Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
audio
audioduration (s)
1.1
16.7
label
class label
10 classes
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
0f1
1f2
1f2
1f2
End of preview. Expand in Data Studio

πŸ—£οΈ SqCLIRIL: Spoken Query Benchmark for Cross-Lingual IR in Indian Languages

SqCLIRIL is a Spoken Query Benchmark designed to evaluate cross-lingual information retrieval (CLIR) systems using both spoken and text queries.
It covers five Indian languages β€” Hindi, Gujarati, Bengali, Kannada, and English β€” with diverse speech samples from male and female speakers to capture natural variability in pronunciation and acoustic conditions.


πŸ“˜ Dataset Summary

Feature Description
Dataset name SqCLIRIL
Languages Hindi (hi), Gujarati (gu), Bengali (bn), Kannada (kn), English (en)
Modalities Text, Speech (WAV), ASR Transcriptions
Speakers Male and Female
Data Type Queries and their spoken utterances
Format .tsv (queries and transcriptions), .wav (spoken queries)

🧩 Dataset Structure

The dataset is organized into three main folders:

SqCLIRIL/
β”‚
β”œβ”€β”€ text/
β”‚   β”œβ”€β”€ hindi/
β”‚   β”‚   β”œβ”€β”€ trec_dl19_hindi_query.tsv
β”‚   β”‚   β”œβ”€β”€ trec_dl20_hindi_query.tsv
β”‚   β”‚   └── trec_dl1920_hindi_query.tsv
β”‚   β”œβ”€β”€ gujarati/
β”‚   β”œβ”€β”€ bengali/
β”‚   β”œβ”€β”€ kannada/
β”‚   └── english/
β”‚
β”œβ”€β”€ asr/
β”‚   β”œβ”€β”€ hindi/
β”‚   β”‚   β”œβ”€β”€ male/
β”‚   β”‚   β”‚   β”œβ”€β”€ m1/ β†’ sq_hi_m1.tsv
β”‚   β”‚   β”‚   β”œβ”€β”€ m2/ β†’ sq_hi_m2.tsv
β”‚   β”‚   └── female/
β”‚   β”‚       β”œβ”€β”€ f1/ β†’ sq_hi_f1.tsv
β”‚   β”‚       β”œβ”€β”€ f2/ β†’ sq_hi_f2.tsv
β”‚   β”œβ”€β”€ ...
β”‚
└── speech/
    β”œβ”€β”€ hindi/
    β”‚   β”œβ”€β”€ male/
    β”‚   β”‚   β”œβ”€β”€ m1/ β†’ 123.wav, 124.wav, ...
    β”‚   β”‚   β”œβ”€β”€ m2/ β†’ ...
    β”‚   └── female/
    β”‚       β”œβ”€β”€ f1/ β†’ 201.wav, ...
    β”‚       β”œβ”€β”€ f2/ β†’ ...
    β”œβ”€β”€ ...

Folder Descriptions

  • text/: Contains text queries for each language in three benchmark splits (trec_dl1920, trec_dl19, trec_dl20).
  • speech/: Contains recorded spoken queries (WAV files) from both male and female speakers.
  • asr/: Contains automatic speech recognition (ASR) transcriptions of the spoken queries, structured by gender and speaker ID.

πŸ—‚οΈ Example Structure (Hindi)

SqCLIRIL/
β”œβ”€β”€ text/hindi/trec_dl19_hindi_query.tsv
β”œβ”€β”€ speech/hindi/male/m1/123.wav
β”œβ”€β”€ speech/hindi/male/m1/124.wav
β”œβ”€β”€ speech/hindi/female/f1/201.wav
β”œβ”€β”€ asr/hindi/male/m1/sq_hi_m1.tsv
β”œβ”€β”€ asr/hindi/female/f1/sq_hi_f1.tsv

Each line in the sq_hi_f1.tsv corresponds to the transcription of the spoken file with the same query ID (e.g., 123.wav).


πŸ’‘ Intended Uses

  • Cross-lingual information retrieval (CLIR)
  • Speech-to-text retrieval
  • Multilingual query understanding
  • Spoken Query Search in Indian Languages

βš™οΈ Data Fields

Field Description
query_id Unique identifier for the query (e.g., 123)
language One of {hi, gu, bn, kn, en}
text_query Original text form of the query
speech_audio Path to the .wav file containing the spoken version
asr_transcription Automatic transcription of the spoken query
speaker_id Speaker identity (e.g., m1, f2)
gender Male/Female

πŸ“Š Data Splits

Each language contains three splits:

Split Description
trec_dl19 TREC Deep Learning Track 2019 queries
trec_dl20 TREC Deep Learning Track 2020 queries
trec_dl1920 Combined 2019–2020 queries

🎧 Audio Details

Property Value
Format WAV
Sampling Rate 16 kHz
Channels Mono
Environment Natural home and lab settings

πŸ“œ Citation

If you use this dataset, please cite:

@article{DAVE2025,
  title = {SqCLIRIL: Spoken query cross-lingual information retrieval in Indian languages},
  journal = {Pattern Recognition Letters},
  year = {2025},
  issn = {0167-8655},
  doi = {https://doi.org/10.1016/j.patrec.2025.08.022},
  url = {https://www.sciencedirect.com/science/article/pii/S0167865525003071},
  author = {Bhargav Dave and Prasenjit Majumder},
}

βš–οΈ License

License: CC BY 4.0


πŸ™Œ Acknowledgements

We thank all contributors and speakers involved in building this multilingual benchmark for advancing speech-based cross-lingual IR research in India.

Downloads last month
96