
kreasof-ai/whisper-small-bem2eng
Automatic Speech Recognition
•
0.2B
•
Updated
•
8
audio
audioduration (s) 0.11
21.6
| sentence
stringlengths 4
211
|
---|---|
cisuma ukwibukisho kuti iciputulwa icikalamba ica cipingo ca kale calembelwe pakuti tusambilile fyo lesa abomfeshe abantu ababa pamo nga iwe naine
|
|
umutitikisha wamu ndupwa namu mayanda milandu yabumpula mafunde
|
|
kwena umutima tawakalipishe atile ndeisaisanga nga nainuka ubushiku bwa lelo nakulaipusha inkoloko ku musungu wandi na banandi
|
|
camulengele ukwenda ubulendo ubwayafya kabili ubwakutompola ukufuma pa kamushi aka mu mawanga akali pakati kakapinda ka kukulyo elyo na kabanga mu india ukuya ku wheaton illinoise
|
|
joni nao ati nga iwe amaka ukwete ayakunjipushusha ifyo wayafumya kwi
|
|
pantu tulapisha ubwali bwinobwino
|
|
ico mwine mushi abikila iliba pakati pantu cimoneka ukuti e cibinda wa mubansa abanankwe teti bafulwe
|
|
ino nshita mwansa fyela tepakuliila na ba cilolo bene abo baya nabo ukulundapo ne fita fine amakumi yabili mwandi tepakuliila
|
|
ilelo imishi yabo ne calo cesu ca congo ngatabafibombeele ngefyo balecita pabushiku bwelelo
|
|
uwakulalya katapa no bowa alefwa nafyo mu kanwa
|
|
limolimo kuti bayamukakila apafyalile ng'wena pakuti ise imulye
|
|
bakasenda ifyakufwala
|
|
ba levy chibu kasoma balolekeshe panshila yakubombelamo ubusambi elyo bamunyina ba stephen kaunda balolekeshe pamulandu wakusakamana umulimo twapelwa uwa kulenga abasambi
|
|
kuti nawilamo
|
|
ukumana akapi ba bible society ne filonganino filanda cibemba mu zambia
|
|
casuminisihsa ukuti bomfwane umo naumo
|
|
ndefwaya ukushita ifinanashi
|
|
tulingile ukwipusha amepusho pakuti twingeshiba ngacakuti uyo muntu alishiba imbila nsuma
|
|
kuti walanda mu cisoli nangu mu cinyanja
|
|
elyo kabili batila ukuti pa myaka iyafuma itatu
|
|
niwe cimpusa icishingile abalenya
|
|
tabamonana na kapokola
|
|
mune nomba apo waupwa nausanguka umukalamba nshilingile na kukwita ishina lyobe pantu nomba niwe mrs bowa
|
|
na ine
|
|
umulandu uukulu twalelolekeshapo uno mwaka kulenga abasambi
|
|
ndifye bwino nga imwe
|
|
joni lelo wati efyo nseka nifyo cinecine ndesoselela njasuka
|
|
abaice bamo tabafwaya kubatuma fye ukwabula amalipilo
|
|
nalimo kuti nacimfya abalwani bandi
|
|
wishi nshi tata shibwalya
|
|
imfumu yesu yesu ali uwaibela
|
|
janet ine ne mwine nasumina nomba nshishibe ba tata na ba mayo ku lusaka ifyo bakayasosa
|
|
lubali na mu kwipika mwine cimo cine abafyashi balatuma abaice ukuyaleta utubende no kutongola intwilo no kucemeka ifishikisa
|
|
tamutemwana ne nama
|
|
bushe mwalitemwa ukulya umusalu
|
|
elyo nabo bakapeela fye umulandu nifwe
|
|
ilyashi lilya lyasuka lyafika na ku matwi ya mfumu lubemba
|
|
alabalondolwela nelyo amwene nokuti ba mangala bali panuma kanofye ukwendesha
|
|
leio tababikilemo ifumo bonse balikene ukuti bapele ifumo pantu ifyela fyaliafishe pa nshita ilya
|
|
ilishiwi lya mwaice lileibukisha umufyashi ukuti ubufi tabwawama ku muntu onse ku mwaice nangu ku mukulu
|
|
ukupesha lunshi kunya patatu
|
|
ubushiku bushilile kantu joni na janet nabekala mu nganda balelya ubwali
|
|
maria na shamitombo nabo basekele cibi pa kuti nomba balaya mu kuteke caalo cabo abene
|
|
ico cawama pakabela kusala incende iilingile
|
|
pantu taishibe kufulwa lyonso wena alesekafye inshita yonse
|
|
lelo muli cino cipande cabubili twalalanda pali paulo nge cakumwenako cesu mu bunte bwe pusukilo lyesu
|
|
alungama na kuli bacibusa wakwe nabo te bakaani baima fye bwangubwangu
|
|
panuma ya kwipusha intungulushi ishingi mu ncende shalekana lekana
|
|
ifilimo
|
|
ifyo fine na isaac tanakile ukwimbe fishima nefyo balemupokolola
|
|
tapali uuletampa isukulu apa
|
|
naumfwa nomba natotela
|
|
e ntulo wa liko
|
|
na iwe walishiba ifyo ine natemwa ubuci
|
|
balibebila ifipe fyonse fyonse fye
|
|
ninshi alimulondolwelela na fyonse kale afyamipepele ya bukilistani
|
|
ilyo ali mu tulo yohane alisunkene no kupilibuka
|
|
nga nifinshi uleseka apa pene
|
|
mucine kuti casoswa ukuti abantu tabakwata icibusa ukucila ena
|
|
twatampile ukubwekesha aba abana pasukulu nokubalipilila amalipilo
|
|
tulingile twalolesha pali bumuntu bonse nokwesha ukufikilisha ifyakukabila fyakwe ukupitila mukubomfya ifintu fyonse ifyo twakwata
|
|
bonse aba baleikala mu citungu ca mpili icabelele ku kabanga ukufuma ku mesha ukulola ku sefali
|
|
itontonkanyo lya wamishapo
|
|
kabili ngolafwayo kuti ukamuupe takwaba cacila pa kumwafwa ngalecula mu nshila ii ukumutalalikako mutima
|
|
atwala ne citukutuku kuli bamakanika bapitamo baciwamya mwe caba fye kalantiya
|
|
kuti ukulolesha mu lunweno lwa munani namo mull imitante ya nama iili nga pa matanta
|
|
teti inkulekeleshe
|
|
bushe kuti waita shani iwe pamo nga mwina kristu nga cakuti abena kristu bamo batontonkanya ukufuma mu cilonganino panuma ya kutunganyo kutila intungulushi tashilebombela mu mushilo
|
|
kalima lubumba lubumba
|
|
elyo abwelela kuli ba nyinaaya ikalilila
|
|
janet aikatwa no mwenso ukalamba pa kwishiba ukuti ukufyuka kwakwe nakwishibikwa
|
|
lelo muke alifililwo kusumina fintu alemona
|
|
mayo we somone mwana
|
|
kristu yesu ekakula
|
|
mukwai muli abantungwa ukwipusha apo tamumfwile
|
|
tamulenjita kwibala lyenu
|
|
lelo tasangile umwakutwala amalangulushi yakwe
|
|
ubusha
|
|
kabili tulelanda atiuwakwensho bushiku bamutasha ulo bwaca
|
|
talefwalisha ubulwi
|
|
abaleembele ici citabo niba simon mwansa kapwepwe
|
|
abantu abengi pali ndakai kuti batemwa ukuya ku bulwi ne fyanso fine fine pakuti tabamoneke abatumpa
|
|
kuli ine eko chintelelwe atile ndi nenkongole
|
|
bushe nalanda bwino
|
|
kupekanya ifyalefwaikwa
|
|
ukusuminisha ukuti cili mu maka yabalelolekesha pali iyi magazine ukusala nga cakuti benga bikamo icilengo cenu ne nshita batemwa abene ukubikamo icilengo icili conse
|
|
cinecine nshilekubepa nkakuletela shonse pa thirty
|
|
bawishi kwa janet basangile fye elyo babwelelamo ku ncito lelo bali no kwinuka pa four koloko
|
|
awe ulumendo uyu aipaya na imfumu
|
|
ilyo seti aikele imyaka umwanda umo na isano elyo afyele enoshi
|
|
bamona fye cabu aleluka
|
|
lelo nao ayaikala mukati ka bambi babili elyo uyo ali panuma nao abutuka
|
|
natubomfye ilyashi lyepusukilo lyesu tulande nokweba abanensu pafyo lesa atucitila mu myeo yesu ukwabula insoni
|
|
ubuteko bwa calo ca australia tabusuminisha umutitikisha nangu ubunkalwe bwa mpango mumusango uuli onse
|
|
kabili ilingi line ishamfumu shakumwesu bopilana ne shamfumu shimbi
|
|
eleli iyeleli eleli iyeleli
|
|
bwaisaca ulucelo baya ku masuku
|
|
ekutila icuupo kano nabaana umuntu ukucindama kanoalina abaana ecuuma
|
|
inshita shimo abantu balasendwa ku fyalo fya kunse mukupatikishiwa nangu ukubelelekwa ukuya kunse ya calo nokuyapatikishiwa ukwingila mu fyupo
|
|
umpokeko na ku fiswango fya muno mpanga
|
This is speech dataset of Bemba language. This dataset was acquired from (BembaSpeech)[https://github.com/csikasote/BembaSpeech/tree/master]. BembaSpeech is the speech recognition corpus in Bemba [1].
DatasetDict({
train: Dataset({
features: ['audio', 'sentence'],
num_rows: 12421
})
dev: Dataset({
features: ['audio', 'sentence'],
num_rows: 1700
})
test: Dataset({
features: ['audio', 'sentence'],
num_rows: 1359
})
})
1. @InProceedings{sikasote-anastasopoulos:2022:LREC,
author = {Sikasote, Claytone and Anastasopoulos, Antonios},
title = {BembaSpeech: A Speech Recognition Corpus for the Bemba Language},
booktitle = {Proceedings of the Language Resources and Evaluation Conference},
month = {June},
year = {2022},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {7277--7283},
abstract = {We present a preprocessed, ready-to-use automatic speech recognition corpus, BembaSpeech, consisting over 24 hours of read speech in the Bemba language, a written but low-resourced language spoken by over 30\% of the population in Zambia. To assess its usefulness for training and testing ASR systems for Bemba, we explored different approaches; supervised pre-training (training from scratch), cross-lingual transfer learning from a monolingual English pre-trained model using DeepSpeech on the portion of the dataset and fine-tuning large scale self-supervised Wav2Vec2.0 based multilingual pre-trained models on the complete BembaSpeech corpus. From our experiments, the 1 billion XLS-R parameter model gives the best results. The model achieves a word error rate (WER) of 32.91\%, results demonstrating that model capacity significantly improves performance and that multilingual pre-trained models transfers cross-lingual acoustic representation better than monolingual pre-trained English model on the BembaSpeech for the Bemba ASR. Lastly, results also show that the corpus can be used for building ASR systems for Bemba language.},
url = {https://aclanthology.org/2022.lrec-1.790}
}