url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact a2 d
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_psi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : IsMetaVarOrAllDefInEnv E h1_psi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : β (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi β Holds D I (Function.updateITE V h1_x d) M E h1_psi
a2 : β (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
d : D
β’ Holds D I (Function.updateITE V h1_x d) M E h1_phi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
have s1 : IsNotFree D I M E h1_phi h1_x
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
case s1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ IsNotFree D I M E h1_phi h1_x
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
apply not_free_imp_is_not_free D I M E h1_phi h1_Ξ h1_x h1_2
|
case s1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ IsNotFree D I M E h1_phi h1_x
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
case s1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (X : MetaVarName), (h1_x, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) h1_x
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact nf h1_x
|
case s1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (X : MetaVarName), (h1_x, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) h1_x
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E (h1_phi.imp_ (forall_ h1_x h1_phi))
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E h1_phi β β (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro V a1 a
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
β’ β (V : Valuation D), Holds D I V M E h1_phi β β (d : D), Holds D I (Function.updateITE V h1_x d) M E h1_phi
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
β’ Holds D I (Function.updateITE V h1_x a) M E h1_phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
unfold IsNotFree at s1
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : IsNotFree D I M E h1_phi h1_x
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
β’ Holds D I (Function.updateITE V h1_x a) M E h1_phi
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : β (V : Valuation D) (d : D), Holds D I V M E h1_phi β Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
β’ Holds D I (Function.updateITE V h1_x a) M E h1_phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [β s1 V a]
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : β (V : Valuation D) (d : D), Holds D I V M E h1_phi β Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
β’ Holds D I (Function.updateITE V h1_x a) M E h1_phi
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : β (V : Valuation D) (d : D), Holds D I V M E h1_phi β Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
β’ Holds D I V M E h1_phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact a1
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi : Formula
h1_x : VarName
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi
h1_2 : NotFree h1_Ξ h1_x h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
s1 : β (V : Valuation D) (d : D), Holds D I V M E h1_phi β Holds D I (Function.updateITE V h1_x d) M E h1_phi
V : Valuation D
a1 : Holds D I V M E h1_phi
a : D
β’ Holds D I V M E h1_phi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
unfold exists_
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E (exists_ h1_x (eq_ h1_x h1_y))
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E (forall_ h1_x (eq_ h1_x h1_y).not_).not_
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E (forall_ h1_x (eq_ h1_x h1_y).not_).not_
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Β¬β (d : D), Β¬Function.updateITE V h1_x d h1_x = Function.updateITE V h1_x d h1_y
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Β¬β (d : D), Β¬Function.updateITE V h1_x d h1_x = Function.updateITE V h1_x d h1_y
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), β x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro V
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), β x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ β x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
apply Exists.intro (V h1_y)
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ β x, Function.updateITE V h1_x x h1_x = Function.updateITE V h1_x x h1_y
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ Function.updateITE V h1_x (V h1_y) h1_x = Function.updateITE V h1_x (V h1_y) h1_y
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
unfold Function.updateITE
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ Function.updateITE V h1_x (V h1_y) h1_x = Function.updateITE V h1_x (V h1_y) h1_y
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ (if h1_x = h1_x then V h1_y else V h1_x) = if h1_y = h1_x then V h1_y else V h1_y
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y : VarName
h1_1 : Β¬h1_y = h1_x
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ (if h1_x = h1_x then V h1_y else V h1_x) = if h1_y = h1_x then V h1_y else V h1_y
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [Holds]
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E ((eq_ h1_x h1_y).imp_ ((eq_ h1_x h1_z).imp_ (eq_ h1_y h1_z)))
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), V h1_x = V h1_y β V h1_x = V h1_z β V h1_y = V h1_z
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro V a1 a2
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), V h1_x = V h1_y β V h1_x = V h1_z β V h1_y = V h1_z
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
β’ V h1_y = V h1_z
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
trans V h1_x
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
β’ V h1_y = V h1_z
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
β’ V h1_y = V h1_x
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
β’ V h1_x = V h1_z
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [a1]
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
β’ V h1_y = V h1_x
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact a2
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_x h1_y h1_z : VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
a1 : V h1_x = V h1_y
a2 : V h1_x = V h1_z
β’ V h1_x = V h1_z
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
sorry
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_n : β
h1_name : PredName
h1_xs h1_ys : Fin h1_n β VarName
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E (eqSubPred h1_name h1_n h1_xs h1_ys)
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
obtain β¨Ο', a1β© := h1_Ο.2
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
β’ β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
have s1 : IsMetaVarOrAllDefInEnv E h1_phi := is_proof_imp_is_meta_var_or_all_def_in_env E h1_Ξ h1_Ξ h1_phi h1_4
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
β’ β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
β’ β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro V
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
β’ β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [β holds_sub D I V M E h1_Ο Ο' h1_Ο h1_phi s1 a1]
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ Holds D I V M E (sub h1_Ο h1_Ο h1_phi)
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ Holds D I (V β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E h1_phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
apply h1_ih_2
|
case intro
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ Holds D I (V β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E h1_phi
|
case intro.nf
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ β (v : VarName) (X : MetaVarName),
(v, X) β h1_Ξ β IsNotFree D I (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E (meta_var_ X) v
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E F
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro v X a2
|
case intro.nf
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ β (v : VarName) (X : MetaVarName),
(v, X) β h1_Ξ β IsNotFree D I (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E (meta_var_ X) v
|
case intro.nf
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
v : VarName
X : MetaVarName
a2 : (v, X) β h1_Ξ
β’ IsNotFree D I (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E (meta_var_ X) v
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact lem_1 D I M E h1_Ξ h1_Ξ' h1_Ο Ο' h1_Ο a1 nf h1_2 v X a2
|
case intro.nf
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
v : VarName
X : MetaVarName
a2 : (v, X) β h1_Ξ
β’ IsNotFree D I (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E (meta_var_ X) v
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro psi V' a2
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
β’ β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E F
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
have s2 : IsMetaVarOrAllDefInEnv E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case s2
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ IsMetaVarOrAllDefInEnv E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
apply lem_2_b E h1_Ο h1_Ο
|
case s2
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ IsMetaVarOrAllDefInEnv E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case s2.h1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ IsMetaVarOrAllDefInEnv E (sub h1_Ο h1_Ο psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
apply is_proof_imp_is_meta_var_or_all_def_in_env E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
|
case s2.h1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ IsMetaVarOrAllDefInEnv E (sub h1_Ο h1_Ο psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case s2.h1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact h1_3 psi a2
|
case s2.h1
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
β’ IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
have s3 : β V'' : Valuation D, Holds D I (V'' β h1_Ο.val) (fun (X' : MetaVarName) (V' : Valuation D) => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case s3
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro V''
|
case s3
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
β’ β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case s3
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
β’ Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [holds_sub D I V'' M E h1_Ο Ο' h1_Ο psi s2 a1]
|
case s3
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
β’ Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case s3
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
β’ Holds D I V'' M E (sub h1_Ο h1_Ο psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact h1_ih_1 psi a2 M nf hyp V''
|
case s3
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
V'' : Valuation D
β’ Holds D I V'' M E (sub h1_Ο h1_Ο psi)
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
specialize s3 (V' β Ο')
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : β (V'' : Valuation D), Holds D I (V'' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I ((V' β Ο') β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [Function.comp.assoc] at s3
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I ((V' β Ο') β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' β Ο' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [a1.right] at s3
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' β Ο' β βh1_Ο) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' β id) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [Function.comp_id] at s3
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I (V' β id) (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact s3
|
case intro.hyp
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ h1_Ξ' : List (VarName Γ MetaVarName)
h1_Ξ h1_Ξ' : List Formula
h1_phi : Formula
h1_Ο : Instantiation
h1_Ο : MetaInstantiation
h1_1 : β X β h1_phi.metaVarSet, IsMetaVarOrAllDefInEnv E (h1_Ο X)
h1_2 : β (x : VarName) (X : MetaVarName), (x, X) β h1_Ξ β NotFree h1_Ξ' (βh1_Ο x) (h1_Ο X)
h1_3 : β psi β h1_Ξ, IsProof E h1_Ξ' h1_Ξ' (sub h1_Ο h1_Ο psi)
h1_4 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_ih_1 :
β psi β h1_Ξ,
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F) β
β (V : Valuation D), Holds D I V M E (sub h1_Ο h1_Ο psi)
h1_ih_2 :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ' β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ' β Holds D I V M E F
Ο' : VarName β VarName
a1 : βh1_Ο β Ο' = id β§ Ο' β βh1_Ο = id
s1 : IsMetaVarOrAllDefInEnv E h1_phi
V : Valuation D
psi : Formula
V' : Valuation D
a2 : psi β h1_Ξ
s2 : IsMetaVarOrAllDefInEnv E psi
s3 : Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
β’ Holds D I V' (fun X' V' => Holds D I (V' β Ο') M E (h1_Ο X')) E psi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
intro V
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
β’ β (V : Valuation D), Holds D I V M E h1_phi'
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ Holds D I V M E h1_phi'
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
have s1 : Holds D I V M E h1_phi := h1_ih M nf hyp V
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
β’ Holds D I V M E h1_phi'
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
β’ Holds D I V M E h1_phi'
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
simp only [β holds_conv D I V M E h1_phi h1_phi' h2 h1_3]
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
β’ Holds D I V M E h1_phi'
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
β’ Holds D I V M E h1_phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.holds_is_proof
|
[2060, 1]
|
[2162, 13]
|
exact s1
|
D : Type
I : Interpretation D
E : Env
Ξ : List (VarName Γ MetaVarName)
Ξ : List Formula
F : Formula
h2 : E.WellFormed
h1_Ξ : List (VarName Γ MetaVarName)
h1_Ξ : List Formula
h1_phi h1_phi' : Formula
h1_1 : IsMetaVarOrAllDefInEnv E h1_phi'
h1_2 : IsProof E h1_Ξ h1_Ξ h1_phi
h1_3 : IsConv E h1_phi h1_phi'
h1_ih :
β (M : MetaValuation D),
(β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v) β
(β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F) β β (V : Valuation D), Holds D I V M E h1_phi
M : MetaValuation D
nf : β (v : VarName) (X : MetaVarName), (v, X) β h1_Ξ β IsNotFree D I M E (meta_var_ X) v
hyp : β (F : Formula) (V : Valuation D), F β h1_Ξ β Holds D I V M E F
V : Valuation D
s1 : Holds D I V M E h1_phi
β’ Holds D I V M E h1_phi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
induction F generalizing vs
|
F : Formula
vs : List VarName
v : VarName
Ξ : List (VarName Γ MetaVarName)
h1 : NoMetaVarAndAllFreeInList vs F
h2 : v β vs
β’ NotFree Ξ v F
|
case meta_var_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβ : MetaVarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (meta_var_ aβ)
h2 : v β vs
β’ NotFree Ξ v (meta_var_ aβ)
case pred_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβΒΉ : PredName
aβ vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (pred_ aβΒΉ aβ)
h2 : v β vs
β’ NotFree Ξ v (pred_ aβΒΉ aβ)
case eq_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβΒΉ aβ : VarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (eq_ aβΒΉ aβ)
h2 : v β vs
β’ NotFree Ξ v (eq_ aβΒΉ aβ)
case true_
v : VarName
Ξ : List (VarName Γ MetaVarName)
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs true_
h2 : v β vs
β’ NotFree Ξ v true_
case not_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβ : Formula
a_ihβ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβ β v β vs β NotFree Ξ v aβ
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs aβ.not_
h2 : v β vs
β’ NotFree Ξ v aβ.not_
case imp_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβΒΉ aβ : Formula
a_ihβΒΉ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβΒΉ β v β vs β NotFree Ξ v aβΒΉ
a_ihβ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβ β v β vs β NotFree Ξ v aβ
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (aβΒΉ.imp_ aβ)
h2 : v β vs
β’ NotFree Ξ v (aβΒΉ.imp_ aβ)
case forall_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβ β v β vs β NotFree Ξ v aβ
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (forall_ aβΒΉ aβ)
h2 : v β vs
β’ NotFree Ξ v (forall_ aβΒΉ aβ)
case def_
v : VarName
Ξ : List (VarName Γ MetaVarName)
aβΒΉ : DefName
aβ vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (def_ aβΒΉ aβ)
h2 : v β vs
β’ NotFree Ξ v (def_ aβΒΉ aβ)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
case meta_var_ X =>
unfold NoMetaVarAndAllFreeInList at h1
contradiction
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : MetaVarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (meta_var_ X)
h2 : v β vs
β’ NotFree Ξ v (meta_var_ X)
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
case pred_ X xs =>
unfold NoMetaVarAndAllFreeInList at h1
unfold NotFree
tauto
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : PredName
xs vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (pred_ X xs)
h2 : v β vs
β’ NotFree Ξ v (pred_ X xs)
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
case true_ =>
unfold NotFree
simp
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs true_
h2 : v β vs
β’ NotFree Ξ v true_
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
case not_ phi phi_ih =>
unfold NoMetaVarAndAllFreeInList at h1
unfold NotFree
exact phi_ih vs h1 h2
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs phi.not_
h2 : v β vs
β’ NotFree Ξ v phi.not_
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
case def_ X xs =>
unfold NoMetaVarAndAllFreeInList at h1
unfold NotFree
tauto
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : DefName
xs vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (def_ X xs)
h2 : v β vs
β’ NotFree Ξ v (def_ X xs)
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : MetaVarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (meta_var_ X)
h2 : v β vs
β’ NotFree Ξ v (meta_var_ X)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : MetaVarName
vs : List VarName
h2 : v β vs
h1 : False
β’ NotFree Ξ v (meta_var_ X)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
contradiction
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : MetaVarName
vs : List VarName
h2 : v β vs
h1 : False
β’ NotFree Ξ v (meta_var_ X)
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : PredName
xs vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (pred_ X xs)
h2 : v β vs
β’ NotFree Ξ v (pred_ X xs)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : PredName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ NotFree Ξ v (pred_ X xs)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : PredName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ NotFree Ξ v (pred_ X xs)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : PredName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ v β xs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
tauto
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : PredName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ v β xs
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (eq_ x y)
h2 : v β vs
β’ NotFree Ξ v (eq_ x y)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1 : x β vs β§ y β vs
β’ NotFree Ξ v (eq_ x y)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1 : x β vs β§ y β vs
β’ NotFree Ξ v (eq_ x y)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1 : x β vs β§ y β vs
β’ Β¬x = v β§ Β¬y = v
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
cases h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1 : x β vs β§ y β vs
β’ Β¬x = v β§ Β¬y = v
|
case intro
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
leftβ : x β vs
rightβ : y β vs
β’ Β¬x = v β§ Β¬y = v
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
constructor
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
β’ Β¬x = v β§ Β¬y = v
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
β’ Β¬x = v
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
β’ Β¬y = v
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
intro contra
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
β’ Β¬x = v
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : x = v
β’ False
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
apply h2
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : x = v
β’ False
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : x = v
β’ v β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
subst contra
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : x = v
β’ v β vs
|
case left
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h1_left : x β vs
h1_right : y β vs
h2 : x β vs
β’ x β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact h1_left
|
case left
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h1_left : x β vs
h1_right : y β vs
h2 : x β vs
β’ x β vs
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
intro contra
|
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
β’ Β¬y = v
|
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : y = v
β’ False
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
apply h2
|
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : y = v
β’ False
|
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : y = v
β’ v β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
subst contra
|
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h2 : v β vs
h1_left : x β vs
h1_right : y β vs
contra : y = v
β’ v β vs
|
case right
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h1_left : x β vs
h1_right : y β vs
h2 : y β vs
β’ y β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact h1_right
|
case right
Ξ : List (VarName Γ MetaVarName)
x y : VarName
vs : List VarName
h1_left : x β vs
h1_right : y β vs
h2 : y β vs
β’ y β vs
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs true_
h2 : v β vs
β’ NotFree Ξ v true_
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs true_
h2 : v β vs
β’ True
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
simp
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs true_
h2 : v β vs
β’ True
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs phi.not_
h2 : v β vs
β’ NotFree Ξ v phi.not_
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi
β’ NotFree Ξ v phi.not_
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi
β’ NotFree Ξ v phi.not_
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi
β’ NotFree Ξ v phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact phi_ih vs h1 h2
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi
β’ NotFree Ξ v phi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (phi.imp_ psi)
h2 : v β vs
β’ NotFree Ξ v (phi.imp_ psi)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi β§ NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v (phi.imp_ psi)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi β§ NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v (phi.imp_ psi)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi β§ NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v phi β§ NotFree Ξ v psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
cases h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList vs phi β§ NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v phi β§ NotFree Ξ v psi
|
case intro
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
leftβ : NoMetaVarAndAllFreeInList vs phi
rightβ : NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v phi β§ NotFree Ξ v psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
constructor
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1_left : NoMetaVarAndAllFreeInList vs phi
h1_right : NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v phi β§ NotFree Ξ v psi
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1_left : NoMetaVarAndAllFreeInList vs phi
h1_right : NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v phi
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1_left : NoMetaVarAndAllFreeInList vs phi
h1_right : NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v psi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact phi_ih vs h1_left h2
|
case left
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1_left : NoMetaVarAndAllFreeInList vs phi
h1_right : NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v phi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact psi_ih vs h1_right h2
|
case right
v : VarName
Ξ : List (VarName Γ MetaVarName)
phi psi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
psi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs psi β v β vs β NotFree Ξ v psi
vs : List VarName
h2 : v β vs
h1_left : NoMetaVarAndAllFreeInList vs phi
h1_right : NoMetaVarAndAllFreeInList vs psi
β’ NotFree Ξ v psi
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (forall_ x phi)
h2 : v β vs
β’ NotFree Ξ v (forall_ x phi)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
β’ NotFree Ξ v (forall_ x phi)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
β’ NotFree Ξ v (forall_ x phi)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
β’ x = v β¨ NotFree Ξ v phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
by_cases c1 : x = v
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
β’ x = v β¨ NotFree Ξ v phi
|
case pos
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : x = v
β’ x = v β¨ NotFree Ξ v phi
case neg
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ x = v β¨ NotFree Ξ v phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
left
|
case pos
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : x = v
β’ x = v β¨ NotFree Ξ v phi
|
case pos.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : x = v
β’ x = v
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact c1
|
case pos.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : x = v
β’ x = v
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
right
|
case neg
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ x = v β¨ NotFree Ξ v phi
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ NotFree Ξ v phi
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
apply phi_ih (x :: vs) h1
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ NotFree Ξ v phi
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β x :: vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
simp
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β x :: vs
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ Β¬v = x β§ v β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
push_neg
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ Β¬v = x β§ v β vs
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β x β§ v β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
constructor
|
case neg.h
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β x β§ v β vs
|
case neg.h.left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β x
case neg.h.right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β vs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
tauto
|
case neg.h.left
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β x
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
exact h2
|
case neg.h.right
v : VarName
Ξ : List (VarName Γ MetaVarName)
x : VarName
phi : Formula
phi_ih : β (vs : List VarName), NoMetaVarAndAllFreeInList vs phi β v β vs β NotFree Ξ v phi
vs : List VarName
h2 : v β vs
h1 : NoMetaVarAndAllFreeInList (x :: vs) phi
c1 : Β¬x = v
β’ v β vs
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NoMetaVarAndAllFreeInList at h1
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : DefName
xs vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (def_ X xs)
h2 : v β vs
β’ NotFree Ξ v (def_ X xs)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : DefName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ NotFree Ξ v (def_ X xs)
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
unfold NotFree
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : DefName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ NotFree Ξ v (def_ X xs)
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : DefName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ v β xs
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.all_free_in_list_and_not_in_list_imp_not_free
|
[572, 1]
|
[641, 10]
|
tauto
|
v : VarName
Ξ : List (VarName Γ MetaVarName)
X : DefName
xs vs : List VarName
h2 : v β vs
h1 : xs β vs
β’ v β xs
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.no_meta_var_imp_meta_var_set_is_empty
|
[644, 1]
|
[681, 8]
|
induction F generalizing vs
|
F : Formula
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs F
β’ F.metaVarSet = β
|
case meta_var_
aβ : MetaVarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (meta_var_ aβ)
β’ (meta_var_ aβ).metaVarSet = β
case pred_
aβΒΉ : PredName
aβ vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (pred_ aβΒΉ aβ)
β’ (pred_ aβΒΉ aβ).metaVarSet = β
case eq_
aβΒΉ aβ : VarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (eq_ aβΒΉ aβ)
β’ (eq_ aβΒΉ aβ).metaVarSet = β
case true_
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs true_
β’ true_.metaVarSet = β
case not_
aβ : Formula
a_ihβ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβ β aβ.metaVarSet = β
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs aβ.not_
β’ aβ.not_.metaVarSet = β
case imp_
aβΒΉ aβ : Formula
a_ihβΒΉ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβΒΉ β aβΒΉ.metaVarSet = β
a_ihβ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβ β aβ.metaVarSet = β
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (aβΒΉ.imp_ aβ)
β’ (aβΒΉ.imp_ aβ).metaVarSet = β
case forall_
aβΒΉ : VarName
aβ : Formula
a_ihβ : β (vs : List VarName), NoMetaVarAndAllFreeInList vs aβ β aβ.metaVarSet = β
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (forall_ aβΒΉ aβ)
β’ (forall_ aβΒΉ aβ).metaVarSet = β
case def_
aβΒΉ : DefName
aβ vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (def_ aβΒΉ aβ)
β’ (def_ aβΒΉ aβ).metaVarSet = β
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.no_meta_var_imp_meta_var_set_is_empty
|
[644, 1]
|
[681, 8]
|
case meta_var_ X =>
unfold NoMetaVarAndAllFreeInList at h1
contradiction
|
X : MetaVarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (meta_var_ X)
β’ (meta_var_ X).metaVarSet = β
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.no_meta_var_imp_meta_var_set_is_empty
|
[644, 1]
|
[681, 8]
|
case pred_ X xs =>
rfl
|
X : PredName
xs vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (pred_ X xs)
β’ (pred_ X xs).metaVarSet = β
|
no goals
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/MM0/MM0.lean
|
MM0.no_meta_var_imp_meta_var_set_is_empty
|
[644, 1]
|
[681, 8]
|
case eq_ x y =>
rfl
|
x y : VarName
vs : List VarName
h1 : NoMetaVarAndAllFreeInList vs (eq_ x y)
β’ (eq_ x y).metaVarSet = β
|
no goals
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.