url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.comp
|
[35, 1]
|
[43, 8]
|
rw [Injective]
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
⊢ Injective (g ∘ f)
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
⊢ ∀ {x₁ x₂ : X}, (g ∘ f) x₁ = (g ∘ f) x₂ → x₁ = x₂
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.comp
|
[35, 1]
|
[43, 8]
|
intro x₁ x₂ hgf
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
⊢ ∀ {x₁ x₂ : X}, (g ∘ f) x₁ = (g ∘ f) x₂ → x₁ = x₂
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
⊢ x₁ = x₂
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.comp
|
[35, 1]
|
[43, 8]
|
have hf := hginj hgf
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
⊢ x₁ = x₂
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
hf : f x₁ = f x₂
⊢ x₁ = x₂
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.comp
|
[35, 1]
|
[43, 8]
|
sorry
|
X Y Z : Type
f : X → Y
g : Y → Z
hfinj : Injective f
hginj : Injective g
x₁ x₂ : X
hgf : (g ∘ f) x₁ = (g ∘ f) x₂
hf : f x₁ = f x₂
⊢ x₁ = x₂
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.of_comp
|
[69, 1]
|
[77, 8]
|
rw [Injective]
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
⊢ Injective f
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
⊢ ∀ {x₁ x₂ : X}, f x₁ = f x₂ → x₁ = x₂
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.of_comp
|
[69, 1]
|
[77, 8]
|
intro x₁ x₂ hf
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
⊢ ∀ {x₁ x₂ : X}, f x₁ = f x₂ → x₁ = x₂
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
⊢ x₁ = x₂
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.of_comp
|
[69, 1]
|
[77, 8]
|
have h : g (f x₁) = g (f x₂) := by
sorry
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
⊢ x₁ = x₂
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
h : g (f x₁) = g (f x₂)
⊢ x₁ = x₂
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.of_comp
|
[69, 1]
|
[77, 8]
|
sorry
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
h : g (f x₁) = g (f x₂)
⊢ x₁ = x₂
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Injective.of_comp
|
[69, 1]
|
[77, 8]
|
sorry
|
X Y Z : Type
f : X → Y
g : Y → Z
hgfinj : Injective (g ∘ f)
x₁ x₂ : X
hf : f x₁ = f x₂
⊢ g (f x₁) = g (f x₂)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Surjective.comp
|
[119, 1]
|
[126, 8]
|
rw [Surjective]
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
⊢ Surjective (g ∘ f)
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
⊢ ∀ (y : Z), ∃ x, (g ∘ f) x = y
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Surjective.comp
|
[119, 1]
|
[126, 8]
|
intro z
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
⊢ ∀ (y : Z), ∃ x, (g ∘ f) x = y
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
⊢ ∃ x, (g ∘ f) x = z
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Surjective.comp
|
[119, 1]
|
[126, 8]
|
have ⟨y, hy⟩ := hgsurj z
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
⊢ ∃ x, (g ∘ f) x = z
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
y : Y
hy : g y = z
⊢ ∃ x, (g ∘ f) x = z
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Surjective.comp
|
[119, 1]
|
[126, 8]
|
sorry
|
X Y Z : Type
f : X → Y
g : Y → Z
hfsurj : Surjective f
hgsurj : Surjective g
z : Z
y : Y
hy : g y = z
⊢ ∃ x, (g ∘ f) x = z
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Basic/Lecture4.lean
|
Tutorial.Surjective.of_comp
|
[137, 1]
|
[138, 8]
|
sorry
|
X Y Z : Type
f : X → Y
g : Y → Z
h : Surjective (g ∘ f)
⊢ Surjective g
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.Subgroup.mem_comm
|
[31, 1]
|
[42, 8]
|
intro hab
|
G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
a b : G
⊢ a * b ∈ N → b * a ∈ N
|
G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
a b : G
hab : a * b ∈ N
⊢ b * a ∈ N
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.Subgroup.mem_comm
|
[31, 1]
|
[42, 8]
|
sorry
|
G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Normal N
a b : G
hab : a * b ∈ N
⊢ b * a ∈ N
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.mem_of_eq_one
|
[82, 1]
|
[83, 8]
|
sorry
|
G : Type
inst✝¹ : Group G
N : Subgroup G
inst✝ : Subgroup.Normal N
a : G
⊢ LeftQuotient.mk a = 1 ↔ a ∈ N
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.Subgroup.coe_one
|
[170, 1]
|
[170, 48]
|
simp
|
G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
K : Subgroup G
⊢ 1 ∈ K
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.GroupHom.rangeKerLift_injective
|
[201, 1]
|
[202, 8]
|
sorry
|
G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
⊢ Function.Injective ⇑(rangeKerLift f)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.GroupHom.rangeKerLift_surjective
|
[205, 1]
|
[208, 8]
|
intro ⟨y, hy⟩
|
G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
⊢ Function.Surjective ⇑(rangeKerLift f)
|
G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
y : H
hy : y ∈ range f
⊢ ∃ a, (rangeKerLift f) a = { val := y, property := hy }
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Tutorial/Advanced/Algebra/Lecture5.lean
|
Tutorial.GroupHom.rangeKerLift_surjective
|
[205, 1]
|
[208, 8]
|
sorry
|
G H : Type
inst✝¹ : Group G
inst✝ : Group H
f : G →* H
y : H
hy : y ∈ range f
⊢ ∃ a, (rangeKerLift f) a = { val := y, property := hy }
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.abs_of_ten_inv
|
[18, 1]
|
[19, 55]
|
linarith
|
i : ℕ
⊢ 0 < 10
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
calc _ = Real.ofCauchy (Quotient.mk CauSeq.equiv (CauSeq.const abs 1)) := ?_
_ = (1 : ℝ) := Real.ofCauchy_one
|
⊢ { cauchy := ⟦«0.9999999»⟧ } = 1
|
⊢ { cauchy := ⟦«0.9999999»⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ }
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
rw [«0.9999999»]
|
⊢ { cauchy := ⟦«0.9999999»⟧ } = { cauchy := ⟦CauSeq.const abs 1⟧ }
|
⊢ { cauchy := ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ } =
{ cauchy := ⟦CauSeq.const abs 1⟧ }
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
congr 1
|
⊢ { cauchy := ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ } =
{ cauchy := ⟦CauSeq.const abs 1⟧ }
|
case e_cauchy
⊢ ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ = ⟦CauSeq.const abs 1⟧
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
apply Quotient.sound
|
case e_cauchy
⊢ ⟦{ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 }⟧ = ⟦CauSeq.const abs 1⟧
|
case e_cauchy.a
⊢ { val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } ≈ CauSeq.const abs 1
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
intro ε ε0
|
case e_cauchy.a
⊢ { val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } ≈ CauSeq.const abs 1
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
suffices ∃ i, ∀ (j : ℕ), j ≥ i → (10 ^ j : ℚ)⁻¹ < ε by simpa [abs_of_ten_inv]
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
have ⟨n, hn⟩ : ∃ n : ℕ, ε⁻¹ < 10 ^ n := pow_unbounded_of_one_lt ε⁻¹ rfl
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
have : (10 ^ n : ℚ)⁻¹ < ε := inv_lt_of_inv_lt ε0 hn
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
exists n
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∀ j ≥ n, (10 ^ j)⁻¹ < ε
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
intro h hj
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
⊢ ∀ j ≥ n, (10 ^ j)⁻¹ < ε
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
h : ℕ
hj : h ≥ n
⊢ (10 ^ h)⁻¹ < ε
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
calc (10 ^ h : ℚ )⁻¹ ≤ (10 ^ n : ℚ)⁻¹ := inv_pow_le_inv_pow_of_le (by linarith) hj
_ < ε := this
|
case e_cauchy.a
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
h : ℕ
hj : h ≥ n
⊢ (10 ^ h)⁻¹ < ε
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
simpa [abs_of_ten_inv]
|
ε : ℚ
ε0 : ε > 0
this : ∃ i, ∀ j ≥ i, (10 ^ j)⁻¹ < ε
⊢ ∃ i, ∀ j ≥ i, |↑({ val := fun n => 1 - (10 ^ n)⁻¹, property := «0.9999999».proof_1 } - CauSeq.const abs 1) j| < ε
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.«0.9999999 = 1»
|
[39, 1]
|
[54, 18]
|
linarith
|
ε : ℚ
ε0 : ε > 0
n : ℕ
hn : ε⁻¹ < 10 ^ n
this : (10 ^ n)⁻¹ < ε
h : ℕ
hj : h ≥ n
⊢ 1 ≤ 10
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
rcases hac with ⟨ι_ac, cover_ac⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
hac : HasFinSubCover U (Icc a c)
hcb : HasFinSubCover U (Icc c b)
⊢ HasFinSubCover U (Icc a b)
|
case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
hcb : HasFinSubCover U (Icc c b)
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
⊢ HasFinSubCover U (Icc a b)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
rcases hcb with ⟨ι_cb, cover_cb⟩
|
case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
hcb : HasFinSubCover U (Icc c b)
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
⊢ HasFinSubCover U (Icc a b)
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ HasFinSubCover U (Icc a b)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
exists ι_ac ∪ ι_cb
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ HasFinSubCover U (Icc a b)
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ Icc a b ⊆ ⋃ i ∈ ι_ac ∪ ι_cb, U i
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
intro x hx
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
⊢ Icc a b ⊆ ⋃ i ∈ ι_ac ∪ ι_cb, U i
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
suffices ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i by
simpa using this
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
cases le_total x c
|
case intro.intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
case intro.intro.inl
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
h✝ : x ≤ c
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
case intro.intro.inr
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
h✝ : c ≤ x
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
case inl hxc =>
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_ac ∧ x ∈ U i := by simpa using cover_ac ⟨hx.left, hxc⟩
exact ⟨i, Or.inl hi.1, hi.2⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
case inr hxc =>
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_cb ∧ x ∈ U i := by simpa using cover_cb ⟨hxc, hx.right⟩
exact ⟨i, Or.inr hi.1, hi.2⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
simpa using this
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
this : ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
⊢ x ∈ ⋃ i ∈ ι_ac ∪ ι_cb, U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_ac ∧ x ∈ U i := by simpa using cover_ac ⟨hx.left, hxc⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
i : ι
hi : i ∈ ι_ac ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
exact ⟨i, Or.inl hi.1, hi.2⟩
|
case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
i : ι
hi : i ∈ ι_ac ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
simpa using cover_ac ⟨hx.left, hxc⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : x ≤ c
⊢ ∃ i ∈ ι_ac, x ∈ U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
obtain ⟨i, hi⟩ : ∃ i, i ∈ ι_cb ∧ x ∈ U i := by simpa using cover_cb ⟨hxc, hx.right⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
i : ι
hi : i ∈ ι_cb ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
exact ⟨i, Or.inr hi.1, hi.2⟩
|
case intro
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
i : ι
hi : i ∈ ι_cb ∧ x ∈ U i
⊢ ∃ i, (i ∈ ι_ac ∨ i ∈ ι_cb) ∧ x ∈ U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.hasFinSubCover_concat
|
[109, 1]
|
[123, 33]
|
simpa using cover_cb ⟨hxc, hx.right⟩
|
ι : Type
U : ι → Set ℝ
a c b : ℝ
ι_ac : Finset ι
cover_ac : Icc a c ⊆ ⋃ i ∈ ι_ac, U i
ι_cb : Finset ι
cover_cb : Icc c b ⊆ ⋃ i ∈ ι_cb, U i
x : ℝ
hx : x ∈ Icc a b
hxc : c ≤ x
⊢ ∃ i ∈ ι_cb, x ∈ U i
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.not_HasFinSubCover_concat
|
[125, 1]
|
[128, 48]
|
contrapose!
|
ι : Type
U : ι → Set ℝ
a b c : ℝ
⊢ ¬HasFinSubCover U (Icc a b) → HasFinSubCover U (Icc a c) → ¬HasFinSubCover U (Icc c b)
|
ι : Type
U : ι → Set ℝ
a b c : ℝ
⊢ HasFinSubCover U (Icc a c) ∧ HasFinSubCover U (Icc c b) → HasFinSubCover U (Icc a b)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.not_HasFinSubCover_concat
|
[125, 1]
|
[128, 48]
|
apply (fun H ↦ hasFinSubCover_concat H.1 H.2)
|
ι : Type
U : ι → Set ℝ
a b c : ℝ
⊢ HasFinSubCover U (Icc a c) ∧ HasFinSubCover U (Icc c b) → HasFinSubCover U (Icc a b)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSucc_eq_or_eq
|
[140, 1]
|
[143, 21]
|
apply ite_eq_or_eq
|
ι : Type
U : ι → Set ℝ
a b : ℝ
⊢ nestedIntervalSucc U a b = (a, (a + b) / 2) ∨ nestedIntervalSucc U a b = ((a + b) / 2, b)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
have := nestedInterval_le n
|
ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
cases nestedIntervalSucc_eq_or_eq U (α n) (β n) with
| inl h => rw [nestedInterval, h]; dsimp only; linarith
| inr h => rw [nestedInterval, h]; dsimp only; linarith
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
rw [nestedInterval, h]
|
case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
|
case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 <
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
dsimp only
|
case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1 <
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2
|
case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U n).1 < ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
linarith
|
case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U n).1 < ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
rw [nestedInterval, h]
|
case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U (n + 1)).1 < (nestedInterval U (n + 1)).2
|
case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 <
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
dsimp only
|
case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1 <
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2
|
case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 < (nestedInterval U n).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_le
|
[145, 1]
|
[151, 60]
|
linarith
|
case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 < (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
have := nestedInterval_le U n
|
ι : Type
U : ι → Set ℝ
n : ℕ
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
cases nestedIntervalSucc_eq_or_eq U (α n) (β n) with
| inl h =>
apply Icc_subset_Icc (by rw [nestedInterval, h]) (by rw [nestedInterval, h]; dsimp only; linarith)
| inr h =>
apply Icc_subset_Icc (by rw [nestedInterval, h]; dsimp only; linarith) (by rw [nestedInterval, h])
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
apply Icc_subset_Icc (by rw [nestedInterval, h]) (by rw [nestedInterval, h]; dsimp only; linarith)
|
case inl
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
rw [nestedInterval, h]
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U n).1 ≤ (nestedInterval U (n + 1)).1
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
rw [nestedInterval, h]
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ (nestedInterval U (n + 1)).2 ≤ (nestedInterval U n).2
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 ≤ (nestedInterval U n).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
dsimp only
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2 ≤ (nestedInterval U n).2
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
linarith
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2)
⊢ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
apply Icc_subset_Icc (by rw [nestedInterval, h]; dsimp only; linarith) (by rw [nestedInterval, h])
|
case inr
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2 ⊆ Icc (nestedInterval U n).1 (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
rw [nestedInterval, h]
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ (nestedInterval U (n + 1)).1
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
dsimp only
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
linarith
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested_succ
|
[153, 1]
|
[159, 103]
|
rw [nestedInterval, h]
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
h :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
⊢ (nestedInterval U (n + 1)).2 ≤ (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested
|
[161, 1]
|
[166, 86]
|
rw [(Nat.add_sub_of_le hij).symm]
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ Icc (nestedInterval U j).1 (nestedInterval U j).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ Icc (nestedInterval U (i + (j - i))).1 (nestedInterval U (i + (j - i))).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested
|
[161, 1]
|
[166, 86]
|
set k := j - i
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ Icc (nestedInterval U (i + (j - i))).1 (nestedInterval U (i + (j - i))).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k : ℕ := j - i
⊢ Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested
|
[161, 1]
|
[166, 86]
|
induction k with
| zero => apply rfl.subset
| succ k ih => intro x hx; apply ih (nestedIntervalSeq_is_nested_succ U (i + k) hx)
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k : ℕ := j - i
⊢ Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested
|
[161, 1]
|
[166, 86]
|
apply rfl.subset
|
case zero
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k : ℕ := j - i
⊢ Icc (nestedInterval U (i + Nat.zero)).1 (nestedInterval U (i + Nat.zero)).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested
|
[161, 1]
|
[166, 86]
|
intro x hx
|
case succ
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k✝ : ℕ := j - i
k : ℕ
ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
⊢ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2 ⊆
Icc (nestedInterval U i).1 (nestedInterval U i).2
|
case succ
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k✝ : ℕ := j - i
k : ℕ
ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
x : ℝ
hx : x ∈ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2
⊢ x ∈ Icc (nestedInterval U i).1 (nestedInterval U i).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_is_nested
|
[161, 1]
|
[166, 86]
|
apply ih (nestedIntervalSeq_is_nested_succ U (i + k) hx)
|
case succ
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
k✝ : ℕ := j - i
k : ℕ
ih : Icc (nestedInterval U (i + k)).1 (nestedInterval U (i + k)).2 ⊆ Icc (nestedInterval U i).1 (nestedInterval U i).2
x : ℝ
hx : x ∈ Icc (nestedInterval U (i + Nat.succ k)).1 (nestedInterval U (i + Nat.succ k)).2
⊢ x ∈ Icc (nestedInterval U i).1 (nestedInterval U i).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_mem
|
[168, 1]
|
[171, 26]
|
simp only [mem_Icc, nestedIntervalSeq]
|
ι : Type
U : ι → Set ℝ
n : ℕ
⊢ nestedIntervalSeq U n ∈ Icc (nestedInterval U n).1 (nestedInterval U n).2
|
ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_mem
|
[168, 1]
|
[171, 26]
|
have := nestedInterval_le U n
|
ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_mem
|
[168, 1]
|
[171, 26]
|
split_ands <;> linarith
|
ι : Type
U : ι → Set ℝ
n : ℕ
this : (nestedInterval U n).1 < (nestedInterval U n).2
⊢ (nestedInterval U n).1 ≤ ((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ∧
((nestedInterval U n).1 + (nestedInterval U n).2) / 2 ≤ (nestedInterval U n).2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
by_cases H : HasFinSubCover U (Icc (α n) ((α n + β n) / 2))
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
|
case pos
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
case neg
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
case pos =>
rw [nestedInterval, nestedIntervalSucc_right H]
apply not_HasFinSubCover_concat ?_ H
apply nestedInterval_not_HasFinSubCover h n
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
case neg =>
rw [nestedInterval, nestedIntervalSucc_left H]
apply H
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
rw [nestedInterval, nestedIntervalSucc_right H]
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
apply not_HasFinSubCover_concat ?_ H
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).1
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
apply nestedInterval_not_HasFinSubCover h n
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2).2)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
rw [nestedInterval, nestedIntervalSucc_left H]
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U (Icc (nestedInterval U (n + 1)).1 (nestedInterval U (n + 1)).2)
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2)
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_not_HasFinSubCover
|
[180, 1]
|
[190, 14]
|
apply H
|
ι : Type
U : ι → Set ℝ
h : ¬HasFinSubCover U (Icc (nestedInterval U 0).1 (nestedInterval U 0).2)
n : ℕ
H : ¬HasFinSubCover U (Icc (nestedInterval U n).1 (((nestedInterval U n).1 + (nestedInterval U n).2) / 2))
⊢ ¬HasFinSubCover U
(Icc ((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).1
((nestedInterval U n).1, ((nestedInterval U n).1 + (nestedInterval U n).2) / 2).2)
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_len
|
[195, 1]
|
[202, 61]
|
simp [nestedInterval]
|
ι : Type
U : ι → Set ℝ
⊢ (nestedInterval U 0).2 - (nestedInterval U 0).1 = (2 ^ 0)⁻¹
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_len
|
[195, 1]
|
[202, 61]
|
have ih := nestedInterval_len n
|
ι : Type
U : ι → Set ℝ
n : ℕ
⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹
|
ι : Type
U : ι → Set ℝ
n : ℕ
ih : (nestedInterval U n).2 - (nestedInterval U n).1 = (2 ^ n)⁻¹
⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_len
|
[195, 1]
|
[202, 61]
|
rcases nestedIntervalSucc_eq_or_eq U (α n) (β n) with H | H <;>
rw [nestedInterval, H] <;> field_simp at ih ⊢ <;>
calc _ = (β n - α n) * 2 ^ n * 2 := by ring
_ = 2 := by rw [ih]; ring
|
ι : Type
U : ι → Set ℝ
n : ℕ
ih : (nestedInterval U n).2 - (nestedInterval U n).1 = (2 ^ n)⁻¹
⊢ (nestedInterval U (n + 1)).2 - (nestedInterval U (n + 1)).1 = (2 ^ (n + 1))⁻¹
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_len
|
[195, 1]
|
[202, 61]
|
ring
|
ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ ((nestedInterval U n).2 * 2 - ((nestedInterval U n).1 + (nestedInterval U n).2)) * 2 ^ (n + 1) =
((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n * 2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_len
|
[195, 1]
|
[202, 61]
|
rw [ih]
|
ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n * 2 = 2
|
ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ 1 * 2 = 2
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedInterval_len
|
[195, 1]
|
[202, 61]
|
ring
|
ι : Type
U : ι → Set ℝ
n : ℕ
H :
nestedIntervalSucc U (nestedInterval U n).1 (nestedInterval U n).2 =
(((nestedInterval U n).1 + (nestedInterval U n).2) / 2, (nestedInterval U n).2)
ih : ((nestedInterval U n).2 - (nestedInterval U n).1) * 2 ^ n = 1
⊢ 1 * 2 = 2
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_isCauSeq_aux
|
[204, 1]
|
[207, 47]
|
dsimp [Icc] at hx hy
|
ι : Type
U : ι → Set ℝ
a b x y : ℝ
hx : x ∈ Icc a b
hy : y ∈ Icc a b
⊢ |y - x| ≤ b - a
|
ι : Type
U : ι → Set ℝ
a b x y : ℝ
hx : a ≤ x ∧ x ≤ b
hy : a ≤ y ∧ y ≤ b
⊢ |y - x| ≤ b - a
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_isCauSeq_aux
|
[204, 1]
|
[207, 47]
|
apply (abs_sub_le_iff.2 ⟨_, _⟩) <;> linarith
|
ι : Type
U : ι → Set ℝ
a b x y : ℝ
hx : a ≤ x ∧ x ≤ b
hy : a ≤ y ∧ y ≤ b
⊢ |y - x| ≤ b - a
|
no goals
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_isCauSeq_aux'
|
[209, 1]
|
[212, 40]
|
have := nestedIntervalSeq_isCauSeq_aux (nestedIntervalSeq_mem U i) (nestedIntervalSeq_mem_of_le U hij)
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
this : |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (nestedInterval U i).2 - (nestedInterval U i).1
⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹
|
https://github.com/yuma-mizuno/lean-math-workshop.git
|
4a69b0130b276b45212e2b12b90032b146b56d67
|
Solution/Advanced/Analysis/Lecture3.lean
|
Tutorial.nestedIntervalSeq_isCauSeq_aux'
|
[209, 1]
|
[212, 40]
|
simpa [nestedInterval_len] using this
|
ι : Type
U : ι → Set ℝ
i j : ℕ
hij : i ≤ j
this : |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (nestedInterval U i).2 - (nestedInterval U i).1
⊢ |nestedIntervalSeq U j - nestedIntervalSeq U i| ≤ (2 ^ i)⁻¹
|
no goals
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.