simple input 1", "This is a simple input 2"]
SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.bos_token_id
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer(_a )
SCREAMING_SNAKE_CASE__ : int = tokenizer(_a )
self.assertEqual(out_s.input_ids[0] , _a )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(out_s.input_ids )
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , _a )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
pass
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [self.get_tokenizer(do_lower_case=_a , add_bos_token=_a )]
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
SCREAMING_SNAKE_CASE__ : str = "Encode this."
SCREAMING_SNAKE_CASE__ : List[Any] = "This one too please."
SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(_a , add_special_tokens=_a )
encoded_sequence += tokenizer.encode(_a , add_special_tokens=_a )
SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode_plus(
_a , _a , add_special_tokens=_a , return_special_tokens_mask=_a , )
SCREAMING_SNAKE_CASE__ : Tuple = encoded_sequence_dict["input_ids"]
SCREAMING_SNAKE_CASE__ : int = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(_a ) , len(_a ) )
SCREAMING_SNAKE_CASE__ : List[str] = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(_a )
]
SCREAMING_SNAKE_CASE__ : Any = [x for x in filtered_sequence if x is not None]
self.assertEqual(_a , _a )
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = "A photo of a cat"
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(
_a , )
self.assertEqual(_a , [2, 250, 1_345, 9, 10, 4_758] )
tokenizer.save_pretrained("""test_opt""" )
SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained("""./test_opt""" )
SCREAMING_SNAKE_CASE__ : Dict = tokenizer.encode(
_a , )
self.assertEqual(_a , [2, 250, 1_345, 9, 10, 4_758] )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=_a )
SCREAMING_SNAKE_CASE__ : int = "A photo of a cat"
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(
_a , )
# Same as above
self.assertEqual(_a , [2, 250, 1_345, 9, 10, 4_758] )
@unittest.skip("""This test is failing because of a bug in the fast tokenizer""" )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = "bos"
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.get_vocab()["bos"]
SCREAMING_SNAKE_CASE__ : Optional[Any] = "A photo of a cat"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.encode(
_a , )
# We changed the bos token
self.assertEqual(_a , [31_957, 250, 1_345, 9, 10, 4_758] )
tokenizer.save_pretrained("""./tok""" )
SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained("""./tok""" )
self.assertTrue(tokenizer.is_fast )
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.encode(
_a , )
self.assertEqual(_a , [31_957, 250, 1_345, 9, 10, 4_758] )
| 714 |
"""simple docstring"""
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = value
SCREAMING_SNAKE_CASE__ : List[Any] = weight
def __repr__( self ) -> List[Any]:
"""simple docstring"""
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value
def _a ( self ) -> int:
"""simple docstring"""
return self.name
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.weight
def _a ( self ) -> Dict:
"""simple docstring"""
return self.value / self.weight
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : Any = []
for i in range(len(__lowerCAmelCase ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[Any] = sorted(__lowerCAmelCase , key=__lowerCAmelCase , reverse=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0, 0.0
for i in range(len(__lowerCAmelCase ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def _lowercase ( ) -> List[str]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_owlvit import OwlViTImageProcessor
a :Union[str, Any] = logging.get_logger(__name__)
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , *_a , **_a ) -> None:
"""simple docstring"""
warnings.warn(
"""The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use OwlViTImageProcessor instead.""" , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 715 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
a :Optional[int] = None
a :Optional[Any] = logging.get_logger(__name__)
a :Optional[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
a :Union[str, Any] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"
),
},
}
a :Any = {
"facebook/nllb-large-en-ro": 1_024,
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
a :Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :int = ["""input_ids""", """attention_mask"""]
_SCREAMING_SNAKE_CASE :Tuple = NllbTokenizer
_SCREAMING_SNAKE_CASE :List[int] = []
_SCREAMING_SNAKE_CASE :List[int] = []
def __init__( self , _a=None , _a=None , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=None , _a=None , _a=None , _a=False , **_a , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
SCREAMING_SNAKE_CASE__ : Optional[int] = legacy_behaviour
super().__init__(
vocab_file=_a , tokenizer_file=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , legacy_behaviour=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE__ : str = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE__ : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
SCREAMING_SNAKE_CASE__ : List[str] = {
lang_code: self.convert_tokens_to_ids(_a ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
SCREAMING_SNAKE_CASE__ : Dict = src_lang if src_lang is not None else """eng_Latn"""
SCREAMING_SNAKE_CASE__ : List[str] = self.convert_tokens_to_ids(self._src_lang )
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _a ( self ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _a ( self , _a , _a , _a , _a , **_a ) -> Tuple:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
SCREAMING_SNAKE_CASE__ : Dict = src_lang
SCREAMING_SNAKE_CASE__ : Dict = self(_a , add_special_tokens=_a , return_tensors=_a , **_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_tokens_to_ids(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tgt_lang_id
return inputs
def _a ( self , _a , _a = "eng_Latn" , _a = None , _a = "fra_Latn" , **_a , ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = src_lang
SCREAMING_SNAKE_CASE__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(_a , _a , **_a )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _a ( self ) -> str:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Dict = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Dict = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : int = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : int = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.convert_tokens_to_ids(_a )
if self.legacy_behaviour:
SCREAMING_SNAKE_CASE__ : List[Any] = []
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = [self.cur_lang_code]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.eos_token_id]
SCREAMING_SNAKE_CASE__ : Any = self.convert_ids_to_tokens(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
SCREAMING_SNAKE_CASE__ : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a :int = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[int] = ["PLBartTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
"PLBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"PLBartForCausalLM",
"PLBartForConditionalGeneration",
"PLBartForSequenceClassification",
"PLBartModel",
"PLBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_plbart import PLBartTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_plbart import (
PLBART_PRETRAINED_MODEL_ARCHIVE_LIST,
PLBartForCausalLM,
PLBartForConditionalGeneration,
PLBartForSequenceClassification,
PLBartModel,
PLBartPreTrainedModel,
)
else:
import sys
a :List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 716 |
"""simple docstring"""
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Any:
# Format the message.
if name is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
else:
SCREAMING_SNAKE_CASE__ : str = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
SCREAMING_SNAKE_CASE__ : Dict = fmt.format(__lowerCAmelCase )
# Print and recurse (if needed).
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
if msg is not None:
print(__lowerCAmelCase )
for k in val.keys():
recursive_print(__lowerCAmelCase , val[k] , spaces + 2 )
elif isinstance(__lowerCAmelCase , torch.Tensor ):
print(__lowerCAmelCase , """:""" , val.size() )
else:
print(__lowerCAmelCase , """:""" , __lowerCAmelCase )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
SCREAMING_SNAKE_CASE__ : Tuple = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
SCREAMING_SNAKE_CASE__ : int = (num_heads, hidden_size, num_splits) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : List[str] = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = param.transpose(0 , 2 )
SCREAMING_SNAKE_CASE__ : List[Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
SCREAMING_SNAKE_CASE__ : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:]
SCREAMING_SNAKE_CASE__ : Dict = param.view(*__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = param.transpose(0 , 1 ).contiguous()
SCREAMING_SNAKE_CASE__ : Any = param.view(*__lowerCAmelCase )
return param
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
# The converted output model.
SCREAMING_SNAKE_CASE__ : List[str] = {}
# old versions did not store training args
SCREAMING_SNAKE_CASE__ : List[str] = input_state_dict.get("""args""" , __lowerCAmelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.padded_vocab_size
SCREAMING_SNAKE_CASE__ : Optional[int] = ds_args.max_position_embeddings
SCREAMING_SNAKE_CASE__ : List[Any] = ds_args.hidden_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = ds_args.num_layers
SCREAMING_SNAKE_CASE__ : Dict = ds_args.num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
SCREAMING_SNAKE_CASE__ : List[str] = config.n_head
# The hidden_size per head.
SCREAMING_SNAKE_CASE__ : str = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_state_dict["""checkpoint_version"""]
else:
SCREAMING_SNAKE_CASE__ : Tuple = 0.0
# The model.
SCREAMING_SNAKE_CASE__ : Any = input_state_dict["""model"""]
# The language model.
SCREAMING_SNAKE_CASE__ : Any = model["""language_model"""]
# The embeddings.
SCREAMING_SNAKE_CASE__ : str = lm["""embedding"""]
# The word embeddings.
SCREAMING_SNAKE_CASE__ : int = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
SCREAMING_SNAKE_CASE__ : Any = word_embeddings[: config.vocab_size, :]
SCREAMING_SNAKE_CASE__ : Optional[int] = word_embeddings
# The position embeddings.
SCREAMING_SNAKE_CASE__ : Any = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
SCREAMING_SNAKE_CASE__ : Tuple = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
SCREAMING_SNAKE_CASE__ : List[Any] = pos_embeddings
# The transformer.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
SCREAMING_SNAKE_CASE__ : str = layer_re.match(__lowerCAmelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
SCREAMING_SNAKE_CASE__ : Dict = int(m.group(1 ) )
# The name of the operation.
SCREAMING_SNAKE_CASE__ : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
SCREAMING_SNAKE_CASE__ : str = m.group(3 )
# The name of the layer.
SCREAMING_SNAKE_CASE__ : List[Any] = F'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
SCREAMING_SNAKE_CASE__ : Dict = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
SCREAMING_SNAKE_CASE__ : List[Any] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
SCREAMING_SNAKE_CASE__ : Any = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = causal_mask
# Insert a "dummy" tensor for masked_bias.
SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ : List[str] = masked_bias
SCREAMING_SNAKE_CASE__ : List[str] = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
SCREAMING_SNAKE_CASE__ : str = out_val.transpose(0 , 1 ).contiguous()
# Store.
SCREAMING_SNAKE_CASE__ : Dict = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : Any = fix_query_key_value_ordering(__lowerCAmelCase , __lowerCAmelCase , 3 , __lowerCAmelCase , __lowerCAmelCase )
# Store. No change of shape.
SCREAMING_SNAKE_CASE__ : str = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
SCREAMING_SNAKE_CASE__ : str = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : int = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
SCREAMING_SNAKE_CASE__ : int = megatron_to_transformers[op_name]
SCREAMING_SNAKE_CASE__ : Dict = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = transformer["""final_layernorm.weight"""]
SCREAMING_SNAKE_CASE__ : str = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
SCREAMING_SNAKE_CASE__ : Tuple = word_embeddings
# It should be done!
return output_state_dict
def _lowercase ( ) -> List[Any]:
# Create the argument parser.
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""" , type=__lowerCAmelCase , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , )
parser.add_argument(
"""--config_file""" , default="""""" , type=__lowerCAmelCase , help="""An optional config json file describing the pre-trained model.""" , )
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
# Extract the basename.
SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
SCREAMING_SNAKE_CASE__ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" )
else:
SCREAMING_SNAKE_CASE__ : str = torch.load(args.path_to_checkpoint , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ : int = input_state_dict.get("""args""" , __lowerCAmelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
SCREAMING_SNAKE_CASE__ : Dict = """gelu_fast"""
elif ds_args.openai_gelu:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu_new"""
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
SCREAMING_SNAKE_CASE__ : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = GPTaConfig(
vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__lowerCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type="""cls_index""" , summary_use_proj=__lowerCAmelCase , summary_activation=__lowerCAmelCase , summary_proj_to_labels=__lowerCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__lowerCAmelCase , use_cache=__lowerCAmelCase , bos_token_id=5_0256 , eos_token_id=5_0256 , )
else:
SCREAMING_SNAKE_CASE__ : List[Any] = GPTaConfig.from_json_file(args.config_file )
SCREAMING_SNAKE_CASE__ : Tuple = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = convert_megatron_checkpoint(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__lowerCAmelCase , __lowerCAmelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
SCREAMING_SNAKE_CASE__ : Tuple = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
SCREAMING_SNAKE_CASE__ : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
SCREAMING_SNAKE_CASE__ : Any = ds_args.tokenizer_name_or_path
else:
raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """gpt2"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = type(__lowerCAmelCase ).__name__
SCREAMING_SNAKE_CASE__ : Dict = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(__lowerCAmelCase )
# Save tokenizer based on args
print(F'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(__lowerCAmelCase )
# Store the state_dict to file.
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , """pytorch_model.bin""" )
print(F'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 12 | 0 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase ) -> bool:
SCREAMING_SNAKE_CASE__ : List[str] = [int(__lowerCAmelCase ) for i in ip_va_address.split(""".""" ) if i.isdigit()]
return len(__lowerCAmelCase ) == 4 and all(0 <= int(__lowerCAmelCase ) <= 254 for octet in octets )
if __name__ == "__main__":
a :List[Any] = input().strip()
a :Any = 'valid' if is_ip_va_address_valid(ip) else 'invalid'
print(f'{ip} is a {valid_or_invalid} IP v4 address.')
| 717 |
"""simple docstring"""
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class __a (UpperCamelCase_):
'''simple docstring'''
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read()
SCREAMING_SNAKE_CASE__ : str = regexp.search(_a )
return match
def _a ( self , _a ) -> Optional[Any]:
"""simple docstring"""
with open(_a , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a )
SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_a ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(_a ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
| 12 | 0 |
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def _lowercase ( *__lowerCAmelCase ) -> Any:
with open(__lowerCAmelCase , """r""" ) as fh:
fcntl.flock(__lowerCAmelCase , fcntl.LOCK_EX )
try:
print(*__lowerCAmelCase )
finally:
fcntl.flock(__lowerCAmelCase , fcntl.LOCK_UN )
a :Tuple = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
a :Dict = torch.device("cuda", local_rank)
a :Dict = socket.gethostname()
a :Tuple = f'[{hostname}-{local_rank}]'
try:
# test distributed
dist.init_process_group("nccl")
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
a :Tuple = dist.get_rank()
a :str = dist.get_world_size()
printflock(f'{gpu} is OK (global rank: {rank}/{world_size})')
dist.barrier()
if rank == 0:
printflock(f'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}')
except Exception:
printflock(f'{gpu} is broken')
raise
| 718 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __a :
'''simple docstring'''
def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length
SCREAMING_SNAKE_CASE__ : str = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length
SCREAMING_SNAKE_CASE__ : Tuple = is_training
SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask
SCREAMING_SNAKE_CASE__ : List[str] = use_labels
SCREAMING_SNAKE_CASE__ : str = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Any = num_attention_heads
SCREAMING_SNAKE_CASE__ : Any = d_ff
SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor
SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id
SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id
SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id
SCREAMING_SNAKE_CASE__ : Any = None
SCREAMING_SNAKE_CASE__ : str = decoder_layers
def _a ( self ) -> Tuple:
"""simple docstring"""
return TaConfig.from_pretrained("""google/umt5-base""" )
def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_a )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config()
SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a )
return config, input_dict
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs()
return config, inputs_dict
def _a ( self ) -> List[str]:
"""simple docstring"""
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Dict = model(
input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state
SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values
SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_a ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval()
# first forward pass
SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a )
SCREAMING_SNAKE_CASE__ : str = model(_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a )
self.parent.assertTrue(len(_a ) == len(_a ) )
self.parent.assertTrue(len(_a ) == len(_a ) + 1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""]
# select random slice
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) )
def _a ( self , _a , _a , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(_a ).any().item() )
@require_torch
class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE :List[str] = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
_SCREAMING_SNAKE_CASE :Tuple = False
_SCREAMING_SNAKE_CASE :Optional[Any] = False
_SCREAMING_SNAKE_CASE :List[Any] = True
_SCREAMING_SNAKE_CASE :List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9]
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_a )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0]
SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval()
model.to(_a )
SCREAMING_SNAKE_CASE__ : List[str] = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
}
for attn_name, (name, mask) in zip(_a , head_masking.items() ):
SCREAMING_SNAKE_CASE__ : List[str] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
SCREAMING_SNAKE_CASE__ : str = torch.ones(
config.num_decoder_layers , config.num_heads , device=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , )
# We check the state of decoder_attentions and cross_attentions just from the last step
SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a )
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids
# fmt: off
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) )
SCREAMING_SNAKE_CASE__ : int = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a )
self.assertEqual(_a , _a )
| 12 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a :Union[str, Any] = logging.get_logger(__name__)
a :Union[str, Any] = {
"facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __a (__lowerCamelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = """vit_mae"""
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-1_2 , _a=224 , _a=16 , _a=3 , _a=True , _a=16 , _a=512 , _a=8 , _a=2_048 , _a=0.75 , _a=False , **_a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE__ : str = hidden_size
SCREAMING_SNAKE_CASE__ : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads
SCREAMING_SNAKE_CASE__ : str = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[int] = initializer_range
SCREAMING_SNAKE_CASE__ : str = layer_norm_eps
SCREAMING_SNAKE_CASE__ : str = image_size
SCREAMING_SNAKE_CASE__ : str = patch_size
SCREAMING_SNAKE_CASE__ : Dict = num_channels
SCREAMING_SNAKE_CASE__ : List[Any] = qkv_bias
SCREAMING_SNAKE_CASE__ : Any = decoder_num_attention_heads
SCREAMING_SNAKE_CASE__ : List[Any] = decoder_hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_num_hidden_layers
SCREAMING_SNAKE_CASE__ : Union[str, Any] = decoder_intermediate_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = mask_ratio
SCREAMING_SNAKE_CASE__ : List[str] = norm_pix_loss
| 719 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class __a (UpperCamelCase_):
'''simple docstring'''
def __init__( self , _a , _a , _a = None , _a = None , _a = False , **_a , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(features=_a , cache_dir=_a , keep_in_memory=_a , **_a )
SCREAMING_SNAKE_CASE__ : List[Any] = Sql(
cache_dir=_a , features=_a , sql=_a , con=_a , **_a , )
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
SCREAMING_SNAKE_CASE__ : Dict = None
SCREAMING_SNAKE_CASE__ : Optional[int] = None
self.builder.download_and_prepare(
download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , )
# Build dataset for splits
SCREAMING_SNAKE_CASE__ : str = self.builder.as_dataset(
split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory )
return dataset
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a = None , _a = None , **_a , ) -> Any:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
SCREAMING_SNAKE_CASE__ : int = dataset
SCREAMING_SNAKE_CASE__ : Any = name
SCREAMING_SNAKE_CASE__ : Optional[Any] = con
SCREAMING_SNAKE_CASE__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
SCREAMING_SNAKE_CASE__ : int = num_proc
SCREAMING_SNAKE_CASE__ : int = to_sql_kwargs
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.to_sql_kwargs.pop("""sql""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""con""" , _a )
SCREAMING_SNAKE_CASE__ : Tuple = self.to_sql_kwargs.pop("""index""" , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = self._write(index=_a , **self.to_sql_kwargs )
return written
def _a ( self , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = args
SCREAMING_SNAKE_CASE__ : List[str] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs
SCREAMING_SNAKE_CASE__ : Any = query_table(
table=self.dataset.data , key=slice(_a , offset + self.batch_size ) , indices=self.dataset._indices , )
SCREAMING_SNAKE_CASE__ : Optional[int] = batch.to_pandas()
SCREAMING_SNAKE_CASE__ : List[Any] = df.to_sql(self.name , self.con , index=_a , **_a )
return num_rows or len(_a )
def _a ( self , _a , **_a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _a , _a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written
| 12 | 0 |
"""simple docstring"""
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
if start < end:
SCREAMING_SNAKE_CASE__ : Any = randint(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = a[end]
SCREAMING_SNAKE_CASE__ : int = a[pivot]
SCREAMING_SNAKE_CASE__ : Optional[Any] = temp
SCREAMING_SNAKE_CASE__ : Tuple = _in_place_partition(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
count += _in_place_quick_sort(__lowerCAmelCase , __lowerCAmelCase , p - 1 )
count += _in_place_quick_sort(__lowerCAmelCase , p + 1 , __lowerCAmelCase )
return count
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__ : Tuple = 0
SCREAMING_SNAKE_CASE__ : str = randint(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[int] = a[end]
SCREAMING_SNAKE_CASE__ : Tuple = a[pivot]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = temp
SCREAMING_SNAKE_CASE__ : Any = start - 1
for index in range(__lowerCAmelCase , __lowerCAmelCase ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
SCREAMING_SNAKE_CASE__ : Union[str, Any] = new_pivot_index + 1
SCREAMING_SNAKE_CASE__ : Any = a[new_pivot_index]
SCREAMING_SNAKE_CASE__ : List[str] = a[index]
SCREAMING_SNAKE_CASE__ : Optional[Any] = temp
SCREAMING_SNAKE_CASE__ : Tuple = a[new_pivot_index + 1]
SCREAMING_SNAKE_CASE__ : int = a[end]
SCREAMING_SNAKE_CASE__ : int = temp
return new_pivot_index + 1, count
a :Tuple = TemporaryFile()
a :Tuple = 100 # 1000 elements are to be sorted
a :int = 0, 1 # mean and standard deviation
a :Any = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
a :Any = np.load(outfile)
a :Optional[int] = len(M) - 1
a :Dict = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 720 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase ) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
SCREAMING_SNAKE_CASE__ : List[Any] = 1
SCREAMING_SNAKE_CASE__ : int = 1
while repunit:
SCREAMING_SNAKE_CASE__ : str = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index
def _lowercase ( __lowerCAmelCase = 100_0000 ) -> int:
SCREAMING_SNAKE_CASE__ : Dict = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(__lowerCAmelCase ) <= limit:
divisor += 2
return divisor
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
a :Dict = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
def _lowercase ( __lowerCAmelCase=None ) -> int:
if subparsers is not None:
SCREAMING_SNAKE_CASE__ : Dict = subparsers.add_parser("""tpu-config""" , description=_description )
else:
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description )
# Core arguments
SCREAMING_SNAKE_CASE__ : List[str] = parser.add_argument_group(
"""Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" )
config_args.add_argument(
"""--config_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""Path to the config file to use for accelerate.""" , )
config_args.add_argument(
"""--tpu_name""" , default=__lowerCAmelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , )
config_args.add_argument(
"""--tpu_zone""" , default=__lowerCAmelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" )
pod_args.add_argument(
"""--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , )
pod_args.add_argument(
"""--command_file""" , default=__lowerCAmelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , )
pod_args.add_argument(
"""--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , )
pod_args.add_argument(
"""--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , )
pod_args.add_argument(
"""--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.""" , )
pod_args.add_argument(
"""--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" )
if subparsers is not None:
parser.set_defaults(func=__lowerCAmelCase )
return parser
def _lowercase ( __lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__ : Optional[int] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : int = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
SCREAMING_SNAKE_CASE__ : str = defaults.command_file
if not args.command and defaults.commands is not None:
SCREAMING_SNAKE_CASE__ : Optional[int] = defaults.commands
if not args.tpu_name:
SCREAMING_SNAKE_CASE__ : List[str] = defaults.tpu_name
if not args.tpu_zone:
SCREAMING_SNAKE_CASE__ : Tuple = defaults.tpu_zone
if args.accelerate_version == "dev":
SCREAMING_SNAKE_CASE__ : Tuple = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
SCREAMING_SNAKE_CASE__ : Optional[Any] = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = F'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError("""You must specify either a command file or a command to run on the pod.""" )
if args.command_file:
with open(args.command_file , """r""" ) as f:
SCREAMING_SNAKE_CASE__ : Any = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : List[str] = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
SCREAMING_SNAKE_CASE__ : str = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [F'''pip install {args.accelerate_version}''']
new_cmd += args.command
SCREAMING_SNAKE_CASE__ : List[str] = '''; '''.join(__lowerCAmelCase )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'''Running {' '.join(__lowerCAmelCase )}''' )
return
subprocess.run(__lowerCAmelCase )
print("""Successfully setup pod.""" )
def _lowercase ( ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : Optional[int] = tpu_command_parser()
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
tpu_command_launcher(__lowerCAmelCase )
| 721 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
a :Union[str, Any] = logging.getLogger(__name__)
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""})
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
_SCREAMING_SNAKE_CASE :Optional[int] = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
@dataclass
class __a :
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""})
_SCREAMING_SNAKE_CASE :str = field(
default=UpperCamelCase_ , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Train language if it is different from the evaluation language."""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""})
_SCREAMING_SNAKE_CASE :Optional[str] = field(
default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
_SCREAMING_SNAKE_CASE :Optional[bool] = field(
default=UpperCamelCase_ , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
_SCREAMING_SNAKE_CASE :str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
_SCREAMING_SNAKE_CASE :bool = field(
default=UpperCamelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , )
def _lowercase ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_xnli""" , __lowerCAmelCase )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ : List[Any] = training_args.get_process_log_level()
logger.setLevel(__lowerCAmelCase )
datasets.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.set_verbosity(__lowerCAmelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE__ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE__ : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
SCREAMING_SNAKE_CASE__ : Optional[int] = load_dataset(
"""xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
SCREAMING_SNAKE_CASE__ : str = load_dataset(
"""xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = train_dataset.features["""label"""].names
if training_args.do_eval:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.features["""label"""].names
if training_args.do_predict:
SCREAMING_SNAKE_CASE__ : int = load_dataset(
"""xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.features["""label"""].names
# Labels
SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ : Any = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__lowerCAmelCase , idalabel={str(__lowerCAmelCase ): label for i, label in enumerate(__lowerCAmelCase )} , labelaid={label: i for i, label in enumerate(__lowerCAmelCase )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ : str = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : str = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
def preprocess_function(__lowerCAmelCase ):
# Tokenize the texts
return tokenizer(
examples["""premise"""] , examples["""hypothesis"""] , padding=__lowerCAmelCase , max_length=data_args.max_seq_length , truncation=__lowerCAmelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(len(__lowerCAmelCase ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE__ : str = train_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = train_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(__lowerCAmelCase ) ) , 3 ):
logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE__ : Any = min(len(__lowerCAmelCase ) , data_args.max_eval_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = eval_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : List[str] = eval_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE__ : int = min(len(__lowerCAmelCase ) , data_args.max_predict_samples )
SCREAMING_SNAKE_CASE__ : List[Any] = predict_dataset.select(range(__lowerCAmelCase ) )
with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ : Tuple = predict_dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , )
# Get the metric function
SCREAMING_SNAKE_CASE__ : Optional[Any] = evaluate.load("""xnli""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Dict = p.predictions[0] if isinstance(p.predictions , __lowerCAmelCase ) else p.predictions
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.argmax(__lowerCAmelCase , axis=1 )
return metric.compute(predictions=__lowerCAmelCase , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ : List[Any] = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE__ : int = DataCollatorWithPadding(__lowerCAmelCase , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Trainer(
model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , data_collator=__lowerCAmelCase , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE__ : Dict = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = last_checkpoint
SCREAMING_SNAKE_CASE__ : str = trainer.train(resume_from_checkpoint=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = train_result.metrics
SCREAMING_SNAKE_CASE__ : Optional[int] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : Dict = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __lowerCAmelCase )
trainer.save_metrics("""train""" , __lowerCAmelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE__ : Any = trainer.evaluate(eval_dataset=__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""eval""" , __lowerCAmelCase )
trainer.save_metrics("""eval""" , __lowerCAmelCase )
# Prediction
if training_args.do_predict:
logger.info("""*** Predict ***""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = trainer.predict(__lowerCAmelCase , metric_key_prefix="""predict""" )
SCREAMING_SNAKE_CASE__ : List[str] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__lowerCAmelCase )
)
SCREAMING_SNAKE_CASE__ : int = min(__lowerCAmelCase , len(__lowerCAmelCase ) )
trainer.log_metrics("""predict""" , __lowerCAmelCase )
trainer.save_metrics("""predict""" , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = np.argmax(__lowerCAmelCase , axis=1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(training_args.output_dir , """predictions.txt""" )
if trainer.is_world_process_zero():
with open(__lowerCAmelCase , """w""" ) as writer:
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[int] = label_list[item]
writer.write(F'''{index}\t{item}\n''' )
if __name__ == "__main__":
main()
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a :Optional[int] = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :str = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
a :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 700 |
"""simple docstring"""
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
a :str = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
a :int = {
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
a :Dict = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
a :List[Any] = "facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
a :str = "allenai"
def _lowercase ( __lowerCAmelCase ) -> Any:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
SCREAMING_SNAKE_CASE__ : str = dict((re.sub(r"""@@$""" , """""" , __lowerCAmelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , __lowerCAmelCase ), v) for k, v in d.items() )
SCREAMING_SNAKE_CASE__ : Tuple = """<s> <pad> </s> <unk>""".split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d[k] # restore
return da
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]:
# prep
assert os.path.exists(__lowerCAmelCase )
os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
SCREAMING_SNAKE_CASE__ : Optional[Any] = basename(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
SCREAMING_SNAKE_CASE__ : Optional[int] = cls.hub_models()
SCREAMING_SNAKE_CASE__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""}
SCREAMING_SNAKE_CASE__ : Optional[Any] = """."""
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F'''using checkpoint {checkpoint_file}''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hub_utils.from_pretrained(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , archive_map=__lowerCAmelCase , **__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = vars(chkpt["""args"""]["""model"""] )
SCREAMING_SNAKE_CASE__ : Any = args["""source_lang"""]
SCREAMING_SNAKE_CASE__ : Any = args["""target_lang"""]
SCREAMING_SNAKE_CASE__ : Optional[Any] = dirname(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = basename(__lowerCAmelCase )
# dicts
SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(__lowerCAmelCase , F'''dict.{src_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Any = os.path.join(__lowerCAmelCase , F'''dict.{tgt_lang}.txt''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = rewrite_dict_keys(src_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[int] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , """vocab-src.json""" )
print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
SCREAMING_SNAKE_CASE__ : Optional[Any] = True
for k in src_vocab.keys():
if not k.islower():
SCREAMING_SNAKE_CASE__ : Tuple = False
break
SCREAMING_SNAKE_CASE__ : Optional[Any] = Dictionary.load(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices )
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , """vocab-tgt.json""" )
print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# merges_file (bpecodes)
SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["""merges_file"""] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
if os.path.exists(__lowerCAmelCase ):
break
with open(__lowerCAmelCase , encoding="""utf-8""" ) as fin:
SCREAMING_SNAKE_CASE__ : Any = fin.read()
SCREAMING_SNAKE_CASE__ : Tuple = re.sub(r""" \d+$""" , """""" , __lowerCAmelCase , 0 , re.M ) # remove frequency number
print(F'''Generating {merges_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as fout:
fout.write(__lowerCAmelCase )
# model config
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(__lowerCAmelCase , """config.json""" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}'''
assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}'''
SCREAMING_SNAKE_CASE__ : str = {
"""architectures""": ["""FSMTForConditionalGeneration"""],
"""model_type""": """fsmt""",
"""activation_dropout""": args["""activation_dropout"""],
"""activation_function""": """relu""",
"""attention_dropout""": args["""attention_dropout"""],
"""d_model""": args["""decoder_embed_dim"""],
"""dropout""": args["""dropout"""],
"""init_std""": 0.02,
"""max_position_embeddings""": args["""max_source_positions"""],
"""num_hidden_layers""": args["""encoder_layers"""],
"""src_vocab_size""": src_vocab_size,
"""tgt_vocab_size""": tgt_vocab_size,
"""langs""": [src_lang, tgt_lang],
"""encoder_attention_heads""": args["""encoder_attention_heads"""],
"""encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""],
"""encoder_layerdrop""": args["""encoder_layerdrop"""],
"""encoder_layers""": args["""encoder_layers"""],
"""decoder_attention_heads""": args["""decoder_attention_heads"""],
"""decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""],
"""decoder_layerdrop""": args["""decoder_layerdrop"""],
"""decoder_layers""": args["""decoder_layers"""],
"""bos_token_id""": 0,
"""pad_token_id""": 1,
"""eos_token_id""": 2,
"""is_encoder_decoder""": True,
"""scale_embedding""": not args["""no_scale_embedding"""],
"""tie_word_embeddings""": args["""share_all_embeddings"""],
}
# good hparam defaults to start with
SCREAMING_SNAKE_CASE__ : Tuple = 5
SCREAMING_SNAKE_CASE__ : str = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
SCREAMING_SNAKE_CASE__ : Tuple = best_score_hparams[model_dir]["""length_penalty"""]
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1.0
print(F'''Generating {fsmt_model_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# tokenizer config
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Tuple = {
"""langs""": [src_lang, tgt_lang],
"""model_max_length""": 1024,
"""do_lower_case""": do_lower_case,
}
print(F'''Generating {fsmt_tokenizer_config_file}''' )
with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(__lowerCAmelCase , ensure_ascii=__lowerCAmelCase , indent=__lowerCAmelCase ) )
# model
SCREAMING_SNAKE_CASE__ : Dict = chkpt["""models"""][0]
SCREAMING_SNAKE_CASE__ : int = model.state_dict()
# rename keys to start with 'model.'
SCREAMING_SNAKE_CASE__ : Tuple = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
SCREAMING_SNAKE_CASE__ : str = [
"""model.model""",
"""model.encoder.version""",
"""model.decoder.version""",
"""model.encoder_embed_tokens.weight""",
"""model.decoder_embed_tokens.weight""",
"""model.encoder.embed_positions._float_tensor""",
"""model.decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
model_state_dict.pop(__lowerCAmelCase , __lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = FSMTConfig.from_pretrained(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FSMTForConditionalGeneration(__lowerCAmelCase )
# check that it loads ok
model_new.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase )
# save
SCREAMING_SNAKE_CASE__ : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(__lowerCAmelCase , __lowerCAmelCase )
print("""Conversion is done!""" )
print("""\nLast step is to upload the files to s3""" )
print(F'''cd {data_root}''' )
print(F'''transformers-cli upload {model_dir}''' )
if __name__ == "__main__":
a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a :List[str] = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 12 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __a :
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , _a=2 , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : str = batch_size
SCREAMING_SNAKE_CASE__ : Dict = image_size
SCREAMING_SNAKE_CASE__ : int = patch_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_channels
SCREAMING_SNAKE_CASE__ : Dict = is_training
SCREAMING_SNAKE_CASE__ : Tuple = use_labels
SCREAMING_SNAKE_CASE__ : str = hidden_size
SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers
SCREAMING_SNAKE_CASE__ : int = num_attention_heads
SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE__ : str = hidden_act
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Any = scope
SCREAMING_SNAKE_CASE__ : Tuple = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE__ : Optional[Any] = (image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE__ : str = num_patches + 1
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ : Dict = self.get_config()
return config, pixel_values, labels
def _a ( self ) -> int:
"""simple docstring"""
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _a ( self , _a , _a , _a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = ViTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ : List[str] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _a ( self , _a , _a , _a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = ViTForMaskedImageModeling(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ : int = model(__lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
SCREAMING_SNAKE_CASE__ : Dict = 1
SCREAMING_SNAKE_CASE__ : List[Any] = ViTForMaskedImageModeling(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : int = model(__lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _a ( self , _a , _a , _a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.type_sequence_label_size
SCREAMING_SNAKE_CASE__ : Dict = ViTForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ : str = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE__ : str = 1
SCREAMING_SNAKE_CASE__ : Optional[Any] = ViTForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.prepare_config_and_inputs()
(
SCREAMING_SNAKE_CASE__
) : Tuple = config_and_inputs
SCREAMING_SNAKE_CASE__ : Any = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE :List[Any] = (
{"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :List[Any] = True
_SCREAMING_SNAKE_CASE :str = False
_SCREAMING_SNAKE_CASE :Any = False
_SCREAMING_SNAKE_CASE :Optional[Any] = False
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = ViTModelTester(self )
SCREAMING_SNAKE_CASE__ : Dict = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _a ( self ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
pass
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) )
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ : Tuple = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _a ( self ) -> Any:
"""simple docstring"""
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ : Optional[int] = ViTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _lowercase ( ) -> str:
SCREAMING_SNAKE_CASE__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
@cached_property
def _a ( self ) -> Any:
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = ViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Tuple = self.default_image_processor
SCREAMING_SNAKE_CASE__ : Any = prepare_img()
SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=__lowerCamelCase , return_tensors="""pt""" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Optional[int] = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
@slow
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = ViTModel.from_pretrained("""facebook/dino-vits8""" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Tuple = ViTImageProcessor.from_pretrained("""facebook/dino-vits8""" , size=480 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = prepare_img()
SCREAMING_SNAKE_CASE__ : str = image_processor(images=__lowerCamelCase , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ : Tuple = inputs.pixel_values.to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Optional[int] = model(__lowerCamelCase , interpolate_pos_encoding=__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size((1, 3_601, 384) )
self.assertEqual(outputs.last_hidden_state.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor(
[[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ViTModel.from_pretrained("""facebook/dino-vits8""" , torch_dtype=torch.floataa , device_map="""auto""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor
SCREAMING_SNAKE_CASE__ : str = prepare_img()
SCREAMING_SNAKE_CASE__ : Any = image_processor(images=__lowerCamelCase , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = inputs.pixel_values.to(__lowerCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : Tuple = model(__lowerCamelCase )
| 701 |
"""simple docstring"""
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = (DDPMScheduler,)
def _a ( self , **_a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0_001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**_a )
return config
def _a ( self ) -> str:
"""simple docstring"""
for timesteps in [1, 5, 100, 1_000]:
self.check_over_configs(num_train_timesteps=_a )
def _a ( self ) -> str:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_a , beta_end=_a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_a )
def _a ( self ) -> Any:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=_a )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_a )
def _a ( self ) -> int:
"""simple docstring"""
self.check_over_configs(thresholding=_a )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=_a , prediction_type=_a , sample_max_value=_a , )
def _a ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=_a )
def _a ( self ) -> str:
"""simple docstring"""
for t in [0, 500, 999]:
self.check_over_forward(time_step=_a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Any = len(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : str = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : int = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : str = pred_prev_sample
SCREAMING_SNAKE_CASE__ : str = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 258.9_606 ) < 1E-2
assert abs(result_mean.item() - 0.3_372 ) < 1E-3
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Dict = len(_a )
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_model()
SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 )
for t in reversed(range(_a ) ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE__ : int = model(_a , _a )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
SCREAMING_SNAKE_CASE__ : Tuple = pred_prev_sample
SCREAMING_SNAKE_CASE__ : Any = torch.sum(torch.abs(_a ) )
SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 202.0_296 ) < 1E-2
assert abs(result_mean.item() - 0.2_631 ) < 1E-3
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Dict = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.timesteps
for i, timestep in enumerate(_a ):
if i == len(_a ) - 1:
SCREAMING_SNAKE_CASE__ : Optional[Any] = -1
else:
SCREAMING_SNAKE_CASE__ : Tuple = timesteps[i + 1]
SCREAMING_SNAKE_CASE__ : int = scheduler.previous_timestep(_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = prev_t.item()
self.assertEqual(_a , _a )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : int = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [100, 87, 50, 51, 0]
with self.assertRaises(_a , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : List[Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : List[str] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : int = [100, 87, 50, 1, 0]
SCREAMING_SNAKE_CASE__ : List[str] = len(_a )
with self.assertRaises(_a , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=_a )
| 12 | 0 |
"""simple docstring"""
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
a :int = "bert-base-cased"
a :List[str] = "google/pegasus-xsum"
a :List[Any] = [" Sam ate lunch today.", "Sams lunch ingredients."]
a :Any = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
a :Optional[Any] = "patrickvonplaten/t5-tiny-random"
a :Optional[int] = "sshleifer/bart-tiny-random"
a :List[str] = "sshleifer/tiny-mbart"
a :Any = "sshleifer/tiny-marian-en-de"
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : Dict = """\n""".join(UpperCamelCase__ )
Path(UpperCamelCase__ ).open("""w""" ).writelines(UpperCamelCase__ )
def _lowercase ( __lowerCAmelCase ) -> str:
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(UpperCamelCase__ , F'''{split}.source''' ) , UpperCamelCase__ )
_dump_articles(os.path.join(UpperCamelCase__ , F'''{split}.target''' ) , UpperCamelCase__ )
return tmp_dir
class __a (UpperCAmelCase_):
'''simple docstring'''
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def _a ( self , _a ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = AutoTokenizer.from_pretrained(_lowercase )
SCREAMING_SNAKE_CASE__ : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES )
SCREAMING_SNAKE_CASE__ : Optional[Any] = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES )
SCREAMING_SNAKE_CASE__ : List[Any] = 4
SCREAMING_SNAKE_CASE__ : Optional[Any] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error.
SCREAMING_SNAKE_CASE__ : Any = SeqaSeqDataset(
_lowercase , data_dir=_lowercase , type_path="""train""" , max_source_length=_lowercase , max_target_length=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , )
SCREAMING_SNAKE_CASE__ : Dict = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_lowercase , _lowercase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
SCREAMING_SNAKE_CASE__ : Optional[int] = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def _a ( self , _a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = AutoTokenizer.from_pretrained(_lowercase )
SCREAMING_SNAKE_CASE__ : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
SCREAMING_SNAKE_CASE__ : str = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES )
SCREAMING_SNAKE_CASE__ : int = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES )
SCREAMING_SNAKE_CASE__ : List[str] = 4
SCREAMING_SNAKE_CASE__ : List[str] = LegacySeqaSeqDataset(
_lowercase , data_dir=_lowercase , type_path="""train""" , max_source_length=20 , max_target_length=_lowercase , )
SCREAMING_SNAKE_CASE__ : str = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" )
SCREAMING_SNAKE_CASE__ : List[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tmp_dir.joinpath("""train.source""" ).open().readlines()
SCREAMING_SNAKE_CASE__ : List[str] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_lowercase , _lowercase , 128 , _lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] = {x.name for x in tmp_dir.iterdir()}
SCREAMING_SNAKE_CASE__ : List[Any] = {x.name for x in save_dir.iterdir()}
SCREAMING_SNAKE_CASE__ : str = save_dir.joinpath("""train.source""" ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_lowercase ) < len(_lowercase )
assert len(_lowercase ) == 1
assert len(packed_examples[0] ) == sum(len(_lowercase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
if not FAIRSEQ_AVAILABLE:
return
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_dataset(max_len=64 )
SCREAMING_SNAKE_CASE__ : Any = 64
SCREAMING_SNAKE_CASE__ : int = ds.make_dynamic_sampler(_lowercase , required_batch_size_multiple=_lowercase )
SCREAMING_SNAKE_CASE__ : Any = [len(_lowercase ) for x in batch_sampler]
assert len(set(_lowercase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_lowercase ) == len(_lowercase ) # no dropped or added examples
SCREAMING_SNAKE_CASE__ : Optional[Any] = DataLoader(_lowercase , batch_sampler=_lowercase , collate_fn=ds.collate_fn , num_workers=2 )
SCREAMING_SNAKE_CASE__ : str = []
SCREAMING_SNAKE_CASE__ : Optional[Any] = []
for batch in data_loader:
SCREAMING_SNAKE_CASE__ : List[str] = batch["""input_ids"""].shape
SCREAMING_SNAKE_CASE__ : List[Any] = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
SCREAMING_SNAKE_CASE__ : Dict = np.product(batch["""input_ids"""].shape )
num_src_per_batch.append(_lowercase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_lowercase )
assert num_src_per_batch[0] == max(_lowercase )
if failures:
raise AssertionError(f'''too many tokens in {len(_lowercase )} batches''' )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self._get_dataset(max_len=512 )
SCREAMING_SNAKE_CASE__ : Optional[int] = 2
SCREAMING_SNAKE_CASE__ : str = ds.make_sortish_sampler(_lowercase , shuffle=_lowercase )
SCREAMING_SNAKE_CASE__ : Any = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 )
SCREAMING_SNAKE_CASE__ : Any = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowercase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.pad_token_id
def count_pad_tokens(_a , _a="input_ids" ):
return [batch[k].eq(_lowercase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_lowercase , k="""labels""" ) ) < sum(count_pad_tokens(_lowercase , k="""labels""" ) )
assert sum(count_pad_tokens(_lowercase ) ) < sum(count_pad_tokens(_lowercase ) )
assert len(_lowercase ) == len(_lowercase )
def _a ( self , _a=1_000 , _a=128 ) -> Optional[Any]:
"""simple docstring"""
if os.getenv("""USE_REAL_DATA""" , _lowercase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """examples/seq2seq/wmt_en_ro"""
SCREAMING_SNAKE_CASE__ : List[str] = max_len * 2 * 64
if not Path(_lowercase ).joinpath("""train.len""" ).exists():
save_len_file(_lowercase , _lowercase )
else:
SCREAMING_SNAKE_CASE__ : Any = """examples/seq2seq/test_data/wmt_en_ro"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = max_len * 4
save_len_file(_lowercase , _lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = AutoTokenizer.from_pretrained(_lowercase )
SCREAMING_SNAKE_CASE__ : Optional[int] = SeqaSeqDataset(
_lowercase , data_dir=_lowercase , type_path="""train""" , max_source_length=_lowercase , max_target_length=_lowercase , n_obs=_lowercase , )
return ds, max_tokens, tokenizer
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self._get_dataset()
SCREAMING_SNAKE_CASE__ : List[Any] = set(DistributedSortishSampler(_lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_lowercase ) )
SCREAMING_SNAKE_CASE__ : Any = set(DistributedSortishSampler(_lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_lowercase ) )
assert idsa.intersection(_lowercase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def _a ( self , _a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase )
if tok_name == MBART_TINY:
SCREAMING_SNAKE_CASE__ : Dict = SeqaSeqDataset(
_lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , )
SCREAMING_SNAKE_CASE__ : Tuple = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
SCREAMING_SNAKE_CASE__ : Dict = SeqaSeqDataset(
_lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , )
SCREAMING_SNAKE_CASE__ : Optional[int] = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_lowercase ) == 1 if tok_name == BART_TINY else len(_lowercase ) == 0
| 702 |
"""simple docstring"""
import os
a :List[str] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000}
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Any = 0
SCREAMING_SNAKE_CASE__ : Dict = 0
while index < len(__lowerCAmelCase ) - 1:
SCREAMING_SNAKE_CASE__ : List[Any] = SYMBOLS[numerals[index]]
SCREAMING_SNAKE_CASE__ : Dict = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Optional[int] = """"""
SCREAMING_SNAKE_CASE__ : int = num // 1000
numerals += m_count * "M"
num %= 1000
SCREAMING_SNAKE_CASE__ : List[str] = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
SCREAMING_SNAKE_CASE__ : List[Any] = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def _lowercase ( __lowerCAmelCase = "/p089_roman.txt" ) -> int:
SCREAMING_SNAKE_CASE__ : int = 0
with open(os.path.dirname(__lowerCAmelCase ) + roman_numerals_filename ) as filea:
SCREAMING_SNAKE_CASE__ : str = filea.readlines()
for line in lines:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = line.strip()
SCREAMING_SNAKE_CASE__ : Dict = parse_roman_numerals(__lowerCAmelCase )
SCREAMING_SNAKE_CASE__ : str = generate_roman_numerals(__lowerCAmelCase )
savings += len(__lowerCAmelCase ) - len(__lowerCAmelCase )
return savings
if __name__ == "__main__":
print(f'{solution() = }')
| 12 | 0 |
"""simple docstring"""
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] )
@pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] )
@pytest.mark.parametrize("""revision""" , [None, """v2"""] )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : List[Any] = hf_hub_url(repo_id=__SCREAMING_SNAKE_CASE , path=__SCREAMING_SNAKE_CASE , revision=__SCREAMING_SNAKE_CASE )
assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(__SCREAMING_SNAKE_CASE )}'''
| 703 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
SCREAMING_SNAKE_CASE__ : Any = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE__ : Optional[int] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , _a )
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE__ : Optional[int] = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
from collections import OrderedDict
from ...utils import logging
from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update
from .configuration_auto import CONFIG_MAPPING_NAMES
a :Optional[Any] = logging.get_logger(__name__)
a :Any = OrderedDict(
[
# Base model mapping
("albert", "FlaxAlbertModel"),
("bart", "FlaxBartModel"),
("beit", "FlaxBeitModel"),
("bert", "FlaxBertModel"),
("big_bird", "FlaxBigBirdModel"),
("blenderbot", "FlaxBlenderbotModel"),
("blenderbot-small", "FlaxBlenderbotSmallModel"),
("clip", "FlaxCLIPModel"),
("distilbert", "FlaxDistilBertModel"),
("electra", "FlaxElectraModel"),
("gpt-sw3", "FlaxGPT2Model"),
("gpt2", "FlaxGPT2Model"),
("gpt_neo", "FlaxGPTNeoModel"),
("gptj", "FlaxGPTJModel"),
("longt5", "FlaxLongT5Model"),
("marian", "FlaxMarianModel"),
("mbart", "FlaxMBartModel"),
("mt5", "FlaxMT5Model"),
("opt", "FlaxOPTModel"),
("pegasus", "FlaxPegasusModel"),
("regnet", "FlaxRegNetModel"),
("resnet", "FlaxResNetModel"),
("roberta", "FlaxRobertaModel"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"),
("roformer", "FlaxRoFormerModel"),
("t5", "FlaxT5Model"),
("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"),
("vit", "FlaxViTModel"),
("wav2vec2", "FlaxWav2Vec2Model"),
("whisper", "FlaxWhisperModel"),
("xglm", "FlaxXGLMModel"),
("xlm-roberta", "FlaxXLMRobertaModel"),
]
)
a :Optional[int] = OrderedDict(
[
# Model for pre-training mapping
("albert", "FlaxAlbertForPreTraining"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForPreTraining"),
("big_bird", "FlaxBigBirdForPreTraining"),
("electra", "FlaxElectraForPreTraining"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("t5", "FlaxT5ForConditionalGeneration"),
("wav2vec2", "FlaxWav2Vec2ForPreTraining"),
("whisper", "FlaxWhisperForConditionalGeneration"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
a :Union[str, Any] = OrderedDict(
[
# Model for Masked LM mapping
("albert", "FlaxAlbertForMaskedLM"),
("bart", "FlaxBartForConditionalGeneration"),
("bert", "FlaxBertForMaskedLM"),
("big_bird", "FlaxBigBirdForMaskedLM"),
("distilbert", "FlaxDistilBertForMaskedLM"),
("electra", "FlaxElectraForMaskedLM"),
("mbart", "FlaxMBartForConditionalGeneration"),
("roberta", "FlaxRobertaForMaskedLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"),
("roformer", "FlaxRoFormerForMaskedLM"),
("xlm-roberta", "FlaxXLMRobertaForMaskedLM"),
]
)
a :Union[str, Any] = OrderedDict(
[
# Model for Seq2Seq Causal LM mapping
("bart", "FlaxBartForConditionalGeneration"),
("blenderbot", "FlaxBlenderbotForConditionalGeneration"),
("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"),
("encoder-decoder", "FlaxEncoderDecoderModel"),
("longt5", "FlaxLongT5ForConditionalGeneration"),
("marian", "FlaxMarianMTModel"),
("mbart", "FlaxMBartForConditionalGeneration"),
("mt5", "FlaxMT5ForConditionalGeneration"),
("pegasus", "FlaxPegasusForConditionalGeneration"),
("t5", "FlaxT5ForConditionalGeneration"),
]
)
a :List[str] = OrderedDict(
[
# Model for Image-classsification
("beit", "FlaxBeitForImageClassification"),
("regnet", "FlaxRegNetForImageClassification"),
("resnet", "FlaxResNetForImageClassification"),
("vit", "FlaxViTForImageClassification"),
]
)
a :Optional[int] = OrderedDict(
[
("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"),
]
)
a :str = OrderedDict(
[
# Model for Causal LM mapping
("bart", "FlaxBartForCausalLM"),
("bert", "FlaxBertForCausalLM"),
("big_bird", "FlaxBigBirdForCausalLM"),
("electra", "FlaxElectraForCausalLM"),
("gpt-sw3", "FlaxGPT2LMHeadModel"),
("gpt2", "FlaxGPT2LMHeadModel"),
("gpt_neo", "FlaxGPTNeoForCausalLM"),
("gptj", "FlaxGPTJForCausalLM"),
("opt", "FlaxOPTForCausalLM"),
("roberta", "FlaxRobertaForCausalLM"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"),
("xglm", "FlaxXGLMForCausalLM"),
("xlm-roberta", "FlaxXLMRobertaForCausalLM"),
]
)
a :Any = OrderedDict(
[
# Model for Sequence Classification mapping
("albert", "FlaxAlbertForSequenceClassification"),
("bart", "FlaxBartForSequenceClassification"),
("bert", "FlaxBertForSequenceClassification"),
("big_bird", "FlaxBigBirdForSequenceClassification"),
("distilbert", "FlaxDistilBertForSequenceClassification"),
("electra", "FlaxElectraForSequenceClassification"),
("mbart", "FlaxMBartForSequenceClassification"),
("roberta", "FlaxRobertaForSequenceClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"),
("roformer", "FlaxRoFormerForSequenceClassification"),
("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"),
]
)
a :int = OrderedDict(
[
# Model for Question Answering mapping
("albert", "FlaxAlbertForQuestionAnswering"),
("bart", "FlaxBartForQuestionAnswering"),
("bert", "FlaxBertForQuestionAnswering"),
("big_bird", "FlaxBigBirdForQuestionAnswering"),
("distilbert", "FlaxDistilBertForQuestionAnswering"),
("electra", "FlaxElectraForQuestionAnswering"),
("mbart", "FlaxMBartForQuestionAnswering"),
("roberta", "FlaxRobertaForQuestionAnswering"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"),
("roformer", "FlaxRoFormerForQuestionAnswering"),
("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"),
]
)
a :List[str] = OrderedDict(
[
# Model for Token Classification mapping
("albert", "FlaxAlbertForTokenClassification"),
("bert", "FlaxBertForTokenClassification"),
("big_bird", "FlaxBigBirdForTokenClassification"),
("distilbert", "FlaxDistilBertForTokenClassification"),
("electra", "FlaxElectraForTokenClassification"),
("roberta", "FlaxRobertaForTokenClassification"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"),
("roformer", "FlaxRoFormerForTokenClassification"),
("xlm-roberta", "FlaxXLMRobertaForTokenClassification"),
]
)
a :Any = OrderedDict(
[
# Model for Multiple Choice mapping
("albert", "FlaxAlbertForMultipleChoice"),
("bert", "FlaxBertForMultipleChoice"),
("big_bird", "FlaxBigBirdForMultipleChoice"),
("distilbert", "FlaxDistilBertForMultipleChoice"),
("electra", "FlaxElectraForMultipleChoice"),
("roberta", "FlaxRobertaForMultipleChoice"),
("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"),
("roformer", "FlaxRoFormerForMultipleChoice"),
("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"),
]
)
a :Optional[int] = OrderedDict(
[
("bert", "FlaxBertForNextSentencePrediction"),
]
)
a :List[Any] = OrderedDict(
[
("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"),
("whisper", "FlaxWhisperForConditionalGeneration"),
]
)
a :List[Any] = OrderedDict(
[
("whisper", "FlaxWhisperForAudioClassification"),
]
)
a :Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES)
a :List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES)
a :str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES)
a :Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
)
a :List[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES
)
a :Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES)
a :List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES)
a :Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
)
a :Dict = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES
)
a :Optional[int] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES
)
a :Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES
)
a :Any = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES
)
a :str = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES
)
a :Optional[Any] = _LazyAutoMapping(
CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES
)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = FLAX_MODEL_MAPPING
a :Union[str, Any] = auto_class_update(FlaxAutoModel)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING
a :Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining")
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING
a :List[str] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling")
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING
a :Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling")
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a :Optional[int] = auto_class_update(
FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base"
)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
a :str = auto_class_update(
FlaxAutoModelForSequenceClassification, head_doc="sequence classification"
)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING
a :Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering")
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
a :str = auto_class_update(
FlaxAutoModelForTokenClassification, head_doc="token classification"
)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[str] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
a :List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice")
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
a :Tuple = auto_class_update(
FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction"
)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
a :Dict = auto_class_update(
FlaxAutoModelForImageClassification, head_doc="image classification"
)
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING
a :Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling")
class __a (_BaseAutoModelClass):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
a :Optional[Any] = auto_class_update(
FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling"
)
| 704 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a :List[Any] = logging.get_logger(__name__)
a :Optional[int] = {
"microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json",
}
class __a (UpperCamelCase_ , UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = """focalnet"""
def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=False , _a=[192, 384, 768, 768] , _a=[2, 2, 6, 2] , _a=[2, 2, 2, 2] , _a=[3, 3, 3, 3] , _a="gelu" , _a=4.0 , _a=0.0 , _a=0.1 , _a=False , _a=1E-4 , _a=False , _a=False , _a=False , _a=0.02 , _a=1E-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_size
SCREAMING_SNAKE_CASE__ : str = patch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_channels
SCREAMING_SNAKE_CASE__ : Union[str, Any] = embed_dim
SCREAMING_SNAKE_CASE__ : List[str] = use_conv_embed
SCREAMING_SNAKE_CASE__ : List[str] = hidden_sizes
SCREAMING_SNAKE_CASE__ : Optional[int] = depths
SCREAMING_SNAKE_CASE__ : Any = focal_levels
SCREAMING_SNAKE_CASE__ : Optional[Any] = focal_windows
SCREAMING_SNAKE_CASE__ : Any = hidden_act
SCREAMING_SNAKE_CASE__ : Tuple = mlp_ratio
SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = drop_path_rate
SCREAMING_SNAKE_CASE__ : str = use_layerscale
SCREAMING_SNAKE_CASE__ : int = layerscale_value
SCREAMING_SNAKE_CASE__ : Optional[int] = use_post_layernorm
SCREAMING_SNAKE_CASE__ : Any = use_post_layernorm_in_modulation
SCREAMING_SNAKE_CASE__ : Union[str, Any] = normalize_modulator
SCREAMING_SNAKE_CASE__ : str = initializer_range
SCREAMING_SNAKE_CASE__ : Any = layer_norm_eps
SCREAMING_SNAKE_CASE__ : Any = encoder_stride
SCREAMING_SNAKE_CASE__ : Optional[int] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 12 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
a :Dict = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a :int = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
a :Tuple = {
'google/electra-small-generator': 512,
'google/electra-base-generator': 512,
'google/electra-large-generator': 512,
'google/electra-small-discriminator': 512,
'google/electra-base-discriminator': 512,
'google/electra-large-discriminator': 512,
}
a :str = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a (__lowercase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :str = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Optional[int] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Optional[Any] = PRETRAINED_INIT_CONFIGURATION
_SCREAMING_SNAKE_CASE :Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :List[str] = ElectraTokenizer
def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> str:
"""simple docstring"""
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _a ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _a ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _a ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = getattr(_a , normalizer_state.pop("""type""" ) )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = do_lower_case
SCREAMING_SNAKE_CASE__ : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE__ : str = tokenize_chinese_chars
SCREAMING_SNAKE_CASE__ : List[str] = normalizer_class(**_a )
SCREAMING_SNAKE_CASE__ : List[str] = do_lower_case
def _a ( self , _a , _a=None ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self._tokenizer.model.save(_a , name=_a )
return tuple(_a )
| 705 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class __a (unittest.TestCase):
'''simple docstring'''
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = parent
SCREAMING_SNAKE_CASE__ : Tuple = batch_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = seq_length
SCREAMING_SNAKE_CASE__ : Optional[int] = is_training
SCREAMING_SNAKE_CASE__ : Optional[Any] = use_attention_mask
SCREAMING_SNAKE_CASE__ : Tuple = use_token_type_ids
SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE__ : int = vocab_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE__ : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads
SCREAMING_SNAKE_CASE__ : Dict = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ : Optional[Any] = max_position_embeddings
SCREAMING_SNAKE_CASE__ : Dict = type_vocab_size
SCREAMING_SNAKE_CASE__ : Any = type_sequence_label_size
SCREAMING_SNAKE_CASE__ : int = initializer_range
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_choices
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = None
if self.use_attention_mask:
SCREAMING_SNAKE_CASE__ : int = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ : Tuple = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs
SCREAMING_SNAKE_CASE__ : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
@require_flax
class __a (UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Any = True
_SCREAMING_SNAKE_CASE :Optional[Any] = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerModelTester(self )
@slow
def _a ( self ) -> int:
"""simple docstring"""
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE__ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_a )
SCREAMING_SNAKE_CASE__ : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(_a )
@require_flax
class __a (unittest.TestCase):
'''simple docstring'''
@slow
def _a ( self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" )
SCREAMING_SNAKE_CASE__ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE__ : str = model(_a )[0]
SCREAMING_SNAKE_CASE__ : List[Any] = 50_000
SCREAMING_SNAKE_CASE__ : Optional[Any] = (1, 6, vocab_size)
self.assertEqual(output.shape , _a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _a , atol=1E-4 ) )
| 12 | 0 |
"""simple docstring"""
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
a :List[str] = {
"text_branch": "text_model",
"audio_branch": "audio_model.audio_encoder",
"attn": "attention.self",
"self.proj": "output.dense",
"attention.self_mask": "attn_mask",
"mlp.fc1": "intermediate.dense",
"mlp.fc2": "output.dense",
"norm1": "layernorm_before",
"norm2": "layernorm_after",
"bn0": "batch_norm",
}
a :List[str] = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc")
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> List[str]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = create_model(
"""HTSAT-tiny""" , """roberta""" , _SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def _lowercase ( __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {}
SCREAMING_SNAKE_CASE__ : Any = r""".*sequential.(\d+).*"""
SCREAMING_SNAKE_CASE__ : Dict = r""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
SCREAMING_SNAKE_CASE__ : List[Any] = key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
# replace sequential layers with list
SCREAMING_SNAKE_CASE__ : Any = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 )
SCREAMING_SNAKE_CASE__ : int = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_SCREAMING_SNAKE_CASE )//3}.linear.''' )
elif re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ : str = int(re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 if projecton_layer == 0 else 2
SCREAMING_SNAKE_CASE__ : Dict = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' )
if "audio" and "qkv" in key:
# split qkv into query key and value
SCREAMING_SNAKE_CASE__ : int = value
SCREAMING_SNAKE_CASE__ : Dict = mixed_qkv.size(0 ) // 3
SCREAMING_SNAKE_CASE__ : int = mixed_qkv[:qkv_dim]
SCREAMING_SNAKE_CASE__ : str = mixed_qkv[qkv_dim : qkv_dim * 2]
SCREAMING_SNAKE_CASE__ : Optional[Any] = mixed_qkv[qkv_dim * 2 :]
SCREAMING_SNAKE_CASE__ : Any = query_layer
SCREAMING_SNAKE_CASE__ : Any = key_layer
SCREAMING_SNAKE_CASE__ : Tuple = value_layer
else:
SCREAMING_SNAKE_CASE__ : Any = value
return model_state_dict
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = init_clap(_SCREAMING_SNAKE_CASE , enable_fusion=_SCREAMING_SNAKE_CASE )
clap_model.eval()
SCREAMING_SNAKE_CASE__ : Dict = clap_model.state_dict()
SCREAMING_SNAKE_CASE__ : Any = rename_state_dict(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE__ : int = ClapConfig()
SCREAMING_SNAKE_CASE__ : int = enable_fusion
SCREAMING_SNAKE_CASE__ : Optional[Any] = ClapModel(_SCREAMING_SNAKE_CASE )
# ignore the spectrogram embedding layer
model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
transformers_config.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
a :Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not")
a :int = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 706 |
"""simple docstring"""
a :List[str] = [
(1_000, "M"),
(900, "CM"),
(500, "D"),
(400, "CD"),
(100, "C"),
(90, "XC"),
(50, "L"),
(40, "XL"),
(10, "X"),
(9, "IX"),
(5, "V"),
(4, "IV"),
(1, "I"),
]
def _lowercase ( __lowerCAmelCase ) -> int:
SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
SCREAMING_SNAKE_CASE__ : List[Any] = 0
SCREAMING_SNAKE_CASE__ : List[str] = 0
while place < len(__lowerCAmelCase ):
if (place + 1 < len(__lowerCAmelCase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _lowercase ( __lowerCAmelCase ) -> str:
SCREAMING_SNAKE_CASE__ : Any = []
for arabic, roman in ROMAN:
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase )
result.append(roman * factor )
if number == 0:
break
return "".join(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a :Optional[Any] = {
"configuration_mask2former": [
"MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Mask2FormerConfig",
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = ["Mask2FormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Dict = [
"MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"Mask2FormerForUniversalSegmentation",
"Mask2FormerModel",
"Mask2FormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_maskaformer import MaskaFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskaformer import (
MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskaFormerForUniversalSegmentation,
MaskaFormerModel,
MaskaFormerPreTrainedModel,
)
else:
import sys
a :Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 707 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a :Any = {
"configuration_roberta_prelayernorm": [
"ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP",
"RobertaPreLayerNormConfig",
"RobertaPreLayerNormOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Union[str, Any] = [
"ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaPreLayerNormForCausalLM",
"RobertaPreLayerNormForMaskedLM",
"RobertaPreLayerNormForMultipleChoice",
"RobertaPreLayerNormForQuestionAnswering",
"RobertaPreLayerNormForSequenceClassification",
"RobertaPreLayerNormForTokenClassification",
"RobertaPreLayerNormModel",
"RobertaPreLayerNormPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :Optional[Any] = [
"TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaPreLayerNormForCausalLM",
"TFRobertaPreLayerNormForMaskedLM",
"TFRobertaPreLayerNormForMultipleChoice",
"TFRobertaPreLayerNormForQuestionAnswering",
"TFRobertaPreLayerNormForSequenceClassification",
"TFRobertaPreLayerNormForTokenClassification",
"TFRobertaPreLayerNormMainLayer",
"TFRobertaPreLayerNormModel",
"TFRobertaPreLayerNormPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :List[Any] = [
"FlaxRobertaPreLayerNormForCausalLM",
"FlaxRobertaPreLayerNormForMaskedLM",
"FlaxRobertaPreLayerNormForMultipleChoice",
"FlaxRobertaPreLayerNormForQuestionAnswering",
"FlaxRobertaPreLayerNormForSequenceClassification",
"FlaxRobertaPreLayerNormForTokenClassification",
"FlaxRobertaPreLayerNormModel",
"FlaxRobertaPreLayerNormPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP,
RobertaPreLayerNormConfig,
RobertaPreLayerNormOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta_prelayernorm import (
ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaPreLayerNormForCausalLM,
RobertaPreLayerNormForMaskedLM,
RobertaPreLayerNormForMultipleChoice,
RobertaPreLayerNormForQuestionAnswering,
RobertaPreLayerNormForSequenceClassification,
RobertaPreLayerNormForTokenClassification,
RobertaPreLayerNormModel,
RobertaPreLayerNormPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta_prelayernorm import (
TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaPreLayerNormForCausalLM,
TFRobertaPreLayerNormForMaskedLM,
TFRobertaPreLayerNormForMultipleChoice,
TFRobertaPreLayerNormForQuestionAnswering,
TFRobertaPreLayerNormForSequenceClassification,
TFRobertaPreLayerNormForTokenClassification,
TFRobertaPreLayerNormMainLayer,
TFRobertaPreLayerNormModel,
TFRobertaPreLayerNormPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormPreTrainedModel,
)
else:
import sys
a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 12 | 0 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a :Dict = logging.get_logger(__name__)
a :Any = {
"facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json",
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __a (__A):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = """wav2vec2"""
def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.1 , _a=0.1 , _a=0.02 , _a=1E-5 , _a="group" , _a="gelu" , _a=(512, 512, 512, 512, 512, 512, 512) , _a=(5, 2, 2, 2, 2, 2, 2) , _a=(10, 3, 3, 3, 3, 2, 2) , _a=False , _a=128 , _a=16 , _a=False , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a=320 , _a=2 , _a=0.1 , _a=100 , _a=256 , _a=256 , _a=0.1 , _a="sum" , _a=False , _a=False , _a=256 , _a=(512, 512, 512, 512, 1_500) , _a=(5, 3, 3, 1, 1) , _a=(1, 2, 3, 1, 1) , _a=512 , _a=0 , _a=1 , _a=2 , _a=False , _a=3 , _a=2 , _a=3 , _a=None , _a=None , **_a , ) -> Tuple:
"""simple docstring"""
super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Dict = hidden_size
SCREAMING_SNAKE_CASE__ : Dict = feat_extract_norm
SCREAMING_SNAKE_CASE__ : Any = feat_extract_activation
SCREAMING_SNAKE_CASE__ : List[str] = list(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = list(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Optional[Any] = list(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = conv_bias
SCREAMING_SNAKE_CASE__ : int = num_conv_pos_embeddings
SCREAMING_SNAKE_CASE__ : str = num_conv_pos_embedding_groups
SCREAMING_SNAKE_CASE__ : List[str] = len(self.conv_dim )
SCREAMING_SNAKE_CASE__ : Dict = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Tuple = intermediate_size
SCREAMING_SNAKE_CASE__ : int = hidden_act
SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads
SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout
SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_dropout
SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_dropout
SCREAMING_SNAKE_CASE__ : Dict = feat_proj_dropout
SCREAMING_SNAKE_CASE__ : List[str] = final_dropout
SCREAMING_SNAKE_CASE__ : Tuple = layerdrop
SCREAMING_SNAKE_CASE__ : str = layer_norm_eps
SCREAMING_SNAKE_CASE__ : List[str] = initializer_range
SCREAMING_SNAKE_CASE__ : List[str] = vocab_size
SCREAMING_SNAKE_CASE__ : List[Any] = do_stable_layer_norm
SCREAMING_SNAKE_CASE__ : str = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
SCREAMING_SNAKE_CASE__ : int = apply_spec_augment
SCREAMING_SNAKE_CASE__ : int = mask_time_prob
SCREAMING_SNAKE_CASE__ : Dict = mask_time_length
SCREAMING_SNAKE_CASE__ : Any = mask_time_min_masks
SCREAMING_SNAKE_CASE__ : List[Any] = mask_feature_prob
SCREAMING_SNAKE_CASE__ : int = mask_feature_length
SCREAMING_SNAKE_CASE__ : int = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
SCREAMING_SNAKE_CASE__ : Optional[int] = num_codevectors_per_group
SCREAMING_SNAKE_CASE__ : List[Any] = num_codevector_groups
SCREAMING_SNAKE_CASE__ : Optional[Any] = contrastive_logits_temperature
SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_quantizer_dropout
SCREAMING_SNAKE_CASE__ : Dict = num_negatives
SCREAMING_SNAKE_CASE__ : Optional[Any] = codevector_dim
SCREAMING_SNAKE_CASE__ : List[Any] = proj_codevector_dim
SCREAMING_SNAKE_CASE__ : Dict = diversity_loss_weight
# ctc loss
SCREAMING_SNAKE_CASE__ : Dict = ctc_loss_reduction
SCREAMING_SNAKE_CASE__ : Dict = ctc_zero_infinity
# adapter
SCREAMING_SNAKE_CASE__ : int = add_adapter
SCREAMING_SNAKE_CASE__ : Tuple = adapter_kernel_size
SCREAMING_SNAKE_CASE__ : Optional[Any] = adapter_stride
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_adapter_layers
SCREAMING_SNAKE_CASE__ : Optional[Any] = output_hidden_size or hidden_size
SCREAMING_SNAKE_CASE__ : Optional[int] = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
SCREAMING_SNAKE_CASE__ : Optional[Any] = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : Tuple = list(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : str = list(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ : List[str] = xvector_output_dim
@property
def _a ( self ) -> List[str]:
"""simple docstring"""
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 708 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AlignProcessor, EfficientNetImageProcessor
@require_vision
class __a (unittest.TestCase):
'''simple docstring'''
def _a ( self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ : Dict = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
SCREAMING_SNAKE_CASE__ : Optional[Any] = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"""image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_a , _a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> List[Any]:
"""simple docstring"""
return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def _a ( self , **_a ) -> Any:
"""simple docstring"""
return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ : Optional[int] = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_a )
SCREAMING_SNAKE_CASE__ : int = AlignProcessor(tokenizer=_a , image_processor=_a )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _a )
self.assertIsInstance(processor_fast.tokenizer , _a )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _a )
self.assertIsInstance(processor_fast.image_processor , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ : Any = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE__ : Dict = self.get_image_processor(do_normalize=_a , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def _a ( self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : str = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : List[str] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Any = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = image_processor(_a , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(images=_a , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Any = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(text=_a )
SCREAMING_SNAKE_CASE__ : Any = tokenizer(_a , padding="""max_length""" , max_length=64 )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _a ( self ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : int = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[Any] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : Any = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Dict = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Tuple = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ : List[Any] = processor.batch_decode(_a )
SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = self.get_image_processor()
SCREAMING_SNAKE_CASE__ : Tuple = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ : Dict = AlignProcessor(tokenizer=_a , image_processor=_a )
SCREAMING_SNAKE_CASE__ : Optional[int] = """lower newer"""
SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ : List[str] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 12 | 0 |
"""simple docstring"""
from collections.abc import Iterable
from typing import Generic, TypeVar
a :List[Any] = TypeVar("_T")
class __a (Generic[_T]):
'''simple docstring'''
def __init__( self , _a = None ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = list(iterable or [] )
SCREAMING_SNAKE_CASE__ : Any = []
def __len__( self ) -> int:
"""simple docstring"""
return len(self._stacka ) + len(self._stacka )
def __repr__( self ) -> str:
"""simple docstring"""
return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})'''
def _a ( self , _a ) -> None:
"""simple docstring"""
self._stacka.append(lowerCamelCase_ )
def _a ( self ) -> _T:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self._stacka.pop
SCREAMING_SNAKE_CASE__ : Optional[Any] = self._stacka.append
if not self._stacka:
while self._stacka:
stacka_append(stacka_pop() )
if not self._stacka:
raise IndexError("""Queue is empty""" )
return self._stacka.pop()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 709 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
a :Optional[Any] = logging.get_logger(__name__)
a :Union[str, Any] = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :List[Any] = """t5"""
_SCREAMING_SNAKE_CASE :List[str] = ["""past_key_values"""]
_SCREAMING_SNAKE_CASE :Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self , _a=32_128 , _a=512 , _a=64 , _a=2_048 , _a=6 , _a=None , _a=8 , _a=32 , _a=128 , _a=0.1 , _a=1E-6 , _a=1.0 , _a="relu" , _a=True , _a=True , _a=0 , _a=1 , **_a , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_size
SCREAMING_SNAKE_CASE__ : Tuple = d_model
SCREAMING_SNAKE_CASE__ : int = d_kv
SCREAMING_SNAKE_CASE__ : Union[str, Any] = d_ff
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_layers
SCREAMING_SNAKE_CASE__ : int = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE__ : Tuple = num_heads
SCREAMING_SNAKE_CASE__ : Dict = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : str = relative_attention_max_distance
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ : Optional[Any] = initializer_factor
SCREAMING_SNAKE_CASE__ : Tuple = feed_forward_proj
SCREAMING_SNAKE_CASE__ : str = use_cache
SCREAMING_SNAKE_CASE__ : List[str] = self.feed_forward_proj.split("""-""" )
SCREAMING_SNAKE_CASE__ : Dict = act_info[-1]
SCREAMING_SNAKE_CASE__ : str = act_info[0] == """gated"""
if len(_a ) > 1 and act_info[0] != "gated" or len(_a ) > 2:
raise ValueError(
f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.'''
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE__ : List[Any] = """gelu_new"""
super().__init__(
pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , **_a , )
class __a (UpperCamelCase_):
'''simple docstring'''
@property
def _a ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = {
"""input_ids""": {0: """batch""", 1: """encoder_sequence"""},
"""attention_mask""": {0: """batch""", 1: """encoder_sequence"""},
}
if self.use_past:
SCREAMING_SNAKE_CASE__ : Tuple = """past_encoder_sequence + sequence"""
SCREAMING_SNAKE_CASE__ : Optional[int] = {0: """batch"""}
SCREAMING_SNAKE_CASE__ : Tuple = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
SCREAMING_SNAKE_CASE__ : str = {0: """batch""", 1: """decoder_sequence"""}
SCREAMING_SNAKE_CASE__ : Dict = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_a , direction="""inputs""" )
return common_inputs
@property
def _a ( self ) -> int:
"""simple docstring"""
return 13
| 12 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
a :List[str] = {"tokenization_tapex": ["TapexTokenizer"]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
a :Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 710 |
"""simple docstring"""
from __future__ import annotations
import time
import numpy as np
a :Optional[Any] = [8, 5, 9, 7]
a :List[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
a :int = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class __a :
'''simple docstring'''
def __init__( self , _a , _a , _a , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = claim_vector
SCREAMING_SNAKE_CASE__ : Any = allocated_resources_table
SCREAMING_SNAKE_CASE__ : Any = maximum_claim_table
def _a ( self ) -> list[int]:
"""simple docstring"""
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def _a ( self ) -> list[int]:
"""simple docstring"""
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def _a ( self ) -> list[list[int]]:
"""simple docstring"""
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(_a ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def _a ( self ) -> dict[int, list[int]]:
"""simple docstring"""
return {self.__need().index(_a ): i for i in self.__need()}
def _a ( self , **_a ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = self.__need()
SCREAMING_SNAKE_CASE__ : Any = self.__allocated_resources_table
SCREAMING_SNAKE_CASE__ : Dict = self.__available_resources()
SCREAMING_SNAKE_CASE__ : Dict = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("""_""" * 50 + """\n""" )
while need_list:
SCREAMING_SNAKE_CASE__ : List[str] = False
for each_need in need_list:
SCREAMING_SNAKE_CASE__ : Dict = True
for index, need in enumerate(_a ):
if need > available_resources[index]:
SCREAMING_SNAKE_CASE__ : Optional[int] = False
break
if execution:
SCREAMING_SNAKE_CASE__ : Any = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
SCREAMING_SNAKE_CASE__ : Tuple = original_need_index
print(f'''Process {process_number + 1} is executing.''' )
# remove the process run from stack
need_list.remove(_a )
# update available/freed resources stack
SCREAMING_SNAKE_CASE__ : Dict = np.array(_a ) + np.array(
alloc_resources_table[process_number] )
print(
"""Updated available resource stack for processes: """
+ """ """.join([str(_a ) for x in available_resources] ) )
break
if safe:
print("""The process is in a safe state.\n""" )
else:
print("""System in unsafe state. Aborting...\n""" )
break
def _a ( self ) -> Any:
"""simple docstring"""
print(""" """ * 9 + """Allocated Resource Table""" )
for item in self.__allocated_resources_table:
print(
f'''P{self.__allocated_resources_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(""" """ * 9 + """System Resource Table""" )
for item in self.__maximum_claim_table:
print(
f'''P{self.__maximum_claim_table.index(_a ) + 1}'''
+ """ """.join(f'''{it:>8}''' for it in item )
+ """\n""" )
print(
"""Current Usage by Active Processes: """
+ """ """.join(str(_a ) for x in self.__claim_vector ) )
print(
"""Initial Available Resources: """
+ """ """.join(str(_a ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 | 0 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase ) -> list[int]:
if num <= 0:
raise ValueError("""Input must be a positive integer""" )
SCREAMING_SNAKE_CASE__ : Optional[int] = [True] * (num + 1)
SCREAMING_SNAKE_CASE__ : Any = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : List[str] = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
a :Optional[int] = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 711 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
a :List[Any] = None
a :Optional[int] = logging.get_logger(__name__)
a :Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
a :Optional[int] = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
a :Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
a :int = "▁"
# Segments (not really needed)
a :Dict = 0
a :Optional[int] = 1
a :Tuple = 2
a :List[str] = 3
a :Optional[Any] = 4
class __a (UpperCamelCase_):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Tuple = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE :str = """left"""
_SCREAMING_SNAKE_CASE :Optional[Any] = XLNetTokenizer
def __init__( self , _a=None , _a=None , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , **_a , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
vocab_file=_a , tokenizer_file=_a , do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , **_a , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 3
SCREAMING_SNAKE_CASE__ : Optional[int] = do_lower_case
SCREAMING_SNAKE_CASE__ : List[str] = remove_space
SCREAMING_SNAKE_CASE__ : int = keep_accents
SCREAMING_SNAKE_CASE__ : Optional[Any] = vocab_file
SCREAMING_SNAKE_CASE__ : Tuple = False if not self.vocab_file else True
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def _a ( self , _a , _a = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def _a ( self , _a , _a = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(_a ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
return (out_vocab_file,)
| 12 | 0 |
"""simple docstring"""
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
a :Union[str, Any] = logging.get_logger(__name__)
a :int = {
"artists_file": "artists.json",
"lyrics_file": "lyrics.json",
"genres_file": "genres.json",
}
a :List[str] = {
"artists_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json",
},
"genres_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json",
},
"lyrics_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json",
},
}
a :List[str] = {
"jukebox": 512,
}
class __a (_UpperCamelCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Optional[Any] = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE :List[str] = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE :int = PRETRAINED_LYRIC_TOKENS_SIZES
_SCREAMING_SNAKE_CASE :List[str] = ["""input_ids""", """attention_mask"""]
def __init__( self , _a , _a , _a , _a=["v3", "v2", "v2"] , _a=512 , _a=5 , _a="<|endoftext|>" , **_a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token
super().__init__(
unk_token=_UpperCAmelCase , n_genres=_UpperCAmelCase , version=_UpperCAmelCase , max_n_lyric_tokens=_UpperCAmelCase , **_UpperCAmelCase , )
SCREAMING_SNAKE_CASE__ : Dict = version
SCREAMING_SNAKE_CASE__ : Dict = max_n_lyric_tokens
SCREAMING_SNAKE_CASE__ : Dict = n_genres
with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
SCREAMING_SNAKE_CASE__ : Tuple = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
SCREAMING_SNAKE_CASE__ : str = json.load(_UpperCAmelCase )
with open(_UpperCAmelCase , encoding="""utf-8""" ) as vocab_handle:
SCREAMING_SNAKE_CASE__ : Tuple = json.load(_UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : int = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
SCREAMING_SNAKE_CASE__ : Any = oov.replace(r"""\-\'""" , r"""\-+\'""" )
SCREAMING_SNAKE_CASE__ : str = regex.compile(_UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : int = {v: k for k, v in self.artists_encoder.items()}
SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in self.genres_encoder.items()}
SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in self.lyrics_encoder.items()}
@property
def _a ( self ) -> int:
"""simple docstring"""
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def _a ( self , _a , _a , _a ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = [self.artists_encoder.get(_UpperCAmelCase , 0 ) for artist in list_artists]
for genres in range(len(_UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE__ : int = [self.genres_encoder.get(_UpperCAmelCase , 0 ) for genre in list_genres[genres]]
SCREAMING_SNAKE_CASE__ : List[Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
SCREAMING_SNAKE_CASE__ : str = [[self.lyrics_encoder.get(_UpperCAmelCase , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def _a ( self , _a ) -> Tuple:
"""simple docstring"""
return list(_UpperCAmelCase )
def _a ( self , _a , _a , _a , **_a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.prepare_for_tokenization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : Optional[Any] = self._tokenize(_UpperCAmelCase )
return artist, genre, lyrics
def _a ( self , _a , _a , _a , _a = False ) -> Optional[int]:
"""simple docstring"""
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
SCREAMING_SNAKE_CASE__ : Any = artists[idx].lower()
SCREAMING_SNAKE_CASE__ : Optional[int] = [genres[idx].lower()]
else:
SCREAMING_SNAKE_CASE__ : int = self._normalize(artists[idx] ) + '''.v2'''
SCREAMING_SNAKE_CASE__ : Tuple = [
self._normalize(_UpperCAmelCase ) + '''.v2''' for genre in genres[idx].split("""_""" )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
SCREAMING_SNAKE_CASE__ : Dict = regex.compile(r"""[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+""" )
SCREAMING_SNAKE_CASE__ : Dict = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
SCREAMING_SNAKE_CASE__ : List[Any] = {vocab[index]: index + 1 for index in range(len(_UpperCAmelCase ) )}
SCREAMING_SNAKE_CASE__ : Optional[Any] = 0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(_UpperCAmelCase ) + 1
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.vocab
SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in self.vocab.items()}
SCREAMING_SNAKE_CASE__ : Tuple = ''''''
else:
SCREAMING_SNAKE_CASE__ : int = regex.compile(r"""[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+""" )
SCREAMING_SNAKE_CASE__ : str = self._run_strip_accents(_UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : str = lyrics.replace("""\\""" , """\n""" )
SCREAMING_SNAKE_CASE__ : Dict = self.out_of_vocab.sub("""""" , _UpperCAmelCase ), [], []
return artists, genres, lyrics
def _a ( self , _a ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = unicodedata.normalize("""NFD""" , _UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : Dict = []
for char in text:
SCREAMING_SNAKE_CASE__ : Dict = unicodedata.category(_UpperCAmelCase )
if cat == "Mn":
continue
output.append(_UpperCAmelCase )
return "".join(_UpperCAmelCase )
def _a ( self , _a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = (
[chr(_UpperCAmelCase ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )]
+ [chr(_UpperCAmelCase ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )]
+ ['''.''']
)
SCREAMING_SNAKE_CASE__ : Optional[Any] = frozenset(_UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : Any = re.compile(r"""_+""" )
SCREAMING_SNAKE_CASE__ : Dict = ''''''.join([c if c in accepted else """_""" for c in text.lower()] )
SCREAMING_SNAKE_CASE__ : Optional[int] = pattern.sub("""_""" , _UpperCAmelCase ).strip("""_""" )
return text
def _a ( self , _a ) -> Optional[int]:
"""simple docstring"""
return " ".join(_UpperCAmelCase )
def _a ( self , _a , _a = None , _a = False ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE__ : Dict = TensorType(_UpperCAmelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"""Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" )
import tensorflow as tf
SCREAMING_SNAKE_CASE__ : int = tf.constant
SCREAMING_SNAKE_CASE__ : str = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" )
import torch
SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor
SCREAMING_SNAKE_CASE__ : Any = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" )
import jax.numpy as jnp # noqa: F811
SCREAMING_SNAKE_CASE__ : Dict = jnp.array
SCREAMING_SNAKE_CASE__ : Tuple = _is_jax
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.asarray
SCREAMING_SNAKE_CASE__ : List[Any] = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [inputs]
if not is_tensor(_UpperCAmelCase ):
SCREAMING_SNAKE_CASE__ : Optional[Any] = as_tensor(_UpperCAmelCase )
except: # noqa E722
raise ValueError(
"""Unable to create tensor, you should probably activate truncation and/or padding """
"""with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.""" )
return inputs
def __call__( self , _a , _a , _a="" , _a="pt" ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = [0, 0, 0]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [artist] * len(self.version )
SCREAMING_SNAKE_CASE__ : List[str] = [genres] * len(self.version )
SCREAMING_SNAKE_CASE__ : Any = self.tokenize(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : int = self._convert_token_to_id(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = [-INFINITY] * len(full_tokens[-1] )
SCREAMING_SNAKE_CASE__ : str = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_UpperCAmelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} )
def _a ( self , _a , _a = None ) -> Optional[int]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ : Any = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] )
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_UpperCAmelCase ) )
SCREAMING_SNAKE_CASE__ : int = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] )
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_UpperCAmelCase ) )
SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(
_UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] )
with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_UpperCAmelCase ) )
return (artists_file, genres_file, lyrics_file)
def _a ( self , _a , _a , _a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = self.artists_decoder.get(_UpperCAmelCase )
SCREAMING_SNAKE_CASE__ : List[Any] = [self.genres_decoder.get(_UpperCAmelCase ) for genre in genres_index]
SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.lyrics_decoder.get(_UpperCAmelCase ) for character in lyric_index]
return artist, genres, lyrics
| 712 |
"""simple docstring"""
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> bool:
SCREAMING_SNAKE_CASE__ : Optional[Any] = len(__lowerCAmelCase ) + 1
SCREAMING_SNAKE_CASE__ : int = len(__lowerCAmelCase ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
SCREAMING_SNAKE_CASE__ : Dict = [[0 for i in range(__lowerCAmelCase )] for j in range(__lowerCAmelCase )]
# since string of zero length match pattern of zero length
SCREAMING_SNAKE_CASE__ : Dict = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , __lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : int = dp[0][j - 2] if pattern[j - 1] == """*""" else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , __lowerCAmelCase ):
for j in range(1 , __lowerCAmelCase ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
SCREAMING_SNAKE_CASE__ : Any = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
SCREAMING_SNAKE_CASE__ : List[str] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
SCREAMING_SNAKE_CASE__ : List[Any] = dp[i - 1][j]
else:
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
else:
SCREAMING_SNAKE_CASE__ : Dict = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
a :Any = "aab"
a :Optional[Any] = "c*a*b"
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(f'{input_string} matches the given pattern {pattern}')
else:
print(f'{input_string} does not match with the given pattern {pattern}')
| 12 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.