Datasets:
audio
audioduration (s) 1.1
16.7
| label
class label 10
classes |
|---|---|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
0f1
|
|
1f2
|
|
1f2
|
|
1f2
|
π£οΈ SqCLIRIL: Spoken Query Benchmark for Cross-Lingual IR in Indian Languages
SqCLIRIL is a Spoken Query Benchmark designed to evaluate cross-lingual information retrieval (CLIR) systems using both spoken and text queries.
It covers five Indian languages β Hindi, Gujarati, Bengali, Kannada, and English β with diverse speech samples from male and female speakers to capture natural variability in pronunciation and acoustic conditions.
π Dataset Summary
| Feature | Description |
|---|---|
| Dataset name | SqCLIRIL |
| Languages | Hindi (hi), Gujarati (gu), Bengali (bn), Kannada (kn), English (en) |
| Modalities | Text, Speech (WAV), ASR Transcriptions |
| Speakers | Male and Female |
| Data Type | Queries and their spoken utterances |
| Format | .tsv (queries and transcriptions), .wav (spoken queries) |
π§© Dataset Structure
The dataset is organized into three main folders:
SqCLIRIL/
β
βββ text/
β βββ hindi/
β β βββ trec_dl19_hindi_query.tsv
β β βββ trec_dl20_hindi_query.tsv
β β βββ trec_dl1920_hindi_query.tsv
β βββ gujarati/
β βββ bengali/
β βββ kannada/
β βββ english/
β
βββ asr/
β βββ hindi/
β β βββ male/
β β β βββ m1/ β sq_hi_m1.tsv
β β β βββ m2/ β sq_hi_m2.tsv
β β βββ female/
β β βββ f1/ β sq_hi_f1.tsv
β β βββ f2/ β sq_hi_f2.tsv
β βββ ...
β
βββ speech/
βββ hindi/
β βββ male/
β β βββ m1/ β 123.wav, 124.wav, ...
β β βββ m2/ β ...
β βββ female/
β βββ f1/ β 201.wav, ...
β βββ f2/ β ...
βββ ...
Folder Descriptions
text/: Contains text queries for each language in three benchmark splits (trec_dl1920,trec_dl19,trec_dl20).speech/: Contains recorded spoken queries (WAV files) from both male and female speakers.asr/: Contains automatic speech recognition (ASR) transcriptions of the spoken queries, structured by gender and speaker ID.
ποΈ Example Structure (Hindi)
SqCLIRIL/
βββ text/hindi/trec_dl19_hindi_query.tsv
βββ speech/hindi/male/m1/123.wav
βββ speech/hindi/male/m1/124.wav
βββ speech/hindi/female/f1/201.wav
βββ asr/hindi/male/m1/sq_hi_m1.tsv
βββ asr/hindi/female/f1/sq_hi_f1.tsv
Each line in the sq_hi_f1.tsv corresponds to the transcription of the spoken file with the same query ID (e.g., 123.wav).
π‘ Intended Uses
- Cross-lingual information retrieval (CLIR)
- Speech-to-text retrieval
- Multilingual query understanding
- Spoken Query Search in Indian Languages
βοΈ Data Fields
| Field | Description |
|---|---|
query_id |
Unique identifier for the query (e.g., 123) |
language |
One of {hi, gu, bn, kn, en} |
text_query |
Original text form of the query |
speech_audio |
Path to the .wav file containing the spoken version |
asr_transcription |
Automatic transcription of the spoken query |
speaker_id |
Speaker identity (e.g., m1, f2) |
gender |
Male/Female |
π Data Splits
Each language contains three splits:
| Split | Description |
|---|---|
trec_dl19 |
TREC Deep Learning Track 2019 queries |
trec_dl20 |
TREC Deep Learning Track 2020 queries |
trec_dl1920 |
Combined 2019β2020 queries |
π§ Audio Details
| Property | Value |
|---|---|
| Format | WAV |
| Sampling Rate | 16 kHz |
| Channels | Mono |
| Environment | Natural home and lab settings |
π Citation
If you use this dataset, please cite:
@article{DAVE2025,
title = {SqCLIRIL: Spoken query cross-lingual information retrieval in Indian languages},
journal = {Pattern Recognition Letters},
year = {2025},
issn = {0167-8655},
doi = {https://doi.org/10.1016/j.patrec.2025.08.022},
url = {https://www.sciencedirect.com/science/article/pii/S0167865525003071},
author = {Bhargav Dave and Prasenjit Majumder},
}
βοΈ License
License: CC BY 4.0
π Acknowledgements
We thank all contributors and speakers involved in building this multilingual benchmark for advancing speech-based cross-lingual IR research in India.
- Downloads last month
- 96