url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
constructor
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_) ↔ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_) → ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} → x ∈ Set.extremePoints ℝ (Hpolytope hH_)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
intro hxEx
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_) → ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_)
⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Set.eq_singleton_iff_unique_mem]
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_)
⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_)
⊢ x ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) ∧ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
refine ⟨ fun HiS ⟨ Hi_, hHi_, h ⟩ => h ▸ hHi_.2, ?_ ⟩
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_)
⊢ x ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) ∧ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_)
⊢ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
contrapose! hxEx
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : x ∈ Set.extremePoints ℝ (Hpolytope hH_)
⊢ ∀ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 = x
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : ∃ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 ≠ x
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rcases hxEx with ⟨ y, hy, hyx ⟩
|
case mp
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hxEx : ∃ x_1 ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x), x_1 ≠ x
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have hxyy : x ∈ openSegment ℝ ((2:ℝ) • x - y) y := by
clear hyx hy hxH hH_
rw [openSegment_eq_image, Set.mem_image]
refine ⟨ 1/2, by norm_num, ?_ ⟩
rw [(by norm_num : (1:ℝ) - 1 / 2 = 1 / 2), smul_sub, sub_add_cancel, smul_smul,
div_mul_cancel _ (by linarith), one_smul]
done
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have hmemsegmemI : ∀ v, v ∈ segment ℝ ((2:ℝ) • x - y) y →
∀ Hi_, Hi_ ∈ Hpolytope.I H_ x → v ∈ SetLike.coe Hi_ := by
rintro v hv Hi_ hHi_
rw [Set.mem_sInter] at hy
specialize hy (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
have hHi_2 := hHi_.2
rw [frontierHalfspace_Hyperplane] at hy hHi_2
apply IsClosed.frontier_subset <| Halfspace_closed Hi_
rw [frontierHalfspace_Hyperplane]
apply Set.mem_of_mem_of_subset hv
apply (convex_iff_segment_subset.mp <| Hyperplane_convex Hi_) _ hy
have h21 : Finset.sum Finset.univ ![(2:ℝ), -1] = 1 := by
rw [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons]
linarith
done
have h2x_y := Hyperplane_affineClosed Hi_ ![x, y] (by
rw [Matrix.range_cons, Matrix.range_cons, Matrix.range_empty, Set.union_empty];
exact Set.union_subset (Set.singleton_subset_iff.mpr hHi_2) (Set.singleton_subset_iff.mpr hy))
![2, -1] h21
rw [Finset.affineCombination_eq_linear_combination _ _ _ h21, Fin.sum_univ_two, Matrix.cons_val_zero,
Matrix.cons_val_one, Matrix.head_cons, Matrix.cons_val_zero, Matrix.cons_val_one,
Matrix.head_cons, neg_one_smul, ← sub_eq_add_neg] at h2x_y
exact h2x_y
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [mem_extremePoints]
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ x ∉ Set.extremePoints ℝ (Hpolytope hH_)
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ ¬(x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
push_neg
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ ¬(x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x)
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ x ∈ Hpolytope hH_ → ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rintro hxH'
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ x ∈ Hpolytope hH_ → ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rcases hmemballmemIc with ⟨ ε, hε, hmemballmemIc ⟩
|
case mp.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
ε : ℝ
hε : ε > 0
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rcases hxSegBallInterSeg ((2:ℝ) • x - y) y ε ⟨ hxyy, fun h => hyx h.2 ⟩ hε with
⟨ x1, x2, hmem, hsub, hne ⟩
|
case mp.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
ε : ℝ
hε : ε > 0
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
ε : ℝ
hε : ε > 0
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : ¬(x1 = x ∧ x2 = x)
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
push_neg at hne
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
ε : ℝ
hε : ε > 0
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : ¬(x1 = x ∧ x2 = x)
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
ε : ℝ
hε : ε > 0
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : x1 = x → x2 ≠ x
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
clear hxH' hε hyx hy hxH hxyy
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
hxH' : x ∈ Hpolytope hH_
ε : ℝ
hε : ε > 0
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : x1 = x → x2 ≠ x
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : x1 = x → x2 ≠ x
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
unfold Hpolytope
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : x1 = x → x2 ≠ x
⊢ ∃ x₁ ∈ Hpolytope hH_, ∃ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : x1 = x → x2 ≠ x
⊢ ∃ x₁ ∈ ⋂₀ (SetLike.coe '' H_), ∃ x₂ ∈ ⋂₀ (SetLike.coe '' H_), x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
refine ⟨ x1, ?_, x2, ?_, ⟨ hmem, hne ⟩ ⟩ <;> clear hmem hne <;>
rw [Set.mem_sInter] <;>
intro Hi_s hHi_s <;>
rw [Set.mem_image] at hHi_s <;>
rcases hHi_s with ⟨ Hi_, hHi_, rfl ⟩
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hmem : x ∈ openSegment ℝ x1 x2
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hne : x1 = x → x2 ≠ x
⊢ ∃ x₁ ∈ ⋂₀ (SetLike.coe '' H_), ∃ x₂ ∈ ⋂₀ (SetLike.coe '' H_), x ∈ openSegment ℝ x₁ x₂ ∧ (x₁ = x → x₂ ≠ x)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
⊢ x1 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
⊢ x2 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
clear hyx hy hxH hH_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
⊢ x ∈ openSegment ℝ (2 • x - y) y
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ x ∈ openSegment ℝ (2 • x - y) y
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [openSegment_eq_image, Set.mem_image]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ x ∈ openSegment ℝ (2 • x - y) y
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ ∃ x_1 ∈ Set.Ioo 0 1, (1 - x_1) • (2 • x - y) + x_1 • y = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
refine ⟨ 1/2, by norm_num, ?_ ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ ∃ x_1 ∈ Set.Ioo 0 1, (1 - x_1) • (2 • x - y) + x_1 • y = x
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ (1 - 1 / 2) • (2 • x - y) + (1 / 2) • y = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [(by norm_num : (1:ℝ) - 1 / 2 = 1 / 2), smul_sub, sub_add_cancel, smul_smul,
div_mul_cancel _ (by linarith), one_smul]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ (1 - 1 / 2) • (2 • x - y) + (1 / 2) • y = x
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
norm_num
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ 1 / 2 ∈ Set.Ioo 0 1
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
norm_num
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ 1 - 1 / 2 = 1 / 2
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
linarith
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
x y : E
⊢ 2 ≠ 0
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rcases hball with ⟨ ε, hε, hball ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hball : ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
ε : ℝ
hε : ε > 0
hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
refine ⟨ ε, hε, fun v hv Hi_ hHi_ => ?_ ⟩
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
ε : ℝ
hε : ε > 0
hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
ε : ℝ
hε : ε > 0
hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
v : E
hv : v ∈ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply interior_subset
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
ε : ℝ
hε : ε > 0
hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
v : E
hv : v ∈ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ v ∈ ↑Hi_
|
case intro.intro.a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
ε : ℝ
hε : ε > 0
hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
v : E
hv : v ∈ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ v ∈ interior ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact (Set.mem_sInter.mp <| hball hv) (interior <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
|
case intro.intro.a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
ε : ℝ
hε : ε > 0
hball : Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
v : E
hv : v ∈ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ v ∈ interior ↑Hi_
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
unfold Hpolytope at hxH
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Metric.isOpen_iff] at hIcinteriorOpen
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
hIcinteriorOpen : IsOpen (⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)))
⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
hIcinteriorOpen :
∀ x_1 ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)),
∃ ε > 0, Metric.ball x_1 ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact hIcinteriorOpen x hxIcinterior
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
hIcinteriorOpen :
∀ x_1 ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)),
∃ ε > 0, Metric.ball x_1 ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∃ ε > 0, Metric.ball x ε ⊆ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rintro HiS ⟨ Hi_, hHi_, rfl ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
⊢ x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ x ∈ (fun x => interior ↑x) Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Set.mem_diff, Hpolytope.I_mem, IsClosed.frontier_eq <| Halfspace_closed Hi_,
Set.mem_diff] at hHi_
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ x ∈ (fun x => interior ↑x) Hi_
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ ∧ ¬(Hi_ ∈ H_ ∧ x ∈ ↑Hi_ ∧ x ∉ interior ↑Hi_)
⊢ x ∈ (fun x => interior ↑x) Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
push_neg at hHi_
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ ∧ ¬(Hi_ ∈ H_ ∧ x ∈ ↑Hi_ ∧ x ∉ interior ↑Hi_)
⊢ x ∈ (fun x => interior ↑x) Hi_
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ ∧ (Hi_ ∈ H_ → x ∈ ↑Hi_ → x ∈ interior ↑Hi_)
⊢ x ∈ (fun x => interior ↑x) Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact hHi_.2 hHi_.1 <| hxH Hi_ ⟨ Hi_, hHi_.1, rfl ⟩
|
case intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_ ∧ (Hi_ ∈ H_ → x ∈ ↑Hi_ → x ∈ interior ↑Hi_)
⊢ x ∈ (fun x => interior ↑x) Hi_
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply Set.Finite.isOpen_sInter (Set.Finite.image _ (Set.Finite.diff hH_ _))
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ IsOpen (⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x)))
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∀ t ∈ (fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x), IsOpen t
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact fun _ ⟨ Hi_, _, h ⟩ => h ▸ isOpen_interior
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ ⋂₀ (SetLike.coe '' H_)
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hxIcinterior : x ∈ ⋂₀ ((fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x))
⊢ ∀ t ∈ (fun x => interior ↑x) '' (H_ \ Hpolytope.I H_ x), IsOpen t
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rintro v hv Hi_ hHi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
⊢ ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Set.mem_sInter] at hy
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : y ∈ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x)
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ v ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, y ∈ t
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
specialize hy (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hy : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, y ∈ t
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ v ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ frontier ↑Hi_
⊢ v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have hHi_2 := hHi_.2
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ frontier ↑Hi_
⊢ v ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ frontier ↑Hi_
hHi_2 : x ∈ frontier ↑Hi_
⊢ v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [frontierHalfspace_Hyperplane] at hy hHi_2
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ frontier ↑Hi_
hHi_2 : x ∈ frontier ↑Hi_
⊢ v ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ v ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply IsClosed.frontier_subset <| Halfspace_closed Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ v ∈ ↑Hi_
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ v ∈ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [frontierHalfspace_Hyperplane]
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ v ∈ frontier ↑Hi_
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ v ∈ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply Set.mem_of_mem_of_subset hv
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ v ∈ {x | ↑Hi_.f x = Hi_.α}
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ segment ℝ (2 • x - y) y ⊆ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply (convex_iff_segment_subset.mp <| Hyperplane_convex Hi_) _ hy
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ segment ℝ (2 • x - y) y ⊆ {x | ↑Hi_.f x = Hi_.α}
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have h21 : Finset.sum Finset.univ ![(2:ℝ), -1] = 1 := by
rw [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons]
linarith
done
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have h2x_y := Hyperplane_affineClosed Hi_ ![x, y] (by
rw [Matrix.range_cons, Matrix.range_cons, Matrix.range_empty, Set.union_empty];
exact Set.union_subset (Set.singleton_subset_iff.mpr hHi_2) (Set.singleton_subset_iff.mpr hy))
![2, -1] h21
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
h2x_y : (Finset.affineCombination ℝ Finset.univ ![x, y]) ![2, -1] ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Finset.affineCombination_eq_linear_combination _ _ _ h21, Fin.sum_univ_two, Matrix.cons_val_zero,
Matrix.cons_val_one, Matrix.head_cons, Matrix.cons_val_zero, Matrix.cons_val_one,
Matrix.head_cons, neg_one_smul, ← sub_eq_add_neg] at h2x_y
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
h2x_y : (Finset.affineCombination ℝ Finset.univ ![x, y]) ![2, -1] ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
h2x_y : 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact h2x_y
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
h2x_y : 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 • x - y ∈ {x | ↑Hi_.f x = Hi_.α}
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Fin.sum_univ_two, Matrix.cons_val_zero, Matrix.cons_val_one, Matrix.head_cons]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ Finset.sum Finset.univ ![2, -1] = 1
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 + -1 = 1
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
linarith
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
⊢ 2 + -1 = 1
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Matrix.range_cons, Matrix.range_cons, Matrix.range_empty, Set.union_empty]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
⊢ Set.range ![x, y] ⊆ {x | ↑Hi_.f x = Hi_.α}
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
⊢ {x} ∪ {y} ⊆ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact Set.union_subset (Set.singleton_subset_iff.mpr hHi_2) (Set.singleton_subset_iff.mpr hy)
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
y : E
hyx : y ≠ x
hxyy : x ∈ openSegment ℝ (2 • x - y) y
hmemballmemIc : ∃ ε > 0, ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
v : E
hv : v ∈ segment ℝ (2 • x - y) y
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hy : y ∈ {x | ↑Hi_.f x = Hi_.α}
hHi_2 : x ∈ {x | ↑Hi_.f x = Hi_.α}
h21 : Finset.sum Finset.univ ![2, -1] = 1
⊢ {x} ∪ {y} ⊆ {x | ↑Hi_.f x = Hi_.α}
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
specialize hsub (left_mem_segment ℝ x1 x2)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
⊢ x1 ∈ ↑Hi_
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
⊢ x1 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rcases (em (Hi_ ∈ Hpolytope.I H_ x)) with (hinI | hninI)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
⊢ x1 ∈ ↑Hi_
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inl
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x1 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ x1 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply hmemsegmemI x1 ?_ Hi_ hinI
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inl
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x1 ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x1 ∈ segment ℝ (2 • x - y) y
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply openSegment_subset_segment
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x1 ∈ segment ℝ (2 • x - y) y
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x1 ∈ openSegment ℝ (2 • x - y) y
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact Set.mem_of_mem_inter_left hsub
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x1 ∈ openSegment ℝ (2 • x - y) y
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have : Hi_ ∈ H_ \ Hpolytope.I H_ x := by
rw [Set.mem_diff]
exact ⟨ hHi_, hninI ⟩
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ x1 ∈ ↑Hi_
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
this : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ x1 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact hmemballmemIc x1 (Set.mem_of_mem_inter_right hsub) Hi_ this
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_1.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
this : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ x1 ∈ ↑Hi_
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Set.mem_diff]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ Hi_ ∈ H_ \ Hpolytope.I H_ x
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact ⟨ hHi_, hninI ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x1 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
specialize hsub (right_mem_segment ℝ x1 x2)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
hsub : segment ℝ x1 x2 ⊆ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
⊢ x2 ∈ ↑Hi_
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
⊢ x2 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rcases (em (Hi_ ∈ Hpolytope.I H_ x)) with (hinI | hninI)
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
⊢ x2 ∈ ↑Hi_
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inl
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x2 ∈ ↑Hi_
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ x2 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply hmemsegmemI x2 ?_ Hi_ hinI
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inl
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x2 ∈ ↑Hi_
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x2 ∈ segment ℝ (2 • x - y) y
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply openSegment_subset_segment
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x2 ∈ segment ℝ (2 • x - y) y
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x2 ∈ openSegment ℝ (2 • x - y) y
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact Set.mem_of_mem_inter_left hsub
|
case a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hinI : Hi_ ∈ Hpolytope.I H_ x
⊢ x2 ∈ openSegment ℝ (2 • x - y) y
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have : Hi_ ∈ H_ \ Hpolytope.I H_ x := by
rw [Set.mem_diff]
exact ⟨ hHi_, hninI ⟩
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ x2 ∈ ↑Hi_
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
this : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ x2 ∈ ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact hmemballmemIc x2 (Set.mem_of_mem_inter_right hsub) Hi_ this
|
case mp.intro.intro.intro.intro.intro.intro.intro.intro.refine_2.intro.intro.inr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
this : Hi_ ∈ H_ \ Hpolytope.I H_ x
⊢ x2 ∈ ↑Hi_
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Set.mem_diff]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ Hi_ ∈ H_ \ Hpolytope.I H_ x
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact ⟨ hHi_, hninI ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x y : E
hmemsegmemI : ∀ v ∈ segment ℝ (2 • x - y) y, ∀ Hi_ ∈ Hpolytope.I H_ x, v ∈ ↑Hi_
ε : ℝ
hmemballmemIc : ∀ v ∈ Metric.ball x ε, ∀ Hi_ ∈ H_ \ Hpolytope.I H_ x, v ∈ ↑Hi_
x1 x2 : E
Hi_ : Halfspace E
hHi_ : Hi_ ∈ H_
hsub : x2 ∈ openSegment ℝ (2 • x - y) y ∩ Metric.ball x ε
hninI : Hi_ ∉ Hpolytope.I H_ x
⊢ Hi_ ∈ H_ ∧ Hi_ ∉ Hpolytope.I H_ x
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
intro hinterx
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
⊢ ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x} → x ∈ Set.extremePoints ℝ (Hpolytope hH_)
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_)
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [mem_extremePoints]
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
⊢ x ∈ Set.extremePoints ℝ (Hpolytope hH_)
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
⊢ x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
refine ⟨ hxH, λ x1 hx1 x2 hx2 hx => ?_ ⟩
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
⊢ x ∈ Hpolytope hH_ ∧ ∀ x₁ ∈ Hpolytope hH_, ∀ x₂ ∈ Hpolytope hH_, x ∈ openSegment ℝ x₁ x₂ → x₁ = x ∧ x₂ = x
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ x1 = x ∧ x2 = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x := by
rw [Set.Nonempty.subset_singleton_iff (Set.nonempty_of_mem (left_mem_segment ℝ x1 x2)),
Set.eq_singleton_iff_unique_mem]
exact fun hseg => ⟨ hseg.2 x1 (left_mem_segment ℝ x1 x2),
hseg.2 x2 (right_mem_segment ℝ x1 x2) ⟩
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ x1 = x ∧ x2 = x
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x
⊢ x1 = x ∧ x2 = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply this
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x
⊢ x1 = x ∧ x2 = x
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x
⊢ segment ℝ x1 x2 ⊆ {x}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
clear this
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
this : segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x
⊢ segment ℝ x1 x2 ⊆ {x}
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ segment ℝ x1 x2 ⊆ {x}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [← hinterx, Set.subset_sInter_iff]
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ segment ℝ x1 x2 ⊆ {x}
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ ∀ t' ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, segment ℝ x1 x2 ⊆ t'
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rintro HiS ⟨ Hi_, hHi_, rfl ⟩
|
case mpr
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ ∀ t' ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, segment ℝ x1 x2 ⊆ t'
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ segment ℝ x1 x2 ⊆ (fun x => frontier ↑x) Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
simp only
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ segment ℝ x1 x2 ⊆ (fun x => frontier ↑x) Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have hfxα : Hi_.f.1 x = Hi_.α := by
have : x ∈ {x} := by
exact Set.mem_singleton x
rw [← hinterx, Set.mem_sInter] at this
specialize this (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
rw [frontierHalfspace_Hyperplane, Set.mem_setOf] at this
exact this
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
clear hinterx hxH
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [mem_Hpolytope] at hx1 hx2
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 : E
hx1 : ∀ Hi ∈ H_, ↑Hi.f x1 ≤ Hi.α
x2 : E
hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
specialize hx1 Hi_ hHi_.1
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 : E
hx1 : ∀ Hi ∈ H_, ↑Hi.f x1 ≤ Hi.α
x2 : E
hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 x2 : E
hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
specialize hx2 Hi_ hHi_.1
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 x2 : E
hx2 : ∀ Hi ∈ H_, ↑Hi.f x2 ≤ Hi.α
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
clear hHi_ hH_ H_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [frontierHalfspace_Hyperplane]
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ frontier ↑Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have := Hyperplane_convex Hi_
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
this : Convex ℝ {x | ↑Hi_.f x = Hi_.α}
⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [convex_iff_segment_subset] at this
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
this : Convex ℝ {x | ↑Hi_.f x = Hi_.α}
⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
this :
∀ ⦃x : E⦄, x ∈ {x | ↑Hi_.f x = Hi_.α} → ∀ ⦃y : E⦄, y ∈ {x | ↑Hi_.f x = Hi_.α} → segment ℝ x y ⊆ {x | ↑Hi_.f x = Hi_.α}
⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
apply this <;>
clear this <;>
rw [Set.mem_setOf] <;>
by_contra h <;>
push_neg at h <;>
have hlt := lt_of_le_of_ne (by assumption) h <;>
clear h
|
case mpr.intro.intro
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
this :
∀ ⦃x : E⦄, x ∈ {x | ↑Hi_.f x = Hi_.α} → ∀ ⦃y : E⦄, y ∈ {x | ↑Hi_.f x = Hi_.α} → segment ℝ x y ⊆ {x | ↑Hi_.f x = Hi_.α}
⊢ segment ℝ x1 x2 ⊆ {x | ↑Hi_.f x = Hi_.α}
|
case mpr.intro.intro.a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
hlt : ↑Hi_.f x1 < Hi_.α
⊢ False
case mpr.intro.intro.a
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
hlt : ↑Hi_.f x2 < Hi_.α
⊢ False
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [Set.Nonempty.subset_singleton_iff (Set.nonempty_of_mem (left_mem_segment ℝ x1 x2)),
Set.eq_singleton_iff_unique_mem]
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ segment ℝ x1 x2 ⊆ {x} → x1 = x ∧ x2 = x
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ (x ∈ segment ℝ x1 x2 ∧ ∀ x_1 ∈ segment ℝ x1 x2, x_1 = x) → x1 = x ∧ x2 = x
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact fun hseg => ⟨ hseg.2 x1 (left_mem_segment ℝ x1 x2),
hseg.2 x2 (right_mem_segment ℝ x1 x2) ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
⊢ (x ∈ segment ℝ x1 x2 ∧ ∀ x_1 ∈ segment ℝ x1 x2, x_1 = x) → x1 = x ∧ x2 = x
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
have : x ∈ {x} := by
exact Set.mem_singleton x
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ ↑Hi_.f x = Hi_.α
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : x ∈ {x}
⊢ ↑Hi_.f x = Hi_.α
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [← hinterx, Set.mem_sInter] at this
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : x ∈ {x}
⊢ ↑Hi_.f x = Hi_.α
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, x ∈ t
⊢ ↑Hi_.f x = Hi_.α
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
specialize this (frontier <| SetLike.coe Hi_) ⟨ Hi_, hHi_, rfl ⟩
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : ∀ t ∈ (fun x => frontier ↑x) '' Hpolytope.I H_ x, x ∈ t
⊢ ↑Hi_.f x = Hi_.α
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : x ∈ frontier ↑Hi_
⊢ ↑Hi_.f x = Hi_.α
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
rw [frontierHalfspace_Hyperplane, Set.mem_setOf] at this
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : x ∈ frontier ↑Hi_
⊢ ↑Hi_.f x = Hi_.α
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : ↑Hi_.f x = Hi_.α
⊢ ↑Hi_.f x = Hi_.α
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact this
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
this : ↑Hi_.f x = Hi_.α
⊢ ↑Hi_.f x = Hi_.α
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
exact Set.mem_singleton x
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
H_ : Set (Halfspace E)
hH_ : Set.Finite H_
x : E
hxH : x ∈ Hpolytope hH_
hinterx : ⋂₀ ((fun x => frontier ↑x) '' Hpolytope.I H_ x) = {x}
x1 : E
hx1 : x1 ∈ Hpolytope hH_
x2 : E
hx2 : x2 ∈ Hpolytope hH_
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hHi_ : Hi_ ∈ Hpolytope.I H_ x
⊢ x ∈ {x}
|
no goals
|
https://github.com/Jun2M/Main-theorem-of-polytopes.git
|
fb84f7409e05ca9db3a1bbfcd4d0a16001515fe8
|
src/MainTheorem.lean
|
ExtremePointsofHpolytope
|
[143, 1]
|
[338, 7]
|
assumption
|
E : Type
inst✝² : NormedAddCommGroup E
inst✝¹ : InnerProductSpace ℝ E
inst✝ : CompleteSpace E
x x1 x2 : E
hx : x ∈ openSegment ℝ x1 x2
Hi_ : Halfspace E
hfxα : ↑Hi_.f x = Hi_.α
hx1 : ↑Hi_.f x1 ≤ Hi_.α
hx2 : ↑Hi_.f x2 ≤ Hi_.α
h : ↑Hi_.f x2 ≠ Hi_.α
⊢ ↑Hi_.f x2 ≤ Hi_.α
|
no goals
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.