url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [← hg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
exact n.holomorphicAt.2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
contrapose h
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : ¬𝓝 (f z) ≀ Filter.map f (𝓝 z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
clear h
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : ¬𝓝 (f z) ≀ Filter.map f (𝓝 z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [Filter.not_eventually]
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Β¬βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆƒαΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply n.inCharts.nonconst.mp
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆƒαΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← hg, Ne, imp_self, Filter.eventually_true]
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ Β¬g x = g (↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← extChartAt_map_nhds' I z, Filter.map_map] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map g (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
replace h := @Filter.map_mono _ _ (extChartAt I (f z)).symm _ _ h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [← hg] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map (g ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [extChartAt_symm_map_nhds' I (f z), Filter.map_map, Function.comp] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z))) ≀ Filter.map (↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm) (Filter.map ((fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) ∘ ↑(extChartAt π“˜(β„‚, β„‚) z)) (𝓝 z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
have e : (fun w ↦ (extChartAt I (f z)).symm (extChartAt I (f z) (f ((extChartAt I z).symm (extChartAt I z w))))) =αΆ [𝓝 z] f := by apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp refine eventually_of_forall fun w fm m ↦ ?_ simp only [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm]
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
rw [Filter.map_congr e] at h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
exact h
case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map f (𝓝 z) e : (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ (𝓝 z).EventuallyEq (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) f
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
refine eventually_of_forall fun w fm m ↦ ?_
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) x = f x
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) w = f w
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
simp only [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (f z) ≀ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))))) (𝓝 z) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))))) w = f w
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
refine le_antisymm ?_ (continuousAt_fst.prod fa.continuousAt)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
generalize hg : (fun e x ↦ extChartAt I (f c z) (f e ((extChartAt I z).symm x))) = g
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have ga : AnalyticAt β„‚ (uncurry g) (c, extChartAt I z z) := by rw [← hg]; exact (holomorphicAt_iff.mp fa).2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have gn : NontrivialHolomorphicAt (g c) (extChartAt I z z) := by rw [← hg]; exact n.inCharts
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have h := gn.nhds_le_map_nhds_param' ga
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (c, g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [nhds_prod_eq, ← extChartAt_map_nhds' I z, Filter.map_map, Filter.prod_map_id_map_eq, Function.comp] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (c, g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun p => (p.1, g p.1 p.2)) (𝓝 (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
replace h := @Filter.map_mono _ _ (fun p : β„‚ Γ— β„‚ ↦ (p.1, (extChartAt I (f c z)).symm p.2)) _ _ h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [← hg] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (g c (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, g x.1 (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
have pe := Filter.prod_map_id_map_eq (f := 𝓝 c) (g := 𝓝 (extChartAt I (f c z) (f c z))) (m := fun x ↦ (extChartAt I (f c z)).symm x)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 c Γ—Λ’ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm x) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [extChartAt_symm_map_nhds', ←nhds_prod_eq] at pe
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 c Γ—Λ’ Filter.map (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm x) (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
refine _root_.trans (le_of_eq pe) (_root_.trans h (le_of_eq ?_))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
clear h pe
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ≀ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) pe : 𝓝 (c, f c z) = Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (𝓝 c Γ—Λ’ 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f c z))) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [←nhds_prod_eq, Filter.map_map]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map (fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) (Filter.map (fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 c Γ—Λ’ 𝓝 z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply Filter.map_congr
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ Filter.map ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (𝓝 (c, z)) = Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) fun p => (p.1, f p.1 p.2)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply ((isOpen_extChartAt_source II (c, z)).eventually_mem (mem_extChartAt_source II (c, z))).mp
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ (𝓝 (c, z)).EventuallyEq ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) fun p => (p.1, f p.1 p.2)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply (fa.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f c z))).mp
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
apply eventually_of_forall
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€αΆ  (x : β„‚ Γ— S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€ (x : β„‚ Γ— S), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
intro ⟨e, w⟩ fm m
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ βˆ€ (x : β„‚ Γ— S), uncurry f x ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source β†’ x ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source β†’ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) x = (fun p => (p.1, f p.1 p.2)) x
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : uncurry f (e, w) ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : (e, w) ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [Function.comp, uncurry, extChartAt_prod, PartialEquiv.prod_source, mem_prod_eq] at fm m
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : uncurry f (e, w) ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : (e, w) ∈ (extChartAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) (c, z)).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : f e w ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : e ∈ (extChartAt π“˜(β„‚, β„‚) c).source ∧ w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
simp only [Function.comp, PartialEquiv.left_inv _ m.2, PartialEquiv.left_inv _ fm]
case h.hp X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) gn : NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z) e : β„‚ w : S fm : f e w ∈ (extChartAt π“˜(β„‚, β„‚) (f c z)).source m : e ∈ (extChartAt π“˜(β„‚, β„‚) c).source ∧ w ∈ (extChartAt π“˜(β„‚, β„‚) z).source ⊒ ((fun p => (p.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)).symm p.2)) ∘ fun x => (x.1, ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f x.1 (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x.2))))) (e, w) = (fun p => (p.1, f p.1 p.2)) (e, w)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [← hg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
exact (holomorphicAt_iff.mp fa).2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ AnalyticAt β„‚ (uncurry fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
rw [← hg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt (g c) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) c) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds_param
[234, 1]
[258, 85]
exact n.inCharts
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ S β†’ T c : β„‚ z : S n : NontrivialHolomorphicAt (f c) z fa : HolomorphicAt (π“˜(β„‚, β„‚).prod π“˜(β„‚, β„‚)) π“˜(β„‚, β„‚) (uncurry f) (c, z) g : β„‚ β†’ β„‚ β†’ β„‚ hg : (fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ (uncurry g) (c, ↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ NontrivialHolomorphicAt ((fun e x => ↑(extChartAt π“˜(β„‚, β„‚) (f c z)) (f e (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) c) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.bind_const_none
[23, 1]
[24, 22]
cases x <;> simp
α : Type u_1 β : Type u_2 x : Option α ⊒ (Option.bind x fun x => none) = none
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.isNone_false_iff_isSome
[28, 1]
[29, 22]
cases x <;> simp
Ξ± : Type u_1 x : Option Ξ± ⊒ isNone x = false ↔ isSome x = true
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Fin.tuple_sequence₁
[56, 1]
[58, 41]
simp [Fin.tupleSequence, functor_norm]
m : Type u β†’ Type v inst✝¹ : Monad m inst✝ : LawfulMonad m Ξ± : Fin 1 β†’ Type u x : (i : Fin 1) β†’ m (Ξ± i) ⊒ tupleSequence x = do let rβ‚€ ← x 0 pure (cons rβ‚€ default)
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Fin.tuple_sequenceβ‚‚
[62, 1]
[66, 6]
simp [Fin.tupleSequence, functor_norm]
m : Type u β†’ Type v inst✝¹ : Monad m inst✝ : LawfulMonad m Ξ± : Fin 2 β†’ Type u x : (i : Fin 2) β†’ m (Ξ± i) ⊒ tupleSequence x = do let rβ‚€ ← x 0 let r₁ ← x 1 pure (cons rβ‚€ (cons r₁ default))
m : Type u β†’ Type v inst✝¹ : Monad m inst✝ : LawfulMonad m Ξ± : Fin 2 β†’ Type u x : (i : Fin 2) β†’ m (Ξ± i) ⊒ (do let r ← x 0 let x ← tail x 0 pure (cons r (cons x default))) = do let rβ‚€ ← x 0 let r₁ ← x 1 pure (cons rβ‚€ (cons r₁ default))
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Fin.tuple_sequenceβ‚‚
[62, 1]
[66, 6]
rfl
m : Type u β†’ Type v inst✝¹ : Monad m inst✝ : LawfulMonad m Ξ± : Fin 2 β†’ Type u x : (i : Fin 2) β†’ m (Ξ± i) ⊒ (do let r ← x 0 let x ← tail x 0 pure (cons r (cons x default))) = do let rβ‚€ ← x 0 let r₁ ← x 1 pure (cons rβ‚€ (cons r₁ default))
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.bind_isSome
[74, 1]
[75, 84]
cases x <;> simp
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 x : Option Ξ± y : Ξ± β†’ Option Ξ² ⊒ isSome (Option.bind x y) = true ↔ βˆƒ (h : isSome x = true), isSome (y (get x h)) = true
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.map_isSome
[79, 1]
[80, 19]
cases x <;> simp
m : Type u β†’ Type v inst✝ : Monad m Ξ± Ξ² : Type u_1 x : Option Ξ± y : Ξ± β†’ Ξ² ⊒ isSome (y <$> x) = isSome x
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.not_isSome'
[84, 1]
[84, 92]
cases x <;> simp
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 x : Option Ξ± ⊒ (!decide (isSome x = isNone x)) = true
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.guardProp_isSome
[92, 1]
[95, 22]
dsimp only [Option.guardProp]
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 p : Prop inst✝ : Decidable p x : Ξ± ⊒ isSome (guardProp p x) = true ↔ p
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 p : Prop inst✝ : Decidable p x : Ξ± ⊒ isSome (if p then some x else none) = true ↔ p
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.guardProp_isSome
[92, 1]
[95, 22]
split_ifs <;> simpa
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 p : Prop inst✝ : Decidable p x : Ξ± ⊒ isSome (if p then some x else none) = true ↔ p
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.coe_part_dom
[99, 1]
[99, 100]
cases x <;> simp
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 x : Option Ξ± ⊒ (↑x).Dom ↔ isSome x = true
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.coe_part_eq_some
[103, 1]
[104, 74]
simp [Part.eq_some_iff]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 x : Option Ξ± y : Ξ± ⊒ ↑x = Part.some y ↔ x = some y
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.get?_isSome_iff
[108, 1]
[110, 35]
rw [← not_iff_not]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 x : List Ξ± n : β„• ⊒ Option.isSome (get? x n) = true ↔ n < length x
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 x : List Ξ± n : β„• ⊒ Β¬Option.isSome (get? x n) = true ↔ Β¬n < length x
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.get?_isSome_iff
[108, 1]
[110, 35]
simp [Option.isNone_iff_eq_none]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 x : List Ξ± n : β„• ⊒ Β¬Option.isSome (get? x n) = true ↔ Β¬n < length x
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Option.map_is_some'
[114, 1]
[115, 19]
cases x <;> simp
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 x : Option Ξ± f : Ξ± β†’ Ξ² ⊒ isSome (Option.map f x) = isSome x
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_fst
[118, 1]
[121, 11]
erw [← List.map_uncurry_zip_eq_zipWith, List.map_fst_zip]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 l₁ : List Ξ± lβ‚‚ : List Ξ² hl : length l₁ ≀ length lβ‚‚ ⊒ zipWith (fun a b => a) l₁ lβ‚‚ = l₁
case a m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 l₁ : List Ξ± lβ‚‚ : List Ξ² hl : length l₁ ≀ length lβ‚‚ ⊒ length l₁ ≀ length lβ‚‚
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_fst
[118, 1]
[121, 11]
exact hl
case a m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 l₁ : List Ξ± lβ‚‚ : List Ξ² hl : length l₁ ≀ length lβ‚‚ ⊒ length l₁ ≀ length lβ‚‚
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_snd
[124, 1]
[127, 11]
erw [← List.map_uncurry_zip_eq_zipWith, List.map_snd_zip]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 l₁ : List Ξ± lβ‚‚ : List Ξ² hl : length lβ‚‚ ≀ length l₁ ⊒ zipWith (fun a b => b) l₁ lβ‚‚ = lβ‚‚
case a m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 l₁ : List Ξ± lβ‚‚ : List Ξ² hl : length lβ‚‚ ≀ length l₁ ⊒ length lβ‚‚ ≀ length l₁
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
List.zipWith_snd
[124, 1]
[127, 11]
exact hl
case a m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 Ξ² : Type u_2 l₁ : List Ξ± lβ‚‚ : List Ξ² hl : length lβ‚‚ ≀ length l₁ ⊒ length lβ‚‚ ≀ length l₁
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Multiset.map_get
[134, 1]
[136, 36]
simp [Finset.univ, Fintype.elems]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 l : List Ξ± ⊒ map (List.get l) Finset.univ.val = ↑l
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Multiset.get_zero
[142, 1]
[142, 88]
simp [Multiset.get]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 ⊒ get 0 = none
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Multiset.get_singleton
[144, 1]
[144, 105]
simp [Multiset.get]
m : Type u β†’ Type v inst✝ : Monad m Ξ± : Type u_1 a : Ξ± ⊒ get {a} = some a
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
le_false_iff
[147, 1]
[147, 72]
decide
m : Type u β†’ Type v inst✝ : Monad m ⊒ βˆ€ {b : Bool}, b ≀ false ↔ b = false
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
lt_true_iff
[151, 1]
[151, 70]
decide
m : Type u β†’ Type v inst✝ : Monad m ⊒ βˆ€ {b : Bool}, b < true ↔ b = false
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
false_lt_iff
[155, 1]
[155, 71]
decide
m : Type u β†’ Type v inst✝ : Monad m ⊒ βˆ€ {b : Bool}, false < b ↔ b = true
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
ne_min_of_ne_and_ne
[158, 1]
[159, 81]
rcases min_choice x y with h | h <;> rw [h] <;> assumption
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a x y : ΞΉ hx : a β‰  x hy : a β‰  y ⊒ a β‰  min x y
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
rw [max_def]
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ ⊒ Β¬a = max a b ↔ a < b
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ ⊒ (Β¬a = if a ≀ b then b else a) ↔ a < b
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
split_ifs with h
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ ⊒ (Β¬a = if a ≀ b then b else a) ↔ a < b
case pos m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ h : a ≀ b ⊒ Β¬a = b ↔ a < b case neg m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ h : Β¬a ≀ b ⊒ Β¬a = a ↔ a < b
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
simpa using h
case pos m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ h : a ≀ b ⊒ Β¬a = b ↔ a < b
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff
[163, 1]
[167, 31]
simpa using le_of_not_ge h
case neg m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ h : Β¬a ≀ b ⊒ Β¬a = a ↔ a < b
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff'
[171, 1]
[172, 22]
rw [max_comm]
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ ⊒ Β¬b = max a b ↔ b < a
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ ⊒ Β¬b = max b a ↔ b < a
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
max_ne_self_iff'
[171, 1]
[172, 22]
simp
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type u_1 inst✝ : LinearOrder ΞΉ a b : ΞΉ ⊒ Β¬b = max b a ↔ b < a
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
WithTop.isSome_iff_lt_top
[180, 1]
[183, 6]
rw [← not_iff_not, Bool.eq_false_eq_not_eq_true, Option.not_isSome, Option.isNone_iff_eq_none, lt_top_iff_ne_top, Ne, Classical.not_not]
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type inst✝ : PartialOrder ΞΉ x : WithTop ΞΉ ⊒ Option.isSome x = true ↔ x < ⊀
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type inst✝ : PartialOrder ΞΉ x : WithTop ΞΉ ⊒ x = none ↔ x = ⊀
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
WithTop.isSome_iff_lt_top
[180, 1]
[183, 6]
rfl
m : Type u β†’ Type v inst✝¹ : Monad m ΞΉ : Type inst✝ : PartialOrder ΞΉ x : WithTop ΞΉ ⊒ x = none ↔ x = ⊀
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.le_iff''
[233, 1]
[237, 8]
rw [Prod.Lex.le_iff', le_iff_lt_or_eq]
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) ⊒ x ≀ y ↔ x.1 ≀ y.1 ∧ (x.1 = y.1 β†’ x.2 ≀ y.2)
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≀ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 ≀ y.2)
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.le_iff''
[233, 1]
[237, 8]
have := @ne_of_lt _ _ x.1 y.1
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≀ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 ≀ y.2)
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) this : x.1 < y.1 β†’ x.1 β‰  y.1 ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≀ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 ≀ y.2)
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.le_iff''
[233, 1]
[237, 8]
tauto
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) this : x.1 < y.1 β†’ x.1 β‰  y.1 ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≀ y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 ≀ y.2)
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_iff''
[244, 1]
[248, 8]
rw [lt_iff', le_iff_lt_or_eq]
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) ⊒ x < y ↔ x.1 ≀ y.1 ∧ (x.1 = y.1 β†’ x.2 < y.2)
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 < y.2)
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_iff''
[244, 1]
[248, 8]
have : x.1 < y.1 β†’ Β¬x.1 = y.1 := ne_of_lt
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 < y.2)
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) this : x.1 < y.1 β†’ Β¬x.1 = y.1 ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 < y.2)
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_iff''
[244, 1]
[248, 8]
tauto
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) this : x.1 < y.1 β†’ Β¬x.1 = y.1 ⊒ x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 ↔ (x.1 < y.1 ∨ x.1 = y.1) ∧ (x.1 = y.1 β†’ x.2 < y.2)
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
rw [Prod.Lex.le_iff'] at h
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x ≀ y ⊒ x.1 ≀ y.1
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≀ y.2 ⊒ x.1 ≀ y.1
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
cases h with | inl h => exact h.le | inr h => exact h.1.le
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 ≀ y.2 ⊒ x.1 ≀ y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
exact h.le
case inl m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x.1 < y.1 ⊒ x.1 ≀ y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_le_of_le
[251, 1]
[255, 26]
exact h.1.le
case inr m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x.1 = y.1 ∧ x.2 ≀ y.2 ⊒ x.1 ≀ y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
rw [Prod.Lex.lt_iff'] at h
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : PartialOrder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x < y h' : y.2 ≀ x.2 ⊒ x.1 < y.1
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : PartialOrder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 h' : y.2 ≀ x.2 ⊒ x.1 < y.1
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
cases h with | inl h => exact h | inr h => cases h.2.not_le h'
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : PartialOrder Ξ² x y : Lex (Ξ± Γ— Ξ²) h : x.1 < y.1 ∨ x.1 = y.1 ∧ x.2 < y.2 h' : y.2 ≀ x.2 ⊒ x.1 < y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
exact h
case inl m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : PartialOrder Ξ² x y : Lex (Ξ± Γ— Ξ²) h' : y.2 ≀ x.2 h : x.1 < y.1 ⊒ x.1 < y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.fst_lt_of_lt_of_le
[258, 1]
[263, 33]
cases h.2.not_le h'
case inr m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : PartialOrder Ξ² x y : Lex (Ξ± Γ— Ξ²) h' : y.2 ≀ x.2 h : x.1 = y.1 ∧ x.2 < y.2 ⊒ x.1 < y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_fst_mono_iff
[275, 1]
[276, 56]
simp [le_iff']
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x : Ξ± y₁ yβ‚‚ : Ξ² ⊒ (x, y₁) ≀ (x, yβ‚‚) ↔ y₁ ≀ yβ‚‚
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_fst_mono_lt_iff
[280, 1]
[281, 56]
simp [lt_iff']
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x : Ξ± y₁ yβ‚‚ : Ξ² ⊒ (x, y₁) < (x, yβ‚‚) ↔ y₁ < yβ‚‚
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_snd_mono_le_iff
[285, 1]
[286, 57]
simp [le_iff'']
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : PartialOrder Ξ± inst✝ : Preorder Ξ² x₁ xβ‚‚ : Ξ± y : Ξ² ⊒ (x₁, y) ≀ (xβ‚‚, y) ↔ x₁ ≀ xβ‚‚
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_snd_mono_lt_iff
[290, 1]
[291, 56]
simp [lt_iff']
m : Type u β†’ Type v inst✝² : Monad m Ξ± : Type u_1 Ξ² : Type u_2 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝¹ : Preorder Ξ± inst✝ : Preorder Ξ² x₁ xβ‚‚ : Ξ± y : Ξ² ⊒ (x₁, y) < (xβ‚‚, y) ↔ x₁ < xβ‚‚
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_false_lt_mk_true_iff
[295, 1]
[296, 96]
simp [lt_iff', le_iff_lt_or_eq]
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 Ξ² : Type ?u.49210 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝ : PartialOrder Ξ± x₁ xβ‚‚ : Ξ± ⊒ (x₁, false) < (xβ‚‚, true) ↔ x₁ ≀ xβ‚‚
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_true_le_mk_false_iff_lt
[300, 1]
[301, 75]
simp [le_iff']
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 Ξ² : Type ?u.50081 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝ : PartialOrder Ξ± x y : Ξ± ⊒ (x, true) ≀ (y, false) ↔ x < y
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.mk_true_lt_iff_lt
[305, 1]
[306, 68]
simp [lt_iff']
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 Ξ² : Type ?u.51649 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝ : PartialOrder Ξ± x : Ξ± y : Lex (Ξ± Γ— Bool) ⊒ (x, true) < y ↔ x < y.1
no goals
https://github.com/kovach/etch.git
b9e66fe99c33dc1edd926626e598ba00d5d78627
Etch/Verification/Misc.lean
Prod.Lex.lt_mk_true_iff
[308, 1]
[310, 26]
simp [lt_iff', le_iff']
m : Type u β†’ Type v inst✝¹ : Monad m Ξ± : Type u_1 Ξ² : Type ?u.53384 r₁ : Ξ± β†’ Ξ± β†’ Prop rβ‚‚ : Ξ² β†’ Ξ² β†’ Prop inst✝ : PartialOrder Ξ± x : Lex (Ξ± Γ— Bool) y : Ξ± ⊒ x < (y, true) ↔ x ≀ (y, false)
no goals