url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
fin_cases i <;> (dsimp [aβ, dβ]; norm_num)
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
dsimp [aβ, dβ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© β€ (aβ β’ dβ ^ 2) β¨9, β―β©
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
have h_di_pos := h_d_pos i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
β’ d i / (d i / s i) = s i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 i < d i
β’ d i / (d i / s i) = s i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
simp at h_di_pos
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 i < d i
β’ d i / (d i / s i) = s i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i / (d i / s i) = s i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
have h_di_nonzero : d i β 0 := by linarith
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i / (d i / s i) = s i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i β 0
β’ d i / (d i / s i) = s i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
rw [β div_mul, div_self h_di_nonzero, one_mul]
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
h_di_nonzero : d i β 0
β’ d i / (d i / s i) = s i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.simp_vec_fraction
|
[43, 1]
|
[47, 49]
|
linarith
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
h_d_pos : StrongLT 0 d
s : Fin n β β
i : Fin n
h_di_pos : 0 < d i
β’ d i β 0
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
simp [Vec.cumsum]
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = Vec.cumsum t i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = if h : 0 < n then β j β [[β¨0, hβ©, i]], t j else 0
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
split_ifs
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
β’ β j β [[0, i]], t j = if h : 0 < n then β j β [[β¨0, hβ©, i]], t j else 0
|
case pos
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : 0 < n
β’ β j β [[0, i]], t j = β j β [[β¨0, hββ©, i]], t j
case neg
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : Β¬0 < n
β’ β j β [[0, i]], t j = 0
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
rfl
|
case pos
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : 0 < n
β’ β j β [[0, i]], t j = β j β [[β¨0, hββ©, i]], t j
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.fold_partial_sum
|
[49, 1]
|
[53, 22]
|
linarith [hn.out]
|
case neg
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
hn : Fact (0 < n)
t : Fin n β β
i : Fin n
hβ : Β¬0 < n
β’ β j β [[0, i]], t j = 0
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.nβ_pos
|
[148, 1]
|
[148, 48]
|
unfold nβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < nβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < 10
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.nβ_pos
|
[148, 1]
|
[148, 48]
|
norm_num
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < 10
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dβ_pos
|
[154, 1]
|
[155, 50]
|
intro i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ StrongLT 0 dβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < dβ i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dβ_pos
|
[154, 1]
|
[155, 50]
|
fin_cases i <;> (dsimp [dβ]; norm_num)
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < dβ i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dβ_pos
|
[154, 1]
|
[155, 50]
|
dsimp [dβ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© < dβ β¨9, β―β©
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β©
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.dβ_pos
|
[154, 1]
|
[155, 50]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 < ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β©
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminβ_pos
|
[173, 1]
|
[174, 36]
|
intro i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ StrongLT 0 sminβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < sminβ i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminβ_pos
|
[173, 1]
|
[174, 36]
|
fin_cases i <;> norm_num
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i < sminβ i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminβ_le_smaxβ
|
[179, 1]
|
[180, 60]
|
intro i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ sminβ β€ smaxβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ sminβ i β€ smaxβ i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminβ_le_smaxβ
|
[179, 1]
|
[180, 60]
|
fin_cases i <;> (dsimp [sminβ, smaxβ]; norm_num)
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ sminβ i β€ smaxβ i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminβ_le_smaxβ
|
[179, 1]
|
[180, 60]
|
dsimp [sminβ, smaxβ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ sminβ β¨9, β―β© β€ smaxβ β¨9, β―β©
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] β¨9, β―β© β€
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] β¨9, β―β©
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.sminβ_le_smaxβ
|
[179, 1]
|
[180, 60]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] β¨9, β―β© β€
![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803] β¨9, β―β©
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβ_nonneg
|
[188, 1]
|
[189, 51]
|
unfold aβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ aβ
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβ_nonneg
|
[188, 1]
|
[189, 51]
|
norm_num
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
intros i
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ aβ β’ dβ ^ 2
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
fin_cases i <;> (dsimp [aβ, dβ]; norm_num)
|
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
i : Fin nβ
β’ 0 i β€ (aβ β’ dβ ^ 2) i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
dsimp [aβ, dβ]
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β¨9, β―β© β€ (aβ β’ dβ ^ 2) β¨9, β―β©
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Examples/VehicleSpeedScheduling.lean
|
VehicleSpeedSched.aβdβ2_nonneg
|
[191, 1]
|
[193, 55]
|
norm_num
|
case tail.tail.tail.tail.tail.tail.tail.tail.tail.head
n : β
d Οmin Οmax smin smax : Fin n β β
F : β β β
β’ 0 β€ 1 * ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447] β¨9, β―β© ^ 2
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
suffices hsuff : β (w : EuclideanSpace π (Fin n)),
T (xs.repr.symm w) = xs.repr.symm (fun i => as i * w i) by
simpa only [LinearIsometryEquiv.symm_apply_apply,
LinearIsometryEquiv.apply_symm_apply]
using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
|
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ xs.repr (T v) i = β(as i) * xs.repr v i
|
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
intros w
|
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
β’ β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
|
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
w : EuclideanSpace π (Fin n)
β’ T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
simp_rw [β OrthonormalBasis.sum_repr_symm, map_sum, LinearMap.map_smul,
fun j => Module.End.mem_eigenspace_iff.mp (hxs j).1, smul_smul, mul_comm]
|
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
w : EuclideanSpace π (Fin n)
β’ T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
|
no goals
|
https://github.com/verified-optimization/CvxLean.git
|
c62c2f292c6420f31a12e738ebebdfed50f6f840
|
CvxLean/Lib/Math/Analysis/InnerProductSpace/Spectrum.lean
|
LinearMap.spectral_theorem'
|
[15, 1]
|
[29, 78]
|
simpa only [LinearIsometryEquiv.symm_apply_apply,
LinearIsometryEquiv.apply_symm_apply]
using congr_arg (fun (v : E) => (xs.repr) v i) (hsuff ((xs.repr) v))
|
π : Type u_2
instββ΄ : RCLike π
instβΒ³ : DecidableEq π
E : Type u_1
instβΒ² : NormedAddCommGroup E
instβΒΉ : InnerProductSpace π E
instβ : FiniteDimensional π E
n : β
hn : FiniteDimensional.finrank π E = n
T : E ββ[π] E
v : E
i : Fin n
xs : OrthonormalBasis (Fin n) π E
as : Fin n β β
hxs : β (j : Fin n), Module.End.HasEigenvector T (β(as j)) (xs j)
hsuff : β (w : EuclideanSpace π (Fin n)), T (xs.repr.symm w) = xs.repr.symm fun i => β(as i) * w i
β’ xs.repr (T v) i = β(as i) * xs.repr v i
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
convert (Finset.sum_indicator_subset f Finset.mem_of_mem_filter).symm using 2 with _ _ m hm
|
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n : β
β’ β p β n.primesBelow, f p = β m β Finset.range n, {p | p.Prime}.indicator f m
|
case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
simp only [Set.mem_setOf_eq, Finset.mem_range, Finset.coe_filter, not_and, Set.indicator_apply]
|
case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ {p | p.Prime}.indicator f m = (β(Finset.filter (fun p => p.Prime) (Finset.range n))).indicator f m
|
case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
split_ifs with hβ hβ hβ
|
case h.e'_3.a
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
β’ (if m.Prime then f m else 0) = if m < n β§ m.Prime then f m else 0
|
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
rfl
|
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : m < n β§ m.Prime
β’ f m = f m
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
exact (hβ β¨Finset.mem_range.mp hm, hββ©).elim
|
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ f m = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
exact (hβ hβ.2).elim
|
case pos
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : m < n β§ m.Prime
β’ 0 = f m
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
sum_primesBelow_eq_sum_range_indicator
|
[49, 1]
|
[58, 8]
|
rfl
|
case neg
R : Type u_1
instβ : AddCommMonoid R
f : β β R
n m : β
hm : m β Finset.range n
hβ : Β¬m.Prime
hβ : Β¬(m < n β§ m.Prime)
β’ 0 = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
rw [(show β' p : Nat.Primes, f p = β' p : {p : β | p.Prime}, f p from rfl)]
|
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : Nat.Primes), f βp))
|
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
simp_rw [tsum_subtype, sum_primesBelow_eq_sum_range_indicator]
|
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, f p) atTop (π (β' (p : β{p | p.Prime}), f βp))
|
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
tendsto_sum_primesBelow_tsum
|
[62, 1]
|
[69, 94]
|
exact (Summable.hasSum_iff_tendsto_nat <| hsum.indicator _).mp <| (hsum.indicator _).hasSum
|
R : Type u_1
instββ΄ : AddCommGroup R
instβΒ³ : UniformSpace R
instβΒ² : UniformAddGroup R
instβΒΉ : CompleteSpace R
instβ : T2Space R
f : β β R
hsum : Summable f
β’ Tendsto (fun n => β m β Finset.range n, {p | p.Prime}.indicator (fun p => f p) m) atTop
(π (β' (x : β), {p | p.Prime}.indicator f x))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Complex.exp_tsum_primes
|
[71, 1]
|
[77, 81]
|
simpa only [β exp_sum] using Tendsto.cexp <| tendsto_sum_primesBelow_tsum hsum
|
f : β β β
hsum : Summable f
β’ Tendsto (fun n => β p β n.primesBelow, cexp (f p)) atTop (π (cexp (β' (p : Nat.Primes), f βp)))
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
let g (z : β) : β := -log (1 - z)
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
β’ Summable fun n => -(1 - f n).log
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
have hg : DifferentiableAt β g 0 :=
DifferentiableAt.neg <| ((differentiableAt_const 1).sub differentiableAt_id').clog <|
by simp only [sub_zero, one_mem_slitPlane]
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ Summable fun n => -(1 - f n).log
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
have : g =O[π 0] id := by
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ Summable fun n => -(1 - f n).log
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
exact Asymptotics.IsBigO.comp_summable this hsum
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
this : g =O[π 0] id
β’ Summable fun n => -(1 - f n).log
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
simp only [sub_zero, one_mem_slitPlane]
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
β’ 1 - 0 β slitPlane
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
Summable.neg_clog_one_sub
|
[82, 1]
|
[91, 51]
|
simpa only [g, sub_zero, log_one, neg_zero] using DifferentiableAt.isBigO_sub hg
|
Ξ± : Type u_1
f : Ξ± β β
hsum : Summable f
g : β β β := fun z => -(1 - z).log
hg : DifferentiableAt β g 0
β’ g =O[π 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have hs {p : β} (hp : 1 < p) : βf pβ < 1 := hsum.of_norm.norm_lt_one (f := f.toMonoidHom) hp
|
f : β β*β β
hsum : Summable fun x => βf xβ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have H := Complex.exp_tsum_primes hsum.of_norm.neg_clog_one_sub
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
have help (n : β) : n.primesBelow.prod (fun p β¦ cexp (-log (1 - f p))) =
n.primesBelow.prod fun p β¦ (1 - f p)β»ΒΉ := by
refine Finset.prod_congr rfl (fun p hp β¦ ?_)
rw [exp_neg, exp_log ?_]
rw [ne_eq, sub_eq_zero, β ne_eq]
exact fun h β¦ (norm_one (Ξ± := β) βΈ h.symm βΈ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
simp_rw [help] at H
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
exact tendsto_nhds_unique H <| eulerProduct_completely_multiplicative hsum
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
help : β (n : β), β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
H : Tendsto (fun n => β p β n.primesBelow, (1 - f p)β»ΒΉ) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
β’ cexp (β' (p : Nat.Primes), -(1 - f βp).log) = β' (n : β), f n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
refine Finset.prod_congr rfl (fun p hp β¦ ?_)
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n : β
β’ β p β n.primesBelow, cexp (-(1 - f p).log) = β p β n.primesBelow, (1 - f p)β»ΒΉ
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
rw [exp_neg, exp_log ?_]
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ cexp (-(1 - f p).log) = (1 - f p)β»ΒΉ
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
rw [ne_eq, sub_eq_zero, β ne_eq]
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 - f p β 0
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Logarithm.lean
|
EulerProduct.exp_sum_primes_log_eq_tsum
|
[96, 1]
|
[107, 77]
|
exact fun h β¦ (norm_one (Ξ± := β) βΈ h.symm βΈ hs (Nat.prime_of_mem_primesBelow hp).one_lt).false
|
f : β β*β β
hsum : Summable fun x => βf xβ
hs : β {p : β}, 1 < p β βf pβ < 1
H :
Tendsto (fun n => β p β n.primesBelow, cexp (-(1 - f p).log)) atTop (π (cexp (β' (p : Nat.Primes), -(1 - f βp).log)))
n p : β
hp : p β n.primesBelow
β’ 1 β f p
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [isBigO_iff', isBigO_iff']
|
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (fun x => f x * g x) =O[l] h β g =O[l] fun x => h x / f x
|
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine β¨fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©, fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©β© <;>
{ refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_
rw [norm_mul, norm_div, β mul_div_assoc, mul_comm]
have hx' : βf xβ > 0 := norm_pos_iff.mpr hx
rw [le_div_iff hx', mul_comm] }
|
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
β’ βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [norm_mul, norm_div, β mul_div_assoc, mul_comm]
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
have hx' : βf xβ > 0 := norm_pos_iff.mpr hx
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [le_div_iff hx', mul_comm]
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
rw [β zero_add z] at hf
|
f : β β β
z : β
hf : DifferentiableAt β f z
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
|
f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
simpa only [zero_add, hz, sub_zero]
using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub
|
f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
rw [isBigO_iff']
|
f : β β β
z : β
hf : ContinuousAt f z
β’ (fun w => f (w + z)) =O[π 0] fun x => 1
|
f : β β β
z : β
hf : ContinuousAt f z
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf
|
f : β β β
z : β
hf : ContinuousAt (fun w => f (w + z)) 0
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
specialize hf 1 zero_lt_one
|
f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine β¨βf zβ + 1, by positivity, ?_β©
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine Eventually.mp hf <| eventually_of_forall fun w hw β¦ le_of_lt ?_
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
calc βf (w + z)β
_ β€ βf zβ + βf (w + z) - f zβ := norm_le_insert' ..
_ < βf zβ + 1 := add_lt_add_left hw _
_ = _ := by simp only [norm_one, mul_one]
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_
|
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt (fun w => f (w + z)) 0
|
case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp
|
case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp [Function.comp_def, hf]
|
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
positivity
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βf zβ + 1 > 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp only [norm_one, mul_one]
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf zβ + 1 = (βf zβ + 1) * β1β
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
lift u to β
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ β u', u = βu' β§ HasDerivAt f u' z
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
refine β¨u, rfl, ?_β©
|
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z
|
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt
|
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z
|
case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re]
|
case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
refine β¨fun H β¦ ?_, ofReal_compβ©
|
z : β
f : β β β
β’ DifferentiableAt β (fun y => β(f y)) z β DifferentiableAt β f z
|
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
obtain β¨u, _, huββ© := H.hasDerivAt.of_hasDerivAt_ofReal_comp
|
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z
|
case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
exact HasDerivAt.differentiableAt huβ
|
case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
by_cases hf : DifferentiableAt β f z
|
z : β
f : β β β
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
exact hf.hasDerivAt.ofReal_comp.deriv
|
case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf
|
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero]
|
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hz : β x β Set.Ioo (c - r) (c + r), (x : β) β Metric.ball (c : β) r := by
intro x hx
refine Metric.mem_ball.mpr ?_
rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
exact and_comm.mpr hx
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have H β¦z : ββ¦ (hz : z β Metric.ball (c : β) r) := taylorSeries_eq_on_ball' hz hf
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, fun x hx β¦ ?_, fun x hx β¦ ?_β©
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
intro x hx
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine Metric.mem_ball.mpr ?_
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact and_comm.mpr hx
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x
|
no goals
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.