url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul_aux
|
[21, 1]
|
[23, 90]
|
rw [mul_comm_div, div_div, β mul_div_assoc, mul_comm (m : β), natCast_mul_natCast_cpow]
|
a b : β
m n : β
s : β
β’ a / βm ^ s * (b / βn ^ s) = a * b / (βm * βn) ^ s
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
rcases eq_or_ne (m * n) 0 with H | H
|
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
β’ term f s (m * n) = term fβ s m * term fβ s n
|
case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n
case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
rcases mul_eq_zero.mp H with rfl | rfl <;> simp only [term_zero, mul_zero, zero_mul]
|
case inl
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n = 0
β’ term f s (m * n) = term fβ s m * term fβ s n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
obtain β¨hm, hnβ© := mul_ne_zero_iff.mp H
|
case inr
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n
|
case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_mul
|
[25, 1]
|
[30, 100]
|
simp only [ne_eq, H, not_false_eq_true, term_of_ne_zero, Nat.cast_mul, hm, hn, h, term_mul_aux]
|
case inr.intro
fβ fβ f : β β β
m n : β
h : f (m * n) = fβ m * fβ n
s : β
H : m * n β 0
hm : m β 0
hn : n β 0
β’ term f s (m * n) = term fβ s m * term fβ s n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
LSeries.term_at_one
|
[44, 1]
|
[45, 72]
|
rw [term_of_ne_zero one_ne_zero, hβ, Nat.cast_one, one_cpow, div_one]
|
f : β β β
hβ : f 1 = 1
s : β
β’ term f s 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.toFun_on_nat_map_one
|
[86, 1]
|
[87, 32]
|
simp only [cast_one, map_one]
|
N : β
Ο : DirichletCharacter β N
β’ (fun n => Ο βn) 1 = 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.toFun_on_nat_map_mul
|
[89, 1]
|
[91, 32]
|
simp only [cast_mul, map_mul]
|
N : β
Ο : DirichletCharacter β N
m n : β
β’ (fun n => Ο βn) (m * n) = (fun n => Ο βn) m * (fun n => Ο βn) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct
|
[94, 1]
|
[99, 87]
|
refine Tendsto.congr (fun n β¦ Finset.prod_congr rfl fun p hp β¦ ?_) <|
eulerProduct_of_completelyMultiplicative (toFun_on_nat_map_one Ο) (toFun_on_nat_map_mul Ο) <|
LSeriesSummable_of_one_lt_re Ο hs
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ Tendsto (fun n => β p β n.primesBelow, (1 - Ο βp * βp ^ (-s))β»ΒΉ) atTop (π (L (fun n => Ο βn) s))
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
n p : β
hp : p β n.primesBelow
β’ (1 - term (fun n => Ο βn) s p)β»ΒΉ = (1 - Ο βp * βp ^ (-s))β»ΒΉ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct
|
[94, 1]
|
[99, 87]
|
rw [term_of_ne_zero (prime_of_mem_primesBelow hp).ne_zero, cpow_neg, div_eq_mul_inv]
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
n p : β
hp : p β n.primesBelow
β’ (1 - term (fun n => Ο βn) s p)β»ΒΉ = (1 - Ο βp * βp ^ (-s))β»ΒΉ
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
rw [LSeries]
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = L (fun n => Ο βn) s
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
convert exp_sum_primes_log_eq_tsum (f := dirichletSummandHom Ο <| ne_zero_of_one_lt_re hs) <|
summable_dirichletSummand Ο hs
|
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - Ο ββp * ββp ^ (-s)).log) = β' (n : β), term (fun n => Ο βn) s n
|
case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
ext n
|
case h.e'_3.h.e'_5.h.h.e
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s = β(dirichletSummandHom Ο β―)
|
case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
rcases eq_or_ne n 0 with rfl | hn
|
case h.e'_3.h.e'_5.h.h.e.h
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0
case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
simp only [term_zero, map_zero]
|
case h.e'_3.h.e'_5.h.h.e.h.inl
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ : β
β’ term (fun n => Ο βn) s 0 = (dirichletSummandHom Ο β―) 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
DirichletCharacter.LSeries_eulerProduct'
|
[102, 1]
|
[110, 61]
|
simp [hn, dirichletSummandHom, div_eq_mul_inv, cpow_neg]
|
case h.e'_3.h.e'_5.h.h.e.h.inr
N : β
Ο : DirichletCharacter β N
s : β
hs : 1 < s.re
xβ n : β
hn : n β 0
β’ term (fun n => Ο βn) s n = (dirichletSummandHom Ο β―) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
ArithmeticFunction.LSeries_zeta_eulerProduct'
|
[117, 1]
|
[120, 62]
|
convert modOne_eq_one (R := β) βΈ LSeries_eulerProduct' (1 : DirichletCharacter β 1) hs using 7
|
s : β
hs : 1 < s.re
β’ cexp (β' (p : Primes), -(1 - ββp ^ (-s)).log) = L 1 s
|
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/EulerProduct.lean
|
ArithmeticFunction.LSeries_zeta_eulerProduct'
|
[117, 1]
|
[120, 62]
|
rw [MulChar.one_apply <| isUnit_of_subsingleton _, one_mul]
|
case h.e'_2.h.e'_1.h.e'_5.h.h.e'_3.h.e'_1.h.e'_6
s : β
hs : 1 < s.re
xβ : Primes
β’ ββxβ ^ (-s) = 1 ββxβ * ββxβ ^ (-s)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [isBigO_iff', isBigO_iff']
|
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (fun x => f x * g x) =O[l] h β g =O[l] fun x => h x / f x
|
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine β¨fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©, fun β¨c, hc, Hβ© β¦ β¨c, hc, ?_β©β© <;>
{ refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_
rw [norm_mul, norm_div, β mul_div_assoc, mul_comm]
have hx' : βf xβ > 0 := norm_pos_iff.mpr hx
rw [le_div_iff hx', mul_comm] }
|
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
β’ (β c > 0, βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ) β β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
refine H.congr <| Eventually.mp hf <| eventually_of_forall fun x hx β¦ ?_
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
β’ βαΆ (x : Ξ±) in l, βf x * g xβ β€ c * βh xβ
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [norm_mul, norm_div, β mul_div_assoc, mul_comm]
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ c * βh x / f xβ β βf x * g xβ β€ c * βh xβ
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
have hx' : βf xβ > 0 := norm_pos_iff.mpr hx
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Asymptotics.isBigO_mul_iff_isBigO_div
|
[31, 1]
|
[39, 36]
|
rw [le_div_iff hx', mul_comm]
|
case refine_2
Ξ± : Type u_1
F : Type u_2
instβ : NormedField F
l : Filter Ξ±
f g h : Ξ± β F
hf : βαΆ (x : Ξ±) in l, f x β 0
xβ : β c > 0, βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
c : β
hc : c > 0
H : βαΆ (x : Ξ±) in l, βg xβ β€ c * βh x / f xβ
x : Ξ±
hx : f x β 0
hx' : βf xβ > 0
β’ βg xβ β€ βh xβ * c / βf xβ β βf xβ * βg xβ β€ βh xβ * c
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
rw [β zero_add z] at hf
|
f : β β β
z : β
hf : DifferentiableAt β f z
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
|
f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.isBigO_of_eq_zero
|
[50, 1]
|
[54, 73]
|
simpa only [zero_add, hz, sub_zero]
using (hf.hasDerivAt.comp_add_const 0 z).differentiableAt.isBigO_sub
|
f : β β β
z : β
hf : DifferentiableAt β f (0 + z)
hz : f z = 0
β’ (fun w => f (w + z)) =O[π 0] id
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
rw [isBigO_iff']
|
f : β β β
z : β
hf : ContinuousAt f z
β’ (fun w => f (w + z)) =O[π 0] fun x => 1
|
f : β β β
z : β
hf : ContinuousAt f z
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp_rw [Metric.continuousAt_iff', dist_eq_norm_sub, zero_add] at hf
|
f : β β β
z : β
hf : ContinuousAt (fun w => f (w + z)) 0
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
specialize hf 1 zero_lt_one
|
f : β β β
z : β
hf : β Ξ΅ > 0, βαΆ (x : β) in π 0, βf (x + z) - f zβ < Ξ΅
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine β¨βf zβ + 1, by positivity, ?_β©
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ β c > 0, βαΆ (x : β) in π 0, βf (x + z)β β€ c * β1β
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
refine Eventually.mp hf <| eventually_of_forall fun w hw β¦ le_of_lt ?_
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βαΆ (x : β) in π 0, βf (x + z)β β€ (βf zβ + 1) * β1β
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
calc βf (w + z)β
_ β€ βf zβ + βf (w + z) - f zβ := norm_le_insert' ..
_ < βf zβ + 1 := add_lt_add_left hw _
_ = _ := by simp only [norm_one, mul_one]
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf (w + z)β < (βf zβ + 1) * β1β
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
convert (Homeomorph.comp_continuousAt_iff' (Homeomorph.addLeft (-z)) _ z).mp ?_
|
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt (fun w => f (w + z)) 0
|
case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp
|
case h.e'_1
f : β β β
z : β
hf : ContinuousAt f z
β’ 0 = (Homeomorph.addLeft (-z)) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp [Function.comp_def, hf]
|
case convert_4
f : β β β
z : β
hf : ContinuousAt f z
β’ ContinuousAt ((fun w => f (w + z)) β β(Homeomorph.addLeft (-z))) z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
positivity
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
β’ βf zβ + 1 > 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
ContinuousAt.isBigO
|
[56, 1]
|
[70, 46]
|
simp only [norm_one, mul_one]
|
f : β β β
z : β
hf : βαΆ (x : β) in π 0, βf (x + z) - f zβ < 1
w : β
hw : βf (w + z) - f zβ < 1
β’ βf zβ + 1 = (βf zβ + 1) * β1β
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
lift u to β
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ β u', u = βu' β§ HasDerivAt f u' z
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
refine β¨u, rfl, ?_β©
|
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ β u', βu = βu' β§ HasDerivAt f u' z
|
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
convert (reCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt
|
case intro
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ HasDerivAt f u z
|
case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rw [comp_apply, smulRight_apply, one_apply, one_smul, reCLM_apply, ofReal_re]
|
case h.e'_7
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) (βu) z
β’ u = (reCLM.comp (smulRight 1 βu)) 1
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
have H := (imCLM.hasFDerivAt.comp z hf.hasFDerivAt).hasDerivAt.deriv
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
β’ u.im = 0
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
simp only [Function.comp_def, imCLM_apply, ofReal_im, deriv_const] at H
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : _root_.deriv (βimCLM β fun y => β(f y)) z = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
HasDerivAt.of_hasDerivAt_ofReal_comp
|
[125, 1]
|
[134, 80]
|
rwa [eq_comm, comp_apply, imCLM_apply, smulRight_apply, one_apply, one_smul] at H
|
z : β
f : β β β
u : β
hf : HasDerivAt (fun y => β(f y)) u z
H : 0 = (imCLM.comp (smulRight 1 u)) 1
β’ u.im = 0
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
refine β¨fun H β¦ ?_, ofReal_compβ©
|
z : β
f : β β β
β’ DifferentiableAt β (fun y => β(f y)) z β DifferentiableAt β f z
|
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
obtain β¨u, _, huββ© := H.hasDerivAt.of_hasDerivAt_ofReal_comp
|
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
β’ DifferentiableAt β f z
|
case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
DifferentiableAt.ofReal_comp_iff
|
[136, 1]
|
[140, 40]
|
exact HasDerivAt.differentiableAt huβ
|
case intro.intro
z : β
f : β β β
H : DifferentiableAt β (fun y => β(f y)) z
u : β
leftβ : deriv (fun y => β(f y)) z = βu
huβ : HasDerivAt (fun y => f y) u z
β’ DifferentiableAt β f z
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
by_cases hf : DifferentiableAt β f z
|
z : β
f : β β β
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
exact hf.hasDerivAt.ofReal_comp.deriv
|
case pos
z : β
f : β β β
hf : DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
have hf' := mt DifferentiableAt.ofReal_comp_iff.mp hf
|
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
deriv.ofReal_comp
|
[146, 1]
|
[152, 27]
|
rw [deriv_zero_of_not_differentiableAt hf, deriv_zero_of_not_differentiableAt hf',
Complex.ofReal_zero]
|
case neg
z : β
f : β β β
hf : Β¬DifferentiableAt β f z
hf' : Β¬DifferentiableAt β (fun y => β(f y)) z
β’ deriv (fun y => β(f y)) z = β(deriv f z)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hz : β x β Set.Ioo (c - r) (c + r), (x : β) β Metric.ball (c : β) r := by
intro x hx
refine Metric.mem_ball.mpr ?_
rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
exact and_comm.mpr hx
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have H β¦z : ββ¦ (hz : z β Metric.ball (c : β) r) := taylorSeries_eq_on_ball' hz hf
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, fun x hx β¦ ?_, fun x hx β¦ ?_β©
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, DifferentiableOn β F (Set.Ioo (c - r) (c + r)) β§ Set.EqOn (f β ofReal') (ofReal' β F) (Set.Ioo (c - r) (c + r))
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
intro x hx
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine Metric.mem_ball.mpr ?_
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ βx β Metric.ball (βc) r
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rw [dist_eq, β ofReal_sub, abs_ofReal, abs_sub_lt_iff, sub_lt_iff_lt_add', sub_lt_comm]
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ dist βx βc < r
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact and_comm.mpr hx
|
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ x < c + r β§ c - r < x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
have Hx := Hz _ hx
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
refine DifferentiableAt.differentiableWithinAt ?_
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableWithinAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) (Set.Ioo (c - r) (c + r)) x
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
replace hf := ((hf x Hx).congr (fun _ hz β¦ H hz) (H Hx)).differentiableAt
(Metric.isOpen_ball.mem_nhds Hx) |>.comp_ofReal
|
case refine_1
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
simp_rw [hd, β ofReal_sub, β ofReal_natCast, β ofReal_inv, β ofReal_pow, β ofReal_mul,
β ofReal_tsum] at hf
|
case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (βx - βc) ^ n) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
exact DifferentiableAt.ofReal_comp_iff.mp hf
|
case refine_1
f : β β β
r c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
Hx : βx β Metric.ball (βc) r
hf : DifferentiableAt β (fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)) x
β’ DifferentiableAt β (fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
simp only [Function.comp_apply, β H (Hz _ hx), hd, ofReal_tsum]
|
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
push_cast
|
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a)
|
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real_on_ball
|
[159, 1]
|
[183, 8]
|
rfl
|
case refine_2
f : β β β
r c : β
hf : DifferentiableOn β f (Metric.ball (βc) r)
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
Hz : β x β Set.Ioo (c - r) (c + r), βx β Metric.ball (βc) r
H : β β¦z : ββ¦, z β Metric.ball (βc) r β β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
x : β
hx : x β Set.Ioo (c - r) (c + r)
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
have H (z : β) := taylorSeries_eq_of_entire' c z hf
|
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
|
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp_rw [hd] at H
|
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f βc * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
|
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
refine β¨fun x β¦ β' (n : β), (βn !)β»ΒΉ * (D n) * (x - c) ^ n, ?_, ?_β©
|
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ β F, Differentiable β F β§ f β ofReal' = ofReal' β F
|
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
have := hf.comp_ofReal
|
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp_rw [β H, β ofReal_sub, β ofReal_natCast, β ofReal_inv, β ofReal_pow, β ofReal_mul,
β ofReal_tsum] at this
|
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => f βx
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
exact Differentiable.ofReal_comp_iff.mp this
|
case refine_1
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
this : Differentiable β fun x => β(β' (a : β), (βa !)β»ΒΉ * D a * (x - c) ^ a)
β’ Differentiable β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
ext x
|
case refine_2
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
β’ f β ofReal' = ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n
|
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
simp only [Function.comp_apply, ofReal_eq_coe, β H, ofReal_tsum]
|
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ (f β ofReal') x = (ofReal' β fun x => β' (n : β), (βn !)β»ΒΉ * D n * (x - c) ^ n) x
|
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
push_cast
|
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (n : β), (βn !)β»ΒΉ * β(D n) * (βx - βc) ^ n = β' (a : β), β((βa !)β»ΒΉ * D a * (x - c) ^ a)
|
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.realValued_of_iteratedDeriv_real
|
[185, 1]
|
[201, 8]
|
rfl
|
case refine_2.h
f : β β β
hf : Differentiable β f
c : β
D : β β β
hd : β (n : β), iteratedDeriv n f βc = β(D n)
H : β (z : β), β' (n : β), (βn !)β»ΒΉ * β(D n) * (z - βc) ^ n = f z
x : β
β’ β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a = β' (a : β), (βa !)β»ΒΉ * β(D a) * (βx - βc) ^ a
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have H := taylorSeries_eq_of_entire' 0 z hf
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
β’ 0 β€ f z
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have hz' := eq_re_of_ofReal_le hz
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
β’ 0 β€ f z
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
rw [hz'] at hz H β’
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ z
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (z - 0) ^ n = f z
hz' : z = βz.re
β’ 0 β€ f z
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
obtain β¨D, hDβ© : β D : β β β, β n, 0 β€ D n β§ iteratedDeriv n f 0 = D n
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ 0 β€ f βz.re
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
simp_rw [β H, hD, β ofReal_natCast, sub_zero, β ofReal_pow, β ofReal_inv, β ofReal_mul,
β ofReal_tsum]
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ f βz.re
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β(β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a)
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
refine tsum_nonneg fun n β¦ ?_
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
β’ 0 β€ β' (a : β), (βa !)β»ΒΉ * D a * z.re ^ a
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast at hz
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have := (hD n).1
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
positivity
|
case intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
D : β β β
hD : β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
n : β
hz : 0 β€ z.re
this : 0 β€ D n
β’ 0 β€ (βn !)β»ΒΉ * D n * z.re ^ n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
refine β¨fun n β¦ (iteratedDeriv n f 0).re, fun n β¦ β¨?_, ?_β©β©
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
β’ β D, β (n : β), 0 β€ D n β§ iteratedDeriv n f 0 = β(D n)
|
case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
have := eq_re_of_ofReal_le (h n) βΈ h n
|
case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
|
case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
norm_cast at this
|
case refine_1
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
this : 0 β€ β(iteratedDeriv n f 0).re
β’ 0 β€ (fun n => (iteratedDeriv n f 0).re) n
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.nonneg_of_iteratedDeriv_nonneg
|
[207, 1]
|
[223, 13]
|
rw [eq_re_of_ofReal_le (h n)]
|
case refine_2
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
z : β
hz : 0 β€ βz.re
H : β' (n : β), (βn !)β»ΒΉ * iteratedDeriv n f 0 * (βz.re - 0) ^ n = f βz.re
hz' : z = βz.re
n : β
β’ iteratedDeriv n f 0 = β((fun n => (iteratedDeriv n f 0).re) n)
|
no goals
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
let D : β β β := fun n β¦ (iteratedDeriv n f 0).re
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hD (n : β) : iteratedDeriv n f 0 = D n := by
refine Complex.ext rfl ?_
simp only [ofReal_im]
exact (le_def.mp (h n)).2.symm
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
obtain β¨F, hFd, hFβ© := realValued_of_iteratedDeriv_real hf hD
|
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [hF]
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (f β ofReal') (Set.Ici 0)
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0)
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
refine monotone_ofReal.comp_monotoneOn <| monotoneOn_of_deriv_nonneg (convex_Ici 0)
hFd.continuous.continuousOn hFd.differentiableOn fun x hx β¦ ?_
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
β’ MonotoneOn (ofReal' β F) (Set.Ici 0)
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hD' (n : β) : 0 β€ iteratedDeriv n (deriv f) 0 := by
rw [β iteratedDeriv_succ']
exact h (n + 1)
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
β’ 0 β€ deriv F x
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hf' := (contDiff_succ_iff_deriv.mp <| hf.contDiff (n := 2)).2.differentiable rfl.le
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
β’ 0 β€ deriv F x
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have hx : (0 : β) β€ x := by
norm_cast
simp only [Set.nonempty_Iio, interior_Ici', Set.mem_Ioi] at hx
exact hx.le
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hx : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
β’ 0 β€ deriv F x
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
have H := nonneg_of_iteratedDeriv_nonneg hf' hD' hx
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
β’ 0 β€ deriv F x
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x
|
https://github.com/MichaelStollBayreuth/EulerProducts.git
|
21e07835d1a467b99b5c3c9390d61ae69404445d
|
EulerProducts/Auxiliary.lean
|
Complex.monotoneOn_of_iteratedDeriv_nonneg
|
[227, 1]
|
[250, 17]
|
rw [β deriv.comp_ofReal hf.differentiableAt] at H
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv f βx
β’ 0 β€ deriv F x
|
case intro.intro
f : β β β
hf : Differentiable β f
h : β (n : β), 0 β€ iteratedDeriv n f 0
D : β β β := fun n => (iteratedDeriv n f 0).re
hD : β (n : β), iteratedDeriv n f 0 = β(D n)
F : β β β
hFd : Differentiable β F
hF : f β ofReal' = ofReal' β F
x : β
hxβ : x β interior (Set.Ici 0)
hD' : β (n : β), 0 β€ iteratedDeriv n (deriv f) 0
hf' : Differentiable β (deriv f)
hx : 0 β€ βx
H : 0 β€ deriv (fun x => f βx) x
β’ 0 β€ deriv F x
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.