python_code
stringlengths
0
4.04M
repo_name
stringlengths
7
58
file_path
stringlengths
5
147
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import sys import uuid import shutil import logging import datetime import importlib import traceback import contextlib import typing as tp from pathlib import Path import numpy as np import submitit import omegaconf import hydra from .executor import ( # pylint: disable=unused-import DelayedExecutor as DelayedExecutor, ) PathLike = tp.Union[str, Path] logger = logging.getLogger(__name__) @contextlib.contextmanager def working_directory(path: tp.Union[str, Path]) -> tp.Iterator[None]: cwd = Path().cwd() os.chdir(path) try: yield finally: os.chdir(cwd) class HydraEntryPoint: """Creates a callable from a Hydra main Config and python files are expected to be in the same folder Parameter --------- script_path: str/Path Path to the python script containing main """ # callable to be typed when using an actual package def __init__(self, script_path: PathLike) -> None: self._script_path = Path(script_path).absolute() assert self._script_path.suffix == ".py" assert self._script_path.is_file(), f"{self._script_path} is not a file" assert self._script_path.with_name("base_config.yaml").is_file() self._folder: tp.Optional[Path] = None # defined later @property def folder(self) -> Path: if self._folder is None: raise RuntimeError( "Folder is not defined if call method has not be called yet" ) return self._folder def validated(self, **kwargs: tp.Any) -> "HydraEntryPoint": self._folder = ( None # reset folder if validated to avoid reusing a previous test folder ) self.config(**kwargs) return self def _relative_path(self) -> Path: return Path(os.path.relpath(self._script_path, Path(__file__).parent)) def config(self, **kwargs: tp.Any) -> omegaconf.DictConfig: self._get_module() # needs to be loaded to make sure configs are available name = self._script_path.stem rel_path = self._relative_path().with_name("base_config.yaml") overrides = [f"{x}={y}" for x, y in kwargs.items()] with hydra.initialize( config_path=str(rel_path.parent), job_name=name, version_base="1.1" ): cfg_ = hydra.compose(config_name="base_config", overrides=overrides) return cfg_ def _get_module(self) -> tp.Any: benchpath = str(self._script_path.parents[1]) if benchpath not in sys.path: sys.path.insert(0, benchpath) # add url_benchmark, for legacy buffers sys.path.append(str(self._script_path.parent)) already_imported = any("url_benchmark" in x for x in sys.modules) module = importlib.import_module("url_benchmark." + self._script_path.stem) module = importlib.reload(module) # reload to override hydra configstore assert module is not None if module.__file__ is None or not module.__file__.startswith(benchpath): if already_imported: logger.warning( "url_benchmark had already been imported, using {module.__file__}" ) else: raise RuntimeError( f"Imported {module.__file__} while expecting to be in {benchpath}" ) return module def main(self, **kwargs: tp.Any) -> tp.Any: return self._get_module().main(self.config(**kwargs)) def workspace(self, **kwargs: tp.Any) -> tp.Any: return self._get_module().Workspace(self.config(**kwargs)) def __repr__(self) -> str: rel_path = str(self._relative_path()) return f"{self.__class__.__name__}({rel_path!r})" def get_hiplog(self) -> tp.Any: if self._folder is None: raise RuntimeError("No workspace avaible") import hiplogs # type: ignore loggers = list(hiplogs.HipLog.find_in_folder(self._folder)) assert len(loggers) == 1 return loggers[0] def __call__( self, _working_directory_: tp.Optional[PathLike] = None, **kwargs: tp.Any ) -> float: config = self.config(**kwargs) try: slurm_folder: tp.Optional[Path] = submitit.JobEnvironment().paths.folder except RuntimeError: slurm_folder = None if self._folder is None and _working_directory_ is not None: self._folder = Path(_working_directory_) # override working directory self._folder.mkdir(exist_ok=True, parents=True) logger.warning( f"Bypassing folder affectation and using provided: {self._folder}" ) if slurm_folder is not None: # try and link to latest slurm dir anyway symlink = self._folder / "slurm" if symlink.exists(): symlink.unlink() symlink.symlink_to(slurm_folder) if self._folder is None: if slurm_folder is not None: self._folder = slurm_folder else: name = f"{datetime.date.today().isoformat()}_{config.experiment}_{uuid.uuid4().hex[:6]}" self._folder = Path("exp_local") / name self._folder.mkdir(exist_ok=True, parents=True) omegaconf.OmegaConf.save(config=config, f=str(self.folder / "config.yaml")) with working_directory(self.folder): workspace = self._get_module().Workspace(config) try: workspace.train() except Exception as e: if not workspace.eval_rewards_history: raise e # it did not even run :s logger.warning(f"Something went wrong:\n{traceback.format_exc()}") reward = -float("inf") if workspace.eval_rewards_history: reward = np.mean(workspace.eval_rewards_history[-12:]) return -float(reward) # minimization for nevergrad def checkpoint(self, *args: tp.Any, **kwargs: tp.Any) -> tp.Any: return submitit.helpers.DelayedSubmission(self, *args, **kwargs) class CopiedBenchmark(HydraEntryPoint): def __init__(self, folder: PathLike, name: str) -> None: self.code = Path(folder) / "code" self.code.parent.mkdir(parents=True, exist_ok=True) if self.code.exists(): logger.warning( f"Folder {folder} already exists, it will **not** be updated" ) else: shutil.copytree( Path(__file__).parents[1] / "url_benchmark", self.code / "url_benchmark", ignore=shutil.ignore_patterns("exp_*"), ) super().__init__(self.code / "url_benchmark" / f"{name}.py") def on_exception_enter_postmortem(f): """Decorator for triggering pdb in case of exception""" import pdb import sys from functools import wraps import traceback @wraps(f) def wrapper(*args, **kwargs): try: return f(*args, **kwargs) except Exception: traceback.print_exc() pdb.post_mortem(sys.exc_info()[2]) raise return wrapper
controllable_agent-main
controllable_agent/runner.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
controllable_agent-main
controllable_agent/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time import concurrent.futures from pathlib import Path import pytest import submitit from . import executor as _exec def func(fail: bool = False) -> str: if fail: raise ValueError("This is a failure") return "success" def get_executor(tmp_path: Path) -> _exec.DelayedExecutor[str]: local_exec = submitit.AutoExecutor(folder=tmp_path, cluster="debug") return _exec.DelayedExecutor( local_exec, default="ERROR", batch_size=2, max_delay=0.2, max_failure_rate=0.5 ) def test_delayed_exec_num(tmp_path: Path) -> None: executor = get_executor(tmp_path) job1 = executor.submit(func) assert not job1.done() assert job1.job is None, "Job should not be submitted" job2 = executor.submit(func) assert job2.done() assert job1.job is not None, "Job should not be submitted" assert job2.job is not None, "Job should not be submitted" assert not executor._unsubmitted, "Unsubmitted jobs should be purged" def test_delayed_exec_delay(tmp_path: Path) -> None: executor = get_executor(tmp_path) job1 = executor.submit(func) time.sleep(0.1) assert job1.job is None, "Job should not be submitted" time.sleep(0.11) job1.done() # trigger a possible submission assert job1.job is not None, "Job should be submitted" assert not executor._unsubmitted, "Unsubmitted jobs should be purged" def test_delayed_exec_error(tmp_path: Path) -> None: executor = get_executor(tmp_path) jobs = [executor.submit(func, fail=f) for f in [True, True]] with pytest.raises(RuntimeError): jobs[0].result() def test_delayed_exec_caught_error(tmp_path: Path) -> None: executor = get_executor(tmp_path) jobs = [executor.submit(func, fail=f) for f in [False, True]] assert jobs[0].result() == "success" assert jobs[1].result() == "ERROR" def _do_nothing() -> int: return 12 def test_wait_for_jobs() -> None: jobs = [] with concurrent.futures.ThreadPoolExecutor(max_workers=2) as exc: for _ in range(2): jobs.append(exc.submit(_do_nothing)) _exec.wait_for_jobs(jobs, sleep=0.04)
controllable_agent-main
controllable_agent/test_executor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import re import itertools import subprocess from pathlib import Path import controllable_agent from . import runner def test_quadruped_goal(tmp_path: Path) -> None: conf_path = Path(__file__).parents[1] / "url_benchmark" / "pretrain.py" with runner.working_directory(tmp_path): ep = runner.HydraEntryPoint(conf_path) ep( _working_directory_=tmp_path / "bypass", agent="fb_ddpg", device="cpu", num_train_frames=1, num_eval_episodes=1, replay_buffer_episodes=2, goal_space="simplified_quadruped", task="quadruped_walk", use_hiplog=True, final_tests=1, **{"agent.feature_dim": 80, "agent.z_dim": 100}, ) reward_file = tmp_path / "bypass" / "test_rewards.json" text = reward_file.read_text() assert "quadruped_run" in text def test_anytrain(tmp_path: Path) -> None: with runner.working_directory(tmp_path): ep = runner.CopiedBenchmark(tmp_path / "no_code", "anytrain") ep( agent="fb_ddpg", device="cpu", num_train_episodes=1, num_eval_episodes=1, replay_buffer_episodes=2, use_hiplog=True, final_tests=0, ) def test_grid_anytrain(tmp_path: Path) -> None: with runner.working_directory(tmp_path): ep = runner.CopiedBenchmark(tmp_path / "no_code", "anytrain") ep( agent="discrete_fb", device="cpu", task="grid_simple", num_train_episodes=1, num_eval_episodes=1, replay_buffer_episodes=2, use_hiplog=True, final_tests=0, ) def test_package_init_annotations() -> None: # automatically updates the __init__ functions with "-> None:" if missing # it fails the first time when adding it, then it should work # feel free to deactivate if that helps, it's not that important :p failed = [] pattern = re.compile(r"(def __init__\(self.*\)):") root = Path(__file__).parents[1] assert (root / "url_benchmark").is_dir() for fp in root.rglob("*.py"): if "expected" in str(fp) or "test_" in fp.name: continue text = fp.read_text() text2 = pattern.sub(r"\g<1> -> None:", text) if text2 != text: failed.append(str(fp)) fp.write_text(text2) if failed: string = "\n -".join( ["Missing -> None at the end of __init__ definition"] + failed ) string += "\nUpdate, or run this test locally for automatic addition" raise AssertionError(string) def test_property_syntax() -> None: # automatic linters tend to change @property to @ property for no reason root = Path(__file__).parents[1] assert (root / "url_benchmark").is_dir() errors = [] for fp in root.rglob("*.py"): if fp == Path(__file__): continue if "@ property" in fp.read_text(): errors.append(str(fp)) if errors: msg = ["Additional space in @property, linter got crazy:"] + errors raise AssertionError("\n - ".join(msg)) def test_pretrain_checkpoint(tmp_path: Path) -> None: conf_path = Path(__file__).parents[1] / "url_benchmark" / "pretrain.py" with runner.working_directory(tmp_path): ep = runner.HydraEntryPoint(conf_path) params = dict( agent="fb_ddpg", device="cpu", num_train_frames=1001, num_eval_episodes=1, replay_buffer_episodes=2, use_hiplog=True, checkpoint_every=1000, final_tests=0, ) wsp = ep.workspace(**params) assert not wsp.global_step wsp.train() assert wsp.global_step == 1001 wsp2 = ep.workspace(**params) assert wsp2.global_step == 1001 # keep last because it may make a mess with the paths (for copied benchmark) def test_pretrain_from_runner(tmp_path: Path) -> None: conf_path = Path(__file__).parents[1] / "url_benchmark" / "pretrain.py" with runner.working_directory(tmp_path): ep = runner.HydraEntryPoint(conf_path) reward = ep( agent="fb_ddpg", device="cpu", num_train_frames=1011, num_eval_episodes=1, num_seed_frames=1010, replay_buffer_episodes=2, use_hiplog=True, final_tests=0, ) assert isinstance(reward, float) assert -1000 < reward < 0 from url_benchmark import hiplogs # pylint: disable=import-outside-toplevel hippath = ep.folder / "hip.log" assert hippath.exists() hiploggers = list(hiplogs.HipLog.find_in_folder(tmp_path, recursive=True)) assert len(hiploggers) == 1 hiplog = hiploggers[0] out = hiplog.read() assert "eval/episode_reward" in out[0] confpath = ep.folder / "config.yaml" assert confpath.exists() def test_header() -> None: lines = Path(__file__).read_text("utf8").splitlines() header = "\n".join(itertools.takewhile(lambda l: l.startswith("#"), lines)) assert len(header.splitlines()) == 4, f"Identified header:\n{header}" root = Path(controllable_agent.__file__).parents[1] base = [x for x in root.iterdir() if not x.name.startswith(".")] # avoid .git tocheck = [] for fp in base: if fp.is_file() and fp.suffix == ".py": tocheck.append(fp) elif fp.is_dir(): output = subprocess.check_output( ["find", str(fp), "-name", "*.py"], shell=False ) tocheck.extend([Path(p) for p in output.decode().splitlines()]) missing = [] AUTOADD = True for fp in tocheck: text = Path(fp).read_text("utf8") if not text.startswith(header): if AUTOADD and not any(x in text.lower() for x in ("license", "copyright")): print(f"Automatically adding header to {fp}") Path(fp).write_text(header + "\n\n" + text, "utf8") missing.append(str(fp)) if missing: missing_str = "\n - ".join(missing) raise AssertionError( f"Following files are/were missing standard header (see other files):\n - {missing_str}" )
controllable_agent-main
controllable_agent/test_url_benchmark.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import time import logging import traceback import contextlib import nevergrad.common.typing as tp logger = logging.getLogger(__name__) @contextlib.contextmanager def batch_if_available(executor: tp.ExecutorLike) -> tp.Iterator[None]: """Only submitit executors have a batch context, so we need different cases for other executor (eg: concurrent.futures) Batch context in submitit allows for using arrays in slurm, which is better for the cluster health. """ if hasattr(executor, "batch"): with executor.batch(): # type: ignore yield else: yield X = tp.TypeVar("X") Fn = tp.Callable[..., X] class DelayedJob(tp.Generic[X]): def __init__( self, executor: "DelayedExecutor[X]", fn: Fn[X], *args: tp.Any, **kwargs: tp.Any ) -> None: self.executor = executor self.time = time.time() self.job: tp.Optional[tp.JobLike[X]] = None self._submission: tp.Optional[ tp.Tuple[Fn[X], tp.Tuple[tp.Any, ...], tp.Dict[str, tp.Any]] ] = (fn, args, kwargs) def _is_submited(self, force: bool = False) -> bool: if self.job is None: self.executor._check_submit(force=force) return self.job is not None def done(self) -> bool: if not self._is_submited(): return False return self.job is not None and self.job.done() def result(self) -> X: self._is_submited(force=True) if self.job is None: raise RuntimeError("Job should have been submitted") error = "" try: result = self.job.result() except Exception: # pylint: disable=broad-except error = traceback.format_exc() result = self.executor._default self.executor._add_result(error=error) return result class DelayedExecutor(tp.Generic[X]): def __init__( self, executor: tp.ExecutorLike, default: X, batch_size: int = 8, max_delay: float = 45 * 60, max_failure_rate: float = 0.25, ) -> None: self.executor = executor self.batch_size = batch_size self.max_delay = max_delay self.max_failure_rate = max_failure_rate self._default = default self._unsubmitted: tp.List[DelayedJob[X]] = [] self._total_results = 0 self._total_failures = 0 assert 0 < max_failure_rate < 1 def submit(self, fn: Fn[X], *args: tp.Any, **kwargs: tp.Any) -> DelayedJob[X]: job = DelayedJob(self, fn, *args, **kwargs) self._unsubmitted.append(job) return job def _check_submit(self, force: bool = False) -> None: delay = time.time() - self._unsubmitted[0].time if self._unsubmitted: if ( force or len(self._unsubmitted) >= self.batch_size or delay > self.max_delay ): logger.info( f"Submitting {len(self._unsubmitted)} job(s) after {int(delay / 60)}min wait" ) with batch_if_available(self.executor): for job in self._unsubmitted: assert job._submission is not None fn, args, kwargs = job._submission job._submission = None job.job = self.executor.submit(fn, *args, **kwargs) self._unsubmitted = [] def _add_result(self, error: str) -> None: self._total_results += 1 self._total_failures += bool(error) if error: logger.warning( f"Caught {self._total_failures} out of {self._total_results} runs:\n{error}" ) if self._total_failures / self._total_results > self.max_failure_rate: raise RuntimeError( f"Stopping since failure rate is above the threshold: {self.max_failure_rate}." ) logger.warning("Ignoring since this is below max failure rate") def wait_for_jobs(jobs: tp.Iterable[tp.Any], sleep: float = 2.0) -> None: """Very crude function for regularly printing the percent of finished jobs in a list """ jobs = list(jobs) done = 0 print(f"Submitted {len(jobs)} jobs") while done < 100: new_done = int(100 * sum(j.done() for j in jobs) / len(jobs)) if new_done > done: print(f"{new_done}% done") jdone = [j for j in jobs if j.done()] if not done: print(jdone[0].result()) # pylint: disable=expression-not-assigned # [j.result() for j in jdone] # raise asap done = new_done else: time.sleep(sleep) print("Waiting is over")
controllable_agent-main
controllable_agent/executor.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import dataclasses import typing as tp import numpy as np from url_benchmark.agent.ddpg import MetaDict from url_benchmark.dmc import EnvWrapper, ExtendedTimeStep, TimeStep from url_benchmark.in_memory_replay_buffer import ReplayBuffer from dm_env import specs, StepType from dm_env.auto_reset_environment import AutoResetEnvironment @dataclasses.dataclass class D4RLConfig: minimum_episode_length: tp.Optional[int] = None ignore_terminals: bool = False class EmptyPhysics(): def __init__(self) : self.empty_physics = np.zeros((1,1)) def get_state(self) -> np.ndarray: return self.empty_physics @dataclasses.dataclass class ExtendedTimeStepD4RL(ExtendedTimeStep): reward: tp.Any discount: tp.Any class D4RLWrapper(AutoResetEnvironment): def __init__(self, env) -> None: self.physics = EmptyPhysics() super().__init__() self._env = env def observation_spec(self) -> tp.Any: return specs.BoundedArray(shape=self._env.observation_space.shape, dtype=self._env.observation_space.dtype, minimum=self._env.observation_space.low, maximum=self._env.observation_space.high, name='observation') def action_spec(self) -> specs.Array: return specs.BoundedArray(shape=self._env.action_space.shape, dtype=self._env.action_space.dtype, minimum=self._env.action_space.low, maximum=self._env.action_space.high, name='action') def get_normalized_score(self, reward: float) -> float: return self._env.get_normalized_score(reward) def _step(self, action) -> TimeStep: obs, reward, done, _ = self._env.step(action) step_type = StepType.LAST if done else StepType.MID return ExtendedTimeStepD4RL(step_type=step_type,observation=obs,reward=reward,discount=1.0,action=action) def _reset(self) -> TimeStep: obs = self._env.reset() return ExtendedTimeStepD4RL(step_type=StepType.FIRST, observation=obs, reward= None, discount= None, action=self._env.action_space.sample()) @property def base_env(self) -> tp.Any: env = self._env if isinstance(env, D4RLWrapper): return env.base_env return env def get_dataset(self) -> tp.Any: return self._env.get_dataset() class D4RLReplayBufferBuilder: def filter_dataset_by_episode_length(self, dataset: tp.Any, minimum_episode_length: tp.Optional[int]): if minimum_episode_length is None or minimum_episode_length <= 1: return dataset end_indices = (dataset["terminals"] + dataset["timeouts"]).nonzero()[0] episode_lengths = np.diff(np.concatenate(([-1], end_indices))) episode_lengths_expanded = episode_lengths.repeat(episode_lengths) diff_len = dataset['observations'].shape[0] - len(episode_lengths_expanded) assert diff_len >= 0 # there is no guarantee that last step in the data step is last step in an episode episode_lengths_expanded = np.concatenate((episode_lengths_expanded, np.zeros(diff_len, dtype=int))) # ignore last steps if they do not belong to an episode filter_indices = episode_lengths_expanded >= minimum_episode_length dataset_size = len(dataset["observations"]) for key, values in dataset.items(): if isinstance(values, np.ndarray) and len(values) == dataset_size: dataset[key] = values[filter_indices] return dataset def prepare_replay_buffer_d4rl(self, env: EnvWrapper, meta: MetaDict, cfg: tp.Any) -> ReplayBuffer: dataset = env.base_env.get_dataset() dataset = self.filter_dataset_by_episode_length(dataset, cfg.d4rl_config.minimum_episode_length) # please note we can use d4rl.qlearning_dataset instead, but termination conditions are not calculated as expected only consider (terminals) # last next_obs, I used first obs (I see they neglect it at qlearning_dataset, but this will result that last episode will not be terminiated, however we can fake it) observations = dataset['observations'] actions = dataset['actions'] rewards = dataset['rewards'] is_ignore_terminals = cfg.d4rl_config and (cfg.d4rl_config.ignore_terminals) terminals = np.zeros_like(dataset['terminals']) if is_ignore_terminals else dataset['terminals'] timeouts = dataset['timeouts'] end_indices = (terminals + timeouts).nonzero()[0] episode_lengths = np.diff(np.concatenate(([-1], end_indices))) max_episode_length = episode_lengths.max() if not cfg.d4rl_config or cfg.d4rl_config.minimum_episode_length is None: assert (episode_lengths==1).sum()==0 else: assert (episode_lengths<cfg.d4rl_config.minimum_episode_length).sum()==0 replay_storage = ReplayBuffer(max_episodes=len(end_indices), discount=cfg.discount, future=cfg.future, max_episode_length=max_episode_length) first = True dataset_len = dataset['rewards'].shape[0] for idx in range(dataset_len): if first: time_step = ExtendedTimeStep( step_type = StepType.FIRST, observation=observations[idx], reward=0, discount=1, action=actions[0]) first = False else: time_step = ExtendedTimeStep( step_type = StepType.MID, observation=observations[idx], reward=rewards[idx-1], discount=1, action=actions[idx-1]) if terminals[idx] or timeouts[idx]: first = True final_discount = 1 if terminals[idx]: final_discount = 0 time_step.step_type = StepType.LAST time_step.discount = final_discount replay_storage.add(time_step, meta) assert (episode_lengths-1 == replay_storage._episodes_length).all() if episode_lengths.min()!=episode_lengths.max(): assert not replay_storage._is_fixed_episode_length return replay_storage
controllable_agent-main
url_benchmark/d4rl_benchmark.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import json import pdb # pylint: disable=unused-import import logging import dataclasses import typing as tp import warnings from pathlib import Path warnings.filterwarnings('ignore', category=DeprecationWarning) os.environ['MKL_SERVICE_FORCE_INTEL'] = '1' # if the default egl does not work, you may want to try: # export MUJOCO_GL=glfw os.environ['MUJOCO_GL'] = os.environ.get('MUJOCO_GL', 'egl') import hydra from hydra.core.config_store import ConfigStore import numpy as np import torch import wandb import omegaconf as omgcf # from dm_env import specs from url_benchmark import dmc from dm_env import specs from url_benchmark import utils from url_benchmark import goals as _goals from url_benchmark.logger import Logger from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark.video import TrainVideoRecorder, VideoRecorder from url_benchmark import agent as agents from url_benchmark.d4rl_benchmark import D4RLReplayBufferBuilder, D4RLWrapper from url_benchmark.gridworld.env import build_gridworld_task logger = logging.getLogger(__name__) torch.backends.cudnn.benchmark = True # os.environ['WANDB_MODE']='offline' # from url_benchmark.dmc_benchmark import PRIMAL_TASKS # # # Config # # # @dataclasses.dataclass class Config: agent: tp.Any # misc seed: int = 1 device: str = "cuda" save_video: bool = False use_tb: bool = False use_wandb: bool = False use_hiplog: bool = False # experiment experiment: str = "online" # task settings task: str = "walker_stand" obs_type: str = "states" # [states, pixels] frame_stack: int = 3 # only works if obs_type=pixels action_repeat: int = 1 # set to 2 for pixels discount: float = 0.99 future: float = 0.99 # discount of future sampling, future=1 means no future sampling goal_space: tp.Optional[str] = None append_goal_to_observation: bool = False # eval num_eval_episodes: int = 10 custom_reward: tp.Optional[str] = None # activates custom eval if not None final_tests: int = 10 # checkpoint snapshot_at: tp.Tuple[int, ...] = (100000, 200000, 500000, 800000, 1000000, 1500000, 2000000, 3000000, 4000000, 5000000, 9000000, 10000000) checkpoint_every: int = 100000 load_model: tp.Optional[str] = None # training num_seed_frames: int = 4000 replay_buffer_episodes: int = 5000 update_encoder: bool = True batch_size: int = omgcf.II("agent.batch_size") @dataclasses.dataclass class PretrainConfig(Config): # mode reward_free: bool = True # train settings num_train_frames: int = 2000010 # snapshot eval_every_frames: int = 10000 load_replay_buffer: tp.Optional[str] = None # replay buffer # replay_buffer_num_workers: int = 4 # nstep: int = omgcf.II("agent.nstep") # misc save_train_video: bool = False # loaded as base_pretrain in pretrain.yaml # we keep the yaml since it's easier to configure plugins from it ConfigStore.instance().store(name="workspace_config", node=PretrainConfig) # # # Implem # # # def make_agent( obs_type: str, obs_spec, action_spec, num_expl_steps: int, cfg: omgcf.DictConfig ) -> tp.Union[agents.FBDDPGAgent, agents.DDPGAgent]: cfg.obs_type = obs_type cfg.obs_shape = obs_spec.shape cfg.action_shape = (action_spec.num_values, ) if isinstance(action_spec, specs.DiscreteArray) \ else action_spec.shape cfg.num_expl_steps = num_expl_steps return hydra.utils.instantiate(cfg) C = tp.TypeVar("C", bound=Config) def _update_legacy_class(obj: tp.Any, classes: tp.Sequence[tp.Type[tp.Any]]) -> tp.Any: """Updates a legacy class (eg: agent.FBDDPGAgent) to the new class (url_benchmark.agent.FBDDPGAgent) Parameters ---------- obj: Any Object to update classes: Types Possible classes to update the object to. If current name is one of the classes name, the object class will be remapped to it. """ classes = tuple(classes) if not isinstance(obj, classes): clss = {x.__name__: x for x in classes} cls = clss.get(obj.__class__.__name__, None) if cls is not None: logger.warning(f"Promoting legacy object {obj.__class__} to {cls}") obj.__class__ = cls def _init_eval_meta(workspace: "BaseWorkspace", custom_reward: tp.Optional[_goals.BaseReward] = None) -> agents.MetaDict: if workspace.domain == "grid": assert isinstance(workspace.agent, agents.DiscreteFBAgent) return workspace.agent.get_goal_meta(workspace.eval_env.get_goal_obs()) special = (agents.FBDDPGAgent, agents.SFAgent, agents.SFSVDAgent, agents.APSAgent, agents.NEWAPSAgent, agents.GoalSMAgent, agents.UVFAgent) ag = workspace.agent _update_legacy_class(ag, special) # we need to check against name for legacy reason when reloading old checkpoints if not isinstance(ag, special) or not len(workspace.replay_loader): return workspace.agent.init_meta() if custom_reward is not None: try: # if the custom reward implements a goal, return it goal = custom_reward.get_goal(workspace.cfg.goal_space) return workspace.agent.get_goal_meta(goal) except Exception: # pylint: disable=broad-except pass if not isinstance(workspace.agent, agents.SFSVDAgent): # we cannot fully type because of the FBBDPG string check :s num_steps = workspace.agent.cfg.num_inference_steps # type: ignore obs_list, reward_list = [], [] batch_size = 0 while batch_size < num_steps: batch = workspace.replay_loader.sample(workspace.cfg.batch_size, custom_reward=custom_reward) batch = batch.to(workspace.cfg.device) obs_list.append(batch.next_goal if workspace.cfg.goal_space is not None else batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs_t, reward_t = obs[:num_steps], reward[:num_steps] # phy = workspace.replay_loader._storage["physics"] # phy = phy.reshape(-1, phy.shape[-1]) # back_input = "observation" if workspace.cfg.goal_space is None else "goal" # obs = workspace.replay_loader._storage[back_input].reshape(phy.shape[0], -1) # should have been next obs # inds = np.random.choice(phy.shape[0], size=workspace.agent.cfg.num_inference_steps, replace=False) # phy, obs = (x[inds, :] for x in (phy, obs)) # rewards = [[custom_reward.from_physics(p)] for p in phy] # obs_t, reward_t = (torch.Tensor(x).float().to(workspace.agent.cfg.device) for x in (obs, rewards)) return workspace.agent.infer_meta_from_obs_and_rewards(obs_t, reward_t) else: assert isinstance(workspace.agent, agents.SFSVDAgent) obs_list, reward_list, action_list = [], [], [] batch_size = 0 while batch_size < workspace.agent.cfg.num_inference_steps: batch = workspace.replay_loader.sample(workspace.cfg.batch_size, custom_reward=custom_reward) batch = batch.to(workspace.cfg.device) obs_list.append(batch.goal if workspace.cfg.goal_space is not None else batch.obs) action_list.append(batch.action) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward, action = torch.cat(obs_list, 0), torch.cat(reward_list, 0), torch.cat(action_list, 0) # type: ignore obs_t, reward_t, action_t = obs[:workspace.agent.cfg.num_inference_steps], reward[:workspace.agent.cfg.num_inference_steps],\ action[:workspace.agent.cfg.num_inference_steps] return workspace.agent.infer_meta_from_obs_action_and_rewards(obs_t, action_t, reward_t) if workspace.cfg.goal_space is not None: funcs = _goals.goals.funcs.get(workspace.cfg.goal_space, {}) if workspace.cfg.task in funcs: g = funcs[workspace.cfg.task]() return workspace.agent.get_goal_meta(g) return workspace.agent.infer_meta(workspace.replay_loader) class BaseWorkspace(tp.Generic[C]): def __init__(self, cfg: C) -> None: self.work_dir = Path.cwd() print(f'Workspace: {self.work_dir}') print(f'Running code in : {Path(__file__).parent.resolve().absolute()}') logger.info(f'Workspace: {self.work_dir}') logger.info(f'Running code in : {Path(__file__).parent.resolve().absolute()}') self.cfg = cfg utils.set_seed_everywhere(cfg.seed) if not torch.cuda.is_available(): if cfg.device != "cpu": logger.warning(f"Falling back to cpu as {cfg.device} is not available") cfg.device = "cpu" cfg.agent.device = "cpu" self.device = torch.device(cfg.device) # goal_spec: tp.Optional[specs.Array] = None # if cfg.goal_space is not None: # g = _goals.goals.funcs[cfg.goal_space][cfg.task]() # goal_spec = specs.Array((len(g),), np.float32, 'goal') # create envs # task = PRIMAL_TASKS[self.domain] task = cfg.task if task.startswith('point_mass_maze'): self.domain = 'point_mass_maze' else: self.domain = task.split('_', maxsplit=1)[0] self.train_env = self._make_env() self.eval_env = self._make_env() # create agent self.agent = make_agent(cfg.obs_type, self.train_env.observation_spec(), self.train_env.action_spec(), cfg.num_seed_frames // cfg.action_repeat, cfg.agent) # create logger self.logger = Logger(self.work_dir, use_tb=cfg.use_tb, use_wandb=cfg.use_wandb, use_hiplog=cfg.use_hiplog) if cfg.use_wandb: exp_name = '_'.join([ cfg.experiment, cfg.agent.name, self.domain ]) wandb.init(project="controllable_agent", group=cfg.agent.name, name=exp_name, # mode="disabled", config=omgcf.OmegaConf.to_container(cfg, resolve=True, throw_on_missing=True)) # type: ignore if cfg.use_hiplog: # record config now that it is filled parts = ("snapshot", "_type", "_shape", "num_", "save_", "frame", "device", "use_tb", "use_wandb") skipped = [x for x in cfg if any(y in x for y in parts)] # type: ignore self.logger.hiplog.flattened({x: y for x, y in cfg.items() if x not in skipped}) # type: ignore self.logger.hiplog(workdir=self.work_dir.stem) for rm in ("agent/use_tb", "agent/use_wandb", "agent/device"): del self.logger.hiplog._content[rm] self.logger.hiplog(observation_size=np.prod(self.train_env.observation_spec().shape)) # # create replay buffer # self._data_specs: tp.List[tp.Any] = [self.train_env.observation_spec(), # self.train_env.action_spec(), ] if cfg.goal_space is not None: if cfg.goal_space not in _goals.goal_spaces.funcs[self.domain]: raise ValueError(f"Unregistered goal space {cfg.goal_space} for domain {self.domain}") # g = _goals.goals.funcs[cfg.goal_space][cfg.task]() # self._data_specs.append(specs.Array((len(g),), np.float32, 'goal')) # self._data_specs.extend([specs.Array((1,), np.float32, 'reward'), # specs.Array((1,), np.float32, 'discount')]) self.replay_loader = ReplayBuffer(max_episodes=cfg.replay_buffer_episodes, discount=cfg.discount, future=cfg.future) # # create data storage # self.replay_storage = ReplayBufferStorage(data_specs, meta_specs, # self.work_dir / 'buffer') # # # create replay buffer # self.replay_loader = make_replay_loader(self.replay_storage, # cfg.replay_buffer_size, # cfg.batch_size, # cfg.replay_buffer_num_workers, # False, True, cfg.nstep, cfg.discount) # create video recorders # cam_id = 2 if 'quadruped' not in self.domain else 1 # cam_id = 1 # centered on subject cam_id = 0 if 'quadruped' not in self.domain else 2 self.video_recorder = VideoRecorder(self.work_dir if cfg.save_video else None, camera_id=cam_id, use_wandb=self.cfg.use_wandb) self.timer = utils.Timer() self.global_step = 0 self.global_episode = 0 self.eval_rewards_history: tp.List[float] = [] self._checkpoint_filepath = self.work_dir / "models" / "latest.pt" if self._checkpoint_filepath.exists(): self.load_checkpoint(self._checkpoint_filepath) elif cfg.load_model is not None: self.load_checkpoint(cfg.load_model, exclude=["replay_loader"]) self.reward_cls: tp.Optional[_goals.BaseReward] = None if self.cfg.custom_reward == "maze_multi_goal": self.reward_cls = self._make_custom_reward(seed=self.cfg.seed) def _make_env(self) -> dmc.EnvWrapper: cfg = self.cfg if self.domain == "grid": return dmc.EnvWrapper(build_gridworld_task(self.cfg.task.split('_')[1])) if self.domain == "d4rl": import d4rl # type: ignore # pylint: disable=unused-import import gym return dmc.EnvWrapper(D4RLWrapper(gym.make(self.cfg.task.split('_')[1]))) return dmc.make(cfg.task, cfg.obs_type, cfg.frame_stack, cfg.action_repeat, cfg.seed, goal_space=cfg.goal_space, append_goal_to_observation=cfg.append_goal_to_observation) @property def global_frame(self) -> int: return self.global_step * self.cfg.action_repeat def _make_custom_reward(self, seed: int) -> tp.Optional[_goals.BaseReward]: """Creates a custom reward function if provided in configuration else returns None """ if self.cfg.custom_reward is None: return None return _goals.get_reward_function(self.cfg.custom_reward, seed) def eval_maze_goals(self) -> None: if isinstance(self.agent, (agents.SFAgent, agents.SFSVDAgent, agents.NEWAPSAgent)) and len(self.replay_loader) > 0: self.agent.precompute_cov(self.replay_loader) reward_cls = _goals.MazeMultiGoal() rewards = list() for g in reward_cls.goals: goal_rewards = list() goal_distances = list() meta = self.agent.get_goal_meta(g) for episode in range(self.cfg.num_eval_episodes): self.video_recorder.init(self.eval_env, enabled=(episode == 0)) time_step = self.eval_env.reset() episode_reward = 0.0 while not time_step.last(): with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, meta, 0, eval_mode=True) time_step = self.eval_env.step(action) self.video_recorder.record(self.eval_env) assert isinstance(time_step, dmc.ExtendedGoalTimeStep) step_reward, distance = reward_cls.from_goal(time_step.goal, g) episode_reward += step_reward goal_rewards.append(episode_reward) goal_distances.append(distance) self.video_recorder.save(f'{g}.mp4') print(f"goal: {g}, avg_reward: {round(float(np.mean(goal_rewards)), 2)}, avg_distance: {round(float(np.mean(goal_distances)), 5)}") rewards.append(float(np.mean(goal_rewards))) self.eval_rewards_history.append(float(np.mean(rewards))) with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: log('episode_reward', self.eval_rewards_history[-1]) log('step', self.global_step) log('episode', self.global_episode) def eval(self) -> None: step, episode = 0, 0 eval_until_episode = utils.Until(self.cfg.num_eval_episodes) physics_agg = dmc.PhysicsAggregator() rewards: tp.List[float] = [] normalized_scores: tp.List[float] = [] meta = _init_eval_meta(self) # Don't work z_correl = 0.0 is_d4rl_task = self.cfg.task.split('_')[0] == 'd4rl' actor_success: tp.List[float] = [] while eval_until_episode(episode): time_step = self.eval_env.reset() # create custom reward if need be (if field exists) seed = 12 * self.cfg.num_eval_episodes + len(rewards) custom_reward = self._make_custom_reward(seed=seed) if custom_reward is not None: meta = _init_eval_meta(self, custom_reward) if self.domain == "grid": meta = _init_eval_meta(self) total_reward = 0.0 self.video_recorder.init(self.eval_env, enabled=(episode == 0)) while not time_step.last(): with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, meta, self.global_step, eval_mode=True) time_step = self.eval_env.step(action) physics_agg.add(self.eval_env) self.video_recorder.record(self.eval_env) # for legacy reasons, we need to check the name :s if isinstance(self.agent, agents.FBDDPGAgent): if self.agent.cfg.additional_metric: z_correl += self.agent.compute_z_correl(time_step, meta) actor_success.extend(self.agent.actor_success) if custom_reward is not None: time_step.reward = custom_reward.from_env(self.eval_env) total_reward += time_step.reward step += 1 if is_d4rl_task: normalized_scores.append(self.eval_env.get_normalized_score(total_reward)) rewards.append(total_reward) episode += 1 self.video_recorder.save(f'{self.global_frame}.mp4') self.eval_rewards_history.append(float(np.mean(rewards))) with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: if is_d4rl_task: log('episode_normalized_score', float(100 * np.mean(normalized_scores))) log('episode_reward', self.eval_rewards_history[-1]) if len(rewards) > 1: log('episode_reward#std', float(np.std(rewards))) log('episode_length', step * self.cfg.action_repeat / episode) log('episode', self.global_episode) log('z_correl', z_correl / episode) log('step', self.global_step) if actor_success: log('actor_sucess', float(np.mean(actor_success))) if isinstance(self.agent, agents.FBDDPGAgent): log('z_norm', np.linalg.norm(meta['z']).item()) for key, val in physics_agg.dump(): log(key, val) _CHECKPOINTED_KEYS = ('agent', 'global_step', 'global_episode', "replay_loader") def save_checkpoint(self, fp: tp.Union[Path, str], exclude: tp.Sequence[str] = ()) -> None: logger.info(f"Saving checkpoint to {fp}") exclude = list(exclude) assert all(x in self._CHECKPOINTED_KEYS for x in exclude) fp = Path(fp) fp.parent.mkdir(exist_ok=True, parents=True) assert isinstance(self.replay_loader, ReplayBuffer), "Is this buffer designed for checkpointing?" # this is just a dumb security check to not forget about it payload = {k: self.__dict__[k] for k in self._CHECKPOINTED_KEYS if k not in exclude} with fp.open('wb') as f: torch.save(payload, f, pickle_protocol=4) def load_checkpoint(self, fp: tp.Union[Path, str], only: tp.Optional[tp.Sequence[str]] = None, exclude: tp.Sequence[str] = ()) -> None: """Reloads a checkpoint or part of it Parameters ---------- only: None or sequence of str reloads only a specific subset (defaults to all) exclude: sequence of str does not reload the provided keys """ print(f"loading checkpoint from {fp}") fp = Path(fp) with fp.open('rb') as f: payload = torch.load(f) _update_legacy_class(payload, (ReplayBuffer,)) if isinstance(payload, ReplayBuffer): # compatibility with pure buffers pickles payload = {"replay_loader": payload} if only is not None: only = list(only) assert all(x in self._CHECKPOINTED_KEYS for x in only) payload = {x: payload[x] for x in only} exclude = list(exclude) assert all(x in self._CHECKPOINTED_KEYS for x in exclude) for x in exclude: payload.pop(x, None) for name, val in payload.items(): logger.info("Reloading %s from %s", name, fp) if name == "agent": self.agent.init_from(val) elif name == "replay_loader": _update_legacy_class(val, (ReplayBuffer,)) assert isinstance(val, ReplayBuffer) # pylint: disable=protected-access # drop unecessary meta which could make a mess val._current_episode.clear() # make sure we can start over val._future = self.cfg.future val._discount = self.cfg.discount val._max_episodes = len(val._storage["discount"]) self.replay_loader = val else: assert hasattr(self, name) setattr(self, name, val) if name == "global_episode": logger.warning(f"Reloaded agent at global episode {self.global_episode}") def finalize(self) -> None: print("Running final test", flush=True) repeat = self.cfg.final_tests if not repeat: return if self.cfg.custom_reward == "maze_multi_goal": eval_hist = self.eval_rewards_history rewards = {} self.eval_rewards_history = [] self.cfg.num_eval_episodes = repeat self.eval_maze_goals() rewards["rewards"] = self.eval_rewards_history self.eval_rewards_history = eval_hist # restore else: domain_tasks = { "cheetah": ['walk', 'walk_backward', 'run', 'run_backward'], "quadruped": ['stand', 'walk', 'run', 'jump'], "walker": ['stand', 'walk', 'run', 'flip'], } if self.domain not in domain_tasks: return eval_hist = self.eval_rewards_history rewards = {} for name in domain_tasks[self.domain]: task = "_".join([self.domain, name]) self.cfg.task = task self.cfg.custom_reward = task # for the replay buffer self.cfg.seed += 1 # for the sake of avoiding similar seeds self.eval_env = self._make_env() self.eval_rewards_history = [] self.cfg.num_eval_episodes = 1 for _ in range(repeat): self.eval() rewards[task] = self.eval_rewards_history self.eval_rewards_history = eval_hist # restore with (self.work_dir / "test_rewards.json").open("w") as f: json.dump(rewards, f) class Workspace(BaseWorkspace[PretrainConfig]): def __init__(self, cfg: PretrainConfig) -> None: super().__init__(cfg) self.train_video_recorder = TrainVideoRecorder(self.work_dir if cfg.save_train_video else None, camera_id=self.video_recorder.camera_id, use_wandb=self.cfg.use_wandb) if not self._checkpoint_filepath.exists(): # don't relay if there is a checkpoint if cfg.load_replay_buffer is not None: if self.cfg.task.split('_')[0] == "d4rl": d4rl_replay_buffer_builder = D4RLReplayBufferBuilder() self.replay_storage = d4rl_replay_buffer_builder.prepare_replay_buffer_d4rl(self.train_env, self.agent.init_meta(), self.cfg) self.replay_loader = self.replay_storage else: self.load_checkpoint(cfg.load_replay_buffer, only=["replay_loader"]) def _init_meta(self): if isinstance(self.agent, agents.GoalTD3Agent) and isinstance(self.reward_cls, _goals.MazeMultiGoal): meta = self.agent.init_meta(self.reward_cls) elif isinstance(self.agent, agents.GoalSMAgent) and len(self.replay_loader) > 0: meta = self.agent.init_meta(self.replay_loader) else: meta = self.agent.init_meta() return meta def train(self) -> None: # predicates train_until_step = utils.Until(self.cfg.num_train_frames, self.cfg.action_repeat) seed_until_step = utils.Until(self.cfg.num_seed_frames, self.cfg.action_repeat) eval_every_step = utils.Every(self.cfg.eval_every_frames, self.cfg.action_repeat) # if self.cfg.custom_reward is not None: # raise NotImplementedError("Custom reward not implemented in pretrain.py train loop (see anytrain.py)") episode_step, episode_reward, z_correl = 0, 0.0, 0.0 time_step = self.train_env.reset() meta = self._init_meta() self.replay_loader.add(time_step, meta) self.train_video_recorder.init(time_step.observation) metrics = None physics_agg = dmc.PhysicsAggregator() while train_until_step(self.global_step): if time_step.last(): self.global_episode += 1 self.train_video_recorder.save(f'{self.global_frame}.mp4') # wait until all the metrics schema is populated if metrics is not None: # log stats elapsed_time, total_time = self.timer.reset() episode_frame = episode_step * self.cfg.action_repeat with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log: log('fps', episode_frame / elapsed_time) log('total_time', total_time) log('episode_reward', episode_reward) log('episode_length', episode_frame) log('episode', self.global_episode) log('buffer_size', len(self.replay_loader)) log('step', self.global_step) log('z_correl', z_correl) for key, val in physics_agg.dump(): log(key, val) if self.cfg.use_hiplog and self.logger.hiplog.content: self.logger.hiplog.write() # reset env time_step = self.train_env.reset() meta = self._init_meta() self.replay_loader.add(time_step, meta) self.train_video_recorder.init(time_step.observation) # try to save snapshot if self.global_frame in self.cfg.snapshot_at: self.save_checkpoint(self._checkpoint_filepath.with_name(f'snapshot_{self.global_frame}.pt')) episode_step = 0 episode_reward = 0.0 z_correl = 0.0 # try to evaluate if eval_every_step(self.global_step): self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame) if self.cfg.custom_reward == "maze_multi_goal": self.eval_maze_goals() # elif self.domain == "grid": # self.eval_grid_goals() else: self.eval() meta = self.agent.update_meta(meta, self.global_step, time_step, finetune=False, replay_loader=self.replay_loader) # sample action with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, meta, self.global_step, eval_mode=False) # try to update the agent if not seed_until_step(self.global_step): # TODO: reward_free should be handled in the agent update itself ! # TODO: the commented code below raises incompatible type "Generator[EpisodeBatch[ndarray[Any, Any]], None, None]"; expected "ReplayBuffer" # replay = (x.with_no_reward() if self.cfg.reward_free else x for x in self.replay_loader) if isinstance(self.agent, agents.GoalTD3Agent) and isinstance(self.reward_cls, _goals.MazeMultiGoal): metrics = self.agent.update(self.replay_loader, self.global_step, self.reward_cls) else: metrics = self.agent.update(self.replay_loader, self.global_step) self.logger.log_metrics(metrics, self.global_frame, ty='train') # take env step time_step = self.train_env.step(action) physics_agg.add(self.train_env) episode_reward += time_step.reward self.replay_loader.add(time_step, meta) self.train_video_recorder.record(time_step.observation) if isinstance(self.agent, agents.FBDDPGAgent): z_correl += self.agent.compute_z_correl(time_step, meta) episode_step += 1 self.global_step += 1 # save checkpoint to reload if not self.global_frame % self.cfg.checkpoint_every: self.save_checkpoint(self._checkpoint_filepath) self.save_checkpoint(self._checkpoint_filepath) # make sure we save the final checkpoint self.finalize() @hydra.main(config_path='.', config_name='base_config', version_base="1.1") def main(cfg: omgcf.DictConfig) -> None: # we assume cfg is a PretrainConfig (but actually not really) workspace = Workspace(cfg) # type: ignore workspace.train() if __name__ == '__main__': main()
controllable_agent-main
url_benchmark/pretrain.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import logging import dataclasses import typing as tp from url_benchmark import pretrain # NEEDS TO BE FIRST NON-STANDARD IMPORT (sets up env variables) import omegaconf as omgcf import hydra from hydra.core.config_store import ConfigStore import torch from url_benchmark import dmc from url_benchmark import utils from url_benchmark import agent as agents from url_benchmark.video import TrainVideoRecorder logger = logging.getLogger(__name__) torch.backends.cudnn.benchmark = True from pathlib import Path import sys base = Path(__file__).absolute().parents[1] # we need to add base repo to be able to import url_benchmark # we need to add url_benchmarl to be able to reload legacy checkpoints for fp in [base, base / "url_benchmark"]: assert fp.exists() if str(fp) not in sys.path: sys.path.append(str(fp)) @dataclasses.dataclass class OnlinetrainConfig(pretrain.Config): # mode reward_free: bool = True # train settings num_train_episodes: int = 2000 # snapshot eval_every_episodes: int = 10 load_replay_buffer: tp.Optional[str] = None # replay buffer # replay_buffer_num_workers: int = 4 # nstep: int = omgcf.II("agent.nstep") # misc save_train_video: bool = False update_replay_buffer: bool = True num_rollout_episodes: int = 10 num_agent_updates: int = 10 ConfigStore.instance().store(name="workspace_config", node=OnlinetrainConfig) class Workspace(pretrain.BaseWorkspace[OnlinetrainConfig]): def __init__(self, cfg: OnlinetrainConfig) -> None: super().__init__(cfg) self.train_video_recorder = TrainVideoRecorder(self.work_dir if cfg.save_train_video else None, camera_id=self.video_recorder.camera_id, use_wandb=self.cfg.use_wandb) self._last_processed_step = 0 # for checkpointing if not cfg.update_replay_buffer: cfg.num_seed_frames = -1 if cfg.load_replay_buffer is None: raise ValueError("If update_replay_buffer is False, load_replay_buffer must be provided") if not self._checkpoint_filepath.exists(): # don't relay if there is a checkpoint if cfg.load_replay_buffer is not None: self.load_checkpoint(cfg.load_replay_buffer, only=["replay_loader"]) def _play_episode(self, log_metrics: bool = True) -> None: time_step = self.train_env.reset() meta = self.agent.init_meta() self.replay_loader.add(time_step, meta) self.train_video_recorder.init(time_step.observation) episode_step = 0 episode_reward = 0.0 z_correl = 0.0 physics_agg = dmc.PhysicsAggregator() custom_reward = self._make_custom_reward(seed=self.global_step) while not time_step.last(): meta = self.agent.update_meta(meta, self.global_step, time_step, replay_loader=self.replay_loader) with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, meta, self.global_step, eval_mode=False) time_step = self.train_env.step(action) if custom_reward is not None: time_step.reward = custom_reward.from_env(self.train_env) physics_agg.add(self.train_env) episode_reward += time_step.reward self.replay_loader.add(time_step, meta) self.train_video_recorder.record(time_step.observation) if isinstance(self.agent, agents.FBDDPGAgent): z_correl += self.agent.compute_z_correl(time_step, meta) episode_step += 1 self.global_step += 1 # log episode stats if log_metrics: self.train_video_recorder.save(f'{self.global_frame}.mp4') elapsed_time, total_time = self.timer.reset() episode_frame = episode_step * self.cfg.action_repeat with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log: log('fps', episode_frame / elapsed_time) log('z_correl', z_correl) log('total_time', total_time) log('episode_reward', episode_reward) log('episode_length', episode_frame) log('episode', self.global_episode) log('buffer_size', len(self.replay_loader)) log('step', self.global_step) for key, val in physics_agg.dump(): log(key, val) def _checkpoint_if_need_be(self) -> None: # save checkpoint to reload if self.global_step // self.cfg.checkpoint_every != self._last_processed_step // self.cfg.checkpoint_every: self.save_checkpoint(self._checkpoint_filepath) if any(self._last_processed_step < x <= self.global_step for x in self.cfg.snapshot_at): self.save_checkpoint(self._checkpoint_filepath.with_name(f'snapshot_{self.global_frame}.pt')) self._last_processed_step = self.global_step def train(self) -> None: metrics: tp.Optional[tp.Dict[str, float]] = None while self.global_episode < self.cfg.num_train_episodes: logger.info(f"rollout {self.cfg.num_rollout_episodes} episodes...") for _ in range(self.cfg.num_rollout_episodes): self._play_episode(log_metrics=metrics is not None) # logging requires all metrics available self.global_episode += 1 # update the agent if self.global_frame > self.cfg.num_seed_frames: # TODO: reward_free should be handled in the agent update itself ! # replay = (x.with_no_reward() if self.cfg.reward_free else x for x in self.replay_loader) logger.info(f"Agent update for {self.cfg.num_agent_updates}...") for _ in range(self.cfg.num_agent_updates): metrics = self.agent.update(self.replay_loader, self.global_step) if metrics is not None: self.logger.log_metrics(metrics, self.global_step, ty='train') # evaluate if not self.global_episode % self.cfg.eval_every_episodes: self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame) self.eval() if self.cfg.use_hiplog and self.logger.hiplog.content: self.logger.hiplog.write() # write to hiplog only once per episode # checkpoint self._checkpoint_if_need_be() self.save_checkpoint(self._checkpoint_filepath) self.finalize() @hydra.main(config_path='.', config_name='base_config') def main(cfg: omgcf.DictConfig) -> None: # we assume cfg is a PretrainConfig (but actually not really) workspace = Workspace(cfg) # type: ignore workspace.train() if __name__ == '__main__': main()
controllable_agent-main
url_benchmark/train_online.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import logging import dataclasses import typing as tp from url_benchmark import pretrain # NEEDS TO BE FIRST NON-STANDARD IMPORT (sets up env variables) import omegaconf as omgcf import hydra from hydra.core.config_store import ConfigStore import torch from url_benchmark import dmc from url_benchmark import utils from url_benchmark import agent as agents from url_benchmark.d4rl_benchmark import D4RLConfig, D4RLReplayBufferBuilder from url_benchmark.video import TrainVideoRecorder logger = logging.getLogger(__name__) torch.backends.cudnn.benchmark = True from pathlib import Path import sys base = Path(__file__).absolute().parents[1] # we need to add base repo to be able to import url_benchmark # we need to add url_benchmarl to be able to reload legacy checkpoints for fp in [base, base / "url_benchmark"]: assert fp.exists() if str(fp) not in sys.path: sys.path.append(str(fp)) @dataclasses.dataclass class AnytrainConfig(pretrain.Config): # mode reward_free: bool = True # train settings num_train_episodes: int = 2000 # snapshot eval_every_episodes: int = 10 load_replay_buffer: tp.Optional[str] = None # replay buffer # replay_buffer_num_workers: int = 4 # nstep: int = omgcf.II("agent.nstep") # misc save_train_video: bool = False update_replay_buffer: bool = True num_total_updates: tp.Optional[int] = None d4rl_config: D4RLConfig = dataclasses.field(default_factory=D4RLConfig) ConfigStore.instance().store(name="workspace_config", node=AnytrainConfig) class Workspace(pretrain.BaseWorkspace[AnytrainConfig]): def __init__(self, cfg: AnytrainConfig) -> None: super().__init__(cfg) self.train_video_recorder = TrainVideoRecorder(self.work_dir if cfg.save_train_video else None, camera_id=self.video_recorder.camera_id, use_wandb=self.cfg.use_wandb) self._last_processed_step = 0 # for checkpointing if not cfg.update_replay_buffer: cfg.num_seed_frames = -1 if cfg.load_replay_buffer is None: raise ValueError("If update_replay_buffer is False, load_replay_buffer must be provided") if not self._checkpoint_filepath.exists(): # don't relay if there is a checkpoint if cfg.load_replay_buffer is not None: if self.cfg.task.split('_')[0] == "d4rl": d4rl_replay_buffer_builder = D4RLReplayBufferBuilder() self.replay_storage = d4rl_replay_buffer_builder.prepare_replay_buffer_d4rl(self.train_env, self.agent.init_meta(), self.cfg) self.replay_loader = self.replay_storage else: self.load_checkpoint(cfg.load_replay_buffer, only=["replay_loader"]) def _play_episode(self, log_metrics: bool = True) -> None: time_step = self.train_env.reset() meta = self.agent.init_meta() self.replay_loader.add(time_step, meta) self.train_video_recorder.init(time_step.observation) episode_step = 0 episode_reward = 0.0 z_correl = 0.0 physics_agg = dmc.PhysicsAggregator() custom_reward = self._make_custom_reward(seed=self.global_step) while not time_step.last(): meta = self.agent.update_meta(meta, self.global_step, time_step, replay_loader=self.replay_loader) with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, meta, self.global_step, eval_mode=False) time_step = self.train_env.step(action) if custom_reward is not None: time_step.reward = custom_reward.from_env(self.train_env) physics_agg.add(self.train_env) episode_reward += time_step.reward self.replay_loader.add(time_step, meta) self.train_video_recorder.record(time_step.observation) if isinstance(self.agent, agents.FBDDPGAgent): z_correl += self.agent.compute_z_correl(time_step, meta) episode_step += 1 self.global_step += 1 # log episode stats if log_metrics: self.train_video_recorder.save(f'{self.global_frame}.mp4') elapsed_time, total_time = self.timer.reset() episode_frame = episode_step * self.cfg.action_repeat with self.logger.log_and_dump_ctx(self.global_frame, ty='train') as log: log('fps', episode_frame / elapsed_time) log('z_correl', z_correl) log('total_time', total_time) log('episode_reward', episode_reward) log('episode_length', episode_frame) log('episode', self.global_episode) log('buffer_size', len(self.replay_loader)) log('step', self.global_step) for key, val in physics_agg.dump(): log(key, val) def _checkpoint_if_need_be(self) -> None: # save checkpoint to reload if self.global_step // self.cfg.checkpoint_every != self._last_processed_step // self.cfg.checkpoint_every: self.save_checkpoint(self._checkpoint_filepath) if any(self._last_processed_step < x <= self.global_step for x in self.cfg.snapshot_at): self.save_checkpoint(self._checkpoint_filepath.with_name(f'snapshot_{self.global_frame}.pt')) self._last_processed_step = self.global_step def train(self) -> None: metrics: tp.Optional[tp.Dict[str, float]] = None last_step = 0 while self.global_episode < self.cfg.num_train_episodes: # play 1 episode if self.cfg.update_replay_buffer: self._play_episode(log_metrics=metrics is not None) # logging requires all metrics available else: global_step_update = self.replay_loader.avg_episode_length if self.cfg.num_total_updates is not None: global_step_update = self.cfg.num_total_updates // self.cfg.num_train_episodes self.global_step += global_step_update self.global_episode += 1 # update the agent if self.global_frame > self.cfg.num_seed_frames: # TODO: reward_free should be handled in the agent update itself ! # replay = (x.with_no_reward() if self.cfg.reward_free else x for x in self.replay_loader) for step in range(last_step + 1, self.global_step + 1): # make it comparable to the standard pretrain pipeline metrics = self.agent.update(self.replay_loader, step) self.logger.log_metrics(metrics, step, ty='train') last_step = self.global_step # evaluate if not self.global_episode % self.cfg.eval_every_episodes: self.logger.log('eval_total_time', self.timer.total_time(), self.global_frame) self.eval() if self.cfg.use_hiplog and self.logger.hiplog.content: self.logger.hiplog.write() # write to hiplog only once per episode # checkpoint self._checkpoint_if_need_be() self.save_checkpoint(self._checkpoint_filepath) self.finalize() @hydra.main(config_path='.', config_name='base_config', version_base="1.1") def main(cfg: omgcf.DictConfig) -> None: # we assume cfg is a PretrainConfig (but actually not really) workspace = Workspace(cfg) # type: ignore workspace.train() if __name__ == '__main__': main()
controllable_agent-main
url_benchmark/anytrain.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import token import tokenize import functools import typing as tp from io import BytesIO from collections import OrderedDict import numpy as np from url_benchmark import dmc from dm_control.utils import rewards from url_benchmark.custom_dmc_tasks.jaco import TASKS as jaco_tasks_list from url_benchmark.custom_dmc_tasks.point_mass_maze import TASKS as point_mass_maze_tasks_list from url_benchmark.in_memory_replay_buffer import ReplayBuffer jaco_tasks = dict(jaco_tasks_list) point_mass_maze_tasks = dict(point_mass_maze_tasks_list) F = tp.TypeVar("F", bound=tp.Callable[..., np.ndarray]) class Register(tp.Generic[F]): def __init__(self) -> None: self.funcs: tp.Dict[str, tp.Dict[str, F]] = {} def __call__(self, name: str) -> tp.Callable[[F], F]: return functools.partial(self._register, name=name) def _register(self, func: F, name: str) -> F: fname = func.__name__ subdict = self.funcs.setdefault(name, {}) if fname in subdict: raise ValueError(f"Already registered a function {fname} for {name}") subdict[fname] = func return func goal_spaces: Register[tp.Callable[[dmc.EnvWrapper], np.ndarray]] = Register() goals: Register[tp.Callable[[], np.ndarray]] = Register() # # # # # # goal spaces, defined on one environment to specify: # # # # # # pylint: disable=function-redefined @goal_spaces("jaco") def simplified_jaco(env: dmc.EnvWrapper) -> np.ndarray: return np.array(env.physics.bind(env.task._hand.tool_center_point).xpos, dtype=np.float32) @goal_spaces("point_mass_maze") def simplified_point_mass_maze(env: dmc.EnvWrapper) -> np.ndarray: return np.array(env.physics.named.data.geom_xpos['pointmass'][:2], dtype=np.float32) @goal_spaces("walker") def simplified_walker(env: dmc.EnvWrapper) -> np.ndarray: # check the physics here: # https://github.com/deepmind/dm_control/blob/d72c22f3bb89178bff38728957daf62965632c2f/dm_control/suite/walker.py return np.array([env.physics.torso_height(), env.physics.torso_upright(), env.physics.horizontal_velocity()], dtype=np.float32) @goal_spaces("walker") def walker_pos_speed(env: dmc.EnvWrapper) -> np.ndarray: """simplifed walker, with x position as additional variable""" # check the physics here: # https://github.com/deepmind/dm_control/blob/d72c22f3bb89178bff38728957daf62965632c2f/dm_control/suite/walker.py x = env.physics.named.data.xpos['torso', 'x'] return np.concatenate([simplified_walker(env), [x]], axis=0, dtype=np.float32) # type: ignore @goal_spaces("walker") def walker_pos_speed_z(env: dmc.EnvWrapper) -> np.ndarray: """simplifed walker, with x position as additional variable""" # check the physics here: # https://github.com/deepmind/dm_control/blob/d72c22f3bb89178bff38728957daf62965632c2f/dm_control/suite/walker.py # vz = env.physics.named.data.sensordata["torso_subtreelinvel"][-1] # om_y = env.physics.named.data.subtree_angmom['torso'][1] vz = env.physics.named.data.subtree_linvel['torso', 'z'] om_y = env.physics.named.data.subtree_angmom['torso', 'y'] return np.concatenate([walker_pos_speed(env), [vz, om_y]], axis=0, dtype=np.float32) # type: ignore @goal_spaces("quadruped") def simplified_quadruped(env: dmc.EnvWrapper) -> np.ndarray: # check the physics here: # https://github.com/deepmind/dm_control/blob/d72c22f3bb89178bff38728957daf62965632c2f/dm_control/suite/quadruped.py#L145 return np.array([env.physics.torso_upright(), np.linalg.norm(env.physics.torso_velocity())], dtype=np.float32) @goal_spaces("quadruped") def quad_pos_speed(env: dmc.EnvWrapper) -> np.ndarray: # check the physics here: # https://github.com/deepmind/dm_control/blob/d72c22f3bb89178bff38728957daf62965632c2f/dm_control/suite/quadruped.py#L145 x = np.array(env.physics.named.data.site_xpos['workspace']) states = [[env.physics.torso_upright()], x, env.physics.torso_velocity()] return np.concatenate(states, dtype=np.float32) # @goal_spaces("quadruped") # this one needs a specific task for the ball to be present # def quadruped_positions(env: dmc.EnvWrapper) -> np.ndarray: # data = env.physics.named.data # states = [data.xpos['ball'] - data.site_xpos['target'], data.xpos["torso"] - data.site_xpos['target']] # return np.concatenate(states, dtype=np.float32) # # # # # # goals, defined on one goal_space to specify: # # # # # @goals("simplified_walker") def walker_stand() -> np.ndarray: return np.array([1.2, 1.0, 0], dtype=np.float32) @goals("simplified_walker") def walker_walk() -> np.ndarray: return np.array([1.2, 1.0, 2], dtype=np.float32) @goals("simplified_walker") def walker_run() -> np.ndarray: return np.array([1.2, 1.0, 4], dtype=np.float32) @goals("simplified_quadruped") def quadruped_stand() -> np.ndarray: return np.array([1.0, 0], dtype=np.float32) @goals("simplified_quadruped") def quadruped_walk() -> np.ndarray: return np.array([1.0, 0.6], dtype=np.float32) @goals("simplified_quadruped") def quadruped_run() -> np.ndarray: return np.array([1.0, 6], dtype=np.float32) @goals("quadruped_positions") def quadruped_fetch() -> np.ndarray: return np.zeros((6,), dtype=np.float32) @goals("simplified_point_mass_maze") def point_mass_maze_reach_top_left() -> np.ndarray: return np.array(point_mass_maze_tasks['reach_top_left'], dtype=np.float32) @goals("simplified_point_mass_maze") def point_mass_maze_reach_top_right() -> np.ndarray: return np.array(point_mass_maze_tasks['reach_top_right'], dtype=np.float32) @goals("simplified_point_mass_maze") def point_mass_maze_reach_bottom_left() -> np.ndarray: return np.array(point_mass_maze_tasks['reach_bottom_left'], dtype=np.float32) @goals("simplified_point_mass_maze") def point_mass_maze_reach_bottom_right() -> np.ndarray: return np.array(point_mass_maze_tasks['reach_bottom_right'], dtype=np.float32) @goals("simplified_jaco") def jaco_reach_top_left() -> np.ndarray: return jaco_tasks['reach_top_left'].astype(np.float32) @goals("simplified_jaco") def jaco_reach_top_right() -> np.ndarray: return jaco_tasks['reach_top_right'].astype(np.float32) @goals("simplified_jaco") def jaco_reach_bottom_left() -> np.ndarray: return jaco_tasks['reach_bottom_left'].astype(np.float32) @goals("simplified_jaco") def jaco_reach_bottom_right() -> np.ndarray: return jaco_tasks['reach_bottom_right'].astype(np.float32) @goals("walker_pos_speed_z") def walker_dummy() -> np.ndarray: return np.zeros((6,), dtype=np.float32) # # # Custom Reward # # # def _make_env(domain: str) -> dmc.EnvWrapper: task = {"quadruped": "stand", "walker": "walk", "jaco": "reach_top_left", "point_mass_maze": "reach_bottom_right"}[domain] return dmc.make(f"{domain}_{task}", obs_type="states", frame_stack=1, action_repeat=1, seed=12) def get_goal_space_dim(name: str) -> int: domain = {space: domain for domain, spaces in goal_spaces.funcs.items() for space in spaces}[name] env = _make_env(domain) return goal_spaces.funcs[domain][name](env).size class BaseReward: def __init__(self, seed: tp.Optional[int] = None) -> None: self._env: dmc.EnvWrapper # to be instantiated in subclasses self._rng = np.random.RandomState(seed) def get_goal(self, goal_space: str) -> np.ndarray: raise NotImplementedError def from_physics(self, physics: np.ndarray) -> float: "careful this is not threadsafe" with self._env.physics.reset_context(): self._env.physics.set_state(physics) return self.from_env(self._env) def from_env(self, env: dmc.EnvWrapper) -> float: raise NotImplementedError def get_reward_function(name: str, seed: tp.Optional[int] = None) -> BaseReward: if name == "quadruped_mix": return QuadrupedReward(seed) if name == "walker_random_equation": return WalkerRandomReward(seed) if name == "quadruped_position": return QuadrupedPosReward(seed) if name == "maze_multi_goal": return MazeMultiGoal(seed) if name == "walker_position": return WalkerPosReward(seed) return DmcReward(name) def _inv(distance: float) -> float: # print("dist", distance) return 1 / (1 + abs(distance)) class DmcReward(BaseReward): def __init__(self, name: str) -> None: super().__init__() self.name = name env_name, task_name = name.split("_", maxsplit=1) try: from dm_control import suite # import from url_benchmark import custom_dmc_tasks as cdmc except ImportError as e: raise dmc.UnsupportedPlatform("DMC does not run on Mac") from e make = suite.load if (env_name, task_name) in suite.ALL_TASKS else cdmc.make self._env = make(env_name, task_name) def from_env(self, env: dmc.EnvWrapper) -> float: return float(self._env.task.get_reward(env.physics)) # def from_env(self, env: dmc.EnvWrapper) -> float: # return self.from_physics(env.physics.get_state()) # # def from_physics(self, physics: np.ndarray) -> float: # # pdb.set_trace() # with self._env.physics.reset_context(): # self._env.physics.set_state(physics) # return float(self._env.task.get_reward(self._env.physics)) class QuadrupedReward(BaseReward): NUM_CASES = 7 def __init__(self, seed: tp.Optional[int] = None) -> None: super().__init__(seed) self._env = _make_env("quadruped") self.x = self._rng.uniform(-5, 5, size=2) self.vx = self._rng.uniform(-3, 3, size=2) self.quadrant = self._rng.choice([1, -1], size=2, replace=True) self.speed = float(np.linalg.norm(self.vx)) self._case = self._rng.randint(self.NUM_CASES) def from_env(self, env: dmc.EnvWrapper) -> float: # x = env.physics.named.data.xpos["torso"][:2] x = env.physics.named.data.site_xpos['workspace'][:2] vx = env.physics.torso_velocity()[:2] up = max(0, float(env.physics.torso_upright())) speed = float(np.linalg.norm(vx)) if not self._case: # specific speed norm return up * _inv(speed - self.speed) if self._case == 1: # specific position return up * _inv(float(np.linalg.norm(x - self.x))) if self._case == 2: # specific quadrant return up * float(np.all(x * self.quadrant > self.x)) if self._case == 3: # specific quadrant and speed norm return up * float(np.all(x * self.quadrant > self.x)) * _inv(self.speed - speed) if self._case == 4: # specific speed return up * _inv(np.linalg.norm(self.vx - vx) / np.sqrt(2)) if self._case == 5: # specific quadrant and sufficient speed return up * float(np.all(x * self.quadrant > self.x)) * (speed > self.speed) if self._case == 6: # sufficient speed return up * (speed > self.speed) else: raise ValueError(f"No case #{self._case}") class QuadrupedPosReward(BaseReward): """Deterministic positional reward""" def __init__(self, seed: tp.Optional[int] = None) -> None: super().__init__(seed) self._env = _make_env("quadruped") self.x = np.array([2, 2, 0.8]) def get_goal(self, goal_space: str) -> np.ndarray: if goal_space != "quad_pos_speed": raise ValueError(f"Goal space {goal_space} not supported with this reward") states = [[1.0], self.x, [0] * 3] return np.concatenate(states, dtype=np.float32) # type: ignore def from_env(self, env: dmc.EnvWrapper) -> float: x = env.physics.named.data.site_xpos['workspace'] up = float(env.physics.torso_upright()) up = (up + 1) / 2 out = 0.5 * up + 0.5 * _inv(float(np.linalg.norm(x - self.x))) # * _inv(speed) return out class WalkerPosReward(BaseReward): """Random positional reward""" def __init__(self, seed: tp.Optional[int] = None) -> None: super().__init__(seed) self._env = _make_env("walker") self.x = np.random.randint(-20, 20) def get_goal(self, goal_space: str) -> np.ndarray: if goal_space != "walker_pos_speed_z": raise ValueError(f"Goal space {goal_space} not supported with this reward") states = [1, 1, 0, self.x, 0, 0] # [z, up, vx, x, vz, om_y] # states = [self.x] return np.array(states, dtype=np.float32) # type: ignore def from_env(self, env: dmc.EnvWrapper) -> float: x = env.physics.named.data.xpos['torso', 'x'] target_size = 1 d = abs(x - self.x) reward = rewards.tolerance(d, bounds=(0, target_size), margin=target_size) return reward class MazeMultiGoal(BaseReward): def __init__(self, seed: tp.Optional[int] = None) -> None: super().__init__(seed) self.goals = np.array([ [-0.15, 0.15], # room 1: top left [-0.22, 0.22], # room 1 [-0.08, 0.08], # room 1 [-0.22, 0.08], # room 1 [-0.08, 0.22], # room 1 [0.15, 0.15], # room 2: top right [0.22, 0.22], # room 2 [0.08, 0.08], # room 2 [0.22, 0.08], # room 2 [0.08, 0.22], # room 2 [-0.15, -0.15], # room 3: bottom left [-0.22, -0.22], # room 3 [-0.08, -0.08], # room 3 [-0.22, -0.08], # room 3 [-0.08, -0.22], # room 3 [0.15, -0.15], # room 4: bottom right [0.22, -0.22], # room 4 [0.08, -0.08], # room 4 [0.22, -0.08], # room 4 [0.08, -0.22], # room 4 ], dtype=np.float32) # save images for debug # import imageio # self._env = dmc.make("point_mass_maze_multi_goal", obs_type="states", frame_stack=1, action_repeat=1, seed=12) # self._env.reset() # img = self._env.physics.render(height=256, width=256, camera_id=0) # imageio.imsave("maze.png", img) def from_goal(self, achieved_goal: np.ndarray, desired_goal: np.ndarray) -> tp.Tuple[float, float]: """returns reward and distance""" assert achieved_goal.shape == desired_goal.shape target_size = .03 d: np.ndarray = achieved_goal - desired_goal distance = np.linalg.norm(d, axis=-1) if len(d.shape) > 0 else np.linalg.norm(d) reward = rewards.tolerance(distance, bounds=(0, target_size), margin=target_size) return reward, distance class WalkerYogaReward(): def __init__(self) -> None: self._env = _make_env("walker") self._goals = get_walkeryoga_goals() self.target_obs = {} for key, g in self._goals.items(): self.target_obs[key] = get_obs_from_yoga_goal(self._env, g).astype(np.float32) # save images for debug # import imageio # img = self._env.physics.render(height=256, width=256, camera_id=0) # imageio.imsave(f"yoga_goals/{key}.png", img) def compute_reward(self, phy: np.ndarray, g: str) -> float: assert g in self._goals.keys() distance = _oracle_distance(phy, self._goals[g]) return - distance def _shortest_angle(angle): if not angle.shape: return _shortest_angle(angle[None])[0] angle = angle % (2 * np.pi) angle[angle > np.pi] = 2 * np.pi - angle[angle > np.pi] return angle def _oracle_distance(x1, x2): assert x1.shape[0] in [9, 18], x2.shape[0] in [9, 18] x1, x2 = x1[:9], x2[:9] def get_su(_goal): dist = np.abs(x1 - _goal) dist = dist[..., [0, 2, 3, 4, 6, 7]] dist[..., 1] = _shortest_angle(dist[..., 1]) return dist.max(-1) return min(get_su(x2), get_su(x2[..., [0, 1, 2, 6, 7, 8, 3, 4, 5]])) def get_obs_from_yoga_goal(env, goal): new_state = np.pad(goal, (0, 9), mode="constant") env.physics.set_state(new_state) env.physics.forward() obs = env.task.get_observation(env.physics) return _flatten_obs(obs) def _flatten_obs(obs): obs_pieces = [] for v in obs.values(): flat = np.array([v]) if np.isscalar(v) else v.ravel() obs_pieces.append(flat) return np.concatenate(obs_pieces, axis=0) def get_walkeryoga_goals(): # pose[0] is height # pose[1] is x # pose[2] is global rotation # pose[3:6] - first leg hip, knee, ankle # pose[6:9] - second leg hip, knee, ankle # Note: seems like walker can't bend legs backwards lie_back = [-1.2, 0., -1.57, 0., 0., 0., 0, -0., 0.] lie_front = [-1.2, -0, 1.57, 0., 0, 0., 0., 0., 0.] legs_up = [-1.24, 0., -1.57, 1.57, 0., 0.0, 1.57, -0., 0.0] kneel = [-0.5, 0., 0., 0., -1.57, -0.8, 1.57, -1.57, 0.0] side_angle = [-0.3, 0., 0.9, 0., 0., -0.7, 1.87, -1.07, 0.0] stand_up = [-0.15, 0., 0.34, 0.74, -1.34, -0., 1.1, -0.66, -0.1] lean_back = [-0.27, 0., -0.45, 0.22, -1.5, 0.86, 0.6, -0.8, -0.4] boat = [-1.04, 0., -0.8, 1.6, 0., 0.0, 1.6, -0., 0.0] bridge = [-1.1, 0., -2.2, -0.3, -1.5, 0., -0.3, -0.8, -0.4] head_stand = [-1, 0., -3, 0.6, -1, -0.3, 0.9, -0.5, 0.3] one_feet = [-0.2, 0., 0, 0.7, -1.34, 0.5, 1.5, -0.6, 0.1] arabesque = [-0.34, 0., 1.57, 1.57, 0, 0., 0, -0., 0.] return {'lie_back': np.array(lie_back, dtype=np.float32), 'lie_front': np.array(lie_front, dtype=np.float32), 'legs_up': np.array(legs_up, dtype=np.float32), 'kneel': np.array(kneel, dtype=np.float32), 'side_angle': np.array(side_angle, dtype=np.float32), 'stand_up': np.array(stand_up, dtype=np.float32), 'lean_back': np.array(lean_back, dtype=np.float32), 'boat': np.array(boat, dtype=np.float32), 'bridge': np.array(bridge, dtype=np.float32), 'one_feet': np.array(one_feet, dtype=np.float32), 'head_stand': np.array(head_stand, dtype=np.float32), 'arabesque': np.array(arabesque, dtype=np.float32) } def extract_names(string: str) -> tp.Set[str]: rl = BytesIO(string.encode('utf-8')).readline tokens = list(tokenize.tokenize(rl)) return {t.string for t in tokens if t.type == token.NAME} class WalkerEquation(BaseReward): def __init__(self, string: str) -> None: super().__init__() self._env = _make_env("walker") self._np = ["sin", "cos", "tan", "abs", "exp", "sqrt"] variables = list(self._extract(self._env)) + self._np not_allowed = extract_names(string) - set(variables) # keep this safety measure to avoid being hacked in the demo! if not_allowed: raise ValueError(f"The following variables are not allowed: {not_allowed}\nPlease only use {variables}") self.string = string self._precomputed: tp.Dict[str, np.ndarray] = {} def _extract(self, env: dmc.EnvWrapper) -> tp.Dict[str, float]: data = env.physics.named.data return dict( x=data.xpos["torso", "x"], z=data.xpos["torso", "z"], vx=env.physics.horizontal_velocity(), vz=env.physics.named.data.sensordata["torso_subtreelinvel"][-1], up=env.physics.torso_upright(), am=env.physics.named.data.subtree_angmom['torso', 'y'] ) def from_env(self, env: dmc.EnvWrapper) -> float: # pylint: disable=eval-used variables = self._extract(env) for name in self._np: variables[name] = getattr(np, name) return eval(self.string, {}, variables) # type: ignore def _precompute_for_demo(self, workspace: tp.Any) -> None: """special method for the demo which precomputes data please only use in demo, since it's messy """ ws = workspace if hasattr(ws, "_precomputed_"): self._precomputed = ws._precomputed_ return import torch # pylint: disable=import-outside-toplevel replay: ReplayBuffer = ws.replay_loader # recover some typing batch = replay.sample(ws.agent.cfg.num_inference_steps, with_physics=True) with torch.no_grad(): obs = torch.Tensor(batch.goal).to(ws.cfg.device) B = workspace.agent.backward_net(obs).detach().cpu().numpy() precomputed = {"#B": B.astype(np.float32)} for k, phy in enumerate(batch._physics): # type: ignore with self._env.physics.reset_context(): self._env.physics.set_state(phy) step_feat = self._extract(self._env) for key, val in step_feat.items(): if key not in precomputed: precomputed[key] = np.zeros((B.shape[0], 1), dtype=np.float32) precomputed[key][k] = val ws._precomputed_ = precomputed # store it for reuse self._precomputed = precomputed def _from_precomputed(self) -> tp.Dict[str, np.ndarray]: variables = dict(self._precomputed) var_name0 = [x for x in variables if not x.startswith("#")][0] for name in self._np: variables[name] = getattr(np, name) rewards = eval(self.string, {}, variables) # type: ignore if not isinstance(rewards, np.ndarray): rewards = rewards * np.ones_like(variables[var_name0]) z = self._precomputed["#B"].T.dot(rewards).squeeze() if True: # ASSUMING SCALED norm = float(np.linalg.norm(z)) if not norm: norm = 1e-9 z *= np.sqrt(z.size) / norm meta = OrderedDict() meta['z'] = z return meta class WalkerRandomReward(WalkerEquation): """Deterministic positional reward""" def __init__(self, seed: tp.Optional[int] = None) -> None: rng = np.random.RandomState(seed) x = rng.uniform(3, 15) nx = rng.uniform(3, 8) # equation + weight cases = [ (f"exp(-(x-{x:.1f})**2)", 5), (f"exp(-(x-{x:.1f})**2) * up", 5), (f"exp(-(x+{nx:.1f})**2)", 2), ("vx > 1", 1), ("vx > 3", 1), ("vx < -1", 1), ] p = np.array([float(x[1]) for x in cases]) p /= p.sum() selected = cases[rng.choice(range(p.size), p=p)][0] super().__init__(selected) self._rng = rng
controllable_agent-main
url_benchmark/goals.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import functools import collections from collections import abc from concurrent import futures import time import uuid import json import typing as tp import logging from datetime import datetime import subprocess from pathlib import Path try: from typing import Protocol except ImportError: # backward compatible from typing_extensions import Protocol # type: ignore import numpy as np import pandas as pd # pylint: disable=import-outside-toplevel START_LINE = "# Hiplot logs" logger: logging.Logger = logging.getLogger(__name__) class _StatCall(Protocol): def __call__(self, **kwargs: float) -> "HipLog": ... class HipLogfileError(RuntimeError): pass class STYLE: # pylint: disable=too-few-public-methods metrics = "badge badge-pill badge-primary" internal = "badge badge-pill badge-secondary" optim = "badge badge-pill badge-dark" model = "badge badge-pill badge-success" other = "badge badge-pill badge-danger" # "badge badge-pill badge-warning" def _set_style(exp: tp.Any) -> None: import hiplot as hip assert isinstance(exp, hip.Experiment) # Don't display `uid` and `from_uid` columns to the user cols = set(x for dp in exp.datapoints for x in dp.values.keys()) internals = ["workdir", "#now", "train/episode", "eval/episode", "#time", "#reloaded", "#job_id"] hidden = [x for x in cols if x.startswith(("eval/", "train/"))] hidden = [x for x in hidden if not any(y in x for y in ("episode", "loss"))] exp.display_data(hip.Displays.PARALLEL_PLOT).update( { "hide": ["uid", "from_uid"] + hidden, } ) # for the record, some more options: exp.display_data(hip.Displays.XY).update( {"lines_thickness": 1.4, "lines_opacity": 0.9} ) exp.display_data(hip.Displays.XY).update( {"axis_x": "eval/episode", "axis_y": "eval/episode_reward"} ) # colors styles = {} styles.update( { name: STYLE.metrics for name in cols if name.startswith(("eval/", "train/")) and not any(y in name for y in ("/episode", "episode_reward")) } ) styles.update( {name: STYLE.other for name in ("eval/episode_reward", "train/episode_reward")} ) styles.update({name: STYLE.internal for name in internals}) styles["experiment"] = STYLE.other for col in cols: for start, style in styles.items(): if col.startswith(start): exp.parameters_definition[col].label_css = style def create_hiplot_experiment(uri: tp.Union[str, Path]) -> tp.Any: import hiplot as hip # one xp case uri = Path(uri) assert uri.suffix == ".csv", f"Path should be a csv, got {uri}" assert uri.is_file(), f"Path should be a valid file, but got {uri}" df = pd.read_csv(uri) prev_uid: tp.Optional[str] = None exp = hip.Experiment() base = dict(xp=uri.parent.name, date=uri.parents[1].name, mode=uri.stem) for k, xp in enumerate(df.itertuples(index=False)): data = xp._asdict() data.update(base) dp = hip.Datapoint( uid=f"{uri.parent.name}_{uri.stem}_{k}", from_uid=prev_uid, values=data ) prev_uid = dp.uid exp.datapoints.append(dp) _set_style(exp) return exp def load(uri: tp.Union[Path, str], step: int = 10) -> tp.Any: """Loader for hiplot Running: python -m hiplot controllable_agent.hiplogs..load --port=XXXX will run an hiplot server in which you can past one (or more) log paths to plot them Note ---- if you install first: "pip install -e ." you can simplify to: hiplot xxxx.load --port=XXXX Then either provide the folder of the experiments in the freeform, or their parent directory, so that all subfolders will be parsed for logs. """ import hiplot as hip uri = Path(uri) if str(uri).startswith("#"): # deactivate a line return hip.Experiment() assert uri.is_dir(), f"uri should be a valid directory, got {uri}" jobs = [] with futures.ProcessPoolExecutor() as executor: for path in uri.rglob("eval.csv"): for hlog in HipLog.find_in_folder(path.parent): jobs.append(executor.submit(hlog.to_hiplot_experiment, step)) # exps.append(create_hiplot_experiment(path)) # exps.append(create_hiplot_experiment(path.with_name("eval.csv"))) exps = [j.result() for j in jobs] exp = hip.Experiment.merge({str(k): xp for k, xp in enumerate(exps)}) _set_style(exp) return exp class HipLog: """Simple object for logging hiplot compatible content Parameters ---------- filepath: str or Path path to the logfile. It will be created if it does not exist, otherwise data will be appended to it. Usage ----- hiplogs are not mutable, adding content is done through `with_content` and creates a new instance. This way, you can prefill some content, then use the object to add more content and write. Example ------- hiplog = hiplogs.HipLog(filepath) hiplog = hiplog.with_content(shared_key=12) hiplog.write() # writes only {"shared_key": 12} hiplog.with_content(hello="world").write() # writes shared_key and hello hiplog.with_content(something="blublu").write() # writes shared_key and something """ def __init__(self, filepath: tp.Union[Path, str]) -> None: self._filepath = Path(filepath) if self._filepath.suffix not in (".txt", ".log"): raise ValueError("Filepath must have .txt or .log as extension") self._content: tp.Dict[str, tp.Any] = { "#start_time": f"{datetime.now():%Y-%m-%d %H:%M}" } self._floats: tp.Dict[str, tp.List[float]] = collections.defaultdict(list) self._stats: tp.Dict[str, tp.Tuple[str, ...]] = {} self._reloaded = 0 try: self._filepath.parent.mkdir(parents=True, exist_ok=True) if not self._filepath.exists(): self._filepath.write_text(START_LINE + " v1\n", encoding="utf8") except Exception as e: # pylint: disable=broad-except logger.warning("Failing to write data to json: %s", e) try: import submitit self._content["#job_id"] = submitit.JobEnvironment().job_id except Exception: # pylint: disable=broad-except pass data = self.read() if data: self._reloaded = data[-1].get("#reloaded", -1) + 1 # type: ignore @classmethod def find_in_folder( cls, folder: tp.Union[str, Path], recursive: bool = False ) -> tp.Iterator["HipLog"]: """Instantiate all hiplog instances from the folder or subfolders Parameters ---------- folder: str/Path folder to look into recursive: bool instantiate all hiplog logs recursively Yields ------ HipLog hiplog instance """ folder = Path(folder) for suffix in (".txt", ".log"): iterator = (folder.rglob if recursive else folder.glob)("*" + suffix) for fp in iterator: if fp.suffix in (".log", ".txt"): with fp.open("r", encoding="utf8") as f: is_hiplog = START_LINE in f.readline() if is_hiplog: yield cls(fp) def __call__(self, **kwargs: tp.Hashable) -> "HipLog": sanitized = { x: y if not isinstance(y, np.generic) else y.item() for x, y in kwargs.items() } self._content.update(sanitized) return self def with_stats(self, *stats: tp.Sequence[str]) -> _StatCall: return functools.partial(self._with_stats, tuple(stats)) def _with_stats(self, _internal_name_stats: tp.Tuple[str, ...], **kwargs: float) -> "HipLog": for key, val in kwargs.items(): self._stats[key] = _internal_name_stats # overridden by last call self._floats[key].append(float(val)) return self def read(self, step: int = 1) -> tp.List[tp.Dict[str, tp.Hashable]]: """Returns the data recorded through the logger Parameter --------- step: int step for decimating the data if too big Returns ------- list of dict all the timepoints. Data from past timepoints are used if not provided in newer timepoints (eg: initial hyperparameters are passed to all timepoints) """ with self._filepath.open("r", encoding="utf8") as f: lines = f.readlines() if lines and not lines[0].startswith(START_LINE): raise HipLogfileError( f"Did not recognize first line: {lines[0]!r} instead of {START_LINE!r}" ) data: tp.List[tp.Dict[str, tp.Hashable]] = [] last = {} for k, line in enumerate(lines): if not line.startswith("#"): line_dict = json.loads(line.strip()) last.update(line_dict) if not k % step: data.append(dict(last)) return data def last_line(self) -> tp.Dict[str, tp.Hashable]: data = self.read() return {} if not data else data[-1] @property def content(self) -> tp.Dict[str, tp.Hashable]: return dict(self._content) def _export_floats(self) -> tp.Dict[str, float]: out: tp.Dict[str, float] = {} for key, vals in self._floats.items(): for stat in self._stats[key]: out[f"{key}#{stat}"] = getattr(np, stat)(vals) return out def write(self) -> None: # avoid as much as possible any disruption self._content["#now"] = f"{datetime.now():%Y-%m-%d %H:%M}" self._content["#time"] = time.time() self._content["#reloaded"] = self._reloaded self._content.update(self._export_floats()) if not self._filepath.exists(): return # initialization failed, can't do anything more try: string = json.dumps(self._content) except Exception as e: # pylint: disable=broad-except logger.warning("Failing to write data to json: %s", e) return # can't be json-ed, stop there # if it reaches here, it should be safe to write with self._filepath.open("a", encoding="utf8") as f: f.write(string + "\n") self._content.clear() self._floats.clear() self._stats.clear() def flattened(self, data: tp.Any) -> "HipLog": """Flattens a structured configuration and adds it to the content""" self(**_flatten(data)) return self def to_hiplot_experiment(self, step: int = 1) -> tp.Any: """Returns the Experiment recorded through the logger Parameter --------- step: int step for decimating the data if too big Returns ------- Experiment Hiplot Experiment instance containing the logger data """ import hiplot as hip exp = hip.Experiment() prev_uid: tp.Optional[str] = None name = uuid.uuid4().hex[:8] for k, data in enumerate(self.read(step=step)): # update the displayed name to something readable if not k: xp = data.get("experiment", "#UNKNOWN#") job_id = data.get("#job_id", name) name = f"{xp} / {job_id}" dp = hip.Datapoint(uid=f"{name} / {k}", from_uid=prev_uid, values=data) # type: ignore prev_uid = dp.uid exp.datapoints.append(dp) _set_style(exp) logger.info("Finished loading %s", self._filepath) return exp def _flatten(data: abc.Mapping) -> tp.Dict[str, tp.Hashable]: # type: ignore output: tp.Dict[str, tp.Hashable] = {} if isinstance(data, abc.Mapping): for x, y in data.items(): if isinstance(y, abc.Mapping): content = _flatten(y) output.update({f"{x}/{x2}": y2 for x2, y2 in content.items()}) elif isinstance(y, abc.Sequence) and not isinstance(y, str): if y and isinstance( y[0], (int, float, str) ): # ignoring weird structures output[x] = ",".join(str(z) for z in y) elif isinstance(y, abc.Hashable): output[x] = y return output def repository_information() -> tp.Dict[str, str]: commands = { "commit": "git rev-parse --short HEAD", "branch": "git rev-parse --abbrev-ref HEAD", "closest_main": "git rev-parse --short main", } here = Path(__file__).parent output: tp.Dict[str, str] = {} for name, command in commands.items(): try: output[name] = ( subprocess.check_output(command.split(), shell=False, cwd=here) .strip() .decode() ) except Exception: # pylint: disable=broad-except pass return output
controllable_agent-main
url_benchmark/hiplogs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import sys from pathlib import Path import subprocess import pytest def _run(tmp_path: Path, **params: tp.Any) -> None: folder = Path(__file__).parents[1] / "url_benchmark" assert folder.exists() if sys.platform == "darwin": pytest.skip(reason="Does not run on Mac") string = " ".join(f"{x}={y}" for (x, y) in params.items()) command = ( f"python -m url_benchmark.pretrain device=cpu hydra.run.dir={tmp_path} final_tests=0 " + string ) print(f"Running: {command}") subprocess.check_call(command.split()) @pytest.mark.parametrize( "agent", ["aps", "diayn", "rnd", "proto"] ) # test most important ones def test_pretrain_from_commandline(agent: str, tmp_path: Path) -> None: _run( tmp_path, agent=agent, num_train_frames=1011, num_eval_episodes=1, num_seed_frames=1010, replay_buffer_episodes=2, ) def test_pretrain_from_commandline_fb_with_goal(tmp_path: Path) -> None: _run( tmp_path, agent="fb_ddpg", num_train_frames=1, num_eval_episodes=1, replay_buffer_episodes=2, goal_space="simplified_walker", use_hiplog=True, ) assert (tmp_path / "hip.log").exists()
controllable_agent-main
url_benchmark/test_pretrain.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import logging import dataclasses import typing as tp from url_benchmark import pretrain # NEEDS TO BE FIRST NON-STANDARD IMPORT (sets up env variables) import omegaconf as omgcf import hydra from hydra.core.config_store import ConfigStore import torch from url_benchmark import goals as _goals from url_benchmark import utils from url_benchmark.in_memory_replay_buffer import ReplayBuffer # pylint: disable=unused-import from url_benchmark.replay_buffer import EpisodeBatch # pylint: disable=unused-import from url_benchmark import agent as agents logger = logging.getLogger(__name__) torch.backends.cudnn.benchmark = True from pathlib import Path import sys base = Path(__file__).absolute().parents[1] for fp in [base, base / "url_benchmark"]: assert fp.exists() if str(fp) not in sys.path: sys.path.append(str(fp)) @dataclasses.dataclass class OfflineConfig(pretrain.Config): # training num_grad_steps: int = 1000000 num_seed_frames: int = 0 log_every_steps: int = 1000 # eval num_eval_episodes: int = 10 eval_every_steps: int = 10000 # dataset load_replay_buffer: tp.Optional[str] = None expl_agent: str = "proto" replay_buffer_dir: str = omgcf.SI("../../../../datasets") # make sure to update this if you change hydra run dir # misc experiment: str = "offline" reward_free: bool = False ConfigStore.instance().store(name="workspace_config", node=OfflineConfig) class Workspace(pretrain.BaseWorkspace[OfflineConfig]): def __init__(self, cfg: OfflineConfig) -> None: super().__init__(cfg) self.agent.cfg.update_every_steps = 1 datasets_dir = self.work_dir / cfg.replay_buffer_dir replay_dir = datasets_dir.resolve() / self.domain / cfg.expl_agent / 'buffer' print(f'replay dir: {replay_dir}') # self.replay_loader = ReplayBuffer([], # self._data_specs, [], # meta_specs = [] # cfg.batch_size, cfg.replay_buffer_episodes, # cfg.discount, True) if self.cfg.load_replay_buffer is not None: print("loading Replay from %s", self.cfg.load_replay_buffer) self.load_checkpoint(self.cfg.load_replay_buffer, only=["replay_loader"]) # with open(self.cfg.load_replay_buffer, 'rb') as f: # content = torch.load(f) # if isinstance(content, dict): # content = content["replay_loader"] # # assert isinstance(content, ReplayBuffer) # self.replay_loader = content else: relabeled_replay_file_path = replay_dir / f"../relabeled_replay_{cfg.task}_{cfg.replay_buffer_episodes}.pt" if relabeled_replay_file_path.exists(): print("loading Replay from %s", relabeled_replay_file_path.resolve()) self.load_checkpoint(relabeled_replay_file_path, only=["replay_loader"]) # with relabeled_replay_file_path.open('rb') as f: # self.replay_loader = torch.load(f) else: print("loading and relabeling...") goal_func = None if cfg.goal_space is None else _goals.goal_spaces.funcs[self.domain][cfg.goal_space] self.replay_loader.load(self.train_env, replay_dir, relabel=True, goal_func=goal_func) print("loading is done") with relabeled_replay_file_path.open('wb') as f: torch.save(self.replay_loader, f) self.replay_loader._future = cfg.future self.replay_loader._discount = cfg.discount # self.replay_loader._full = True self.replay_loader._max_episodes = len(self.replay_loader._storage["discount"]) if isinstance(self.agent, agents.GoalTD3Agent) and self.agent.cfg.fb_reward: self.agent.precompute_cov(self.replay_loader) def train(self): train_until_step = utils.Until(self.cfg.num_grad_steps) eval_every_step = utils.Every(self.cfg.eval_every_steps) log_every_step = utils.Every(self.cfg.log_every_steps) while train_until_step(self.global_step): # try to evaluate if eval_every_step(self.global_step): self.logger.log('eval_total_time', self.timer.total_time(), self.global_step) if self.cfg.custom_reward == "maze_multi_goal": self.eval_maze_goals() else: self.eval() if isinstance(self.agent, agents.GoalTD3Agent): metrics = self.agent.update(self.replay_loader, self.global_step, self.reward_cls) else: metrics = self.agent.update(self.replay_loader, self.global_step) self.logger.log_metrics(metrics, self.global_step, ty='train') if log_every_step(self.global_step): elapsed_time, total_time = self.timer.reset() with self.logger.log_and_dump_ctx(self.global_step, ty='train') as log: log('fps', self.cfg.log_every_steps / elapsed_time) log('total_time', total_time) log('step', self.global_step) self.global_step += 1 # try to save snapshot if self.global_frame in self.cfg.snapshot_at: self.save_checkpoint(self._checkpoint_filepath.with_name(f'snapshot_{self.global_frame}.pt'), exclude=["replay_loader"]) # save checkpoint to reload if not self.global_frame % self.cfg.checkpoint_every: self.save_checkpoint(self._checkpoint_filepath, exclude=["replay_loader"]) self.save_checkpoint(self._checkpoint_filepath) # make sure we save the final checkpoint self.finalize() # def load_checkpoint(self, fp: tp.Union[Path, str]) -> None: # fp = Path(fp) # with fp.open('rb') as f: # payload = torch.load(f) # self.agent.init_from(payload['agent']) @hydra.main(config_path='.', config_name='base_config') def main(cfg: omgcf.DictConfig) -> None: workspace = Workspace(cfg) # type: ignore # for _ in range(10): # workspace.eval() if isinstance(workspace.agent, agents.DDPGAgent): if workspace.agent.reward_free: workspace.agent.train_reward(workspace.replay_loader) workspace.train() if __name__ == '__main__': main()
controllable_agent-main
url_benchmark/train_offline.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import subprocess import sys import tempfile import typing as tp from pathlib import Path import pytest import hydra import numpy as np from url_benchmark import hiplogs from url_benchmark import utils def test_until_repr() -> None: until = utils.Until(3, 1) assert str(until) == "Until(action_repeat=1, until=3)" def test_parse_logs() -> None: path = ( Path(__file__).parents[1] / "controllable_agent" / "data" / "mockpretrain" / "hip.log" ) hlog = hiplogs.HipLog(path) logs = hlog.to_hiplot_experiment().datapoints assert len(logs) == 13 vals = logs[-1].values assert vals["workdir"] == "054238_fb_ddpg", "Xp id not exported" bad_type = {x: y for x, y in vals.items() if not isinstance(y, (int, float, str))} assert not bad_type, "Found unsupported type(s)" def test_load() -> None: xp = hiplogs.load(str(Path(__file__).parents[1] / "controllable_agent"), step=2) assert len(xp.datapoints) == 6 def test_hiplog(tmp_path: Path) -> None: hiplog = hiplogs.HipLog(tmp_path / "log.txt") hiplog(hello="world") hiplog.write() hiplog(hello="monde") hiplog(number=12).write() hiplog(something=np.int32(12)).write() data = hiplog.read() for d in data: for key in list(d): if key.startswith("#"): d.pop(key) expected = [ dict(hello="world"), dict(hello="monde", number=12), dict(hello="monde", number=12, something=12), ] assert data == expected # reloaded assert not hiplog._reloaded hiplog = hiplogs.HipLog(tmp_path / "log.txt") assert hiplog._reloaded == 1 def test_hiplog_stats(tmp_path: Path) -> None: hiplog = hiplogs.HipLog(tmp_path / "log.txt") for vals in ([3, 5], [7, 8, 9]): for val in vals: hiplog.with_stats("mean")(val=val) hiplog.write() data = hiplog.read() for d in data: for key in list(d): if key.startswith("#"): d.pop(key) expected = [{"val#mean": 4}, {"val#mean": 8}] assert data == expected def test_repository_information() -> None: out = hiplogs.repository_information() assert len(out) == 3 def test_hiplogs_from_hydra_config(tmp_path: Path) -> None: if sys.platform == "darwin": pytest.skip(reason="Does not run on Mac") train_cmd = [ sys.executable, "-m", "url_benchmark.test_hiplogs", f"hydra.run.dir={tmp_path}", ] subprocess.check_call(train_cmd) @hydra.main(config_name="base_config", config_path=".", version_base="1.1") def main(args: tp.Any) -> None: args.agent.obs_type = "blublu" args.agent.obs_shape = (2, 2) args.agent.action_shape = (2, 2) args.agent.num_expl_steps = 12 with tempfile.TemporaryDirectory() as tmp: log = hiplogs.HipLog(Path(tmp) / "hiplog.test.log").flattened(args) assert "agent/obs_type" in log.content if __name__ == "__main__": # needed to load the config: from url_benchmark import pretrain # pylint: disable=unused-import,import-outside-toplevel main()
controllable_agent-main
url_benchmark/test_hiplogs.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
controllable_agent-main
url_benchmark/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import csv import logging import typing as tp from pathlib import Path import datetime from collections import defaultdict import torch import wandb from termcolor import colored from torch.utils.tensorboard import SummaryWriter from url_benchmark.hiplogs import HipLog Formating = tp.List[tp.Tuple[str, str, str]] COMMON_TRAIN_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'), ('episode', 'E', 'int'), ('episode_length', 'L', 'int'), ('episode_reward', 'R', 'float'), ('fps', 'FPS', 'float'), ('total_time', 'T', 'time')] COMMON_EVAL_FORMAT = [('frame', 'F', 'int'), ('step', 'S', 'int'), ('episode', 'E', 'int'), ('episode_length', 'L', 'int'), ('episode_reward', 'R', 'float'), ('total_time', 'T', 'time')] pylogger = logging.getLogger(__name__) class AverageMeter: def __init__(self) -> None: self._sum = 0.0 self._count = 0 def update(self, value: float, n: int = 1) -> None: self._sum += value self._count += n def value(self) -> float: return self._sum / max(1, self._count) Metrics = tp.Dict[str, float] class MetersGroup: def __init__(self, csv_file_name: tp.Union[Path, str], formating: Formating, use_wandb: bool) -> None: self._csv_file_name = Path(csv_file_name) self._formating = formating self._meters: tp.Dict[str, AverageMeter] = defaultdict(AverageMeter) self._csv_file: tp.Optional[tp.TextIO] = None self._csv_writer: tp.Optional[csv.DictWriter[str]] = None self.use_wandb = use_wandb def log(self, key: str, value: float, n: int = 1) -> None: self._meters[key].update(value, n) def _prime_meters(self) -> Metrics: data = {} for key, meter in self._meters.items(): if key.startswith('train'): key = key[len('train') + 1:] else: key = key[len('eval') + 1:] key = key.replace('/', '_') data[key] = meter.value() return data def _remove_old_entries(self, data: Metrics) -> None: rows = [] with self._csv_file_name.open('r') as f: reader = csv.DictReader(f) for row in reader: if float(row['episode']) >= data['episode']: break rows.append(row) with self._csv_file_name.open('w') as f: writer = csv.DictWriter(f, fieldnames=sorted(data.keys()), restval=0.0) writer.writeheader() for row in rows: writer.writerow(row) def _dump_to_csv(self, data: Metrics) -> None: if self._csv_writer is None: should_write_header = True if self._csv_file_name.exists(): self._remove_old_entries(data) should_write_header = False self._csv_file = self._csv_file_name.open('a') self._csv_writer = csv.DictWriter(self._csv_file, fieldnames=sorted(data.keys()), restval=0.0) if should_write_header: self._csv_writer.writeheader() if self._csv_writer is None or self._csv_file is None: raise RuntimeError("CSV writer and file should have been instantiated") self._csv_writer.writerow(data) self._csv_file.flush() @staticmethod def _format(key: str, value: float, ty: str) -> str: if ty == 'int': value = int(value) return f'{key}: {value}' elif ty == 'float': return f'{key}: {value:.04f}' elif ty == 'time': value_ = str(datetime.timedelta(seconds=int(value))) return f'{key}: {value_}' raise ValueError(f'invalid format type: {ty}') def _dump_to_console(self, data: Metrics, prefix: str) -> None: prefix = colored(prefix, 'yellow' if prefix == 'train' else 'green') pieces = [f'| {prefix: <14}'] for key, disp_key, ty in self._formating: value = data.get(key, 0) pieces.append(self._format(disp_key, value, ty)) print(' | '.join(pieces)) @staticmethod def _dump_to_wandb(data: Metrics) -> None: wandb.log(data) def dump(self, step: int, prefix: str) -> None: if len(self._meters) == 0: return data = self._prime_meters() data['frame'] = step if self.use_wandb: wandb_data = {prefix + '/' + key: val for key, val in data.items()} self._dump_to_wandb(data=wandb_data) self._dump_to_csv(data) self._dump_to_console(data, prefix) self._meters.clear() class Logger: def __init__(self, log_dir: Path, use_tb: bool, use_wandb: bool, use_hiplog: bool) -> None: self._log_dir = log_dir self._train_mg = MetersGroup(log_dir / 'train.csv', formating=COMMON_TRAIN_FORMAT, use_wandb=use_wandb) self._eval_mg = MetersGroup(log_dir / 'eval.csv', formating=COMMON_EVAL_FORMAT, use_wandb=use_wandb) self._sw: tp.Optional[SummaryWriter] = None # self.hiplog: tp.Optional[HipLog] = None self.use_hiplog = use_hiplog if use_hiplog: self.hiplog = HipLog(log_dir / "hip.log") if use_tb: self._sw = SummaryWriter(str(log_dir / 'tb')) self.use_wandb = use_wandb def _try_sw_log(self, key, value, step) -> None: if self._sw is not None: self._sw.add_scalar(key, value, step) def log(self, key: str, value: tp.Union[float, torch.Tensor], step: int) -> None: assert key.startswith('train') or key.startswith('eval') if isinstance(value, torch.Tensor): value = value.item() self._try_sw_log(key, value, step) mg = self._train_mg if key.startswith('train') else self._eval_mg mg.log(key, value) if self.use_hiplog: self.hiplog(**{key: value}) def log_metrics(self, metrics: tp.Dict[str, float], step: int, ty: str) -> None: for key, value in metrics.items(): self.log(f'{ty}/{key}', value, step) def dump(self, step, ty=None) -> None: try: if ty is None or ty == 'eval': self._eval_mg.dump(step, 'eval') if ty is None or ty == 'train': self._train_mg.dump(step, 'train') except ValueError as e: pylogger.warning(f"Could not dump metrics: {e}") def log_and_dump_ctx(self, step: int, ty: str) -> "LogAndDumpCtx": return LogAndDumpCtx(self, step, ty) class LogAndDumpCtx: def __init__(self, logger: Logger, step: int, ty: str) -> None: self._logger = logger self._step = step self._ty = ty def __enter__(self) -> "LogAndDumpCtx": return self def __call__(self, key: str, value: float) -> None: self._logger.log(f'{self._ty}/{key}', value, self._step) def __exit__(self, *args: tp.Any) -> None: self._logger.dump(self._step, self._ty)
controllable_agent-main
url_benchmark/logger.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from url_benchmark import replay_buffer as rb def test_batch() -> None: shapes = dict(obs=(4, 12), action=(5, 11), next_obs=(6, 10)) meta = dict(a=np.random.rand(16), b=np.random.rand(17)) batch = rb.EpisodeBatch( reward=np.array([1.0]), discount=np.array([0.5]), meta=meta, **{x: np.random.rand(*y) for x, y in shapes.items()} ) batches = rb.EpisodeBatch.collate_fn([batch, batch]) assert batches.obs.shape == (2, 4, 12) assert isinstance(batches.meta, dict) assert len(batches.meta) == 2 assert batches.meta["a"].shape == (2, 16) # check that moving to Tensor does not change anything cpu = batch.to("cpu") assert cpu.reward.shape == (1,) batches = rb.EpisodeBatch.collate_fn([cpu, cpu]) assert batches.reward.shape == (2, 1) no_reward = batches.with_no_reward() assert not no_reward.reward.abs().sum(), "reward should be masked" assert batches.reward.abs().sum(), "reward should not be masked" assert no_reward.obs is batches.obs, "Observations have been copied, which is time consuming"
controllable_agent-main
url_benchmark/test_replay_buffer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import random import re import time import typing as tp import numpy as np import torch from torch import nn import torch.nn.functional as F from torch import distributions as pyd from torch.distributions.utils import _standard_normal try: from typing import Protocol except ImportError: # backward compatible from typing_extensions import Protocol # type: ignore class Trainable(Protocol): # cannot from url_benchmark import agent @property def training(self) -> bool: ... def train(self, train: bool) -> None: ... class eval_mode: def __init__(self, *models: Trainable) -> None: self.models = models self.prev_states: tp.List[bool] = [] def __enter__(self) -> None: self.prev_states = [] for model in self.models: self.prev_states.append(model.training) model.train(False) def __exit__(self, *args: tp.Any) -> None: for model, state in zip(self.models, self.prev_states): model.train(state) def set_seed_everywhere(seed: int) -> None: torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) X = tp.TypeVar("X") def chain(*iterables: tp.Iterable[X]) -> tp.Iterator[X]: # TODO remove for it in iterables: yield from it def soft_update_params(net, target_net, tau) -> None: for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def hard_update_params(net, target_net) -> None: for param, target_param in zip(net.parameters(), target_net.parameters()): target_param.data.copy_(param.data) def to_torch(xs, device) -> tuple: return tuple(torch.as_tensor(x, device=device) for x in xs) def weight_init(m) -> None: """Custom weight init for Conv2D and Linear layers.""" if isinstance(m, nn.Linear): nn.init.orthogonal_(m.weight.data) if m.bias is not None: # if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): gain = nn.init.calculate_gain('relu') nn.init.orthogonal_(m.weight.data, gain) if m.bias is not None: # if hasattr(m.bias, 'data'): m.bias.data.fill_(0.0) def grad_norm(params, norm_type: float = 2.0): params = [p for p in params if p.grad is not None] total_norm = torch.norm( torch.stack([torch.norm(p.grad.detach(), norm_type) for p in params]), norm_type) return total_norm.item() def param_norm(params, norm_type: float = 2.0): total_norm = torch.norm( torch.stack([torch.norm(p.detach(), norm_type) for p in params]), norm_type) return total_norm.item() def _repr(obj: tp.Any) -> str: items = {x: y for x, y in obj.__dict__.items() if not x.startswith("_")} params = ", ".join(f"{x}={y!r}" for x, y in sorted(items.items())) return f"{obj.__class__.__name__}({params})" class Until: def __init__(self, until: tp.Optional[int], action_repeat: int = 1) -> None: self.until = until self.action_repeat = action_repeat def __call__(self, step: int) -> bool: if self.until is None: return True until = self.until // self.action_repeat return step < until def __repr__(self) -> str: return _repr(self) class Every: def __init__(self, every: tp.Optional[int], action_repeat: int = 1) -> None: self.every = every self.action_repeat = action_repeat def __call__(self, step: int) -> bool: if self.every is None: return False every = self.every // self.action_repeat if step % every == 0: return True return False def __repr__(self) -> str: return _repr(self) class Timer: def __init__(self) -> None: self._start_time = time.time() self._last_time = time.time() def reset(self) -> tp.Tuple[float, float]: elapsed_time = time.time() - self._last_time self._last_time = time.time() total_time = time.time() - self._start_time return elapsed_time, total_time def total_time(self) -> float: return time.time() - self._start_time class TruncatedNormal(pyd.Normal): def __init__(self, loc, scale, low=-1.0, high=1.0, eps=1e-6) -> None: super().__init__(loc, scale, validate_args=False) self.low = low self.high = high self.eps = eps def _clamp(self, x) -> torch.Tensor: clamped_x = torch.clamp(x, self.low + self.eps, self.high - self.eps) x = x - x.detach() + clamped_x.detach() return x def sample(self, clip=None, sample_shape=torch.Size()) -> torch.Tensor: # type: ignore shape = self._extended_shape(sample_shape) eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device) eps *= self.scale if clip is not None: eps = torch.clamp(eps, -clip, clip) x = self.loc + eps return self._clamp(x) class TanhTransform(pyd.transforms.Transform): domain = pyd.constraints.real codomain = pyd.constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __init__(self, cache_size=1) -> None: super().__init__(cache_size=cache_size) @staticmethod def atanh(x) -> torch.Tensor: return 0.5 * (x.log1p() - (-x).log1p()) def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x) -> torch.Tensor: return x.tanh() def _inverse(self, y) -> torch.Tensor: # We do not clamp to the boundary here as it may degrade the performance of certain algorithms. # one should use `cache_size=1` instead return self.atanh(y) def log_abs_det_jacobian(self, x, y) -> torch.Tensor: # We use a formula that is more numerically stable, see details in the following link # https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7 return 2. * (math.log(2.) - x - F.softplus(-2. * x)) class SquashedNormal(pyd.transformed_distribution.TransformedDistribution): def __init__(self, loc, scale) -> None: self.loc = loc self.scale = scale self.base_dist = pyd.Normal(loc, scale) transforms = [TanhTransform()] super().__init__(self.base_dist, transforms) @property def mean(self): mu = self.loc for tr in self.transforms: mu = tr(mu) return mu def schedule(schdl, step) -> float: try: return float(schdl) except ValueError: match = re.match(r'linear\((.+),(.+),(.+)\)', schdl) if match: init, final, duration = [float(g) for g in match.groups()] mix = np.clip(step / duration, 0.0, 1.0) return (1.0 - mix) * init + mix * final match = re.match(r'step_linear\((.+),(.+),(.+),(.+),(.+)\)', schdl) if match: init, final1, duration1, final2, duration2 = [ float(g) for g in match.groups() ] if step <= duration1: mix = np.clip(step / duration1, 0.0, 1.0) return (1.0 - mix) * init + mix * final1 else: mix = np.clip((step - duration1) / duration2, 0.0, 1.0) return (1.0 - mix) * final1 + mix * final2 raise NotImplementedError(schdl) class RandomShiftsAug(nn.Module): def __init__(self, pad) -> None: super().__init__() self.pad = pad def forward(self, x) -> torch.Tensor: x = x.float() n, _, h, w = x.size() assert h == w padding = tuple([self.pad] * 4) x = F.pad(x, padding, 'replicate') eps = 1.0 / (h + 2 * self.pad) arange = torch.linspace(-1.0 + eps, 1.0 - eps, h + 2 * self.pad, device=x.device, dtype=x.dtype)[:h] arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2) base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2) base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1) shift = torch.randint(0, 2 * self.pad + 1, size=(n, 1, 1, 2), device=x.device, dtype=x.dtype) shift *= 2.0 / (h + 2 * self.pad) grid = base_grid + shift return F.grid_sample(x, grid, padding_mode='zeros', align_corners=False) class RMS: """running mean and std """ def __init__(self, device, epsilon=1e-4, shape=(1,)) -> None: self.M = torch.zeros(shape).to(device) self.S = torch.ones(shape).to(device) self.n = epsilon def __call__(self, x): bs = x.size(0) delta = torch.mean(x, dim=0) - self.M new_M = self.M + delta * bs / (self.n + bs) new_S = (self.S * self.n + torch.var(x, dim=0) * bs + torch.square(delta) * self.n * bs / (self.n + bs)) / (self.n + bs) self.M = new_M self.S = new_S self.n += bs return self.M, self.S class PBE: """particle-based entropy based on knn normalized by running mean """ def __init__(self, rms, knn_clip, knn_k, knn_avg, knn_rms, device) -> None: self.rms = rms self.knn_rms = knn_rms self.knn_k = knn_k self.knn_avg = knn_avg self.knn_clip = knn_clip self.device = device def __call__(self, rep): source = target = rep b1, b2 = source.size(0), target.size(0) # (b1, 1, c) - (1, b2, c) -> (b1, 1, c) - (1, b2, c) -> (b1, b2, c) -> (b1, b2) sim_matrix = torch.norm(source[:, None, :].view(b1, 1, -1) - target[None, :, :].view(1, b2, -1), dim=-1, p=2) reward, _ = sim_matrix.topk(self.knn_k, dim=1, largest=False, sorted=True) # (b1, k) if not self.knn_avg: # only keep k-th nearest neighbor reward = reward[:, -1] reward = reward.reshape(-1, 1) # (b1, 1) reward /= self.rms(reward)[0] if self.knn_rms else 1.0 reward = torch.maximum( reward - self.knn_clip, torch.zeros_like(reward).to(self.device) ) if self.knn_clip >= 0.0 else reward # (b1, 1) else: # average over all k nearest neighbors reward = reward.reshape(-1, 1) # (b1 * k, 1) reward /= self.rms(reward)[0] if self.knn_rms else 1.0 reward = torch.maximum( reward - self.knn_clip, torch.zeros_like(reward).to( self.device)) if self.knn_clip >= 0.0 else reward reward = reward.reshape((b1, self.knn_k)) # (b1, k) reward = reward.mean(dim=1, keepdim=True) # (b1, 1) reward = torch.log(reward + 1.0) return reward class FloatStats: def __init__(self) -> None: self.min = np.inf self.max = -np.inf self.mean = 0.0 self.count = 0 def add(self, value: float) -> "FloatStats": self.min = min(value, self.min) self.max = max(value, self.max) self.count += 1 self.mean = (self.count - 1) / self.count * self.mean + 1 / self.count * value return self
controllable_agent-main
url_benchmark/utils.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List DOMAINS = [ 'walker', 'quadruped', 'jaco', 'point_mass_maze' 'cheetah' ] CHEETAH_TASKS = [ 'cheetah_walk', 'cheetah_walk_backward', 'cheetah_run', 'cheetah_run_backward' ] WALKER_TASKS = [ 'walker_stand', 'walker_walk', 'walker_run', 'walker_flip', ] QUADRUPED_TASKS = [ 'quadruped_walk', 'quadruped_run', 'quadruped_stand', 'quadruped_jump', ] JACO_TASKS = [ 'jaco_reach_top_left', 'jaco_reach_top_right', 'jaco_reach_bottom_left', 'jaco_reach_bottom_right', ] POINT_MASS_MAZE_TASKS = [ 'point_mass_maze_reach_top_left', 'point_mass_maze_reach_top_right', 'point_mass_maze_reach_bottom_left', 'point_mass_maze_reach_bottom_right', ] TASKS: List[str] = WALKER_TASKS + QUADRUPED_TASKS + JACO_TASKS + POINT_MASS_MAZE_TASKS PRIMAL_TASKS = { 'walker': 'walker_stand', 'jaco': 'jaco_reach_top_left', 'quadruped': 'quadruped_walk' }
controllable_agent-main
url_benchmark/dmc_benchmark.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import logging import typing as tp import dataclasses import collections from pathlib import Path import numpy as np import torch from dm_env import specs, TimeStep from tqdm import tqdm from url_benchmark.replay_buffer import EpisodeBatch from url_benchmark.dmc import ExtendedGoalTimeStep Specs = tp.Sequence[specs.Array] logger = logging.getLogger(__name__) EpisodeTuple = tp.Tuple[np.ndarray, ...] Episode = tp.Dict[str, np.ndarray] T = tp.TypeVar("T", np.ndarray, torch.Tensor) def episode_len(episode: Episode) -> int: # subtract -1 because the dummy first transition return next(iter(episode.values())).shape[0] - 1 def load_episode(fn: Path) -> tp.Dict[str, np.ndarray]: with fn.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} return episode # type: ignore def relabel_episode(env: tp.Any, episode: tp.Dict[str, np.ndarray], goal_func: tp.Any) -> tp.Dict[str, np.ndarray]: goals = [] rewards = [] states = episode['physics'] for i in range(states.shape[0]): with env.physics.reset_context(): env.physics.set_state(states[i]) reward = env.task.get_reward(env.physics) reward = np.full((1,), reward, dtype=np.float32) rewards.append(reward) if goal_func is not None: goals.append(goal_func(env)) episode['reward'] = np.array(rewards, dtype=np.float32) if goals: episode['goal'] = np.array(goals, dtype=np.float32) return episode # class ReplayBufferIterable: # def __init__(self, replay_buffer: "ReplayBuffer") -> None: # self._replay_buffer = replay_buffer # # def __next__(self) -> EpisodeBatch: # return self._replay_buffer.sample() class ReplayBuffer: def __init__(self, max_episodes: int, discount: float, future: float, max_episode_length: tp.Optional[int] = None) -> None: # data_specs: Specs, # self._data_specs = tuple(data_specs) # self._meta_specs = tuple(meta_specs) # self._batch_size = batch_size self._max_episodes = max_episodes self._discount = discount assert 0 <= future <= 1 self._future = future self._current_episode: tp.Dict[str, tp.List[np.ndarray]] = collections.defaultdict(list) self._idx = 0 self._full = False self._num_transitions = 0 self._storage: tp.Dict[str, np.ndarray] = collections.defaultdict() self._collected_episodes = 0 self._batch_names = set(field.name for field in dataclasses.fields(ExtendedGoalTimeStep)) self._episodes_length = np.zeros(max_episodes, dtype=np.int32) self._episodes_selection_probability = None self._is_fixed_episode_length = True self._max_episode_length = max_episode_length def __len__(self) -> int: return self._max_episodes if self._full else self._idx def __setstate__(self, state): self.__dict__.update(state) self._backward_compatibility() def _backward_compatibility(self): if self._storage and not hasattr(self, '_episodes_length'): self._episodes_length = np.array([len(array) - 1 for array in self._storage["discount"]], dtype=np.int32) self._episodes_length[len(self):] = 0 assert self._episodes_length[:len(self)].min() == self._episodes_length[:len(self)].max() self._episodes_selection_probability = None self._is_fixed_episode_length = True self._max_episode_length = None def add(self, time_step: TimeStep, meta: tp.Mapping[str, np.ndarray]) -> None: dtype = np.float32 for key, value in meta.items(): self._current_episode[key].append(value) for field in dataclasses.fields(time_step): value = time_step[field.name] if np.isscalar(value): value = np.full((1,), value, dtype=dtype) if isinstance(value, np.ndarray): self._current_episode[field.name].append(np.array(value, dtype=dtype)) if time_step.last(): if not hasattr(self, "_batch_names"): self._batch_names = set(field.name for field in dataclasses.fields(ExtendedGoalTimeStep)) for name, value_list in self._current_episode.items(): values = np.array(value_list, dtype) if name not in self._storage: # first iteration, the buffer is created with appropriate size _shape = values.shape if self._max_episode_length is not None: _shape = (self._max_episode_length,) + _shape[1:] self._storage[name] = np.empty((self._max_episodes,) + _shape, dtype=dtype) self._storage[name][self._idx][:len(values)] = values self._episodes_length[self._idx] = len(self._current_episode['discount']) - 1 # compensate for the dummy transition at the beginning if self._episodes_length[self._idx] != self._episodes_length[self._idx - 1] and self._episodes_length[self._idx - 1] != 0: self._is_fixed_episode_length = False self._current_episode = collections.defaultdict(list) self._collected_episodes += 1 self._idx = (self._idx + 1) % self._max_episodes self._full = self._full or self._idx == 0 self._episodes_selection_probability = None @property def avg_episode_length(self) -> int: return round(self._episodes_length[:len(self)].mean()) def sample(self, batch_size, custom_reward: tp.Optional[tp.Any] = None, with_physics: bool = False) -> EpisodeBatch: if not hasattr(self, "_batch_names"): self._batch_names = set(field.name for field in dataclasses.fields(ExtendedGoalTimeStep)) if not isinstance(self._future, float): assert isinstance(self._future, bool) self._future = float(self._future) if self._is_fixed_episode_length: ep_idx = np.random.randint(0, len(self), size=batch_size) else: if self._episodes_selection_probability is None: self._episodes_selection_probability = self._episodes_length / self._episodes_length.sum() ep_idx = np.random.choice(np.arange(len(self._episodes_length)), size=batch_size, p=self._episodes_selection_probability) eps_lengths = self._episodes_length[ep_idx] # add +1 for the first dummy transition step_idx = np.random.randint(0, eps_lengths) + 1 assert (step_idx <= eps_lengths).all() if self._future < 1: # future_idx = step_idx + np.random.randint(0, self.episode_length - step_idx + 1, size=self._batch_size) future_idx = step_idx + np.random.geometric(p=(1 - self._future), size=batch_size) future_idx = np.clip(future_idx, 0, eps_lengths) assert (future_idx <= eps_lengths).all() meta = {name: data[ep_idx, step_idx - 1] for name, data in self._storage.items() if name not in self._batch_names} obs = self._storage['observation'][ep_idx, step_idx - 1] action = self._storage['action'][ep_idx, step_idx] next_obs = self._storage['observation'][ep_idx, step_idx] phy = self._storage['physics'][ep_idx, step_idx] if custom_reward is not None: reward = np.array([[custom_reward.from_physics(p)] for p in phy], dtype=np.float32) else: reward = self._storage['reward'][ep_idx, step_idx] discount = self._discount * self._storage['discount'][ep_idx, step_idx] goal: tp.Optional[np.ndarray] = None next_goal: tp.Optional[np.ndarray] = None future_obs: tp.Optional[np.ndarray] = None future_goal: tp.Optional[np.ndarray] = None if 'goal' in self._storage.keys(): goal = self._storage['goal'][ep_idx, step_idx - 1] next_goal = self._storage['goal'][ep_idx, step_idx] if self._future < 1: future_goal = self._storage['goal'][ep_idx, future_idx - 1] # elif self._future: if self._future < 1: future_obs = self._storage['observation'][ep_idx, future_idx - 1] additional = {} if with_physics: additional["_physics"] = phy # TODO remove type ignore when working return EpisodeBatch(obs=obs, goal=goal, action=action, reward=reward, discount=discount, next_obs=next_obs, next_goal=next_goal, future_obs=future_obs, future_goal=future_goal, meta=meta, **additional) def load(self, env: tp.Any, replay_dir: Path, relabel: bool = True, goal_func: tp.Any = None) -> None: eps_fns = sorted(replay_dir.glob('*.npz')) for eps_fn in tqdm(eps_fns): if self._full: break episode = load_episode(eps_fn) if relabel: episode = relabel_episode(env, episode, goal_func) # for field in dataclasses.fields(TimeStep): for name, values in episode.items(): # values = episode[field.name] if name not in self._storage: # first iteration, the buffer is created with appropriate size self._storage[name] = np.empty((self._max_episodes,) + values.shape, dtype=np.float32) self._storage[name][self._idx] = np.array(values, dtype=np.float32) self._idx = (self._idx + 1) % self._max_episodes self._full = self._full or self._idx == 0 def relabel(self, custom_reward) -> None: for (ep_idx, phy) in tqdm(enumerate(self._storage["physics"])): reward = np.array([[custom_reward.from_physics(p)] for p in phy], dtype=np.float32) self._storage["reward"][ep_idx] = reward self._max_episodes = len(self._storage["physics"]) self._full = True # def __iter__(self) -> ReplayBufferIterable: # ''' Returns the Iterator object ''' # return ReplayBufferIterable(self) # def __iter__(self) -> tp.Iterator[EpisodeBatch[np.ndarray]]: # while True: # yield self.sample()
controllable_agent-main
url_benchmark/in_memory_replay_buffer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import datetime import io import random import traceback import typing as tp from pathlib import Path from collections import defaultdict import dataclasses import numpy as np import torch from torch.utils.data import IterableDataset from dm_env import specs, TimeStep EpisodeTuple = tp.Tuple[np.ndarray, ...] Episode = tp.Dict[str, np.ndarray] T = tp.TypeVar("T", np.ndarray, torch.Tensor) B = tp.TypeVar("B", bound="EpisodeBatch") @dataclasses.dataclass class EpisodeBatch(tp.Generic[T]): """For later use A container for batchable replayed episodes """ obs: T action: T reward: T next_obs: T discount: T meta: tp.Dict[str, T] = dataclasses.field(default_factory=dict) _physics: tp.Optional[T] = None goal: tp.Optional[T] = None next_goal: tp.Optional[T] = None future_obs: tp.Optional[T] = None future_goal: tp.Optional[T] = None def __post_init__(self) -> None: # some security to be removed later assert isinstance(self.reward, (np.ndarray, torch.Tensor)) assert isinstance(self.discount, (np.ndarray, torch.Tensor)) assert isinstance(self.meta, dict) def to(self, device: str) -> "EpisodeBatch[torch.Tensor]": """Creates a new instance on the appropriate device""" out: tp.Dict[str, tp.Any] = {} for field in dataclasses.fields(self): data = getattr(self, field.name) if field.name == "meta": out[field.name] = {x: torch.as_tensor(y, device=device) for x, y in data.items()} # type: ignore elif isinstance(data, (torch.Tensor, np.ndarray)): out[field.name] = torch.as_tensor(data, device=device) # type: ignore elif data is None: out[field.name] = data else: raise RuntimeError(f"Not sure what to do with {field.name}: {data}") return EpisodeBatch(**out) @classmethod def collate_fn(cls, batches: tp.List["EpisodeBatch[T]"]) -> "EpisodeBatch[torch.Tensor]": """Creates a new instance from several by stacking in a new first dimension for all attributes """ out: tp.Dict[str, tp.Any] = {} if isinstance(batches[0].obs, np.ndarray): # move everything to pytorch if first one is numpy batches = [b.to("cpu") for b in batches] # type: ignore for field in dataclasses.fields(cls): data = [getattr(mf, field.name) for mf in batches] # skip fields with None data if data[0] is None: if any(x is not None for x in data): raise RuntimeError("Found a non-None value mixed with Nones") out[field.name] = None continue # reward and discount can be float which should be converted to # tensors for stacking if field.name == "meta": meta = {k: torch.stack([d[k] for d in data]) for k in data[0]} out[field.name] = meta elif isinstance(data[0], torch.Tensor): out[field.name] = torch.stack(data) else: raise RuntimeError(f"Not sure what to do with {field.name}: {data}") # out[field.name] = [x for y in data for x in y] return EpisodeBatch(**out) def unpack(self) -> tp.Tuple[T, T, T, T, T]: """Unpacks the structure into the legacy unnamed tuple. Try to avoid it if possible, this is more likely to be wrong than using names """ return (self.obs, self.action, self.reward, self.discount, self.next_obs) # return (self.obs, self.action, self.reward, self.discount, self.next_obs, *self.meta) def with_no_reward(self: B) -> B: reward = self.reward reward = torch.zeros_like(reward) if isinstance(reward, torch.Tensor) else 0 * reward return dataclasses.replace(self, reward=reward) def episode_len(episode: Episode) -> int: # subtract -1 because the dummy first transition return next(iter(episode.values())).shape[0] - 1 def save_episode(episode: Episode, fn: Path) -> None: with io.BytesIO() as bs: np.savez_compressed(bs, **episode) bs.seek(0) with fn.open('wb') as f: f.write(bs.read()) def load_episode(fn: Path) -> Episode: with fn.open('rb') as f: episode = np.load(f) episode = {k: episode[k] for k in episode.keys()} return episode Specs = tp.Sequence[specs.Array] class ReplayBufferStorage: def __init__(self, data_specs: Specs, replay_dir: tp.Union[str, Path]) -> None: self._data_specs = tuple(data_specs) self._meta_specs: tp.Tuple[tp.Any, ...] = tuple() # deactivated self._replay_dir = Path(replay_dir) self._replay_dir.mkdir(exist_ok=True) # probably bad annotation, let's update when it starts failing self._current_episode: tp.Dict[str, tp.List[np.ndarray]] = defaultdict(list) self._preload() raise Exception("This code is dead due to missing handling of meta data") def __len__(self) -> int: return self._num_transitions def add(self, time_step: TimeStep, meta: tp.Mapping[str, np.ndarray]) -> None: for key, value in meta.items(): self._current_episode[key].append(value) for spec in self._data_specs: value = time_step[spec.name] if np.isscalar(value): value = np.full(spec.shape, value, spec.dtype) assert spec.shape == value.shape and spec.dtype == value.dtype self._current_episode[spec.name].append(value) if time_step.last(): episode = {} for spec in self._data_specs: values = self._current_episode[spec.name] episode[spec.name] = np.array(values, spec.dtype) for spec in self._meta_specs: values = self._current_episode[spec.name] episode[spec.name] = np.array(values, spec.dtype) self._current_episode = defaultdict(list) self._store_episode(episode) def _preload(self) -> None: self._num_episodes = 0 self._num_transitions = 0 for fn in self._replay_dir.glob('*.npz'): _, _, eps_len = fn.stem.split('_') self._num_episodes += 1 self._num_transitions += int(eps_len) def _store_episode(self, episode: Episode) -> None: eps_idx = self._num_episodes eps_len = episode_len(episode) self._num_episodes += 1 self._num_transitions += eps_len ts = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') eps_fn = f'{ts}_{eps_idx}_{eps_len}.npz' save_episode(episode, self._replay_dir / eps_fn) class ReplayBuffer(IterableDataset): def __init__(self, storage: ReplayBufferStorage, max_size: int, num_workers: int, nstep: int, discount: float, fetch_every: int, save_snapshot: bool, future: bool) -> None: super().__init__() self._storage = storage self._size = 0 self._max_size = max_size self._num_workers = max(1, num_workers) self._episode_fns: tp.List[Path] = [] self._episodes: tp.Dict[Path, Episode] = {} self._nstep = nstep self._discount = discount self._fetch_every = fetch_every self._samples_since_last_fetch = fetch_every self._save_snapshot = save_snapshot self._future = future def _sample_episode(self) -> Episode: eps_fn = random.choice(self._episode_fns) return self._episodes[eps_fn] def _store_episode(self, eps_fn: Path) -> bool: try: episode = load_episode(eps_fn) except Exception: # pylint: disable=broad-except return False eps_len = episode_len(episode) while eps_len + self._size > self._max_size: early_eps_fn = self._episode_fns.pop(0) early_eps = self._episodes.pop(early_eps_fn) self._size -= episode_len(early_eps) early_eps_fn.unlink(missing_ok=True) # type: ignore self._episode_fns.append(eps_fn) self._episode_fns.sort() self._episodes[eps_fn] = episode self._size += eps_len if not self._save_snapshot: eps_fn.unlink(missing_ok=True) # type: ignore return True def _try_fetch(self) -> None: if self._samples_since_last_fetch < self._fetch_every: return self._samples_since_last_fetch = 0 try: worker_id = int(torch.utils.data.get_worker_info().id) except Exception: # pylint: disable=broad-except worker_id = 0 eps_fns = sorted(self._storage._replay_dir.glob('*.npz'), reverse=True) fetched_size = 0 for eps_fn in eps_fns: eps_idx, eps_len = [int(x) for x in eps_fn.stem.split('_')[1:]] if eps_idx % self._num_workers != worker_id: continue if eps_fn in self._episodes: break if fetched_size + eps_len > self._max_size: break fetched_size += eps_len if not self._store_episode(eps_fn): break def _sample(self) -> EpisodeBatch[np.ndarray]: try: self._try_fetch() except Exception: # pylint: disable=broad-except traceback.print_exc() self._samples_since_last_fetch += 1 episode = self._sample_episode() # add +1 for the first dummy transition idx = np.random.randint(0, episode_len(episode) - self._nstep + 1) + 1 meta = {spec.name: episode[spec.name][idx - 1] for spec in self._storage._meta_specs} obs = episode['observation'][idx - 1] action = episode['action'][idx] next_obs = episode['observation'][idx + self._nstep - 1] reward = np.zeros_like(episode['reward'][idx]) discount = np.ones_like(episode['discount'][idx]) for i in range(self._nstep): step_reward = episode['reward'][idx + i] reward += discount * step_reward discount *= episode['discount'][idx + i] * self._discount goal: tp.Optional[np.ndarray] = None future_obs: tp.Optional[np.ndarray] = None future_goal: tp.Optional[np.ndarray] = None if 'goal' in episode.keys(): goal = episode['goal'][idx - 1] if self._future: future_idx = idx + np.random.randint(0, episode_len(episode) - idx + 1) future_goal = episode['goal'][future_idx - 1] # return (obs, goal, action, reward, discount, next_obs, *meta) # type: ignore elif self._future: future_idx = idx + np.random.randint(0, episode_len(episode) - idx + 1) future_obs = episode['observation'][future_idx - 1] # TODO remove type ignore when working return EpisodeBatch(obs=obs, action=action, reward=reward, discount=discount, next_obs=next_obs, goal=goal, future_obs=future_obs, future_goal=future_goal, meta=meta) def __iter__(self) -> tp.Iterator[EpisodeBatch[np.ndarray]]: while True: yield self._sample() def _worker_init_fn(worker_id: int) -> None: seed = np.random.get_state()[1][0] + worker_id # type: ignore np.random.seed(seed) random.seed(seed) def make_replay_loader(storage: ReplayBufferStorage, max_size: int, batch_size: int, num_workers: int, save_snapshot: bool, future: bool, nstep: int, discount: float) -> tp.Iterable[EpisodeBatch[torch.Tensor]]: max_size_per_worker = max_size // max(1, num_workers) iterable = ReplayBuffer(storage, max_size_per_worker, num_workers, nstep, discount, fetch_every=1000, save_snapshot=save_snapshot, future=future) loader = torch.utils.data.DataLoader(iterable, batch_size=batch_size, num_workers=num_workers, pin_memory=True, collate_fn=EpisodeBatch.collate_fn, worker_init_fn=_worker_init_fn) return loader
controllable_agent-main
url_benchmark/replay_buffer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import sys import unittest import dataclasses from collections import OrderedDict, deque import typing as tp from typing import Any from dm_env import Environment from dm_env import StepType, specs import numpy as np class UnsupportedPlatform(unittest.SkipTest, RuntimeError): """The platform is not supported for running""" try: from dm_control import suite # , manipulation from dm_control.suite.wrappers import action_scale, pixels from url_benchmark import custom_dmc_tasks as cdmc except ImportError as e: raise UnsupportedPlatform(f"Import error (Note: DMC does not run on Mac):\n{e}") from e S = tp.TypeVar("S", bound="TimeStep") Env = tp.Union["EnvWrapper", Environment] @dataclasses.dataclass class TimeStep: step_type: StepType reward: float discount: float observation: np.ndarray physics: np.ndarray = dataclasses.field(default=np.ndarray([]), init=False) def first(self) -> bool: return self.step_type == StepType.FIRST # type: ignore def mid(self) -> bool: return self.step_type == StepType.MID # type: ignore def last(self) -> bool: return self.step_type == StepType.LAST # type: ignore def __getitem__(self, attr: str) -> tp.Any: return getattr(self, attr) def _replace(self: S, **kwargs: tp.Any) -> S: for name, val in kwargs.items(): setattr(self, name, val) return self @dataclasses.dataclass class GoalTimeStep(TimeStep): goal: np.ndarray @dataclasses.dataclass class ExtendedGoalTimeStep(GoalTimeStep): action: tp.Any @dataclasses.dataclass class ExtendedTimeStep(TimeStep): action: tp.Any class EnvWrapper: def __init__(self, env: Env) -> None: self._env = env def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: if not isinstance(time_step, TimeStep): # dm_env time step is a named tuple time_step = TimeStep(**time_step._asdict()) if self.physics is not None: return time_step._replace(physics=self.physics.get_state()) else: return time_step def reset(self) -> TimeStep: time_step = self._env.reset() return self._augment_time_step(time_step) def step(self, action: np.ndarray) -> TimeStep: time_step = self._env.step(action) return self._augment_time_step(time_step, action) def observation_spec(self) -> tp.Any: assert isinstance(self, EnvWrapper) return self._env.observation_spec() def action_spec(self) -> specs.Array: return self._env.action_spec() def render(self, *args: tp.Any, **kwargs: tp.Any) -> np.ndarray: return self._env.render(*args, **kwargs) # type: ignore @property def base_env(self) -> tp.Any: env = self._env if isinstance(env, EnvWrapper): return self.base_env return env @property def physics(self) -> tp.Any: if hasattr(self._env, "physics"): return self._env.physics def __getattr__(self, name): return getattr(self._env, name) class FlattenJacoObservationWrapper(EnvWrapper): def __init__(self, env: Env) -> None: super().__init__(env) self._obs_spec = OrderedDict() wrapped_obs_spec = env.observation_spec().copy() if 'front_close' in wrapped_obs_spec: spec = wrapped_obs_spec['front_close'] # drop batch dim self._obs_spec['pixels'] = specs.BoundedArray(shape=spec.shape[1:], dtype=spec.dtype, minimum=spec.minimum, maximum=spec.maximum, name='pixels') wrapped_obs_spec.pop('front_close') for spec in wrapped_obs_spec.values(): assert spec.dtype == np.float64 assert type(spec) == specs.Array dim = np.sum( np.fromiter((int(np.prod(spec.shape)) # type: ignore for spec in wrapped_obs_spec.values()), np.int32)) self._obs_spec['observations'] = specs.Array(shape=(dim,), dtype=np.float32, name='observations') def observation_spec(self) -> tp.Any: return self._obs_spec def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: super()._augment_time_step(time_step=time_step, action=action) obs = OrderedDict() # TODO: this is badly typed since observation is a dict in this case if 'front_close' in time_step.observation: pixels = time_step.observation['front_close'] time_step.observation.pop('front_close') # type: ignore pixels = np.squeeze(pixels) obs['pixels'] = pixels features = [] for feature in time_step.observation.values(): # type: ignore features.append(feature.ravel()) obs['observations'] = np.concatenate(features, axis=0) return time_step._replace(observation=obs) class ActionRepeatWrapper(EnvWrapper): def __init__(self, env: tp.Any, num_repeats: int) -> None: super().__init__(env) self._num_repeats = num_repeats def step(self, action: np.ndarray) -> TimeStep: reward = 0.0 discount = 1.0 for _ in range(self._num_repeats): time_step = self._env.step(action) reward += (time_step.reward or 0.0) * discount discount *= time_step.discount if time_step.last(): break return time_step._replace(reward=reward, discount=discount) class FrameStackWrapper(EnvWrapper): def __init__(self, env: Env, num_frames: int, pixels_key: str = 'pixels') -> None: super().__init__(env) self._num_frames = num_frames self._frames: tp.Deque[np.ndarray] = deque([], maxlen=num_frames) self._pixels_key = pixels_key wrapped_obs_spec = env.observation_spec() assert pixels_key in wrapped_obs_spec pixels_shape = wrapped_obs_spec[pixels_key].shape # remove batch dim if len(pixels_shape) == 4: pixels_shape = pixels_shape[1:] self._obs_spec = specs.BoundedArray(shape=np.concatenate( [[pixels_shape[2] * num_frames], pixels_shape[:2]], axis=0), dtype=np.uint8, minimum=0, maximum=255, name='observation') def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: super()._augment_time_step(time_step=time_step, action=action) assert len(self._frames) == self._num_frames obs = np.concatenate(list(self._frames), axis=0) return time_step._replace(observation=obs) def _extract_pixels(self, time_step: TimeStep) -> np.ndarray: pixels_ = time_step.observation[self._pixels_key] # remove batch dim if len(pixels_.shape) == 4: pixels_ = pixels_[0] return pixels_.transpose(2, 0, 1).copy() def reset(self) -> TimeStep: time_step = self._env.reset() pixels_ = self._extract_pixels(time_step) for _ in range(self._num_frames): self._frames.append(pixels_) return self._augment_time_step(time_step) def step(self, action: np.ndarray) -> TimeStep: time_step = self._env.step(action) pixels_ = self._extract_pixels(time_step) self._frames.append(pixels_) return self._augment_time_step(time_step) class GoalWrapper(EnvWrapper): def __init__(self, env: Env, goal_func: tp.Callable[[Env], np.ndarray], append_goal_to_observation: bool = False) -> None: """Adds a goal space with a predefined function. This can also append the observation with the goal to make sure the goal is achievable """ super().__init__(env) self.append_goal_to_observation = append_goal_to_observation self.goal_func = goal_func def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: goal = self.goal_func(self) obs = time_step.observation.copy() if self.append_goal_to_observation: k = "observations" obs[k] = np.concatenate([obs[k], goal], axis=0) # obs[k] = np.concatenate([obs[k], np.random.normal(size=goal.shape)], axis=0) ts = GoalTimeStep( step_type=time_step.step_type, reward=time_step.reward, discount=time_step.discount, observation=obs, goal=goal, ) return super()._augment_time_step(time_step=ts, action=action) def observation_spec(self) -> specs.Array: spec = super().observation_spec().copy() k = "observations" if not self.append_goal_to_observation: return spec goal = self.goal_func(self) spec[k] = specs.Array((spec[k].shape[0] + goal.shape[0],), dtype=np.float32, name=k) return spec class ActionDTypeWrapper(EnvWrapper): def __init__(self, env: Env, dtype) -> None: super().__init__(env) wrapped_action_spec = env.action_spec() self._action_spec = specs.BoundedArray(wrapped_action_spec.shape, dtype, wrapped_action_spec.minimum, wrapped_action_spec.maximum, 'action') def action_spec(self) -> specs.BoundedArray: return self._action_spec def step(self, action) -> Any: action = action.astype(self._env.action_spec().dtype) return self._env.step(action) class ObservationDTypeWrapper(EnvWrapper): def __init__(self, env: Env, dtype) -> None: super().__init__(env) self._dtype = dtype wrapped_obs_spec = env.observation_spec()['observations'] self._obs_spec = specs.Array(wrapped_obs_spec.shape, dtype, 'observation') def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: obs = time_step.observation['observations'].astype(self._dtype) return time_step._replace(observation=obs) def observation_spec(self) -> Any: return self._obs_spec class ExtendedGoalTimeStepWrapper(EnvWrapper): def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: if action is None: action_spec = self.action_spec() action = np.zeros(action_spec.shape, dtype=action_spec.dtype) assert isinstance(time_step, GoalTimeStep) ts = ExtendedGoalTimeStep(observation=time_step.observation, step_type=time_step.step_type, action=action, reward=time_step.reward or 0.0, discount=time_step.discount or 1.0, goal=time_step.goal) return super()._augment_time_step(time_step=ts, action=action) class ExtendedTimeStepWrapper(EnvWrapper): def _augment_time_step(self, time_step: TimeStep, action: tp.Optional[np.ndarray] = None) -> TimeStep: if action is None: action_spec = self.action_spec() action = np.zeros(action_spec.shape, dtype=action_spec.dtype) ts = ExtendedTimeStep(observation=time_step.observation, step_type=time_step.step_type, action=action, reward=time_step.reward or 0.0, discount=time_step.discount or 1.0) return super()._augment_time_step(time_step=ts, action=action) def _make_jaco(obs_type, domain, task, frame_stack, action_repeat, seed, goal_space: tp.Optional[str] = None, append_goal_to_observation: bool = False ) -> FlattenJacoObservationWrapper: env = cdmc.make_jaco(task, obs_type, seed) if goal_space is not None: # inline because circular import from url_benchmark import goals as _goals # pytlint: disable=import-outside-toplevel funcs = _goals.goal_spaces.funcs[domain] if goal_space not in funcs: raise ValueError(f"No goal space {goal_space} for {domain}, avail: {list(funcs)}") goal_func = funcs[goal_space] env = GoalWrapper(env, goal_func, append_goal_to_observation=append_goal_to_observation) env = ActionDTypeWrapper(env, np.float32) env = ActionRepeatWrapper(env, action_repeat) env = FlattenJacoObservationWrapper(env) return env def _make_dmc(obs_type, domain, task, frame_stack, action_repeat, seed, goal_space: tp.Optional[str] = None, append_goal_to_observation: bool = False): visualize_reward = False if (domain, task) in suite.ALL_TASKS: env = suite.load(domain, task, task_kwargs=dict(random=seed), environment_kwargs=dict(flat_observation=True), visualize_reward=visualize_reward) else: env = cdmc.make(domain, task, task_kwargs=dict(random=seed), environment_kwargs=dict(flat_observation=True), visualize_reward=visualize_reward) if goal_space is not None: # inline because circular import from url_benchmark import goals as _goals # pytlint: disable=import-outside-toplevel funcs = _goals.goal_spaces.funcs[domain] if goal_space not in funcs: raise ValueError(f"No goal space {goal_space} for {domain}, avail: {list(funcs)}") goal_func = funcs[goal_space] env = GoalWrapper(env, goal_func, append_goal_to_observation=append_goal_to_observation) env = ActionDTypeWrapper(env, np.float32) env = ActionRepeatWrapper(env, action_repeat) if obs_type == 'pixels': # zoom in camera for quadruped camera_id = dict(quadruped=2).get(domain, 0) render_kwargs = dict(height=84, width=84, camera_id=camera_id) env = pixels.Wrapper(env, pixels_only=True, render_kwargs=render_kwargs) return env def make( name: str, obs_type='states', frame_stack=1, action_repeat=1, seed=1, goal_space: tp.Optional[str] = None, append_goal_to_observation: bool = False ) -> EnvWrapper: if append_goal_to_observation and goal_space is None: raise ValueError("Cannot append goal space since none is defined") assert obs_type in ['states', 'pixels'] if name.startswith('point_mass_maze'): domain = 'point_mass_maze' _, _, _, task = name.split('_', 3) else: domain, task = name.split('_', 1) domain = dict(cup='ball_in_cup').get(domain, domain) if sys.platform == "darwin": raise UnsupportedPlatform("Mac platform is not supported") make_fn = _make_jaco if domain == 'jaco' else _make_dmc # TODO fix this when it fails (signatures differ) env = make_fn(obs_type, domain, task, frame_stack, action_repeat, seed, goal_space=goal_space, append_goal_to_observation=append_goal_to_observation) # type: ignore if obs_type == 'pixels': env = FrameStackWrapper(env, frame_stack) else: env = ObservationDTypeWrapper(env, np.float32) env = action_scale.Wrapper(env, minimum=-1.0, maximum=+1.0) if goal_space is not None: env = ExtendedGoalTimeStepWrapper(env) else: env = ExtendedTimeStepWrapper(env) return env def extract_physics(env: Env) -> tp.Dict[str, float]: """Extract some physics available in the env""" output = {} names = ["torso_height", "torso_upright", "horizontal_velocity", "torso_velocity"] for name in names: if not hasattr(env.physics, name): continue val: tp.Union[float, np.ndarray] = getattr(env.physics, name)() if isinstance(val, (int, float)) or not val.ndim: output[name] = float(val) else: for k, v in enumerate(val): output[f"{name}#{k}"] = float(v) return output class FloatStats: """Handle for keeping track of the statistics of a float variable""" def __init__(self) -> None: self.min = np.inf self.max = -np.inf self.mean = 0.0 self._count = 0 def add(self, value: float) -> "FloatStats": self.min = min(value, self.min) self.max = max(value, self.max) self._count += 1 self.mean = (self._count - 1) / self._count * self.mean + 1 / self._count * value return self def items(self) -> tp.Iterator[tp.Tuple[str, float]]: for name, val in self.__dict__.items(): if not name.startswith("_"): yield name, val class PhysicsAggregator: """Aggregate stats on the physics of an environment""" def __init__(self) -> None: self.stats: tp.Dict[str, FloatStats] = {} def add(self, env: Env) -> "PhysicsAggregator": phy = extract_physics(env) for key, val in phy.items(): self.stats.setdefault(key, FloatStats()).add(val) return self def dump(self) -> tp.Iterator[tp.Tuple[str, float]]: """Exports all statistics and reset the statistics""" for key, stats in self.stats.items(): for stat, val in stats.items(): yield (f'{key}/{stat}', val) self.stats.clear()
controllable_agent-main
url_benchmark/dmc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pickle from url_benchmark.dmc import TimeStep from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import List import numpy as np from dm_env import StepType import pytest fixed_episode_lengths = [10, 10, 10, 10, 10] variable_episode_lengths = [2, 3, 5, 6, 7] @pytest.mark.parametrize('test_data', [(10, fixed_episode_lengths, None, False, 10), (5, fixed_episode_lengths, None, True, 10), (10, variable_episode_lengths, 8, False, 5), (5, variable_episode_lengths, 8, True, 5)]) def test_avg_episode_length_fixed_length_not_full(test_data) -> None: max_episodes, episode_lengths, max_episode_length, is_full, avg_episode_length = test_data replay_storage = ReplayBuffer( max_episodes=max_episodes, discount=1, future=1, max_episode_length=max_episode_length) meta = {'z': np.ones((3, 3))} for episode_length in episode_lengths: for time_step in _create_dummy_episode(episode_length): replay_storage.add(time_step, meta=meta) assert replay_storage._full == is_full assert replay_storage.avg_episode_length == avg_episode_length @pytest.mark.parametrize('test_data', [(10, 5, 7), (10, 10, 7)]) def test_backward_compatibility(test_data) -> None: max_episodes, episodes_count, episode_length = test_data is_full = max_episodes == episodes_count replay_storage = ReplayBuffer(max_episodes=max_episodes, discount=1, future=1, max_episode_length=episode_length + 1) meta = {'z': np.ones((3, 3))} for _ in range(episodes_count): for time_step in _create_dummy_episode(episode_length): replay_storage.add(time_step, meta=meta) # remove attributes recently added del replay_storage._episodes_length del replay_storage._episodes_selection_probability del replay_storage._is_fixed_episode_length del replay_storage._max_episode_length loaded_replay_storage = pickle.loads(pickle.dumps(replay_storage)) assert loaded_replay_storage._idx == episodes_count%max_episodes assert loaded_replay_storage._full == is_full assert (loaded_replay_storage._episodes_length[:episodes_count]==episode_length).all() assert (loaded_replay_storage._episodes_length[episodes_count:]==0).all() assert loaded_replay_storage._max_episode_length is None def _create_dummy_episode(episode_length: int) -> List[TimeStep]: time_steps = [] for i in range(episode_length+1): step_type = StepType.MID if i == 0: step_type = StepType.FIRST elif i == episode_length: step_type = StepType.LAST time_step = TimeStep(step_type=step_type, observation=np.zeros( (3, 3)), reward=1, discount=1) time_steps.append(time_step) return time_steps
controllable_agent-main
url_benchmark/test_in_memory_replay_buffer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import collections import numpy as np import pytest from url_benchmark import goals def test_basics() -> None: assert "simplified_walker" in goals.goal_spaces.funcs["walker"] assert len(goals.goals.funcs["simplified_walker"]["walker_stand"]()) == 3 @pytest.mark.parametrize("domain,space", [(d, s) for d in goals.goal_spaces.funcs for s in goals.goal_spaces.funcs[d]]) def test_goal_space_extraction(domain: str, space: str) -> None: env = goals._make_env(domain) out = goals.goal_spaces.funcs[domain][space](env) assert isinstance(out, np.ndarray) assert out.dtype == np.float32 for name, func in goals.goals.funcs.get(space, {}).items(): goal = func() assert goal.shape == out.shape, f"Wrong shape for goal {name}" assert goal.dtype == np.float32 @pytest.mark.parametrize("case", (range(goals.QuadrupedReward.NUM_CASES))) def test_quad_rewards(case: int) -> None: reward = goals.QuadrupedReward() reward._case = case out = reward.from_physics(reward._env.physics.get_state()) assert 0 <= out <= 1 def test_quad_pos_rewards() -> None: reward = goals.QuadrupedPosReward() env = goals._make_env("quadruped") env.reset() out = reward.from_physics(env.physics.get_state()) out2 = reward.from_env(env) assert 0 <= out <= 1 assert out == out2, "Should be deterministic" assert reward.get_goal("quad_pos_speed").dtype == np.float32 def test_walker_equation() -> None: reward = goals.WalkerEquation("1 / (1 + abs(x - 2))") env = goals._make_env("walker") env.reset() out = reward.from_physics(env.physics.get_state()) out2 = reward.from_env(env) assert 0 <= out <= 1 assert out == out2, "Should be deterministic" def test_walker_bad_equation() -> None: with pytest.raises(ValueError): goals.WalkerEquation("1 / (1 + os(x - 2))") def test_walker_random_equation() -> None: env = goals._make_env("walker") reward = goals.WalkerRandomReward() out = reward.from_env(env) assert 0 <= out <= 1 def test_dmc_rewards() -> None: env = goals._make_env("quadruped") reward = env.task.get_reward(env.physics) rewarders = {name: goals.get_reward_function(f"quadruped_{name}") for name in ["walk", "stand"]} rewards = {name: r.from_env(env) for name, r in rewarders.items()} assert rewards["stand"] == reward assert rewards["walk"] != reward assert rewarders["stand"].from_physics(env.physics.get_state()) == reward def test_walker_qpos() -> None: env = goals._make_env("walker") env.reset() env.step(np.random.uniform(-1, 1, size=6)) out = goals.goal_spaces.funcs["walker"]["walker_pos_speed"](env) qpos = env.physics.data.qpos assert pytest.approx(qpos[1]) == out[-1], qpos @pytest.mark.parametrize("name,expected", [("walker_pos_speed", 4)]) def test_goal_space_dim(name: str, expected: int) -> None: out = goals.get_goal_space_dim(name) assert out == expected def test_uniquely_named_goal_space() -> None: space_counts = collections.Counter(space for spaces in goals.goal_spaces.funcs.values() for space in spaces) duplicated = {x for x, y in space_counts.items() if y > 1} if duplicated: raise RuntimeError(f"Duplicated goal space names: {duplicated}\n(goal space names need to be unique)") @pytest.mark.parametrize( "string,expected", [ ("(x + y) * z", {"x", "y", "z"}), ("import x;os.system(stuff) # hello", {"import", "x", "os", "system", "stuff"}), ]) def test_extract_variables(string: str, expected: tp.Set[str]) -> None: out = goals.extract_names(string) assert out == expected
controllable_agent-main
url_benchmark/test_goals.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from url_benchmark.goals import DmcReward import torch name = "walker_flip" load_replay_buffer = "/checkpoint/jrapin/ca/buffers/walker_rnd_ddpg_220803.pt" relabeled_replay_file_path = "/private/home/atouati/controllable_agent/datasets/walker/rnd/walker_flip_rnd_ddpg.pt" custom_reward = DmcReward(name) print("loading Replay from %s", load_replay_buffer) with open(load_replay_buffer, 'rb') as f: replay_loader = torch.load(f) replay_loader.relabel(custom_reward) with open(relabeled_replay_file_path, 'wb') as f: torch.save(replay_loader, f)
controllable_agent-main
url_benchmark/relabel_buffer.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import warnings warnings.filterwarnings('ignore', category=DeprecationWarning) import os os.environ['MKL_SERVICE_FORCE_INTEL'] = '1' os.environ['MUJOCO_GL'] = 'egl' from pathlib import Path import dataclasses import typing as tp import hydra from hydra.core.config_store import ConfigStore import torch import omegaconf as omgcf from url_benchmark.pretrain import make_agent from url_benchmark import dmc from url_benchmark import utils from url_benchmark.video import VideoRecorder from url_benchmark import agent as agents from url_benchmark import goals as _goals from typing import Any torch.backends.cudnn.benchmark = True # # # Config # # # @dataclasses.dataclass class PlayConfig: agent: tp.Any # mode reward_free: bool = True # task settings task: str = "walker_stand" obs_type: str = "states" # [states, pixels] frame_stack: int = 3 # only works if obs_type=pixels action_repeat: int = 1 # set to 2 for pixels discount: float = 0.99 goal_space: str = "simplified" # train settings num_train_frames: int = 100010 num_seed_frames: int = 0 # eval eval_every_frames: int = 10000 num_eval_episodes: int = 10 # snapshot snapshot_ts: int = 2000000 snapshot_base_dir: str = omgcf.SI("./pretrained_models") # replay buffer replay_buffer_size: int = 1000000 replay_buffer_num_workers: int = 4 batch_size: int = omgcf.II("agent.batch_size") nstep: int = omgcf.II("agent.nstep") update_encoder: bool = False # should always be true for pre-training # misc seed: int = 1 device: str = "cuda" save_video: bool = True save_train_video: bool = False use_tb: bool = False use_wandb: bool = False use_hiplog: bool = False # experiment experiment: str = "exp" # loaded as base_finetune in finetune.yaml # we keep the yaml since it's easier to configure plugins from it ConfigStore.instance().store(name="workspace_config", node=PlayConfig) # # # Implem # # # class Workspace: def __init__(self, cfg: PlayConfig) -> None: self.work_dir = Path.cwd() print(f'workspace: {self.work_dir}') self.cfg = cfg utils.set_seed_everywhere(cfg.seed) self.device = torch.device(cfg.device) # create envs self.env = dmc.make(cfg.task, cfg.obs_type, cfg.frame_stack, cfg.action_repeat, cfg.seed, cfg.goal_space) # create agent self.agent = make_agent(cfg.obs_type, self.env.observation_spec(), self.env.action_spec(), cfg.num_seed_frames // cfg.action_repeat, cfg.agent) # initialize from pretrained if cfg.snapshot_ts > 0: pretrained_agent = self.load_snapshot()['agent'] self.agent.init_from(pretrained_agent) # create video recorders self.video_recorder = VideoRecorder( self.work_dir if cfg.save_video else None) def play(self) -> None: episode, total_reward = 0, 0.0 eval_until_episode = utils.Until(self.cfg.num_eval_episodes) while eval_until_episode(episode): total_reward = 0 if isinstance(self.agent, agents.FBDDPGAgent): g = _goals.goals.funcs[self.cfg.goal_space][self.cfg.task]() meta = self.agent.get_goal_meta(g) else: meta = self.agent.init_meta() time_step = self.env.reset() self.video_recorder.init(self.env) step = 0 eval_until_step = utils.Until(1000) while eval_until_step(step): # print(f'episode {episode}, step {step}') # while not time_step.last(): with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, meta, 1, eval_mode=True) time_step = self.env.step(action) self.video_recorder.record(self.env) total_reward += time_step.reward # print(time_step.goal[2]) step += 1 episode += 1 print(total_reward) self.video_recorder.save(f'{episode}.mp4') def load_snapshot(self) -> Any: snapshot_base_dir = Path(self.cfg.snapshot_base_dir) # domain, _ = self.cfg.task.split('_', 1) # snapshot_dir = snapshot_base_dir / self.cfg.obs_type / domain / self.cfg.agent.name snapshot_dir = snapshot_base_dir def try_load(): # snapshot = snapshot_dir / str( # seed) / f'snapshot_{self.cfg.snapshot_ts}.pt' snapshot = snapshot_dir / f'snapshot_{self.cfg.snapshot_ts}.pt' # if not snapshot.exists(): # return None with snapshot.open('rb') as f: payload = torch.load(f) return payload # try to load current seed payload = try_load() return payload @hydra.main(config_path='.', config_name='base_config') def main(cfg) -> None: workspace = Workspace(cfg) workspace.play() if __name__ == '__main__': main()
controllable_agent-main
url_benchmark/play_behaviors.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp from pathlib import Path import cv2 import imageio import numpy as np import wandb class VideoRecorder: def __init__(self, root_dir: tp.Optional[tp.Union[str, Path]], render_size: int = 256, fps: int = 20, camera_id: int = 0, use_wandb: bool = False) -> None: self.save_dir: tp.Optional[Path] = None if root_dir is not None: self.save_dir = Path(root_dir) / 'eval_video' self.save_dir.mkdir(exist_ok=True) self.enabled = False self.render_size = render_size self.fps = fps self.frames: tp.List[np.ndarray] = [] self.camera_id = camera_id self.use_wandb = use_wandb def init(self, env, enabled: bool = True) -> None: self.frames = [] self.enabled = self.save_dir is not None and enabled self.record(env) def record(self, env) -> None: if self.enabled: if hasattr(env, 'physics'): if env.physics is not None: frame = env.physics.render(height=self.render_size, width=self.render_size, camera_id=self.camera_id) else: frame = env.base_env.render() else: frame = env.render() self.frames.append(frame) def log_to_wandb(self) -> None: frames = np.transpose(np.array(self.frames), (0, 3, 1, 2)) fps, skip = 6, 8 wandb.log({ 'eval/video': wandb.Video(frames[::skip, :, ::2, ::2], fps=fps, format="gif") }) def save(self, file_name: str) -> None: if self.enabled: if self.use_wandb: self.log_to_wandb() assert self.save_dir is not None path = self.save_dir / file_name imageio.mimsave(str(path), self.frames, fps=self.fps) # type: ignore class TrainVideoRecorder: def __init__(self, root_dir: tp.Optional[tp.Union[str, Path]], render_size: int = 256, fps: int = 20, camera_id: int = 0, use_wandb: bool = False) -> None: self.save_dir: tp.Optional[Path] = None if root_dir is not None: self.save_dir = Path(root_dir) / 'train_video' self.save_dir.mkdir(exist_ok=True) self.enabled = False self.render_size = render_size self.fps = fps self.frames: tp.List[np.ndarray] = [] self.camera_id = camera_id self.use_wandb = use_wandb def init(self, obs, enabled=True) -> None: self.frames = [] self.enabled = self.save_dir is not None and enabled self.record(obs) def record(self, obs) -> None: if self.enabled: frame = cv2.resize(obs[-3:].transpose(1, 2, 0), dsize=(self.render_size, self.render_size), interpolation=cv2.INTER_CUBIC) self.frames.append(frame) def log_to_wandb(self) -> None: frames = np.transpose(np.array(self.frames), (0, 3, 1, 2)) fps, skip = 6, 8 wandb.log({ 'train/video': wandb.Video(frames[::skip, :, ::2, ::2], fps=fps, format="gif") }) def save(self, file_name) -> None: if self.enabled: if self.use_wandb: self.log_to_wandb() assert self.save_dir is not None path = self.save_dir / file_name imageio.mimsave(str(path), self.frames, fps=self.fps) # type: ignore
controllable_agent-main
url_benchmark/video.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import pytest from url_benchmark import dmc from url_benchmark.in_memory_replay_buffer import ReplayBuffer @pytest.mark.parametrize("name,expected", [ ("walker_walk", {'torso_height': 1.3, 'torso_upright': 1.0, 'horizontal_velocity': 0.0}), ("quadruped_walk", {'torso_upright': 1.0, 'torso_velocity#0': 0.0, 'torso_velocity#1': 0.0, 'torso_velocity#2': 0.0}), ]) def test_extract_physics(name: str, expected: tp.Dict[str, float]) -> None: env = dmc.make(name, obs_type="states", frame_stack=1, action_repeat=1, seed=12) phy = dmc.extract_physics(env) assert phy == expected time_step = env.reset() assert time_step.physics.size > 0 # check that it works in the ReplayBuffer rb = ReplayBuffer(12, 0.9, True) rb.add(time_step, {}) assert "physics" in rb._current_episode def test_goal_wrapper() -> None: env = dmc.make("quadruped_walk", obs_type="states", frame_stack=1, action_repeat=1, seed=12, goal_space="simplified_quadruped", append_goal_to_observation=True) out = env.reset() assert out.observation.shape == env.observation_spec().shape env = dmc.make("quadruped_walk", obs_type="states", frame_stack=1, action_repeat=1, seed=12, goal_space="simplified_quadruped", append_goal_to_observation=False) out2 = env.reset() assert out2.observation.shape[0] < out.observation.shape[0] def test_physics_aggregator() -> None: env = dmc.make("walker_walk", obs_type="states", frame_stack=1, action_repeat=1, seed=12) agg = dmc.PhysicsAggregator() agg.add(env) names = [x[0] for x in agg.dump()] assert len(names) == 9 assert not list(agg.dump()) def test_float_stats() -> None: stats = dmc.FloatStats().add(12) assert all(getattr(stats, name) == 12 for name in ["mean", "max", "min"]) stats.add(24) assert stats.min == 12 assert stats.max == 24 assert stats.mean == 18 assert stats._count == 2 stats.add(24) assert stats.mean == 20
controllable_agent-main
url_benchmark/test_dmc.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import enum import dm_env from dm_env import specs import numpy as np import matplotlib.pyplot as plt from url_benchmark.dmc import ExtendedTimeStep class ObservationType(enum.IntEnum): STATE_INDEX = enum.auto() AGENT_ONEHOT = enum.auto() GRID = enum.auto() AGENT_GOAL_POS = enum.auto() AGENT_POS = enum.auto() def build_gridworld_task(task, discount=1.0, penalty_for_walls=0, observation_type=ObservationType.AGENT_POS, max_episode_length=200): """Construct a particular Gridworld layout with start/goal states. Args: task: string name of the task to use. One of {'simple', 'obstacle', 'random_goal'}. discount: Discounting factor included in all Timesteps. penalty_for_walls: Reward added when hitting a wall (should be negative). observation_type: Enum observation type to use. One of: * ObservationType.STATE_INDEX: int32 index of agent occupied tile. * ObservationType.AGENT_ONEHOT: NxN float32 grid, with a 1 where the agent is and 0 elsewhere. * ObservationType.GRID: NxNx3 float32 grid of feature channels. First channel contains walls (1 if wall, 0 otherwise), second the agent position (1 if agent, 0 otherwise) and third goal position (1 if goal, 0 otherwise) * ObservationType.AGENT_GOAL_POS: float32 tuple with (agent_y, agent_x, goal_y, goal_x). max_episode_length: If set, will terminate an episode after this many steps. """ tasks_specifications = { 'simple': { 'layout': [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ], 'start_state': (2, 2), 'randomize_goals': True # 'goal_state': (7, 2) }, 'obstacle': { 'layout': [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, 0, 0, 0, 0, 0, -1, 0, 0, -1], [-1, 0, 0, 0, -1, 0, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ], 'start_state': (2, 2), 'goal_state': (2, 8) }, 'random_goal': { 'layout': [ [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, -1, -1, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, 0, 0, 0, 0, 0, 0, 0, 0, -1], [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1], ], 'start_state': (2, 2), # 'randomize_goals': True }, } return GridWorld( discount=discount, penalty_for_walls=penalty_for_walls, observation_type=observation_type, max_episode_length=max_episode_length, **tasks_specifications[task]) class GridWorld(dm_env.Environment): def __init__(self, layout, start_state, goal_state=None, observation_type=ObservationType.STATE_INDEX, discount=1.0, penalty_for_walls=0, reward_goal=1, max_episode_length=None, randomize_goals=False) -> None: """Build a grid environment. Simple gridworld defined by a map layout, a start and a goal state. Layout should be a NxN grid, containing: * 0: empty * -1: wall * Any other positive value: value indicates reward; episode will terminate Args: layout: NxN array of numbers, indicating the layout of the environment. start_state: Tuple (y, x) of starting location. goal_state: Optional tuple (y, x) of goal location. Will be randomly sampled once if None. observation_type: Enum observation type to use. One of: * ObservationType.STATE_INDEX: int32 index of agent occupied tile. * ObservationType.AGENT_ONEHOT: NxN float32 grid, with a 1 where the agent is and 0 elsewhere. * ObservationType.GRID: NxNx3 float32 grid of feature channels. First channel contains walls (1 if wall, 0 otherwise), second the agent position (1 if agent, 0 otherwise) and third goal position (1 if goal, 0 otherwise) * ObservationType.AGENT_GOAL_POS: float32 tuple with (agent_y, agent_x, goal_y, goal_x) discount: Discounting factor included in all Timesteps. penalty_for_walls: Reward added when hitting a wall (should be negative). reward_goal: Reward added when finding the goal (should be positive). max_episode_length: If set, will terminate an episode after this many steps. randomize_goals: If true, randomize goal at every episode. """ if observation_type not in ObservationType: raise ValueError('observation_type should be a ObservationType instace.') self._layout = np.array(layout) self._start_state = start_state self._state = self._start_state self._number_of_states = np.prod(np.shape(self._layout)) self._discount = discount self._penalty_for_walls = penalty_for_walls self._reward_goal = reward_goal self._observation_type = observation_type self._layout_dims = self._layout.shape self._max_episode_length = max_episode_length self._num_episode_steps = 0 self._randomize_goals = randomize_goals self._goal_state: tp.Tuple[int, int] if goal_state is None: # Randomly sample goal_state if not provided goal_state = self._sample_goal() self.goal_state = goal_state def _sample_goal(self): """Randomly sample reachable non-starting state.""" # Sample a new goal n = 0 max_tries = 1e5 while n < max_tries: goal_state = tuple(np.random.randint(d) for d in self._layout_dims) if goal_state != self._state and self._layout[goal_state] == 0: # Reachable state found! return goal_state n += 1 raise ValueError('Failed to sample a goal state.') @property def number_of_states(self): return self._number_of_states @property def goal_state(self): return self._goal_state @goal_state.setter def goal_state(self, new_goal): if new_goal == self._state or self._layout[new_goal] < 0: raise ValueError('This is not a valid goal!') # Zero out any other goal self._layout[self._layout > 0] = 0 # Setup new goal location self._layout[new_goal] = self._reward_goal self._goal_state = new_goal def set_state(self, x, y): self._state = (y, x) def observation_spec(self): if self._observation_type is ObservationType.AGENT_ONEHOT: return specs.Array( shape=(self._number_of_states, ), dtype=np.float32, name='observation_agent_onehot') elif self._observation_type is ObservationType.GRID: return specs.Array( shape=self._layout_dims + (3,), dtype=np.float32, name='observation_grid') elif self._observation_type is ObservationType.AGENT_POS: return specs.Array( shape=(2,), dtype=np.float32, name='observation_agent_pos') elif self._observation_type is ObservationType.AGENT_GOAL_POS: return specs.Array( shape=(4,), dtype=np.float32, name='observation_agent_goal_pos') elif self._observation_type is ObservationType.STATE_INDEX: return specs.DiscreteArray( self._number_of_states, dtype=int, name='observation_state_index') def action_spec(self): return specs.DiscreteArray(5, dtype=int, name='action') def get_state(self): return self._state def get_goal_obs(self): if self._observation_type is ObservationType.AGENT_ONEHOT: obs = np.zeros(self._layout.shape, dtype=np.float32) # Place agent obs[self._goal_state] = 1 return obs.flatten() elif self._observation_type is ObservationType.AGENT_POS: return np.array(self._goal_state, dtype=np.float32) / np.array(self._layout.shape, dtype=np.float32) elif self._observation_type is ObservationType.STATE_INDEX: y, x = self._goal_state return y * self._layout.shape[1] + x def get_obs(self): if self._observation_type is ObservationType.AGENT_ONEHOT: obs = np.zeros(self._layout.shape, dtype=np.float32) # Place agent obs[self._state] = 1 return obs.flatten() elif self._observation_type is ObservationType.GRID: obs = np.zeros(self._layout.shape + (3,), dtype=np.float32) obs[..., 0] = self._layout < 0 obs[self._state[0], self._state[1], 1] = 1 obs[self._goal_state[0], self._goal_state[1], 2] = 1 return obs elif self._observation_type is ObservationType.AGENT_POS: return np.array(self._state, dtype=np.float32) / np.array(self._layout.shape, dtype=np.float32) elif self._observation_type is ObservationType.AGENT_GOAL_POS: return np.array(self._state + self._goal_state, dtype=np.float32) elif self._observation_type is ObservationType.STATE_INDEX: y, x = self._state return y * self._layout.shape[1] + x def reset(self): self._state = self._start_state self._num_episode_steps = 0 if self._randomize_goals: self.goal_state = self._sample_goal() return ExtendedTimeStep( step_type=dm_env.StepType.FIRST, action=0, reward=0.0, discount=1, observation=self.get_obs()) def step(self, action): y, x = self._state if action == 0: # up new_state = (y - 1, x) elif action == 1: # right new_state = (y, x + 1) elif action == 2: # down new_state = (y + 1, x) elif action == 3: # left new_state = (y, x - 1) elif action == 4: # stay new_state = (y, x) else: raise ValueError( 'Invalid action: {} is not 0, 1, 2, 3, or 4.'.format(action)) new_y, new_x = new_state step_type = dm_env.StepType.MID if self._layout[new_y, new_x] == -1: # wall reward = self._penalty_for_walls discount = self._discount new_state = (y, x) elif self._layout[new_y, new_x] == 0: # empty cell reward = 0. discount = self._discount else: # a goal reward = self._layout[new_y, new_x] ## if we choose de terminate # discount = 0. # new_state = self._start_state # step_type = dm_env.StepType.LAST discount = self._discount self._state = new_state self._num_episode_steps += 1 if (self._max_episode_length is not None and self._num_episode_steps >= self._max_episode_length): step_type = dm_env.StepType.LAST return ExtendedTimeStep( step_type=step_type, action=action, reward=np.float32(reward), discount=discount, observation=self.get_obs()) def plot_grid(self, add_start=True): asbestos = (127 / 255, 140 / 255, 141 / 255, 0.8) dodger_blue = (25 / 255, 140 / 255, 255 / 255, 0.8) # carrot = (235 / 255, 137 / 255, 33 / 255, 0.8) grid_kwargs = {'color': (220 / 255, 220 / 255, 220 / 255, 0.5)} # marker_style = dict(linestyle=':', color=carrot, markersize=20) plt.figure(figsize=(4, 4)) img = np.ones((self._layout.shape[0], self._layout.shape[1], 4)) wall_y, wall_x = np.where(self._layout <= -1) for i in range(len(wall_y)): img[wall_y[i], wall_x[i]] = np.array(asbestos) plt.imshow(img, interpolation=None) # plt.imshow(self._layout <= -1, interpolation='nearest') ax = plt.gca() ax.grid(0) plt.xticks([]) plt.yticks([]) # Add start/goal if add_start: plt.text( self._start_state[1], self._start_state[0], r'$\mathbf{S}$', fontsize=16, ha='center', va='center') plt.text( self._goal_state[1], self._goal_state[0], r'$\mathbf{G}$', fontsize=16, ha='center', va='center', color=dodger_blue) h, w = self._layout.shape for y in range(h - 1): plt.plot([-0.5, w - 0.5], [y + 0.5, y + 0.5], **grid_kwargs) for x in range(w - 1): plt.plot([x + 0.5, x + 0.5], [-0.5, h - 0.5], **grid_kwargs) def render(self, return_rgb=True): carrot = (235 / 255, 137 / 255, 33 / 255, 0.8) self.plot_grid(add_start=False) # Add the agent location plt.text( self._state[1], self._state[0], u'😃', fontname='symbola', fontsize=18, ha='center', va='center', color=carrot) if return_rgb: fig = plt.gcf() plt.axis('tight') plt.subplots_adjust(0, 0, 1, 1, 0, 0) fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') w, h = fig.canvas.get_width_height() data = data.reshape((h, w, 3)) plt.close(fig) return data def plot_policy(self, policy): action_names = [ r'$\uparrow$', r'$\rightarrow$', r'$\downarrow$', r'$\leftarrow$' ] self.plot_grid() plt.title('Policy Visualization') h, w = self._layout.shape for y in range(h): for x in range(w): # if ((y, x) != self._start_state) and ((y, x) != self._goal_state): if (y, x) != self._goal_state: action_name = action_names[policy[y, x]] plt.text(x, y, action_name, ha='center', va='center') def plot_greedy_policy(self, q): greedy_actions = np.argmax(q, axis=2) self.plot_policy(greedy_actions)
controllable_agent-main
url_benchmark/gridworld/env.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree.
controllable_agent-main
url_benchmark/gridworld/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import pdb import copy import math import logging import dataclasses from collections import OrderedDict import typing as tp from pathlib import Path import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark import utils from url_benchmark.in_memory_replay_buffer import ReplayBuffer from .ddpg import MetaDict from .ddpg import Encoder from .fb_modules import Actor, DiagGaussianActor, ForwardMap, BackwardMap, mlp, OnlineCov from url_benchmark.dmc import TimeStep from url_benchmark import goals as _goals logger = logging.getLogger(__name__) @dataclasses.dataclass class SFAgentConfig: # @package agent _target_: str = "url_benchmark.agent.sf.SFAgent" name: str = "sf" # reward_free: ${reward_free} obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 lr_coef: float = 5 sf_target_tau: float = 0.01 # 0.001-0.01 update_every_steps: int = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING # ??? # to be specified later num_inference_steps: int = 5120 hidden_dim: int = 1024 # 128, 2048 backward_hidden_dim: int = 512 # 128, 2048 feature_dim: int = 512 # 128, 1024 z_dim: int = 100 # 30-200 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" # 0, 0.1, 0.2 stddev_clip: float = 0.3 # 1 update_z_every_step: int = 100 nstep: int = 1 batch_size: int = 1024 init_sf: bool = True update_encoder: bool = omegaconf.II("update_encoder") # ${update_encoder} goal_space: tp.Optional[str] = omegaconf.II("goal_space") # ortho_coef: float = 0.1 # 0.01-10 log_std_bounds: tp.Tuple[float, float] = (-5, 2) # param for DiagGaussianActor temp: float = 1 # temperature for DiagGaussianActor boltzmann: bool = False # set to true for DiagGaussianActor debug: bool = False preprocess: bool = True num_sf_updates: int = 1 feature_learner: str = "icm" mix_ratio: float = 0.0 q_loss: bool = True update_cov_every_step: int = 1000 add_trunk: bool = False cs = ConfigStore.instance() cs.store(group="agent", name="sf", node=SFAgentConfig) class FeatureLearner(nn.Module): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__() self.feature_net: nn.Module = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): return None class Identity(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.feature_net = nn.Identity() class Laplacian(FeatureLearner): def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del action del future_obs phi = self.feature_net(obs) next_phi = self.feature_net(next_obs) loss = (phi - next_phi).pow(2).mean() Cov = torch.matmul(phi, phi.T) I = torch.eye(*Cov.size(), device=Cov.device) off_diag = ~I.bool() orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag loss += orth_loss return loss class ContrastiveFeature(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.apply(utils.weight_init) # self.W = nn.Linear(z_dim, z_dim, bias=False) # nn.init.orthogonal_(self.W.weight.data, 1) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del action del next_obs assert future_obs is not None # phi = self.feature_net(obs) # future_phi = self.feature_net(future_obs) # phi = F.normalize(phi, dim=1) # future_phi = F.normalize(future_phi, dim=1) phi = self.feature_net(obs) future_mu = self.mu_net(future_obs) phi = F.normalize(phi, dim=1) future_mu = F.normalize(future_mu, dim=1) logits = torch.einsum('sd, td-> st', phi, future_mu) # batch x batch I = torch.eye(*logits.size(), device=logits.device) off_diag = ~I.bool() logits_off_diag = logits[off_diag].reshape(logits.shape[0], logits.shape[0] - 1) loss = - logits.diag() + torch.logsumexp(logits_off_diag, dim=1) loss = loss.mean() return loss # loss = - logits.diag().mean() + 0.5 * logits[off_diag].pow(2).mean() # orthonormality loss # Cov = torch.matmul(phi, phi.T) # I = torch.eye(*Cov.size(), device=Cov.device) # off_diag = ~I.bool() # orth_loss_diag = - 2 * Cov.diag().mean() # orth_loss_offdiag = Cov[off_diag].pow(2).mean() # orth_loss = orth_loss_offdiag + orth_loss_diag # loss += orth_loss # normalize to compute cosine distance # phi = F.normalize(phi, dim=1) # future_phi = F.normalize(future_phi, dim=1) # logits = torch.einsum('sd, td-> st', phi, future_phi) # batch x batch # labels = torch.eye(*logits.size(), out=torch.empty_like(logits)) # # - labels * torch.log(torch.sigmoid(logits)) - (1 - labels) * torch.log(1 - torch.sigmoid(logits)) # loss = F.binary_cross_entropy(torch.sigmoid(logits), labels) class ContrastiveFeaturev2(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.apply(utils.weight_init) # self.W = nn.Linear(z_dim, z_dim, bias=False) # nn.init.orthogonal_(self.W.weight.data, 1) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del action del next_obs assert future_obs is not None # phi = self.feature_net(obs) # future_phi = self.feature_net(future_obs) # phi = F.normalize(phi, dim=1) # future_phi = F.normalize(future_phi, dim=1) future_phi = self.feature_net(future_obs) mu = self.mu_net(obs) future_phi = F.normalize(future_phi, dim=1) mu = F.normalize(mu, dim=1) logits = torch.einsum('sd, td-> st', mu, future_phi) # batch x batch I = torch.eye(*logits.size(), device=logits.device) off_diag = ~I.bool() logits_off_diag = logits[off_diag].reshape(logits.shape[0], logits.shape[0] - 1) loss = - logits.diag() + torch.logsumexp(logits_off_diag, dim=1) loss = loss.mean() return loss class ICM(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) # self.forward_dynamic_net = mlp(z_dim + action_dim, hidden_dim, 'irelu', hidden_dim, 'irelu', z_dim) self.inverse_dynamic_net = mlp(2 * z_dim, hidden_dim, 'irelu', hidden_dim, 'irelu', action_dim, 'tanh') self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(obs) next_phi = self.feature_net(next_obs) # predicted_next_obs = self.forward_dynamic_net(torch.cat([phi, action], dim=-1)) # forward_error = (next_phi.detach() - predicted_next_obs).pow(2).mean() predicted_action = self.inverse_dynamic_net(torch.cat([phi, next_phi], dim=-1)) backward_error = (action - predicted_action).pow(2).mean() icm_loss = backward_error # icm_loss = forward_error + backward_error return icm_loss class TransitionModel(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.forward_dynamic_net = mlp(z_dim + action_dim, hidden_dim, 'irelu', hidden_dim, 'irelu', obs_dim) self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(obs) predicted_next_obs = self.forward_dynamic_net(torch.cat([phi, action], dim=-1)) forward_error = (predicted_next_obs - next_obs).pow(2).mean() return forward_error class TransitionLatentModel(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.forward_dynamic_net = mlp(z_dim + action_dim, hidden_dim, 'irelu', hidden_dim, 'irelu', z_dim) self.target_feature_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(obs) with torch.no_grad(): next_phi = self.target_feature_net(next_obs) predicted_next_obs = self.forward_dynamic_net(torch.cat([phi, action], dim=-1)) forward_error = (predicted_next_obs - next_phi.detach()).pow(2).mean() utils.soft_update_params(self.feature_net, self.target_feature_net, 0.01) return forward_error class AutoEncoder(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.decoder = mlp(z_dim, hidden_dim, 'irelu', hidden_dim, 'irelu', obs_dim) self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs del next_obs del action phi = self.feature_net(obs) predicted_obs = self.decoder(phi) reconstruction_error = (predicted_obs - obs).pow(2).mean() return reconstruction_error class SVDSR(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.target_feature_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.target_mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(obs) mu = self.mu_net(next_obs) SR = torch.einsum("sd, td -> st", phi, mu) with torch.no_grad(): target_phi = self.target_feature_net(next_obs) target_mu = self.target_mu_net(next_obs) target_SR = torch.einsum("sd, td -> st", target_phi, target_mu) I = torch.eye(*SR.size(), device=SR.device) off_diag = ~I.bool() loss = - 2 * SR.diag().mean() + (SR - 0.99 * target_SR.detach())[off_diag].pow(2).mean() # orthonormality loss Cov = torch.matmul(phi, phi.T) I = torch.eye(*Cov.size(), device=Cov.device) off_diag = ~I.bool() orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag loss += orth_loss utils.soft_update_params(self.feature_net, self.target_feature_net, 0.01) utils.soft_update_params(self.mu_net, self.target_mu_net, 0.01) return loss class SVDSRv2(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.target_feature_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.target_mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(next_obs) mu = self.mu_net(obs) SR = torch.einsum("sd, td -> st", mu, phi) with torch.no_grad(): target_phi = self.target_feature_net(next_obs) target_mu = self.target_mu_net(next_obs) target_SR = torch.einsum("sd, td -> st", target_mu, target_phi) I = torch.eye(*SR.size(), device=SR.device) off_diag = ~I.bool() loss = - 2 * SR.diag().mean() + (SR - 0.98 * target_SR.detach())[off_diag].pow(2).mean() # orthonormality loss Cov = torch.matmul(phi, phi.T) I = torch.eye(*Cov.size(), device=Cov.device) off_diag = ~I.bool() orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag loss += orth_loss utils.soft_update_params(self.feature_net, self.target_feature_net, 0.01) utils.soft_update_params(self.mu_net, self.target_mu_net, 0.01) return loss class SVDP(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) self.mu_net = mlp(obs_dim + action_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(next_obs) mu = self.mu_net(torch.cat([obs, action], dim=1)) P = torch.einsum("sd, td -> st", mu, phi) I = torch.eye(*P.size(), device=P.device) off_diag = ~I.bool() loss = - 2 * P.diag().mean() + P[off_diag].pow(2).mean() # orthonormality loss Cov = torch.matmul(phi, phi.T) I = torch.eye(*Cov.size(), device=Cov.device) off_diag = ~I.bool() orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag loss += orth_loss return loss class FBFeatures(FeatureLearner): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__(obs_dim, action_dim, z_dim, hidden_dim) pt = Path("/private/home/atouati/controllable_agent/url_benchmark/exp_sweep/2022.08.03/" "161531_fb_ddpg_point_mass_maze_reach_top_right_offline/1/models/snapshot_1000000.pt") print(f"loading {pt.resolve()}") with pt.open("rb") as f: payload = torch.load(f) self.fb_agent = payload["agent"] self.feature_net = self.fb_agent.backward_net self.feature_net.eval() class SFAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = SFAgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None # models if cfg.obs_type == 'pixels': self.aug: nn.Module = utils.RandomShiftsAug(pad=4) self.encoder: nn.Module = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") goal_dim = self.obs_dim if cfg.goal_space is not None: g = next(iter(_goals.goals.funcs[cfg.goal_space].values()))() assert len(g.shape) == 1 goal_dim = len(g) if cfg.z_dim < goal_dim: logger.warning(f"z_dim {cfg.z_dim} should not be smaller that goal_dim {goal_dim}") if cfg.feature_learner == "identity": cfg.z_dim = goal_dim self.cfg.z_dim = goal_dim # create the network if self.cfg.boltzmann: self.actor: nn.Module = DiagGaussianActor(cfg.obs_type, self.obs_dim, cfg.z_dim, self.action_dim, cfg.hidden_dim, cfg.log_std_bounds).to(cfg.device) else: self.actor = Actor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.successor_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) # build up the target network self.successor_target_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) learner = dict(icm=ICM, transition=TransitionModel, latent=TransitionLatentModel, contrastive=ContrastiveFeature, autoencoder=AutoEncoder, lap=Laplacian, random=FeatureLearner, FB=FBFeatures, svd_sr=SVDSR, svd_p=SVDP, contrastivev2=ContrastiveFeaturev2, svd_srv2=SVDSRv2, identity=Identity)[self.cfg.feature_learner] self.feature_learner = learner(goal_dim, self.action_dim, cfg.z_dim, cfg.backward_hidden_dim).to(cfg.device) # if cfg.debug: # self.feature_learner: nn.Module = IdentityMap().to(cfg.device) # self.feature_net = BackwardMap(cfg.obs_type, goal_dim, cfg.z_dim, cfg.backward_hidden_dim).to(cfg.device) # load the weights into the target networks self.successor_target_net.load_state_dict(self.successor_net.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.sf_opt = torch.optim.Adam(self.successor_net.parameters(), lr=cfg.lr) self.phi_opt: tp.Optional[torch.optim.Adam] = None if cfg.feature_learner not in ["random", "FB", "identity"]: self.phi_opt = torch.optim.Adam(self.feature_learner.parameters(), lr=cfg.lr_coef * cfg.lr) self.train() self.successor_target_net.train() self.inv_cov = torch.eye(self.cfg.z_dim, dtype=torch.float32, device=self.cfg.device) # self.online_cov = OnlineCov(mom=0.99, dim=self.cfg.z_dim).to(self.cfg.device) # self.online_cov.train() def train(self, training: bool = True) -> None: self.training = training for net in [self.encoder, self.actor, self.successor_net]: net.train(training) if self.phi_opt is not None: self.feature_learner.train() def init_from(self, other) -> None: # copy parameters over names = ["encoder", "actor"] if self.cfg.init_sf: names += ["successor_net", "feature_learner", "successor_target_net"] for name in names: utils.hard_update_params(getattr(other, name), getattr(self, name)) for key, val in self.__dict__.items(): if isinstance(val, torch.optim.Optimizer): val.load_state_dict(copy.deepcopy(getattr(other, key).state_dict())) def precompute_cov(self, replay_loader: ReplayBuffer) -> None: print("computing Cov of phi to be used at inference") obs_list = [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = batch.next_goal if self.cfg.goal_space is not None else batch.next_obs if obs is None: raise ValueError("Obs should never be None") obs_list.append(obs) batch_size += batch.next_obs.size(0) obs = torch.cat(obs_list, 0) self.inv_cov = self._compute_cov(obs) # with torch.no_grad(): # phi = self.feature_learner.feature_net(obs) # cov = torch.matmul(phi.T, phi) / phi.shape[0] # self.inv_cov = torch.linalg.pinv(cov) def _compute_cov(self, goal: torch.Tensor) -> torch.Tensor: # compute inverse of cov of phi with torch.no_grad(): phi = self.feature_learner.feature_net(goal) cov = torch.matmul(phi.T, phi) / phi.shape[0] inv_cov = torch.linalg.pinv(cov) return inv_cov def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: # assert self.cfg.feature_learner in ["FB"] desired_goal = torch.tensor(goal_array).unsqueeze(0).to(self.cfg.device) with torch.no_grad(): z = self.feature_learner.feature_net(desired_goal) z = torch.matmul(z, self.inv_cov) # 1 x z_dim z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) z = z.squeeze(0).cpu().numpy() meta = OrderedDict() meta['z'] = z return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list = [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_and_rewards(obs, reward) def infer_meta_from_obs_and_rewards(self, obs: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) with torch.no_grad(): phi = self.feature_learner.feature_net(obs) z = torch.linalg.lstsq(phi, reward).solution # z_dim x 1 z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=0) # be careful to the dimension meta = OrderedDict() meta['z'] = z.squeeze().cpu().numpy() # self.solved_meta = meta return meta def sample_z(self, size): gaussian_rdv = torch.randn((size, self.cfg.z_dim), dtype=torch.float32) z = math.sqrt(self.cfg.z_dim) * F.normalize(gaussian_rdv, dim=1) return z def init_meta(self) -> MetaDict: if self.solved_meta is not None: print('solved_meta') return self.solved_meta else: z = self.sample_z(1) z = z.squeeze().numpy() meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_z_every_step == 0: return self.init_meta() return meta def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device).unsqueeze(0) # type: ignore h = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore if self.cfg.boltzmann: dist = self.actor(h, z) else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(h, z, stddev) if eval_mode: action = dist.mean else: action = dist.sample() if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def update_sf( self, obs: torch.Tensor, goal: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, next_goal: torch.Tensor, future_goal: tp.Optional[torch.Tensor], z: torch.Tensor, step: int ) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} # compute target successor measure with torch.no_grad(): if self.cfg.boltzmann: dist = self.actor(next_obs, z) next_action = dist.sample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, z, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) next_F1, next_F2 = self.successor_target_net(next_obs, z, next_action) # batch x z_dim target_phi = self.feature_learner.feature_net(next_goal).detach() # batch x z_dim next_Q1, next_Q2 = [torch.einsum('sd, sd -> s', next_Fi, z) for next_Fi in [next_F1, next_F2]] next_F = torch.where((next_Q1 < next_Q2).reshape(-1, 1), next_F1, next_F2) target_F = target_phi + discount * next_F F1, F2 = self.successor_net(obs, z, action) if not self.cfg.q_loss: # compute SF loss sf_loss = F.mse_loss(F1, target_F) + F.mse_loss(F2, target_F) else: # alternative loss Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, z) for Fi in [F1, F2]] target_Q = torch.einsum('sd, sd -> s', target_F, z) sf_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) # sf_loss /= self.cfg.z_dim # compute feature loss phi_loss = self.feature_learner(obs=goal, action=action, next_obs=next_goal, future_obs=future_goal) if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['target_F'] = target_F.mean().item() metrics['F1'] = F1.mean().item() metrics['phi'] = target_phi.mean().item() metrics['phi_norm'] = torch.norm(target_phi, dim=-1).mean().item() metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['sf_loss'] = sf_loss.item() if phi_loss is not None: metrics['phi_loss'] = phi_loss.item() if isinstance(self.sf_opt, torch.optim.Adam): metrics["sf_opt_lr"] = self.sf_opt.param_groups[0]["lr"] # if self.cfg.goal_space in ["simplified_walker", "simplified_quadruped"]: # metrics['max_velocity'] = goal_prime[:, -1].max().item() # optimize SF if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.sf_opt.zero_grad(set_to_none=True) sf_loss.backward() self.sf_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() # optimise phi if self.phi_opt is not None: self.phi_opt.zero_grad(set_to_none=True) phi_loss.backward() self.phi_opt.step() return metrics def update_actor(self, obs: torch.Tensor, z: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if self.cfg.boltzmann: dist = self.actor(obs, z) action = dist.rsample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, z, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) F1, F2 = self.successor_net(obs, z, action) Q1 = torch.einsum('sd, sd -> s', F1, z) Q2 = torch.einsum('sd, sd -> s', F2, z) Q = torch.min(Q1, Q2) actor_loss = (self.cfg.temp * log_prob - Q).mean() if self.cfg.boltzmann else -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() # metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics def aug_and_encode(self, obs: torch.Tensor) -> torch.Tensor: obs = self.aug(obs) return self.encoder(obs) def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics for _ in range(self.cfg.num_sf_updates): batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = goal = batch.obs action = batch.action discount = batch.discount next_obs = next_goal = batch.next_obs future_goal = batch.future_obs if self.cfg.goal_space: assert batch.goal is not None assert batch.next_goal is not None goal = batch.goal next_goal = batch.next_goal future_goal = batch.future_goal z = self.sample_z(self.cfg.batch_size).to(self.cfg.device) if not z.shape[-1] == self.cfg.z_dim: raise RuntimeError("There's something wrong with the logic here") if self.cfg.mix_ratio > 0: perm = torch.randperm(self.cfg.batch_size) desired_goal = next_goal[perm] with torch.no_grad(): phi = self.feature_learner.feature_net(desired_goal) # compute inverse of cov of phi cov = torch.matmul(phi.T, phi) / phi.shape[0] inv_cov = torch.linalg.pinv(cov) mix_idxs: tp.Any = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.mix_ratio)[0] with torch.no_grad(): new_z = phi[mix_idxs] new_z = torch.matmul(new_z, inv_cov) # batch_size x z_dim new_z = math.sqrt(self.cfg.z_dim) * F.normalize(new_z, dim=1) z[mix_idxs] = new_z metrics.update(self.update_sf(obs=obs, goal=goal, action=action, discount=discount, next_obs=next_obs, next_goal=next_goal, future_goal=future_goal, z=z, step=step)) # update actor metrics.update(self.update_actor(obs, z, step)) # update critic target utils.soft_update_params(self.successor_net, self.successor_target_net, self.cfg.sf_target_tau) # update inv cov # if step % self.cfg.update_cov_every_step == 0: # logger.info("update online cov") # obs_list = list() # batch_size = 0 # while batch_size < 10000: # batch = next(replay_loader) # batch = batch.to(self.cfg.device) # obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) # batch_size += batch.next_obs.size(0) # obs = torch.cat(obs_list, 0) # with torch.no_grad(): # phi = self.feature_learner.feature_net(obs) # self.inv_cov = torch.inverse(self.online_cov(phi)) return metrics
controllable_agent-main
url_benchmark/agent/sf.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import dataclasses import typing as tp import torch from hydra.core.config_store import ConfigStore from .sf import SFAgent, SFAgentConfig @dataclasses.dataclass class DiscreteSFAgentConfig(SFAgentConfig): # @package agent _target_: str = "url_benchmark.agent.discrete_sf.DiscreteSFAgent" name: str = "discrete_sf" cs = ConfigStore.instance() cs.store(group="agent", name="discrete_sf", node=DiscreteSFAgentConfig) class DiscreteSFAgent(SFAgent): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) num_xy = 5 x = y = torch.linspace(-1, 1, num_xy, dtype=torch.float32, device=self.cfg.device) XX, YY = torch.meshgrid(x, y) X = XX.reshape(-1, 1) Y = YY.reshape(-1, 1) self.ACTION_GRID = torch.cat([X, Y], dim=1) def greedy_action(self, obs, z): OBS = obs.repeat(1, self.ACTION_GRID.shape[0]).reshape(self.ACTION_GRID.shape[0] * obs.shape[0], obs.shape[1]) Z = z.repeat(1, self.ACTION_GRID.shape[0]).reshape(self.ACTION_GRID.shape[0] * z.shape[0], z.shape[1]) ACTION = self.ACTION_GRID.repeat(obs.shape[0], 1) F1, F2 = self.successor_net(OBS, Z, ACTION) Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, Z) for Fi in [F1, F2]] Q = torch.min(Q1, Q2) max_idx = Q.reshape(obs.shape[0], self.ACTION_GRID.shape[0]).max(dim=1)[1] return self.ACTION_GRID[max_idx] def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device).unsqueeze(0) # type: ignore obs = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore action = self.greedy_action(obs, z) if not eval_mode: if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def update_actor(self, obs: torch.Tensor, z: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} return metrics def update_sf( # type: ignore self, obs: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, next_goal: torch.Tensor, future_obs: tp.Optional[torch.Tensor], z: torch.Tensor, step: int ) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} # compute target successor measure with torch.no_grad(): next_action = self.greedy_action(next_obs, z) target_F1, target_F2 = self.successor_target_net(next_obs, z, next_action) # batch x z_dim target_phi = self.feature_learner.feature_net(next_goal).detach() # batch x z_dim target_F = torch.min(target_F1, target_F2) target_F = target_phi + discount * target_F # compute SF loss F1, F2 = self.successor_net(obs, z, action) # sf_loss = torch.norm(F1 - target_F, dim=-1, p='fro').mean() # sf_loss += torch.norm(F2 - target_F, dim=-1, p='fro').mean() sf_loss = (F1 - target_F).pow(2).mean() sf_loss += (F2 - target_F).pow(2).mean() # compute feature loss phi_loss = self.feature_learner(obs=obs, action=action, next_obs=next_obs, future_obs=future_obs) if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['target_F'] = target_F.mean().item() metrics['F1'] = F1.mean().item() metrics['phi'] = target_phi.mean().item() metrics['phi_norm'] = torch.norm(target_phi, dim=-1).mean().item() metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['sf_loss'] = sf_loss.item() if phi_loss is not None: metrics['phi_loss'] = phi_loss.item() if isinstance(self.sf_opt, torch.optim.Adam): metrics["sf_opt_lr"] = self.sf_opt.param_groups[0]["lr"] # if self.cfg.goal_space in ["simplified_walker", "simplified_quadruped"]: # metrics['max_velocity'] = goal_prime[:, -1].max().item() # optimize SF if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.sf_opt.zero_grad(set_to_none=True) sf_loss.backward() self.sf_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() # optimise phi if self.phi_opt is not None: self.phi_opt.zero_grad(set_to_none=True) phi_loss.backward() self.phi_opt.step() return metrics
controllable_agent-main
url_benchmark/agent/discrete_sf.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import typing as tp import dataclasses from collections import OrderedDict import logging import numpy as np import torch from torch import nn import torch.nn.functional as F from url_benchmark import utils from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark.dmc import TimeStep from .ddpg import MetaDict from .ddpg import Encoder from .fb_modules import Actor, ForwardMap, mlp from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark import goals as _goals logger = logging.getLogger(__name__) @dataclasses.dataclass class APSAgentConfig: _target_: str = "url_benchmark.agent.new_aps.NEWAPSAgent" name: str = "new_aps" reward_free: bool = omegaconf.II("reward_free") custom_reward: tp.Optional[str] = omegaconf.II("custom_reward") obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 sf_target_tau: float = 0.01 update_every_steps: float = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING hidden_dim: int = 1024 feature_dim: int = 512 backward_hidden_dim: int = 512 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" # "0.2" stddev_clip: str = "0.3" # 1 nstep: int = 1 batch_size: int = 512 # 256 for pixels init_critic: bool = True goal_space: tp.Optional[str] = omegaconf.II("goal_space") preprocess: bool = False update_encoder: bool = omegaconf.II("update_encoder") z_dim: int = 10 update_z_every_step: int = 100 knn_rms: bool = True knn_k: int = 12 knn_avg: bool = True knn_clip: float = 0.0001 num_init_steps: int = 4096 # set to ${num_train_frames} to disable finetune policy parameters num_inference_steps: int = 5120 add_trunk: bool = False lr_coef: float = 1 future_ratio: float = 0 cs = ConfigStore.instance() cs.store(group="agent", name="new_aps", node=APSAgentConfig) class FeatureNet(nn.Module): def __init__(self, obs_dim, z_dim, hidden_dim) -> None: super().__init__() self.net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.apply(utils.weight_init) def forward(self, obs, norm=True): phi = self.net(obs) return F.normalize(phi, dim=1) if norm else phi class FeatureLearner(nn.Module): def __init__(self, obs_dim, z_dim, hidden_dim) -> None: super().__init__() self.feature_net = FeatureNet(obs_dim, z_dim, hidden_dim) def forward(self, obs: torch.Tensor, z: torch.Tensor): """MLE loss""" phi = self.feature_net(obs) loss = -torch.einsum("bd,bd->b", phi, z).mean() return loss class NEWAPSAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ) -> None: cfg = APSAgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None # models if cfg.obs_type == 'pixels': self.aug: nn.Module = utils.RandomShiftsAug(pad=4) self.encoder: nn.Module = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") goal_dim = self.obs_dim if cfg.goal_space is not None: g = next(iter(_goals.goals.funcs[cfg.goal_space].values()))() assert len(g.shape) == 1 goal_dim = len(g) if cfg.z_dim < goal_dim: logger.warning(f"z_dim {cfg.z_dim} should not be smaller that goal_dim {goal_dim}") # create the network self.actor = Actor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.successor_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) # build up the target network self.successor_target_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.feature_learner = FeatureLearner(goal_dim, cfg.z_dim, cfg.backward_hidden_dim).to(cfg.device) # load the weights into the target networks self.successor_target_net.load_state_dict(self.successor_net.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.sf_opt = torch.optim.Adam(self.successor_net.parameters(), lr=cfg.lr) self.phi_opt = torch.optim.Adam(self.feature_learner.parameters(), lr=cfg.lr_coef * cfg.lr) self.train() self.successor_target_net.train() # particle-based entropy rms = utils.RMS(self.cfg.device) self.pbe = utils.PBE(rms, cfg.knn_clip, cfg.knn_k, cfg.knn_avg, cfg.knn_rms, cfg.device) self.inv_cov = torch.eye(self.cfg.z_dim, dtype=torch.float32, device=self.cfg.device) def train(self, training: bool = True) -> None: self.training = training for net in [self.encoder, self.actor, self.successor_net, self.feature_learner]: net.train(training) def sample_z(self, size): gaussian_rdv = torch.randn((size, self.cfg.z_dim), dtype=torch.float32) z = F.normalize(gaussian_rdv, dim=1) return z def init_meta(self) -> MetaDict: if self.solved_meta is not None: print('solved_meta') return self.solved_meta else: z = self.sample_z(1) z = z.squeeze().numpy() meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_z_every_step == 0: return self.init_meta() return meta def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device).unsqueeze(0) # type: ignore h = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(h, z, stddev) if eval_mode: action = dist.mean else: action = dist.sample() if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def precompute_cov(self, replay_loader: ReplayBuffer) -> None: print("computing Cov of phi to be used at inference") obs_list = list() batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = batch.next_goal if self.cfg.goal_space is not None else batch.next_obs if obs is None: raise ValueError("Obs should never be None") obs_list.append(obs) batch_size += batch.next_obs.size(0) obs = torch.cat(obs_list, 0) self.inv_cov = self._compute_cov(obs) # with torch.no_grad(): # phi = self.feature_learner.feature_net(obs) # cov = torch.matmul(phi.T, phi) / phi.shape[0] # self.inv_cov = torch.linalg.pinv(cov) def _compute_cov(self, goal: torch.Tensor) -> torch.Tensor: # compute inverse of cov of phi with torch.no_grad(): phi = self.feature_learner.feature_net(goal) cov = torch.matmul(phi.T, phi) / phi.shape[0] inv_cov = torch.inverse(cov) return inv_cov def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: desired_goal = torch.tensor(goal_array).unsqueeze(0).to(self.cfg.device) with torch.no_grad(): z = self.feature_learner.feature_net(desired_goal) z = torch.matmul(z, self.inv_cov) # 1 x z_dim z = F.normalize(z, dim=1) z = z.squeeze(0).cpu().numpy() meta = OrderedDict() meta['z'] = z return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list = [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_and_rewards(obs, reward) def infer_meta_from_obs_and_rewards(self, obs: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) with torch.no_grad(): phi = self.feature_learner.feature_net(obs) z = torch.linalg.lstsq(phi, reward).solution # z_dim x 1 z = F.normalize(z, dim=0) # be careful to the dimension meta = OrderedDict() meta['z'] = z.squeeze().cpu().numpy() # self.solved_meta = meta return meta def update_phi(self, obs, z, step) -> tp.Dict[str, tp.Any]: metrics: tp.Dict[str, float] = {} loss = self.feature_learner(obs, z) self.phi_opt.zero_grad(set_to_none=True) loss.backward() self.phi_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['phi_loss'] = loss.item() return metrics def compute_intrinsic_reward(self, next_obs, z, step) -> tp.Tuple[tp.Any, tp.Any]: # maxent reward with torch.no_grad(): phi = self.feature_learner.feature_net(next_obs, norm=False) reward = self.pbe(phi) entropy_reward = reward.reshape(-1, 1) # successor feature reward phi = F.normalize(phi, dim=1) diayn_reward = torch.einsum("bi,bi->b", phi, z).reshape(-1, 1) return entropy_reward, diayn_reward def update_critic(self, obs: torch.Tensor, action: torch.Tensor, reward: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, z: torch.Tensor, step: int) -> tp.Dict[str, tp.Any]: """diff is critic takes task as input""" metrics: tp.Dict[str, float] = {} # compute target critic with torch.no_grad(): stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, z, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) next_F1, next_F2 = self.successor_target_net(next_obs, z, next_action) # batch x z_dim next_Q1, next_Q2 = [torch.einsum('sd, sd -> s', next_Fi, z) for next_Fi in [next_F1, next_F2]] next_Q = torch.min(next_Q1, next_Q2) target_Q = reward + discount * next_Q.reshape(-1, 1) target_Q = target_Q.squeeze(1) F1, F2 = self.successor_net(obs, z, action) Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, z) for Fi in [F1, F2]] sf_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) # sf_loss /= self.cfg.z_dim if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['target_Q'] = target_Q.mean().item() metrics['Q1'] = Q1.mean().item() metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['sf_loss'] = sf_loss.item() # optimize SF self.sf_opt.zero_grad(set_to_none=True) sf_loss.backward() self.sf_opt.step() return metrics def update_actor(self, obs: torch.Tensor, z: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, z, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) F1, F2 = self.successor_net(obs, z, action) Q1 = torch.einsum('sd, sd -> s', F1, z) Q2 = torch.einsum('sd, sd -> s', F2, z) Q = torch.min(Q1, Q2) actor_loss = -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() return metrics def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = batch.obs action = batch.action discount = batch.discount reward = batch.reward next_obs = next_goal = batch.next_obs if self.cfg.goal_space is not None: assert batch.next_goal is not None next_goal = batch.next_goal z = batch.meta["z"] assert z.shape[-1] == self.cfg.z_dim if self.cfg.reward_free: # freeze successor features at finetuning phase metrics.update(self.update_phi(next_goal, z, step)) with torch.no_grad(): entropy_reward, diayn_reward = self.compute_intrinsic_reward(next_goal, z, step) intrinsic_reward = entropy_reward + diayn_reward if self.cfg.use_tb or self.cfg.use_wandb: metrics['intrinsic_reward'] = intrinsic_reward.mean().item() metrics['entropy_reward'] = entropy_reward.mean().item() metrics['diayn_reward'] = diayn_reward.mean().item() reward = intrinsic_reward if self.cfg.use_tb or self.cfg.use_wandb: metrics['extrinsic_reward'] = batch.reward.mean().item() # hindsight replay if self.cfg.future_ratio > 0: future_goal = batch.future_goal if self.cfg.goal_space else batch.future_obs assert future_goal is not None future_idxs = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.future_ratio) with torch.no_grad(): phi = self.feature_learner.feature_net(future_goal) # compute inverse of cov of phi cov = torch.matmul(phi.T, phi) / phi.shape[0] inv_cov = torch.linalg.pinv(cov) new_z = phi[future_idxs] new_z = torch.matmul(new_z, inv_cov) # batch_size x z_dim new_z = F.normalize(new_z, dim=1) z[future_idxs] = new_z # update critic metrics.update( self.update_critic(obs=obs, action=action, reward=reward, discount=discount, next_obs=next_obs, z=z, step=step)) # update actor metrics.update(self.update_actor(obs=obs, z=z, step=step)) # update critic target utils.soft_update_params(self.successor_net, self.successor_target_net, self.cfg.sf_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/new_aps.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import pdb import copy import math import logging import dataclasses from collections import OrderedDict import typing as tp import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore from url_benchmark import utils # from url_benchmark import replay_buffer as rb from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark.dmc import TimeStep from url_benchmark import goals as _goals from .ddpg import MetaDict from .fb_modules import IdentityMap from .ddpg import Encoder from .fb_modules import BackwardMap, mlp logger = logging.getLogger(__name__) from .fb_ddpg import FBDDPGAgentConfig @dataclasses.dataclass class DiscreteFBAgentConfig(FBDDPGAgentConfig): # @package agent _target_: str = "url_benchmark.agent.discrete_fb.DiscreteFBAgent" name: str = "discrete_fb" preprocess: bool = False expl_eps: float = 0.2 boltzmann = True temp = 100 cs = ConfigStore.instance() cs.store(group="agent", name="discrete_fb", node=DiscreteFBAgentConfig) class ForwardMap(nn.Module): """ forward representation class""" def __init__(self, obs_dim, z_dim, action_dim, feature_dim, hidden_dim, preprocess=False, add_trunk=True) -> None: super().__init__() self.obs_dim = obs_dim self.z_dim = z_dim self.action_dim = action_dim self.preprocess = preprocess if self.preprocess: self.obs_net = mlp(self.obs_dim, hidden_dim, "ntanh", feature_dim, "irelu") self.obs_z_net = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", feature_dim, "irelu") if not add_trunk: self.trunk: nn.Module = nn.Identity() feature_dim = 2 * feature_dim else: self.trunk = mlp(2 * feature_dim, hidden_dim, "irelu") feature_dim = hidden_dim else: self.trunk = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", hidden_dim, "irelu", hidden_dim, "irelu") feature_dim = hidden_dim seq = [feature_dim, hidden_dim, "irelu", self.z_dim * self.action_dim] self.F1 = mlp(*seq) self.F2 = mlp(*seq) self.apply(utils.weight_init) def forward(self, obs, z): assert z.shape[-1] == self.z_dim if self.preprocess: obs = self.obs_action_net(obs) obs_z = self.obs_z_net(torch.cat([obs, z], dim=-1)) h = torch.cat([obs, obs_z], dim=-1) else: h = torch.cat([obs, z], dim=-1) if hasattr(self, "trunk"): h = self.trunk(h) F1 = self.F1(h) F2 = self.F2(h) return F1.reshape(-1, self.z_dim, self.action_dim), F2.reshape(-1, self.z_dim, self.action_dim) class DiscreteFBAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = DiscreteFBAgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None # models if cfg.obs_type == 'pixels': self.aug: nn.Module = utils.RandomShiftsAug(pad=4) self.encoder: nn.Module = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") goal_dim = self.obs_dim if cfg.goal_space is not None: goal_dim = _goals.get_goal_space_dim(cfg.goal_space) if cfg.z_dim < goal_dim: logger.warning(f"z_dim {cfg.z_dim} should not be smaller that goal_dim {goal_dim}") self.forward_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) if cfg.debug: self.backward_net: nn.Module = IdentityMap().to(cfg.device) self.backward_target_net: nn.Module = IdentityMap().to(cfg.device) else: self.backward_net = BackwardMap(goal_dim, cfg.z_dim, cfg.backward_hidden_dim, norm_z=cfg.norm_z).to( cfg.device) self.backward_target_net = BackwardMap(goal_dim, cfg.z_dim, cfg.backward_hidden_dim, norm_z=cfg.norm_z).to(cfg.device) # build up the target network self.forward_target_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) # load the weights into the target networks self.forward_target_net.load_state_dict(self.forward_net.state_dict()) self.backward_target_net.load_state_dict(self.backward_net.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.fb_opt = torch.optim.Adam([{'params': self.forward_net.parameters()}, # type: ignore {'params': self.backward_net.parameters(), 'lr': cfg.lr_coef * cfg.lr}], lr=cfg.lr) self.train() self.forward_target_net.train() self.backward_target_net.train() def train(self, training: bool = True) -> None: self.training = training for net in [self.encoder, self.forward_net, self.backward_net]: net.train(training) def init_from(self, other) -> None: # copy parameters over names = ["encoder"] if self.cfg.init_fb: names += ["forward_net", "backward_net", "backward_target_net", "forward_target_net"] for name in names: utils.hard_update_params(getattr(other, name), getattr(self, name)) for key, val in self.__dict__.items(): if isinstance(val, torch.optim.Optimizer): val.load_state_dict(copy.deepcopy(getattr(other, key).state_dict())) def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: desired_goal = torch.tensor(goal_array).unsqueeze(0).to(self.cfg.device) with torch.no_grad(): z = self.backward_net(desired_goal) if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) z = z.squeeze(0).cpu().numpy() meta = OrderedDict() meta['z'] = z return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list = [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_and_rewards(obs, reward) def infer_meta_from_obs_and_rewards(self, obs: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) # filter out small reward # pdb.set_trace() # idx = torch.where(reward >= torch.quantile(reward, 0.99))[0] # obs = obs[idx] # reward = reward[idx] with torch.no_grad(): B = self.backward_net(obs) z = torch.matmul(reward.T, B) / reward.shape[0] if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) meta = OrderedDict() meta['z'] = z.squeeze().cpu().numpy() # self.solved_meta = meta return meta def sample_z(self, size, device: str = "cpu"): gaussian_rdv = torch.randn((size, self.cfg.z_dim), dtype=torch.float32, device=device) gaussian_rdv = F.normalize(gaussian_rdv, dim=1) if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * gaussian_rdv else: uniform_rdv = torch.rand((size, self.cfg.z_dim), dtype=torch.float32, device=device) z = np.sqrt(self.cfg.z_dim) * uniform_rdv * gaussian_rdv return z def init_meta(self) -> MetaDict: if self.solved_meta is not None: print('solved_meta') return self.solved_meta else: z = self.sample_z(1) z = z.squeeze().numpy() meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_z_every_step == 0 and np.random.rand() < self.cfg.update_z_proba: return self.init_meta() return meta def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device, dtype=torch.float32).unsqueeze(0) # type: ignore h = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore F1, F2 = self.forward_net(h, z) Q1, Q2 = [torch.einsum('sda, sd -> sa', Fi, z) for Fi in [F1, F2]] Q = torch.min(Q1, Q2) action = Q.max(1)[1] if not eval_mode: if step < self.cfg.num_expl_steps: action = torch.randint_like(action, self.action_dim) else: action = torch.randint_like(action, self.action_dim) \ if np.random.rand() < self.cfg.expl_eps else action return action.item() def update_fb( self, obs: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, next_goal: torch.Tensor, z: torch.Tensor, step: int ) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} # compute target successor measure with torch.no_grad(): # compute greedy action target_F1, target_F2 = self.forward_target_net(next_obs, z) next_Q1, next_Q2 = [torch.einsum('sda, sd -> sa', Fi, z) for Fi in [target_F1, target_F2]] next_Q = torch.min(next_Q1, next_Q2) if self.cfg.boltzmann: pi = F.softmax(next_Q / self.cfg.temp, dim=-1) target_F1, target_F2 = [torch.einsum("sa, sda -> sd", pi, Fi) for Fi in [target_F1, target_F2]] # batch x z_dim next_Q = torch.einsum("sa, sa -> s", pi, next_Q) else: next_action = next_Q.max(1)[1] next_idx = next_action[:, None].repeat(1, self.cfg.z_dim)[:, :, None] target_F1, target_F2 = [Fi.gather(-1, next_idx).squeeze() for Fi in [target_F1, target_F2]] # batch x z_dim next_Q = next_Q.max(1)[0] target_B = self.backward_target_net(next_goal) # batch x z_dim target_M1, target_M2 = [torch.einsum('sd, td -> st', Fi, target_B) \ for Fi in [target_F1, target_F2]] # batch x batch target_M = torch.min(target_M1, target_M2) # compute FB loss idxs = action.repeat(1, self.cfg.z_dim)[:, :, None] F1, F2 = [Fi.gather(-1, idxs).squeeze() for Fi in self.forward_net(obs, z)] B = self.backward_net(next_goal) M1 = torch.einsum('sd, td -> st', F1, B) # batch x batch M2 = torch.einsum('sd, td -> st', F2, B) # batch x batch I = torch.eye(*M1.size(), device=M1.device) off_diag = ~I.bool() fb_offdiag: tp.Any = 0.5 * sum((M - discount * target_M)[off_diag].pow(2).mean() for M in [M1, M2]) fb_diag: tp.Any = -sum(M.diag().mean() for M in [M1, M2]) fb_loss = fb_offdiag + fb_diag # Q LOSS if self.cfg.q_loss: with torch.no_grad(): # next_Q1, nextQ2 = [torch.einsum('sd, sd -> s', target_Fi, z) for target_Fi in [target_F1, target_F2]] # next_Q = torch.min(next_Q1, nextQ2) cov = torch.matmul(B.T, B) / B.shape[0] inv_cov = torch.linalg.pinv(cov) implicit_reward = (torch.matmul(B, inv_cov) * z).sum(dim=1) # batch_size target_Q = implicit_reward.detach() + discount.squeeze(1) * next_Q # batch_size Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, z) for Fi in [F1, F2]] q_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) fb_loss += self.cfg.q_loss_coef * q_loss # ORTHONORMALITY LOSS FOR BACKWARD EMBEDDING Cov = torch.matmul(B, B.T) orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag fb_loss += self.cfg.ortho_coef * orth_loss # Cov = torch.cov(B.T) # Vicreg loss # var_loss = F.relu(1 - Cov.diag().clamp(1e-4, 1).sqrt()).mean() # eps avoids inf. sqrt gradient at 0 # cov_loss = 2 * torch.triu(Cov, diagonal=1).pow(2).mean() # 2x upper triangular part # orth_loss = var_loss + cov_loss # fb_loss += self.cfg.ortho_coef * orth_loss if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['target_M'] = target_M.mean().item() metrics['M1'] = M1.mean().item() metrics['F1'] = F1.mean().item() metrics['B'] = B.mean().item() metrics['B_norm'] = torch.norm(B, dim=-1).mean().item() metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['fb_loss'] = fb_loss.item() metrics['fb_diag'] = fb_diag.item() metrics['fb_offdiag'] = fb_offdiag.item() if self.cfg.q_loss: metrics['q_loss'] = q_loss.item() metrics['orth_loss'] = orth_loss.item() metrics['orth_loss_diag'] = orth_loss_diag.item() metrics['orth_loss_offdiag'] = orth_loss_offdiag.item() if self.cfg.q_loss: metrics['q_loss'] = q_loss.item() eye_diff = torch.matmul(B.T, B) / B.shape[0] - torch.eye(B.shape[1], device=B.device) metrics['orth_linf'] = torch.max(torch.abs(eye_diff)).item() metrics['orth_l2'] = eye_diff.norm().item() / math.sqrt(B.shape[1]) if isinstance(self.fb_opt, torch.optim.Adam): metrics["fb_opt_lr"] = self.fb_opt.param_groups[0]["lr"] # optimize FB if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.fb_opt.zero_grad(set_to_none=True) fb_loss.backward() self.fb_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() return metrics def aug_and_encode(self, obs: torch.Tensor) -> torch.Tensor: obs = self.aug(obs) return self.encoder(obs) def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) # pdb.set_trace() obs = batch.obs action = batch.action.type(torch.int64) discount = batch.discount next_obs = next_goal = batch.next_obs if self.cfg.goal_space is not None: assert batch.next_goal is not None next_goal = batch.next_goal # if len(batch.meta) == 1 and batch.meta[0].shape[-1] == self.cfg.z_dim: # z = batch.meta[0] # invalid = torch.linalg.norm(z, dim=1) < 1e-15 # if sum(invalid): # z[invalid, :] = self.sample_z(sum(invalid)).to(self.cfg.device) # else: z = self.sample_z(self.cfg.batch_size, device=self.cfg.device) if not z.shape[-1] == self.cfg.z_dim: raise RuntimeError("There's something wrong with the logic here") # obs = self.aug_and_encode(batch.obs) # next_obs = self.aug_and_encode(batch.next_obs) # if not self.cfg.update_encoder: # obs = obs.detach() # next_obs = next_obs.detach() backward_input = batch.obs future_goal = batch.future_obs if self.cfg.goal_space is not None: assert batch.goal is not None backward_input = batch.goal future_goal = batch.future_goal perm = torch.randperm(self.cfg.batch_size) backward_input = backward_input[perm] if self.cfg.mix_ratio > 0: mix_idxs: tp.Any = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.mix_ratio)[0] if not self.cfg.rand_weight: with torch.no_grad(): mix_z = self.backward_net(backward_input[mix_idxs]).detach() else: # generate random weight weight = torch.rand(size=(mix_idxs.shape[0], self.cfg.batch_size)).to(self.cfg.device) weight = F.normalize(weight, dim=1) uniform_rdv = torch.rand(mix_idxs.shape[0], 1).to(self.cfg.device) weight = uniform_rdv * weight with torch.no_grad(): mix_z = torch.matmul(weight, self.backward_net(backward_input).detach()) if self.cfg.norm_z: mix_z = math.sqrt(self.cfg.z_dim) * F.normalize(mix_z, dim=1) z[mix_idxs] = mix_z # hindsight replay if self.cfg.future_ratio > 0: assert future_goal is not None future_idxs = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.future_ratio) z[future_idxs] = self.backward_net(future_goal[future_idxs]).detach() metrics.update(self.update_fb(obs=obs, action=action, discount=discount, next_obs=next_obs, next_goal=next_goal, z=z, step=step)) # update critic target utils.soft_update_params(self.forward_net, self.forward_target_net, self.cfg.fb_target_tau) utils.soft_update_params(self.backward_net, self.backward_target_net, self.cfg.fb_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/discrete_fb.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import dataclasses import typing as tp import torch from torch import nn from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark import utils from .ddpg import DDPGAgent from .ddpg import DDPGAgentConfig as _BaseConfig from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import Any, Dict, Tuple @dataclasses.dataclass class ICMAPTAgentConfig(_BaseConfig): _target_: str = "url_benchmark.agent.icm_apt.ICMAPTAgent" name: str = "icm_apt" update_encoder: bool = omegaconf.II("update_encoder") icm_rep_dim: int = 512 icm_scale: float = 1.0 knn_rms: bool = False knn_k: int = 12 knn_avg: bool = True knn_clip: float = 0.0 cs = ConfigStore.instance() cs.store(group="agent", name="icm_apt", node=ICMAPTAgentConfig) class ICM(nn.Module): """ Same as ICM, with a trunk to save memory for KNN """ def __init__(self, obs_dim, action_dim, hidden_dim, icm_rep_dim) -> None: super().__init__() self.trunk = nn.Sequential(nn.Linear(obs_dim, icm_rep_dim), nn.LayerNorm(icm_rep_dim), nn.Tanh()) self.forward_net = nn.Sequential( nn.Linear(icm_rep_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, icm_rep_dim)) self.backward_net = nn.Sequential( nn.Linear(2 * icm_rep_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, action_dim), nn.Tanh()) self.apply(utils.weight_init) def forward(self, obs, action, next_obs) -> Tuple[Any, Any]: assert obs.shape[0] == next_obs.shape[0] assert obs.shape[0] == action.shape[0] obs = self.trunk(obs) next_obs = self.trunk(next_obs) next_obs_hat = self.forward_net(torch.cat([obs, action], dim=-1)) action_hat = self.backward_net(torch.cat([obs, next_obs], dim=-1)) forward_error = torch.norm(next_obs - next_obs_hat, dim=-1, p=2, keepdim=True) backward_error = torch.norm(action - action_hat, dim=-1, p=2, keepdim=True) return forward_error, backward_error def get_rep(self, obs, action) -> Any: rep = self.trunk(obs) return rep class ICMAPTAgent(DDPGAgent): def __init__(self, **kwargs) -> None: cfg = ICMAPTAgentConfig(**kwargs) super().__init__(**kwargs) self.cfg = cfg # override base ddpg cfg type self.icm = ICM(self.obs_dim, self.action_dim, self.hidden_dim, cfg.icm_rep_dim).to(self.device) # optimizers self.icm_opt = torch.optim.Adam(self.icm.parameters(), lr=self.lr) self.icm.train() # particle-based entropy rms = utils.RMS(self.device) self.pbe = utils.PBE(rms, cfg.knn_clip, cfg.knn_k, cfg.knn_avg, cfg.knn_rms, self.device) def update_icm(self, obs, action, next_obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} forward_error, backward_error = self.icm(obs, action, next_obs) loss = forward_error.mean() + backward_error.mean() self.icm_opt.zero_grad() if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.icm_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() if self.use_tb or self.use_wandb: metrics['icm_loss'] = loss.item() return metrics def compute_intr_reward(self, obs, action, next_obs, step) -> Any: rep = self.icm.get_rep(obs, action) reward = self.pbe(rep) reward = reward.reshape(-1, 1) return reward def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) obs, action, extr_reward, discount, next_obs = batch.to(self.device).unpack() # augment and encode obs = self.aug_and_encode(obs) with torch.no_grad(): next_obs = self.aug_and_encode(next_obs) if self.reward_free: metrics.update(self.update_icm(obs, action, next_obs, step)) with torch.no_grad(): intr_reward = self.compute_intr_reward(obs, action, next_obs, step) reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['intr_reward'] = intr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/icm_apt.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import pdb import copy import math import logging import dataclasses from collections import OrderedDict import typing as tp import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from dm_env import specs from url_benchmark import utils # from url_benchmark import replay_buffer as rb from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark.dmc import TimeStep from url_benchmark import goals as _goals from .ddpg import MetaDict from .fb_modules import IdentityMap from .ddpg import Encoder from .fb_modules import Actor, DiagGaussianActor, ForwardMap, BackwardMap, OnlineCov logger = logging.getLogger(__name__) @dataclasses.dataclass class FBDDPGAgentConfig: # @package agent _target_: str = "url_benchmark.agent.fb_ddpg.FBDDPGAgent" name: str = "fb_ddpg" # reward_free: ${reward_free} obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 lr_coef: float = 1 fb_target_tau: float = 0.01 # 0.001-0.01 update_every_steps: int = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING # ??? # to be specified later num_inference_steps: int = 5120 hidden_dim: int = 1024 # 128, 2048 backward_hidden_dim: int = 526 # 512 feature_dim: int = 512 # 128, 1024 z_dim: int = 50 # 100 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" # stddev_clip: float = 0.3 # 1 update_z_every_step: int = 300 update_z_proba: float = 1.0 nstep: int = 1 batch_size: int = 1024 # 512 init_fb: bool = True update_encoder: bool = omegaconf.II("update_encoder") # ${update_encoder} goal_space: tp.Optional[str] = omegaconf.II("goal_space") ortho_coef: float = 1.0 # 0.01-10 log_std_bounds: tp.Tuple[float, float] = (-5, 2) # param for DiagGaussianActor temp: float = 1 # temperature for DiagGaussianActor boltzmann: bool = False # set to true for DiagGaussianActor debug: bool = False future_ratio: float = 0.0 mix_ratio: float = 0.5 # 0-1 rand_weight: bool = False # True, False preprocess: bool = True norm_z: bool = True q_loss: bool = False q_loss_coef: float = 0.01 additional_metric: bool = False add_trunk: bool = False cs = ConfigStore.instance() cs.store(group="agent", name="fb_ddpg", node=FBDDPGAgentConfig) class FBDDPGAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = FBDDPGAgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None # models if cfg.obs_type == 'pixels': self.aug: nn.Module = utils.RandomShiftsAug(pad=4) self.encoder: nn.Module = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") goal_dim = self.obs_dim if cfg.goal_space is not None: goal_dim = _goals.get_goal_space_dim(cfg.goal_space) if cfg.z_dim < goal_dim: logger.warning(f"z_dim {cfg.z_dim} should not be smaller that goal_dim {goal_dim}") # create the network if self.cfg.boltzmann: self.actor: nn.Module = DiagGaussianActor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.hidden_dim, cfg.log_std_bounds).to(cfg.device) else: self.actor = Actor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.forward_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) if cfg.debug: self.backward_net: nn.Module = IdentityMap().to(cfg.device) self.backward_target_net: nn.Module = IdentityMap().to(cfg.device) else: self.backward_net = BackwardMap(goal_dim, cfg.z_dim, cfg.backward_hidden_dim, norm_z=cfg.norm_z).to(cfg.device) self.backward_target_net = BackwardMap(goal_dim, cfg.z_dim, cfg.backward_hidden_dim, norm_z=cfg.norm_z).to(cfg.device) # build up the target network self.forward_target_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) # load the weights into the target networks self.forward_target_net.load_state_dict(self.forward_net.state_dict()) self.backward_target_net.load_state_dict(self.backward_net.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) # params = [p for net in [self.forward_net, self.backward_net] for p in net.parameters()] # self.fb_opt = torch.optim.Adam(params, lr=cfg.lr) self.fb_opt = torch.optim.Adam([{'params': self.forward_net.parameters()}, # type: ignore {'params': self.backward_net.parameters(), 'lr': cfg.lr_coef * cfg.lr}], lr=cfg.lr) self.train() self.forward_target_net.train() self.backward_target_net.train() self.actor_success: tp.List[float] = [] # only for debugging, can be removed eventually # self.inv_cov = torch.eye(self.cfg.z_dim, dtype=torch.float32, device=self.cfg.device) # self.online_cov = OnlineCov(mom=0.99, dim=self.cfg.z_dim).to(self.cfg.device) # self.online_cov.train() def train(self, training: bool = True) -> None: self.training = training for net in [self.encoder, self.actor, self.forward_net, self.backward_net]: net.train(training) def init_from(self, other) -> None: # copy parameters over names = ["encoder", "actor"] if self.cfg.init_fb: names += ["forward_net", "backward_net", "backward_target_net", "forward_target_net"] for name in names: utils.hard_update_params(getattr(other, name), getattr(self, name)) for key, val in self.__dict__.items(): if isinstance(val, torch.optim.Optimizer): val.load_state_dict(copy.deepcopy(getattr(other, key).state_dict())) def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: desired_goal = torch.tensor(goal_array).unsqueeze(0).to(self.cfg.device) with torch.no_grad(): z = self.backward_net(desired_goal) if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) z = z.squeeze(0).cpu().numpy() meta = OrderedDict() meta['z'] = z return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list = [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_and_rewards(obs, reward) def infer_meta_from_obs_and_rewards(self, obs: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) # filter out small reward # pdb.set_trace() # idx = torch.where(reward >= torch.quantile(reward, 0.99))[0] # obs = obs[idx] # reward = reward[idx] with torch.no_grad(): B = self.backward_net(obs) z = torch.matmul(reward.T, B) / reward.shape[0] if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) meta = OrderedDict() meta['z'] = z.squeeze().cpu().numpy() # self.solved_meta = meta return meta def sample_z(self, size, device: str = "cpu"): gaussian_rdv = torch.randn((size, self.cfg.z_dim), dtype=torch.float32, device=device) gaussian_rdv = F.normalize(gaussian_rdv, dim=1) if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * gaussian_rdv else: uniform_rdv = torch.rand((size, self.cfg.z_dim), dtype=torch.float32, device=device) z = np.sqrt(self.cfg.z_dim) * uniform_rdv * gaussian_rdv return z def init_meta(self) -> MetaDict: if self.solved_meta is not None: print('solved_meta') return self.solved_meta else: z = self.sample_z(1) z = z.squeeze().numpy() meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_z_every_step == 0 and np.random.rand() < self.cfg.update_z_proba: return self.init_meta() return meta def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device, dtype=torch.float32).unsqueeze(0) # type: ignore h = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore if self.cfg.boltzmann: dist = self.actor(h, z) else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(h, z, stddev) if eval_mode: action = dist.mean if self.cfg.additional_metric: # the following is doing extra computation only used for metrics, # it should be deactivated eventually F_mean_s = self.forward_net(obs, z, action) # F_samp_s = self.forward_net(obs, z, dist.sample()) F_rand_s = self.forward_net(obs, z, torch.zeros_like(action).uniform_(-1.0, 1.0)) Qs = [torch.min(*(torch.einsum('sd, sd -> s', F, z) for F in Fs)) for Fs in [F_mean_s, F_rand_s]] self.actor_success = (Qs[0] > Qs[1]).cpu().numpy().tolist() else: action = dist.sample() if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def compute_z_correl(self, time_step: TimeStep, meta: MetaDict) -> float: goal = time_step.goal if self.cfg.goal_space is not None else time_step.observation # type: ignore with torch.no_grad(): zs = [torch.Tensor(x).unsqueeze(0).float().to(self.cfg.device) for x in [goal, meta["z"]]] zs[0] = self.backward_net(zs[0]) zs = [F.normalize(z, 1) for z in zs] return torch.matmul(zs[0], zs[1].T).item() def update_fb( self, obs: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, next_goal: torch.Tensor, z: torch.Tensor, step: int ) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} # compute target successor measure with torch.no_grad(): if self.cfg.boltzmann: dist = self.actor(next_obs, z) next_action = dist.sample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, z, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) target_F1, target_F2 = self.forward_target_net(next_obs, z, next_action) # batch x z_dim target_B = self.backward_target_net(next_goal) # batch x z_dim target_M1 = torch.einsum('sd, td -> st', target_F1, target_B) # batch x batch target_M2 = torch.einsum('sd, td -> st', target_F2, target_B) # batch x batch target_M = torch.min(target_M1, target_M2) # compute FB loss F1, F2 = self.forward_net(obs, z, action) B = self.backward_net(next_goal) M1 = torch.einsum('sd, td -> st', F1, B) # batch x batch M2 = torch.einsum('sd, td -> st', F2, B) # batch x batch I = torch.eye(*M1.size(), device=M1.device) off_diag = ~I.bool() fb_offdiag: tp.Any = 0.5 * sum((M - discount * target_M)[off_diag].pow(2).mean() for M in [M1, M2]) fb_diag: tp.Any = -sum(M.diag().mean() for M in [M1, M2]) fb_loss = fb_offdiag + fb_diag # Q LOSS if self.cfg.q_loss: with torch.no_grad(): next_Q1, nextQ2 = [torch.einsum('sd, sd -> s', target_Fi, z) for target_Fi in [target_F1, target_F2]] next_Q = torch.min(next_Q1, nextQ2) cov = torch.matmul(B.T, B) / B.shape[0] inv_cov = torch.inverse(cov) implicit_reward = (torch.matmul(B, inv_cov) * z).sum(dim=1) # batch_size target_Q = implicit_reward.detach() + discount.squeeze(1) * next_Q # batch_size Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, z) for Fi in [F1, F2]] q_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) fb_loss += self.cfg.q_loss_coef * q_loss # ORTHONORMALITY LOSS FOR BACKWARD EMBEDDING Cov = torch.matmul(B, B.T) orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag fb_loss += self.cfg.ortho_coef * orth_loss # Cov = torch.cov(B.T) # Vicreg loss # var_loss = F.relu(1 - Cov.diag().clamp(1e-4, 1).sqrt()).mean() # eps avoids inf. sqrt gradient at 0 # cov_loss = 2 * torch.triu(Cov, diagonal=1).pow(2).mean() # 2x upper triangular part # orth_loss = var_loss + cov_loss # fb_loss += self.cfg.ortho_coef * orth_loss if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['target_M'] = target_M.mean().item() metrics['M1'] = M1.mean().item() metrics['F1'] = F1.mean().item() metrics['B'] = B.mean().item() metrics['B_norm'] = torch.norm(B, dim=-1).mean().item() metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['fb_loss'] = fb_loss.item() metrics['fb_diag'] = fb_diag.item() metrics['fb_offdiag'] = fb_offdiag.item() if self.cfg.q_loss: metrics['q_loss'] = q_loss.item() metrics['orth_loss'] = orth_loss.item() metrics['orth_loss_diag'] = orth_loss_diag.item() metrics['orth_loss_offdiag'] = orth_loss_offdiag.item() if self.cfg.q_loss: metrics['q_loss'] = q_loss.item() eye_diff = torch.matmul(B.T, B) / B.shape[0] - torch.eye(B.shape[1], device=B.device) metrics['orth_linf'] = torch.max(torch.abs(eye_diff)).item() metrics['orth_l2'] = eye_diff.norm().item() / math.sqrt(B.shape[1]) if isinstance(self.fb_opt, torch.optim.Adam): metrics["fb_opt_lr"] = self.fb_opt.param_groups[0]["lr"] # optimize FB if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.fb_opt.zero_grad(set_to_none=True) fb_loss.backward() self.fb_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() return metrics def update_actor(self, obs: torch.Tensor, z: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if self.cfg.boltzmann: dist = self.actor(obs, z) action = dist.rsample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, z, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) F1, F2 = self.forward_net(obs, z, action) Q1 = torch.einsum('sd, sd -> s', F1, z) Q2 = torch.einsum('sd, sd -> s', F2, z) if self.cfg.additional_metric: q1_success = Q1 > Q2 Q = torch.min(Q1, Q2) actor_loss = (self.cfg.temp * log_prob - Q).mean() if self.cfg.boltzmann else -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['q'] = Q.mean().item() if self.cfg.additional_metric: metrics['q1_success'] = q1_success.float().mean().item() metrics['actor_logprob'] = log_prob.mean().item() # metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics def aug_and_encode(self, obs: torch.Tensor) -> torch.Tensor: obs = self.aug(obs) return self.encoder(obs) def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) # pdb.set_trace() obs = batch.obs action = batch.action discount = batch.discount next_obs = next_goal = batch.next_obs if self.cfg.goal_space is not None: assert batch.next_goal is not None next_goal = batch.next_goal # if len(batch.meta) == 1 and batch.meta[0].shape[-1] == self.cfg.z_dim: # z = batch.meta[0] # invalid = torch.linalg.norm(z, dim=1) < 1e-15 # if sum(invalid): # z[invalid, :] = self.sample_z(sum(invalid)).to(self.cfg.device) # else: z = self.sample_z(self.cfg.batch_size, device=self.cfg.device) if not z.shape[-1] == self.cfg.z_dim: raise RuntimeError("There's something wrong with the logic here") # obs = self.aug_and_encode(batch.obs) # next_obs = self.aug_and_encode(batch.next_obs) # if not self.cfg.update_encoder: # obs = obs.detach() # next_obs = next_obs.detach() backward_input = batch.obs future_goal = batch.future_obs if self.cfg.goal_space is not None: assert batch.goal is not None backward_input = batch.goal future_goal = batch.future_goal perm = torch.randperm(self.cfg.batch_size) backward_input = backward_input[perm] if self.cfg.mix_ratio > 0: mix_idxs: tp.Any = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.mix_ratio)[0] if not self.cfg.rand_weight: with torch.no_grad(): mix_z = self.backward_net(backward_input[mix_idxs]).detach() else: # generate random weight weight = torch.rand(size=(mix_idxs.shape[0], self.cfg.batch_size)).to(self.cfg.device) weight = F.normalize(weight, dim=1) uniform_rdv = torch.rand(mix_idxs.shape[0], 1).to(self.cfg.device) weight = uniform_rdv * weight with torch.no_grad(): mix_z = torch.matmul(weight, self.backward_net(backward_input).detach()) if self.cfg.norm_z: mix_z = math.sqrt(self.cfg.z_dim) * F.normalize(mix_z, dim=1) z[mix_idxs] = mix_z # hindsight replay if self.cfg.future_ratio > 0: assert future_goal is not None future_idxs = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.future_ratio) z[future_idxs] = self.backward_net(future_goal[future_idxs]).detach() metrics.update(self.update_fb(obs=obs, action=action, discount=discount, next_obs=next_obs, next_goal=next_goal, z=z, step=step)) # update actor metrics.update(self.update_actor(obs, z, step)) # update critic target utils.soft_update_params(self.forward_net, self.forward_target_net, self.cfg.fb_target_tau) utils.soft_update_params(self.backward_net, self.backward_target_net, self.cfg.fb_target_tau) # update inv cov # if step % self.cfg.update_cov_every_step == 0: # logger.info("update online cov") # obs_list = list() # batch_size = 0 # while batch_size < 10000: # batch = next(replay_loader) # batch = batch.to(self.cfg.device) # obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) # batch_size += batch.next_obs.size(0) # obs = torch.cat(obs_list, 0) # with torch.no_grad(): # B = self.backward_net(obs) # self.inv_cov = torch.inverse(self.online_cov(B)) return metrics # def update(self, replay_loader: tp.Iterator[rb.EpisodeBatch], step: int) -> tp.Dict[str, float]: # metrics: tp.Dict[str, float] = {} # # if step % self.cfg.update_every_steps != 0: # return metrics # # for _ in range(self.cfg.num_fb_updates): # batch = next(replay_loader) # batch = batch.to(self.cfg.device) # if self.cfg.mix_ratio > 0: # assert self.cfg.batch_size % 3 == 0 # mini_batch_size = self.cfg.batch_size // 3 # else: # assert self.cfg.batch_size % 2 == 0 # mini_batch_size = self.cfg.batch_size // 2 # idxs = list(range(mini_batch_size)) # idxs_prime = list(range(mini_batch_size, 2 * mini_batch_size)) # # # pdb.set_trace() # obs = batch.obs[idxs] # action = batch.action[idxs] # discount = batch.discount[idxs] # next_obs = next_goal = batch.next_obs[idxs] # if self.cfg.goal_space is not None: # assert batch.next_goal is not None # next_goal = batch.next_goal[idxs] # if len(batch.meta) == 1 and batch.meta[0].shape[-1] == self.cfg.z_dim: # z = batch.meta[0][idxs] # invalid = torch.linalg.norm(z, dim=1) < 1e-15 # if sum(invalid): # z[invalid, :] = self.sample_z(sum(invalid)).to(self.cfg.device) # else: # z = self.sample_z(mini_batch_size).to(self.cfg.device) # if not z.shape[-1] == self.cfg.z_dim: # raise RuntimeError("There's something wrong with the logic here") # # obs = self.aug_and_encode(batch.obs) # # next_obs = self.aug_and_encode(batch.next_obs) # # if not self.cfg.update_encoder: # # obs = obs.detach() # # next_obs = next_obs.detach() # # backward_input = batch.obs # future_goal = batch.future_obs # if self.cfg.goal_space is not None: # assert batch.goal is not None # backward_input = batch.goal # future_goal = batch.future_goal # # # goal = backward_input[idxs] # goal_prime = backward_input[idxs_prime] # # if self.cfg.mix_ratio > 0: # mix_idxs: tp.Any = np.where(np.random.uniform(size=mini_batch_size) < self.cfg.mix_ratio)[0] # part = backward_input[2 * mini_batch_size:] # if not self.cfg.rand_weight: # mix_z = self.backward_net(part[mix_idxs]).detach() # else: # # generate random weight # weight = torch.rand(size=(mix_idxs.shape[0], mini_batch_size)).to(self.cfg.device) # weight = F.normalize(weight, dim=1) # uniform_rdv = torch.rand(mix_idxs.shape[0], 1).to(self.cfg.device) # weight = uniform_rdv * weight # mix_z = torch.matmul(weight, self.backward_net(part).detach()) # if self.cfg.norm_z: # mix_z = math.sqrt(self.cfg.z_dim) * F.normalize(mix_z, dim=1) # z[mix_idxs] = mix_z # # # hindsight replay # if self.cfg.future_ratio > 0: # assert future_goal is not None # future_idxs = np.where(np.random.uniform(size=mini_batch_size) < self.cfg.future_ratio) # future_goal = future_goal[idxs][future_idxs] # z[future_idxs] = self.backward_net(future_goal).detach() # goal_prime[future_idxs] = future_goal # metrics.update(self.update_fb(obs=obs, action=action, discount=discount, # next_obs=next_obs, next_goal=next_goal, goal_prime=goal_prime, z=z, step=step)) # # # update actor # metrics.update(self.update_actor(obs, z, step)) # # # update critic target # utils.soft_update_params(self.forward_net, self.forward_target_net, # self.cfg.fb_target_tau) # utils.soft_update_params(self.backward_net, self.backward_target_net, # self.cfg.fb_target_tau) # # return metrics # def update_fb( # self, # obs: torch.Tensor, # action: torch.Tensor, # discount: torch.Tensor, # next_obs: torch.Tensor, # next_goal: torch.Tensor, # goal_prime: torch.Tensor, # z: torch.Tensor, # step: int # ) -> tp.Dict[str, float]: # metrics: tp.Dict[str, float] = {} # # compute target successor measure # with torch.no_grad(): # if self.cfg.boltzmann: # dist = self.actor(next_obs, z) # next_action = dist.sample() # else: # stddev = utils.schedule(self.cfg.stddev_schedule, step) # dist = self.actor(next_obs, z, stddev) # next_action = dist.sample(clip=self.cfg.stddev_clip) # target_F1, target_F2 = self.forward_target_net(next_obs, z, next_action) # batch x z_dim # target_B = self.backward_target_net(goal_prime) # batch x z_dim # target_M1 = torch.einsum('sd, td -> st', target_F1, target_B) # batch x batch # target_M2 = torch.einsum('sd, td -> st', target_F2, target_B) # batch x batch # target_M = torch.min(target_M1, target_M2) # # # compute FB loss # F1, F2 = self.forward_net(obs, z, action) # B = self.backward_net(next_goal) # B_prime = self.backward_net(goal_prime) # M1_diag = torch.einsum('sd, sd -> s', F1, B) # batch # M2_diag = torch.einsum('sd, sd -> s', F2, B) # batch # M1 = torch.einsum('sd, td -> st', F1, B_prime) # batch x batch # M2 = torch.einsum('sd, td -> st', F2, B_prime) # batch x batch # fb_loss = 0.5 * (M1 - discount * target_M).pow(2).mean() - M1_diag.mean() # fb_loss += 0.5 * (M2 - discount * target_M).pow(2).mean() - M2_diag.mean() # # # ORTHONORMALITY LOSS FOR BACKWARD EMBEDDING # # B_B_prime = torch.matmul(B, B_prime.T) # B_diag = torch.einsum('sd, sd -> s', B, B) # B_prime_diag = torch.einsum('sd, sd -> s', B_prime, B_prime) # orth_loss = B_B_prime.pow(2).mean() - (B_diag.mean() + B_prime_diag.mean()) # fb_loss += self.cfg.ortho_coef * orth_loss # # if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: # metrics['target_M'] = target_M.mean().item() # metrics['M1'] = M1.mean().item() # metrics['F1'] = F1.mean().item() # metrics['B'] = B.mean().item() # metrics['B_norm'] = torch.norm(B, dim=-1).mean().item() # metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() # metrics['fb_loss'] = fb_loss.item() # metrics['orth_loss'] = orth_loss.item() # eye_diff = torch.matmul(B.T, B) / B.shape[0] - torch.eye(B.shape[1], device=B.device) # metrics['orth_linf'] = torch.max(torch.abs(eye_diff)).item() # metrics['orth_l2'] = eye_diff.norm().item() / math.sqrt(B.shape[1]) # if isinstance(self.fb_opt, torch.optim.Adam): # metrics["fb_opt_lr"] = self.fb_opt.param_groups[0]["lr"] # if self.cfg.goal_space in ["simplified_walker", "simplified_quadruped"]: # metrics['max_velocity'] = goal_prime[:, -1].max().item() # # # optimize FB # if self.encoder_opt is not None: # self.encoder_opt.zero_grad(set_to_none=True) # self.fb_opt.zero_grad(set_to_none=True) # fb_loss.backward() # self.fb_opt.step() # if self.encoder_opt is not None: # self.encoder_opt.step() # return metrics
controllable_agent-main
url_benchmark/agent/fb_ddpg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import inspect import dataclasses from types import ModuleType import numpy as np import torch from url_benchmark import replay_buffer as rb from url_benchmark import agent as agents from . import fb_ddpg from . import fb_modules def get_cfg() -> fb_ddpg.FBDDPGAgentConfig: # hopefully this can get simpler soon return fb_ddpg.FBDDPGAgentConfig( obs_shape=(4,), action_shape=(3,), obs_type="state", device="cpu", num_expl_steps=1, goal_space=None ) def test_agent_init() -> None: cfg = get_cfg() agent = fb_ddpg.FBDDPGAgent(**dataclasses.asdict(cfg)) b = 12 shapes = dict(obs=(b, 4), next_obs=(b, 4), action=(b, 4), reward=(b,), discount=(b,)) iterator = (rb.EpisodeBatch(**{x: np.random.rand(*y).astype(np.float32) for x, y in shapes.items()}) for _ in range(100)) # type: ignore meta = agent.init_meta() with torch.no_grad(): action = agent.act(next(iterator).obs[0], meta, 0, eval_mode=False) assert action.shape == (3,) def test_agents_config() -> None: cfgs = [] for module in agents.__dict__.values(): if isinstance(module, ModuleType): for obj in module.__dict__.values(): if inspect.isclass(obj) and issubclass(obj, agents.DDPGAgentConfig): if obj not in cfgs: cfgs.append(obj) assert len(cfgs) >= 3 for cfg in cfgs: # check that target and name have been updated to match the algo assert cfg.name.replace("_", "") in cfg.__name__.lower() assert cfg.name in cfg._target_ def test_multiinputs() -> None: m, n = [10, 12] x, y = (torch.rand([16, z]) for z in [m, n]) mip = fb_modules.MultinputNet([m, n], [100, 100, 32]) out = mip(x, y) assert out.shape == (16, 32)
controllable_agent-main
url_benchmark/agent/test_agent.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp from collections import OrderedDict import numpy as np import torch from torch import nn import torch.nn.functional as F from url_benchmark import utils from url_benchmark.dmc import TimeStep from .ddpg import DDPGAgent, MetaDict from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import Any, Dict, NoReturn, Tuple """ Reimplementation of https://github.com/RLAgent/state-marginal-matching: - Removed redundant forward passes - No updating p_z - Added finetuning procedure from what's described in DIAYN - VAE encodes and decodes from the encoding from DDPG when n > 1 as the paper does not make it clear how to include skills with pixel input - When n=1, obs_type=pixel, remove the False from line 144 to input pixels into the vae - TODO: when using pixel-based vae (n=1), gpu may run out of memory. """ class VAE(nn.Module): def __init__(self, obs_dim, z_dim, code_dim, vae_beta, device) -> None: super().__init__() self.z_dim = z_dim self.code_dim = code_dim self.make_networks(obs_dim, z_dim, code_dim) self.beta = vae_beta self.apply(utils.weight_init) self.device = device def make_networks(self, obs_dim, z_dim, code_dim) -> None: self.enc = nn.Sequential(nn.Linear(obs_dim + z_dim, 150), nn.ReLU(), nn.Linear(150, 150), nn.ReLU()) self.enc_mu = nn.Linear(150, code_dim) self.enc_logvar = nn.Linear(150, code_dim) self.dec = nn.Sequential(nn.Linear(code_dim, 150), nn.ReLU(), nn.Linear(150, 150), nn.ReLU(), nn.Linear(150, obs_dim + z_dim)) def encode(self, obs_z) -> Tuple[Any, Any, Any]: enc_features = self.enc(obs_z) mu = self.enc_mu(enc_features) logvar = self.enc_logvar(enc_features) stds = (0.5 * logvar).exp() return mu, logvar, stds def forward(self, obs_z, epsilon) -> Tuple[Any, Tuple[Any, Any, Any]]: mu, logvar, stds = self.encode(obs_z) code = epsilon * stds + mu obs_distr_params = self.dec(code) return obs_distr_params, (mu, logvar, stds) def loss(self, obs_z) -> Tuple[Any, Any]: epsilon = torch.randn([obs_z.shape[0], self.code_dim]).to(self.device) # pylint: disable=unused-variable obs_distr_params, (mu, logvar, stds) = self(obs_z, epsilon) kle = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp(), dim=1).mean() log_prob = F.mse_loss(obs_z, obs_distr_params, reduction='none') loss = self.beta * kle + log_prob.mean() return loss, log_prob.sum(list(range(1, len(log_prob.shape)))).view( log_prob.shape[0], 1) class PVae(VAE): def make_networks(self, obs_shape, z_dim, code_dim) -> None: self.enc = nn.Sequential(nn.Conv2d(obs_shape[0], 32, 3, stride=2), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Flatten(), nn.Linear(32 * 35 * 35, 150), nn.ReLU()) self.enc_mu = nn.Linear(150, code_dim) self.enc_logvar = nn.Linear(150, code_dim) self.dec = nn.Sequential( nn.Linear(code_dim, 32 * 35 * 35), nn.ReLU(), nn.Unflatten(dim=1, unflattened_size=(32, 35, 35)), nn.ConvTranspose2d(32, 32, 3, stride=1), nn.ReLU(), nn.ConvTranspose2d(32, 32, 3, stride=1), nn.ReLU(), nn.ConvTranspose2d(32, 32, 3, stride=1), nn.ReLU(), nn.ConvTranspose2d(32, 32, 3, stride=1), nn.ReLU(), nn.ConvTranspose2d(32, 32, 3, stride=2), nn.ReLU(), nn.Conv2d(32, obs_shape[0], 4, stride=1)) class SMM(nn.Module): def __init__(self, obs_dim, z_dim, hidden_dim, vae_beta, device) -> None: super().__init__() self.z_dim = z_dim self.z_pred_net = nn.Sequential(nn.Linear(obs_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, z_dim)) self.vae = VAE(obs_dim=obs_dim, z_dim=z_dim, code_dim=128, vae_beta=vae_beta, device=device) self.apply(utils.weight_init) def predict_logits(self, obs) -> Any: z_pred_logits = self.z_pred_net(obs) return z_pred_logits def loss(self, logits, z) -> Any: z_labels = torch.argmax(z, 1) return nn.CrossEntropyLoss(reduction='none')(logits, z_labels) class PSMM(nn.Module): # pylint: disable=unused-argument def __init__(self, obs_shape, z_dim, hidden_dim, vae_beta, device) -> None: super().__init__() self.z_dim = z_dim self.vae = PVae(obs_dim=obs_shape, z_dim=z_dim, code_dim=128, vae_beta=vae_beta, device=device) self.apply(utils.weight_init) # discriminator not needed when n=1, as z is degenerate def predict_logits(self, obs) -> NoReturn: raise NotImplementedError def loss(self, logits, z) -> NoReturn: raise NotImplementedError class SMMAgent(DDPGAgent): def __init__(self, z_dim, sp_lr, vae_lr, vae_beta, state_ent_coef, latent_ent_coef, latent_cond_ent_coef, update_encoder, **kwargs) -> None: self.z_dim = z_dim self.state_ent_coef = state_ent_coef self.latent_ent_coef = latent_ent_coef self.latent_cond_ent_coef = latent_cond_ent_coef self.update_encoder = update_encoder kwargs["meta_dim"] = self.z_dim super().__init__(**kwargs) # self.obs_dim is now the real obs_dim (or repr_dim) + z_dim self.smm = SMM(self.obs_dim - z_dim, z_dim, hidden_dim=kwargs['hidden_dim'], vae_beta=vae_beta, device=kwargs['device']).to(kwargs['device']) self.pred_optimizer = torch.optim.Adam( self.smm.z_pred_net.parameters(), lr=sp_lr) self.vae_optimizer = torch.optim.Adam(self.smm.vae.parameters(), lr=vae_lr) self.smm.train() # fine tuning SMM agent self.ft_returns = np.zeros(z_dim, dtype=np.float32) self.ft_not_finished = [True for z in range(z_dim)] def init_meta(self) -> tp.Dict[str, np.ndarray]: z = np.zeros(self.z_dim, dtype=np.float32) z[np.random.choice(self.z_dim)] = 1.0 meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: # during fine-tuning, find the best skill and fine-tune that one only. if self.reward_free: return self.update_meta_ft(meta, global_step, time_step) # during training, change to randomly sampled z at the end of the episode if time_step.last(): return self.init_meta() return meta def update_meta_ft(self, meta: MetaDict, global_step, time_step) -> MetaDict: z_ind: tp.Any = meta['z'].argmax() if any(self.ft_not_finished): self.ft_returns[z_ind] += time_step.reward if time_step.last(): if not any(self.ft_not_finished): # choose the best new_z_ind: int = self.ft_returns.argmax() # type: ignore else: # or the next z to try self.ft_not_finished[z_ind] = False not_tried_z: int = sum(self.ft_not_finished) # uniformly sample from the remaining unused z for i in range(self.z_dim): if self.ft_not_finished[i]: if np.random.random() < 1 / not_tried_z: new_z_ind = i break not_tried_z -= 1 new_z = np.zeros(self.z_dim, dtype=np.float32) new_z[new_z_ind] = 1.0 meta['z'] = new_z # type: ignore return meta def update_vae(self, obs_z) -> Tuple[Dict[str, Any], Any]: metrics: tp.Dict[str, float] = {} loss, h_s_z = self.smm.vae.loss(obs_z) self.vae_optimizer.zero_grad() if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.vae_optimizer.step() if self.encoder_opt is not None: self.encoder_opt.step() metrics['loss_vae'] = loss.cpu().item() return metrics, h_s_z def update_pred(self, obs, z) -> Tuple[Dict[str, Any], Any]: metrics: tp.Dict[str, float] = {} logits = self.smm.predict_logits(obs) h_z_s = self.smm.loss(logits, z).unsqueeze(-1) loss = h_z_s.mean() self.pred_optimizer.zero_grad() loss.backward() self.pred_optimizer.step() metrics['loss_pred'] = loss.cpu().item() return metrics, h_z_s def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size).to(self.device) obs, action, extr_reward, discount, next_obs = batch.unpack() z = batch.meta["z"] obs = self.aug_and_encode(obs) with torch.no_grad(): next_obs = self.aug_and_encode(next_obs) obs_z = torch.cat([obs, z], dim=1) # do not learn encoder in the VAE next_obs_z = torch.cat([next_obs, z], dim=1) if self.reward_free: vae_metrics, h_s_z = self.update_vae(obs_z) pred_metrics, h_z_s = self.update_pred(obs.detach(), z) h_z = np.log(self.z_dim) # One-hot z encoding h_z *= torch.ones_like(extr_reward).to(self.device) pred_log_ratios = self.state_ent_coef * h_s_z.detach( ) # p^*(s) is ignored, as state space dimension is inaccessible from pixel input intr_reward = pred_log_ratios + self.latent_ent_coef * h_z + self.latent_cond_ent_coef * h_z_s.detach( ) reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics.update(vae_metrics) metrics.update(pred_metrics) metrics['intr_reward'] = intr_reward.mean().item() metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() if not self.update_encoder: obs_z = obs_z.detach() next_obs_z = next_obs_z.detach() # update critic metrics.update( self.update_critic(obs_z.detach(), action, reward, discount, next_obs_z.detach(), step)) # update actor metrics.update(self.update_actor(obs_z.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/smm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import torch from torch import nn from url_benchmark import utils from .ddpg import DDPGAgent from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import Any, Dict, Tuple class ICM(nn.Module): def __init__(self, obs_dim, action_dim, hidden_dim) -> None: super().__init__() self.forward_net = nn.Sequential( nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, obs_dim)) self.backward_net = nn.Sequential(nn.Linear(2 * obs_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, action_dim), nn.Tanh()) self.apply(utils.weight_init) def forward(self, obs, action, next_obs) -> Tuple[Any, Any]: assert obs.shape[0] == next_obs.shape[0] assert obs.shape[0] == action.shape[0] next_obs_hat = self.forward_net(torch.cat([obs, action], dim=-1)) action_hat = self.backward_net(torch.cat([obs, next_obs], dim=-1)) forward_error = torch.norm(next_obs - next_obs_hat, dim=-1, p=2, keepdim=True) backward_error = torch.norm(action - action_hat, dim=-1, p=2, keepdim=True) return forward_error, backward_error class ICMAgent(DDPGAgent): def __init__(self, icm_scale, update_encoder, **kwargs) -> None: super().__init__(**kwargs) self.icm_scale = icm_scale self.update_encoder = update_encoder self.icm = ICM(self.obs_dim, self.action_dim, self.hidden_dim).to(self.device) # optimizers self.icm_opt = torch.optim.Adam(self.icm.parameters(), lr=self.lr) self.icm.train() # pylint: disable=unused-argument def update_icm(self, obs, action, next_obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} forward_error, backward_error = self.icm(obs, action, next_obs) loss = forward_error.mean() + backward_error.mean() self.icm_opt.zero_grad(set_to_none=True) if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.icm_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() if self.use_tb or self.use_wandb: metrics['icm_loss'] = loss.item() return metrics # pylint: disable=unused-argument def compute_intr_reward(self, obs, action, next_obs, step) -> Any: forward_error, _ = self.icm(obs, action, next_obs) reward = forward_error * self.icm_scale reward = torch.log(reward + 1.0) return reward def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) obs, action, extr_reward, discount, next_obs = batch.to(self.device).unpack() # augment and encode obs = self.aug_and_encode(obs) with torch.no_grad(): next_obs = self.aug_and_encode(next_obs) if self.reward_free: metrics.update(self.update_icm(obs, action, next_obs, step)) with torch.no_grad(): intr_reward = self.compute_intr_reward(obs, action, next_obs, step) if self.use_tb or self.use_wandb: metrics['intr_reward'] = intr_reward.mean().item() reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/icm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import typing as tp from collections import OrderedDict import dataclasses import logging import numpy as np import torch from torch import nn from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark.dmc import TimeStep from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark import utils from .fb_modules import mlp, Actor import url_benchmark.goals as _goals logger = logging.getLogger(__name__) # MetaDict = tp.Mapping[str, tp.Union[np.ndarray, torch.Tensor]] MetaDict = tp.Mapping[str, np.ndarray] @dataclasses.dataclass class GoalSMConfig: # @package agent _target_: str = "url_benchmark.agent.goal_sm.GoalSMAgent" name: str = "goal_sm" reward_free: bool = omegaconf.II("reward_free") custom_reward: tp.Optional[str] = omegaconf.II("custom_reward") obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 critic_target_tau: float = 0.01 update_every_steps: float = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING hidden_dim: int = 1024 feature_dim: int = 512 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" stddev_clip: float = 0.3 # 1.0 nstep: int = 1 batch_size: int = 1024 # 256 for pixels init_critic: bool = True goal_space: tp.Optional[str] = omegaconf.II("goal_space") future_ratio: float = 0 preprocess: bool = False add_trunk: bool = False update_meta_every_step: int = 500 cs = ConfigStore.instance() cs.store(group="agent", name="goal_sm", node=GoalSMConfig) class Critic(nn.Module): """ forward representation class""" def __init__(self, obs_dim, z_dim, action_dim, feature_dim, hidden_dim, preprocess=False, add_trunk=True) -> None: super().__init__() self.obs_dim = obs_dim self.z_dim = z_dim self.action_dim = action_dim self.preprocess = preprocess if self.preprocess: self.obs_action_net = mlp(self.obs_dim + self.action_dim, hidden_dim, "ntanh", feature_dim, "irelu") self.obs_z_net = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", feature_dim, "irelu") if not add_trunk: self.trunk: nn.Module = nn.Identity() feature_dim = 2 * feature_dim else: self.trunk = mlp(2 * feature_dim, hidden_dim, "irelu") feature_dim = hidden_dim else: self.trunk = mlp(self.obs_dim + self.z_dim + self.action_dim, hidden_dim, "ntanh", hidden_dim, "irelu", hidden_dim, "irelu") feature_dim = hidden_dim seq = [feature_dim, hidden_dim, "irelu", 1] self.F1 = mlp(*seq) self.F2 = mlp(*seq) self.apply(utils.weight_init) def forward(self, obs, z, action): assert z.shape[-1] == self.z_dim if self.preprocess: obs_action = self.obs_action_net(torch.cat([obs, action], dim=-1)) obs_z = self.obs_z_net(torch.cat([obs, z], dim=-1)) h = torch.cat([obs_action, obs_z], dim=-1) else: h = torch.cat([obs, z, action], dim=-1) if hasattr(self, "trunk"): h = self.trunk(h) F1 = self.F1(h) F2 = self.F2(h) return F1, F2 class GoalSMAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = GoalSMConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") self.goal_dim = 0 if cfg.goal_space is not None: if cfg.goal_space == "quad_pos_speed": self.goal_dim = 7 # ugly hack else: g = next(iter(_goals.goals.funcs[cfg.goal_space].values()))() assert len(g.shape) == 1 self.goal_dim = len(g) self.actor = Actor(self.obs_dim, self.goal_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.critic: nn.Module = Critic(self.obs_dim, self.goal_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.critic_target: nn.Module = Critic(self.obs_dim, self.goal_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.critic_target.load_state_dict(self.critic.state_dict()) # optimizers self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=cfg.lr) self.train() self.critic_target.train() def train(self, training: bool = True) -> None: self.training = training self.actor.train(training) self.critic.train(training) def init_from(self, other) -> None: # copy parameters over utils.hard_update_params(other.actor, self.actor) utils.hard_update_params(other.critic, self.critic) def init_meta(self, replay_loader: tp.Optional[ReplayBuffer] = None) -> MetaDict: if replay_loader is not None: batch = replay_loader.sample(self.cfg.batch_size) assert batch.next_goal is not None g = batch.next_goal[0] else: g = np.zeros((self.goal_dim,), dtype=np.float32) meta = OrderedDict() meta['g'] = g return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_meta_every_step == 0 and global_step > 1000: # skip first trajectory return self.init_meta(replay_loader) return meta def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: meta = OrderedDict() meta['g'] = goal_array return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: # Not used, only for compatibility with pretrain.eval !!! batch = replay_loader.sample(self.cfg.batch_size) assert batch.next_goal is not None g = batch.next_goal[0] return self.get_goal_meta(g) def act(self, obs, meta, step, eval_mode) -> np.ndarray: device = torch.device(self.cfg.device) obs = torch.as_tensor(obs, device=device).unsqueeze(0) goals = [] for value in meta.values(): value = torch.as_tensor(value, device=device).unsqueeze(0) goals.append(value) goal = torch.cat(goals, dim=-1) #assert obs.shape[-1] == self.obs_shape[-1] stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, goal, stddev) if eval_mode: action = dist.mean else: action = dist.sample(clip=None) if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] @tp.no_type_check # TODO remove def update_critic(self, obs: torch.Tensor, desired_goal: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, achieved_goal: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics = {} with torch.no_grad(): stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, desired_goal, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) target_Q1, target_Q2 = self.critic_target(next_obs, desired_goal, next_action) target_Q = torch.min(target_Q1, target_Q2) Q1, Q2 = self.critic(obs, desired_goal, action) Q1_diag, Q2_diag = self.critic(obs, achieved_goal, action) loss_offdiag: tp.Any = 0.5 * sum((Q - discount * target_Q).pow(2).mean() for Q in [Q1, Q2]) loss_diag: tp.Any = -sum(Q.diag().mean() for Q in [Q1_diag, Q2_diag]) critic_loss = loss_offdiag + loss_diag if self.cfg.use_tb or self.cfg.use_wandb: metrics['critic_target_q'] = target_Q.mean().item() metrics['critic_q1'] = Q1.mean().item() metrics['critic_q2'] = Q2.mean().item() metrics['critic_loss'] = critic_loss.item() metrics['stdev'] = stddev # optimize critic self.critic_opt.zero_grad(set_to_none=True) critic_loss.backward() self.critic_opt.step() return metrics @tp.no_type_check # TODO remove def update_actor(self, obs: torch.Tensor, goal: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics = {} stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, goal, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) Q1, Q2 = self.critic(obs, goal, action) Q = torch.min(Q1, Q2) actor_loss = -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} #import ipdb; ipdb.set_trace() if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) achieved_goal = batch.next_goal future_goal = batch.future_obs if self.cfg.goal_space: future_goal = batch.future_goal obs = batch.obs action = batch.action discount = batch.discount next_obs = batch.next_obs desired_goal = batch.meta["g"] # sample goal from replay # new_batch = next(replay_loader) # new_batch = new_batch.to(self.cfg.device) # desired_goal = new_batch.next_goal # type: ignore # perm = torch.randperm(self.cfg.batch_size) # desired_goal = achieved_goal[perm] if self.cfg.future_ratio > 0: assert future_goal is not None future_idxs = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.future_ratio)[0] desired_goal[future_idxs] = future_goal[future_idxs] # type: ignore # update critic metrics.update( self.update_critic(obs=obs, desired_goal=desired_goal, action=action, discount=discount, next_obs=next_obs, achieved_goal=achieved_goal, step=step)) # update actor metrics.update(self.update_actor(obs=obs, goal=desired_goal, step=step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.cfg.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/goal_sm.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import typing as tp import dataclasses import numpy as np import torch from torch import nn import torch.nn.functional as F from collections import OrderedDict from url_benchmark import utils from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark.dmc import TimeStep from .ddpg import DDPGAgent, MetaDict, DDPGAgentConfig from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import Any, Dict, Tuple # TODO(HL): how to include GPI for continuous domain? @dataclasses.dataclass class APSAgentConfig(DDPGAgentConfig): _target_: str = "url_benchmark.agent.aps.APSAgent" name: str = "aps" update_encoder: bool = omegaconf.II("update_encoder") sf_dim: int = 10 update_task_every_step: int = 5 knn_rms: bool = True knn_k: int = 12 knn_avg: bool = True knn_clip: float = 0.0001 num_init_steps: int = 4096 # set to ${num_train_frames} to disable finetune policy parameters lstsq_batch_size: int = 4096 num_inference_steps: int = 10000 cs = ConfigStore.instance() cs.store(group="agent", name="aps", node=APSAgentConfig) class CriticSF(nn.Module): def __init__(self, obs_type, obs_dim, action_dim, feature_dim, hidden_dim, sf_dim) -> None: super().__init__() self.obs_type = obs_type if obs_type == 'pixels': # for pixels actions will be added after trunk self.trunk = nn.Sequential(nn.Linear(obs_dim, feature_dim), nn.LayerNorm(feature_dim), nn.Tanh()) trunk_dim = feature_dim + action_dim else: # for states actions come in the beginning self.trunk = nn.Sequential( nn.Linear(obs_dim + action_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.Tanh()) trunk_dim = hidden_dim def make_q(): q_layers = [] q_layers += [ nn.Linear(trunk_dim, hidden_dim), nn.ReLU(inplace=True) ] if obs_type == 'pixels': q_layers += [ nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True) ] q_layers += [nn.Linear(hidden_dim, sf_dim)] return nn.Sequential(*q_layers) self.Q1 = make_q() self.Q2 = make_q() self.apply(utils.weight_init) def forward(self, obs, action, task) -> Tuple[Any, Any]: inpt = obs if self.obs_type == 'pixels' else torch.cat([obs, action], dim=-1) h = self.trunk(inpt) h = torch.cat([h, action], dim=-1) if self.obs_type == 'pixels' else h q1 = self.Q1(h) q2 = self.Q2(h) q1 = torch.einsum("bi,bi->b", task, q1).reshape(-1, 1) q2 = torch.einsum("bi,bi->b", task, q2).reshape(-1, 1) return q1, q2 class APS(nn.Module): def __init__(self, obs_dim, sf_dim, hidden_dim) -> None: super().__init__() self.state_feat_net = nn.Sequential(nn.Linear(obs_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, sf_dim)) self.apply(utils.weight_init) def forward(self, obs, norm=True) -> Any: state_feat = self.state_feat_net(obs) state_feat = F.normalize(state_feat, dim=-1) if norm else state_feat return state_feat class APSAgent(DDPGAgent): def __init__(self, **kwargs: tp.Any) -> None: cfg = APSAgentConfig(**kwargs) # create actor and critic # increase obs shape to include task dim (through meta_dim) super().__init__(**kwargs, meta_dim=cfg.sf_dim) self.cfg: APSAgentConfig = cfg # override base ddpg cfg type # overwrite critic with critic sf self.critic = CriticSF(cfg.obs_type, self.obs_dim, self.action_dim, self.feature_dim, self.hidden_dim, self.sf_dim).to(self.device) self.critic_target = CriticSF(self.obs_type, self.obs_dim, self.action_dim, self.feature_dim, self.hidden_dim, self.sf_dim).to(self.device) self.critic_target.load_state_dict(self.critic.state_dict()) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=self.lr) self.aps = APS(self.obs_dim - self.sf_dim, self.sf_dim, kwargs['hidden_dim']).to(kwargs['device']) # particle-based entropy rms = utils.RMS(self.device) self.pbe = utils.PBE(rms, cfg.knn_clip, cfg.knn_k, cfg.knn_avg, cfg.knn_rms, cfg.device) # optimizers self.aps_opt = torch.optim.Adam(self.aps.parameters(), lr=self.lr) self.train() self.critic_target.train() self.aps.train() def init_meta(self) -> tp.Dict[str, np.ndarray]: if self.solved_meta is not None: return self.solved_meta task = torch.randn(self.sf_dim) task = task / torch.norm(task) task_array = task.cpu().numpy() meta = OrderedDict() meta['task'] = task_array return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.update_task_every_step == 0: return self.init_meta() return meta def update_aps(self, task, next_obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} loss = self.compute_aps_loss(next_obs, task) self.aps_opt.zero_grad(set_to_none=True) if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.aps_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() if self.use_tb or self.use_wandb: metrics['aps_loss'] = loss.item() return metrics def compute_intr_reward(self, task, next_obs, step) -> Tuple[Any, Any]: # maxent reward with torch.no_grad(): rep = self.aps(next_obs, norm=False) reward = self.pbe(rep) intr_ent_reward = reward.reshape(-1, 1) # successor feature reward rep = rep / torch.norm(rep, dim=1, keepdim=True) intr_sf_reward = torch.einsum("bi,bi->b", task, rep).reshape(-1, 1) return intr_ent_reward, intr_sf_reward def compute_aps_loss(self, next_obs, task) -> Any: """MLE loss""" loss = -torch.einsum("bi,bi->b", task, self.aps(next_obs)).mean() return loss def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size).to(self.device) obs, action, extr_reward, discount, next_obs = batch.unpack() task = batch.meta["task"] # augment and encode obs = self.aug_and_encode(obs) next_obs = self.aug_and_encode(next_obs) if self.reward_free: # freeze successor features at finetuning phase metrics.update(self.update_aps(task, next_obs, step)) with torch.no_grad(): intr_ent_reward, intr_sf_reward = self.compute_intr_reward( task, next_obs, step) intr_reward = intr_ent_reward + intr_sf_reward if self.use_tb or self.use_wandb: metrics['intr_reward'] = intr_reward.mean().item() metrics['intr_ent_reward'] = intr_ent_reward.mean().item() metrics['intr_sf_reward'] = intr_sf_reward.mean().item() reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # extend observations with task obs = torch.cat([obs, task], dim=1) next_obs = torch.cat([next_obs, task], dim=1) # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), task, step)) # update actor metrics.update(self.update_actor(obs.detach(), task, step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics @torch.no_grad() def regress_meta(self, replay_loader, step): obs, reward = [], [] batch_size = 0 while batch_size < self.lstsq_batch_size: batch = replay_loader.sample(self.cfg.batch_size) batch_obs, _, batch_reward, *_ = utils.to_torch(batch, self.device) obs.append(batch_obs) reward.append(batch_reward) batch_size += batch_obs.size(0) obs, reward = torch.cat(obs, 0), torch.cat(reward, 0) obs = self.aug_and_encode(obs) rep = self.aps(obs) task = torch.linalg.lstsq(reward, rep)[0][:rep.size(1), :][0] task = task / torch.norm(task) task = task.cpu().numpy() meta = OrderedDict() meta['task'] = task # save for evaluation self.solved_meta = meta return meta @torch.no_grad() def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list = [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_and_rewards(obs, reward) @torch.no_grad() def infer_meta_from_obs_and_rewards(self, obs: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) rep = self.aps(obs) # task = torch.linalg.lstsq(reward, rep)[0][:rep.size(1), :][0] task = torch.linalg.lstsq(rep, reward)[0].squeeze() task = task / torch.norm(task) task = task.cpu().numpy() meta = OrderedDict() meta['task'] = task # self.solved_meta = meta return meta def update_critic(self, obs, action, reward, discount, next_obs, task, step) -> Dict[str, Any]: """diff is critic takes task as input""" metrics: tp.Dict[str, float] = {} with torch.no_grad(): stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(next_obs, stddev) next_action = dist.sample(clip=self.stddev_clip) target_Q1, target_Q2 = self.critic_target(next_obs, next_action, task) target_V = torch.min(target_Q1, target_Q2) target_Q = reward + (discount * target_V) Q1, Q2 = self.critic(obs, action, task) critic_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) if self.use_tb or self.use_wandb: metrics['critic_target_q'] = target_Q.mean().item() metrics['critic_q1'] = Q1.mean().item() metrics['critic_q2'] = Q2.mean().item() metrics['critic_loss'] = critic_loss.item() # optimize critic self.critic_opt.zero_grad(set_to_none=True) critic_loss.backward() self.critic_opt.step() return metrics def update_actor(self, obs, task, step) -> Dict[str, Any]: """diff is critic takes task as input""" metrics: tp.Dict[str, float] = {} stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(obs, stddev) action = dist.sample(clip=self.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) Q1, Q2 = self.critic(obs, action, task) Q = torch.min(Q1, Q2) actor_loss = -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.use_tb or self.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics
controllable_agent-main
url_benchmark/agent/aps.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .ddpg import DDPGAgent as DDPGAgent from .ddpg import DDPGAgentConfig as DDPGAgentConfig from .fb_ddpg import FBDDPGAgent as FBDDPGAgent from .aps import APSAgent as APSAgent from .ddpg import MetaDict as MetaDict # register agents for hydra from .sf import SFAgent from .goal_td3 import GoalTD3Agent from .discrete_sf import DiscreteSFAgent from .rnd import RNDAgent from .diayn import DIAYNAgent from .aps import APSAgent from .proto import ProtoAgent from .icm_apt import ICMAPTAgent from .sf_svd import SFSVDAgent from .new_aps import NEWAPSAgent from .goal_sm import GoalSMAgent from .max_ent import MaxEntAgent from .uvf import UVFAgent from .discrete_fb import DiscreteFBAgent
controllable_agent-main
url_benchmark/agent/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import pdb import typing as tp import torch from url_benchmark import utils from .ddpg import DDPGAgent from url_benchmark.in_memory_replay_buffer import ReplayBuffer import dataclasses from url_benchmark.agent.ddpg import DDPGAgentConfig from hydra.core.config_store import ConfigStore import omegaconf @dataclasses.dataclass class MaxEntAgentConfig(DDPGAgentConfig): _target_: str = "url_benchmark.agent.max_ent.MaxEntAgent" name: str = "max_ent" knn_rms: bool = True knn_k: int = 12 knn_avg: bool = True knn_clip: float = 0.0001 goal_space: tp.Optional[str] = omegaconf.II("goal_space") cs = ConfigStore.instance() cs.store(group="agent", name="max_ent", node=MaxEntAgentConfig) class MaxEntAgent(DDPGAgent): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) cfg = MaxEntAgentConfig(**kwargs) self.cfg = cfg # particle-based entropy rms = utils.RMS(self.cfg.device) self.pbe = utils.PBE(rms, self.cfg.knn_clip, self.cfg.knn_k, self.cfg.knn_avg, cfg.knn_rms, self.cfg.device) def compute_intr_reward(self, goal: torch.Tensor, step: int) -> torch.Tensor: reward = self.pbe(goal) intr_ent_reward = reward.reshape(-1, 1) return intr_ent_reward def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = batch.obs action = batch.action discount = batch.discount next_goal = next_obs = batch.next_obs if self.cfg.goal_space is not None: # type: ignore assert batch.next_goal is not None next_goal = batch.next_goal with torch.no_grad(): reward = self.compute_intr_reward(goal=next_goal, step=step) if self.use_tb or self.use_wandb: metrics['intr_reward'] = reward.mean().item() # update critic metrics.update( self.update_critic(obs, action, reward, discount, next_obs, step)) # update actor metrics.update(self.update_actor(obs, step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/max_ent.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import torch from torch import nn from url_benchmark import utils from .ddpg import DDPGAgent from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import Any, Dict class Disagreement(nn.Module): def __init__(self, obs_dim, action_dim, hidden_dim, n_models=5) -> None: super().__init__() self.ensemble = nn.ModuleList([ nn.Sequential(nn.Linear(obs_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, obs_dim)) for _ in range(n_models) ]) def forward(self, obs, action, next_obs) -> Any: #import ipdb; ipdb.set_trace() assert obs.shape[0] == next_obs.shape[0] assert obs.shape[0] == action.shape[0] errors = [] for model in self.ensemble: next_obs_hat = model(torch.cat([obs, action], dim=-1)) model_error = torch.norm(next_obs - next_obs_hat, dim=-1, p=2, keepdim=True) errors.append(model_error) return torch.cat(errors, dim=1) def get_disagreement(self, obs, action, next_obs) -> Any: assert obs.shape[0] == next_obs.shape[0] assert obs.shape[0] == action.shape[0] preds = [] for model in self.ensemble: next_obs_hat = model(torch.cat([obs, action], dim=-1)) preds.append(next_obs_hat) preds_tensor = torch.stack(preds, dim=0) return torch.var(preds_tensor, dim=0).mean(dim=-1) class DisagreementAgent(DDPGAgent): def __init__(self, update_encoder, **kwargs) -> None: super().__init__(**kwargs) self.update_encoder = update_encoder self.disagreement = Disagreement(self.obs_dim, self.action_dim, self.hidden_dim).to(self.device) # optimizers self.disagreement_opt = torch.optim.Adam( self.disagreement.parameters(), lr=self.lr) self.disagreement.train() def update_disagreement(self, obs, action, next_obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} error = self.disagreement(obs, action, next_obs) loss = error.mean() self.disagreement_opt.zero_grad(set_to_none=True) if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.disagreement_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() if self.use_tb or self.use_wandb: metrics['disagreement_loss'] = loss.item() return metrics def compute_intr_reward(self, obs, action, next_obs, step) -> Any: reward = self.disagreement.get_disagreement(obs, action, next_obs).unsqueeze(1) return reward def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) obs, action, extr_reward, discount, next_obs = batch.to(self.device).unpack() # augment and encode obs = self.aug_and_encode(obs) with torch.no_grad(): next_obs = self.aug_and_encode(next_obs) if self.reward_free: metrics.update( self.update_disagreement(obs, action, next_obs, step)) with torch.no_grad(): intr_reward = self.compute_intr_reward(obs, action, next_obs, step) if self.use_tb or self.use_wandb: metrics['intr_reward'] = intr_reward.mean().item() reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/disagreement.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import typing as tp from typing import Any, Dict import copy import dataclasses import torch from torch import nn from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark import utils from .ddpg import DDPGAgent, DDPGAgentConfig from url_benchmark.in_memory_replay_buffer import ReplayBuffer import url_benchmark.goals as _goals @dataclasses.dataclass class RNDAgentConfig(DDPGAgentConfig): _target_: str = "url_benchmark.agent.rnd.RNDAgent" name: str = "rnd" rnd_rep_dim: int = 512 rnd_scale: float = 1.0 update_encoder: bool = omegaconf.II("update_encoder") goal_space: tp.Optional[str] = omegaconf.II("goal_space") cs = ConfigStore.instance() cs.store(group="agent", name="rnd", node=RNDAgentConfig) class RND(nn.Module): def __init__(self, obs_dim, hidden_dim, rnd_rep_dim, encoder, aug, obs_shape, obs_type, clip_val=5.) -> None: super().__init__() self.clip_val = clip_val self.aug = aug if obs_type == "pixels": self.normalize_obs: nn.Module = nn.BatchNorm2d(obs_shape[0], affine=False) else: self.normalize_obs = nn.BatchNorm1d(obs_shape[0], affine=False) self.predictor = nn.Sequential(encoder, nn.Linear(obs_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, rnd_rep_dim)) self.target = nn.Sequential(copy.deepcopy(encoder), nn.Linear(obs_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, rnd_rep_dim)) for param in self.target.parameters(): param.requires_grad = False self.apply(utils.weight_init) def forward(self, obs) -> Any: obs = self.aug(obs) obs = self.normalize_obs(obs) obs = torch.clamp(obs, -self.clip_val, self.clip_val) prediction, target = self.predictor(obs), self.target(obs) prediction_error = torch.square(target.detach() - prediction).mean( dim=-1, keepdim=True) return prediction_error class RNDAgent(DDPGAgent): def __init__(self, **kwargs: tp.Any) -> None: super().__init__(**kwargs) cfg = RNDAgentConfig(**kwargs) self.cfg = cfg goal_dim = self.obs_dim if self.cfg.goal_space is not None: goal_dim = _goals.get_goal_space_dim(self.cfg.goal_space) self.rnd = RND(goal_dim, cfg.hidden_dim, cfg.rnd_rep_dim, self.encoder, self.aug, (goal_dim, ), cfg.obs_type).to(self.device) self.intrinsic_reward_rms = utils.RMS(device=self.device) # optimizers self.rnd_opt = torch.optim.Adam(self.rnd.parameters(), lr=self.lr) self.rnd.train() # pylint: disable=unused-argument def update_rnd(self, obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} prediction_error = self.rnd(obs) loss = prediction_error.mean() self.rnd_opt.zero_grad(set_to_none=True) if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.rnd_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() if self.use_tb or self.use_wandb: metrics['rnd_loss'] = loss.item() return metrics def compute_intr_reward(self, obs, step) -> Any: prediction_error = self.rnd(obs) _, intr_reward_var = self.intrinsic_reward_rms(prediction_error) reward = self.rnd_scale * prediction_error / ( torch.sqrt(intr_reward_var) + 1e-8) return reward def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) goal = obs = batch.obs if self.cfg.goal_space is not None: # type: ignore assert batch.goal is not None goal = batch.goal action = batch.action extr_reward = batch.reward discount = batch.discount next_obs = batch.next_obs # update RND first if self.reward_free: # note: one difference is that the RND module is updated off policy metrics.update(self.update_rnd(goal, step)) with torch.no_grad(): intr_reward = self.compute_intr_reward(goal, step) if self.use_tb or self.use_wandb: metrics['intr_reward'] = intr_reward.mean().item() reward = intr_reward else: reward = extr_reward # augment and encode obs = self.aug_and_encode(obs) with torch.no_grad(): next_obs = self.aug_and_encode(next_obs) if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() metrics['pred_error_mean'] = self.intrinsic_reward_rms.M.item() metrics['pred_error_std'] = torch.sqrt(self.intrinsic_reward_rms.S).item() if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/rnd.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import dataclasses from typing import Any, Tuple from collections import OrderedDict import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark.dmc import TimeStep from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark import utils from .fb_modules import mlp # MetaDict = tp.Mapping[str, tp.Union[np.ndarray, torch.Tensor]] MetaDict = tp.Mapping[str, np.ndarray] @dataclasses.dataclass class DDPGAgentConfig: _target_: str = "url_benchmark.agent.ddpg.DDPGAgent" name: str = "ddpg" reward_free: bool = omegaconf.II("reward_free") obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") lr: float = 1e-4 critic_target_tau: float = 0.01 update_every_steps: int = 2 use_tb: bool = omegaconf.II("use_tb") use_wandb: bool = omegaconf.II("use_wandb") num_expl_steps: int = omegaconf.MISSING # to be specified later hidden_dim: int = 1024 feature_dim: int = 50 stddev_schedule: float = 0.2 stddev_clip: float = 0.3 nstep: int = 3 batch_size: int = 1024 # 256 for pixels init_critic: bool = True # update_encoder: ${update_encoder} # not in the config cs = ConfigStore.instance() cs.store(group="agent", name="ddpg", node=DDPGAgentConfig) class Encoder(nn.Module): def __init__(self, obs_shape) -> None: super().__init__() assert len(obs_shape) == 3 self.repr_dim = 32 * 35 * 35 self.convnet = nn.Sequential(nn.Conv2d(obs_shape[0], 32, 3, stride=2), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1), nn.ReLU()) self.apply(utils.weight_init) def forward(self, obs) -> Any: obs = obs / 255.0 - 0.5 h = self.convnet(obs) h = h.view(h.shape[0], -1) return h class Actor(nn.Module): def __init__(self, obs_type, obs_dim, action_dim, feature_dim, hidden_dim) -> None: super().__init__() feature_dim = feature_dim if obs_type == 'pixels' else hidden_dim self.trunk = nn.Sequential(nn.Linear(obs_dim, feature_dim), nn.LayerNorm(feature_dim), nn.Tanh()) policy_layers = [] policy_layers += [ nn.Linear(feature_dim, hidden_dim), nn.ReLU(inplace=True) ] # add additional hidden layer for pixels if obs_type == 'pixels': policy_layers += [ nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True) ] policy_layers += [nn.Linear(hidden_dim, action_dim)] self.policy = nn.Sequential(*policy_layers) self.apply(utils.weight_init) def forward(self, obs, std) -> utils.TruncatedNormal: h = self.trunk(obs) mu = self.policy(h) mu = torch.tanh(mu) std = torch.ones_like(mu) * std dist = utils.TruncatedNormal(mu, std) return dist class Critic(nn.Module): def __init__(self, obs_type, obs_dim, action_dim, feature_dim, hidden_dim) -> None: super().__init__() self.obs_type = obs_type if obs_type == 'pixels': # for pixels actions will be added after trunk self.trunk = nn.Sequential(nn.Linear(obs_dim, feature_dim), nn.LayerNorm(feature_dim), nn.Tanh()) trunk_dim = feature_dim + action_dim else: # for states actions come in the beginning self.trunk = nn.Sequential( nn.Linear(obs_dim + action_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.Tanh()) trunk_dim = hidden_dim def make_q(): q_layers = [] q_layers += [ nn.Linear(trunk_dim, hidden_dim), nn.ReLU(inplace=True) ] if obs_type == 'pixels': q_layers += [ nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True) ] q_layers += [nn.Linear(hidden_dim, 1)] return nn.Sequential(*q_layers) self.Q1 = make_q() self.Q2 = make_q() self.apply(utils.weight_init) def forward(self, obs, action) -> Tuple[Any, Any]: inpt = obs if self.obs_type == 'pixels' else torch.cat([obs, action], dim=-1) h = self.trunk(inpt) h = torch.cat([h, action], dim=-1) if self.obs_type == 'pixels' else h q1 = self.Q1(h) q2 = self.Q2(h) return q1, q2 class DDPGAgent: # pylint: disable=unused-argument def __init__(self, meta_dim: int = 0, **kwargs: tp.Any) -> None: if self.__class__.__name__.startswith(("DIAYN", "APS", "RND", "Proto", "ICMAPT", "MaxEnt")): # HACK cfg_fields = {field.name for field in dataclasses.fields(DDPGAgentConfig)} # those have their own config, so lets curate the fields # others will need to be ported in time kwargs = {x: y for x, y in kwargs.items() if x in cfg_fields} cfg = DDPGAgentConfig(**kwargs) self.cfg = cfg self.action_dim = cfg.action_shape[0] self.solved_meta = None # self.update_encoder = update_encoder # used in subclasses # models if cfg.obs_type == 'pixels': self.aug: tp.Union[utils.RandomShiftsAug, nn.Identity] = utils.RandomShiftsAug(pad=4) self.encoder: tp.Union[Encoder, nn.Identity] = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim + meta_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] + meta_dim self.actor = Actor(cfg.obs_type, self.obs_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim).to(cfg.device) self.critic: nn.Module = Critic(cfg.obs_type, self.obs_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim).to(cfg.device) self.critic_target: nn.Module = Critic(cfg.obs_type, self.obs_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim).to(cfg.device) self.critic_target.load_state_dict(self.critic.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=cfg.lr) self.reward_model: tp.Optional[torch.nn.Module] = None self.reward_opt: tp.Optional[torch.optim.Adam] = None if self.reward_free: self.reward_model = mlp(self.obs_dim, cfg.hidden_dim, "ntanh", cfg.hidden_dim, # type: ignore "relu", cfg.hidden_dim, "relu", 1).to(cfg.device) # type: ignore self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), lr=1e-3) self.train() self.critic_target.train() def __getattr__(self, name: str) -> tp.Any: # LEGACY: allow accessing the config directly as attribute # to avoid having to rewrite everything at once # cost: less type safety if "cfg" in self.__dict__: return getattr(self.cfg, name) raise AttributeError def train(self, training: bool = True) -> None: self.training = training self.encoder.train(training) self.actor.train(training) self.critic.train(training) def init_from(self, other) -> None: # copy parameters over utils.hard_update_params(other.encoder, self.encoder) utils.hard_update_params(other.actor, self.actor) if self.init_critic: utils.hard_update_params(other.critic.trunk, self.critic.trunk) def init_meta(self) -> MetaDict: return OrderedDict() # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: return meta def act(self, obs, meta, step, eval_mode) -> np.ndarray: obs = torch.as_tensor(obs, device=self.device).unsqueeze(0) h = self.encoder(obs) inputs = [h] for value in meta.values(): value = torch.as_tensor(value, device=self.device).unsqueeze(0) inputs.append(value) inpt = torch.cat(inputs, dim=-1) #assert obs.shape[-1] == self.obs_shape[-1] stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(inpt, stddev) if eval_mode: action = dist.mean else: action = dist.sample(clip=None) if step < self.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def train_reward(self, replay_loader: ReplayBuffer) -> None: obs_list, reward_list = [], [] batch_size = 0 num_inference_steps = 10000 while batch_size < num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) obs, action, reward, discount, next_obs = batch.to(self.device).unpack() del obs, action, discount obs_list.append(next_obs) reward_list.append(reward) batch_size += next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[: num_inference_steps], reward[: num_inference_steps] print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) assert self.reward_model is not None for i in range(2000): reward_loss = (self.reward_model(obs) - reward).pow(2).mean() assert self.reward_opt is not None self.reward_opt.zero_grad(set_to_none=True) reward_loss.backward() self.reward_opt.step() print(f"iteration: {i}, reward_loss: {reward_loss.item()}") # compute test loss: while batch_size < num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) obs, action, reward, discount, next_obs = batch.to(self.device).unpack() del obs, action, discount obs_list.append(next_obs) reward_list.append(reward) batch_size += next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[: num_inference_steps], reward[: num_inference_steps] test_loss = (self.reward_model(obs) - reward).pow(2).mean() print(f"Test Loss: {test_loss.item()}") @tp.no_type_check # TODO remove def update_critic(self, obs, action, reward, discount, next_obs, step) -> tp.Dict[str, float]: metrics = {} with torch.no_grad(): stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(next_obs, stddev) next_action = dist.sample(clip=self.stddev_clip) target_Q1, target_Q2 = self.critic_target(next_obs, next_action) target_V = torch.min(target_Q1, target_Q2) target_Q = reward + (discount * target_V) Q1, Q2 = self.critic(obs, action) critic_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) if self.use_tb or self.use_wandb: metrics['critic_target_q'] = target_Q.mean().item() metrics['critic_q1'] = Q1.mean().item() metrics['critic_q2'] = Q2.mean().item() metrics['critic_loss'] = critic_loss.item() # optimize critic if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.critic_opt.zero_grad(set_to_none=True) critic_loss.backward() self.critic_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() return metrics @tp.no_type_check # TODO remove def update_actor(self, obs, step) -> tp.Dict[str, float]: metrics = {} stddev = utils.schedule(self.stddev_schedule, step) dist = self.actor(obs, stddev) action = dist.sample(clip=self.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) Q1, Q2 = self.critic(obs, action) Q = torch.min(Q1, Q2) actor_loss = -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.use_tb or self.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics def aug_and_encode(self, obs) -> Any: obs = self.aug(obs) return self.encoder(obs) def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} #import ipdb; ipdb.set_trace() if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) obs, action, reward, discount, next_obs, *_ = batch.to(self.device).unpack() if self.reward_free: del reward assert self.reward_model is not None reward = self.reward_model(next_obs) # augment and encode obs = self.aug_and_encode(obs) with torch.no_grad(): next_obs = self.aug_and_encode(next_obs) if self.use_tb or self.use_wandb: metrics['batch_reward'] = reward.mean().item() # update critic metrics.update( self.update_critic(obs, action, reward, discount, next_obs, step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/ddpg.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import pdb import copy import math import logging import dataclasses from collections import OrderedDict import typing as tp from pathlib import Path import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark import utils from url_benchmark.in_memory_replay_buffer import ReplayBuffer from .ddpg import MetaDict from .fb_modules import IdentityMap from .ddpg import Encoder from .fb_modules import Actor, DiagGaussianActor, ForwardMap, BackwardMap, mlp, OnlineCov from dm_env import specs from url_benchmark.dmc import TimeStep from url_benchmark import goals as _goals logger = logging.getLogger(__name__) @dataclasses.dataclass class SFSVDAgentConfig: # @package agent _target_: str = "url_benchmark.agent.sf_svd.SFSVDAgent" name: str = "sf_svd" # reward_free: ${reward_free} obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 lr_coef: float = 5 sf_target_tau: float = 0.01 # 0.001-0.01 update_every_steps: int = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING # ??? # to be specified later num_inference_steps: int = 5120 hidden_dim: int = 1024 # 128, 2048 backward_hidden_dim: int = 512 # 128, 2048 feature_dim: int = 512 # 128, 1024 z_dim: int = 100 # 30-200 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" # 0, 0.1, 0.2 stddev_clip: float = 0.3 # 1 update_z_every_step: int = 100 nstep: int = 1 batch_size: int = 1024 init_sf: bool = True update_encoder: bool = omegaconf.II("update_encoder") # ${update_encoder} goal_space: tp.Optional[str] = omegaconf.II("goal_space") # ortho_coef: float = 0.1 # 0.01-10 log_std_bounds: tp.Tuple[float, float] = (-5, 2) # param for DiagGaussianActor temp: float = 1 # temperature for DiagGaussianActor boltzmann: bool = False # set to true for DiagGaussianActor debug: bool = False preprocess: bool = True num_sf_updates: int = 1 feature_learner: str = "p" mix_ratio: float = 0.0 q_loss: bool = True update_cov_every_step: int = 1000 add_trunk: bool = False cs = ConfigStore.instance() cs.store(group="agent", name="sf_svd", node=SFSVDAgentConfig) class SVDLearner(nn.Module): def __init__(self, obs_dim, action_dim, z_dim, hidden_dim) -> None: super().__init__() self.feature_net = mlp(obs_dim + action_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim, "L2") self.mu_net = mlp(obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", z_dim) self.apply(utils.weight_init) def forward(self, obs: torch.Tensor, action: torch.Tensor, next_obs: torch.Tensor, future_obs: torch.Tensor): del future_obs phi = self.feature_net(torch.cat([obs, action], dim=1)) mu = self.mu_net(next_obs) P = torch.einsum("sd, td -> st", phi, mu) I = torch.eye(*P.size(), device=P.device) off_diag = ~I.bool() loss = - 2 * P.diag().mean() + P[off_diag].pow(2).mean() # orthonormality loss Cov = torch.matmul(phi, phi.T) I = torch.eye(*Cov.size(), device=Cov.device) off_diag = ~I.bool() orth_loss_diag = - 2 * Cov.diag().mean() orth_loss_offdiag = Cov[off_diag].pow(2).mean() orth_loss = orth_loss_offdiag + orth_loss_diag loss += orth_loss return loss class SFSVDAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = SFSVDAgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None # models if cfg.obs_type == 'pixels': self.aug: nn.Module = utils.RandomShiftsAug(pad=4) self.encoder: nn.Module = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") goal_dim = self.obs_dim if cfg.goal_space is not None: g = next(iter(_goals.goals.funcs[cfg.goal_space].values()))() assert len(g.shape) == 1 goal_dim = len(g) if cfg.z_dim < goal_dim: logger.warning(f"z_dim {cfg.z_dim} should not be smaller that goal_dim {goal_dim}") # create the network if self.cfg.boltzmann: self.actor: nn.Module = DiagGaussianActor(cfg.obs_type, self.obs_dim, cfg.z_dim, self.action_dim, cfg.hidden_dim, cfg.log_std_bounds).to(cfg.device) else: self.actor = Actor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=cfg.add_trunk).to(cfg.device) self.successor_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=cfg.add_trunk).to(cfg.device) # build up the target network self.successor_target_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=cfg.add_trunk).to(cfg.device) self.feature_learner = SVDLearner(goal_dim, self.action_dim, cfg.z_dim, cfg.backward_hidden_dim).to(cfg.device) # if cfg.debug: # self.feature_learner: nn.Module = IdentityMap().to(cfg.device) # self.feature_net = BackwardMap(cfg.obs_type, goal_dim, cfg.z_dim, cfg.backward_hidden_dim).to(cfg.device) # load the weights into the target networks self.successor_target_net.load_state_dict(self.successor_net.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.sf_opt = torch.optim.Adam(self.successor_net.parameters(), lr=cfg.lr) self.phi_opt: tp.Optional[torch.optim.Adam] = None self.phi_opt = torch.optim.Adam(self.feature_learner.parameters(), lr=cfg.lr_coef * cfg.lr) self.train() self.successor_target_net.train() self.inv_cov = torch.eye(self.cfg.z_dim, dtype=torch.float32, device=self.cfg.device) # self.online_cov = OnlineCov(mom=0.99, dim=self.cfg.z_dim).to(self.cfg.device) # self.online_cov.train() def train(self, training: bool = True) -> None: self.training = training for net in [self.encoder, self.actor, self.successor_net]: net.train(training) if self.phi_opt is not None: self.feature_learner.train() def init_from(self, other) -> None: # copy parameters over names = ["encoder", "actor"] if self.cfg.init_sf: names += ["successor_net", "feature_learner", "successor_target_net"] for name in names: utils.hard_update_params(getattr(other, name), getattr(self, name)) for key, val in self.__dict__.items(): if isinstance(val, torch.optim.Optimizer): val.load_state_dict(copy.deepcopy(getattr(other, key).state_dict())) def precompute_cov(self, replay_loader: ReplayBuffer) -> None: print("computing Cov of phi to be used at inference") obs_list = [] action_list = [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = batch.goal if self.cfg.goal_space is not None else batch.obs if obs is None: raise ValueError("Obs should never be None") obs_list.append(obs) action_list.append(batch.action) batch_size += batch.next_obs.size(0) obs = torch.cat(obs_list, 0) action = torch.cat(action_list, 0) self.inv_cov = self._compute_cov(torch.cat([obs, action], dim=1)) # with torch.no_grad(): # phi = self.feature_learner.feature_net(obs) # cov = torch.matmul(phi.T, phi) / phi.shape[0] # self.inv_cov = torch.linalg.pinv(cov) def _compute_cov(self, goal: torch.Tensor) -> torch.Tensor: # compute inverse of cov of phi with torch.no_grad(): phi = self.feature_learner.feature_net(goal) cov = torch.matmul(phi.T, phi) / phi.shape[0] inv_cov = torch.inverse(cov) return inv_cov def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: # assert self.cfg.feature_learner in ["FB"] desired_goal = torch.tensor(goal_array).unsqueeze(0).to(self.cfg.device) dummy_action = torch.zeros((1, self.action_dim), dtype=torch.float32).to(self.cfg.device) with torch.no_grad(): z = self.feature_learner.feature_net(torch.cat([desired_goal, dummy_action], dim=1)) z = torch.matmul(z, self.inv_cov) # 1 x z_dim z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) z = z.squeeze(0).cpu().numpy() meta = OrderedDict() meta['z'] = z return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list, action_list = [], [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.goal if self.cfg.goal_space is not None else batch.obs) action_list.append(batch.action) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward, action = torch.cat(obs_list, 0), torch.cat(reward_list, 0), torch.cat(action_list, 0) # type: ignore obs, reward, action = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps], action[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_action_and_rewards(obs, action, reward) def infer_meta_from_obs_action_and_rewards(self, obs: torch.Tensor, action: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) with torch.no_grad(): phi = self.feature_learner.feature_net(torch.cat([obs, action], dim=1)) z = torch.linalg.lstsq(phi, reward).solution # z_dim x 1 z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=0) # be careful to the dimension meta = OrderedDict() meta['z'] = z.squeeze().cpu().numpy() # self.solved_meta = meta return meta def sample_z(self, size): gaussian_rdv = torch.randn((size, self.cfg.z_dim), dtype=torch.float32) z = math.sqrt(self.cfg.z_dim) * F.normalize(gaussian_rdv, dim=1) return z def init_meta(self) -> MetaDict: if self.solved_meta is not None: print('solved_meta') return self.solved_meta else: z = self.sample_z(1) z = z.squeeze().numpy() meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_z_every_step == 0: return self.init_meta() return meta def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device).unsqueeze(0) # type: ignore h = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore if self.cfg.boltzmann: dist = self.actor(h, z) else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(h, z, stddev) if eval_mode: action = dist.mean else: action = dist.sample() if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def update_sf( self, obs: torch.Tensor, goal: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, next_goal: torch.Tensor, future_goal: tp.Optional[torch.Tensor], z: torch.Tensor, step: int ) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} # compute target successor measure with torch.no_grad(): if self.cfg.boltzmann: dist = self.actor(next_obs, z) next_action = dist.sample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, z, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) next_F1, next_F2 = self.successor_target_net(next_obs, z, next_action) # batch x z_dim target_phi = self.feature_learner.feature_net(torch.cat([goal, action], dim=1)).detach() # batch x z_dim next_Q1, next_Q2 = [torch.einsum('sd, sd -> s', next_Fi, z) for next_Fi in [next_F1, next_F2]] next_F = torch.where((next_Q1 < next_Q2).reshape(-1, 1), next_F1, next_F2) target_F = target_phi + discount * next_F F1, F2 = self.successor_net(obs, z, action) if not self.cfg.q_loss: # compute SF loss sf_loss = F.mse_loss(F1, target_F) + F.mse_loss(F2, target_F) else: # alternative loss Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, z) for Fi in [F1, F2]] target_Q = torch.einsum('sd, sd -> s', target_F, z) sf_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) sf_loss /= self.cfg.z_dim # compute feature loss phi_loss = self.feature_learner(obs=goal, action=action, next_obs=next_goal, future_obs=future_goal) if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['target_F'] = target_F.mean().item() metrics['F1'] = F1.mean().item() metrics['phi'] = target_phi.mean().item() metrics['phi_norm'] = torch.norm(target_phi, dim=-1).mean().item() metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['sf_loss'] = sf_loss.item() if phi_loss is not None: metrics['phi_loss'] = phi_loss.item() if isinstance(self.sf_opt, torch.optim.Adam): metrics["sf_opt_lr"] = self.sf_opt.param_groups[0]["lr"] # if self.cfg.goal_space in ["simplified_walker", "simplified_quadruped"]: # metrics['max_velocity'] = goal_prime[:, -1].max().item() # optimize SF if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.sf_opt.zero_grad(set_to_none=True) sf_loss.backward() self.sf_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() # optimise phi if self.phi_opt is not None: self.phi_opt.zero_grad(set_to_none=True) phi_loss.backward() self.phi_opt.step() return metrics def update_actor(self, obs: torch.Tensor, z: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if self.cfg.boltzmann: dist = self.actor(obs, z) action = dist.rsample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, z, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) F1, F2 = self.successor_net(obs, z, action) Q1 = torch.einsum('sd, sd -> s', F1, z) Q2 = torch.einsum('sd, sd -> s', F2, z) Q = torch.min(Q1, Q2) actor_loss = (self.cfg.temp * log_prob - Q).mean() if self.cfg.boltzmann else -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() # metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics def aug_and_encode(self, obs: torch.Tensor) -> torch.Tensor: obs = self.aug(obs) return self.encoder(obs) def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics goal_list = [] for _ in range(self.cfg.num_sf_updates): batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs = goal = batch.obs action = batch.action discount = batch.discount next_obs = next_goal = batch.next_obs future_goal = batch.future_obs if self.cfg.goal_space: assert batch.goal is not None assert batch.next_goal is not None goal = batch.goal next_goal = batch.next_goal future_goal = batch.future_goal goal_list.append(next_goal) z = self.sample_z(self.cfg.batch_size).to(self.cfg.device) if not z.shape[-1] == self.cfg.z_dim: raise RuntimeError("There's something wrong with the logic here") if self.cfg.mix_ratio > 0: perm = torch.randperm(self.cfg.batch_size) desired_goal = next_goal[perm] dummy_action = torch.zeros((desired_goal.shape[0], self.action_dim), dtype=torch.float32).to(self.cfg.device) with torch.no_grad(): phi = self.feature_learner.feature_net(torch.cat([desired_goal, dummy_action], dim=1)) # compute inverse of cov of phi cov = torch.matmul(phi.T, phi) / phi.shape[0] inv_cov = torch.inverse(cov) mix_idxs: tp.Any = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.mix_ratio)[0] with torch.no_grad(): new_z = phi[mix_idxs] new_z = torch.matmul(new_z, inv_cov) # batch_size x z_dim new_z = math.sqrt(self.cfg.z_dim) * F.normalize(new_z, dim=1) z[mix_idxs] = new_z metrics.update(self.update_sf(obs=obs, goal=goal, action=action, discount=discount, next_obs=next_obs, next_goal=next_goal, future_goal=future_goal, z=z, step=step)) # update actor metrics.update(self.update_actor(obs, z, step)) # update critic target utils.soft_update_params(self.successor_net, self.successor_target_net, self.cfg.sf_target_tau) # update inv cov # if step % self.cfg.update_cov_every_step == 0: # logger.info("update online cov") # obs_list = list() # batch_size = 0 # while batch_size < 10000: # batch = next(replay_loader) # batch = batch.to(self.cfg.device) # obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) # batch_size += batch.next_obs.size(0) # obs = torch.cat(obs_list, 0) # with torch.no_grad(): # phi = self.feature_learner.feature_net(obs) # self.inv_cov = torch.inverse(self.online_cov(phi)) return metrics
controllable_agent-main
url_benchmark/agent/sf_svd.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import typing as tp from collections import OrderedDict import dataclasses import logging import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark.dmc import TimeStep from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark import utils from .fb_modules import mlp, Actor from url_benchmark import goals as _goals from pathlib import Path logger = logging.getLogger(__name__) # MetaDict = tp.Mapping[str, tp.Union[np.ndarray, torch.Tensor]] MetaDict = tp.Mapping[str, np.ndarray] @dataclasses.dataclass class GoalTD3AgentConfig: # @package agent _target_: str = "url_benchmark.agent.goal_td3.GoalTD3Agent" name: str = "goal_td3" reward_free: bool = omegaconf.II("reward_free") custom_reward: tp.Optional[str] = omegaconf.II("custom_reward") obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 critic_target_tau: float = 0.01 update_every_steps: float = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING hidden_dim: int = 1024 feature_dim: int = 512 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" stddev_clip: float = 0.3 # 1.0 nstep: int = 1 batch_size: int = 1024 # 256 for pixels init_critic: bool = True goal_space: tp.Optional[str] = omegaconf.II("goal_space") fb_reward: bool = False future_ratio: float = 0 preprocess: bool = False add_trunk: bool = False supervised: bool = True cs = ConfigStore.instance() cs.store(group="agent", name="goal_td3", node=GoalTD3AgentConfig) class Critic(nn.Module): """ forward representation class""" def __init__(self, obs_dim, z_dim, action_dim, feature_dim, hidden_dim, preprocess=False, add_trunk=True) -> None: super().__init__() self.obs_dim = obs_dim self.action_dim = action_dim self.z_dim = z_dim self.preprocess = preprocess if self.preprocess: self.obs_action_net = mlp(self.obs_dim + self.action_dim, hidden_dim, "ntanh", feature_dim, "irelu") self.obs_z_net = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", feature_dim, "irelu") if not add_trunk: self.trunk: nn.Module = nn.Identity() feature_dim = 2 * feature_dim else: self.trunk = mlp(2 * feature_dim, hidden_dim, "irelu") feature_dim = hidden_dim else: self.trunk = mlp(self.obs_dim + self.z_dim + self.action_dim, hidden_dim, "ntanh") feature_dim = hidden_dim seq = [feature_dim, hidden_dim, "irelu", self.z_dim] self.F1 = mlp(*seq) self.F2 = mlp(*seq) self.apply(utils.weight_init) def forward(self, obs, z, action): assert z.shape[-1] == self.z_dim if self.preprocess: obs_action = self.obs_action_net(torch.cat([obs, action], dim=-1)) obs_z = self.obs_z_net(torch.cat([obs, z], dim=-1)) h = torch.cat([obs_action, obs_z], dim=-1) else: h = torch.cat([obs, z, action], dim=-1) if hasattr(self, "trunk"): h = self.trunk(h) F1 = self.F1(h) F2 = self.F2(h) return F1, F2 class GoalTD3Agent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = GoalTD3AgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") self.goal_dim = 0 if cfg.goal_space is not None: if cfg.goal_space == "quad_pos_speed": self.goal_dim = 7 # ugly hack else: g = next(iter(_goals.goals.funcs[cfg.goal_space].values()))() assert len(g.shape) == 1 self.goal_dim = len(g) if self.cfg.fb_reward: # FB pt = Path("/checkpoint/atouati/ca/2022-09-09_proto_maze/results/fb_ddpg_5e-05/9/models/snapshot_1000000.pt") # pt = Path("/private/home/atouati/controllable_agent/url_benchmark/exp_sweep/2022.08.03/" # "161531_fb_ddpg_point_mass_maze_reach_top_right_offline/1/models/snapshot_1000000.pt") # Contr # pt = Path("/private/home/atouati/controllable_agent/url_benchmark/exp_paper/" # "2022.08.22_point_mass_maze_reach_top_right/100239_sf_contrastive/0/models/snapshot_1000000.pt") # Lap # pt = Path("/private/home/atouati/controllable_agent/url_benchmark/exp_paper/" # "2022.08.23_point_mass_maze_reach_top_right/072210_sf_lap/1/models/snapshot_1000000.pt") # pt = Path("/private/home/atouati/controllable_agent/url_benchmark/exp_paper/" # "2022.08.25_point_mass_maze_reach_top_right/161812_new_aps/0/models/snapshot_2000000.pt") print(f"loading {pt.resolve()}") with pt.open("rb") as f: payload = torch.load(f) fb_agent = payload["agent"] if hasattr(fb_agent, "feature_learner"): self.feature_net = fb_agent.feature_learner.feature_net else: self.feature_net = fb_agent.backward_net self.feature_net.eval() self.goal_dim = fb_agent.cfg.z_dim if "replay_loader" in payload.keys(): self.precompute_cov(payload["replay_loader"]) self.actor = Actor(self.obs_dim, self.goal_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.critic: nn.Module = Critic(self.obs_dim, self.goal_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.critic_target: nn.Module = Critic(self.obs_dim, self.goal_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.critic_target.load_state_dict(self.critic.state_dict()) # optimizers self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) self.critic_opt = torch.optim.Adam(self.critic.parameters(), lr=cfg.lr) self.reward_model: tp.Optional[torch.nn.Module] = None self.reward_opt: tp.Optional[torch.optim.Adam] = None if cfg.reward_free: self.reward_model = mlp(self.obs_dim, cfg.hidden_dim, "ntanh", cfg.hidden_dim, # type: ignore "relu", cfg.hidden_dim, "relu", 1).to(cfg.device) # type: ignore self.reward_opt = torch.optim.Adam(self.reward_model.parameters(), lr=1e-3) self.train() self.critic_target.train() def train(self, training: bool = True) -> None: self.training = training self.actor.train(training) self.critic.train(training) def precompute_cov(self, replay_loader: ReplayBuffer) -> None: if not self.cfg.fb_reward: return None logger.info("computing Cov of phi to be used at inference") obs_list: tp.List[torch.Tensor] = [] batch_size = 0 while batch_size < 100000: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) # type: ignore batch_size += batch.next_obs.size(0) obs = torch.cat(obs_list, 0) with torch.no_grad(): phi = self.feature_net(obs) cov = torch.matmul(phi.T, phi) / phi.shape[0] self.inv_cov = torch.linalg.pinv(cov) def init_from(self, other) -> None: # copy parameters over utils.hard_update_params(other.actor, self.actor) utils.hard_update_params(other.critic, self.critic) def init_meta(self, custom_reward: tp.Optional[_goals.BaseReward] = None) -> MetaDict: if isinstance(custom_reward, _goals.MazeMultiGoal): idx = np.random.choice(len(custom_reward.goals)) desired_goal = custom_reward.goals[idx] meta = OrderedDict() meta["g"] = desired_goal return meta else: return OrderedDict() # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: return meta def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: meta = OrderedDict() meta['g'] = goal_array return meta def act(self, obs, meta, step, eval_mode) -> np.ndarray: device = torch.device(self.cfg.device) obs = torch.as_tensor(obs, device=device).unsqueeze(0) goals = [] for value in meta.values(): value = torch.as_tensor(value, device=device).unsqueeze(0) if self.cfg.fb_reward: with torch.no_grad(): goals.append(torch.matmul(self.feature_net(value), self.inv_cov)) else: goals.append(value) goal = torch.cat(goals, dim=-1) #assert obs.shape[-1] == self.obs_shape[-1] stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, goal, stddev) if eval_mode: action = dist.mean else: action = dist.sample(clip=None) if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def train_reward(self, replay_loader: ReplayBuffer) -> None: obs_list, reward_list = [], [] batch_size = 0 num_inference_steps = 10000 while batch_size < num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) obs, action, reward, discount, next_obs = batch.to(self.cfg.device).unpack() del obs, action, discount obs_list.append(next_obs) reward_list.append(reward) batch_size += next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[: num_inference_steps], reward[: num_inference_steps] print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) assert self.reward_model is not None for i in range(2000): reward_loss = (self.reward_model(obs) - reward).pow(2).mean() assert self.reward_opt is not None self.reward_opt.zero_grad(set_to_none=True) reward_loss.backward() self.reward_opt.step() print(f"iteration: {i}, reward_loss: {reward_loss.item()}") # compute test loss: while batch_size < num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) obs, action, reward, discount, next_obs = batch.to(self.cfg.device).unpack() del obs, action, discount obs_list.append(next_obs) reward_list.append(reward) batch_size += next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[: num_inference_steps], reward[: num_inference_steps] test_loss = (self.reward_model(obs) - reward).pow(2).mean() print(f"Test Loss: {test_loss.item()}") @tp.no_type_check # TODO remove def update_critic(self, obs: torch.Tensor, goal: torch.Tensor, action: torch.Tensor, reward: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics = {} with torch.no_grad(): stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, goal, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) target_Q1, target_Q2 = self.critic_target(next_obs, goal, next_action) target_V = torch.min(target_Q1, target_Q2) target_Q = reward + (discount * target_V) Q1, Q2 = self.critic(obs, goal, action) critic_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) if self.cfg.use_tb or self.cfg.use_wandb: metrics['critic_target_q'] = target_Q.mean().item() metrics['critic_q1'] = Q1.mean().item() metrics['critic_q2'] = Q2.mean().item() metrics['critic_loss'] = critic_loss.item() metrics['stdev'] = stddev # optimize critic self.critic_opt.zero_grad(set_to_none=True) critic_loss.backward() self.critic_opt.step() return metrics @tp.no_type_check # TODO remove def update_actor(self, obs: torch.Tensor, goal: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics = {} stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, goal, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) Q1, Q2 = self.critic(obs, goal, action) Q = torch.min(Q1, Q2) actor_loss = -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['actor_logprob'] = log_prob.mean().item() metrics['actor_ent'] = dist.entropy().sum(dim=-1).mean().item() return metrics def update(self, replay_loader: ReplayBuffer, step: int, custom_reward: tp.Optional[_goals.BaseReward] = None) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} #import ipdb; ipdb.set_trace() if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) achieved_goal = batch.next_goal future_goal = batch.future_obs if self.cfg.goal_space: future_goal = batch.future_goal obs = batch.obs action = batch.action discount = batch.discount reward = batch.reward next_obs = batch.next_obs if self.cfg.reward_free: del reward assert self.reward_model is not None reward = self.reward_model(next_obs) desired_goal: torch.Tensor = torch.tensor([], dtype=torch.float32, device=self.cfg.device) device = torch.device(self.cfg.device) if isinstance(custom_reward, _goals.MazeMultiGoal): del reward if self.cfg.supervised: # sample uniform goal idx = np.random.choice(len(custom_reward.goals), size=self.cfg.batch_size) desired_goal = custom_reward.goals[idx] # convert to tensor desired_goal = torch.as_tensor(desired_goal, device=device) else: # sample goal from replay new_batch = replay_loader.sample(self.cfg.batch_size) new_batch = new_batch.to(self.cfg.device) desired_goal = new_batch.next_goal # type: ignore # perm = torch.randperm(self.cfg.batch_size) # desired_goal = achieved_goal[perm] if self.cfg.future_ratio > 0: assert future_goal is not None future_idxs = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.future_ratio)[0] desired_goal[future_idxs] = future_goal[future_idxs] # type: ignore if self.cfg.fb_reward: # reward = (self.feature_net(achieved_goals) * # torch.matmul(self.feature_net(desired_goals), self.inv_cov)).sum(dim=1, keepdims=True) with torch.no_grad(): desired_goal = torch.matmul(self.feature_net(desired_goal), self.inv_cov) reward = (self.feature_net(achieved_goal) * desired_goal).sum(dim=1, keepdims=True) else: reward, _ = custom_reward.from_goal(achieved_goal.cpu().numpy(), desired_goal.cpu().numpy()) # type: ignore reward = torch.as_tensor(reward, device=device).unsqueeze(1) # type: ignore # # augment obs # obs = torch.cat([obs, desired_goal], dim=-1) # next_obs = torch.cat([next_obs, desired_goal], dim=-1) if self.cfg.use_tb or self.cfg.use_wandb: metrics['batch_reward'] = reward.mean().item() # update critic metrics.update( self.update_critic(obs=obs, goal=desired_goal, action=action, reward=reward, discount=discount, next_obs=next_obs, step=step)) # update actor metrics.update(self.update_actor(obs=obs, goal=desired_goal, step=step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.cfg.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/goal_td3.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp import dataclasses from copy import deepcopy import torch from torch import nn import torch.nn.functional as F from torch import distributions as pyd from torch import jit from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark import utils from .ddpg import DDPGAgent from .ddpg import DDPGAgentConfig as _BaseConfig from url_benchmark.in_memory_replay_buffer import ReplayBuffer from typing import Any, Dict, TypeVar _T = TypeVar('_T') @jit.script def sinkhorn_knopp(Q): Q -= Q.max() Q = torch.exp(Q).T Q /= Q.sum() r = torch.ones(Q.shape[0], device=Q.device) / Q.shape[0] c = torch.ones(Q.shape[1], device=Q.device) / Q.shape[1] for _ in range(3): u = Q.sum(dim=1) u = r / u Q *= u.unsqueeze(dim=1) Q *= (c / Q.sum(dim=0)).unsqueeze(dim=0) Q = Q / Q.sum(dim=0, keepdim=True) return Q.T class Projector(nn.Module): def __init__(self, pred_dim, proj_dim) -> None: super().__init__() self.trunk = nn.Sequential(nn.Linear(pred_dim, proj_dim), nn.ReLU(), nn.Linear(proj_dim, pred_dim)) self.apply(utils.weight_init) def forward(self, x) -> Any: return self.trunk(x) @dataclasses.dataclass class ProtoAgentConfig(_BaseConfig): _target_: str = "url_benchmark.agent.proto.ProtoAgent" name: str = "proto" update_encoder: bool = omegaconf.II("update_encoder") pred_dim: int = 128 proj_dim: int = 512 num_protos: int = 512 tau: float = 0.1 topk: int = 3 queue_size: int = 2048 encoder_target_tau: float = 0.05 cs = ConfigStore.instance() cs.store(group="agent", name="proto", node=ProtoAgentConfig) class ProtoAgent(DDPGAgent): def __init__(self, **kwargs) -> None: cfg = ProtoAgentConfig(**kwargs) super().__init__(**kwargs) self.cfg = cfg # override base ddpg cfg type # models self.encoder_target = deepcopy(self.encoder) self.predictor = nn.Linear(self.obs_dim, cfg.pred_dim).to(self.device) self.predictor.apply(utils.weight_init) self.predictor_target = deepcopy(self.predictor) self.projector = Projector(cfg.pred_dim, cfg.proj_dim).to(self.device) self.projector.apply(utils.weight_init) # prototypes self.protos = nn.Linear(cfg.pred_dim, cfg.num_protos, bias=False).to(self.device) self.protos.apply(utils.weight_init) # candidate queue self.queue = torch.zeros(cfg.queue_size, cfg.pred_dim, device=self.device) self.queue_ptr = 0 # optimizers self.proto_opt = torch.optim.Adam(utils.chain( self.encoder.parameters(), self.predictor.parameters(), self.projector.parameters(), self.protos.parameters()), lr=self.lr) self.predictor.train() self.projector.train() self.protos.train() def init_from(self, other) -> None: # copy parameters over utils.hard_update_params(other.encoder, self.encoder) utils.hard_update_params(other.actor, self.actor) utils.hard_update_params(other.predictor, self.predictor) utils.hard_update_params(other.projector, self.projector) utils.hard_update_params(other.protos, self.protos) if self.init_critic: utils.hard_update_params(other.critic, self.critic) def normalize_protos(self) -> None: C = self.protos.weight.data.clone() C = F.normalize(C, dim=1, p=2) self.protos.weight.data.copy_(C) # pylint: disable=unused-argument def compute_intr_reward(self, obs, step) -> Any: self.normalize_protos() # find a candidate for each prototype with torch.no_grad(): z = self.encoder(obs) z = self.predictor(z) z = F.normalize(z, dim=1, p=2) scores = self.protos(z).T prob = F.softmax(scores, dim=1) candidates = pyd.Categorical(prob).sample() # enqueue candidates ptr = self.queue_ptr self.queue[ptr:ptr + self.num_protos] = z[candidates] self.queue_ptr = (ptr + self.num_protos) % self.queue.shape[0] # compute distances between the batch and the queue of candidates z_to_q = torch.norm(z[:, None, :] - self.queue[None, :, :], dim=2, p=2) all_dists, _ = torch.topk(z_to_q, self.topk, dim=1, largest=False) dist = all_dists[:, -1:] reward = dist return reward # pylint: disable=unused-argument def update_proto(self, obs, next_obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} # normalize prototypes self.normalize_protos() # online network s = self.encoder(obs) s = self.predictor(s) s = self.projector(s) s = F.normalize(s, dim=1, p=2) scores_s = self.protos(s) log_p_s = F.log_softmax(scores_s / self.tau, dim=1) # target network with torch.no_grad(): t = self.encoder_target(next_obs) t = self.predictor_target(t) t = F.normalize(t, dim=1, p=2) scores_t = self.protos(t) q_t = sinkhorn_knopp(scores_t / self.tau) # loss loss = -(q_t * log_p_s).sum(dim=1).mean() if self.use_tb or self.use_wandb: metrics['repr_loss'] = loss.item() self.proto_opt.zero_grad(set_to_none=True) loss.backward() self.proto_opt.step() return metrics def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) obs, action, extr_reward, discount, next_obs = batch.to(self.device).unpack() # augment and encode with torch.no_grad(): obs = self.aug(obs) next_obs = self.aug(next_obs) if self.reward_free: metrics.update(self.update_proto(obs, next_obs, step)) with torch.no_grad(): intr_reward = self.compute_intr_reward(next_obs, step) if self.use_tb or self.use_wandb: metrics['intr_reward'] = intr_reward.mean().item() reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() obs = self.encoder(obs) next_obs = self.encoder(next_obs) if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.encoder, self.encoder_target, self.encoder_target_tau) utils.soft_update_params(self.predictor, self.predictor_target, self.encoder_target_tau) utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/proto.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import pdb # pylint: disable=unused-import import math import typing as tp import torch from torch import nn import torch.nn.functional as F from url_benchmark import utils class OnlineCov(nn.Module): def __init__(self, mom: float, dim: int) -> None: super().__init__() self.mom = mom # momentum self.count = torch.nn.Parameter(torch.LongTensor([0]), requires_grad=False) self.cov: tp.Any = torch.nn.Parameter(torch.zeros((dim, dim), dtype=torch.float32), requires_grad=False) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.training: self.count += 1 # type: ignore self.cov.data *= self.mom self.cov.data += (1 - self.mom) * torch.matmul(x.T, x) / x.shape[0] count = self.count.item() cov = self.cov / (1 - self.mom**count) return cov class _L2(nn.Module): def __init__(self, dim) -> None: super().__init__() self.dim = dim def forward(self, x): y = math.sqrt(self.dim) * F.normalize(x, dim=1) return y def _nl(name: str, dim: int) -> tp.List[nn.Module]: """Returns a non-linearity given name and dimension""" if name == "irelu": return [nn.ReLU(inplace=True)] if name == "relu": return [nn.ReLU()] if name == "ntanh": return [nn.LayerNorm(dim), nn.Tanh()] if name == "layernorm": return [nn.LayerNorm(dim)] if name == "tanh": return [nn.Tanh()] if name == "L2": return [_L2(dim)] raise ValueError(f"Unknown non-linearity {name}") def mlp(*layers: tp.Sequence[tp.Union[int, str]]) -> nn.Sequential: """Provides a sequence of linear layers and non-linearities providing a sequence of dimension for the neurons, or name of the non-linearities Eg: mlp(10, 12, "relu", 15) returns: Sequential(Linear(10, 12), ReLU(), Linear(12, 15)) """ assert len(layers) >= 2 sequence: tp.List[nn.Module] = [] assert isinstance(layers[0], int), "First input must provide the dimension" prev_dim: int = layers[0] for layer in layers[1:]: if isinstance(layer, str): sequence.extend(_nl(layer, prev_dim)) else: assert isinstance(layer, int) sequence.append(nn.Linear(prev_dim, layer)) prev_dim = layer return nn.Sequential(*sequence) class Actor(nn.Module): def __init__(self, obs_dim, z_dim, action_dim, feature_dim, hidden_dim, preprocess=False, add_trunk=True) -> None: super().__init__() self.obs_dim = obs_dim self.z_dim = z_dim self.action_dim = action_dim self.preprocess = preprocess if self.preprocess: self.obs_net = mlp(self.obs_dim, hidden_dim, "ntanh", feature_dim, "irelu") self.obs_z_net = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", feature_dim, "irelu") if not add_trunk: self.trunk: nn.Module = nn.Identity() feature_dim = 2 * feature_dim else: self.trunk = mlp(2 * feature_dim, hidden_dim, "irelu") feature_dim = hidden_dim else: self.trunk = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", hidden_dim, "irelu", hidden_dim, "irelu") feature_dim = hidden_dim self.policy = mlp(feature_dim, hidden_dim, "irelu", self.action_dim) self.apply(utils.weight_init) # initialize the last layer by zero # self.policy[-1].weight.data.fill_(0.0) def forward(self, obs, z, std): assert z.shape[-1] == self.z_dim if self.preprocess: obs_z = self.obs_z_net(torch.cat([obs, z], dim=-1)) obs = self.obs_net(obs) h = torch.cat([obs, obs_z], dim=-1) else: h = torch.cat([obs, z], dim=-1) if hasattr(self, "trunk"): h = self.trunk(h) mu = self.policy(h) mu = torch.tanh(mu) std = torch.ones_like(mu) * std dist = utils.TruncatedNormal(mu, std) return dist class DiagGaussianActor(nn.Module): def __init__(self, obs_dim, z_dim, action_dim, hidden_dim, log_std_bounds, preprocess=False) -> None: super().__init__() self.z_dim = z_dim self.log_std_bounds = log_std_bounds self.preprocess = preprocess feature_dim = obs_dim + z_dim self.policy = mlp(feature_dim, hidden_dim, "ntanh", hidden_dim, "relu", 2 * action_dim) self.apply(utils.weight_init) def forward(self, obs, z): assert z.shape[-1] == self.z_dim h = torch.cat([obs, z], dim=-1) mu, log_std = self.policy(h).chunk(2, dim=-1) # constrain log_std inside [log_std_min, log_std_max] log_std = torch.tanh(log_std) log_std_min, log_std_max = self.log_std_bounds log_std = log_std_min + 0.5 * (log_std_max - log_std_min) * (log_std + 1) std = log_std.exp() dist = utils.SquashedNormal(mu, std) return dist class ForwardMap(nn.Module): """ forward representation class""" def __init__(self, obs_dim, z_dim, action_dim, feature_dim, hidden_dim, preprocess=False, add_trunk=True) -> None: super().__init__() self.obs_dim = obs_dim self.z_dim = z_dim self.action_dim = action_dim self.preprocess = preprocess if self.preprocess: self.obs_action_net = mlp(self.obs_dim + self.action_dim, hidden_dim, "ntanh", feature_dim, "irelu") self.obs_z_net = mlp(self.obs_dim + self.z_dim, hidden_dim, "ntanh", feature_dim, "irelu") if not add_trunk: self.trunk: nn.Module = nn.Identity() feature_dim = 2 * feature_dim else: self.trunk = mlp(2 * feature_dim, hidden_dim, "irelu") feature_dim = hidden_dim else: self.trunk = mlp(self.obs_dim + self.z_dim + self.action_dim, hidden_dim, "ntanh", hidden_dim, "irelu", hidden_dim, "irelu") feature_dim = hidden_dim seq = [feature_dim, hidden_dim, "irelu", self.z_dim] self.F1 = mlp(*seq) self.F2 = mlp(*seq) self.apply(utils.weight_init) def forward(self, obs, z, action): assert z.shape[-1] == self.z_dim if self.preprocess: obs_action = self.obs_action_net(torch.cat([obs, action], dim=-1)) obs_z = self.obs_z_net(torch.cat([obs, z], dim=-1)) h = torch.cat([obs_action, obs_z], dim=-1) else: h = torch.cat([obs, z, action], dim=-1) if hasattr(self, "trunk"): h = self.trunk(h) F1 = self.F1(h) F2 = self.F2(h) return F1, F2 class IdentityMap(nn.Module): def __init__(self) -> None: super().__init__() self.B = nn.Identity() def forward(self, obs): return self.B(obs) class BackwardMap(nn.Module): """ backward representation class""" def __init__(self, obs_dim, z_dim, hidden_dim, norm_z: bool = True) -> None: super().__init__() self.obs_dim = obs_dim self.z_dim = z_dim self.norm_z = norm_z self.B = mlp(self.obs_dim, hidden_dim, "ntanh", hidden_dim, "relu", self.z_dim) self.apply(utils.weight_init) def forward(self, obs): if not hasattr(self, "norm_z"): # backward compatiblity self.norm_z = True B = self.B(obs) if self.norm_z: B = math.sqrt(self.z_dim) * F.normalize(B, dim=1) return B class MultinputNet(nn.Module): """Network with multiple inputs""" def __init__(self, input_dims: tp.Sequence[int], sequence_dims: tp.Sequence[int]) -> None: super().__init__() input_dims = list(input_dims) sequence_dims = list(sequence_dims) dim0 = sequence_dims[0] self.innets = nn.ModuleList([mlp(indim, dim0, "relu", dim0, "layernorm") for indim in input_dims]) # type: ignore sequence: tp.List[tp.Union[str, int]] = [dim0] for dim in sequence_dims[1:]: sequence.extend(["relu", dim]) self.outnet = mlp(*sequence) # type: ignore def forward(self, *tensors: torch.Tensor) -> torch.Tensor: assert len(tensors) == len(self.innets) out = sum(net(x) for net, x in zip(self.innets, tensors)) / len(self.innets) return self.outnet(out) # type : ignore
controllable_agent-main
url_benchmark/agent/fb_modules.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import dataclasses import typing as tp from typing import Any, Dict, Tuple import math from collections import OrderedDict import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from url_benchmark import utils from url_benchmark.dmc import TimeStep from .ddpg import DDPGAgent, MetaDict, DDPGAgentConfig from url_benchmark.in_memory_replay_buffer import ReplayBuffer @dataclasses.dataclass class DIAYNAgentConfig(DDPGAgentConfig): _target_: str = "url_benchmark.agent.diayn.DIAYNAgent" name: str = "diayn" update_encoder: bool = omegaconf.II("update_encoder") skill_dim: int = 16 diayn_scale: float = 1.0 update_skill_every_step: int = 50 cs = ConfigStore.instance() cs.store(group="agent", name="diayn", node=DIAYNAgentConfig) class DIAYN(nn.Module): def __init__(self, obs_dim: int, skill_dim: int, hidden_dim: int) -> None: super().__init__() self.skill_pred_net = nn.Sequential(nn.Linear(obs_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, skill_dim)) self.apply(utils.weight_init) def forward(self, obs) -> Any: skill_pred = self.skill_pred_net(obs) return skill_pred class DIAYNAgent(DDPGAgent): def __init__(self, **kwargs) -> None: cfg = DIAYNAgentConfig(**kwargs) # create actor and critic # increase obs shape to include skill dim (through meta_dim) super().__init__(**kwargs, meta_dim=cfg.skill_dim) self.cfg = cfg # override base ddpg cfg type # create diayn self.diayn = DIAYN(self.obs_dim - self.skill_dim, self.skill_dim, kwargs['hidden_dim']).to(kwargs['device']) # loss criterion self.diayn_criterion = nn.CrossEntropyLoss() # optimizers self.diayn_opt = torch.optim.Adam(self.diayn.parameters(), lr=self.lr) self.diayn.train() def init_meta(self) -> tp.Dict[str, np.ndarray]: skill = np.zeros(self.skill_dim, dtype=np.float32) skill[np.random.choice(self.skill_dim)] = 1.0 meta = OrderedDict() meta['skill'] = skill return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.update_skill_every_step == 0: return self.init_meta() return meta def update_diayn(self, skill, next_obs, step) -> Dict[str, Any]: metrics: tp.Dict[str, float] = {} loss, df_accuracy = self.compute_diayn_loss(next_obs, skill) self.diayn_opt.zero_grad() if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) loss.backward() self.diayn_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() if self.use_tb or self.use_wandb: metrics['diayn_loss'] = loss.item() metrics['diayn_acc'] = df_accuracy return metrics def compute_intr_reward(self, skill, next_obs, step) -> Any: z_hat = torch.argmax(skill, dim=1) d_pred = self.diayn(next_obs) d_pred_log_softmax = F.log_softmax(d_pred, dim=1) # TODO pred_z unused, is that normal? # _, pred_z = torch.max(d_pred_log_softmax, dim=1, keepdim=True) reward = d_pred_log_softmax[torch.arange(d_pred.shape[0]), z_hat] - math.log(1 / self.skill_dim) reward = reward.reshape(-1, 1) return reward * self.diayn_scale def compute_diayn_loss(self, next_state, skill) -> Tuple[Any, Any]: """ DF Loss """ z_hat = torch.argmax(skill, dim=1) d_pred = self.diayn(next_state) d_pred_log_softmax = F.log_softmax(d_pred, dim=1) _, pred_z = torch.max(d_pred_log_softmax, dim=1, keepdim=True) d_loss = self.diayn_criterion(d_pred, z_hat) df_accuracy = torch.sum( torch.eq(z_hat, pred_z.reshape(1, list( pred_z.size())[0])[0])).float() / list( pred_z.size())[0] return d_loss, df_accuracy def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size).to(self.device) obs, action, extr_reward, discount, next_obs = batch.unpack() skill = batch.meta["skill"] # augment and encode obs = self.aug_and_encode(obs) next_obs = self.aug_and_encode(next_obs) if self.reward_free: metrics.update(self.update_diayn(skill, next_obs, step)) with torch.no_grad(): intr_reward = self.compute_intr_reward(skill, next_obs, step) if self.use_tb or self.use_wandb: metrics['intr_reward'] = intr_reward.mean().item() reward = intr_reward else: reward = extr_reward if self.use_tb or self.use_wandb: metrics['extr_reward'] = extr_reward.mean().item() metrics['batch_reward'] = reward.mean().item() if not self.update_encoder: obs = obs.detach() next_obs = next_obs.detach() # extend observations with skill obs = torch.cat([obs, skill], dim=1) next_obs = torch.cat([next_obs, skill], dim=1) # update critic metrics.update( self.update_critic(obs.detach(), action, reward, discount, next_obs.detach(), step)) # update actor metrics.update(self.update_actor(obs.detach(), step)) # update critic target utils.soft_update_params(self.critic, self.critic_target, self.critic_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/diayn.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pylint: disable=unused-import import pdb import copy import math import logging import dataclasses from collections import OrderedDict import typing as tp import numpy as np import torch from torch import nn import torch.nn.functional as F from hydra.core.config_store import ConfigStore import omegaconf from dm_env import specs from url_benchmark import utils # from url_benchmark import replay_buffer as rb from url_benchmark.in_memory_replay_buffer import ReplayBuffer from url_benchmark.dmc import TimeStep from url_benchmark import goals as _goals from .ddpg import MetaDict from .fb_modules import IdentityMap from .ddpg import Encoder from .fb_modules import Actor, DiagGaussianActor, ForwardMap, BackwardMap, OnlineCov logger = logging.getLogger(__name__) @dataclasses.dataclass class UVFAgentConfig: # @package agent _target_: str = "url_benchmark.agent.uvf.UVFAgent" name: str = "uvf" # reward_free: ${reward_free} obs_type: str = omegaconf.MISSING # to be specified later obs_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later action_shape: tp.Tuple[int, ...] = omegaconf.MISSING # to be specified later device: str = omegaconf.II("device") # ${device} lr: float = 1e-4 lr_coef: float = 1 fb_target_tau: float = 0.01 # 0.001-0.01 update_every_steps: int = 2 use_tb: bool = omegaconf.II("use_tb") # ${use_tb} use_wandb: bool = omegaconf.II("use_wandb") # ${use_wandb} use_hiplog: bool = omegaconf.II("use_hiplog") # ${use_wandb} num_expl_steps: int = omegaconf.MISSING # ??? # to be specified later num_inference_steps: int = 5120 hidden_dim: int = 1024 # 128, 2048 backward_hidden_dim: int = 512 # 128, 2048 feature_dim: int = 512 # 128, 1024 z_dim: int = 100 # 30-200 stddev_schedule: str = "0.2" # "linear(1,0.2,200000)" # stddev_clip: float = 0.3 # 1 update_z_every_step: int = 300 update_z_proba: float = 1.0 nstep: int = 1 batch_size: int = 512 # multiple de 3, 500-5000 init_fb: bool = True update_encoder: bool = omegaconf.II("update_encoder") # ${update_encoder} goal_space: tp.Optional[str] = omegaconf.II("goal_space") ortho_coef: float = 1.0 # 0.01-10 log_std_bounds: tp.Tuple[float, float] = (-5, 2) # param for DiagGaussianActor temp: float = 1 # temperature for DiagGaussianActor boltzmann: bool = False # set to true for DiagGaussianActor debug: bool = False future_ratio: float = 0.0 mix_ratio: float = 0.5 # 0-1 rand_weight: bool = False # True, False preprocess: bool = True norm_z: bool = True q_loss: bool = False additional_metric: bool = False add_trunk: bool = False cs = ConfigStore.instance() cs.store(group="agent", name="uvf", node=UVFAgentConfig) class UVFAgent: # pylint: disable=unused-argument def __init__(self, **kwargs: tp.Any ): cfg = UVFAgentConfig(**kwargs) self.cfg = cfg assert len(cfg.action_shape) == 1 self.action_dim = cfg.action_shape[0] self.solved_meta: tp.Any = None # models if cfg.obs_type == 'pixels': self.aug: nn.Module = utils.RandomShiftsAug(pad=4) self.encoder: nn.Module = Encoder(cfg.obs_shape).to(cfg.device) self.obs_dim = self.encoder.repr_dim else: self.aug = nn.Identity() self.encoder = nn.Identity() self.obs_dim = cfg.obs_shape[0] if cfg.feature_dim < self.obs_dim: logger.warning(f"feature_dim {cfg.feature_dim} should not be smaller that obs_dim {self.obs_dim}") goal_dim = self.obs_dim if cfg.goal_space is not None: goal_dim = _goals.get_goal_space_dim(cfg.goal_space) if cfg.z_dim < goal_dim: logger.warning(f"z_dim {cfg.z_dim} should not be smaller that goal_dim {goal_dim}") # create the network if self.cfg.boltzmann: self.actor: nn.Module = DiagGaussianActor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.hidden_dim, cfg.log_std_bounds).to(cfg.device) else: self.actor = Actor(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) self.forward_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) if cfg.debug: self.backward_net: nn.Module = IdentityMap().to(cfg.device) # self.backward_target_net: nn.Module = IdentityMap().to(cfg.device) else: self.backward_net = BackwardMap(goal_dim, cfg.z_dim, cfg.backward_hidden_dim, norm_z=cfg.norm_z).to(cfg.device) # self.backward_target_net = BackwardMap(goal_dim, # cfg.z_dim, cfg.backward_hidden_dim, norm_z=cfg.norm_z).to(cfg.device) # build up the target network self.forward_target_net = ForwardMap(self.obs_dim, cfg.z_dim, self.action_dim, cfg.feature_dim, cfg.hidden_dim, preprocess=cfg.preprocess, add_trunk=self.cfg.add_trunk).to(cfg.device) # load the weights into the target networks self.forward_target_net.load_state_dict(self.forward_net.state_dict()) # self.backward_target_net.load_state_dict(self.backward_net.state_dict()) # optimizers self.encoder_opt: tp.Optional[torch.optim.Adam] = None if cfg.obs_type == 'pixels': self.encoder_opt = torch.optim.Adam(self.encoder.parameters(), lr=cfg.lr) self.actor_opt = torch.optim.Adam(self.actor.parameters(), lr=cfg.lr) # params = [p for net in [self.forward_net, self.backward_net] for p in net.parameters()] # self.fb_opt = torch.optim.Adam(params, lr=cfg.lr) self.fb_opt = torch.optim.Adam([{'params': self.forward_net.parameters()}, # type: ignore {'params': self.backward_net.parameters(), 'lr': cfg.lr_coef * cfg.lr}], lr=cfg.lr) self.train() self.forward_target_net.train() # self.backward_target_net.train() self.actor_success: tp.List[float] = [] # only for debugging, can be removed eventually # self.inv_cov = torch.eye(self.cfg.z_dim, dtype=torch.float32, device=self.cfg.device) # self.online_cov = OnlineCov(mom=0.99, dim=self.cfg.z_dim).to(self.cfg.device) # self.online_cov.train() def train(self, training: bool = True) -> None: self.training = training for net in [self.encoder, self.actor, self.forward_net, self.backward_net]: net.train(training) def init_from(self, other) -> None: # copy parameters over names = ["encoder", "actor"] if self.cfg.init_fb: names += ["forward_net", "backward_net", "forward_target_net"] # + ["backward_target_net"] for name in names: utils.hard_update_params(getattr(other, name), getattr(self, name)) for key, val in self.__dict__.items(): if isinstance(val, torch.optim.Optimizer): val.load_state_dict(copy.deepcopy(getattr(other, key).state_dict())) def get_goal_meta(self, goal_array: np.ndarray) -> MetaDict: desired_goal = torch.tensor(goal_array).unsqueeze(0).to(self.cfg.device) with torch.no_grad(): z = self.backward_net(desired_goal) # if self.cfg.norm_z: # z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) z = z.squeeze(0).cpu().numpy() meta = OrderedDict() meta['z'] = z return meta def infer_meta(self, replay_loader: ReplayBuffer) -> MetaDict: obs_list, reward_list = [], [] batch_size = 0 while batch_size < self.cfg.num_inference_steps: batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) obs_list.append(batch.next_goal if self.cfg.goal_space is not None else batch.next_obs) reward_list.append(batch.reward) batch_size += batch.next_obs.size(0) obs, reward = torch.cat(obs_list, 0), torch.cat(reward_list, 0) # type: ignore obs, reward = obs[:self.cfg.num_inference_steps], reward[:self.cfg.num_inference_steps] return self.infer_meta_from_obs_and_rewards(obs, reward) def infer_meta_from_obs_and_rewards(self, obs: torch.Tensor, reward: torch.Tensor) -> MetaDict: print('max reward: ', reward.max().cpu().item()) print('99 percentile: ', torch.quantile(reward, 0.99).cpu().item()) print('median reward: ', reward.median().cpu().item()) print('min reward: ', reward.min().cpu().item()) print('mean reward: ', reward.mean().cpu().item()) print('num reward: ', reward.shape[0]) # filter out small reward # pdb.set_trace() # idx = torch.where(reward >= torch.quantile(reward, 0.99))[0] # obs = obs[idx] # reward = reward[idx] with torch.no_grad(): B = self.backward_net(obs) z = torch.matmul(reward.T, B) / reward.shape[0] if self.cfg.norm_z: z = math.sqrt(self.cfg.z_dim) * F.normalize(z, dim=1) meta = OrderedDict() meta['z'] = z.squeeze().cpu().numpy() # self.solved_meta = meta return meta def init_meta(self, replay_loader: tp.Optional[ReplayBuffer] = None) -> MetaDict: if replay_loader is not None: batch = replay_loader.sample(self.cfg.batch_size) assert batch.next_goal is not None g = batch.next_goal[0] meta = self.get_goal_meta(g) else: z = np.zeros((self.cfg.z_dim,), dtype=np.float32) meta = OrderedDict() meta['z'] = z return meta # pylint: disable=unused-argument def update_meta( self, meta: MetaDict, global_step: int, time_step: TimeStep, finetune: bool = False, replay_loader: tp.Optional[ReplayBuffer] = None ) -> MetaDict: if global_step % self.cfg.update_z_every_step == 0 and np.random.rand() < self.cfg.update_z_proba: return self.init_meta() return meta def act(self, obs, meta, step, eval_mode) -> tp.Any: obs = torch.as_tensor(obs, device=self.cfg.device).unsqueeze(0) # type: ignore h = self.encoder(obs) z = torch.as_tensor(meta['z'], device=self.cfg.device).unsqueeze(0) # type: ignore if self.cfg.boltzmann: dist = self.actor(h, z) else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(h, z, stddev) if eval_mode: action = dist.mean else: action = dist.sample() if step < self.cfg.num_expl_steps: action.uniform_(-1.0, 1.0) return action.cpu().numpy()[0] def update_fb( self, obs: torch.Tensor, action: torch.Tensor, discount: torch.Tensor, next_obs: torch.Tensor, next_goal: torch.Tensor, desired_goal: torch.Tensor, step: int ) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} # Q LOSS epsilon = 1e-6 z = self.backward_net(desired_goal) reward = (torch.norm(next_goal - desired_goal, dim=1, keepdim=False) < epsilon).float() # batch_size with torch.no_grad(): stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(next_obs, z, stddev) next_action = dist.sample(clip=self.cfg.stddev_clip) target_F1, target_F2 = self.forward_target_net(next_obs, z, next_action) # batch x z_dim next_Q1, nextQ2 = [torch.einsum('sd, sd -> s', target_Fi, z) for target_Fi in [target_F1, target_F2]] next_Q = torch.min(next_Q1, nextQ2) target_Q = reward + discount.squeeze(1) * next_Q # batch_size target_Q = target_Q.detach() F1, F2 = self.forward_net(obs, z, action) Q1, Q2 = [torch.einsum('sd, sd -> s', Fi, z) for Fi in [F1, F2]] fb_loss = F.mse_loss(Q1, target_Q) + F.mse_loss(Q2, target_Q) if self.cfg.use_tb or self.cfg.use_wandb or self.cfg.use_hiplog: metrics['z_norm'] = torch.norm(z, dim=-1).mean().item() metrics['fb_loss'] = fb_loss.item() if isinstance(self.fb_opt, torch.optim.Adam): metrics["fb_opt_lr"] = self.fb_opt.param_groups[0]["lr"] # optimize FB if self.encoder_opt is not None: self.encoder_opt.zero_grad(set_to_none=True) self.fb_opt.zero_grad(set_to_none=True) fb_loss.backward() self.fb_opt.step() if self.encoder_opt is not None: self.encoder_opt.step() return metrics def update_actor(self, obs: torch.Tensor, desired_goal: torch.Tensor, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} z = self.backward_net(desired_goal) if self.cfg.boltzmann: dist = self.actor(obs, z) action = dist.rsample() else: stddev = utils.schedule(self.cfg.stddev_schedule, step) dist = self.actor(obs, z, stddev) action = dist.sample(clip=self.cfg.stddev_clip) log_prob = dist.log_prob(action).sum(-1, keepdim=True) F1, F2 = self.forward_net(obs, z, action) Q1 = torch.einsum('sd, sd -> s', F1, z) Q2 = torch.einsum('sd, sd -> s', F2, z) Q = torch.min(Q1, Q2) actor_loss = (self.cfg.temp * log_prob - Q).mean() if self.cfg.boltzmann else -Q.mean() # optimize actor self.actor_opt.zero_grad(set_to_none=True) actor_loss.backward() self.actor_opt.step() if self.cfg.use_tb or self.cfg.use_wandb: metrics['actor_loss'] = actor_loss.item() metrics['q'] = Q.mean().item() metrics['actor_logprob'] = log_prob.mean().item() return metrics def update(self, replay_loader: ReplayBuffer, step: int) -> tp.Dict[str, float]: metrics: tp.Dict[str, float] = {} if step % self.cfg.update_every_steps != 0: return metrics batch = replay_loader.sample(self.cfg.batch_size) batch = batch.to(self.cfg.device) # pdb.set_trace() obs = batch.obs action = batch.action discount = batch.discount next_obs = next_goal = batch.next_obs if self.cfg.goal_space is not None: assert batch.next_goal is not None next_goal = batch.next_goal # second_batch = replay_loader.sample(self.cfg.batch_size) # second_batch = second_batch.to(self.cfg.device) # # desired_goal = second_batch.next_obs # if self.cfg.goal_space is not None: # assert second_batch.next_goal is not None # desired_goal = second_batch.next_goal perm = torch.randperm(self.cfg.batch_size) desired_goal = next_goal[perm] if self.cfg.mix_ratio > 0: mix_idxs: tp.Any = np.where(np.random.uniform(size=self.cfg.batch_size) < self.cfg.mix_ratio)[0] desired_goal[mix_idxs] = next_goal[mix_idxs] metrics.update(self.update_fb(obs=obs, action=action, discount=discount, next_obs=next_obs, next_goal=next_goal, desired_goal=desired_goal, step=step)) # update actor metrics.update(self.update_actor(obs, desired_goal, step)) # update critic target utils.soft_update_params(self.forward_net, self.forward_target_net, self.cfg.fb_target_tau) # utils.soft_update_params(self.backward_net, self.backward_target_net, # self.cfg.fb_target_tau) return metrics
controllable_agent-main
url_benchmark/agent/uvf.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Quadruped Domain.""" import collections import typing as tp from typing import Any import os from dm_control import mujoco from dm_control.mujoco.wrapper import mjbindings from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import xml_tools from lxml import etree import numpy as np from scipy import ndimage enums = mjbindings.enums mjlib = mjbindings.mjlib _DEFAULT_TIME_LIMIT = 20 _CONTROL_TIMESTEP = .02 # Horizontal speeds above which the move reward is 1. _RUN_SPEED = 5 _WALK_SPEED = 0.5 _JUMP_HEIGHT = 1.0 # Constants related to terrain generation. _HEIGHTFIELD_ID = 0 _TERRAIN_SMOOTHNESS = 0.15 # 0.0: maximally bumpy; 1.0: completely smooth. _TERRAIN_BUMP_SCALE = 2 # Spatial scale of terrain bumps (in meters). # Named model elements. _TOES = ['toe_front_left', 'toe_back_left', 'toe_back_right', 'toe_front_right'] _WALLS = ['wall_px', 'wall_py', 'wall_nx', 'wall_ny'] SUITE = containers.TaggedTasks() def make(task, task_kwargs=None, environment_kwargs=None, visualize_reward: bool = False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env # REMOVED since resources is undefined # def get_model_and_assets() -> Tuple[Any, Any]: # """Returns a tuple containing the model XML string and a dict of assets.""" # root_dir = os.path.dirname(os.path.dirname(__file__)) # xml = resources.GetResource( # os.path.join(root_dir, 'custom_dmc_tasks', 'quadruped.xml')) # return xml, common.ASSETS def make_model(floor_size=None, terrain: bool = False, rangefinders: bool = False, walls_and_ball: bool = False): """Returns the model XML string.""" root_dir = os.path.dirname(os.path.dirname(__file__)) xml_string = common.read_model(os.path.join(root_dir, 'custom_dmc_tasks', 'quadruped.xml')) parser = etree.XMLParser(remove_blank_text=True) mjcf = etree.XML(xml_string, parser) # Set floor size. if floor_size is not None: floor_geom = mjcf.find('.//geom[@name=\'floor\']') floor_geom.attrib['size'] = f'{floor_size} {floor_size} .5' # Remove walls, ball and target. if not walls_and_ball: for wall in _WALLS: wall_geom = xml_tools.find_element(mjcf, 'geom', wall) wall_geom.getparent().remove(wall_geom) # Remove ball. ball_body = xml_tools.find_element(mjcf, 'body', 'ball') ball_body.getparent().remove(ball_body) # Remove target. target_site = xml_tools.find_element(mjcf, 'site', 'target') target_site.getparent().remove(target_site) # Remove terrain. if not terrain: terrain_geom = xml_tools.find_element(mjcf, 'geom', 'terrain') terrain_geom.getparent().remove(terrain_geom) # Remove rangefinders if they're not used, as range computations can be # expensive, especially in a scene with heightfields. if not rangefinders: rangefinder_sensors = mjcf.findall('.//rangefinder') for rf in rangefinder_sensors: rf.getparent().remove(rf) return etree.tostring(mjcf, pretty_print=True) @SUITE.add() def stand(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Walk task.""" xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED) physics = Physics.from_xml_string(xml_string, common.ASSETS) task = Stand(random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add() def jump(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Walk task.""" xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED) physics = Physics.from_xml_string(xml_string, common.ASSETS) task = Jump(desired_height=_JUMP_HEIGHT, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add() def roll(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Walk task.""" xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED) physics = Physics.from_xml_string(xml_string, common.ASSETS) task = Roll(desired_speed=_WALK_SPEED, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add() def roll_fast(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Walk task.""" xml_string = make_model(floor_size=_DEFAULT_TIME_LIMIT * _WALK_SPEED) physics = Physics.from_xml_string(xml_string, common.ASSETS) task = Roll(desired_speed=_RUN_SPEED, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add() def escape(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Escape task.""" xml_string = make_model(floor_size=40, terrain=True, rangefinders=True) physics = Physics.from_xml_string(xml_string, common.ASSETS) task = Escape(random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add() def fetch(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Fetch task.""" xml_string = make_model(walls_and_ball=True) physics = Physics.from_xml_string(xml_string, common.ASSETS) task = Fetch(random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) # pylint: disable=attribute-defined-outside-init class Physics(mujoco.Physics): """Physics simulation with additional features for the Quadruped domain.""" def _reload_from_data(self, data) -> None: super()._reload_from_data(data) # Clear cached sensor names when the physics is reloaded. self._sensor_types_to_names: tp.Dict[tp.Tuple[tp.Any, ...], tp.List[str]] = {} self._hinge_names: tp.List[str] = [] def _get_sensor_names(self, *sensor_types) -> Any: try: sensor_names = self._sensor_types_to_names[sensor_types] except KeyError: [sensor_ids] = np.where(np.in1d(self.model.sensor_type, sensor_types)) sensor_names = [self.model.id2name(s_id, 'sensor') for s_id in sensor_ids] self._sensor_types_to_names[sensor_types] = sensor_names return sensor_names def torso_upright(self) -> np.ndarray: """Returns the dot-product of the torso z-axis and the global z-axis.""" return np.asarray(self.named.data.xmat['torso', 'zz']) def torso_velocity(self) -> Any: """Returns the velocity of the torso, in the local frame.""" return self.named.data.sensordata['velocimeter'].copy() def com_height(self) -> Any: return self.named.data.sensordata['center_of_mass'].copy()[2] def egocentric_state(self) -> Any: """Returns the state without global orientation or position.""" if not self._hinge_names: [hinge_ids] = np.nonzero(self.model.jnt_type == enums.mjtJoint.mjJNT_HINGE) self._hinge_names = [self.model.id2name(j_id, 'joint') for j_id in hinge_ids] return np.hstack((self.named.data.qpos[self._hinge_names], self.named.data.qvel[self._hinge_names], self.data.act)) def toe_positions(self) -> Any: """Returns toe positions in egocentric frame.""" torso_frame = self.named.data.xmat['torso'].reshape(3, 3) torso_pos = self.named.data.xpos['torso'] torso_to_toe = self.named.data.xpos[_TOES] - torso_pos return torso_to_toe.dot(torso_frame) def force_torque(self) -> Any: """Returns scaled force/torque sensor readings at the toes.""" force_torque_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_FORCE, enums.mjtSensor.mjSENS_TORQUE) return np.arcsinh(self.named.data.sensordata[force_torque_sensors]) def imu(self) -> Any: """Returns IMU-like sensor readings.""" imu_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_GYRO, enums.mjtSensor.mjSENS_ACCELEROMETER) return self.named.data.sensordata[imu_sensors] def rangefinder(self) -> Any: """Returns scaled rangefinder sensor readings.""" rf_sensors = self._get_sensor_names(enums.mjtSensor.mjSENS_RANGEFINDER) rf_readings = self.named.data.sensordata[rf_sensors] no_intersection = -1.0 return np.where(rf_readings == no_intersection, 1.0, np.tanh(rf_readings)) def origin_distance(self) -> np.ndarray: """Returns the distance from the origin to the workspace.""" return np.asarray(np.linalg.norm(self.named.data.site_xpos['workspace'])) def origin(self) -> Any: """Returns origin position in the torso frame.""" torso_frame = self.named.data.xmat['torso'].reshape(3, 3) torso_pos = self.named.data.xpos['torso'] return -torso_pos.dot(torso_frame) def ball_state(self) -> Any: """Returns ball position and velocity relative to the torso frame.""" data = self.named.data torso_frame = data.xmat['torso'].reshape(3, 3) ball_rel_pos = data.xpos['ball'] - data.xpos['torso'] ball_rel_vel = data.qvel['ball_root'][:3] - data.qvel['root'][:3] ball_rot_vel = data.qvel['ball_root'][3:] ball_state = np.vstack((ball_rel_pos, ball_rel_vel, ball_rot_vel)) return ball_state.dot(torso_frame).ravel() def target_position(self) -> Any: """Returns target position in torso frame.""" torso_frame = self.named.data.xmat['torso'].reshape(3, 3) torso_pos = self.named.data.xpos['torso'] torso_to_target = self.named.data.site_xpos['target'] - torso_pos return torso_to_target.dot(torso_frame) def ball_to_target_distance(self) -> Any: """Returns horizontal distance from the ball to the target.""" ball_to_target = (self.named.data.site_xpos['target'] - self.named.data.xpos['ball']) return np.linalg.norm(ball_to_target[:2]) def self_to_ball_distance(self) -> Any: """Returns horizontal distance from the quadruped workspace to the ball.""" self_to_ball = (self.named.data.site_xpos['workspace'] - self.named.data.xpos['ball']) return np.linalg.norm(self_to_ball[:2]) def _find_non_contacting_height(physics, orientation, x_pos: float = 0.0, y_pos: float = 0.0) -> None: """Find a height with no contacts given a body orientation. Args: physics: An instance of `Physics`. orientation: A quaternion. x_pos: A float. Position along global x-axis. y_pos: A float. Position along global y-axis. Raises: RuntimeError: If a non-contacting configuration has not been found after 10,000 attempts. """ z_pos = 0.0 # Start embedded in the floor. num_contacts = 1 num_attempts = 0 # Move up in 1cm increments until no contacts. while num_contacts > 0: try: with physics.reset_context(): physics.named.data.qpos['root'][:3] = x_pos, y_pos, z_pos physics.named.data.qpos['root'][3:] = orientation except control.PhysicsError: # We may encounter a PhysicsError here due to filling the contact # buffer, in which case we simply increment the height and continue. pass num_contacts = physics.data.ncon z_pos += 0.01 num_attempts += 1 if num_attempts > 10000: raise RuntimeError('Failed to find a non-contacting configuration.') def _common_observations(physics) -> tp.Dict[str, Any]: """Returns the observations common to all tasks.""" obs = collections.OrderedDict() obs['egocentric_state'] = physics.egocentric_state() obs['torso_velocity'] = physics.torso_velocity() obs['torso_upright'] = physics.torso_upright() obs['imu'] = physics.imu() obs['force_torque'] = physics.force_torque() return obs def _upright_reward(physics, deviation_angle: int = 0): """Returns a reward proportional to how upright the torso is. Args: physics: an instance of `Physics`. deviation_angle: A float, in degrees. The reward is 0 when the torso is exactly upside-down and 1 when the torso's z-axis is less than `deviation_angle` away from the global z-axis. """ deviation = np.cos(np.deg2rad(deviation_angle)) return rewards.tolerance( physics.torso_upright(), bounds=(deviation, float('inf')), sigmoid='linear', margin=1 + deviation, value_at_margin=0) class Move(base.Task): """A quadruped task solved by moving forward at a designated speed.""" def __init__(self, desired_speed, random=None) -> None: """Initializes an instance of `Move`. Args: desired_speed: A float. If this value is zero, reward is given simply for standing upright. Otherwise this specifies the horizontal velocity at which the velocity-dependent reward component is maximized. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._desired_speed = desired_speed super().__init__(random=random) def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. Args: physics: An instance of `Physics`. """ # Initial configuration. orientation = self.random.randn(4) orientation /= np.linalg.norm(orientation) _find_non_contacting_height(physics, orientation) super().initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation to the agent.""" return _common_observations(physics) def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" # Move reward term. move_reward = rewards.tolerance( physics.torso_velocity()[0], bounds=(self._desired_speed, float('inf')), margin=self._desired_speed, value_at_margin=0.5, sigmoid='linear') return _upright_reward(physics) * move_reward class Stand(base.Task): """A quadruped task solved by moving forward at a designated speed.""" def __init__(self, random=None) -> None: """Initializes an instance of `Move`. Args: desired_speed: A float. If this value is zero, reward is given simply for standing upright. Otherwise this specifies the horizontal velocity at which the velocity-dependent reward component is maximized. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ super().__init__(random=random) def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. Args: physics: An instance of `Physics`. """ # Initial configuration. orientation = self.random.randn(4) orientation /= np.linalg.norm(orientation) _find_non_contacting_height(physics, orientation) super().initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation to the agent.""" return _common_observations(physics) def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" return _upright_reward(physics) class Jump(base.Task): """A quadruped task solved by moving forward at a designated speed.""" def __init__(self, desired_height, random=None) -> None: """Initializes an instance of `Move`. Args: desired_speed: A float. If this value is zero, reward is given simply for standing upright. Otherwise this specifies the horizontal velocity at which the velocity-dependent reward component is maximized. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._desired_height = desired_height super().__init__(random=random) def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. Args: physics: An instance of `Physics`. """ # Initial configuration. orientation = self.random.randn(4) orientation /= np.linalg.norm(orientation) _find_non_contacting_height(physics, orientation) super().initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation to the agent.""" return _common_observations(physics) def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" # Move reward term. jump_up = rewards.tolerance( physics.com_height(), bounds=(self._desired_height, float('inf')), margin=self._desired_height, value_at_margin=0.5, sigmoid='linear') return _upright_reward(physics) * jump_up class Roll(base.Task): """A quadruped task solved by moving forward at a designated speed.""" def __init__(self, desired_speed, random=None) -> None: """Initializes an instance of `Move`. Args: desired_speed: A float. If this value is zero, reward is given simply for standing upright. Otherwise this specifies the horizontal velocity at which the velocity-dependent reward component is maximized. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._desired_speed = desired_speed super().__init__(random=random) def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. Args: physics: An instance of `Physics`. """ # Initial configuration. orientation = self.random.randn(4) orientation /= np.linalg.norm(orientation) _find_non_contacting_height(physics, orientation) super().initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation to the agent.""" return _common_observations(physics) def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" # Move reward term. move_reward = rewards.tolerance( np.linalg.norm(physics.torso_velocity()), bounds=(self._desired_speed, float('inf')), margin=self._desired_speed, value_at_margin=0.5, sigmoid='linear') return _upright_reward(physics) * move_reward class Escape(base.Task): """A quadruped task solved by escaping a bowl-shaped terrain.""" def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. Args: physics: An instance of `Physics`. """ # Get heightfield resolution, assert that it is square. res = physics.model.hfield_nrow[_HEIGHTFIELD_ID] assert res == physics.model.hfield_ncol[_HEIGHTFIELD_ID] # Sinusoidal bowl shape. row_grid, col_grid = np.ogrid[-1:1:res * 1j, -1:1:res * 1j] radius = np.clip(np.sqrt(col_grid**2 + row_grid**2), .04, 1) bowl_shape = .5 - np.cos(2 * np.pi * radius) / 2 # Random smooth bumps. terrain_size = 2 * physics.model.hfield_size[_HEIGHTFIELD_ID, 0] bump_res = int(terrain_size / _TERRAIN_BUMP_SCALE) bumps = self.random.uniform(_TERRAIN_SMOOTHNESS, 1, (bump_res, bump_res)) smooth_bumps = ndimage.zoom(bumps, res / float(bump_res)) # Terrain is elementwise product. terrain = bowl_shape * smooth_bumps start_idx = physics.model.hfield_adr[_HEIGHTFIELD_ID] physics.model.hfield_data[start_idx:start_idx + res**2] = terrain.ravel() super().initialize_episode(physics) # If we have a rendering context, we need to re-upload the modified # heightfield data. if physics.contexts: with physics.contexts.gl.make_current() as ctx: ctx.call(mjlib.mjr_uploadHField, physics.model.ptr, physics.contexts.mujoco.ptr, _HEIGHTFIELD_ID) # Initial configuration. orientation = self.random.randn(4) orientation /= np.linalg.norm(orientation) _find_non_contacting_height(physics, orientation) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation to the agent.""" obs = _common_observations(physics) obs['origin'] = physics.origin() obs['rangefinder'] = physics.rangefinder() return obs def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" # Escape reward term. terrain_size = physics.model.hfield_size[_HEIGHTFIELD_ID, 0] escape_reward = rewards.tolerance( physics.origin_distance(), bounds=(terrain_size, float('inf')), margin=terrain_size, value_at_margin=0, sigmoid='linear') return _upright_reward(physics, deviation_angle=20) * escape_reward class Fetch(base.Task): """A quadruped task solved by bringing a ball to the origin.""" def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. Args: physics: An instance of `Physics`. """ # Initial configuration, random azimuth and horizontal position. azimuth = self.random.uniform(0, 2 * np.pi) orientation = np.array((np.cos(azimuth / 2), 0, 0, np.sin(azimuth / 2))) spawn_radius = 0.9 * physics.named.model.geom_size['floor', 0] x_pos, y_pos = self.random.uniform(-spawn_radius, spawn_radius, size=(2,)) _find_non_contacting_height(physics, orientation, x_pos, y_pos) # Initial ball state. physics.named.data.qpos['ball_root'][:2] = self.random.uniform( -spawn_radius, spawn_radius, size=(2,)) physics.named.data.qpos['ball_root'][2] = 2 physics.named.data.qvel['ball_root'][:2] = 5 * self.random.randn(2) super().initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation to the agent.""" obs = _common_observations(physics) obs['ball_state'] = physics.ball_state() obs['target_position'] = physics.target_position() return obs def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" # Reward for moving close to the ball. arena_radius = physics.named.model.geom_size['floor', 0] * np.sqrt(2) workspace_radius = physics.named.model.site_size['workspace', 0] ball_radius = physics.named.model.geom_size['ball', 0] reach_reward = rewards.tolerance( physics.self_to_ball_distance(), bounds=(0, workspace_radius + ball_radius), sigmoid='linear', margin=arena_radius, value_at_margin=0) # Reward for bringing the ball to the target. target_radius = physics.named.model.site_size['target', 0] fetch_reward = rewards.tolerance( physics.ball_to_target_distance(), bounds=(0, target_radius), sigmoid='linear', margin=arena_radius, value_at_margin=0) reach_then_fetch = reach_reward * (0.5 + 0.5 * fetch_reward) return _upright_reward(physics) * reach_then_fetch
controllable_agent-main
url_benchmark/custom_dmc_tasks/quadruped.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Point-mass domain.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.suite.utils import randomizers from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import io as resources from dm_env import specs import numpy as np import os _DEFAULT_TIME_LIMIT = 20 SUITE = containers.TaggedTasks() TASKS = [('reach_top_left', np.array([-0.15, 0.15])), ('reach_top_right', np.array([0.15, 0.15])), ('reach_bottom_left', np.array([-0.15, -0.15])), ('reach_bottom_right', np.array([0.15, -0.15]))] def make(task, task_kwargs=None, environment_kwargs=None, visualize_reward=False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env def get_model_and_assets(task): """Returns a tuple containing the model XML string and a dict of assets.""" root_dir = os.path.dirname(os.path.dirname(__file__)) xml = resources.GetResource( os.path.join(root_dir, 'custom_dmc_tasks', f'point_mass_maze_{task}.xml')) return xml, common.ASSETS @SUITE.add('benchmarking') def multi_goal(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets('multi_goal')) task = MultiTaskPointMassMaze(target_id=0, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def reach_top_left(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets('reach_top_left')) task = MultiTaskPointMassMaze(target_id=0, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def reach_top_right(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets('reach_top_right')) task = MultiTaskPointMassMaze(target_id=1, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def reach_bottom_left(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets('reach_bottom_left')) task = MultiTaskPointMassMaze(target_id=2, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def reach_bottom_right(time_limit=_DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets('reach_bottom_right')) task = MultiTaskPointMassMaze(target_id=3, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) class Physics(mujoco.Physics): """physics for the point_mass domain.""" def mass_to_target_dist(self, target): """Returns the distance from mass to the target.""" d = target - self.named.data.geom_xpos['pointmass'][:2] return np.linalg.norm(d) class MultiTaskPointMassMaze(base.Task): """A point_mass `Task` to reach target with smooth reward.""" def __init__(self, target_id, random=None) -> None: """Initialize an instance of `PointMassMaze`. Args: randomize_gains: A `bool`, whether to randomize the actuator gains. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._target = TASKS[target_id][1] super().__init__(random=random) def initialize_episode(self, physics): """Sets the state of the environment at the start of each episode. If _randomize_gains is True, the relationship between the controls and the joints is randomized, so that each control actuates a random linear combination of joints. Args: physics: An instance of `mujoco.Physics`. """ randomizers.randomize_limited_and_rotational_joints( physics, self.random) physics.data.qpos[0] = np.random.uniform(-0.29, -0.15) physics.data.qpos[1] = np.random.uniform(0.15, 0.29) # import ipdb; ipdb.set_trace() physics.named.data.geom_xpos['target'][:2] = self._target super().initialize_episode(physics) def get_observation(self, physics): """Returns an observation of the state.""" obs = collections.OrderedDict() obs['position'] = physics.position() obs['velocity'] = physics.velocity() return obs def get_reward_spec(self): return specs.Array(shape=(1,), dtype=np.float32, name='reward') def get_reward(self, physics): """Returns a reward to the agent.""" target_size = .015 control_reward = rewards.tolerance(physics.control(), margin=1, value_at_margin=0, sigmoid='quadratic').mean() small_control = (control_reward + 4) / 5 near_target = rewards.tolerance(physics.mass_to_target_dist(self._target), bounds=(0, target_size), margin=target_size) reward = near_target * small_control return reward
controllable_agent-main
url_benchmark/custom_dmc_tasks/point_mass_maze.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2019 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """A task where the goal is to move the hand close to a target prop or site.""" import collections from dm_control import composer from dm_control.composer import initializers from dm_control.composer.variation import distributions from dm_control.entities import props from dm_control.manipulation.shared import arenas from dm_control.manipulation.shared import cameras from dm_control.manipulation.shared import constants from dm_control.manipulation.shared import observations from dm_control.manipulation.shared import robots from dm_control.manipulation.shared import workspaces from dm_control.utils import rewards from dm_env import specs import numpy as np _ReachWorkspace = collections.namedtuple( '_ReachWorkspace', ['target_bbox', 'tcp_bbox', 'arm_offset']) # Ensures that the props are not touching the table before settling. _PROP_Z_OFFSET = 0.001 _DUPLO_WORKSPACE = _ReachWorkspace( target_bbox=workspaces.BoundingBox(lower=(-0.1, -0.1, _PROP_Z_OFFSET), upper=(0.1, 0.1, _PROP_Z_OFFSET)), tcp_bbox=workspaces.BoundingBox(lower=(-0.1, -0.1, 0.2), upper=(0.1, 0.1, 0.4)), arm_offset=robots.ARM_OFFSET) _SITE_WORKSPACE = _ReachWorkspace( target_bbox=workspaces.BoundingBox(lower=(-0.2, -0.2, 0.02), upper=(0.2, 0.2, 0.4)), tcp_bbox=workspaces.BoundingBox(lower=(-0.2, -0.2, 0.02), upper=(0.2, 0.2, 0.4)), arm_offset=robots.ARM_OFFSET) _TARGET_RADIUS = 0.05 _TIME_LIMIT = 10. TASKS = [('reach_top_left', np.array([-0.09, 0.09, _PROP_Z_OFFSET])), ('reach_top_right', np.array([0.09, 0.09, _PROP_Z_OFFSET])), ('reach_bottom_left', np.array([-0.09, -0.09, _PROP_Z_OFFSET])), ('reach_bottom_right', np.array([0.09, -0.09, _PROP_Z_OFFSET]))] def make(task_id, obs_type, seed): obs_settings = observations.VISION if obs_type == 'pixels' else observations.PERFECT_FEATURES task = _reach(task_id, obs_settings=obs_settings, use_site=True) return composer.Environment(task, time_limit=_TIME_LIMIT, random_state=seed) class MultiTaskReach(composer.Task): """Bring the hand close to a target prop or site.""" def __init__(self, task_id, arena, arm, hand, prop, obs_settings, workspace, control_timestep): """Initializes a new `Reach` task. Args: arena: `composer.Entity` instance. arm: `robot_base.RobotArm` instance. hand: `robot_base.RobotHand` instance. prop: `composer.Entity` instance specifying the prop to reach to, or None in which case the target is a fixed site whose position is specified by the workspace. obs_settings: `observations.ObservationSettings` instance. workspace: `_ReachWorkspace` specifying the placement of the prop and TCP. control_timestep: Float specifying the control timestep in seconds. """ self._arena = arena self._arm = arm self._hand = hand self._arm.attach(self._hand) self._arena.attach_offset(self._arm, offset=workspace.arm_offset) self.control_timestep = control_timestep self._tcp_initializer = initializers.ToolCenterPointInitializer( self._hand, self._arm, position=distributions.Uniform(*workspace.tcp_bbox), quaternion=workspaces.DOWN_QUATERNION) # Add custom camera observable. self._task_observables = cameras.add_camera_observables( arena, obs_settings, cameras.FRONT_CLOSE) if task_id == 'reach_multitask': self._targets = [target for (_, target) in TASKS] else: self._targets = [ target for (task, target) in TASKS if task == task_id ] assert len(self._targets) > 0 #target_pos_distribution = distributions.Uniform(*TASKS[task_id]) self._prop = prop if prop: # The prop itself is used to visualize the target location. self._make_target_site(parent_entity=prop, visible=False) self._target = self._arena.add_free_entity(prop) self._prop_placer = initializers.PropPlacer( props=[prop], position=target_pos_distribution, quaternion=workspaces.uniform_z_rotation, settle_physics=True) else: if len(self._targets) == 1: self._target = self._make_target_site(parent_entity=arena, visible=True) #obs = observable.MJCFFeature('pos', self._target) # obs.configure(**obs_settings.prop_pose._asdict()) #self._task_observables['target_position'] = obs # Add sites for visualizing the prop and target bounding boxes. workspaces.add_bbox_site(body=self.root_entity.mjcf_model.worldbody, lower=workspace.tcp_bbox.lower, upper=workspace.tcp_bbox.upper, rgba=constants.GREEN, name='tcp_spawn_area') workspaces.add_bbox_site(body=self.root_entity.mjcf_model.worldbody, lower=workspace.target_bbox.lower, upper=workspace.target_bbox.upper, rgba=constants.BLUE, name='target_spawn_area') def _make_target_site(self, parent_entity, visible): return workspaces.add_target_site( body=parent_entity.mjcf_model.worldbody, radius=_TARGET_RADIUS, visible=visible, rgba=constants.RED, name='target_site') @property def root_entity(self): return self._arena @property def arm(self): return self._arm @property def hand(self): return self._hand def get_reward_spec(self): n = len(self._targets) return specs.Array(shape=(n,), dtype=np.float32, name='reward') @property def task_observables(self): return self._task_observables def get_reward(self, physics): hand_pos = physics.bind(self._hand.tool_center_point).xpos rews = [] for target_pos in self._targets: distance = np.linalg.norm(hand_pos - target_pos) reward = rewards.tolerance(distance, bounds=(0, _TARGET_RADIUS), margin=_TARGET_RADIUS) rews.append(reward) rews = np.array(rews).astype(np.float32) if len(self._targets) == 1: return rews[0] return rews def initialize_episode(self, physics, random_state): self._hand.set_grasp(physics, close_factors=random_state.uniform()) self._tcp_initializer(physics, random_state) if self._prop: self._prop_placer(physics, random_state) else: if len(self._targets) == 1: physics.bind(self._target).pos = self._targets[0] def _reach(task_id, obs_settings, use_site): """Configure and instantiate a `Reach` task. Args: obs_settings: An `observations.ObservationSettings` instance. use_site: Boolean, if True then the target will be a fixed site, otherwise it will be a moveable Duplo brick. Returns: An instance of `reach.Reach`. """ arena = arenas.Standard() arm = robots.make_arm(obs_settings=obs_settings) hand = robots.make_hand(obs_settings=obs_settings) if use_site: workspace = _SITE_WORKSPACE prop = None else: workspace = _DUPLO_WORKSPACE prop = props.Duplo(observable_options=observations.make_options( obs_settings, observations.FREEPROP_OBSERVABLES)) task = MultiTaskReach(task_id, arena=arena, arm=arm, hand=hand, prop=prop, obs_settings=obs_settings, workspace=workspace, control_timestep=constants.CONTROL_TIMESTEP) return task
controllable_agent-main
url_benchmark/custom_dmc_tasks/jaco.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Planar Walker Domain.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from typing import Any, Tuple import typing as tp import os from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.suite.utils import randomizers from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import io as resources _CONTROL_TIMESTEP: float _DEFAULT_TIME_LIMIT: int _RUN_SPEED: int _SPIN_SPEED: int _STAND_HEIGHT: float _WALK_SPEED: int # from dm_control import suite # TODO useless? _DEFAULT_TIME_LIMIT = 25 _CONTROL_TIMESTEP = .025 # Minimal height of torso over foot above which stand reward is 1. _STAND_HEIGHT = 1.2 # Horizontal speeds (meters/second) above which move reward is 1. _WALK_SPEED = 1 _RUN_SPEED = 8 _SPIN_SPEED = 5 SUITE = containers.TaggedTasks() def make(task, task_kwargs=None, environment_kwargs=None, visualize_reward: bool = False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env def get_model_and_assets() -> Tuple[Any, Any]: """Returns a tuple containing the model XML string and a dict of assets.""" root_dir = os.path.dirname(os.path.dirname(__file__)) xml = resources.GetResource(os.path.join(root_dir, 'custom_dmc_tasks', 'walker.xml')) return xml, common.ASSETS @SUITE.add('benchmarking') def flip(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the Run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = PlanarWalker(move_speed=_RUN_SPEED, forward=True, flip=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) class Physics(mujoco.Physics): """Physics simulation with additional features for the Walker domain.""" def torso_upright(self) -> Any: """Returns projection from z-axes of torso to the z-axes of world.""" return self.named.data.xmat['torso', 'zz'] def torso_height(self) -> Any: """Returns the height of the torso.""" return self.named.data.xpos['torso', 'z'] def horizontal_velocity(self) -> Any: """Returns the horizontal velocity of the center-of-mass.""" return self.named.data.sensordata['torso_subtreelinvel'][0] def orientations(self) -> Any: """Returns planar orientations of all bodies.""" return self.named.data.xmat[1:, ['xx', 'xz']].ravel() def angmomentum(self) -> Any: """Returns the angular momentum of torso of the Cheetah about Y axis.""" return self.named.data.subtree_angmom['torso'][1] class PlanarWalker(base.Task): """A planar walker task.""" def __init__(self, move_speed, forward=True, flip=False, random=None) -> None: """Initializes an instance of `PlanarWalker`. Args: move_speed: A float. If this value is zero, reward is given simply for standing up. Otherwise this specifies a target horizontal velocity for the walking task. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._move_speed = move_speed self._forward = 1 if forward else -1 self._flip = flip super(PlanarWalker, self).__init__(random=random) def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode. In 'standing' mode, use initial orientation and small velocities. In 'random' mode, randomize joint angles and let fall to the floor. Args: physics: An instance of `Physics`. """ randomizers.randomize_limited_and_rotational_joints( physics, self.random) super(PlanarWalker, self).initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation of body orientations, height and velocites.""" obs = collections.OrderedDict() obs['orientations'] = physics.orientations() obs['height'] = physics.torso_height() obs['velocity'] = physics.velocity() return obs def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" standing = rewards.tolerance(physics.torso_height(), bounds=(_STAND_HEIGHT, float('inf')), margin=_STAND_HEIGHT / 2) upright = (1 + physics.torso_upright()) / 2 stand_reward = (3 * standing + upright) / 4 if self._flip: move_reward = rewards.tolerance(self._forward * physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') else: move_reward = rewards.tolerance( self._forward * physics.horizontal_velocity(), bounds=(self._move_speed, float('inf')), margin=self._move_speed / 2, value_at_margin=0.5, sigmoid='linear') return stand_reward * (5 * move_reward + 1) / 6
controllable_agent-main
url_benchmark/custom_dmc_tasks/walker.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import typing as tp from . import cheetah from . import walker from . import hopper from . import quadruped from . import jaco from . import point_mass_maze def make(domain, task, task_kwargs=None, environment_kwargs=None, visualize_reward: bool = False): if domain == 'cheetah': return cheetah.make(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) elif domain == 'walker': return walker.make(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) elif domain == 'hopper': return hopper.make(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) elif domain == 'quadruped': return quadruped.make(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) elif domain == 'point_mass_maze': return point_mass_maze.make(task, task_kwargs=task_kwargs, environment_kwargs=environment_kwargs, visualize_reward=visualize_reward) else: raise ValueError(f'{task} not found') assert None def make_jaco(task, obs_type, seed) -> tp.Any: return jaco.make(task, obs_type, seed)
controllable_agent-main
url_benchmark/custom_dmc_tasks/__init__.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Cheetah Domain.""" import collections import os import typing as tp from typing import Any, Tuple from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import io as resources _DEFAULT_TIME_LIMIT: int _RUN_SPEED: int _SPIN_SPEED: int # How long the simulation will run, in seconds. _DEFAULT_TIME_LIMIT = 10 # Running speed above which reward is 1. _RUN_SPEED = 10 _WALK_SPEED = 2 _SPIN_SPEED = 5 SUITE = containers.TaggedTasks() def make(task, task_kwargs=None, environment_kwargs=None, visualize_reward: bool = False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env def get_model_and_assets() -> Tuple[Any, Any]: """Returns a tuple containing the model XML string and a dict of assets.""" root_dir = os.path.dirname(os.path.dirname(__file__)) xml = resources.GetResource( os.path.join(root_dir, 'custom_dmc_tasks', 'cheetah.xml')) return xml, common.ASSETS @SUITE.add('benchmarking') def walk(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(move_speed=_WALK_SPEED, forward=True, flip=False, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def walk_backward(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(move_speed=_WALK_SPEED, forward=False, flip=False, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def run_backward(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(forward=False, flip=False, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def flip(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(move_speed=_WALK_SPEED, forward=True, flip=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) @SUITE.add('benchmarking') def flip_backward(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns the run task.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Cheetah(move_speed=_WALK_SPEED, forward=False, flip=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, **environment_kwargs) class Physics(mujoco.Physics): """Physics simulation with additional features for the Cheetah domain.""" def speed(self) -> Any: """Returns the horizontal speed of the Cheetah.""" return self.named.data.sensordata['torso_subtreelinvel'][0] def angmomentum(self) -> Any: """Returns the angular momentum of torso of the Cheetah about Y axis.""" return self.named.data.subtree_angmom['torso'][1] class Cheetah(base.Task): """A `Task` to train a running Cheetah.""" def __init__(self, move_speed=_RUN_SPEED, forward=True, flip=False, random=None) -> None: self._move_speed = move_speed self._forward = 1 if forward else -1 self._flip = flip super(Cheetah, self).__init__(random=random) self._timeout_progress = 0 def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode.""" # The indexing below assumes that all joints have a single DOF. assert physics.model.nq == physics.model.njnt is_limited = physics.model.jnt_limited == 1 lower, upper = physics.model.jnt_range[is_limited].T physics.data.qpos[is_limited] = self.random.uniform(lower, upper) # Stabilize the model before the actual simulation. for _ in range(200): physics.step() physics.data.time = 0 self._timeout_progress = 0 super().initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation of the state, ignoring horizontal position.""" obs = collections.OrderedDict() # Ignores horizontal position to maintain translational invariance. obs['position'] = physics.data.qpos[1:].copy() obs['velocity'] = physics.velocity() return obs def get_reward(self, physics) -> Any: """Returns a reward to the agent.""" if self._flip: reward = rewards.tolerance(self._forward * physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') else: reward = rewards.tolerance(self._forward * physics.speed(), bounds=(self._move_speed, float('inf')), margin=self._move_speed, value_at_margin=0, sigmoid='linear') return reward
controllable_agent-main
url_benchmark/custom_dmc_tasks/cheetah.py
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # # Copyright 2017 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Hopper domain.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import os import typing as tp from typing import Any, Tuple import numpy as np from dm_control import mujoco from dm_control.rl import control from dm_control.suite import base from dm_control.suite import common from dm_control.suite.utils import randomizers from dm_control.utils import containers from dm_control.utils import rewards from dm_control.utils import io as resources _CONTROL_TIMESTEP: float _DEFAULT_TIME_LIMIT: int _HOP_SPEED: int _SPIN_SPEED: int _STAND_HEIGHT: float SUITE = containers.TaggedTasks() _CONTROL_TIMESTEP = .02 # (Seconds) # Default duration of an episode, in seconds. _DEFAULT_TIME_LIMIT = 20 # Minimal height of torso over foot above which stand reward is 1. _STAND_HEIGHT = 0.6 # Hopping speed above which hop reward is 1. _HOP_SPEED = 2 _SPIN_SPEED = 5 def make(task, task_kwargs=None, environment_kwargs=None, visualize_reward: bool = False): task_kwargs = task_kwargs or {} if environment_kwargs is not None: task_kwargs = task_kwargs.copy() task_kwargs['environment_kwargs'] = environment_kwargs env = SUITE[task](**task_kwargs) env.task.visualize_reward = visualize_reward return env def get_model_and_assets() -> Tuple[Any, Any]: """Returns a tuple containing the model XML string and a dict of assets.""" root_dir = os.path.dirname(os.path.dirname(__file__)) xml = resources.GetResource( os.path.join(root_dir, 'custom_dmc_tasks', 'hopper.xml')) return xml, common.ASSETS @SUITE.add('benchmarking') def hop_backward(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns a Hopper that strives to hop forward.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Hopper(hopping=True, forward=False, flip=False, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add('benchmarking') def flip(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns a Hopper that strives to hop forward.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Hopper(hopping=True, forward=True, flip=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) @SUITE.add('benchmarking') def flip_backward(time_limit: int = _DEFAULT_TIME_LIMIT, random=None, environment_kwargs=None): """Returns a Hopper that strives to hop forward.""" physics = Physics.from_xml_string(*get_model_and_assets()) task = Hopper(hopping=True, forward=False, flip=True, random=random) environment_kwargs = environment_kwargs or {} return control.Environment(physics, task, time_limit=time_limit, control_timestep=_CONTROL_TIMESTEP, **environment_kwargs) class Physics(mujoco.Physics): """Physics simulation with additional features for the Hopper domain.""" def height(self) -> Any: """Returns height of torso with respect to foot.""" return (self.named.data.xipos['torso', 'z'] - self.named.data.xipos['foot', 'z']) def speed(self) -> Any: """Returns horizontal speed of the Hopper.""" return self.named.data.sensordata['torso_subtreelinvel'][0] def touch(self) -> Any: """Returns the signals from two foot touch sensors.""" return np.log1p(self.named.data.sensordata[['touch_toe', 'touch_heel']]) def angmomentum(self) -> Any: """Returns the angular momentum of torso of the Cheetah about Y axis.""" return self.named.data.subtree_angmom['torso'][1] class Hopper(base.Task): """A Hopper's `Task` to train a standing and a jumping Hopper.""" def __init__(self, hopping, forward=True, flip=False, random=None) -> None: """Initialize an instance of `Hopper`. Args: hopping: Boolean, if True the task is to hop forwards, otherwise it is to balance upright. random: Optional, either a `numpy.random.RandomState` instance, an integer seed for creating a new `RandomState`, or None to select a seed automatically (default). """ self._hopping = hopping self._forward = 1 if forward else -1 self._flip = flip self._timeout_progress = 0 super(Hopper, self).__init__(random=random) def initialize_episode(self, physics) -> None: """Sets the state of the environment at the start of each episode.""" randomizers.randomize_limited_and_rotational_joints( physics, self.random) self._timeout_progress = 0 super(Hopper, self).initialize_episode(physics) def get_observation(self, physics) -> tp.Dict[str, Any]: """Returns an observation of positions, velocities and touch sensors.""" obs = collections.OrderedDict() # Ignores horizontal position to maintain translational invariance: obs['position'] = physics.data.qpos[1:].copy() obs['velocity'] = physics.velocity() obs['touch'] = physics.touch() return obs def get_reward(self, physics) -> Any: """Returns a reward applicable to the performed task.""" standing = rewards.tolerance(physics.height(), (_STAND_HEIGHT, 2)) assert self._hopping if self._flip: hopping = rewards.tolerance(self._forward * physics.angmomentum(), bounds=(_SPIN_SPEED, float('inf')), margin=_SPIN_SPEED, value_at_margin=0, sigmoid='linear') else: hopping = rewards.tolerance(self._forward * physics.speed(), bounds=(_HOP_SPEED, float('inf')), margin=_HOP_SPEED / 2, value_at_margin=0.5, sigmoid='linear') return standing * hopping
controllable_agent-main
url_benchmark/custom_dmc_tasks/hopper.py
""" Trigger the conda-forge.github.io Travis job to restart. """ import argparse import os import requests import six import conda_smithy.ci_register def rebuild_travis(repo_slug): headers = conda_smithy.ci_register.travis_headers() # If we don't specify the API version, we get a 404. # Also fix the accepted content type. headers["Accept"] = "application/json" headers["Travis-API-Version"] = "3" # Trigger a build on `master`. encoded_slug = six.moves.urllib.parse.quote(repo_slug, safe='') url = 'https://api.travis-ci.org/repo/{}/requests'.format(encoded_slug) response = requests.post( url, json={ "request": { "branch": "master", "message": "Triggering build from staged-recipes", } }, headers=headers ) if response.status_code != 201: print(response.content) response.raise_for_status() def main(argv): parser = argparse.ArgumentParser(description="Trigger Travis CI build.") parser.add_argument("slug", type=str, help="repo to trigger build for") args = parser.parse_args(argv[1:]) rebuild_travis(args.slug) return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
staged-recipes-master
.travis_scripts/trigger_travis_build.py
#!/usr/bin/env python """ Convert all recipes into feedstocks. This script is to be run in a TravisCI context, with all secret environment variables defined (BINSTAR_TOKEN, GH_TOKEN) Such as: export GH_TOKEN=$(cat ~/.conda-smithy/github.token) """ from __future__ import print_function from conda_build.metadata import MetaData from contextlib import contextmanager from datetime import datetime from github import Github, GithubException import os.path import shutil import subprocess import sys import tempfile import traceback # Enable DEBUG to run the diagnostics, without actually creating new feedstocks. DEBUG = False recipe_directory_name = 'recipes' def list_recipes(): if os.path.isdir(recipe_directory_name): recipes = os.listdir(recipe_directory_name) else: recipes = [] for recipe_dir in recipes: # We don't list the "example" feedstock. It is an example, and is there # to be helpful. if recipe_dir.startswith('example'): continue path = os.path.abspath(os.path.join(recipe_directory_name, recipe_dir)) yield path, MetaData(path).name() @contextmanager def tmp_dir(*args, **kwargs): temp_dir = tempfile.mkdtemp(*args, **kwargs) try: yield temp_dir finally: shutil.rmtree(temp_dir) def repo_exists(gh, organization, name): # Use the organization provided. org = gh.get_organization(organization) try: org.get_repo(name) return True except GithubException as e: if e.status == 404: return False raise def print_rate_limiting_info(gh): # Compute some info about our GitHub API Rate Limit. # Note that it doesn't count against our limit to # get this info. So, we should be doing this regularly # to better know when it is going to run out. Also, # this will help us better understand where we are # spending it and how to better optimize it. # Get GitHub API Rate Limit usage and total gh_api_remaining = gh.get_rate_limit().rate.remaining gh_api_total = gh.get_rate_limit().rate.limit # Compute time until GitHub API Rate Limit reset gh_api_reset_time = gh.get_rate_limit().rate.reset gh_api_reset_time -= datetime.utcnow() print("") print("GitHub API Rate Limit Info:") print("---------------------------") print("Currently remaining {remaining} out of {total}.".format(remaining=gh_api_remaining, total=gh_api_total)) print("Will reset in {time}.".format(time=gh_api_reset_time)) print("") if __name__ == '__main__': exit_code = 0 is_merged_pr = (os.environ.get('TRAVIS_BRANCH') == 'master' and os.environ.get('TRAVIS_PULL_REQUEST') == 'false') smithy_conf = os.path.expanduser('~/.conda-smithy') if not os.path.exists(smithy_conf): os.mkdir(smithy_conf) def write_token(name, token): with open(os.path.join(smithy_conf, name + '.token'), 'w') as fh: fh.write(token) if 'APPVEYOR_TOKEN' in os.environ: write_token('appveyor', os.environ['APPVEYOR_TOKEN']) if 'CIRCLE_TOKEN' in os.environ: write_token('circle', os.environ['CIRCLE_TOKEN']) gh = None if 'GH_TOKEN' in os.environ: write_token('github', os.environ['GH_TOKEN']) gh = Github(os.environ['GH_TOKEN']) # Get our initial rate limit info. print_rate_limiting_info(gh) owner_info = ['--organization', 'conda-forge'] print('Calculating the recipes which need to be turned into feedstocks.') with tmp_dir('__feedstocks') as feedstocks_dir: feedstock_dirs = [] for recipe_dir, name in list_recipes(): feedstock_dir = os.path.join(feedstocks_dir, name + '-feedstock') print('Making feedstock for {}'.format(name)) try: subprocess.check_call(['conda', 'smithy', 'init', recipe_dir, '--feedstock-directory', feedstock_dir]) except subprocess.CalledProcessError: traceback.print_exception(*sys.exc_info()) continue if not is_merged_pr: # We just want to check that conda-smithy is doing its thing without having any metadata issues. continue feedstock_dirs.append([feedstock_dir, name, recipe_dir]) subprocess.check_call(['git', 'remote', 'add', 'upstream_with_token', 'https://conda-forge-manager:{}@github.com/conda-forge/{}-feedstock'.format(os.environ['GH_TOKEN'], name)], cwd=feedstock_dir) # Sometimes we already have the feedstock created. We need to deal with that case. if repo_exists(gh, 'conda-forge', name + '-feedstock'): subprocess.check_call(['git', 'fetch', 'upstream_with_token'], cwd=feedstock_dir) subprocess.check_call(['git', 'branch', '-m', 'master', 'old'], cwd=feedstock_dir) try: subprocess.check_call(['git', 'checkout', '-b', 'master', 'upstream_with_token/master'], cwd=feedstock_dir) except subprocess.CalledProcessError: # Sometimes, we have a repo, but there are no commits on it! Just catch that case. subprocess.check_call(['git', 'checkout', '-b' 'master'], cwd=feedstock_dir) subprocess.check_call(['conda', 'smithy', 'register-github', feedstock_dir] + owner_info + ['--extra-admin-users', 'cf-blacksmithy']) # Break the previous loop to allow the TravisCI registering to take place only once per function call. # Without this, intermittent failures to synch the TravisCI repos ensue. # Hang on to any CI registration errors that occur and raise them at the end. for num, (feedstock_dir, name, recipe_dir) in enumerate(feedstock_dirs): if num >= 20: exit_code = 1 break # Try to register each feedstock with CI. # However sometimes their APIs have issues for whatever reason. # In order to bank our progress, we note the error and handle it. # After going through all the recipes and removing the converted ones, # we fail the build so that people are aware that things did not clear. try: subprocess.check_call(['conda', 'smithy', 'register-ci', '--feedstock_directory', feedstock_dir] + owner_info) except subprocess.CalledProcessError: exit_code = 1 traceback.print_exception(*sys.exc_info()) continue subprocess.check_call(['conda', 'smithy', 'rerender'], cwd=feedstock_dir) subprocess.check_call(['git', 'commit', '-am', "Re-render the feedstock after CI registration."], cwd=feedstock_dir) for i in range(5): try: # Capture the output, as it may contain the GH_TOKEN. out = subprocess.check_output(['git', 'push', 'upstream_with_token', 'HEAD:master'], cwd=feedstock_dir, stderr=subprocess.STDOUT) break except subprocess.CalledProcessError: pass # Likely another job has already pushed to this repo. # Place our changes on top of theirs and try again. out = subprocess.check_output(['git', 'fetch', 'upstream_with_token', 'master'], cwd=feedstock_dir, stderr=subprocess.STDOUT) try: subprocess.check_call(['git', 'rebase', 'upstream_with_token/master', 'master'], cwd=feedstock_dir) except subprocess.CalledProcessError: # Handle rebase failure by choosing the changes in `master`. subprocess.check_call(['git', 'checkout', 'master', '--', '.'], cwd=feedstock_dir) subprocess.check_call(['git', 'rebase', '--continue'], cwd=feedstock_dir) # Remove this recipe from the repo. if is_merged_pr: subprocess.check_call(['git', 'rm', '-rf', recipe_dir]) # Update status based on the remote. subprocess.check_call(['git', 'stash', '--keep-index', '--include-untracked']) subprocess.check_call(['git', 'fetch']) subprocess.check_call(['git', 'rebase', '--autostash']) subprocess.check_call(['git', 'add', '.']) try: subprocess.check_call(['git', 'stash', 'pop']) except subprocess.CalledProcessError: # In case there was nothing to stash. # Finish quietly. pass # Parse `git status --porcelain` to handle some merge conflicts and generate the removed recipe list. changed_files = subprocess.check_output(['git', 'status', '--porcelain', recipe_directory_name], universal_newlines=True) changed_files = changed_files.splitlines() # Add all files from AU conflicts. They are new files that we weren't tracking previously. # Adding them resolves the conflict and doesn't actually add anything to the index. new_file_conflicts = filter(lambda _: _.startswith("AU "), changed_files) new_file_conflicts = map(lambda _ : _.replace("AU", "", 1).lstrip(), new_file_conflicts) for each_new_file in new_file_conflicts: subprocess.check_call(['git', 'add', each_new_file]) # Generate a fresh listing of recipes removed. # # * Each line we get back is a change to a file in the recipe directory. # * We narrow the list down to recipes that are staged for deletion (ignores examples). # * Then we clean up the list so that it only has the recipe names. removed_recipes = filter(lambda _: _.startswith("D "), changed_files) removed_recipes = map(lambda _ : _.replace("D", "", 1).lstrip(), removed_recipes) removed_recipes = map(lambda _ : os.path.relpath(_, recipe_directory_name), removed_recipes) removed_recipes = map(lambda _ : _.split(os.path.sep)[0], removed_recipes) removed_recipes = sorted(set(removed_recipes)) # Commit any removed packages. subprocess.check_call(['git', 'status']) if removed_recipes: msg = ('Removed recipe{s} ({}) after converting into feedstock{s}.' ''.format(', '.join(removed_recipes), s=('s' if len(removed_recipes) > 1 else ''))) msg += ' [ci skip]' if is_merged_pr: # Capture the output, as it may contain the GH_TOKEN. out = subprocess.check_output(['git', 'remote', 'add', 'upstream_with_token', 'https://conda-forge-manager:{}@github.com/conda-forge/staged-recipes'.format(os.environ['GH_TOKEN'])], stderr=subprocess.STDOUT) subprocess.check_call(['git', 'commit', '-m', msg]) # Capture the output, as it may contain the GH_TOKEN. branch = os.environ.get('TRAVIS_BRANCH') out = subprocess.check_output(['git', 'push', 'upstream_with_token', 'HEAD:%s' % branch], stderr=subprocess.STDOUT) else: print('Would git commit, with the following message: \n {}'.format(msg)) if gh: # Get our final rate limit info. print_rate_limiting_info(gh) sys.exit(exit_code)
staged-recipes-master
.travis_scripts/create_feedstocks.py
#!/usr/bin/env python """ Copyright (c) 2016, Continuum Analytics, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Continuum Analytics nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from __future__ import print_function, division import logging import os import pkg_resources import re import subprocess import networkx as nx from conda_build import api, conda_interface from conda_build.metadata import find_recipe, MetaData from conda_build.utils import HashableDict log = logging.getLogger(__file__) CONDA_BUILD_CACHE = os.environ.get("CONDA_BUILD_CACHE") hash_length = api.Config().hash_length def package_key(metadata, worker_label, run='build'): # get the build string from whatever conda-build makes of the configuration used_loop_vars = metadata.get_used_loop_vars() build_vars = '-'.join([k + '_' + str(metadata.config.variant[k]) for k in used_loop_vars if k != 'target_platform']) # kind of a special case. Target platform determines a lot of output behavior, but may not be # explicitly listed in the recipe. tp = metadata.config.variant.get('target_platform') if tp and tp != metadata.config.subdir and 'target_platform' not in build_vars: build_vars += '-target_' + tp key = [metadata.name(), metadata.version()] if build_vars: key.append(build_vars) key.extend(['on', worker_label]) key = "-".join(key) if run == 'test': key = '-'.join(('c3itest', key)) return key def _git_changed_files(git_rev, stop_rev=None, git_root=''): if not git_root: git_root = os.getcwd() if stop_rev: git_rev = "{0}..{1}".format(git_rev, stop_rev) output = subprocess.check_output(['git', 'diff-tree', '--no-commit-id', '--name-only', '-r', git_rev], cwd=git_root) files = output.decode().splitlines() return files def _get_base_folders(base_dir, changed_files): recipe_dirs = [] for f in changed_files: # only consider files that come from folders if '/' in f: f = f.split('/')[0] try: find_recipe(os.path.join(base_dir, f)) recipe_dirs.append(f) except IOError: pass return recipe_dirs def git_changed_submodules(git_rev='HEAD@{1}', stop_rev=None, git_root='.'): if stop_rev is not None: git_rev = "{0}..{1}".format(git_rev, stop_rev) diff_script = pkg_resources.resource_filename('conda_concourse_ci', 'diff-script.sh') diff = subprocess.check_output(['bash', diff_script, git_rev], cwd=git_root, universal_newlines=True) submodule_changed_files = [line.split() for line in diff.splitlines()] submodules_with_recipe_changes = [] for submodule in submodule_changed_files: for file in submodule: if 'recipe/' in file and submodule[0] not in submodules_with_recipe_changes: submodules_with_recipe_changes.append(submodule[0]) return submodules_with_recipe_changes def git_new_submodules(git_rev='HEAD@{1}', stop_rev=None, git_root='.'): if stop_rev is not None: git_rev = "{0}..{1}".format(git_rev, stop_rev) new_submodule_script = pkg_resources.resource_filename('conda_concourse_ci', 'new-submodule-script.sh') diff = subprocess.check_output(['bash', new_submodule_script, git_rev], cwd=git_root, universal_newlines=True) return diff.splitlines() def git_renamed_folders(git_rev='HEAD@{1}', stop_rev=None, git_root='.'): if stop_rev is not None: git_rev = "{0}..{1}".format(git_rev, stop_rev) rename_script = pkg_resources.resource_filename('conda_concourse_ci', 'rename-script.sh') renamed_files = subprocess.check_output(['bash', rename_script], cwd=git_root, universal_newlines=True).splitlines() return renamed_files def git_changed_recipes(git_rev='HEAD@{1}', stop_rev=None, git_root='.'): """ Get the list of files changed in a git revision and return a list of package directories that have been modified. git_rev: if stop_rev is not provided, this represents the changes introduced by the given git rev. It is equivalent to git_rev=SOME_REV@{1} and stop_rev=SOME_REV stop_rev: when provided, this is the end of a range of revisions to consider. git_rev becomes the start revision. Note that the start revision is *one before* the actual start of examining commits for changes. In other words: git_rev=SOME_REV@{1} and stop_rev=SOME_REV => only SOME_REV git_rev=SOME_REV@{2} and stop_rev=SOME_REV => two commits, SOME_REV and the one before it """ changed_files = _git_changed_files(git_rev, stop_rev, git_root) recipe_dirs = _get_base_folders(git_root, changed_files) changed_submodules = git_changed_submodules(git_rev, stop_rev, git_root) new_submodules = git_new_submodules(git_rev, stop_rev, git_root) renamed_folders = git_renamed_folders(git_rev, stop_rev, git_root) return recipe_dirs + changed_submodules + new_submodules + renamed_folders def _deps_to_version_dict(deps): d = {} for x in deps: x = x.strip().split() if len(x) == 3: d[x[0]] = (x[1], x[2]) elif len(x) == 2: d[x[0]] = (x[1], 'any') else: d[x[0]] = ('any', 'any') return d def get_build_deps(meta): build_reqs = meta.get_value('requirements/build') if not build_reqs: build_reqs = [] return _deps_to_version_dict(build_reqs) def get_run_test_deps(meta): run_reqs = meta.get_value('requirements/run') if not run_reqs: run_reqs = [] test_reqs = meta.get_value('test/requires') if not test_reqs: test_reqs = [] return _deps_to_version_dict(run_reqs + test_reqs) _rendered_recipes = {} @conda_interface.memoized def _get_or_render_metadata(meta_file_or_recipe_dir, worker, finalize, config=None): global _rendered_recipes platform = worker['platform'] arch = str(worker['arch']) if (meta_file_or_recipe_dir, platform, arch) not in _rendered_recipes: print("rendering {0} for {1}".format(meta_file_or_recipe_dir, worker['label'])) _rendered_recipes[(meta_file_or_recipe_dir, platform, arch)] = \ api.render(meta_file_or_recipe_dir, platform=platform, arch=arch, verbose=False, permit_undefined_jinja=True, bypass_env_check=True, config=config, finalize=finalize) return _rendered_recipes[(meta_file_or_recipe_dir, platform, arch)] def add_recipe_to_graph(recipe_dir, graph, run, worker, conda_resolve, recipes_dir=None, config=None, finalize=False): try: rendered = _get_or_render_metadata(recipe_dir, worker, config=config, finalize=finalize) except (IOError, SystemExit): log.warn('invalid recipe dir: %s - skipping', recipe_dir) return None name = None for (metadata, _, _) in rendered: name = package_key(metadata, worker['label'], run) if metadata.skip(): continue if name not in graph.nodes(): graph.add_node(name, meta=metadata, worker=worker) add_dependency_nodes_and_edges(name, graph, run, worker, conda_resolve, recipes_dir=recipes_dir, finalize=finalize) # # add the test equivalent at the same time. This is so that expanding can find it. # if run == 'build': # add_recipe_to_graph(recipe_dir, graph, 'test', worker, conda_resolve, # recipes_dir=recipes_dir) # test_key = package_key(metadata, worker['label']) # graph.add_edge(test_key, name) # upload_key = package_key(metadata, worker['label']) # graph.add_node(upload_key, meta=metadata, worker=worker) # graph.add_edge(upload_key, test_key) return name def match_peer_job(target_matchspec, other_m, this_m=None): """target_matchspec comes from the recipe. target_variant is the variant from the recipe whose deps we are matching. m is the peer job, which must satisfy conda and also have matching keys for any keys that are shared between target_variant and m.config.variant""" match_dict = {'name': other_m.name(), 'version': other_m.version(), 'build': _fix_any(other_m.build_id(), other_m.config), } if conda_interface.conda_43: match_dict = conda_interface.Dist(name=match_dict['name'], dist_name='-'.join((match_dict['name'], match_dict['version'], match_dict['build'])), version=match_dict['version'], build_string=match_dict['build'], build_number=int(other_m.build_number() or 0), channel=None) matchspec_matches = target_matchspec.match(match_dict) variant_matches = True if this_m: other_m_used_vars = other_m.get_used_loop_vars() for v in this_m.get_used_loop_vars(): if v in other_m_used_vars: variant_matches &= this_m.config.variant[v] == other_m.config.variant[v] return matchspec_matches and variant_matches def add_intradependencies(graph): """ensure that downstream packages wait for upstream build/test (not use existing available packages)""" for node in graph.nodes(): if 'meta' not in graph.node[node]: continue # get build dependencies m = graph.node[node]['meta'] # this is pretty hard. Realistically, we would want to know # what the build and host platforms are on the build machine. # However, all we know right now is what machine we're actually # on (the one calculating the graph). deps = set(m.ms_depends('build') + m.ms_depends('host') + m.ms_depends('run') + [conda_interface.MatchSpec(dep) for dep in m.meta.get('test', {}).get('requires', [])]) for dep in deps: name_matches = (n for n in graph.nodes() if graph.node[n]['meta'].name() == dep.name) for matching_node in name_matches: # are any of these build dependencies also nodes in our graph? if (match_peer_job(conda_interface.MatchSpec(dep), graph.node[matching_node]['meta'], m) and (node, matching_node) not in graph.edges()): # add edges if they don't already exist graph.add_edge(node, matching_node) def collapse_subpackage_nodes(graph): """Collapse all subpackage nodes into their parent recipe node We get one node per output, but a given recipe can have multiple outputs. It's important for dependency ordering in the graph that the outputs exist independently, but once those dependencies are established, we need to collapse subpackages down to a single job for the top-level recipe.""" # group nodes by their recipe path first, then within those groups by their variant node_groups = {} for node in graph.nodes(): if 'meta' in graph.node[node]: meta = graph.node[node]['meta'] meta_path = meta.meta_path or meta.meta['extra']['parent_recipe']['path'] master = False master_meta = MetaData(meta_path, config=meta.config) if master_meta.name() == meta.name(): master = True group = node_groups.get(meta_path, {}) subgroup = group.get(HashableDict(meta.config.variant), {}) if master: if 'master' in subgroup: raise ValueError("tried to set more than one node in a group as master") subgroup['master'] = node else: sps = subgroup.get('subpackages', []) sps.append(node) subgroup['subpackages'] = sps group[HashableDict(meta.config.variant)] = subgroup node_groups[meta_path] = group for recipe_path, group in node_groups.items(): for variant, subgroup in group.items(): # if no node is the top-level recipe (only outputs, no top-level output), need to obtain # package/name from recipe given by common recipe path. subpackages = subgroup.get('subpackages') if 'master' not in subgroup: sp0 = graph.node[subpackages[0]] master_meta = MetaData(recipe_path, config=sp0['meta'].config) worker = sp0['worker'] master_key = package_key(master_meta, worker['label']) graph.add_node(master_key, meta=master_meta, worker=worker) master = graph.node[master_key] else: master = subgroup['master'] master_key = package_key(graph.node[master]['meta'], graph.node[master]['worker']['label']) # fold in dependencies for all of the other subpackages within a group. This is just # the intersection of the edges between all nodes. Store this on the "master" node. if subpackages: remap_edges = [edge for edge in graph.edges() if edge[1] in subpackages] for edge in remap_edges: graph.add_edge(edge[0], master_key) graph.remove_edge(*edge) # remove nodes that have been folded into master nodes for subnode in subpackages: graph.remove_node(subnode) def construct_graph(recipes_dir, worker, run, conda_resolve, folders=(), git_rev=None, stop_rev=None, matrix_base_dir=None, config=None, finalize=False): ''' Construct a directed graph of dependencies from a directory of recipes run: whether to use build or run/test requirements for the graph. Avoids cycles. values: 'build' or 'test'. Actually, only 'build' matters - otherwise, it's run/test for any other value. ''' matrix_base_dir = matrix_base_dir or recipes_dir if not os.path.isabs(recipes_dir): recipes_dir = os.path.normpath(os.path.join(os.getcwd(), recipes_dir)) assert os.path.isdir(recipes_dir) if not folders: if not git_rev: git_rev = 'HEAD' folders = git_changed_recipes(git_rev, stop_rev=stop_rev, git_root=recipes_dir) graph = nx.DiGraph() for folder in folders: recipe_dir = os.path.join(recipes_dir, folder) if not os.path.isdir(recipe_dir): raise ValueError("Specified folder {} does not exist".format(recipe_dir)) add_recipe_to_graph(recipe_dir, graph, run, worker, conda_resolve, recipes_dir, config=config, finalize=finalize) add_intradependencies(graph) collapse_subpackage_nodes(graph) return graph def _fix_any(value, config): value = re.sub('any(?:h[0-9a-f]{%d})?' % config.hash_length, '', value) return value @conda_interface.memoized def _installable(name, version, build_string, config, conda_resolve): """Can Conda install the package we need?""" ms = conda_interface.MatchSpec(" ".join([name, _fix_any(version, config), _fix_any(build_string, config)])) installable = conda_resolve.find_matches(ms) if not installable: log.warn("Dependency {name}, version {ver} is not installable from your " "channels: {channels} with subdir {subdir}. Seeing if we can build it..." .format(name=name, ver=version, channels=config.channel_urls, subdir=config.host_subdir)) return installable def _buildable(name, version, recipes_dir, worker, config, finalize): """Does the recipe that we have available produce the package we need?""" possible_dirs = os.listdir(recipes_dir) packagename_re = re.compile(r'%s(?:\-[0-9]+[\.0-9\_\-a-zA-Z]*)?$' % name) likely_dirs = (dirname for dirname in possible_dirs if (os.path.isdir(os.path.join(recipes_dir, dirname)) and packagename_re.match(dirname))) metadata_tuples = [m for path in likely_dirs for (m, _, _) in _get_or_render_metadata(os.path.join(recipes_dir, path), worker, finalize=finalize)] # this is our target match ms = conda_interface.MatchSpec(" ".join([name, _fix_any(version, config)])) available = False for m in metadata_tuples: available = match_peer_job(ms, m) if available: break return m.meta_path if available else False def add_dependency_nodes_and_edges(node, graph, run, worker, conda_resolve, recipes_dir=None, finalize=False): '''add build nodes for any upstream deps that are not yet installable changes graph in place. ''' metadata = graph.node[node]['meta'] # for plain test runs, ignore build reqs. deps = get_run_test_deps(metadata) recipes_dir = recipes_dir or os.getcwd() # cross: need to distinguish between build_subdir (build reqs) and host_subdir if run == 'build': deps.update(get_build_deps(metadata)) for dep, (version, build_str) in deps.items(): # we don't need worker info in _installable because it is already part of conda_resolve if not _installable(dep, version, build_str, metadata.config, conda_resolve): recipe_dir = _buildable(dep, version, recipes_dir, worker, metadata.config, finalize=finalize) if not recipe_dir: continue # raise ValueError("Dependency {} is not installable, and recipe (if " # " available) can't produce desired version ({})." # .format(dep, version)) dep_name = add_recipe_to_graph(recipe_dir, graph, 'build', worker, conda_resolve, recipes_dir, finalize=finalize) if not dep_name: raise ValueError("Tried to build recipe {0} as dependency, which is skipped " "in meta.yaml".format(recipe_dir)) graph.add_edge(node, dep_name) def expand_run_upstream(graph, conda_resolve, worker, run, steps=0, max_downstream=5, recipes_dir=None, matrix_base_dir=None): pass def expand_run(graph, conda_resolve, worker, run, steps=0, max_downstream=5, recipes_dir=None, matrix_base_dir=None, finalize=False): """Apply the build label to any nodes that need (re)building or testing. "need rebuilding" means both packages that our target package depends on, but are not yet built, as well as packages that depend on our target package. For the latter, you can specify how many dependencies deep (steps) to follow that chain, since it can be quite large. If steps is -1, all downstream dependencies are rebuilt or retested """ downstream = 0 initial_nodes = len(graph.nodes()) # for build, we get test automatically. Give people the max_downstream in terms # of packages, not tasks # if run == 'build': # max_downstream *= 2 def expand_step(task_graph, full_graph, downstream): for node in task_graph.nodes(): for predecessor in full_graph.predecessors(node): if max_downstream < 0 or (downstream - initial_nodes) < max_downstream: add_recipe_to_graph( os.path.dirname(full_graph.node[predecessor]['meta'].meta_path), task_graph, run=run, worker=worker, conda_resolve=conda_resolve, recipes_dir=recipes_dir, finalize=finalize) downstream += 1 return len(graph.nodes()) # starting from our initial collection of dirty nodes, trace the tree down to packages # that depend on the dirty nodes. These packages may need to be rebuilt, or perhaps # just tested. The 'run' argument determines which. if steps != 0: if not recipes_dir: raise ValueError("recipes_dir is necessary if steps != 0. " "Please pass it as an argument.") # here we need to fully populate a graph that has the right build or run/test deps. # We don't create this elsewhere because it is unnecessary and costly. # get all immediate subdirectories other_top_dirs = [d for d in os.listdir(recipes_dir) if os.path.isdir(os.path.join(recipes_dir, d)) and not d.startswith('.')] recipe_dirs = [] for recipe_dir in other_top_dirs: try: find_recipe(os.path.join(recipes_dir, recipe_dir)) recipe_dirs.append(recipe_dir) except IOError: pass # constructing the graph for build will automatically also include the test deps full_graph = construct_graph(recipes_dir, worker, 'build', folders=recipe_dirs, matrix_base_dir=matrix_base_dir, conda_resolve=conda_resolve) if steps >= 0: for step in range(steps): downstream = expand_step(graph, full_graph, downstream) else: while True: nodes = graph.nodes() downstream = expand_step(graph, full_graph, downstream) if nodes == graph.nodes(): break def order_build(graph): ''' Assumes that packages are in graph. Builds a temporary graph of relevant nodes and returns it topological sort. Relevant nodes selected in a breadth first traversal sourced at each pkg in packages. ''' reorder_cyclical_test_dependencies(graph) try: order = list(nx.topological_sort(graph)) order.reverse() except nx.exception.NetworkXUnfeasible: raise ValueError("Cycles detected in graph: %s", nx.find_cycle(graph, orientation='reverse')) return order def reorder_cyclical_test_dependencies(graph): """By default, we make things that depend on earlier outputs for build wait for tests of the earlier thing to pass. However, circular dependencies spread across run/test and build/host can make this approach incorrect. For example: A <-- B : B depends on A at build time B <-- A : A depends on B at run time. We can build A before B, but we cannot test A until B is built. To resolve this, we must reorder the graph edges: build A <-- test A <--> build B <-- test B must become: build A <-- build B <-- test A <-- test B """ # find all test nodes with edges to build nodes test_nodes = [node for node in graph.nodes() if node.startswith('test-')] edges_from_test_to_build = [edge for edge in graph.edges() if edge[0] in test_nodes and edge[1].startswith('build-')] # find any of their inverses. Entries here are of the form (test-A, build-B) circular_deps = [edge for edge in edges_from_test_to_build if (edge[1], edge[0]) in graph.edges()] for (testA, buildB) in circular_deps: # remove build B dependence on test A graph.remove_edge(testA, buildB) # remove test B dependence on build B testB = buildB.replace('build-', 'test-', 1) graph.remove_edge(buildB, testB) # Add test B dependence on test A graph.add_edge(testA, testB) # make sure that test A still depends on build B assert (buildB, testA) in graph.edges() # graph is modified in place. No return necessary.
staged-recipes-master
.ci_support/compute_build_graph.py
import conda_build.conda_interface import networkx as nx import conda_build.api from compute_build_graph import construct_graph import argparse import os from collections import OrderedDict import sys def get_host_platform(): from sys import platform if platform == "linux" or platform == "linux2": return "linux" elif platform == "darwin": return "osx" elif platform == "win32": return "win" def build_all(recipes_dir, arch): folders = os.listdir(recipes_dir) if not folders: print("Found no recipes to build") return channel_urls = ['local', 'conda-forge', 'defaults'] # ensure that noarch path exists and is indexed for newer conda (4.4+) noarch_path = os.path.join(sys.exec_prefix, 'conda-bld', 'noarch') try: os.makedirs(noarch_path) except: pass conda_build.api.update_index(noarch_path) index = conda_build.conda_interface.get_index(channel_urls=channel_urls) conda_resolve = conda_build.conda_interface.Resolve(index) exclusive_config_file = os.path.join(conda_build.conda_interface.root_dir, 'conda_build_config.yaml') platform = get_host_platform() script_dir = os.path.dirname(os.path.realpath(__file__)) variant_config_files = [] variant_config_file = os.path.join(script_dir, '{}{}.yaml'.format( platform, arch)) if os.path.exists(variant_config_file): variant_config_files.append(variant_config_file) config = conda_build.api.Config( variant_config_files=variant_config_files, arch=arch, exclusive_config_file=exclusive_config_file, channel_urls=channel_urls) worker = {'platform': platform, 'arch': arch, 'label': '{}-{}'.format(platform, arch)} G = construct_graph(recipes_dir, worker=worker, run='build', conda_resolve=conda_resolve, folders=folders, config=config, finalize=False) order = list(nx.topological_sort(G)) order.reverse() print('Computed that there are {} distributions to build from {} recipes' .format(len(order), len(folders))) if not order: print('Nothing to do') return print("Resolved dependencies, will be built in the following order:") print(' '+'\n '.join(order)) d = OrderedDict() for node in order: d[G.node[node]['meta'].meta_path] = 1 conda_build.api.build(list(d.keys()), config=config) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('recipes_dir', default=os.getcwd(), help='Directory where the recipes are') parser.add_argument('--arch', default='64', help='target architecture (64 or 32)') args = parser.parse_args() build_all(args.recipes_dir, args.arch)
staged-recipes-master
.ci_support/build_all.py
# ============================================================================== # # run.py # # usage: # # $ python run.py path/to/solver.prototxt path/to/machine_list.txt machines_per_batch CPU|1GPU|4GPU single_fc|many_fc (map_fcc_to_cc=)1|0 base_dir snapshot_input_dir(=None) snapshot_input_iter(=None) # # ============================================================================== import sys import os import re # Regex import subprocess import datum_pb2 import lmdb import datetime # ============================================================================== # Parameters # ============================================================================== # ------------------------------------------------------------------------------ # SSH parameters # ------------------------------------------------------------------------------ # User name to log in to each machine with user = 'root' # Extra commands to run following ssh # This should include: # - cd into correct directory # - path commands in .bashrc (ssh does not source .bashrc so its load libary # commands may need to be included here, see the example below) extra_cmd = 'cd /home/software/Omnivore/; export PATH=$PATH:/usr/local/cuda-7.0/bin; export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-7.0/lib64;' # These 3 meaningless if FCC FCCM_and_CM_to_CC = False CM_only_to_CC = True # no effect if FCCM_and_CM_to_CC = True (that takes precedence) # If this next one is true then it will put 2 CC per machine (note: assumes no FCC) # More complex patterns exist, e.g. if we have many m/g and separate FCC # we will have some CC with FCC and some without, so only those without can # take a CC, etc. For now though just assume this next option implies FCCM. double_subscribe_cc = False#True # This meaningless unless FCC CM_and_FCM_together = True # Set this if running on a single machine (i.e. for simulations, otherwise just use CcT) all_on_single_machine = False # ------------------------------------------------------------------------------ # Script parameters # ------------------------------------------------------------------------------ # Set to true after lmdb has been generated once (saves time) # Warning: When changing the number of machines, need to reset this to True skip_lmdb_generation = False # Run with GPUs. If neither is True, uses CPU only. # This is for both conv compute and fc compute/model servers # For the fc compute server (case when single_FC_server = False), set num_gpu_per_fcc # These will eventually not be bools but rather ints selected by the optimizer # (for now, only support 0, 1, or 4 GPUs). Set both to false to use CPU only. use_4_gpu = True # Takes precedence if both this and use_1_gpu are True use_1_gpu = False # If using > 1 GPU, do model parallelism on FC # This applies regardless of whether fc compute and model are one server or # separate servers multi_gpu_model_parallelism = True # Will be default true later or selected by optimizer , e.g. turn off if fcc / fcm # FC Compute / Model Server Parameters single_FC_server = True # The remaining parameters are only valid if single_FC_server is False # For FC, the scheduler may choose to have a single fc compute + model server ("fccm", # or the case when single_FC_server = True), or to have one or more fc compute ("fcc") # servers as well as a separate fc model ("fcm") server. # - If there is a single server for both fc model and fc compute (single_FC_server = True), # then this server will use a number of gpus decided by use_4_gpu and use_1_gpu above # (only 0, 1 or 4 GPUs per server supported). Then the parameters below are not used. # - If there are separate servers for fc compute and fc model (single_FC_server = False), # then for now fc model will be its own machine and fc computes will be spread across # the remaining machines. However, it is possible to have many fc compute (fcc) on 1 # machine, if and only if that machine has multiple GPUs. E.g. if we have 4 GPUs/machine, # there are 3 cases: # - 1 fc compute server on that machine, using either 1 GPU, 4 GPUs or CPU only # - 2 fc compute servers on that machine, using up to 2 GPUs each (or each can use 1 GPU) # - 4 fc compute servers on that machine, each using exactly 1 GPU (none will use CPU) # Now, use_1_gpu and use_4_gpu will be IGNORED for FC, and applied only to conv. The params # below take precedence for FC. num_fcc_per_machine = 1 # If CPU machines only, just set this to 0 and it will be ignored. Recall this parameter # only applies to multiple FCC. It might make sense to just set this to be whatever the # conv machines will use (e.g. CPU, GPU, 4GPU) because the conv machines will probably # be idle while the FCC is executing, i.e. we can map the FCC to those machines, unless # there is pipelining. For now this makes it more generic because e.g. each FCC can use # 1 GPU so we can map 4 to 1 4GPU machine, etc. num_gpu_per_fcc_machine = 0 # SHADJIS TODO: For now we configure the servers by args and options above, but a future change could be by config file (created externally and passed in). # Then internally this script reads that file and creates the mapping without having to calculate / decide the mapping. # # The cases it should handle are: # - default case: 1 CC per machine, + 2 machines (FCCM, CM) # - FCCM_and_CM_to_CC (FCCM to 1 CC, CM to another) # - CM_only_to_CC (FCCM alone, CM to a CC) # - single_FC_server (default true, if false, then will have 1 FCC per group, but on separate machines) # - map_fcc_to_cc (default false, but if true puts FCC on CC) # - CM_and_FCM_together (default false, if true will put CM and FCM together. If FCM = FCCM, later will put those together too, but for now only works when single_FC_server = 0) # - num_fcc_per_machine # - num_gpu_per_fcc_machine # - double_subscribe_cc # - maybe even multi-machine model parallelism for FC # # Examples: # master FCC, FCC, FCC, FCC, FCM, CM # Here it is 4 groups of size 1, each FC is 1 GPU, then once we get FCC model grads, we pull out an send to FCM # node001 CC # node002 CC # node003 CC # node004 CC # # master FCC, FCC, FCC, FCC, FCM, CM # Here it is 8 groups of size 1, each FC is 1 GPU, then once we get FCC model grads, we pull out an send to FCM # node001 CC, CC # node002 CC, CC # node003 CC, CC # node004 CC, CC # # master FCCM, CM # node001 CC # node002 CC # node003 CC # node004 CC # # master FCCM # node001 CC # node002 CC # node003 CC # node004 CC, CM # # master FCM, CM # node001 CC,FCC # node002 CC,FCC # node003 CC,FCC # node004 CC,FCC # # master CC,FCC,FCM # node001 CC,FCC,CM # node002 CC,FCC # node003 CC,FCC # # ============================================================================== # Description # ============================================================================== """ -------------------------------------------------------------------------------- Input: -------------------------------------------------------------------------------- - List of machines -------------------------------------------------------------------------------- Task: -------------------------------------------------------------------------------- - Create input protobuf files (solver and train_val) for each server - Read in a machine list so we know how many conv compute servers to create - Parse the solver prototxt to get the name of the train prototxt file - Parse the train prototxt file for lmdb names - Parse the network train prototxt again, now to split into 2 networks - Create new solver and network prototxt files for each server - Partition the lmdb for each server - Create config files for each server - Run ssh commands on each server -------------------------------------------------------------------------------- Scheduler tradeoffs: -------------------------------------------------------------------------------- - Machine types are conv model, conv compute, fc compute, fc model, and also combinations: conv compute/model (unimplemented), fc compute/model, model server (unimplemented) and compute server (unimplemented) - Decide which to use and how many of each - Number of servers to allocate to a single machine (e.g. allocate two conv compute to a single machine to hide stalled time waiting for fc to return gradients), and also how many GPUs per server (e.g. scheduler may decide given a number of machines to create 2 fc compute servers, one per machine, or to create 2 but on the same machine, each using 2 GPUs, and use the extra machine for another conv compute, or to create a single FC compute/model server to minimize communication) - Data parallelism: Decide how many machines to use within a batch - How to use each box (CPU, GPU, both, use each GPU as a different server, or use 4 GPU model/data parallelism, see also below) - Model parallelism: Decide how many machines to use to partition models, or how many GPUs on a single machine (model parallelism across machines unimplemented) - Precision (lossy, lossless, e.g. given AVX2, lossy compression makes sense) - Hogwild vs. model averaging vs. other methods (when using many model servers), also must choose isolation levels Inputs: - Throughput per box (not simply black box however, since a single machine with 4 GPUs can be seen as a single box or as 4 slower boxes) - Network speed -------------------------------------------------------------------------------- Details: -------------------------------------------------------------------------------- For example, a machine list could be: master node015 node019 The servers will then need the following information in the .cfg file: conv model server (running on node015) name = "Example ConvModelServer on 5555"; bind = "tcp://*:5555"; type = "ConvModelServer"; solver_file = "protos/solver.conv_model_server.prototxt"; output_model_file = "conv_model.bin"; conv compute server (running on node019) name = "Example ConvComputeServer on 5555"; conv_bind = "tcp://node015:5555"; fc_bind = "tcp://master:5556"; type = "ConvComputeServer"; solver_file = "protos/solver.conv_compute_server.prototxt"; fc server (running on master) name = "Example FCComputeModelServer on 5556"; bind = "tcp://*:5556"; type = "FCComputeModelServer"; solver_file = "protos/solver.fc_model_server.prototxt"; output_model_file = "fc_model.bin"; """ # ============================================================================== # Parse arguments # ============================================================================== EXPECTED_NUM_ARGS = 10 if len(sys.argv) not in [EXPECTED_NUM_ARGS,EXPECTED_NUM_ARGS+1]: # SHADJIS TODO: map_fcc_to_cc is only used if many_fc is set. # Eventually there will also be an option to map fcm and cm to the same machine, # either by making two separate servers and assigning them to one machine or using # an AllModelServer (and then also an AllComputeServer can be used) # SHADJIS TODO: These can be in a config file if there are too many params # SHADJIS TODO: Or even better, rather than a bool for every case (fcc + cc on same machine, # etc.), for now we can read in a machine list file which has cols for each machine, e.g. # if we have: # # master cc0.0 fcc0 # node001 cc0.1 # node002 cc1.0 fcc1 # node003 cc1.1 # node003 fcm # node003 cm # # Or even simpler: see comments @ top # # then it is clear how machines should be assigned. The scheduler will then eventually # generate this file (e.g. a JSON format which specifies each server, its machine, # its GPUs, etc.) print 'Usage: >>> python run.py path/to/solver.prototxt path/to/machine_list.txt machines_per_batch CPU|1GPU|4GPU single_fc|many_fc (map_fcc_to_cc=)1|0 base_dir snapshot_input_dir(="none" to ignore) snapshot_input_iter(="none" to ignore)' sys.exit(0) # Check that the distributed cct binary exists before running this script if not os.path.exists('./dcct'): print 'Please first run \'make -j\'' sys.exit(0) # We will also need one of the util files, so check here if it exists if not os.path.exists('./tools/size_util/size_util'): print 'Please cd into tools/size_util and \'make -j\'' sys.exit(0) solver_file = sys.argv[1] machine_list_file = sys.argv[2] machines_per_batch = int(sys.argv[3]) # SHADJIS TODO: Eventually optimizer will select this node_hw = sys.argv[4] if sys.argv[5] == 'single_fc': single_FC_server = True del num_fcc_per_machine # These are unused del num_gpu_per_fcc_machine else: assert sys.argv[5] == 'many_fc' print 'Using 1 fc compute server per conv compute group' single_FC_server = False if sys.argv[6] == '1': # If we want to map the fcc to the same machine as cc we need to replace the # port with a local port. map_fcc_to_cc = True print 'Assigning fcc servers to same machine as (some) cc servers' else: assert sys.argv[6] == '0' map_fcc_to_cc = False base_dir = sys.argv[7] if base_dir[-1] != '/': base_dir += '/' snapshot_input_dir = sys.argv[8] if snapshot_input_dir == "none": snapshot_input_dir = None elif snapshot_input_dir[-1] != '/': snapshot_input_dir += '/' snapshot_input_iter = sys.argv[9] if snapshot_input_iter == "none": snapshot_input_iter = None if len(sys.argv) == EXPECTED_NUM_ARGS+1 and sys.argv[EXPECTED_NUM_ARGS] == 's': skip_lmdb_generation = True if node_hw == 'CPU': use_4_gpu = False use_1_gpu = False elif node_hw == '1GPU': use_4_gpu = False use_1_gpu = True elif node_hw == '4GPU': use_4_gpu = True use_1_gpu = False else: assert False # assert skip_lmdb_generation # ============================================================================== # Create input protobuf files (solver and train_val) for each server # ============================================================================== # ------------------------------------------------------------------------------ # Read in a machine list so we know how many conv compute servers to create # ------------------------------------------------------------------------------ # Note: For now, the first line must be the current machine, so there must be at least 1 machine machine_list = [] f = open(machine_list_file) for line in f: if line.strip(): machine_list.append(line.strip()) f.close() assert len(machine_list) >= 1 # Allocate each server to machines # This depends on how many FC servers we have if single_FC_server: # The FC server is always the first machine fc_server_machine = machine_list[0] # SHADJIS TODO: This now assumes that given e.g. N machines, the best way to use them is to # allocate 1 machine to FCCM, 1 to CM, and the remaining N-2 are CC. In general this probably # makes sense as N is large, but for small N e.g. 2 machines should handle this better. Even # on e.g. 8 machines which is not too small, it makes sense to be able to map CM and FCCM to # same machine, or CM to a CC and FCCM to another CC, or CM and FCCM and CC all one 1 machine. # The optimizer can decide this layout later and pass in a config file (as mentioned above) # which lists, for each machine, which servers map to it. For now, I will just set a bool at # the top of this file which if true will put FCCM on a CC and CM on another CC. Then we can # handle more general cases later (along with single_fc|many_fc, (map_fcc_to_cc=)1|0 , etc.) # Conv Model Server: # If there is 1 machine, it must be CM # If 2 or more machines, now we can choose, e.g. (CM,CC) and (FCCM,CC) or (CM,FCCM,CC) and (CC), # etc. Having (CM, FCCM), (CC) would thrash less but would be certainly slower than 1 machine if len(machine_list) == 1: conv_model_server_machine = machine_list[0] else: # SHADJIS TODO: Optimizer should decide if this goes on server 0 (with FCCM and CC) or # server 1 (alone with a CC). For now hard-code this one. conv_model_server_machine = machine_list[1] # Conv Compute Server: if len(machine_list) == 1: # There is only 1 machine, so CC goes here conv_compute_server_machines = [machine_list[0]] num_conv_compute_servers = 1 elif len(machine_list) == 2: conv_compute_server_machines = machine_list # Put a CC on each num_conv_compute_servers = 2 else: # Calculate the number of conv compute servers # In the default case, the number of CC servers is #machines - 2 # However, we may choose to make it #machines or #machines-1, and map # CM or FC or both to CC. In the future, #CC can also be > #machines, # i.e. pipelining # SHADJIS TODO: Can also map e.g. a CM to a CC but separate FCCM, etc. if FCCM_and_CM_to_CC: num_machines_reserved = 0 elif CM_only_to_CC: # In this case we have N-1 CC machines num_machines_reserved = 1 else: num_machines_reserved = 2 num_machines_left = len(machine_list) - num_machines_reserved # Make sure it divides the number of machines per batch num_conv_compute_servers = (num_machines_left/machines_per_batch) * machines_per_batch conv_compute_server_machines = machine_list[num_machines_reserved : num_machines_reserved + num_conv_compute_servers] # SHADJIS TODO: If there are leftovers because num_conv_compute_servers < len(machine_list), # the CM and FCCM can go there, but for now ignore that case # For now this will just take the # of CC from before and multiply by 2 # Later more complicated things can be done # So #groups is just double what it was going to be before if double_subscribe_cc: num_conv_compute_servers *= 2 # Note how this is happening: if we have 8 machines and group size 4, we put # G1 on 0-3, G2 on 4-7, G3 on 0-3, and G4 on 4-7 # Specifically, we do not put G1 on 0-1 (2 CC/machine), since then while FC is processing # that group, it will be idle conv_compute_server_machines = conv_compute_server_machines * 2 # Now determine the number of groups num_groups = num_conv_compute_servers / machines_per_batch assert num_groups > 0 assert num_conv_compute_servers % machines_per_batch == 0 else: # For now do not support FCC and double CC # - if 1 m/g, NO help from pipelining # - if 2 m/g or more, than can cleverly put extra CC and FCC on un-utilized CC, but will IGNORE THIS CASE for now assert not double_subscribe_cc # Determine how to allocate machines num_machines = len(machine_list) # For now let's assert 4 or more machines: # 1. On a single machine it doesn't make sense to have multiple fc compute servers, since # they cannot run at the same time so might as well just use a single one # 2. SHADJIS TODO: In the case of 2 machines, each machine can have a conv compute and an FC, # so that data does not need to be copied. However since there is only a single conv model # and fc model server, we need to allocate these. The scheduler will do it later so for # now I will just exit in this case # 3. SHADJIS TODO: In the case of 3 machines, it is again possible to have intelligent machine # allocation, but for now I will ignore this case as well assert num_machines > 3 # Above are special-cases. It may be beneficial to have multiple fc compute servers when the # number of machines < 4, but for now we will assume 4 or more machines and that if there are # fewer machines then there will be a single fc compute and model server (since it is less # likely to be the bottleneck if there are few conv compute machines) # For now, if there are 4 or more machines, and FC model / computation are on different machines, # then currently machine allocations will be: 1 conv model, 1 fc model, and a number of conv compute # and fc compute specified at the top of the file. # In the future it will be possible to have other configurations, e.g. multiple groups allocated # to one fc compute server, but for now 1 group per fc will be used. # SHADJIS TODO: do config file later, once we know what is fast if CM_and_FCM_together: # The FC model server can be the first machine, and conv model on second fc_model_server_machine = machine_list[0] conv_model_server_machine = machine_list[0] num_machines_reserved = 1 else: # The FC model server can be the first machine, and conv model on second fc_model_server_machine = machine_list[0] conv_model_server_machine = machine_list[1] num_machines_reserved = 2 num_machines_left = num_machines - num_machines_reserved # If num_gpu_per_fcc > 1, then that fcc server will use model # parallelism iff multi_gpu_model_parallelism = True num_gpu_per_fcc = num_gpu_per_fcc_machine / num_fcc_per_machine # Now assign machines to the fcc and conv compute servers # Special case: fcc and cc on same server if map_fcc_to_cc: num_groups = num_machines_left / machines_per_batch num_fc_compute_servers = num_groups assert num_groups > 0 # These FC compute servers will be on the same machines and cc servers, so assign those first conv_compute_server_machines = machine_list[num_machines_reserved : num_machines_reserved + num_groups*machines_per_batch] # Now assign FC as a subset of these machines. If group size is 1, it will be the same # Otherwise, it will be strided by machines_per_batch fc_compute_server_machines = conv_compute_server_machines[::machines_per_batch] num_conv_compute_servers = len(conv_compute_server_machines) assert num_fcc_per_machine == 1 # Makes sense, since it also has a CC on it # Default case else: # Now we have the following: # - num_machines_left (after allocating 1 to conv model and 1 to fc model) # - machines_per_batch (i.e. # machines / conv compute group), # - num fc compute / machine, # Now we can calculate how many parallel batches (AKA groups) there will be: # num_groups = num_machines_left / (num_machines/group) # = num_machines_left / (num_machines/cc_group + num_machines/fcc_server), # where #machines/fcc_server = 1/num_fcc_per_machine <= 1 num_groups = int( num_machines_left / (machines_per_batch + 1./num_fcc_per_machine) ) # Next we must allocate a number of fc compute servers equal to the number of groups. num_fc_compute_servers = num_groups assert num_groups > 0 num_machines_for_fc_compute_servers = ( num_fc_compute_servers + num_fcc_per_machine - 1 )/ num_fcc_per_machine # Round up # Allocate machines for these fc compute servers fc_compute_server_machines = [] current_machine = num_machines_reserved # Since we allocated some to the model servers servers_on_current_machine = 0 for i in range(num_fc_compute_servers): fc_compute_server_machines.append(machine_list[current_machine]) servers_on_current_machine += 1 if servers_on_current_machine == num_fcc_per_machine: servers_on_current_machine = 0 current_machine += 1 # Make sure we assigned all the machines that we had allocated for fcc servers (maybe the last one is # not 100% full so check for that case as well) assert (current_machine == num_machines_reserved + num_machines_for_fc_compute_servers) or (current_machine == num_machines_reserved + num_machines_for_fc_compute_servers - 1) current_machine = num_machines_reserved + num_machines_for_fc_compute_servers # Now, the remaining number of machines must be able to fit the conv compute servers # Edit: I think this can never happen since we fit the # FCC to your # machines, but anyway good to assert num_machines_for_conv_compute_servers = num_groups * machines_per_batch if num_machines_for_conv_compute_servers + current_machine > num_machines: print 'Error: your configuration requires more machines than provided (' + \ str(num_machines) + ' provided, ' + str(num_machines_for_conv_compute_servers + current_machine) + ' needed)' assert False conv_compute_server_machines = machine_list[current_machine : current_machine + num_machines_for_conv_compute_servers] num_conv_compute_servers = len(conv_compute_server_machines) # Now we have the following set: # - num_groups # - fc_model_server_machine (as opposed to fc_server_machine for the case of single fc server) # - conv_model_server_machine # - fc_compute_server_machines, num_fc_compute_servers, num_gpu_per_fcc # - conv_compute_server_machines and num_conv_compute_servers, and use_1_gpu or use_4_gpu # The rest of the file will use these variables print 'Number of machines = ' + str(len(machine_list)) print 'Number of groups = ' + str(num_groups) # ------------------------------------------------------------------------------ # Find ports for the machines above # ------------------------------------------------------------------------------ # Now we need to create 2 ports per group (one to listen and one to broadcast) # SHADJIS TODO: We should get a list of free ports both on the conv model server # machine and the fc server machine. For now, I am only getting a list of free # ports on the current machine (running this script) and re-using for the machines # running these servers, which is wrong. If this causes errors, can log in to # each machine and run a script (get_n_free_ports.py), then use those ports. import socket # SHADJIS TODO: ssh into conv model / fc server machines and run this there # We need at least num_groups * 2 unique ports. In fact, this is enough because we can # re-use these ports #s across machines (to be sure, we should ssh into each and generate # the ports). But if we ever want to merge the model servers into one machine we need # more ports. For now we will just re-use the ports. # Update: In order to map FCCM and CM to the same machine we can make separate ports # (this is not needed for FCCM to go on a CC or for CM to go on a CC, just when FCCM/CM # are on same machine) cm_ports = [] while len(cm_ports) != num_groups*2: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 0)) addr = s.getsockname() # E.g. parse 40582 from ('0.0.0.0', 40582) SHADJIS TODO: Support other formats if str(addr[1]) not in cm_ports: cm_ports.append(str(addr[1])) s.close() fc_ports = [] # Also used for fcc, since that is what cc binds to while len(fc_ports) != num_groups*2: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 0)) addr = s.getsockname() # E.g. parse 40582 from ('0.0.0.0', 40582) SHADJIS TODO: Support other formats if str(addr[1]) not in fc_ports and str(addr[1]) not in cm_ports: fc_ports.append(str(addr[1])) s.close() if not single_FC_server: fcm_ports = [] # Also used for fccm while len(fcm_ports) != num_groups*2: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 0)) addr = s.getsockname() # E.g. parse 40582 from ('0.0.0.0', 40582) SHADJIS TODO: Support other formats if str(addr[1]) not in fc_ports and str(addr[1]) not in cm_ports and str(addr[1]) not in fcm_ports: fcm_ports.append(str(addr[1])) s.close() # ------------------------------------------------------------------------------ # Parse the solver prototxt to get the name of the train prototxt file # ------------------------------------------------------------------------------ # From this we need to parse the network prototxt so we can create new # sub-networks. We also need to store the solver as a string so we can # create new copies of the solver that point to each network prototxt. f = open(solver_file) solver_file_lines = [] train_proto = None for line in f: # The line should look something like: # net: "protos/train_test.prototxt" match = re.search(r'net\s*:\s*"\s*(\S+)\s*"', line, flags=re.IGNORECASE) if match: train_proto = match.group(1) solver_file_lines.append(line.replace(train_proto, '__TRAIN_PROTO__')) else: solver_file_lines.append(line) assert train_proto solver_file_str = ''.join(solver_file_lines) f.close() # ------------------------------------------------------------------------------ # Parse the train prototxt file for lmdb names # ------------------------------------------------------------------------------ # First parse the file to obtain the lmdb names # Also while parsing, count the number of FC layers. This is only used for # multi-GPU model parallelism num_fc_layers_total = 0 f = open(train_proto) lmdb_databases = [] for line in f: # E.g. a line like # source: "/home/ubuntu/train_data" match = re.search(r'source\s*:\s*"\s*(\S+)\s*"', line, flags=re.IGNORECASE) if match: lmdb_databases.append(match.group(1)) # Also check if this is an fc layer match = re.search(r'type\s*:\s*"\s*(\S+)\s*"', line, flags=re.IGNORECASE) if match: type = match.group(1) if 'INNERPRODUCT' in type.upper(): num_fc_layers_total += 1 assert len(lmdb_databases) in [1,2] assert num_fc_layers_total > 0 # For softmax if len(lmdb_databases) == 2: print 'Warning: For now, validation / test sets are ignored.' print ' This will be supported soon.' f.close() # SHADJIS TODO: Support validation set lmdb train_lmdb_name = lmdb_databases[0].rstrip('/') conv_movel_server_train_lmdb_name = train_lmdb_name fc_server_train_lmdb_name = train_lmdb_name + '_FC' conv_compute_server_train_lmdb_names = [] skip_main_lmdb_only = False if num_conv_compute_servers == 1: conv_compute_server_train_lmdb_names.append(train_lmdb_name) skip_main_lmdb_only = True else: os.system('mkdir -p ' + train_lmdb_name + '_' + str(num_conv_compute_servers) + '_PARTITION') for i in range(num_conv_compute_servers): conv_compute_server_train_lmdb_names.append(train_lmdb_name + '_' + str(num_conv_compute_servers) + '_PARTITION/' + str(num_conv_compute_servers) + 'P_p' + str(i)) # ------------------------------------------------------------------------------ # Parse the network train prototxt again, now to split into 2 networks # ------------------------------------------------------------------------------ # Now read through the file again, this time partitioning into conv and fc layers # Here we want to make 2 networks: first with everything up to first FC, then # first FC to the end # Note: in the case of separate fcc and fcm servers, the protos are identical # except GPU info. However, the GPU info can be complicated because fcm has no # GPU (this is easy to handle) but fcc's potentially each have different GPUs. conv_model_server_proto_str = '' conv_compute_server_proto_strs = ['']*num_conv_compute_servers if single_FC_server: fc_server_proto_str = '' else: fcm_server_proto_str = '' fcc_server_proto_strs = ['']*num_fc_compute_servers # Where we are in the file data_section = True conv_section = False fc_section = False # Read layer by layer lines_for_current_layer = [] lines_for_current_layer_no_gpu = [] f = open(train_proto) num_fc_layers_found = 0 processing_first_fc_layer = False data_name = '' for line in f: # Check if this is the start of a new layer # SHADJIS TODO: I think proto can skip a line before the curly brace but I'll ignore that for now if re.search(r'layer\s*\{', line, flags=re.IGNORECASE): layer_str = ''.join(lines_for_current_layer) layer_str_no_gpu = ''.join(lines_for_current_layer_no_gpu) lines_for_current_layer = [line] lines_for_current_layer_no_gpu = [line] # This is a new layer. What we do with the old layer depends on # which section we are in # Case 1, this is a data layer if data_section: # We want to append this layer to all the networks conv_model_server_proto_str += layer_str_no_gpu # No GPU for now on the conv model server. SHADJIS TODO: Why is this needed for data section? Assert same as no gpu # For each conv compute network, we need to replace the LMDB # We also need to reduce the batch size layer_str_copy = layer_str match = re.search(r'batch_size\s*:\s*(\d+)', layer_str, flags=re.IGNORECASE) if match: batch_size = int(match.group(1)) assert batch_size % machines_per_batch == 0 batch_size_reduced = int(batch_size / machines_per_batch) layer_str_copy = re.sub(r'batch_size\s*:\s*(\d+)', 'batch_size: ' + str(batch_size_reduced), layer_str_copy, 1, flags=re.IGNORECASE) for i in range(num_conv_compute_servers): conv_compute_server_proto_strs[i] += layer_str_copy.replace(conv_movel_server_train_lmdb_name, conv_compute_server_train_lmdb_names[i]) # For the FC network, we need to do some replacements and then also replace the LMDB: # SHADJIS TODO: Use regex to replace the mirror in mirror: true/false, but not others layer_str = re.sub(r'mirror', '#mirror', layer_str , 1, flags=re.IGNORECASE) layer_str = re.sub(r'crop_size', '#crop_size', layer_str , 1, flags=re.IGNORECASE) layer_str = re.sub(r'mean_file', '#mean_file', layer_str , 1, flags=re.IGNORECASE) layer_str_for_fc = layer_str.replace(conv_movel_server_train_lmdb_name, fc_server_train_lmdb_name) if single_FC_server: fc_server_proto_str += layer_str_for_fc else: fcm_server_proto_str += layer_str_for_fc for i in range(num_fc_compute_servers): fcc_server_proto_strs[i] += layer_str_for_fc # Case 2, this is a layer in the conv part elif conv_section: conv_model_server_proto_str += layer_str_no_gpu for i in range(num_conv_compute_servers): conv_compute_server_proto_strs[i] += layer_str # Case 3, this is a layer in the FC part elif fc_section: if single_FC_server: fc_server_proto_str += layer_str else: fcm_server_proto_str += layer_str_no_gpu # Now we need to substitute in {SUB_GPU_NUM_HERE} for the correct gpu numbers # Iterate over each server and assign GPUs. Keep in mind that multiple servers # may be assigned to a single machine # Start at machine 0 GPU 0 and increment the GPU each time. Reset once we # reach num_gpu_per_fcc_machine (this moves to a new machine, although the # machine assignments are not done here, since they were already done above) current_gpu = 0 for i in range(num_fc_compute_servers): layer_str_this_fcc_server = layer_str for g in range(num_gpu_per_fcc): layer_str_this_fcc_server = layer_str_this_fcc_server.replace('{SUB_GPU_NUM_HERE}', str(current_gpu), 1) current_gpu += 1 if current_gpu == num_gpu_per_fcc_machine: current_gpu = 0 fcc_server_proto_strs[i] += layer_str_this_fcc_server # Otherwise this is part of a layer else: # 3 checks, # - lines_for_current_layer to make sure we are in a layer (not the name of the network on line 1) # - not data_name so we only set it once # - data_section so we get the data name if lines_for_current_layer and not data_name and data_section: match = re.search(r'name\s*:\s*"\s*(\S+)\s*"', line, flags=re.IGNORECASE) if match: data_name = match.group(1) if processing_first_fc_layer: match = re.search(r'bottom\s*:\s*"\s*(\S+)\s*"', line, flags=re.IGNORECASE) if match: old_bottom = match.group(1) assert data_name line = line.replace(old_bottom, data_name) processing_first_fc_layer = False lines_for_current_layer.append(line) lines_for_current_layer_no_gpu.append(line) # We can also determine if we moved to a new section of the network match = re.search(r'type\s*:\s*"\s*(\S+)\s*"', line, flags=re.IGNORECASE) if match: # If this is a 'type: "..."' line, the section of the network might have changed type = match.group(1) # If it is a convolution layer, assert we are not in the fc section # and transition to conv section if in data section if 'CONVOLUTION' in type.upper() or 'POOL' in type.upper(): assert not fc_section if data_section: data_section = False conv_section = True elif 'INNERPRODUCT' in type.upper(): if num_fc_layers_found == 0: processing_first_fc_layer = True num_fc_layers_found += 1 data_section = False conv_section = False fc_section = True # Update proto with GPU information # # Only do this once per layer, i.e. we want to do it after this 'type:' line: # # type: "ReLU" <---- # # But not after this 'type:' line # # weight_filler { # type: "gaussian" <---- # std: 0.01 # } # Note: We assume FC is a straight line, i.e. we transition to FC phase @ 1st FC, # meaning we can't have grouping for FC (FC and on must be a straight line/chain) if type.upper() in ['INNERPRODUCT', 'RELU', 'DROPOUT', 'POOLING', 'CONVOLUTION', 'LRN', 'BATCHNORM', 'SCALE', 'ELTWISE', 'CONCAT']: # Conv can use up to 4 GPUs if conv_section: if use_4_gpu: lines_for_current_layer.append(''' gpu_0_batch_proportion: 0.25 gpu_1_batch_proportion: 0.25 gpu_2_batch_proportion: 0.25 gpu_3_batch_proportion: 0.25 ''') elif use_1_gpu: lines_for_current_layer.append(''' gpu_0_batch_proportion: 1.0 ''') # FC can use up to 1 GPU with model parallelism disabled, # and all the GPUs with model parallelism enabled elif fc_section and type.upper() != 'SOFTMAXWITHLOSS' and type.upper() != 'SOFTMAX': if single_FC_server: if use_1_gpu or (use_4_gpu and not multi_gpu_model_parallelism): lines_for_current_layer.append(''' gpu_0_batch_proportion: 1.0 ''') # If 4 GPUs and model parallelism is enabled, the type of parallelism and # number of GPUs depends on the layer. # By default, FC layers get 4 GPUs and model parallelism, and non-FC layers # get 4 GPUs and data parallelism. However the final FC layer may be faster # on just 1 GPU because: # - 4 GPUs data parallelism: this is slow because the computation is small # for the final FC layer so there is little speedup from using # multiple GPUs, but accumulating the gradients requires # copying the gradients from each GPU and model back to each GPU # - 4 GPUs model parallelism: this is fast but requires copying all the # data to each GPU then back to the host in backward pass to sum gradients # It turns out that because the computation is fast for the last FC, minimizing copies # is more important, so using 1 GPU (and keeping gradients on device at all times) # is fastest. Then to avoid copies to that GPU, it is also fastest if all # the preceding layers (e.g. ReLU, dropout) also use 1 GPU (1 GPU is batch # parallelism by default, but 1 GPU batch and 1 GPU depth are equivalent). elif use_4_gpu: # Now how many GPUs to use depends on the layer assert multi_gpu_model_parallelism # If we are past the second-last FC, use 1 GPU # Note that this conditional branch seems useless (same result in both cases) # but is not because of batch vs depth proportion if type.upper() == 'INNERPRODUCT': assert num_fc_layers_found >= 1 assert num_fc_layers_found <= num_fc_layers_total if num_fc_layers_found == num_fc_layers_total: # Last FC lines_for_current_layer.append(''' gpu_0_batch_proportion: 1.0 ''') else: lines_for_current_layer.append(''' gpu_0_depth_proportion: 0.25 gpu_1_depth_proportion: 0.25 gpu_2_depth_proportion: 0.25 gpu_3_depth_proportion: 0.25 ''') else: if num_fc_layers_found >= num_fc_layers_total-1: # Right before last FC lines_for_current_layer.append(''' gpu_0_batch_proportion: 1.0 ''') else: lines_for_current_layer.append(''' gpu_0_batch_proportion: 0.25 gpu_1_batch_proportion: 0.25 gpu_2_batch_proportion: 0.25 gpu_3_batch_proportion: 0.25 ''') # not single_FC_server else: if num_gpu_per_fcc == 1 or (num_gpu_per_fcc > 1 and not multi_gpu_model_parallelism): lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 1.0 ''') # See model parallelism comment in code above elif num_gpu_per_fcc > 1: # Now how many GPUs to use depends on the layer assert multi_gpu_model_parallelism # If we are past the second-last FC, use 1 GPU if type.upper() == 'INNERPRODUCT': assert num_fc_layers_found >= 1 assert num_fc_layers_found <= num_fc_layers_total if num_fc_layers_found == num_fc_layers_total: # Last FC lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 1.0 ''') elif num_gpu_per_fcc == 2: lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_depth_proportion: 0.5 gpu_{SUB_GPU_NUM_HERE}_depth_proportion: 0.5 ''') else: assert num_gpu_per_fcc == 4 lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_depth_proportion: 0.25 gpu_{SUB_GPU_NUM_HERE}_depth_proportion: 0.25 gpu_{SUB_GPU_NUM_HERE}_depth_proportion: 0.25 gpu_{SUB_GPU_NUM_HERE}_depth_proportion: 0.25 ''') else: if num_fc_layers_found >= num_fc_layers_total-1: # Right before last FC lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 1.0 ''') elif num_gpu_per_fcc == 2: lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 0.5 gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 0.5 ''') else: assert num_gpu_per_fcc == 4 lines_for_current_layer.append(''' gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 0.25 gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 0.25 gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 0.25 gpu_{SUB_GPU_NUM_HERE}_batch_proportion: 0.25 ''') f.close() # Call code above for the last layer too now layer_str = ''.join(lines_for_current_layer) layer_str_no_gpu = ''.join(lines_for_current_layer_no_gpu) assert layer_str == layer_str_no_gpu # Last layer (softmax) should not use GPU assert fc_section if single_FC_server: fc_server_proto_str += layer_str else: fcm_server_proto_str += layer_str_no_gpu for i in range(num_fc_compute_servers): fcc_server_proto_strs[i] += layer_str # ------------------------------------------------------------------------------ # Create new solver and network prototxt files # ------------------------------------------------------------------------------ input_file_dir = base_dir + 'server_input_files-' + datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") # SHADJIS TODO: base_dir can include this later os.system('mkdir -p ' + input_file_dir) print 'Writing input prototxt files to ' + input_file_dir + '/' # First create the solver files for the model servers if single_FC_server: server_types = ['conv_model', 'fc_model_compute'] else: server_types = ['conv_model', 'fc_model'] for server in server_types: solver_name = input_file_dir + '/solver.' + server + '_server.prototxt' train_name = input_file_dir + '/train_val.' + server + '_server.prototxt' # Make a solver for this server f = open(solver_name, 'w') print ' Writing ' + solver_name f.write(solver_file_str.replace('__TRAIN_PROTO__', train_name)) f.close() # Make a train file for this server f = open(train_name, 'w') print ' Writing ' + train_name if server == 'conv_model': f.write(conv_model_server_proto_str) conv_model_server_solver_file = solver_name elif server == 'fc_model_compute': assert single_FC_server f.write(fc_server_proto_str) fc_server_solver_file = solver_name else: assert server == 'fc_model' assert not single_FC_server f.write(fcm_server_proto_str) fcm_server_solver_file = solver_name f.close() # Now create the solver files for the conv compute servers conv_compute_server_solver_files = [] for i in range(num_conv_compute_servers): solver_name = input_file_dir + '/solver.conv_compute_server.' + str(i) + '.prototxt' conv_compute_server_solver_files.append(solver_name) train_name = input_file_dir + '/train_val.conv_compute_server.' + str(i) + '.prototxt' # Make a solver for this server f = open(solver_name, 'w') print ' Writing ' + solver_name f.write(solver_file_str.replace('__TRAIN_PROTO__', train_name)) f.close() # Make a train file for this server f = open(train_name, 'w') print ' Writing ' + train_name f.write(conv_compute_server_proto_strs[i]) f.close() # Now create the solver files for the fc compute servers, if any if not single_FC_server: fc_compute_server_solver_files = [] for i in range(num_fc_compute_servers): solver_name = input_file_dir + '/solver.fc_compute_server.' + str(i) + '.prototxt' fc_compute_server_solver_files.append(solver_name) train_name = input_file_dir + '/train_val.fc_compute_server.' + str(i) + '.prototxt' # Make a solver for this server f = open(solver_name, 'w') print ' Writing ' + solver_name f.write(solver_file_str.replace('__TRAIN_PROTO__', train_name)) f.close() # Make a train file for this server f = open(train_name, 'w') print ' Writing ' + train_name f.write(fcc_server_proto_strs[i]) f.close() # ============================================================================== # Create the LMDBs referenced above # ============================================================================== # Recall that above we made: # # conv_movel_server_train_lmdb_name (same as default, since unused) # fc_server_train_lmdb_name # and # conv_compute_server_train_lmdb_names for i in range(num_conv_compute_servers) # # Now we need to create the fc and conv compute lmdb files by reading in the # conv model server. The fc server can also be empty but needs the right size. # We don't know this size however without loading the network, so we need to # do that using a C++ utility (see below) # ------------------------------------------------------------------------------ # First, make the lmdb for each conv compute server # ------------------------------------------------------------------------------ def open_new_write_lmdb_helper(new_lmdb_name, num_imgs, map_size): os.system('rm -rf ' + new_lmdb_name) write_env = lmdb.open(new_lmdb_name, readonly=False, lock=False, map_size=map_size) write_txn = write_env.begin(write=True) print ' Writing ' + str(num_imgs) + ' images to ' + new_lmdb_name return write_env, write_txn map_size = 1024*1024*1024*1024 if not (skip_lmdb_generation or skip_main_lmdb_only): # SHADJIS TODO: Skip this if there is only 1 partition, and re-use existing lmdb # Open the full lmdb that we will read from read_lmdb_name = conv_movel_server_train_lmdb_name # First count the number of images read_env = lmdb.open(read_lmdb_name, readonly=True) num_images = 0 with read_env.begin() as read_txn: with read_txn.cursor() as read_cursor: for key, value in read_cursor: num_images += 1 read_env.close() # num_images = 129395 print 'LMDB ' + read_lmdb_name + ' contains ' + str(num_images) # Now split by the number of conv compute servers num_images_per_conv_compute_server = [num_images/num_conv_compute_servers]*num_conv_compute_servers # We also have to add the remainders num_leftover = num_images%num_conv_compute_servers for i in range(num_leftover): num_images_per_conv_compute_server[i] += 1 assert sum(num_images_per_conv_compute_server) == num_images # Now create the lmdb for each conv compute server read_env = lmdb.open(read_lmdb_name, readonly=True) with read_env.begin() as read_txn: with read_txn.cursor() as read_cursor: # Read over each datum again, this time writing to a new lmdb current_server = 0 img_idx = 0 # Open the LMDB for the first server write_env, write_txn = open_new_write_lmdb_helper(conv_compute_server_train_lmdb_names[current_server], num_images_per_conv_compute_server[current_server], map_size) # Read over each image in original lmdb for key, value in read_cursor: # Check if we should move to the next server if img_idx >= num_images_per_conv_compute_server[current_server]: # We just finished the current server # First close the currenet lmdb write_txn.commit() write_env.close() # Increment server count and reset img_idx current_server += 1 img_idx = 0 # Open new lmdb write_env, write_txn = open_new_write_lmdb_helper(conv_compute_server_train_lmdb_names[current_server], num_images_per_conv_compute_server[current_server], map_size) # Write the new datum to the new lmdb write_txn.put(key, value) img_idx += 1 # assert we have 1 server lmdb left to write assert current_server == num_conv_compute_servers-1 assert img_idx == num_images_per_conv_compute_server[current_server] write_txn.commit() write_env.close() read_env.close() # ------------------------------------------------------------------------------ # Next, make the lmdb for the FC server # ------------------------------------------------------------------------------ if not skip_lmdb_generation: # This requires calling a utility which loads the network and prints the size # of the output of the final conv layer. util_output_str = subprocess.check_output(['./tools/size_util/size_util', conv_model_server_solver_file]) num_fc_inputs = int(util_output_str.strip().split("\n")[-1].strip()) # Now create a new LMDB with 1 datum that contains the right size write_env, write_txn = open_new_write_lmdb_helper(fc_server_train_lmdb_name, 1, map_size) # Create the datum datum = datum_pb2.Datum() datum.height = 1 datum.width = 1 datum.channels = num_fc_inputs # Write back the new datum write_txn.put('dummy', datum.SerializeToString()) write_txn.commit() write_env.close() # ============================================================================== # Create config files for each server # ============================================================================== print 'Generating configuration files for each server' # Also keep a list of the machine and config file cmd_params = [] # Get the config file names if single_FC_server: fc_server_cfg = input_file_dir + '/fc_server.cfg' else: fcm_server_cfg = input_file_dir + '/fc_model_server.cfg' fcc_server_cfgs = [] for i in range(num_fc_compute_servers): fcc_server_cfgs.append(input_file_dir + '/fc_compute_server.' + str(i) + '.cfg') conv_model_server_cfg = input_file_dir + '/conv_model_server.cfg' conv_compute_server_cfgs = [] for i in range(num_conv_compute_servers): conv_compute_server_cfgs.append(input_file_dir + '/conv_compute_server.' + str(i) + '.cfg') # Write config files if single_FC_server: # FC server print ' Writing ' + fc_server_cfg f = open(fc_server_cfg, 'w') f.write('''name = "FCComputeModelServer on tcp://''' + fc_server_machine + '''"; type = "FCComputeModelServer"; solver = "''' + fc_server_solver_file + '''"; group_size = ''' + str(machines_per_batch) + '''; ''') if snapshot_input_dir: f.write('snapshot_input_dir = "' + snapshot_input_dir + '"' + "\n") if snapshot_input_iter: f.write('snapshot_input_iter = ' + snapshot_input_iter + "\n") f.write(''' ports = ( ''') for i in range(num_groups): if i != 0: f.write(',') f.write(''' { broadcast = "tcp://*:''' + str(fc_ports[2*i ]) + '''", listen = "tcp://*:''' + str(fc_ports[2*i + 1]) + '''" }''') f.write(''' ); ''') f.close() cmd_params.append((fc_server_machine, fc_server_cfg)) else: # FC model server # Note group_size = 1 since the fc compute servers will be connecting to this print ' Writing ' + fcm_server_cfg f = open(fcm_server_cfg, 'w') f.write('''name = "FCModelServer on tcp://''' + fc_model_server_machine + '''"; type = "FCModelServer"; solver = "''' + fcm_server_solver_file + '''"; group_size = 1; ''') if snapshot_input_dir: f.write('snapshot_input_dir = "' + snapshot_input_dir + '"' + "\n") if snapshot_input_iter: f.write('snapshot_input_iter = ' + snapshot_input_iter + "\n") f.write(''' ports = ( ''') for i in range(num_groups): if i != 0: f.write(',') f.write(''' { broadcast = "tcp://*:''' + str(fcm_ports[2*i ]) + '''", listen = "tcp://*:''' + str(fcm_ports[2*i + 1]) + '''" }''') f.write(''' ); ''') f.close() cmd_params.append((fc_model_server_machine, fcm_server_cfg)) # Conv model server print ' Writing ' + conv_model_server_cfg f = open(conv_model_server_cfg, 'w') f.write('''name = "ConvModelServer on tcp://''' + conv_model_server_machine + '''"; type = "ConvModelServer"; solver = "''' + conv_model_server_solver_file + '''"; group_size = ''' + str(machines_per_batch) + '''; ''') if snapshot_input_dir: f.write('snapshot_input_dir = "' + snapshot_input_dir + '"' + "\n") if snapshot_input_iter: f.write('snapshot_input_iter = ' + snapshot_input_iter + "\n") f.write(''' ports = ( ''') for i in range(num_groups): if i != 0: f.write(',') f.write(''' { broadcast = "tcp://*:''' + str(cm_ports[2*i ]) + '''", listen = "tcp://*:''' + str(cm_ports[2*i + 1]) + '''" }''') f.write(''' ); ''') f.close() cmd_params.append((conv_model_server_machine, conv_model_server_cfg)) # Conv compute servers for i in range(num_conv_compute_servers): group_of_this_machine = i / machines_per_batch print ' Writing ' + conv_compute_server_cfgs[i] f = open(conv_compute_server_cfgs[i], 'w') # Check which FC machine to bind to (the port is fixed but the machine may change) # Specifically, if the FC server and conv server are mapped to the same machine, # then this will change. That can be true if the FC server is an FCCM or an FCC. if single_FC_server: if conv_compute_server_machines[i] == fc_server_machine: fc_bind_machine = '127.0.0.1' # Localhost else: fc_bind_machine = fc_server_machine else: # Special case: if these are on the same machine, use localhost if conv_compute_server_machines[i] == fc_compute_server_machines[group_of_this_machine]: fc_bind_machine = '127.0.0.1' # Localhost else: fc_bind_machine = fc_compute_server_machines[group_of_this_machine] # Check also which CM machine to bind to. This is like above but simpler because # there is no distinction like FCCM vs FCC for CM, it is always just a CM if conv_compute_server_machines[i] == conv_model_server_machine: cm_bind_machine = '127.0.0.1' # Localhost else: cm_bind_machine = conv_model_server_machine f.write('''name = "ConvComputeServer ''' + str(i) + '''"; conv_listen_bind = "tcp://''' + cm_bind_machine + ''':''' + str(cm_ports[2*group_of_this_machine + 1]) + '''"; conv_send_bind = "tcp://''' + cm_bind_machine + ''':''' + str(cm_ports[2*group_of_this_machine ]) + '''"; fc_listen_bind = "tcp://''' + fc_bind_machine + ''':''' + str(fc_ports[2*group_of_this_machine + 1]) + '''"; fc_send_bind = "tcp://''' + fc_bind_machine + ''':''' + str(fc_ports[2*group_of_this_machine ]) + '''"; type = "ConvComputeServer"; solver = "''' + conv_compute_server_solver_files[i] + '''"; group_size = ''' + str(machines_per_batch) + '''; rank_in_group = ''' + str(i%machines_per_batch) + '''; ''') f.close() cmd_params.append((conv_compute_server_machines[i], conv_compute_server_cfgs[i])) # FC compute servers if not single_FC_server: # Note rank in group is always 0 because there is only one fcc per group for i in range(num_fc_compute_servers): print ' Writing ' + fcc_server_cfgs[i] f = open(fcc_server_cfgs[i], 'w') f.write('''name = "FCComputeServer ''' + str(i) + '''"; conv_listen_bind = "tcp://''' + '*' + ''':''' + str(fc_ports[2*i + 1]) + '''"; conv_send_bind = "tcp://''' + '*' + ''':''' + str(fc_ports[2*i ]) + '''"; fc_listen_bind = "tcp://''' + fc_model_server_machine + ''':''' + str(fcm_ports[2*i + 1]) + '''"; fc_send_bind = "tcp://''' + fc_model_server_machine + ''':''' + str(fcm_ports[2*i ]) + '''"; type = "FCComputeServer"; solver = "''' + fc_compute_server_solver_files[i] + '''"; group_size = ''' + str(machines_per_batch) + '''; rank_in_group = 0; ''') f.close() cmd_params.append((fc_compute_server_machines[i], fcc_server_cfgs[i])) # ============================================================================== # Run ssh commands # ============================================================================== print ''' Beginning to run commands for each server (commands also written to rerun_experiment.sh) ''' # Run the commmands f = open('rerun_experiment.sh', 'w') for cmd_param in cmd_params: machine = cmd_param[0] cfg_file = cmd_param[1] if all_on_single_machine: cmd = './dcct ' + cfg_file + ' &> ' + cfg_file +'.out &' else: cmd = 'ssh ' + user + '@' + machine + ' \'' + extra_cmd + ' ./dcct ' + cfg_file + ' &> ' + cfg_file +'.out\' &' f.write(cmd + "\n") print cmd os.system(cmd) # SHADJIS TODO: To prevent FC (ZMQ SUB) from missing model from CM, sleep (make more permanent solution later) # Most of the time it works to sleep 15s only after model servers, but then for 32 machines, 1 group it hangs. # However if I sleep 0 after each conv compute (i.e. do nothing differently) it works. Since this is a hack # anyway and has to do with e.g. OS scheduling it is probably not that unexpected and probably random. if 'fc_server' in cmd or 'conv_model_server' in cmd or 'fc_model_server' in cmd: cmd = 'sleep 15' elif 'fc_compute_server' in cmd: # SHADJIS TODO: May be able to reduce this delay cmd = 'sleep 1' else: cmd = 'sleep 0' # sleep 0 works too, but not removing the command entirely (for 128, 0 does not work -- some msgs lost) f.write(cmd + "\n") print cmd os.system(cmd) f.close() # Also generate a script that can be used to kill all these servers f = open('kill_servers.sh', 'w') for cmd_param in cmd_params: machine = cmd_param[0] if all_on_single_machine: f.write('pkill dcct' + "\n") else: # f.write('ssh ' + user + '@' + machine + ' \'pkill dcct; fuser -k 5555/tcp; fuser -k 5556/tcp;\' &' + "\n") f.write('ssh ' + user + '@' + machine + ' \'pkill dcct;\' &' + "\n") f.close() print ''' Servers are now running on each machine over ssh. See the input configuration file for each server to see which machine it is running on. To stop all servers, run: $ bash kill_servers.sh '''
Omnivore-master
run.py
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: datum.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='datum.proto', package='', syntax='proto2', serialized_pb=_b('\n\x0b\x64\x61tum.proto\"\x81\x01\n\x05\x44\x61tum\x12\x10\n\x08\x63hannels\x18\x01 \x01(\x05\x12\x0e\n\x06height\x18\x02 \x01(\x05\x12\r\n\x05width\x18\x03 \x01(\x05\x12\x0c\n\x04\x64\x61ta\x18\x04 \x01(\x0c\x12\r\n\x05label\x18\x05 \x01(\x05\x12\x12\n\nfloat_data\x18\x06 \x03(\x02\x12\x16\n\x07\x65ncoded\x18\x07 \x01(\x08:\x05\x66\x61lse') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _DATUM = _descriptor.Descriptor( name='Datum', full_name='Datum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='channels', full_name='Datum.channels', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='height', full_name='Datum.height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='width', full_name='Datum.width', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data', full_name='Datum.data', index=3, number=4, type=12, cpp_type=9, label=1, has_default_value=False, default_value=_b(""), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='label', full_name='Datum.label', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='float_data', full_name='Datum.float_data', index=5, number=6, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='encoded', full_name='Datum.encoded', index=6, number=7, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=16, serialized_end=145, ) DESCRIPTOR.message_types_by_name['Datum'] = _DATUM Datum = _reflection.GeneratedProtocolMessageType('Datum', (_message.Message,), dict( DESCRIPTOR = _DATUM, __module__ = 'datum_pb2' # @@protoc_insertion_point(class_scope:Datum) )) _sym_db.RegisterMessage(Datum) # @@protoc_insertion_point(module_scope)
Omnivore-master
datum_pb2.py
#!/usr/bin/python # ============================================================================== # # omnivore.py # # usage: # # $ python omnivore.py config.txt # # ============================================================================== import os import sys import re # Regex # config file provides all parameters, but here are some extra ones base_dir = '/home/software/Omnivore/my_run/' hw_type = 'CPU' #'CPU' '4GPU' 'GPU' random_seeds_phase_0 = [1] # Seeds matter a lot, but will not search now (save time) EXTRA_TIME_FIRST = 0 MAKE_LMDB_FIRST = False FCC = False # leave these empty to let the system guess momentum_list_phase_0 = [] LR_list_phase_0 = [] # Epoch duration can be fixed (e.g. 1h) or a multiplier of optimizer time (e.g. 10x) optimizer_duration = 10000 # optimizer_factor = 10 snap_frequency = 0.07 # Get HE measurements group_size_to_time = {} # ============================================================================== # Description # ============================================================================== """ This reads an input config file and calls run.py for a number of configurations Enhancements: - Rather than read in list of #m/g, read the machine list file like in run.py to figure out # conv compute machine which will be used (this code existe already in run.py, just copy it here) - Rather than read times (phase 1 2 3) as input, run for 1 minute at a time, checkpoint at the end of the minute, and then repeat that until there is a clear winner - Read snapshot: move forward in the dataset (now we restart), this is important if implementing 1 minute at a time change - Now if momentum goes to 0, we increase # groups. Verify this makes sense, or maybe negative momemtum etc. is a better strategy. Also, can force a "phase 2" to try momentum of 0.1, 0.2 etc. if momentum 0 is chosen. Finally, understand what LR and momemtum to search once we hit m=0 and decrease #groups Older TODO items: (some of these may be done now) - Once we finish tuning for G groups, and we are about to start for 2G, can reduce params to search since we know LR cannot be greater (momentum can however if LR goes down) - Change display frequency so it is not too big (else no information by timeout). Then take average of past few iterations. - Remove unused input args to run.py, or make a config file - Handle case where if LR is on boundary, then we also need to run each momentum at that one. E.g. if best result is LR 0.01 and momentum 0.9, it's possible that an even better result would be LR 0.1 and momentum 0.6, but we would never test that in this case. So if it is on boundary, we should run a 2nd phase which runs all momentum values at that new LR - Do not choose batch size but adjust batch size in proto slightly to properly divide # machines in a group - Choose batch size - Make dynamic (re-evaluate every few iter) """ # ============================================================================== # Parse arguments # ============================================================================== # ------------------------------------------------------------------------------ # Check for right number of args # ------------------------------------------------------------------------------ expected_num_args = 2 if len(sys.argv) not in [expected_num_args, expected_num_args+1]: print ''' Usage: >>> python omnivore.py config.txt Example config.txt: solver_template = files/solver.prototxt group_size_list = 1,2,4,8,16,32 time_per_exp_phase1 = 60 time_per_exp_phase2 = 0 time_per_exp_phase3 = 300 ''' sys.exit(0) # Pass in a D or d at the end to run in debug DEBUG = False if len(sys.argv) == expected_num_args+1 and sys.argv[expected_num_args] in ['d','D']: DEBUG = True # ------------------------------------------------------------------------------ # Read params # ------------------------------------------------------------------------------ # Params we need to read solver_template = '' machine_list = '' group_size_list = [] # SHADJIS TODO: Rather than read these times as input, run for 1 minute at a time and # checkpoint at the end of the minute, and then repeat that until there is a clear winner time_per_exp_phase1 = 0 time_per_exp_phase2 = 0 time_per_exp_phase3 = 0 # Read the experiment parameters def parse_val(line, type_to_convert_to=str): return type_to_convert_to(line.split('=')[-1].strip()) def parse_list(line, type_to_convert_to=str): parsed_list_str = line.split('=')[-1].strip() parsed_list_str_type = [] if ',' in parsed_list_str: for s in parsed_list_str.split(','): parsed_list_str_type.append(type_to_convert_to(s.strip())) else: parsed_list_str_type.append(type_to_convert_to(parsed_list_str)) assert parsed_list_str_type return parsed_list_str_type config_file = open(sys.argv[1]) for line in config_file: if 'solver_template' in line: solver_template = parse_val(line, str) elif 'machine_list' in line: machine_list = parse_val(line, str) elif 'group_size_list' in line: group_size_list = parse_list(line, int) elif 'time_per_exp_phase1' in line: time_per_exp_phase1 = parse_val(line, int) elif 'time_per_exp_phase2' in line: time_per_exp_phase2 = parse_val(line, int) elif 'time_per_exp_phase3' in line: time_per_exp_phase3 = parse_val(line, int) config_file.close() # Make sure we got params we need assert solver_template # assert len(group_size_list) == 1 # For now optimize 1 group_size at a time assert time_per_exp_phase1 # assert time_per_exp_phase2 solver_name = solver_template.split('/')[-1].split('.')[0] SOLVER_DIR = 'solvers_' + solver_name os.system('mkdir -p ' + SOLVER_DIR) # ------------------------------------------------------------------------------ # Optimize over these: # ------------------------------------------------------------------------------ momentum_list = [] LR_list = [] # Parse some parameters: # - initial LR, used as a guess for tuning (note: not assuming this is tuned for 1 machine) # - increment: used to parse log file at the end # initial_LR = 0 increment = 0 f = open(solver_template) def parse_proto_val(line, type_to_convert_to): return type_to_convert_to( line.strip().split(':')[-1].strip() ) for line in f: #if 'base_lr' in line: # initial_LR = parse_proto_val(line, float) if 'display' in line: increment = parse_proto_val(line, int) f.close() # assert initial_LR and initial_LR > 0 assert increment # ------------------------------------------------------------------------------ # For now these ones will be hard-coded # ------------------------------------------------------------------------------ if FCC: fc_type = 'many_fc' map_fcc_to_cc = '1' else: fc_type = 'single_fc' # 'single_fc' or 'many_fc' map_fcc_to_cc = '0' script_name_suffix = '' script_name = 'run' + script_name_suffix + '.py' # max_parallel_runs = 52 # Future options: # - delay 1s between cc launch # - 1 core or all cores? # + run with LOG(INFO) # + name server_... dir based on run name # ============================================================================== # Helper functions # ============================================================================== def read_output_by_lines(run_dir): if FCC: fname = run_dir + '/fc_compute_server.0.cfg.out' # SHADJIS TODO: Should open each and average (else favors fewer fcc) else: fname = run_dir + '/fc_server.cfg.out' f = open(fname) lines = f.read().strip().split("\n") f.close() return lines def get_list_of_all_losses(lines, increment, group_size = 0): # For each line, parse the loss started_iterations = False # If this line has a loss, append it to a list list_of_all_losses = [] list_of_all_times = [] for line in lines: if line.strip().split(): if not started_iterations: if line.strip().split()[0] == str(increment): started_iterations = True else: continue if 'Writing snapshot' in line: continue loss_this_iter = float(line.strip().split()[2]) list_of_all_losses.append(loss_this_iter) # Also check time time_this_iter = float(line.strip().split()[1]) list_of_all_times.append(time_this_iter) # Edit: also measure the hardware efficiency for this run if group_size > 0 and len(list_of_all_times) > 1: if group_size not in group_size_to_time.keys(): burn_in = int(len(list_of_all_times) * 0.5) burn_in = max(burn_in, 1) last_few_iter = len(list_of_all_times) - burn_in group_size_to_time[group_size] = (list_of_all_times[-1] - list_of_all_times[-last_few_iter])/float(last_few_iter-1)/float(increment) assert group_size_to_time[group_size] > 0 return list_of_all_losses # Wrapper so I can comment out for debugging def run_cmd(cmd): if DEBUG: return else: os.system(cmd) def contains_nan(L): import math for l in L: if math.isnan(l): return True return False # Wrapper so I can comment out for debugging def get_lr_m_s(lines, group_size): # Do lots of assertions (this can be removed later) # Read the output log and ensure it matches from above # E.g.: # base_lr: 0.1 # momentum: 0.6 base_lr = '' momentum = '' random_seed = '' for line in lines: if 'base_lr' in line: base_lr = line.strip().split()[1] if 'momentum' in line: momentum = line.strip().split()[1] if 'random_seed' in line: random_seed = line.strip().split()[1] if 'GROUPSIZE' in line: assert group_size == int(line.strip().split()[-1]) return base_lr, momentum, random_seed # Read in the solver template and fill it in # There will be these lines: # base_lr: ''' + str(LR) + ''' # momentum: ''' + str(momentum) + ''' # random_seed: ''' + str(random_seed) + ''' def make_solver(momentum, LR, fname, random_seed, snapshot_interval): # Read in the file and swap in the parameters output_str = '' f = open(solver_template) found_LR = False found_m = False for line in f: if 'base_lr' in line and line.strip()[0] != '#': assert not found_LR output_str += ( 'base_lr: ' + str(LR) + "\n" ) found_LR = True elif 'momentum' in line and line.strip()[0] != '#': assert not found_m output_str += ( 'momentum: ' + str(momentum) + "\n" ) found_m = True elif 'random_seed' in line and line.strip()[0] != '#': # We will insert our own later pass elif snapshot_interval > 0 and 'snapshot' in line and line.strip()[0] != '#': # We will insert our own later pass else: output_str += line assert found_LR assert found_m output_str += ( 'random_seed: ' + str(random_seed) + "\n" ) if snapshot_interval > 0: output_str += ( 'snapshot: ' + str(int(snapshot_interval)) + "\n" ) f.close() # Write to a new file f = open(fname, 'w') f.write(output_str) f.close() # Launch a run # Currently serial but maybe we will want to do in parallel later def run(group_size, hw_type, experiment_label, First, momentum, LR, seed, output_dir_base, run_time, print_only = False, snapshot_interval = 0, snapshot_input_dir = 'none', snapshot_input_iter = 'none'): global total_optimizer_time total_optimizer_time += run_time # SHADJIS TODO: Can count 30s overhead (15 + 15) or eliminate it in ZeroMQ # Check if we should make a new lmdb if First and MAKE_LMDB_FIRST: skip_string = '' else: skip_string = 's' run_id = '_'+ experiment_label + '.m' + str(momentum) + '.LR' + str(LR) fname = SOLVER_DIR + '/solver' + run_id + '.prototxt' # Create the command to run os.system('mkdir -p logs') logfile_out = 'logs/log.' + hw_type + run_id # SHADJIS TODO: should make a config file rather than pass 100 arguments I think run_experiment_command = 'python ' + script_name + ' ' + fname + ' ' + machine_list + ' ' + str(group_size) + ' ' + hw_type + ' ' + fc_type + ' ' + map_fcc_to_cc + ' ' + output_dir_base + ' ' + snapshot_input_dir + ' ' + str(snapshot_input_iter) + ' ' + skip_string + ' > ' + logfile_out + ' 2>&1' if print_only: print ' ' + run_experiment_command return None # Make solver make_solver(momentum, LR, fname, seed, snapshot_interval) # Extra commands to wait and then kill servers if First: run_time += EXTRA_TIME_FIRST extra_cmds = ['sleep ' + str(run_time), 'echo \' Ending current run\'', 'bash kill_servers' + script_name_suffix + '.sh', 'sleep 10', 'bash kill_servers' + script_name_suffix + '.sh'] # Run commands print '[' + str(run_time/60) + ' min] ' + run_experiment_command run_cmd(run_experiment_command) # Wait for the command to finish and then kill the servers for extra_cmd in extra_cmds: run_cmd(extra_cmd) # Return the directory, which we can get from parsing the output file # Writing input prototxt files to /path/server_input_files-2016-01-22-21-34-22/ output_dir = '' f = open(logfile_out) for line in f: if 'Writing input prototxt files to' in line: output_dir = line.strip().split()[-1] break f.close() assert output_dir return output_dir def print_estimation_time(random_seeds, group_size, momentum_list, LR_list, time_per_exp): time_for_1_run = int( time_per_exp + 15 + 15 ) time_estimate = time_for_1_run*len(random_seeds)*len(momentum_list)*len(LR_list) time_estimate /= 60 # minutes if time_estimate > 60: print 'Estimated runtime: ' + str(time_estimate/60) + ' hours and ' + str(time_estimate%60) + ' minutes' else: print 'Estimated runtime: ' + str(time_estimate) + ' minutes' def grid_search_parameters(EXP_NAME, group_size, momentum_list, LR_list, random_seeds, best_m_last_iteration, best_LR_last_iteration, snapshot_input_dir = 'none', snapshot_input_iter = 'none', exit_early_time_threshold = 100000., buffer = 1.0): # No buffer for cold start since loss is still high for all, and gap is small global First_Run for phase in [0,1]: # Estimate runtime for this phase print "\n" + '**********************************************************' + "\n" + 'Beginning tuning phase ' + str(phase) + "\n" if phase == 0: time_per_exp = time_per_exp_phase1 else: assert phase == 1 time_per_exp = time_per_exp_phase2 if time_per_exp == 0: print ' Skipping phase, time set to 0' break print_estimation_time(random_seeds, group_size, momentum_list, LR_list, time_per_exp) print ' Momentum: ' + str(momentum_list) print ' LR: ' + str(LR_list) print ' seeds: ' + str(random_seeds) # Check if any of these have been run already # This is useful in case there is an interruption and the experiment did not complete fully # # Iterate over the existing directories and make a list of the ones already run m_LR_s_to_output_dir = {} # This one has keys which are strings # Check if any runs exist experiment_dir = base_dir + '/' + EXP_NAME + '_PHASE_' + str(phase) + '/' if os.path.isdir(experiment_dir): # Check if any of these have already run for subdir in os.listdir(experiment_dir): # Read the output file and check for errors full_experiment_dir = experiment_dir + subdir + '/' lines = read_output_by_lines(full_experiment_dir) base_lr, momentum, random_seed = get_lr_m_s(lines, group_size) list_of_all_losses = get_list_of_all_losses(lines, increment, group_size) # Check for errors if not base_lr or not momentum or not random_seed or not list_of_all_losses: # This one didn't finish properly, so rerun it later continue # Otherwise this one ran, so no need to run again m_LR_s_to_output_dir[(momentum, base_lr, random_seed)] = full_experiment_dir # Now we have a map (set) of the parameters which finished already # Run the remaining parameters # We will map each run to a loss m_LR_s_to_loss = {} # This one has keys which are float float int (should make consistent with above map which is strings) # Print some output as well output_lines = [] best_str = '' best_s = None best_m = None best_LR = None best_loss = 10000000000 # Now run commands for s in random_seeds: print "\n" + 'Running seed ' + str(s) # Optimization: if we hit NaN for some parametes, no need to search larger parameters NaN_LR = None NaN_m = None # SHADJIS TODO: Optimization: # Iterate from high to low for LR and m and if it ever gets worse # (or e.g. only better by a small margin like 5%), then stop. # This is because we expect the best parameters to be larger than # the smallest parameters we check, so we can save time for LR in sorted(LR_list): # Low to high for m in sorted(momentum_list): # Low to high # Optimization: # Skip this iteration if it will be Nan # The LR check is redundant since it is in the outer loop, i.e. every LR will be >= NaN_LR if NaN_LR is not None and NaN_m is not None: if LR >= NaN_LR and m >= NaN_m: print ' Skipping LR = ' + str(LR) + ', m = ' + str(m) + ', s = ' + str(s) + ' to avoid NaN' continue # Also skip this iteration if LR and m are larger than the previous iteration's optimal LR and m # This is because we run from low to high staleness # SHADJIS TODO: Remove this heuristic when searching a grid if best_LR_last_iteration is not None and best_m_last_iteration is not None: if LR > best_LR_last_iteration or (LR == best_LR_last_iteration and m > best_m_last_iteration): print ' Skipping LR = ' + str(LR) + ', m = ' + str(m) + ', s = ' + str(s) + ' because of previous iteration (staleness)' continue if LR < best_LR_last_iteration and m < best_m_last_iteration: # SHADJIS TODO: Check this print ' Skipping LR = ' + str(LR) + ', m = ' + str(m) + ', s = ' + str(s) + ' because too low' continue # if this seed/momentum/LR ran already, skip it if (str(m), str(LR), str(s)) in m_LR_s_to_output_dir.keys(): print ' Found m=' + str(m) + ' LR=' + str(LR) + ' s=' + str(s) + ', skipping command:' run(group_size, hw_type, EXP_NAME + '.PHASE' + str(phase) + '.seed' + str(s), First_Run, m, LR, s, experiment_dir, time_per_exp, print_only = True, snapshot_input_dir = snapshot_input_dir, snapshot_input_iter = snapshot_input_iter) full_experiment_dir = m_LR_s_to_output_dir[(str(m), str(LR), str(s))] # otherwise run this command else: full_experiment_dir = run(group_size, hw_type, EXP_NAME + '.PHASE' + str(phase) + '.seed' + str(s), First_Run, m, LR, s, experiment_dir, time_per_exp, snapshot_input_dir = snapshot_input_dir, snapshot_input_iter = snapshot_input_iter) First_Run = False # Now the command has run, read the output log and parse the final (or average, etc.) loss lines = read_output_by_lines(full_experiment_dir) base_lr, momentum, random_seed = get_lr_m_s(lines, group_size) list_of_all_losses = get_list_of_all_losses(lines, increment, group_size) # Check for errors if not base_lr or not momentum or not random_seed or not list_of_all_losses: print "\t".join([random_seed, momentum, base_lr, 'ERROR ' + full_experiment_dir]) # We could break here because every larger momentum would be skipped for NaN, # but by continuing instead it will print that it is skipping them continue assert base_lr == str(LR) assert momentum == str(m) assert random_seed == str(s) # If this did not speed up, exit early assert group_size in group_size_to_time.keys() and group_size_to_time[group_size] > 0 if group_size_to_time[group_size] > exit_early_time_threshold: return 0, 0, 0, m_LR_s_to_loss, True # Check also if there was a nan in this result # If so, we know not to run a higher momentum, although if contains_nan(list_of_all_losses): NaN_LR = LR NaN_m = m print ' NaN found for LR = ' + str(LR) + ', m = ' + str(m) + ', s = ' + str(s) continue # Calculate average loss for run # average_loss = sum(list_of_all_losses) / float(len(list_of_all_losses)) last_few_iter = 10 # SHADJIS TODO: Use another heuristic? assert last_few_iter > 0 average_loss = sum(list_of_all_losses[-last_few_iter:]) / float(last_few_iter) row = "\t".join([random_seed, momentum, base_lr, str(average_loss)]) m_LR_s_to_loss[(float(momentum), float(base_lr), int(random_seed))] = average_loss if average_loss < best_loss: best_loss = average_loss best_str = row + "\t" + full_experiment_dir best_s = int(random_seed) best_m = float(momentum) best_LR = float(base_lr) output_lines.append(row) # Every command has now run assert best_str print '' print "\t".join(['seed', 'momentum', 'LR', 'loss']) print "\n".join(list(sorted(output_lines))) print 'Best:' print best_str # Now we have m_LR_s_to_loss for each m / LR / s and also the best, # Just using the best_* parameters works well, but since we have # m_LR_s_to_loss we can pick parameters which are higher (e.g. # higher LR, higher m) ass long as the final loss is not much # worse (e.g. within 10%). This works better in the long-run. # # First iterate over LR and pick highest LR possible original_best_LR = best_LR original_best_m = best_m for s in random_seeds: for LR in sorted(LR_list): # Lowest to highest # only consider LR bigger than or equal to the best one if LR < original_best_LR: continue for m in sorted(momentum_list): # Lowest to highest # at the same LR, only pick a larger m if LR == original_best_LR and m <= original_best_m: continue # Check if it is within buffer range if (m,LR,s) in m_LR_s_to_loss.keys() and m_LR_s_to_loss[(m,LR,s)] < best_loss*buffer: # SHADJIS TODO: Use another heuristic? print 'Adjusting best to m = ' + str(m) + ', LR = ' + str(LR) + ', s = ' + str(s) + ', loss = ' + str(m_LR_s_to_loss[(m,LR,s)]) best_LR = LR best_m = m best_s = s if phase == 0: # Pick new momentum list: if best_m == 0.0: momentum_list = [0.0, 0.1, 0.2] # SHADJIS TODO: If this function is being called during steady-state optimizer, can force a finer momentum grid here. # Specifically, add an input argument to this function "steady_state" (default False, or alternatively "cold_start" default true) # and if we are in steady state, then here set the time for second phase to be > 0 if it is not already elif best_m == 0.3: momentum_list = [0.1, 0.2, 0.3, 0.4, 0.5] elif best_m == 0.6: momentum_list = [0.4, 0.5, 0.6, 0.7, 0.8] else: # assert best_m == 0.9 momentum_list = [0.7, 0.8, 0.9] # Pick a new LR list #if best_LR == LR_list[0]: # LR_list = [LR_list[0]*10., LR_list[0]] #elif best_LR == LR_list[-1]: # LR_list = [LR_list[-1], LR_list[-1]/10.] #else: # assert best_LR == LR_list[1] # LR_list = [LR_list[1]] LR_list = [best_LR] random_seeds = [best_s] # If we used more than 1 seed for previous phase, only need 1 for next phase # If running more than 2 phases, can made similar parameter adjustments for next phase here #elif... print "\n" + '**********************************************************' print 'Experiment complete, final tuned result for ' + str(group_size) + ' machines per group:' print ' s* = ' + str(best_s) print ' m* = ' + str(best_m) print ' LR* = ' + str(best_LR) return best_s, best_m, best_LR, m_LR_s_to_loss, False # ============================================================================== # Cold Start Phase # ============================================================================== print '' print '========================================================================================================' print 'Cold Start Optimization' print '========================================================================================================' # Only generate LMDB once for this cluster time_threshold = 0.10 # SHADJIS TODO: Heuristic, this is how much faster we need to be to consider a larger #groups First_Run = True best_group_size = None best_group_size_s = None best_group_size_m = None best_group_size_LR = None best_loss_across_staleness = 10000000000 total_optimizer_time = 0 # Iterate over each group_size setting and optimize each separately # Iterate in order from low staleness to high staleness (i.e. large to small groups) # This is because we know that the optimal parameters will be smaller as S increases best_LR_last_iteration = None best_m_last_iteration = None # For the seed, just run multiple seeds with no staleness and then use the best # one for other staleness values best_seed_last_iteration = None # SHADJIS TODO: For now I assume the first iteration is a single group, i.e. I assume # that when sorting group sizes from largest to smallest the largest group is all machines. # This might not be true so can verify. But when running 1 group, don't tune m # Note: it is possible that for S=0, i.e. 1 group, the best momentum is not 0.9, e.g. it is # possible that LR 0.001, m 0.9 does not diverge, and also that LR 0.01, m 0.3 does not diverge. # However our contribution is tuning parameters to compensate for staleness, so the optimizer # can ignore tuning momentum for the case of no staleness to save time. single_group = True time_for_prev_group_size = 1000000. for group_size in reversed(sorted(group_size_list)): print '' print '-----------------------------------------------------------------------------------' print 'Beginning optimization for ' + str(group_size) + ' machines per group' print '-----------------------------------------------------------------------------------' EXP_NAME = solver_name + '_' + str(group_size) + 'mpg_COLD' # Parse the name of the solver for log file names # The optimization procedure consists of a number of iteration phases # Each phase we will zoom in on the optimal parameters if momentum_list_phase_0: momentum_list = momentum_list_phase_0 else: if single_group: # Optimization: # See comment above, if S=0 we can choose to skip momentum tuning momentum_list = [0.9] else: momentum_list = [0.0, 0.3, 0.6, 0.9] if LR_list_phase_0: LR_list = LR_list_phase_0 else: if single_group: LR_list = [0.1, 0.01, 0.001, 0.0001] # SHADJIS TODO: use finer grid for LR so momentum will not increase again # LR_list = [initial_LR*100., initial_LR*10., initial_LR, initial_LR/10., initial_LR/100.] else: LR_list = [best_LR_last_iteration, best_LR_last_iteration/10.] # Optimization: # For the first iteration, run multiple seeds # Then pick the best one for later runs if single_group: random_seeds = random_seeds_phase_0 else: random_seeds = [best_seed_last_iteration] best_s, best_m, best_LR, m_LR_s_to_loss, early_exit = grid_search_parameters(EXP_NAME, group_size, momentum_list, LR_list, random_seeds, best_m_last_iteration, best_LR_last_iteration, exit_early_time_threshold = time_for_prev_group_size/(1. + time_threshold)) if early_exit: print "\n" + 'Skipping remaining group sizes because FC saturation was reached' break # Now run a final experiment with these if time_per_exp_phase3 > 0: print 'Running for ' + str(time_per_exp_phase3) + ' seconds...' full_experiment_dir = base_dir + '/' + EXP_NAME + '_FINAL_PHASE/' # Check if this exists if os.path.isdir(full_experiment_dir): print ' Skipping, already ran' list_of_subdir = os.listdir(full_experiment_dir) if len(list_of_subdir) != 1: print 'Error -- please only put 1 directory in ' + full_experiment_dir + ' (to simplify parsing)' sys.exit(0) output_dir = full_experiment_dir + list_of_subdir[0] else: # Run the experiment output_dir = run(group_size, hw_type, EXP_NAME + '.FINAL_PHASE.seed' + str(best_s), First_Run, best_m, best_LR, best_s, full_experiment_dir, time_per_exp_phase3) # Parse the output lines = read_output_by_lines(output_dir) if 'SOFTMAX' in lines[-1] or 'my_create_zmq' in lines[-1]: print ' Run failed, need to rerun!' continue list_of_all_losses = get_list_of_all_losses(lines, increment, group_size) # Calculate the average loss of the last few iterations, e.g. the last 5 or 10 # (but make sure it is consistent across S, otherwise not a fair comparison) last_few_iter = 10 # SHADJIS TODO: Use another heuristic? assert last_few_iter > 0 average_loss = sum(list_of_all_losses[-last_few_iter:]) / float(last_few_iter) print "\n" + 'Final loss for group size ' + str(group_size) + ' = ' + str(average_loss) + "\n" else: print 'Not running the best for longer, re-using the best from phase 1/2' average_loss = m_LR_s_to_loss[(best_m, best_LR, best_s)] print "\n" + 'Final loss for group size ' + str(group_size) + ' = ' + str(average_loss) + "\n" if average_loss < best_loss_across_staleness: best_group_size = group_size best_loss_across_staleness = average_loss best_group_size_s = best_s best_group_size_m = best_m best_group_size_LR = best_LR # Done this group. If it was the first iteration, now it is not the first iteration anymore single_group = False best_LR_last_iteration = best_LR best_m_last_iteration = best_m best_seed_last_iteration = best_s assert group_size in group_size_to_time.keys() and group_size_to_time[group_size] > 0 time_for_prev_group_size = group_size_to_time[group_size] print '' print 'Finished cold-start optimizer, best result is group size ' + str(best_group_size) print 'Total optimizer time (seconds) was ' + str(total_optimizer_time) EXP_NAME = solver_name + '_' + str(best_group_size) + 'mpg_COLD' time_to_run = optimizer_duration #max(total_optimizer_time*optimizer_factor, 600) #max(optimizer_duration-total_optimizer_time, 600) print 'Running this setting for ' + str(time_to_run) + ' seconds (Ctrl-C will (1) stop the job and (2) run kill script)' full_experiment_dir = base_dir + '/' + EXP_NAME + '_DECISION/' # Snapshot: For this run we need to save a snapshot # We know we will run for time_to_run seconds, so calculate the number of iterations in that time: assert best_group_size in group_size_to_time.keys() and group_size_to_time[best_group_size] > 0 num_iterations = time_to_run / group_size_to_time[best_group_size] snapshot_interval = num_iterations*snap_frequency # Could write more frequently as well in case something fails if os.path.isdir(full_experiment_dir): print ' Skipping, already ran' list_of_subdir = os.listdir(full_experiment_dir) if len(list_of_subdir) != 1: print 'Error -- please only put 1 directory in ' + full_experiment_dir + ' (to simplify parsing)' sys.exit(0) output_dir = full_experiment_dir + list_of_subdir[0] else: # Run the experiment output_dir = run(best_group_size, hw_type, EXP_NAME + '._DECISION.seed' + str(best_group_size_s), First_Run, best_group_size_m, best_group_size_LR, best_group_size_s, full_experiment_dir, time_to_run, snapshot_interval = snapshot_interval) # ============================================================================== # Steady-State Optimizer # ============================================================================== """ g = most async until FC saturation while True (user can stop once sufficiently converged) load checkpoint from last run grid search momentum and LR (seed irrelevant since starting from checkpoint) while momentum = 0 and g > 1 g = g / 2 grid search momentum and LR (seed irrelevant since starting from checkpoint) train model and save checkpoint at end (set checkpoint based on iteration time) """ print '' print '========================================================================================================' print 'Steady-State Optimizer' print '========================================================================================================' time_per_exp_phase1 = 200 # We do 5 runs, so 1000 seconds in optimizer, then run for 10000 seconds, i.e. 10% overhead run_number = 1 last_experiment_dir = output_dir last_m = best_group_size_m last_LR = best_group_size_LR last_s = best_group_size_s # Not needed because initialization comes from snapshot total_optimizer_time = 0 # Use HE results to find the fastest group size (within tolerance) print 'Iteration time for each group size:' current_group_size = 0 last_iter_time = 100000000. for group_size in reversed(sorted(group_size_list)): if group_size in group_size_to_time.keys(): print ' group size ' + str(group_size) + ': ' + str(group_size_to_time[group_size]) if group_size_to_time[group_size] < last_iter_time/(1. + time_threshold): last_iter_time = group_size_to_time[group_size] current_group_size = group_size print 'Initial choice for group size: ' + str(group_size) assert current_group_size > 0 # Begin iteration while current_group_size <= max(group_size_list): # Look through the last experiment directory and find the latest snapshot assert os.path.isdir(last_experiment_dir) latest_snapshot_iter = -1 for f in os.listdir(last_experiment_dir): if 'snapshot_iter' in f: match = re.search(r'snapshot_iter(\d+)', f, flags=re.IGNORECASE) if match: f_snap_iter = int(match.group(1)) if f_snap_iter > latest_snapshot_iter: latest_snapshot_iter = f_snap_iter assert latest_snapshot_iter >= 0 # Assert we found a snapshot # Search momentum and LR while current_group_size <= max(group_size_list): print '' print 'Current group size is ' + str(current_group_size) + ' machines per group' EXP_NAME = solver_name + '_' + str(current_group_size) + 'mpg_OPT' + str(run_number) # The optimization procedure consists of a number of iteration phases # Each phase we will zoom in on the optimal parameters if momentum_list_phase_0: momentum_list = momentum_list_phase_0 else: momentum_list = [0.0, 0.3, 0.6, 0.9] if LR_list_phase_0: LR_list = LR_list_phase_0 else: # SHADJIS TODO: Not sure yet based on theory what to do here. How are LR and m related? # If m is 0, then LR will go down, and m will go back up, so m might never be 0. # Should I try negative momentum? Or not decrease LR, but if m goes to 0, then increase # groups? LR_list = [last_LR, last_LR/10.] random_seeds = [last_s] best_s, best_m, best_LR, unused_1, unused_2 = grid_search_parameters(EXP_NAME, current_group_size, momentum_list, LR_list, random_seeds, last_m, last_LR, snapshot_input_dir = last_experiment_dir, snapshot_input_iter = latest_snapshot_iter, buffer = 1.01) # buffer because slope is larger after cold start if best_m == 0: last_LR = best_LR current_group_size = current_group_size * 2 # SHADJIS TODO: Heuristic. Idea is that if we make #groups smaller, maybe momentum can be a bit bigger. # Choosing 0.6 here puts the 0.0 just chosen in the center of the next search range # Maybe we can pick an even higher momentum, or even search a higher learning rate (since we are making # groups smaller) # Or maybe we can keep the #groups same, but use negative momentum. Maybe we can reparameterize and keep the learning rate constant, etc. best_m = 0.6 last_m = best_m else: break # Run for the next optimizer epoch print 'Total optimizer time (seconds) was ' + str(total_optimizer_time) EXP_NAME = solver_name + '_' + str(current_group_size) + 'mpg_OPT' + str(run_number) time_to_run = optimizer_duration #max(total_optimizer_time*optimizer_factor, 600) #max(optimizer_duration-total_optimizer_time, 600) print 'Running this setting for ' + str(time_to_run) + ' seconds (Ctrl-C will (1) stop the job and (2) run kill script)' full_experiment_dir = base_dir + '/' + EXP_NAME + '_DECISION/' # Snapshot: For this run we need to save a snapshot # We know we will run for time_to_run seconds, so calculate the number of iterations in that time: num_iterations = time_to_run / group_size_to_time[current_group_size] snapshot_interval = num_iterations*snap_frequency # Could write more frequently as well in case something fails if os.path.isdir(full_experiment_dir): print ' Skipping, already ran' list_of_subdir = os.listdir(full_experiment_dir) if len(list_of_subdir) != 1: print 'Error -- please only put 1 directory in ' + full_experiment_dir + ' (to simplify parsing)' sys.exit(0) output_dir = full_experiment_dir + list_of_subdir[0] else: # Run the experiment output_dir = run(current_group_size, hw_type, EXP_NAME + '.OPTIMIZER_DECISION', First_Run, best_m, best_LR, best_s, full_experiment_dir, time_to_run, snapshot_interval = snapshot_interval, snapshot_input_dir = last_experiment_dir, snapshot_input_iter = latest_snapshot_iter) # Update for next iter run_number += 1 last_experiment_dir = output_dir last_m = best_m last_LR = best_LR total_optimizer_time = 0
Omnivore-master
omnivore.py
# ------------------------------------------------------------------------------ # Parameters # ------------------------------------------------------------------------------ NUM_COMPUTE = 1 dir = str(NUM_COMPUTE) + '_profile' out_name = dir # No ext needed, automatically will be .png # ------------------------------------------------------------------------------ # Imports # ------------------------------------------------------------------------------ import sys, os import datetime import re import matplotlib.pyplot as plt import matplotlib.patches as patches # ------------------------------------------------------------------------------ # Helper Functions # ------------------------------------------------------------------------------ def fsec(s): hours, minutes, seconds = [float(val) for val in s.split(':')] return int((hours*3600+minutes*60+seconds)*1000) # ------------------------------------------------------------------------------ # Read all files to get size of graph # ------------------------------------------------------------------------------ min_times = [] max_times = [0]*(2+NUM_COMPUTE) server = 0 # Read each log file to get the min time in each # Parse conv model server first = True for l in open('../' + dir + '/conv_model_server.cfg.out'): l = l.rstrip() if first and ('~~~~ ENTER STATE' in l): min_times.append( fsec(l.split(' ')[1]) ) first = False elif ('~~~~ EXIT STATE' in l): max_times[server] = fsec(l.split(' ')[1]) server += 1 # print '.' # Parse fc server first = True for l in open('../' + dir + '/fc_server.cfg.out'): l = l.rstrip() if first and ('~~~~ ENTER STATE' in l): min_times.append( fsec(l.split(' ')[1]) ) first = False elif ('~~~~ EXIT STATE' in l): max_times[server] = fsec(l.split(' ')[1]) server += 1 # print '.' # Parse conv compute servers for worker in range(NUM_COMPUTE): first = True for l in open('../' + dir + '/conv_compute_server.%d.cfg.out' % worker): l = l.rstrip() if first and ('~~~~ ENTER STATE' in l): min_times.append( fsec(l.split(' ')[1]) ) first = False elif ('~~~~ EXIT STATE' in l): max_times[server] = fsec(l.split(' ')[1]) server += 1 # print '.' assert len(min_times) == 2+NUM_COMPUTE assert len(max_times) == 2+NUM_COMPUTE MIN_TIME = min(min_times) MAX_TIME = min(max_times) END_TIME = MAX_TIME#MIN_TIME + 1000 # print MIN_TIME # print MAX_TIME # print END_TIME # ------------------------------------------------------------------------------ # Set up graphics # ------------------------------------------------------------------------------ fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1.set_ylim([MIN_TIME,END_TIME]) ax1.set_xlim([0,0.6+0.3*NUM_COMPUTE]) ax1.yaxis.grid(True) # ax1.yaxis.set_ticks([i*10.0 for i in range(649810,789810)]) colors = { # FC 'Read msg': "red", 'Update input layer': "blue", 'FC Get Grad': "blue", 'FC FW': "pink", 'FC BW': "pink", 'ACC': "yellow", # Conv Model 'Read corpus': "red", 'Update Model': "blue", 'Update gradients': "blue", 'Copy FW': "yellow", 'Copy BW': "yellow", 'Conv FW': "pink", 'Conv BW': "pink", 'Read msg': "black", # Conv Compute 'Copy Model': "red", } # ------------------------------------------------------------------------------ # Generate Plots # ------------------------------------------------------------------------------ # Parse conv model server lasttime = None for l in open('../' + dir + '/conv_model_server.cfg.out'): l = l.rstrip() if ('~~~~ ENTER STATE' in l) and ('IDLE' not in l): t = fsec(l.split(' ')[1]) if t >= END_TIME: break lasttime = t elif ('~~~~ EXIT STATE' in l) and ('IDLE' not in l) and (lasttime != None): t = fsec(l.split(' ')[1]) if t >= END_TIME: break m = re.search('EXIT STATE (.*?)$', l) # print t-lasttime, m.group(1) ax1.add_patch(patches.Rectangle((0.1, lasttime), 0.2, t-lasttime, color=colors[m.group(1)])) # Parse fc server lasttime = None for l in open('../' + dir + '/fc_server.cfg.out'): l = l.rstrip() if ('~~~~ ENTER STATE' in l) and ('IDLE' not in l): t = fsec(l.split(' ')[1]) if t >= END_TIME: break lasttime = t elif ('~~~~ EXIT STATE' in l) and ('IDLE' not in l) and (lasttime != None): t = fsec(l.split(' ')[1]) if t >= END_TIME: break m = re.search('EXIT STATE (.*?)$', l) print t-lasttime, m.group(1) ax1.add_patch(patches.Rectangle((0.3, lasttime), 0.2, t-lasttime, color=colors[m.group(1)])) # Parse conv compute servers for worker in range(NUM_COMPUTE): lasttime = None for l in open('../' + dir + '/conv_compute_server.%d.cfg.out' % worker): l = l.rstrip() if ('~~~~ ENTER STATE' in l) and ('IDLE' not in l): t = fsec(l.split(' ')[1]) if t >= END_TIME: break lasttime = t elif ('~~~~ EXIT STATE' in l) and ('IDLE' not in l) and (lasttime != None): t = fsec(l.split(' ')[1]) if t >= END_TIME: break m = re.search('EXIT STATE (.*?)$', l) # print t-lasttime, m.group(1) ax1.add_patch(patches.Rectangle((0.3 + 0.3*(worker+1), lasttime), 0.2, t-lasttime, color=colors[m.group(1)])) # Print figure print "Generating " + out_name + '.png' fig1.set_size_inches(5, 1000) fig1.savefig(out_name + '.png', dpi=30, bbox_inches='tight')
Omnivore-master
tools/profile/analyze.py
import os # ------------------------------------------------------------------------------ # Parameters # ------------------------------------------------------------------------------ hw_types = ['4GPU'] num_machines_per_group_list = [1,2,4,8] num_group_list = [32,16,8,4] num_runs = 2 time_per_exp = 3600*1 NUM_MACHINES = 32 #CPU # hw_types = ['CPU'] # num_machines_per_group_list = [2, 16] # num_group_list = [2, 16] # num_runs = 2 # time_per_exp = 3600*8 # NUM_MACHINES = 32 #Staleness # hw_types = ['4GPU'] # num_machines_per_group_list = [2] # num_group_list = [16] # num_runs = 1 # time_per_exp = 600 # NUM_MACHINES = 32 # ------------------------------------------------------------------------------ # Helper functions # ------------------------------------------------------------------------------ # Wrapper so I can comment out for debugging def run_cmd(cmd): os.system(cmd) # return # Run 30 min plus extra if fewer machines #def get_run_time(num_convcompute): # return 3600 # Terminate all at 30 min, and sometimes slow to start # Unused for now (but more runs should be needed for more groups?) # We can do analysis of variance later and see #def get_num_runs(num_groups, num_machine_per_grp, num_convcompute): # num_runs = 1 # if num_groups <= 2: # if num_convcompute == 8: # num_runs = 2 # elif num_convcompute > 8: # num_runs = 3 # else: # num_runs = 1 # elif num_groups <= 4: # Run two runs (a and b) # num_runs = 2 # else: # Run three runs (a,b,c) # num_runs = 3 # return num_runs def run(num_convcompute, num_machine_per_grp, hw_type, experiment_label): # Clear old lmdb # run_cmd('rm -rf ilsvrc12_train_lmdb_8_p*') # run_cmd('sleep 20') # Create the command to run. Will run multiple times if many machines (since variance) # num_groups = num_convcompute / num_machine_per_grp base_cmd = 'python run.py example/solver_template.prototxt example/m' + str(num_convcompute) + '.txt ' + str(num_machine_per_grp) + ' ' + hw_type + ' s > logs/log.' + str(num_convcompute) + '.' + str(num_machine_per_grp) + '.' + hw_type # Extra commands to wait and then kill servers run_time = time_per_exp#get_run_time(num_convcompute) extra_cmds = ['sleep ' + str(run_time), 'bash kill_servers.sh', 'sleep 10', 'bash kill_servers.sh', 'sleep 10'] # Run commands cmd = base_cmd + '_'+ experiment_label + ' 2>&1' print '[' + str(run_time/60) + ' min] ' + cmd run_cmd(cmd) # Wait for the command to finish and then kill the servers for extra_cmd in extra_cmds: print ' ' + extra_cmd run_cmd(extra_cmd) # ------------------------------------------------------------------------------ # Main script # ------------------------------------------------------------------------------ # First estimate runtime est = 0 for r in range(num_runs): for hw_type in hw_types: for num_machines_per_group in num_machines_per_group_list: for num_group in num_group_list: if num_group * num_machines_per_group != NUM_MACHINES: continue num_conv_compute = num_group*num_machines_per_group time_for_1_run = time_per_exp#get_run_time(num_conv_compute) + 2 # 2 min to make lmdb and wait between launching time_for_1_run /= 60 # minutes est += time_for_1_run if est > 60: print 'Estimated runtime: ' + str(est/60) + ' hours and ' + str(est%60) + ' minutes' else: print 'Estimated runtime: ' + str(est) + ' minutes' # Now run actual commands for hw_type in hw_types: for r in range(num_runs): for num_machines_per_group in num_machines_per_group_list: print "\n" + 'Running ' + str(num_machines_per_group) + ' machine(s) per group' for num_group in num_group_list: if num_group * num_machines_per_group != NUM_MACHINES: continue run(num_group * num_machines_per_group, num_machines_per_group, hw_type, 'FCCM' + str(r)) print "\n" + 'Experiment complete'
Omnivore-master
tools/util_scripts/experiment.py
import sys import numpy as np def makeColorwheel(): # color encoding scheme # adapted from the color circle idea described at # http://members.shaw.ca/quadibloc/other/colint.htm RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) # r g b col = 0 #RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255*np.arange(0, RY, 1)/RY) col += RY #YG colorwheel[col:YG+col, 0]= 255 - np.floor(255*np.arange(0, YG, 1)/YG) colorwheel[col:YG+col, 1] = 255; col += YG; #GC colorwheel[col:GC+col, 1]= 255 colorwheel[col:GC+col, 2] = np.floor(255*np.arange(0, GC, 1)/GC) col += GC; #CB colorwheel[col:CB+col, 1]= 255 - np.floor(255*np.arange(0, CB, 1)/CB) colorwheel[col:CB+col, 2] = 255 col += CB; #BM colorwheel[col:BM+col, 2]= 255 colorwheel[col:BM+col, 0] = np.floor(255*np.arange(0, BM, 1)/BM) col += BM; #MR colorwheel[col:MR+col, 2]= 255 - np.floor(255*np.arange(0, MR, 1)/MR) colorwheel[col:MR+col, 0] = 255 return colorwheel def computeColor(u, v): colorwheel = makeColorwheel(); nan_u = np.isnan(u) nan_v = np.isnan(v) nan_u = np.where(nan_u) nan_v = np.where(nan_v) u[nan_u] = 0 u[nan_v] = 0 v[nan_u] = 0 v[nan_v] = 0 ncols = colorwheel.shape[0] radius = np.sqrt(u**2 + v**2) a = np.arctan2(-v, -u) / np.pi fk = (a+1) /2 * (ncols-1) # -1~1 maped to 1~ncols k0 = fk.astype(np.uint8) # 1, 2, ..., ncols k1 = k0+1; k1[k1 == ncols] = 0 f = fk - k0 img = np.empty([k1.shape[0], k1.shape[1],3]) ncolors = colorwheel.shape[1] for i in range(ncolors): tmp = colorwheel[:,i] col0 = tmp[k0]/255 col1 = tmp[k1]/255 col = (1-f)*col0 + f*col1 idx = radius <= 1 col[idx] = 1 - radius[idx]*(1-col[idx]) # increase saturation with radius col[~idx] *= 0.75 # out of range img[:,:,2-i] = np.floor(255*col).astype(np.uint8) return img.astype(np.uint8) def computeImg(flow): eps = sys.float_info.epsilon UNKNOWN_FLOW_THRESH = 1e9 UNKNOWN_FLOW = 1e10 u = flow[: , : , 0] v = flow[: , : , 1] maxu = -999 maxv = -999 minu = 999 minv = 999 maxrad = -1 #fix unknown flow greater_u = np.where(u > UNKNOWN_FLOW_THRESH) greater_v = np.where(v > UNKNOWN_FLOW_THRESH) u[greater_u] = 0 u[greater_v] = 0 v[greater_u] = 0 v[greater_v] = 0 maxu = max([maxu, np.amax(u)]) minu = min([minu, np.amin(u)]) maxv = max([maxv, np.amax(v)]) minv = min([minv, np.amin(v)]) rad = np.sqrt(np.multiply(u,u)+np.multiply(v,v)) maxrad = max([maxrad, np.amax(rad)]) u = u/(maxrad+eps) v = v/(maxrad+eps) img = computeColor(u, v) return img
AR-Depth-main
flow_color.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python implementation of BLEU and smooth-BLEU. This module provides a Python implementation of BLEU and smooth-BLEU. Smooth BLEU is computed following the method outlined in the paper: Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic evaluation metrics for machine translation. COLING 2004. """ import collections import math def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i+order]) ngram_counts[ngram] += 1 return ngram_counts def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram)-1] += overlap[ngram] for order in range(1, max_order+1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order-1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length) def _bleu(ref_file, trans_file, subword_option=None): max_order = 4 smooth = True ref_files = [ref_file] reference_text = [] for reference_filename in ref_files: with open(reference_filename) as fh: reference_text.append(fh.readlines()) per_segment_references = [] for references in zip(*reference_text): reference_list = [] for reference in references: reference_list.append(reference.strip().split()) per_segment_references.append(reference_list) translations = [] with open(trans_file) as fh: for line in fh: translations.append(line.strip().split()) bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth) return round(100 * bleu_score,2)
CodeGen-main
CodeXGLUE/Text-Code/text-to-code/evaluator/bleu.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import os import logging import argparse from bleu import _bleu import json logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def main(): parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for code completion (line level).') parser.add_argument('--answers', '-a', required=True, help="filename of the labels, in json format.") parser.add_argument('--predictions', '-p', required=True, help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() preds = open(args.predictions, "r").readlines() gts = open(args.answers, "r").readlines() assert len(preds) == len(gts), f"Samples of predictions and answers are not equal, {len(preds)}: {len(gts)}" total = len(gts) EM = 0.0 wf = open("ground_truth.txt", "w") for pred, gt in zip(preds, gts): pred = pred.strip() gt = json.loads(gt)["code"] wf.write(gt+"\n") if pred.split() == gt.split(): EM += 1 bleu_score = round(_bleu("ground_truth.txt", args.predictions), 2) logger.info(f"BLEU: {bleu_score}, EM: {round(EM/total*100, 2)}") try: os.remove("ground_truth.txt") except Exception: pass if __name__ == "__main__": main()
CodeGen-main
CodeXGLUE/Text-Code/text-to-code/evaluator/evaluator.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Text to code generation pipeline in CodeXGLUE """ from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import pickle import random import re import shutil import json import numpy as np import torch from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset from torch.utils.data.distributed import DistributedSampler from dataset import concodeDataset from beam import Beam try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from torch.nn import CrossEntropyLoss from bleu import _bleu from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, BertConfig, BertForMaskedLM, BertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) logger = logging.getLogger(__name__) MODEL_CLASSES = { 'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), 'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) } def load_and_cache_examples(args, tokenizer, evaluate=False): dataset = concodeDataset(tokenizer, args, logger, file_type='dev' if evaluate else 'train', block_size=args.block_size) return dataset def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def update_config(model, tokenizer): model.config.bos_token_id = tokenizer.bos_token_id model.config.eos_token_id = tokenizer.eos_token_id model.config.pad_token_id = tokenizer.pad_token_id def train(args, train_dataset, model, tokenizer, fh, pool): """ Train the model """ if args.local_rank in [-1, 0]: args.tensorboard_dir = os.path.join(args.output_dir, 'tensorboard') if not os.path.exists(args.tensorboard_dir): os.makedirs(args.tensorboard_dir) tb_writer = SummaryWriter(args.tensorboard_dir) args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.batch_size, drop_last=True) total_examples = len(train_dataset) * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1) batch_size = args.batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1) # if args.max_steps > 0: # t_total = args.max_steps # args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 if args.num_train_epochs > 0: t_total = total_examples // batch_size * args.num_train_epochs args.max_steps = t_total model.to(args.device) if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total) checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt') optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt') if os.path.exists(scheduler_last): scheduler.load_state_dict(torch.load(scheduler_last, map_location="cpu")) if os.path.exists(optimizer_last): optimizer.load_state_dict(torch.load(optimizer_last, map_location="cpu")) if args.local_rank == 0: torch.distributed.barrier() if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank%args.gpu_per_node], output_device=args.local_rank%args.gpu_per_node, find_unused_parameters=True) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", total_examples ) logger.info(" Num epoch = %d", t_total*batch_size//total_examples) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", batch_size) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = args.start_step tr_loss, logging_loss,avg_loss,tr_nb = 0.0, 0.0,0.0,0 # model.resize_token_embeddings(len(tokenizer)) model.zero_grad() set_seed(args) # Added here for reproducibility (even between python 2 and 3) best_bleu = 0.0 for idx in range(args.start_epoch, int(args.num_train_epochs)): for step, (batch, token_labels) in enumerate(train_dataloader): inputs = batch.to(args.device) attn_mask = torch.tensor(token_labels.clone().detach() != 0, dtype=torch.uint8, device=args.device) loss_mask = torch.tensor(token_labels.clone().detach() == 2, dtype=torch.uint8, device=args.device) model.train() # outputs = model(inputs, attention_mask=attn_mask, labels=inputs, loss_mask=loss_mask) # loss = outputs[0] outputs = model(inputs, attention_mask=attn_mask) logits = outputs[0] labels = inputs shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() flatten_shift_loss_mask = loss_mask[..., :-1].contiguous().view(-1) ids = torch.nonzero(flatten_shift_loss_mask).view(-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[ids], shift_labels.view(-1)[ids]) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 output_flag=True avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4) if global_step % args.logging_steps == 0: logger.info(" steps: %s ppl: %s", global_step, round(avg_loss,5)) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics tb_writer.add_scalar('lr', scheduler.get_last_lr()[0], global_step) tb_writer.add_scalar('loss', (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss tr_nb=global_step if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: checkpoint_prefix = "checkpoint" # Save model checkpoint if args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well # results = evaluate(args, model, tokenizer, eval_when_training=True) # for key, value in results.items(): # tb_writer.add_scalar('eval_{}'.format(key), value, global_step) # logger.info(" %s = %s", key, round(value,4)) # output_dir = os.path.join(args.output_dir, '{}-{}-{}'.format(checkpoint_prefix, global_step, round(results['perplexity'],4))) dev_bleu, dev_EM = eval_bleu(args, model, tokenizer, file_type='dev', num=100) logger.info(f"dev bleu: {dev_bleu}, dev EM: {dev_EM}") output_dir = os.path.join(args.output_dir, '{}-{}-{}'.format(checkpoint_prefix, global_step, round(dev_bleu,2))) if dev_bleu > best_bleu: best_bleu = dev_bleu logger.info(f"best bleu updated. saved in {output_dir}") logger.info(f"best bleu: {best_bleu}") else: output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) # _rotate_checkpoints(args, checkpoint_prefix) last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') if not os.path.exists(last_output_dir): os.makedirs(last_output_dir) model_to_save.save_pretrained(last_output_dir) tokenizer.save_pretrained(last_output_dir) idx_file = os.path.join(last_output_dir, 'idx_file.txt') with open(idx_file, 'w', encoding='utf-8') as idxf: idxf.write(str(0) + '\n') torch.save(optimizer.state_dict(), os.path.join(last_output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(last_output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", last_output_dir) step_file = os.path.join(last_output_dir, 'step_file.txt') with open(step_file, 'w', encoding='utf-8') as stepf: stepf.write(str(global_step) + '\n') # torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) # torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) # logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: break if args.max_steps > 0 and global_step > args.max_steps: break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix="", eval_when_training=False): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_output_dir = args.output_dir eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1 and eval_when_training is False: model = torch.nn.DataParallel(model) # Eval! #logger.info("***** Running evaluation {} *****".format(prefix)) #logger.info(" Num examples = %d", len(eval_dataset)) #logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 model.eval() for step, (batch, token_labels) in enumerate(eval_dataloader): inputs = batch.to(args.device) attn_mask = torch.tensor(token_labels.clone().detach() != 0, dtype=torch.uint8, device=args.device) loss_mask = torch.tensor(token_labels.clone().detach() == 2, dtype=torch.uint8, device=args.device) with torch.no_grad(): outputs = model(inputs, attention_mask=attn_mask, labels=inputs, loss_mask=loss_mask) loss = outputs[0] eval_loss += loss.mean().item() nb_eval_steps += 1 eval_loss = eval_loss / nb_eval_steps perplexity = torch.exp(torch.tensor(eval_loss)) result = { "perplexity": float(perplexity) } output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt") with open(output_eval_file, "w") as writer: #logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): #logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) return result def eval_bleu(args, model, tokenizer, file_type='test', num=2000): dataset = concodeDataset(tokenizer, args, logger, file_type=file_type, block_size=args.block_size, mode='test') test_sampler = SequentialSampler(dataset) test_dataloader = DataLoader(dataset, sampler=test_sampler, batch_size=1) model.to(args.device) model.zero_grad() model.eval() preds = [] for step, (batch, token_labels) in enumerate(test_dataloader): if step >= num: break inputs = batch.to(args.device) # with torch.no_grad(): # outputs = model.generate(inputs, max_length=args.block_size, num_beams=10, temperature=0.7, early_stopping=False, top_k=70, \ # bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.pad_token_id, pad_token_id=tokenizer.pad_token_id) # # outputs = model.generate(inputs, max_length=args.block_size, do_sample=True, temperature=0.7, top_k=70, top_p=0.95, \ # # bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.pad_token_id, pad_token_id=tokenizer.pad_token_id) # # outputs = model.generate(inputs, max_length=args.block_size, num_beams=10, temperature=0.7, early_stopping=False, top_k=70) # # outputs = model.generate(inputs, max_length=args.block_size, do_sample=True, temperature=0.7, top_k=70, top_p=0.95) # generation = tokenizer.decode(outputs[0])[len(tokenizer.decode(inputs[0])):] # preds.append(generation.rstrip("<pad>")) with torch.no_grad(): beam_size = 10 m = torch.nn.LogSoftmax(dim=-1) outputs = model(inputs)[1] p = [] zero = torch.cuda.LongTensor(1).fill_(0) for i in range(inputs.shape[0]): past_hidden = [x[:, i:i+1].expand(-1, beam_size, -1, -1, -1) for x in outputs] # context_mask=source_mask[i:i+1,:].expand(beam_size,-1) beam = Beam(beam_size, tokenizer.bos_token_id, tokenizer.eos_token_id) input_ids = None for _ in range(162): if beam.done(): break input_ids = beam.getCurrentState() # context_mask=torch.cat((context_mask,input_ids*0+1),-1) # mask=context_mask.unsqueeze(0).unsqueeze(-2).unsqueeze(-2).expand(self.config.n_layer, -1, -1, -1, -1) transformer_outputs = model(input_ids, past=past_hidden) out = m(transformer_outputs[0][:, -1, :]).data # out = self.lsm(self.lm_head(transformer_outputs[0][:,-1,:])).data beam.advance(out) past_hidden = [x.data.index_select(1, beam.getCurrentOrigin()) for x in transformer_outputs[1]] hyp = beam.getHyp(beam.getFinal()) pred =beam.buildTargetTokens(hyp)[:beam_size] pred = [torch.cat([x.view(-1) for x in p]+[zero]*(162-len(p))).view(1,-1) for p in pred] p.append(torch.cat(pred, 0).unsqueeze(0)) p = torch.cat(p, 0) for pred in p: t = pred[0].cpu().numpy() t = list(t) if 0 in t: t = t[:t.index(0)] text = tokenizer.decode(t, clean_up_tokenization_spaces=False) # print(text) preds.append(text) if step % args.logging_steps == 0: logger.info(f"{step} are done!") golds = [] datafile = os.path.join(args.data_dir, f"{file_type}.json") datas = open(datafile).readlines() for x in datas[:num]: x = json.loads(x) golds.append(x["code"]) assert len(preds) == len(golds) EM = [] with open(os.path.join(args.output_dir, f"{file_type}.output"), 'w') as f, open(os.path.join(args.output_dir, f"{file_type}.gold"), 'w') as f1: for pred, gold in zip(preds, golds): f.write(pred+'\n') f1.write(gold+'\n') EM.append(pred.split() == gold.split()) if file_type == "test": return 0, 0 bleu_score = round(_bleu(os.path.join(args.output_dir, f"{file_type}.gold"), os.path.join(args.output_dir, f"{file_type}.output")), 2) EM = round(np.mean(EM) * 100, 2) return bleu_score, EM def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--data_dir", default=None, type=str, required=True, help="The input data path.") parser.add_argument("--langs", default=None, type=str, required=True, help="Languages to train, if all, train all languages in data_dir") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--model_type", default="gpt2", type=str, help="The model architecture to be fine-tuned.") parser.add_argument("--pretrain_dir", default="", type=str, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--config_dir", type=str, help="config name. Required when training from scratch") parser.add_argument("--tokenizer_dir", type=str, help="Pre-trained tokenizer dir. Required when training from scratch") parser.add_argument("--load_name", type=str, default="pretrained", help="Load pretrained model name") parser.add_argument("--mlm", action='store_true', help="Train with masked-language modeling loss instead of language modeling.") parser.add_argument("--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss") parser.add_argument("--cache_dir", default="", type=str, help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)") parser.add_argument("--block_size", default=1024, type=int, help="Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens).") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_infer", action='store_true', help="Whether to run inference on test set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Run evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=2, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--logging_steps', type=int, default=10, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument('--save_total_limit', type=int, default=None, help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default') parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--node_index", type=int, default=-1, help="node index if multi-node running") parser.add_argument("--gpu_per_node", type=int, default=-1, help="num of gpus per node") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") parser.add_argument('--log_file', type=str, default='') parser.add_argument('--tensorboard_dir', type=str) pool = None args = parser.parse_args() # args.output_dir = os.path.join(args.output_dir, args.dataset) if args.model_type in ["bert", "roberta", "distilbert"] and not args.mlm: raise ValueError("BERT and RoBERTa do not have LM heads but masked LM heads. They must be run using the --mlm " "flag (masked language modeling).") if os.path.exists(args.output_dir) and os.listdir( args.output_dir) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() logger.warning("local_rank: %d, node_index: %d, gpu_per_node: %d"%(args.local_rank, args.node_index, args.gpu_per_node)) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.local_rank += args.node_index * args.gpu_per_node args.n_gpu = 1 args.device = device # args.batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s, world size: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, torch.distributed.get_world_size() if args.local_rank != -1 else 1) # 使用FileHandler输出到文件 fh = logging.FileHandler(args.log_file) logger.addHandler(fh) # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab args.start_epoch = 0 args.start_step = 0 checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') if args.do_train and os.path.exists(checkpoint_last) and os.listdir(checkpoint_last): args.pretrain_dir = os.path.join(checkpoint_last) args.config_name = os.path.join(checkpoint_last, 'config.json') idx_file = os.path.join(checkpoint_last, 'idx_file.txt') with open(idx_file, encoding='utf-8') as idxf: args.start_epoch = int(idxf.readlines()[0].strip()) + 1 step_file = os.path.join(checkpoint_last, 'step_file.txt') if os.path.exists(step_file): with open(step_file, encoding='utf-8') as stepf: args.start_step = int(stepf.readlines()[0].strip()) logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch)) # Load pre-trained model config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] pretrained = args.pretrain_dir if pretrained: tokenizer = tokenizer_class.from_pretrained(pretrained, do_lower_case=args.do_lower_case, bos_token='<s>', eos_token='</s>', pad_token='<pad>', unk_token='<|UNKNOWN|>', sep_token='concode_elem_sep') logger.info(tokenizer.encode("<s> hello world <pad> </s>")) model = model_class.from_pretrained(pretrained) model.resize_token_embeddings(len(tokenizer)) update_config(model, tokenizer) logger.info(model.config) else: tokenizer = tokenizer_class.from_pretrained(args.tokenizer_dir, bos_token='<s>', eos_token='</s>', pad_token='<pad>', unk_token='<|UNKNOWN|>', sep_token='concode_elem_sep') args.vocab_size = tokenizer.vocab_size config = config_class.from_pretrained(args.config_dir) model = model_class(config) model.resize_token_embeddings(len(tokenizer)) update_config(model, tokenizer) model_parameters = model.parameters() num_params = sum([np.prod(p.size()) for p in model_parameters]) logger.info(f"Model has a total of {num_params} trainable parameters") if args.local_rank == 0: torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer, fh, pool) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) if args.do_eval: # only works on 1 GPU dev_bleu, dev_EM = eval_bleu(args, model, tokenizer, file_type='dev', num=2000) logger.info(f"dev bleu: {dev_bleu}, dev EM: {dev_EM}") if args.do_infer: # only works on 1 GPU test_bleu, test_EM = eval_bleu(args, model, tokenizer, file_type='test', num=2000) logger.info(f"test bleu: {test_bleu}, test EM: {test_EM}") if __name__ == "__main__": main()
CodeGen-main
CodeXGLUE/Text-Code/text-to-code/code/run.py
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python implementation of BLEU and smooth-BLEU. This module provides a Python implementation of BLEU and smooth-BLEU. Smooth BLEU is computed following the method outlined in the paper: Chin-Yew Lin, Franz Josef Och. ORANGE: a method for evaluating automatic evaluation metrics for machine translation. COLING 2004. """ import collections import math def _get_ngrams(segment, max_order): """Extracts all n-grams upto a given maximum order from an input segment. Args: segment: text segment from which n-grams will be extracted. max_order: maximum length in tokens of the n-grams returned by this methods. Returns: The Counter containing all n-grams upto max_order in segment with a count of how many times each n-gram occurred. """ ngram_counts = collections.Counter() for order in range(1, max_order + 1): for i in range(0, len(segment) - order + 1): ngram = tuple(segment[i:i+order]) ngram_counts[ngram] += 1 return ngram_counts def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram)-1] += overlap[ngram] for order in range(1, max_order+1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order-1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length) def _bleu(ref_file, trans_file, subword_option=None): max_order = 4 smooth = True ref_files = [ref_file] reference_text = [] for reference_filename in ref_files: with open(reference_filename) as fh: reference_text.append(fh.readlines()) per_segment_references = [] for references in zip(*reference_text): reference_list = [] for reference in references: reference_list.append(reference.strip().split()) per_segment_references.append(reference_list) translations = [] with open(trans_file) as fh: for line in fh: translations.append(line.strip().split()) bleu_score, _, _, _, _, _ = compute_bleu(per_segment_references, translations, max_order, smooth) return round(100 * bleu_score,2)
CodeGen-main
CodeXGLUE/Text-Code/text-to-code/code/bleu.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from __future__ import absolute_import, division, print_function import argparse import glob import logging import os import pickle import random import re import gc import shutil import json import numpy as np import torch from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset from torch.utils.data.distributed import DistributedSampler try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, BertConfig, BertForMaskedLM, BertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) class concodeDataset(Dataset): def __init__(self, tokenizer, args, logger, file_type='train', block_size=512, mode='train'): if args.local_rank==-1: local_rank=0 world_size=1 else: local_rank=args.local_rank world_size=torch.distributed.get_world_size() self.block_size = block_size self.mode = mode if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank)) if mode != 'test' and os.path.exists(cached_file) and not args.overwrite_cache: if file_type == 'train': logger.warning("Loading features from cached file %s", cached_file) with open(cached_file, 'rb') as handle: data = pickle.load(handle) self.inputs = data['inputs'] self.token_labels = data['token_labels'] else: self.inputs = [] self.token_labels = [] datafile = os.path.join(args.data_dir, f"{file_type}.json") if file_type == 'train': logger.warning("Creating features from dataset file at %s", datafile) datas = open(datafile).readlines() length = len(datas) logger.info("Data size: %d"%(length)) for idx, x in enumerate(datas): if idx % (length//10) == 0: percent = idx / (length//10) * 10 logger.warning("Rank %d, load %d"%(local_rank, percent)) if idx % world_size != local_rank: continue x = json.loads(x) code = tokenizer.encode(x["code"]) nl = tokenizer.encode(x["nl"]) input_ids, input_labels = self.pad_and_get_mask(code, nl, tokenizer) self.inputs.append(input_ids) self.token_labels.append(input_labels) if file_type == 'train': logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs))) logger.warning("Saving features into cached file %s", cached_file) if mode != 'test': with open(cached_file, 'wb') as handle: pickle.dump({'inputs': self.inputs, 'token_labels': self.token_labels}, handle, protocol=pickle.HIGHEST_PROTOCOL) def pad_and_get_mask(self, code, nl, tokenizer): if self.mode == 'test': code = [] while (len(code) + len(nl) + 2 > self.block_size): if (len(code) > len(nl)): code = code[:-1] else: nl = nl[:-1] if self.mode == 'train': inputs = nl + [tokenizer.bos_token_id] + code + [tokenizer.eos_token_id] labels = [1] * len(nl) + [2] * (len(code)+1) + [0] else: inputs = nl + [tokenizer.bos_token_id] labels = [1] * len(nl) + [2] return inputs, labels assert len(inputs) <= self.block_size pad_len = self.block_size - len(inputs) inputs += [tokenizer.pad_token_id] * pad_len labels += [0] * pad_len assert len(inputs) == len(labels) return inputs, labels def __len__(self): return len(self.inputs) def __getitem__(self, item): return torch.tensor(self.inputs[item]), torch.tensor(self.token_labels[item])
CodeGen-main
CodeXGLUE/Text-Code/text-to-code/code/dataset.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy class Seq2Seq(nn.Module): """ Build Seqence-to-Sequence. Parameters: * `encoder`- encoder of seq2seq model. e.g. roberta * `decoder`- decoder of seq2seq model. e.g. transformer * `config`- configuration of encoder model. * `beam_size`- beam size for beam search. * `max_length`- max length of target for beam search. * `sos_id`- start of symbol ids in target for beam search. * `eos_id`- end of symbol ids in target for beam search. """ def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder=decoder self.config=config self.register_buffer("bias", torch.tril(torch.ones(2048, 2048))) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lsm = nn.LogSoftmax(dim=-1) self.tie_weights() self.beam_size=beam_size self.max_length=max_length self.sos_id=sos_id self.eos_id=eos_id def _tie_or_clone_weights(self, first_module, second_module): """ Tie or clone module weights depending of weither we are using TorchScript or not """ if self.config.torchscript: first_module.weight = nn.Parameter(second_module.weight.clone()) else: first_module.weight = second_module.weight def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.encoder.embeddings.word_embeddings) def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None): outputs = self.encoder(source_ids, attention_mask=source_mask) encoder_output = outputs[0].permute([1,0,2]).contiguous() if target_ids is not None: attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous() out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool()) hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous() lm_logits = self.lm_head(hidden_states) # Shift so that tokens < n predict n active_loss = target_mask[..., 1:].ne(0).view(-1) == 1 shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = target_ids[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], shift_labels.view(-1)[active_loss]) outputs = loss,loss*active_loss.sum(),active_loss.sum() return outputs else: #Predict preds=[] zero=torch.cuda.LongTensor(1).fill_(0) for i in range(source_ids.shape[0]): context=encoder_output[:,i:i+1] context_mask=source_mask[i:i+1,:] beam = Beam(self.beam_size,self.sos_id,self.eos_id) input_ids=beam.getCurrentState() context=context.repeat(1, self.beam_size,1) context_mask=context_mask.repeat(self.beam_size,1) for _ in range(self.max_length): if beam.done(): break attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous() out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool()) out = torch.tanh(self.dense(out)) hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:] out = self.lsm(self.lm_head(hidden_states)).data beam.advance(out) input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) input_ids=torch.cat((input_ids,beam.getCurrentState()),-1) hyp= beam.getHyp(beam.getFinal()) pred=beam.buildTargetTokens(hyp)[:self.beam_size] pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred] preds.append(torch.cat(pred,0).unsqueeze(0)) preds=torch.cat(preds,0) return preds class Beam(object): def __init__(self, size,sos,eos): self.size = size self.tt = torch.cuda # The score for each translation on the beam. self.scores = self.tt.FloatTensor(size).zero_() # The backpointers at each time-step. self.prevKs = [] # The outputs at each time-step. self.nextYs = [self.tt.LongTensor(size) .fill_(0)] self.nextYs[0][0] = sos # Has EOS topped the beam yet. self._eos = eos self.eosTop = False # Time and k pair for finished. self.finished = [] def getCurrentState(self): "Get the outputs for the current timestep." batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) return batch def getCurrentOrigin(self): "Get the backpointers for the current timestep." return self.prevKs[-1] def advance(self, wordLk): """ Given prob over words for every last beam `wordLk` and attention `attnOut`: Compute and update the beam search. Parameters: * `wordLk`- probs of advancing from the last step (K x words) * `attnOut`- attention at the last step Returns: True if beam search is complete. """ numWords = wordLk.size(1) # Sum the previous scores. if len(self.prevKs) > 0: beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) # Don't let EOS have children. for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: beamLk[i] = -1e20 else: beamLk = wordLk[0] flatBeamLk = beamLk.view(-1) bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) self.scores = bestScores # bestScoresId is flattened beam x word array, so calculate which # word and beam each score came from prevK = bestScoresId // numWords self.prevKs.append(prevK) self.nextYs.append((bestScoresId - prevK * numWords)) for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: s = self.scores[i] self.finished.append((s, len(self.nextYs) - 1, i)) # End condition is when top-of-beam is EOS and no global score. if self.nextYs[-1][0] == self._eos: self.eosTop = True def done(self): return self.eosTop and len(self.finished) >=self.size def getFinal(self): if len(self.finished) == 0: self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) self.finished.sort(key=lambda a: -a[0]) if len(self.finished) != self.size: unfinished=[] for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] != self._eos: s = self.scores[i] unfinished.append((s, len(self.nextYs) - 1, i)) unfinished.sort(key=lambda a: -a[0]) self.finished+=unfinished[:self.size-len(self.finished)] return self.finished[:self.size] def getHyp(self, beam_res): """ Walk back to construct the full hypothesis. """ hyps=[] for _,timestep, k in beam_res: hyp = [] for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): hyp.append(self.nextYs[j+1][k]) k = self.prevKs[j][k] hyps.append(hyp[::-1]) return hyps def buildTargetTokens(self, preds): sentence=[] for pred in preds: tokens = [] for tok in pred: if tok==self._eos: break tokens.append(tok) sentence.append(tokens) return sentence
CodeGen-main
CodeXGLUE/Text-Code/text-to-code/code/beam.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import sys,json import numpy as np def read_answers(filename): answers={} with open(filename) as f: for line in f: line=line.strip() js=json.loads(line) answers[js['url']]=js['idx'] return answers def read_predictions(filename): predictions={} with open(filename) as f: for line in f: line=line.strip() js=json.loads(line) predictions[js['url']]=js['answers'] return predictions def calculate_scores(answers,predictions): scores=[] for key in answers: if key not in predictions: logging.error("Missing prediction for url {}.".format(key)) sys.exit() flag=False for rank,idx in enumerate(predictions[key]): if idx==answers[key]: scores.append(1/(rank+1)) flag=True break if flag is False: scores.append(0) result={} result['MRR']=round(np.mean(scores),4) return result def main(): import argparse parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for POJ-104 dataset.') parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() answers=read_answers(args.answers) predictions=read_predictions(args.predictions) scores=calculate_scores(answers,predictions) print(scores) if __name__ == '__main__': main()
CodeGen-main
CodeXGLUE/Text-Code/NL-code-search-Adv/evaluator/evaluator.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. """ from __future__ import absolute_import, division, print_function import argparse import logging import os import random import sys from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler from torch.utils.data.distributed import DistributedSampler import json try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter import multiprocessing from model import Model cpu_cont = multiprocessing.cpu_count() from transformers import (AdamW, get_linear_schedule_with_warmup, BertConfig, BertForMaskedLM, BertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, RobertaConfig, RobertaModel, RobertaTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) from codegen_sources.wrappers.models import ModelPython, ModelConfig, ModelPythonFunc from codegen_sources.wrappers.tokenizer import PythonTokenizer, RobertaPythonTokenizer logger = logging.getLogger(__name__) MODEL_CLASSES = { 'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), 'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'xlm_python': (ModelConfig, ModelPython, PythonTokenizer), 'roberta_python': (ModelConfig, ModelPython, RobertaPythonTokenizer), 'xlm_python_func': (ModelConfig, ModelPythonFunc, PythonTokenizer), 'roberta_python_func': (ModelConfig, ModelPythonFunc, RobertaPythonTokenizer), } class InputFeatures(object): """A single training/test features for a example.""" def __init__(self, code_tokens, code_ids, nl_tokens, nl_ids, url, idx, ): self.code_tokens = code_tokens self.code_ids = code_ids self.nl_tokens = nl_tokens self.nl_ids = nl_ids self.url=url self.idx=idx def convert_examples_to_features(js,tokenizer,args): #code if args.model_type in ['xlm_python', 'xlm_java', 'xlm_java_func', 'xlm_python_func']: if 'code' in js: code = js['code'] else: code = js['function'] code_tokens = tokenizer.tokenize(code, keep_comments=False) else: if 'code_tokens' in js: code=' '.join(js['code_tokens']) else: code=' '.join(js['function_tokens']) code_tokens=tokenizer.tokenize(code) code_tokens = code_tokens[:args.block_size-2] if len(code_tokens) == 0: return None code_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token] code_ids = tokenizer.convert_tokens_to_ids(code_tokens) padding_length = args.block_size - len(code_ids) code_ids+=[tokenizer.pad_token_id]*padding_length nl=' '.join(js['docstring_tokens']) nl_tokens=tokenizer.tokenize(nl, is_text=True)[:args.block_size-2] nl_tokens =[tokenizer.cls_token]+nl_tokens+[tokenizer.sep_token] nl_ids = tokenizer.convert_tokens_to_ids(nl_tokens) padding_length = args.block_size - len(nl_ids) nl_ids+=[tokenizer.pad_token_id]*padding_length return InputFeatures(code_tokens,code_ids,nl_tokens,nl_ids,js['url'],js['idx']) class TextDataset(Dataset): def __init__(self, tokenizer, args, file_path=None): self.examples = [] data=[] with open(file_path) as f: for line in f: line=line.strip() js=json.loads(line) data.append(js) for i,js in enumerate(data): features = convert_examples_to_features(js,tokenizer,args) if features is None: print(f" rm 1 example could not tokenized") continue self.examples.append(features) if 'train' in file_path: for idx, example in enumerate(self.examples[:3]): logger.info("*** Example ***") logger.info("idx: {}".format(idx)) logger.info("code_tokens: {}".format([x.replace('\u0120','_') for x in example.code_tokens])) logger.info("code_ids: {}".format(' '.join(map(str, example.code_ids)))) logger.info("nl_tokens: {}".format([x.replace('\u0120','_') for x in example.nl_tokens])) logger.info("nl_ids: {}".format(' '.join(map(str, example.nl_ids)))) def __len__(self): return len(self.examples) def __getitem__(self, i): return (torch.tensor(self.examples[i].code_ids),torch.tensor(self.examples[i].nl_ids)) def set_seed(seed=42): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def train(args, train_dataset, model, tokenizer): """ Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,num_workers=4,pin_memory=True) args.max_steps=args.epoch*len( train_dataloader) args.save_steps=len( train_dataloader)//10 args.warmup_steps=len( train_dataloader) args.logging_steps=len( train_dataloader) args.num_train_epochs=args.epoch model.to(args.device) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1, num_training_steps=args.max_steps) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt') optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt') if os.path.exists(scheduler_last): scheduler.load_state_dict(torch.load(scheduler_last)) if os.path.exists(optimizer_last): optimizer.load_state_dict(torch.load(optimizer_last)) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", args.max_steps) global_step = args.start_step tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0 best_mrr=0.0 best_acc=0.0 # model.resize_token_embeddings(len(tokenizer)) model.zero_grad() for idx in range(args.start_epoch, int(args.num_train_epochs)): bar = train_dataloader tr_num=0 train_loss=0 for step, batch in enumerate(bar): code_inputs = batch[0].to(args.device) nl_inputs = batch[1].to(args.device) model.train() loss,code_vec,nl_vec = model(code_inputs,nl_inputs) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() tr_num+=1 train_loss+=loss.item() if avg_loss==0: avg_loss=tr_loss avg_loss=round(train_loss/tr_num,5) if (step+1)% 100==0: logger.info("epoch {} step {} loss {}".format(idx,step+1,avg_loss)) #bar.set_description("epoch {} loss {}".format(idx,avg_loss)) if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 output_flag=True avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logging_loss = tr_loss tr_nb=global_step if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer,eval_when_training=True) for key, value in results.items(): logger.info(" %s = %s", key, round(value,4)) # Save model checkpoint tr_num=0 train_loss=0 if results['eval_mrr']>best_acc: best_acc=results['eval_mrr'] logger.info(" "+"*"*20) logger.info(" Best mrr:%s",round(best_acc,4)) logger.info(" "+"*"*20) checkpoint_prefix = 'checkpoint-best-mrr' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model,'module') else model output_dir = os.path.join(output_dir, '{}'.format('model.bin')) torch.save(model_to_save.state_dict(), output_dir) logger.info("Saving model checkpoint to %s", output_dir) eval_dataset=None def evaluate(args, model, tokenizer,eval_when_training=False): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_output_dir = args.output_dir global eval_dataset if eval_dataset is None: eval_dataset = TextDataset(tokenizer, args,args.eval_data_file) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True) # multi-gpu evaluate if args.n_gpu > 1 and eval_when_training is False: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 model.eval() code_vecs=[] nl_vecs=[] for batch in eval_dataloader: code_inputs = batch[0].to(args.device) nl_inputs = batch[1].to(args.device) with torch.no_grad(): lm_loss,code_vec,nl_vec = model(code_inputs,nl_inputs) eval_loss += lm_loss.mean().item() code_vecs.append(code_vec.cpu().numpy()) nl_vecs.append(nl_vec.cpu().numpy()) nb_eval_steps += 1 code_vecs=np.concatenate(code_vecs,0) nl_vecs=np.concatenate(nl_vecs,0) eval_loss = eval_loss / nb_eval_steps perplexity = torch.tensor(eval_loss) scores=np.matmul(nl_vecs,code_vecs.T) ranks=[] for i in range(len(scores)): score=scores[i,i] rank=1 for j in range(len(scores)): if i!=j and scores[i,j]>=score: rank+=1 ranks.append(1/rank) result = { "eval_loss": float(perplexity), "eval_mrr":float(np.mean(ranks)) } return result def test(args, model, tokenizer): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_dataset = TextDataset(tokenizer, args,args.test_data_file) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running Test *****") logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 code_vecs=[] nl_vecs=[] for batch in eval_dataloader: code_inputs = batch[0].to(args.device) nl_inputs = batch[1].to(args.device) with torch.no_grad(): lm_loss,code_vec,nl_vec = model(code_inputs,nl_inputs) eval_loss += lm_loss.mean().item() code_vecs.append(code_vec.cpu().numpy()) nl_vecs.append(nl_vec.cpu().numpy()) nb_eval_steps += 1 code_vecs=np.concatenate(code_vecs,0) nl_vecs=np.concatenate(nl_vecs,0) eval_loss = eval_loss / nb_eval_steps perplexity = torch.tensor(eval_loss) scores=np.matmul(nl_vecs,code_vecs.T) sort_ids=np.argsort(scores, axis=-1, kind='quicksort', order=None)[:,::-1] indexs=[] urls=[] for example in eval_dataset.examples: indexs.append(example.idx) urls.append(example.url) with open(os.path.join(args.output_dir,"predictions.jsonl"),'w') as f: for index,url,sort_id in zip(indexs,urls,sort_ids): js={} js['url']=url js['answers']=[] for idx in sort_id[:100]: js['answers'].append(indexs[int(idx)]) f.write(json.dumps(js)+'\n') def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file).") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--eval_data_file", default=None, type=str, help="An optional input evaluation data file to evaluate the perplexity on (a text file).") parser.add_argument("--test_data_file", default=None, type=str, help="An optional input evaluation data file to evaluate the perplexity on (a text file).") parser.add_argument("--model_type", default="bert", type=str, help="The model architecture to be fine-tuned.") parser.add_argument("--model_name_or_path", default=None, type=str, help="The model checkpoint for weights initialization.") parser.add_argument("--mlm", action='store_true', help="Train with masked-language modeling loss instead of language modeling.") parser.add_argument("--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss") parser.add_argument("--config_name", default="", type=str, help="Optional pretrained config name or path if not the same as model_name_or_path") parser.add_argument("--tokenizer_name", default="", type=str, help="Optional pretrained tokenizer name or path if not the same as model_name_or_path") parser.add_argument("--cache_dir", default="", type=str, help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)") parser.add_argument("--block_size", default=-1, type=int, help="Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens).") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Run evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument('--save_total_limit', type=int, default=None, help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default') parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--epoch', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") args = parser.parse_args() # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args.seed) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab args.start_epoch = 0 args.start_step = 0 checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last): args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin') args.config_name = os.path.join(checkpoint_last, 'config.json') idx_file = os.path.join(checkpoint_last, 'idx_file.txt') with open(idx_file, encoding='utf-8') as idxf: args.start_epoch = int(idxf.readlines()[0].strip()) + 1 step_file = os.path.join(checkpoint_last, 'step_file.txt') if os.path.exists(step_file): with open(step_file, encoding='utf-8') as stepf: args.start_step = int(stepf.readlines()[0].strip()) logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch)) config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None) config.num_labels=1 tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if args.block_size <= 0: args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model args.block_size = min(args.block_size, tokenizer.max_len_single_sentence) if args.model_name_or_path: model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) else: model = model_class(config) model=Model(model,config,tokenizer,args) if args.local_rank == 0: torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache train_dataset = TextDataset(tokenizer, args,args.train_data_file) if args.local_rank == 0: torch.distributed.barrier() train(args, train_dataset, model, tokenizer) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoint_prefix = 'checkpoint-best-mrr/model.bin' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir)) model.to(args.device) result=evaluate(args, model, tokenizer) logger.info("***** Eval results *****") for key in sorted(result.keys()): logger.info(" %s = %s", key, str(round(result[key],4))) if args.do_test and args.local_rank in [-1, 0]: checkpoint_prefix = 'checkpoint-best-mrr/model.bin' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir)) model.to(args.device) test(args, model, tokenizer) return results if __name__ == "__main__": main()
CodeGen-main
CodeXGLUE/Text-Code/NL-code-search-Adv/code/run.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss class Model(nn.Module): def __init__(self, encoder,config,tokenizer,args): super(Model, self).__init__() self.encoder = encoder self.config=config self.tokenizer=tokenizer self.args=args def forward(self, code_inputs,nl_inputs,return_vec=False): bs=code_inputs.shape[0] inputs=torch.cat((code_inputs,nl_inputs),0) outputs=self.encoder(inputs,attention_mask=inputs.ne(1))[1] code_vec=outputs[:bs] nl_vec=outputs[bs:] if return_vec: return code_vec,nl_vec scores=(nl_vec[:,None,:]*code_vec[None,:,:]).sum(-1) loss_fct = CrossEntropyLoss() loss = loss_fct(scores, torch.arange(bs, device=scores.device)) return loss,code_vec,nl_vec
CodeGen-main
CodeXGLUE/Text-Code/NL-code-search-Adv/code/model.py
#!/usr/bin/python ''' This script was adapted from the original version by hieuhoang1972 which is part of MOSES. ''' # $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $ '''Provides: cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test(). cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked(). score_cooked(alltest, n=4): Score a list of cooked test sentences. score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids. The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible. ''' import sys, math, re, xml.sax.saxutils import subprocess import os # Added to bypass NIST-style pre-processing of hyp and ref files -- wade nonorm = 0 preserve_case = False eff_ref_len = "shortest" normalize1 = [ ('<skipped>', ''), # strip "skipped" tags (r'-\n', ''), # strip end-of-line hyphenation and join lines (r'\n', ' '), # join lines # (r'(\d)\s+(?=\d)', r'\1'), # join digits ] normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1] normalize2 = [ (r'([\{-\~\[-\` -\&\(-\+\:-\@\/])',r' \1 '), # tokenize punctuation. apostrophe is missing (r'([^0-9])([\.,])',r'\1 \2 '), # tokenize period and comma unless preceded by a digit (r'([\.,])([^0-9])',r' \1 \2'), # tokenize period and comma unless followed by a digit (r'([0-9])(-)',r'\1 \2 ') # tokenize dash when preceded by a digit ] normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2] def normalize(s): '''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.''' # Added to bypass NIST-style pre-processing of hyp and ref files -- wade if (nonorm): return s.split() if type(s) is not str: s = " ".join(s) # language-independent part: for (pattern, replace) in normalize1: s = re.sub(pattern, replace, s) s = xml.sax.saxutils.unescape(s, {'&quot;':'"'}) # language-dependent part (assuming Western languages): s = " %s " % s if not preserve_case: s = s.lower() # this might not be identical to the original for (pattern, replace) in normalize2: s = re.sub(pattern, replace, s) return s.split() def count_ngrams(words, n=4): counts = {} for k in range(1,n+1): for i in range(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] = counts.get(ngram, 0)+1 return counts def cook_refs(refs, n=4): '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.''' refs = [normalize(ref) for ref in refs] maxcounts = {} for ref in refs: counts = count_ngrams(ref, n) for (ngram,count) in counts.items(): maxcounts[ngram] = max(maxcounts.get(ngram,0), count) return ([len(ref) for ref in refs], maxcounts) def cook_test(test, item, n=4): '''Takes a test sentence and returns an object that encapsulates everything that BLEU needs to know about it.''' (reflens, refmaxcounts)=item test = normalize(test) result = {} result["testlen"] = len(test) # Calculate effective reference sentence length. if eff_ref_len == "shortest": result["reflen"] = min(reflens) elif eff_ref_len == "average": result["reflen"] = float(sum(reflens))/len(reflens) elif eff_ref_len == "closest": min_diff = None for reflen in reflens: if min_diff is None or abs(reflen-len(test)) < min_diff: min_diff = abs(reflen-len(test)) result['reflen'] = reflen result["guess"] = [max(len(test)-k+1,0) for k in range(1,n+1)] result['correct'] = [0]*n counts = count_ngrams(test, n) for (ngram, count) in counts.items(): result["correct"][len(ngram)-1] += min(refmaxcounts.get(ngram,0), count) return result def score_cooked(allcomps, n=4, ground=0, smooth=1): totalcomps = {'testlen':0, 'reflen':0, 'guess':[0]*n, 'correct':[0]*n} for comps in allcomps: for key in ['testlen','reflen']: totalcomps[key] += comps[key] for key in ['guess','correct']: for k in range(n): totalcomps[key][k] += comps[key][k] logbleu = 0.0 all_bleus = [] for k in range(n): correct = totalcomps['correct'][k] guess = totalcomps['guess'][k] addsmooth = 0 if smooth == 1 and k > 0: addsmooth = 1 logbleu += math.log(correct + addsmooth + sys.float_info.min)-math.log(guess + addsmooth+ sys.float_info.min) if guess == 0: all_bleus.append(-10000000) else: all_bleus.append(math.log(correct + sys.float_info.min)-math.log( guess )) logbleu /= float(n) all_bleus.insert(0, logbleu) brevPenalty = min(0,1-float(totalcomps['reflen'] + 1)/(totalcomps['testlen'] + 1)) for i in range(len(all_bleus)): if i ==0: all_bleus[i] += brevPenalty all_bleus[i] = math.exp(all_bleus[i]) return all_bleus def bleu(refs, candidate, ground=0, smooth=1): refs = cook_refs(refs) test = cook_test(candidate, refs) return score_cooked([test], ground=ground, smooth=smooth) def splitPuncts(line): return ' '.join(re.findall(r"[\w]+|[^\s\w]", line)) def computeMaps(predictions, goldfile): predictionMap = {} goldMap = {} gf = open(goldfile, 'r') for row in predictions: cols = row.strip().split('\t') if len(cols) == 1: (rid, pred) = (cols[0], '') else: (rid, pred) = (cols[0], cols[1]) predictionMap[rid] = [splitPuncts(pred.strip().lower())] for row in gf: (rid, pred) = row.split('\t') if rid in predictionMap: # Only insert if the id exists for the method if rid not in goldMap: goldMap[rid] = [] goldMap[rid].append(splitPuncts(pred.strip().lower())) sys.stderr.write('Total: ' + str(len(goldMap)) + '\n') return (goldMap, predictionMap) #m1 is the reference map #m2 is the prediction map def bleuFromMaps(m1, m2): score = [0] * 5 num = 0.0 for key in m1: if key in m2: bl = bleu(m1[key], m2[key][0]) score = [ score[i] + bl[i] for i in range(0, len(bl))] num += 1 return [s * 100.0 / num for s in score] if __name__ == '__main__': reference_file = sys.argv[1] predictions = [] for row in sys.stdin: predictions.append(row) (goldMap, predictionMap) = computeMaps(predictions, reference_file) print (bleuFromMaps(goldMap, predictionMap)[0])
CodeGen-main
CodeXGLUE/Code-Text/code-to-text/evaluator/evaluator.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. """ from __future__ import absolute_import import numpy as np import os import sys from torch import LongTensor import bleu import pickle import torch import json import random import logging import argparse from io import open from itertools import cycle import torch.nn as nn from model import Seq2Seq from tqdm import tqdm, trange from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset from torch.utils.data.distributed import DistributedSampler from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup, RobertaConfig, RobertaModel, RobertaTokenizer) from pathlib import Path from codegen_sources.wrappers.models import Model, ModelPython, ModelConfig, ModelPythonFunc, ModelJava from codegen_sources.wrappers.tokenizer import JavaTokenizer, PythonTokenizer, RobertaPythonTokenizer, RobertaJavaTokenizer, Tokenizer MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), 'xlm_python': (ModelConfig, ModelPython, PythonTokenizer), 'xlm_java': (ModelConfig, ModelJava, JavaTokenizer), 'roberta_python': (ModelConfig, ModelPython, RobertaPythonTokenizer), 'roberta_java': (ModelConfig, ModelJava, RobertaJavaTokenizer), 'xlm_python_func': (ModelConfig, ModelPythonFunc, JavaTokenizer), 'roberta_python_func': (ModelConfig, ModelPythonFunc, RobertaPythonTokenizer), } logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt = '%m/%d/%Y %H:%M:%S', level = logging.INFO) logger = logging.getLogger(__name__) class Example(object): """A single training/test example.""" def __init__(self, idx, source, target, ): self.idx = idx self.source = source self.target = target def read_examples(filename, args): """Read examples from filename.""" examples=[] with open(filename,encoding="utf-8") as f: for idx, line in enumerate(f): line=line.strip() js=json.loads(line) if 'idx' not in js: js['idx']=idx if 'xlm' in args.model_type: code=js['code'] docstring = js['docstring'] if "python" in filename: assert docstring in code code = code.replace(docstring, "") else: code=' '.join(js['code_tokens']).replace('\n',' ') code=' '.join(code.strip().split()) nl=' '.join(js['docstring_tokens']).replace('\n','') nl=' '.join(nl.strip().split()) examples.append( Example( idx = idx, source=code, target = nl, ) ) return examples class InputFeatures(object): """A single training/test features for a example.""" def __init__(self, example_id, source_ids, target_ids, source_mask, target_mask, ): self.example_id = example_id self.source_ids = source_ids self.target_ids = target_ids self.source_mask = source_mask self.target_mask = target_mask def convert_examples_to_features(examples, tokenizer, args,stage=None): features = [] for example_index, example in enumerate(examples): #source source_tokens = tokenizer.tokenize(example.source)[:args.max_source_length-2] source_tokens =[tokenizer.cls_token]+source_tokens+[tokenizer.sep_token] source_ids = tokenizer.convert_tokens_to_ids(source_tokens) source_mask = [1] * (len(source_tokens)) padding_length = args.max_source_length - len(source_ids) source_ids+=[tokenizer.pad_token_id]*padding_length source_mask+=[0]*padding_length #target if stage=="test": target_tokens = tokenizer.tokenize("None", is_text=True) if isinstance(tokenizer, Tokenizer) else tokenizer.tokenize("None") else: target_tokens = tokenizer.tokenize(example.target, is_text=True)[:args.max_target_length-2] if isinstance(tokenizer, Tokenizer) else tokenizer.tokenize(example.target)[:args.max_target_length-2] target_tokens = [tokenizer.cls_token]+target_tokens+[tokenizer.sep_token] target_ids = tokenizer.convert_tokens_to_ids(target_tokens) target_mask = [1] *len(target_ids) padding_length = args.max_target_length - len(target_ids) target_ids+=[tokenizer.pad_token_id]*padding_length target_mask+=[0]*padding_length if example_index < 5: if stage=='train': logger.info("*** Example ***") logger.info("idx: {}".format(example.idx)) logger.info("source_tokens: {}".format([x.replace('\u0120','_') for x in source_tokens])) logger.info("source_ids: {}".format(' '.join(map(str, source_ids)))) logger.info("source_mask: {}".format(' '.join(map(str, source_mask)))) logger.info("target_tokens: {}".format([x.replace('\u0120','_') for x in target_tokens])) logger.info("target_ids: {}".format(' '.join(map(str, target_ids)))) logger.info("target_mask: {}".format(' '.join(map(str, target_mask)))) features.append( InputFeatures( example_index, source_ids, target_ids, source_mask, target_mask, ) ) return features def set_seed(seed=42): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type: e.g. roberta") parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model: e.g. roberta-base" ) parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") parser.add_argument("--load_model_path", default=None, type=str, help="Path to trained model: Should contain the .bin files" ) ## Other parameters parser.add_argument("--train_filename", default=None, type=str, help="The train filename. Should contain the .jsonl files for this task.") parser.add_argument("--dev_filename", default=None, type=str, help="The dev filename. Should contain the .jsonl files for this task.") parser.add_argument("--test_filename", default=None, type=str, help="The test filename. Should contain the .jsonl files for this task.") parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument("--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument("--max_source_length", default=64, type=int, help="The maximum total source sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--max_target_length", default=32, type=int, help="The maximum total target sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument("--train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--beam_size", default=10, type=int, help="beam size for beam search") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--eval_steps", default=-1, type=int, help="") parser.add_argument("--train_steps", default=-1, type=int, help="") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") # print arguments args = parser.parse_args() logger.info(args) # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1)) args.device = device # Set seed set_seed(args.seed) # make dir if output_dir not exist if os.path.exists(args.output_dir) is False: os.makedirs(args.output_dir) config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,do_lower_case=args.do_lower_case) #budild model encoder = model_class.from_pretrained(args.model_name_or_path,from_tf=bool('.ckpt' in args.model_name_or_path),config=config) decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=8) decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) model=Seq2Seq(encoder=encoder,decoder=decoder,config=config, beam_size=args.beam_size,max_length=args.max_target_length, sos_id=tokenizer.cls_token_id,eos_id=tokenizer.sep_token_id) if args.load_model_path is not None: logger.info("reload model from {}".format(args.load_model_path)) model.load_state_dict(torch.load(args.load_model_path)) model.to(device) if args.local_rank != -1: # Distributed training try: from apex.parallel import DistributedDataParallel as DDP except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.") model = DDP(model) elif args.n_gpu > 1: # multi-gpu training model = torch.nn.DataParallel(model) if args.do_train: # Prepare training data loader train_examples = read_examples(args.train_filename, args) train_features = convert_examples_to_features(train_examples, tokenizer,args,stage='train') all_source_ids = torch.tensor([f.source_ids for f in train_features], dtype=torch.long) all_source_mask = torch.tensor([f.source_mask for f in train_features], dtype=torch.long) all_target_ids = torch.tensor([f.target_ids for f in train_features], dtype=torch.long) all_target_mask = torch.tensor([f.target_mask for f in train_features], dtype=torch.long) train_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask) if args.local_rank == -1: train_sampler = RandomSampler(train_data) else: train_sampler = DistributedSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size//args.gradient_accumulation_steps) num_train_optimization_steps = args.train_steps # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(len(train_dataloader)*args.num_train_epochs*0.1), num_training_steps=len(train_dataloader)*args.num_train_epochs) #Start training logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", args.train_batch_size) logger.info(" Num epoch = %d", args.num_train_epochs) model.train() dev_dataset={} nb_tr_examples, nb_tr_steps,tr_loss,global_step,best_bleu,best_loss = 0, 0,0,0,0,1e6 for epoch in range(args.num_train_epochs): bar = train_dataloader for step, batch in enumerate(bar): batch = tuple(t.to(device) for t in batch) source_ids,source_mask,target_ids,target_mask = batch loss,_,_ = model(source_ids=source_ids,source_mask=source_mask,target_ids=target_ids,target_mask=target_mask) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu. if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps tr_loss += loss.item() train_loss=round(tr_loss*args.gradient_accumulation_steps/(nb_tr_steps+1),4) if step % 100 == 0: print("step {}: epoch {} loss {}".format(step, epoch,train_loss)) nb_tr_examples += source_ids.size(0) nb_tr_steps += 1 loss.backward() if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0: #Update parameters optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 if args.do_eval: #Eval model with dev dataset tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 eval_flag=False if 'dev_loss' in dev_dataset: eval_examples,eval_data=dev_dataset['dev_loss'] else: eval_examples = read_examples(args.dev_filename, args) eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='dev') all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long) all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long) all_target_ids = torch.tensor([f.target_ids for f in eval_features], dtype=torch.long) all_target_mask = torch.tensor([f.target_mask for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_source_ids,all_source_mask,all_target_ids,all_target_mask) dev_dataset['dev_loss']=eval_examples,eval_data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) logger.info("\n***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", args.eval_batch_size) #Start Evaling model model.eval() eval_loss,tokens_num = 0,0 for batch in eval_dataloader: batch = tuple(t.to(device) for t in batch) source_ids,source_mask,target_ids,target_mask = batch with torch.no_grad(): _,loss,num = model(source_ids=source_ids,source_mask=source_mask, target_ids=target_ids,target_mask=target_mask) eval_loss += loss.sum().item() tokens_num += num.sum().item() #Pring loss of dev dataset model.train() eval_loss = eval_loss / tokens_num result = {'eval_ppl': round(np.exp(eval_loss),5), 'global_step': global_step+1, 'train_loss': round(train_loss,5)} for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) logger.info(" "+"*"*20) #save last checkpoint last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') if not os.path.exists(last_output_dir): os.makedirs(last_output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(last_output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) if eval_loss<best_loss: logger.info(" Best ppl:%s",round(np.exp(eval_loss),5)) logger.info(" "+"*"*20) best_loss=eval_loss # Save best checkpoint for best ppl output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl') if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) #Calculate bleu if 'dev_bleu' in dev_dataset: eval_examples,eval_data=dev_dataset['dev_bleu'] else: eval_examples = read_examples(args.dev_filename, args) eval_examples = random.sample(eval_examples,min(1000,len(eval_examples))) eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test') all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long) all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_source_ids,all_source_mask) dev_dataset['dev_bleu']=eval_examples,eval_data eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() p=[] for batch in eval_dataloader: batch = tuple(t.to(device) for t in batch) source_ids,source_mask= batch with torch.no_grad(): preds = model(source_ids=source_ids,source_mask=source_mask) for pred in preds: t=pred[0].cpu().numpy() t=list(t) if 0 in t: t=t[:t.index(0)] text = tokenizer.decode(t, clean_up_tokenization_spaces=False, text=True)\ if isinstance(tokenizer, JavaTokenizer) or isinstance(tokenizer, PythonTokenizer)\ else tokenizer.decode(t,clean_up_tokenization_spaces=False) p.append(text) model.train() predictions=[] with open(os.path.join(args.output_dir,"dev.output"),'w') as f, open(os.path.join(args.output_dir,"dev.gold"),'w') as f1: for ref,gold in zip(p,eval_examples): predictions.append(str(gold.idx)+'\t'+ref) f.write(str(gold.idx)+'\t'+ref+'\n') f1.write(str(gold.idx)+'\t'+gold.target+'\n') (goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "dev.gold")) dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0],2) logger.info(" %s = %s "%("bleu-4",str(dev_bleu))) logger.info(" "+"*"*20) if dev_bleu>best_bleu: logger.info(" Best bleu:%s",dev_bleu) logger.info(" "+"*"*20) best_bleu=dev_bleu # Save best checkpoint for best bleu output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu') if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self output_model_file = os.path.join(output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) if args.do_test: files=[] if args.dev_filename is not None: files.append(args.dev_filename) if args.test_filename is not None: files.append(args.test_filename) for idx,file in enumerate(files): logger.info("Test file: {}".format(file)) eval_examples = read_examples(file, args) eval_features = convert_examples_to_features(eval_examples, tokenizer, args,stage='test') all_source_ids = torch.tensor([f.source_ids for f in eval_features], dtype=torch.long) all_source_mask = torch.tensor([f.source_mask for f in eval_features], dtype=torch.long) eval_data = TensorDataset(all_source_ids,all_source_mask) # Calculate bleu eval_sampler = SequentialSampler(eval_data) eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) model.eval() p=[] for batch in tqdm(eval_dataloader,total=len(eval_dataloader)): batch = tuple(t.to(device) for t in batch) source_ids,source_mask= batch with torch.no_grad(): preds = model(source_ids=source_ids,source_mask=source_mask) for pred in preds: t=pred[0].cpu().numpy() t=list(t) if 0 in t: t=t[:t.index(0)] text = tokenizer.decode(t,clean_up_tokenization_spaces=False, text=True) \ if isinstance(tokenizer, JavaTokenizer) or isinstance(tokenizer, PythonTokenizer) \ else tokenizer.decode(t, clean_up_tokenization_spaces=False) p.append(text) model.train() predictions=[] with open(os.path.join(args.output_dir,"test_{}.output".format(str(idx))),'w') as f, open(os.path.join(args.output_dir,"test_{}.gold".format(str(idx))),'w') as f1: for ref,gold in zip(p,eval_examples): predictions.append(str(gold.idx)+'\t'+ref) f.write(str(gold.idx)+'\t'+ref+'\n') f1.write(str(gold.idx)+'\t'+gold.target+'\n') (goldMap, predictionMap) = bleu.computeMaps(predictions, os.path.join(args.output_dir, "test_{}.gold".format(idx))) dev_bleu=round(bleu.bleuFromMaps(goldMap, predictionMap)[0],2) logger.info(" %s = %s "%("bleu-4",str(dev_bleu))) logger.info(" "+"*"*20) if __name__ == "__main__": main()
CodeGen-main
CodeXGLUE/Code-Text/code-to-text/code/run.py
#!/usr/bin/python ''' This script was adapted from the original version by hieuhoang1972 which is part of MOSES. ''' # $Id: bleu.py 1307 2007-03-14 22:22:36Z hieuhoang1972 $ '''Provides: cook_refs(refs, n=4): Transform a list of reference sentences as strings into a form usable by cook_test(). cook_test(test, refs, n=4): Transform a test sentence as a string (together with the cooked reference sentences) into a form usable by score_cooked(). score_cooked(alltest, n=4): Score a list of cooked test sentences. score_set(s, testid, refids, n=4): Interface with dataset.py; calculate BLEU score of testid against refids. The reason for breaking the BLEU computation into three phases cook_refs(), cook_test(), and score_cooked() is to allow the caller to calculate BLEU scores for multiple test sets as efficiently as possible. ''' import sys, math, re, xml.sax.saxutils import subprocess import os # Added to bypass NIST-style pre-processing of hyp and ref files -- wade nonorm = 0 preserve_case = False eff_ref_len = "shortest" normalize1 = [ ('<skipped>', ''), # strip "skipped" tags (r'-\n', ''), # strip end-of-line hyphenation and join lines (r'\n', ' '), # join lines # (r'(\d)\s+(?=\d)', r'\1'), # join digits ] normalize1 = [(re.compile(pattern), replace) for (pattern, replace) in normalize1] normalize2 = [ (r'([\{-\~\[-\` -\&\(-\+\:-\@\/])',r' \1 '), # tokenize punctuation. apostrophe is missing (r'([^0-9])([\.,])',r'\1 \2 '), # tokenize period and comma unless preceded by a digit (r'([\.,])([^0-9])',r' \1 \2'), # tokenize period and comma unless followed by a digit (r'([0-9])(-)',r'\1 \2 ') # tokenize dash when preceded by a digit ] normalize2 = [(re.compile(pattern), replace) for (pattern, replace) in normalize2] def normalize(s): '''Normalize and tokenize text. This is lifted from NIST mteval-v11a.pl.''' # Added to bypass NIST-style pre-processing of hyp and ref files -- wade if (nonorm): return s.split() if type(s) is not str: s = " ".join(s) # language-independent part: for (pattern, replace) in normalize1: s = re.sub(pattern, replace, s) s = xml.sax.saxutils.unescape(s, {'&quot;':'"'}) # language-dependent part (assuming Western languages): s = " %s " % s if not preserve_case: s = s.lower() # this might not be identical to the original for (pattern, replace) in normalize2: s = re.sub(pattern, replace, s) return s.split() def count_ngrams(words, n=4): counts = {} for k in range(1,n+1): for i in range(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] = counts.get(ngram, 0)+1 return counts def cook_refs(refs, n=4): '''Takes a list of reference sentences for a single segment and returns an object that encapsulates everything that BLEU needs to know about them.''' refs = [normalize(ref) for ref in refs] maxcounts = {} for ref in refs: counts = count_ngrams(ref, n) for (ngram,count) in counts.items(): maxcounts[ngram] = max(maxcounts.get(ngram,0), count) return ([len(ref) for ref in refs], maxcounts) def cook_test(test, item, n=4): '''Takes a test sentence and returns an object that encapsulates everything that BLEU needs to know about it.''' (reflens, refmaxcounts)=item test = normalize(test) result = {} result["testlen"] = len(test) # Calculate effective reference sentence length. if eff_ref_len == "shortest": result["reflen"] = min(reflens) elif eff_ref_len == "average": result["reflen"] = float(sum(reflens))/len(reflens) elif eff_ref_len == "closest": min_diff = None for reflen in reflens: if min_diff is None or abs(reflen-len(test)) < min_diff: min_diff = abs(reflen-len(test)) result['reflen'] = reflen result["guess"] = [max(len(test)-k+1,0) for k in range(1,n+1)] result['correct'] = [0]*n counts = count_ngrams(test, n) for (ngram, count) in counts.items(): result["correct"][len(ngram)-1] += min(refmaxcounts.get(ngram,0), count) return result def score_cooked(allcomps, n=4, ground=0, smooth=1): totalcomps = {'testlen':0, 'reflen':0, 'guess':[0]*n, 'correct':[0]*n} for comps in allcomps: for key in ['testlen','reflen']: totalcomps[key] += comps[key] for key in ['guess','correct']: for k in range(n): totalcomps[key][k] += comps[key][k] logbleu = 0.0 all_bleus = [] for k in range(n): correct = totalcomps['correct'][k] guess = totalcomps['guess'][k] addsmooth = 0 if smooth == 1 and k > 0: addsmooth = 1 logbleu += math.log(correct + addsmooth + sys.float_info.min)-math.log(guess + addsmooth+ sys.float_info.min) if guess == 0: all_bleus.append(-10000000) else: all_bleus.append(math.log(correct + sys.float_info.min)-math.log( guess )) logbleu /= float(n) all_bleus.insert(0, logbleu) brevPenalty = min(0,1-float(totalcomps['reflen'] + 1)/(totalcomps['testlen'] + 1)) for i in range(len(all_bleus)): if i ==0: all_bleus[i] += brevPenalty all_bleus[i] = math.exp(all_bleus[i]) return all_bleus def bleu(refs, candidate, ground=0, smooth=1): refs = cook_refs(refs) test = cook_test(candidate, refs) return score_cooked([test], ground=ground, smooth=smooth) def splitPuncts(line): return ' '.join(re.findall(r"[\w]+|[^\s\w]", line)) def computeMaps(predictions, goldfile): predictionMap = {} goldMap = {} gf = open(goldfile, 'r') for row in predictions: cols = row.strip().split('\t') if len(cols) == 1: (rid, pred) = (cols[0], '') else: (rid, pred) = (cols[0], cols[1]) predictionMap[rid] = [splitPuncts(pred.strip().lower())] for row in gf: (rid, pred) = row.split('\t') if rid in predictionMap: # Only insert if the id exists for the method if rid not in goldMap: goldMap[rid] = [] goldMap[rid].append(splitPuncts(pred.strip().lower())) sys.stderr.write('Total: ' + str(len(goldMap)) + '\n') return (goldMap, predictionMap) #m1 is the reference map #m2 is the prediction map def bleuFromMaps(m1, m2): score = [0] * 5 num = 0.0 for key in m1: if key in m2: bl = bleu(m1[key], m2[key][0]) score = [ score[i] + bl[i] for i in range(0, len(bl))] num += 1 return [s * 100.0 / num for s in score] if __name__ == '__main__': reference_file = sys.argv[1] predictions = [] for row in sys.stdin: predictions.append(row) (goldMap, predictionMap) = computeMaps(predictions, reference_file) print (bleuFromMaps(goldMap, predictionMap)[0])
CodeGen-main
CodeXGLUE/Code-Text/code-to-text/code/bleu.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy class Seq2Seq(nn.Module): """ Build Seqence-to-Sequence. Parameters: * `encoder`- encoder of seq2seq model. e.g. roberta * `decoder`- decoder of seq2seq model. e.g. transformer * `config`- configuration of encoder model. * `beam_size`- beam size for beam search. * `max_length`- max length of target for beam search. * `sos_id`- start of symbol ids in target for beam search. * `eos_id`- end of symbol ids in target for beam search. """ def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder=decoder self.config=config self.register_buffer("bias", torch.tril(torch.ones(2048, 2048))) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lsm = nn.LogSoftmax(dim=-1) self.tie_weights() self.beam_size=beam_size self.max_length=max_length self.sos_id=sos_id self.eos_id=eos_id def _tie_or_clone_weights(self, first_module, second_module): """ Tie or clone module weights depending of weither we are using TorchScript or not """ if self.config.torchscript: first_module.weight = nn.Parameter(second_module.weight.clone()) else: first_module.weight = second_module.weight def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.encoder.embeddings.word_embeddings) def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None): outputs = self.encoder(source_ids, attention_mask=source_mask) encoder_output = outputs[0].permute([1,0,2]).contiguous() if target_ids is not None: attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous() out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool()) hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous() lm_logits = self.lm_head(hidden_states) # Shift so that tokens < n predict n active_loss = target_mask[..., 1:].ne(0).view(-1) == 1 shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = target_ids[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], shift_labels.view(-1)[active_loss]) outputs = loss,loss*active_loss.sum(),active_loss.sum() return outputs else: #Predict preds=[] zero=torch.cuda.LongTensor(1).fill_(0) for i in range(source_ids.shape[0]): context=encoder_output[:,i:i+1] context_mask=source_mask[i:i+1,:] beam = Beam(self.beam_size,self.sos_id,self.eos_id) input_ids=beam.getCurrentState() context=context.repeat(1, self.beam_size,1) context_mask=context_mask.repeat(self.beam_size,1) for _ in range(self.max_length): if beam.done(): break attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous() out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool()) out = torch.tanh(self.dense(out)) hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:] out = self.lsm(self.lm_head(hidden_states)).data beam.advance(out) # print(input_ids) # print(beam) beam_origin = beam.getCurrentOrigin() if input_ids.dtype != torch.int64 or beam_origin.dtype != torch.int64: print('type error, casting to long') print(f"input ids {input_ids}") print(f"beam current origin {beam_origin}") select = input_ids.data.index_select(0, beam_origin) input_ids.data.copy_(select) input_ids=torch.cat((input_ids,beam.getCurrentState()),-1) hyp= beam.getHyp(beam.getFinal()) pred=beam.buildTargetTokens(hyp)[:self.beam_size] pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred] preds.append(torch.cat(pred,0).unsqueeze(0)) preds=torch.cat(preds,0) return preds class Beam(object): def __init__(self, size,sos,eos): self.size = size self.tt = torch.cuda # The score for each translation on the beam. self.scores = self.tt.FloatTensor(size).zero_() # The backpointers at each time-step. self.prevKs = [] # The outputs at each time-step. self.nextYs = [self.tt.LongTensor(size) .fill_(0)] self.nextYs[0][0] = sos # Has EOS topped the beam yet. self._eos = eos self.eosTop = False # Time and k pair for finished. self.finished = [] def getCurrentState(self): "Get the outputs for the current timestep." batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) return batch def getCurrentOrigin(self): "Get the backpointers for the current timestep." return self.prevKs[-1] def advance(self, wordLk): """ Given prob over words for every last beam `wordLk` and attention `attnOut`: Compute and update the beam search. Parameters: * `wordLk`- probs of advancing from the last step (K x words) * `attnOut`- attention at the last step Returns: True if beam search is complete. """ numWords = wordLk.size(1) # Sum the previous scores. if len(self.prevKs) > 0: beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) # Don't let EOS have children. for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: beamLk[i] = -1e20 else: beamLk = wordLk[0] flatBeamLk = beamLk.view(-1) bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) self.scores = bestScores # bestScoresId is flattened beam x word array, so calculate which # word and beam each score came from prevK = bestScoresId // numWords self.prevKs.append(prevK) self.nextYs.append((bestScoresId - prevK * numWords)) for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: s = self.scores[i] self.finished.append((s, len(self.nextYs) - 1, i)) # End condition is when top-of-beam is EOS and no global score. if self.nextYs[-1][0] == self._eos: self.eosTop = True def done(self): return self.eosTop and len(self.finished) >=self.size def getFinal(self): if len(self.finished) == 0: self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) self.finished.sort(key=lambda a: -a[0]) if len(self.finished) != self.size: unfinished=[] for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] != self._eos: s = self.scores[i] unfinished.append((s, len(self.nextYs) - 1, i)) unfinished.sort(key=lambda a: -a[0]) self.finished+=unfinished[:self.size-len(self.finished)] return self.finished[:self.size] def getHyp(self, beam_res): """ Walk back to construct the full hypothesis. """ hyps=[] for _,timestep, k in beam_res: hyp = [] for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): hyp.append(self.nextYs[j+1][k]) k = self.prevKs[j][k] hyps.append(hyp[::-1]) return hyps def buildTargetTokens(self, preds): sentence=[] for pred in preds: tokens = [] for tok in pred: if tok==self._eos: break tokens.append(tok) sentence.append(tokens) return sentence
CodeGen-main
CodeXGLUE/Code-Text/code-to-text/code/model.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import logging import sys from sklearn.metrics import recall_score,precision_score,f1_score def read_answers(filename): answers={} with open(filename) as f: for line in f: line=line.strip() idx1,idx2,label=line.split() answers[(idx1,idx2)]=label return answers def read_predictions(filename): predictions={} with open(filename) as f: for line in f: line=line.strip() idx1,idx2,label=line.split() predictions[(idx1,idx2)]=label return predictions def calculate_scores(answers,predictions): y_trues,y_preds=[],[] for key in answers: if key not in predictions: logging.error("Missing prediction for ({},{}) pair.".format(key[0],key[1])) sys.exit() y_trues.append(answers[key]) y_preds.append(predictions[key]) scores={} scores['Recall']=recall_score(y_trues, y_preds, average='macro') scores['Prediction']=precision_score(y_trues, y_preds, average='macro') scores['F1']=f1_score(y_trues, y_preds, average='macro') return scores def main(): import argparse parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for BigCloneBench dataset.') parser.add_argument('--answers', '-a',help="filename of the labels, in txt format.") parser.add_argument('--predictions', '-p',help="filename of the leaderboard predictions, in txt format.") args = parser.parse_args() answers=read_answers(args.answers) predictions=read_predictions(args.predictions) scores=calculate_scores(answers,predictions) print(scores) if __name__ == '__main__': main()
CodeGen-main
CodeXGLUE/Code-Code/Clone-detection-BigCloneBench/evaluator/evaluator.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned using a masked language modeling (MLM) loss. """ from __future__ import absolute_import, division, print_function import argparse import json import logging import os import random from concurrent.futures.thread import ThreadPoolExecutor from multiprocessing import cpu_count import numpy as np import torch from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler from torch.utils.data.distributed import DistributedSampler import sys from codegen_sources.wrappers.models import Model, ModelConfig, ModelJava from codegen_sources.wrappers.tokenizer import JavaTokenizer, RobertaJavaTokenizer try: from torch.utils.tensorboard import SummaryWriter except: from tensorboardX import SummaryWriter from tqdm import tqdm import multiprocessing from model import Model cpu_cont = 16 from transformers import (AdamW, get_linear_schedule_with_warmup, BertConfig, BertForMaskedLM, BertTokenizer, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer, RobertaConfig, RobertaModel, RobertaTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer) logger = logging.getLogger(__name__) MODEL_CLASSES = { 'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer), 'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'xlm_java': (ModelConfig, ModelJava, JavaTokenizer), 'roberta_java': (ModelConfig, ModelJava, RobertaJavaTokenizer), } def get_example(item): url1,url2,label,tokenizer,args,cache,url_to_code=item if url1 in cache: code1=cache[url1].copy() else: try: code=' '.join(url_to_code[url1].split()) except: code="" code1=tokenizer.tokenize(code) if url2 in cache: code2=cache[url2].copy() else: try: code=' '.join(url_to_code[url2].split()) except: code="" code2=tokenizer.tokenize(code) return convert_examples_to_features(code1,code2,label,url1,url2,tokenizer,args,cache) class InputFeatures(object): """A single training/test features for a example.""" def __init__(self, input_tokens, input_ids, label, url1, url2 ): self.input_tokens = input_tokens self.input_ids = input_ids self.label=label self.url1=url1 self.url2=url2 def convert_examples_to_features(code1_tokens,code2_tokens,label,url1,url2,tokenizer,args,cache): #source code1_tokens=code1_tokens[:args.block_size-2] code1_tokens =[tokenizer.cls_token]+code1_tokens+[tokenizer.sep_token] code2_tokens=code2_tokens[:args.block_size-2] code2_tokens =[tokenizer.cls_token]+code2_tokens+[tokenizer.sep_token] code1_ids=tokenizer.convert_tokens_to_ids(code1_tokens) padding_length = args.block_size - len(code1_ids) code1_ids+=[tokenizer.pad_token_id]*padding_length code2_ids=tokenizer.convert_tokens_to_ids(code2_tokens) padding_length = args.block_size - len(code2_ids) code2_ids+=[tokenizer.pad_token_id]*padding_length source_tokens=code1_tokens+code2_tokens source_ids=code1_ids+code2_ids return InputFeatures(source_tokens,source_ids,label,url1,url2) class TextDataset(Dataset): def __init__(self, tokenizer, args, file_path='train', block_size=512,pool=None): postfix=file_path.split('/')[-1].split('.txt')[0] self.examples = [] index_filename=file_path logger.info("Creating features from index file at %s ", index_filename) url_to_code={} with open('/'.join(index_filename.split('/')[:-1])+'/data.jsonl') as f: for line in f: line=line.strip() js=json.loads(line) url_to_code[js['idx']]=js['func'] data=[] cache={} f=open(index_filename) with open(index_filename) as f: for line in f: line=line.strip() url1,url2,label=line.split('\t') if url1 not in url_to_code or url2 not in url_to_code: continue if label=='0': label=0 else: label=1 data.append((url1,url2,label,tokenizer, args,cache,url_to_code)) if 'test' not in postfix: data=random.sample(data,int(len(data)*0.1)) executor = ThreadPoolExecutor(max_workers=cpu_count()) self.examples=list(executor.map(get_example, data)) if 'train' in postfix: for idx, example in enumerate(self.examples[:3]): logger.info("*** Example ***") logger.info("idx: {}".format(idx)) logger.info("label: {}".format(example.label)) logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens])) logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids)))) def __len__(self): return len(self.examples) def __getitem__(self, item): return torch.tensor(self.examples[item].input_ids),torch.tensor(self.examples[item].label) def load_and_cache_examples(args, tokenizer, evaluate=False,test=False,pool=None): dataset = TextDataset(tokenizer, args, file_path=args.test_data_file if test else (args.eval_data_file if evaluate else args.train_data_file),block_size=args.block_size,pool=pool) return dataset def set_seed(seed=42): random.seed(seed) os.environ['PYHTONHASHSEED'] = str(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True def train(args, train_dataset, model, tokenizer,pool): """ Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) args.max_steps=args.epoch*len( train_dataloader) args.save_steps=len( train_dataloader) args.warmup_steps=len( train_dataloader) args.logging_steps=len( train_dataloader) args.num_train_epochs=args.epoch model.to(args.device) # Prepare optimizer and schedule (linear warmup and decay) no_decay = ['bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=args.max_steps) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt') optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt') if os.path.exists(scheduler_last): scheduler.load_state_dict(torch.load(scheduler_last)) if os.path.exists(optimizer_last): optimizer.load_state_dict(torch.load(optimizer_last)) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * ( torch.distributed.get_world_size() if args.local_rank != -1 else 1)) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", args.max_steps) global_step = args.start_step tr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0 best_mrr=0.0 best_f1=0 # model.resize_token_embeddings(len(tokenizer)) model.zero_grad() set_seed(args.seed) # Added here for reproducibility (even between python 2 and 3) for idx in range(args.start_epoch, int(args.num_train_epochs)): bar = train_dataloader tr_num=0 train_loss=0 for step, batch in enumerate(bar): inputs = batch[0].to(args.device) labels=batch[1].to(args.device) model.train() loss,logits = model(inputs,labels) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) tr_loss += loss.item() tr_num+=1 train_loss+=loss.item() if avg_loss==0: avg_loss=tr_loss avg_loss=round(train_loss/tr_num,5) if step % 100 == 0: logger.info("step {}: epoch {} loss {}".format(step, idx,avg_loss)) if (step + 1) % args.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 output_flag=True avg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4) if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: logging_loss = tr_loss tr_nb=global_step if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer,pool=pool,eval_when_training=True) # Save model checkpoint if results['eval_f1']>best_f1: best_f1=results['eval_f1'] logger.info(" "+"*"*20) logger.info(" Best f1:%s",round(best_f1,4)) logger.info(" "+"*"*20) checkpoint_prefix = 'checkpoint-best-f1' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = model.module if hasattr(model,'module') else model output_dir = os.path.join(output_dir, '{}'.format('model.bin')) torch.save(model_to_save.state_dict(), output_dir) logger.info("Saving model checkpoint to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: break return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix="",pool=None,eval_when_training=False): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_output_dir = args.output_dir eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True,pool=pool) if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: os.makedirs(eval_output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True) # multi-gpu evaluate if args.n_gpu > 1 and eval_when_training is False: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 model.eval() logits=[] y_trues=[] for batch in eval_dataloader: inputs = batch[0].to(args.device) labels=batch[1].to(args.device) with torch.no_grad(): lm_loss,logit = model(inputs,labels) eval_loss += lm_loss.mean().item() logits.append(logit.cpu().numpy()) y_trues.append(labels.cpu().numpy()) nb_eval_steps += 1 logits=np.concatenate(logits,0) y_trues=np.concatenate(y_trues,0) best_threshold=0 best_f1=0 for i in range(1,100): threshold=i/100 y_preds=logits[:,1]>threshold from sklearn.metrics import recall_score recall=recall_score(y_trues, y_preds, average='macro') from sklearn.metrics import precision_score precision=precision_score(y_trues, y_preds, average='macro') from sklearn.metrics import f1_score f1=f1_score(y_trues, y_preds, average='macro') if f1>best_f1: best_f1=f1 best_threshold=threshold y_preds=logits[:,1]>best_threshold from sklearn.metrics import recall_score recall=recall_score(y_trues, y_preds, average='macro') from sklearn.metrics import precision_score precision=precision_score(y_trues, y_preds, average='macro') from sklearn.metrics import f1_score f1=f1_score(y_trues, y_preds, average='macro') result = { "eval_recall": float(recall), "eval_precision": float(precision), "eval_f1": float(f1), "eval_threshold":best_threshold, } logger.info("***** Eval results {} *****".format(prefix)) for key in sorted(result.keys()): logger.info(" %s = %s", key, str(round(result[key],4))) return result def test(args, model, tokenizer, prefix="",pool=None,best_threshold=0): # Loop to handle MNLI double evaluation (matched, mis-matched) eval_dataset = load_and_cache_examples(args, tokenizer, test=True,pool=pool) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True) # multi-gpu evaluate if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Eval! logger.info("***** Running Test {} *****".format(prefix)) logger.info(" Num examples = %d", len(eval_dataset)) logger.info(" Batch size = %d", args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 model.eval() logits=[] y_trues=[] for batch in eval_dataloader: inputs = batch[0].to(args.device) labels=batch[1].to(args.device) with torch.no_grad(): lm_loss,logit = model(inputs,labels) eval_loss += lm_loss.mean().item() logits.append(logit.cpu().numpy()) y_trues.append(labels.cpu().numpy()) nb_eval_steps += 1 logits=np.concatenate(logits,0) y_preds=logits[:,1]>best_threshold with open(os.path.join(args.output_dir,"predictions.txt"),'w') as f: for example,pred in zip(eval_dataset.examples,y_preds): if pred: f.write(example.url1+'\t'+example.url2+'\t'+'1'+'\n') else: f.write(example.url1+'\t'+example.url2+'\t'+'0'+'\n') def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument("--train_data_file", default=None, type=str, required=True, help="The input training data file (a text file).") parser.add_argument("--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.") ## Other parameters parser.add_argument("--eval_data_file", default=None, type=str, help="An optional input evaluation data file to evaluate the perplexity on (a text file).") parser.add_argument("--test_data_file", default=None, type=str, help="An optional input evaluation data file to evaluate the perplexity on (a text file).") parser.add_argument("--model_type", default="bert", type=str, help="The model architecture to be fine-tuned.") parser.add_argument("--model_name_or_path", default=None, type=str, help="The model checkpoint for weights initialization.") parser.add_argument("--mlm", action='store_true', help="Train with masked-language modeling loss instead of language modeling.") parser.add_argument("--mlm_probability", type=float, default=0.15, help="Ratio of tokens to mask for masked language modeling loss") parser.add_argument("--config_name", default="", type=str, help="Optional pretrained config name or path if not the same as model_name_or_path") parser.add_argument("--tokenizer_name", default="", type=str, help="Optional pretrained tokenizer name or path if not the same as model_name_or_path") parser.add_argument("--cache_dir", default="", type=str, help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)") parser.add_argument("--block_size", default=-1, type=int, help="Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens).") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--do_test", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument("--evaluate_during_training", action='store_true', help="Run evaluation during training at each logging step.") parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--train_batch_size", default=4, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--eval_batch_size", default=4, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=1.0, type=float, help="Total number of training epochs to perform.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.") parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument('--logging_steps', type=int, default=50, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument('--save_total_limit', type=int, default=None, help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default') parser.add_argument("--eval_all_checkpoints", action='store_true', help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number") parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument('--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--epoch', type=int, default=42, help="random seed for initialization") parser.add_argument('--fp16', action='store_true', help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") parser.add_argument('--fp16_opt_level', type=str, default='O1', help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") pool = multiprocessing.Pool(cpu_cont) args = parser.parse_args() # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device args.per_gpu_train_batch_size=args.train_batch_size//args.n_gpu args.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu # Setup logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed set_seed(args.seed) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training download model & vocab args.start_epoch = 0 args.start_step = 0 checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last') if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last): args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin') args.config_name = os.path.join(checkpoint_last, 'config.json') idx_file = os.path.join(checkpoint_last, 'idx_file.txt') with open(idx_file, encoding='utf-8') as idxf: args.start_epoch = int(idxf.readlines()[0].strip()) + 1 step_file = os.path.join(checkpoint_last, 'step_file.txt') if os.path.exists(step_file): with open(step_file, encoding='utf-8') as stepf: args.start_step = int(stepf.readlines()[0].strip()) logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch)) config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None) config.num_labels=2 tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None) if args.block_size <= 0: args.block_size = tokenizer.max_len_single_sentence # Our input block size will be the max possible for the model args.block_size = min(args.block_size, tokenizer.max_len_single_sentence) if args.model_name_or_path: model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None) else: model = model_class(config) model=Model(model,config,tokenizer,args) if args.local_rank == 0: torch.distributed.barrier() # End of barrier to make sure only the first process in distributed training download model & vocab logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: if args.local_rank not in [-1, 0]: torch.distributed.barrier() # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cache train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False,pool=pool) if args.local_rank == 0: torch.distributed.barrier() global_step, tr_loss = train(args, train_dataset, model, tokenizer,pool) # Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: checkpoint_prefix = 'checkpoint-best-f1/model.bin' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir)) model.to(args.device) result=evaluate(args, model, tokenizer,pool=pool) if args.do_test and args.local_rank in [-1, 0]: checkpoint_prefix = 'checkpoint-best-f1/model.bin' output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix)) model.load_state_dict(torch.load(output_dir)) model.to(args.device) test(args, model, tokenizer,pool=pool,best_threshold=0.5) return results if __name__ == "__main__": main()
CodeGen-main
CodeXGLUE/Code-Code/Clone-detection-BigCloneBench/code/run.py
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy import torch.nn.functional as F from torch.nn import CrossEntropyLoss, MSELoss class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size*2, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, 2) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = x.reshape(-1,x.size(-1)*2) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x class Model(nn.Module): def __init__(self, encoder,config,tokenizer,args): super(Model, self).__init__() self.encoder = encoder self.config=config self.tokenizer=tokenizer self.classifier=RobertaClassificationHead(config) self.args=args def forward(self, input_ids=None,labels=None): input_ids=input_ids.view(-1,self.args.block_size) outputs = self.encoder(input_ids= input_ids,attention_mask=input_ids.ne(1))[0] logits=self.classifier(outputs) prob=F.softmax(logits) if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits, labels) return loss,prob else: return prob
CodeGen-main
CodeXGLUE/Code-Code/Clone-detection-BigCloneBench/code/model.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( n ) : if n <= 1 : return False for i in range ( 2 , n ) : if n % i == 0 : return False ; return True #TOFILL if __name__ == '__main__': param = [ (37,), (39,), (73,), (8,), (28,), (66,), (20,), (36,), (6,), (51,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/PRIMALITY_TEST_SET_1_INTRODUCTION_AND_SCHOOL_METHOD.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( S , n ) : found = False S.sort ( ) for i in range ( n - 1 , - 1 , - 1 ) : for j in range ( 0 , n ) : if ( i == j ) : continue for k in range ( j + 1 , n ) : if ( i == k ) : continue for l in range ( k + 1 , n ) : if ( i == l ) : continue if ( S [ i ] == S [ j ] + S [ k ] + S [ l ] ) : found = True return S [ i ] if ( found == False ) : return - 1 #TOFILL if __name__ == '__main__': param = [ ([8, 12, 14, 15, 16, 20, 27, 28, 29, 30, 35, 41, 46, 51, 53, 55, 55, 58, 63, 64, 72, 73, 75, 75, 75, 82, 82, 86, 89, 91, 92, 94, 95, 95, 97, 97, 98],24,), ([-62, 48, -22, -44, -58, -50, -82, 34, 26, -2, 86, -44, 92, -96, 42, -20, 10, 74, -56, -12, -28, -40],19,), ([0, 0, 0, 0, 0, 0, 0, 1, 1, 1],8,), ([84, 58, 10, 67, 77, 66, 10, 47, 65, 55, 54],5,), ([-46, -28, -20, -18, 4, 8, 18, 38, 90, 90],6,), ([0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0],35,), ([11, 13, 14, 21, 26, 28, 36, 39, 41, 42, 43, 44, 49, 49, 57, 58, 59, 59, 63, 64, 67, 69, 70, 75, 78, 79, 83, 83, 86, 91, 92, 93, 96, 96, 96, 97],30,), ([74, 52, -16, 34, -88, 62, 54, 46, -82, 76, -48, 54, 50, -66, -18, 78, -48, 38, 96, -32, -82, 0, -76, 46, -56, 4, -30, -70, -62],16,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],17,), ([55, 74, 18, 4, 68, 66, 33, 61, 66, 92, 21, 9, 49, 14, 99, 87, 74, 6, 11, 25, 5, 58, 56, 20],23,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/FIND_LARGEST_D_IN_ARRAY_SUCH_THAT_A_B_C_D.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( s ) : n = len ( s ) ; sub_count = ( n * ( n + 1 ) ) // 2 ; arr = [ 0 ] * sub_count ; index = 0 ; for i in range ( n ) : for j in range ( 1 , n - i + 1 ) : arr [ index ] = s [ i : i + j ] ; index += 1 ; arr.sort ( ) ; res = "" ; for i in range ( sub_count ) : res += arr [ i ] ; return res ; #TOFILL if __name__ == '__main__': param = [ ('sqGOi',), ('848580',), ('01001110011001',), ('ZhWXUKmeiI',), ('0917296541285',), ('01101001111100',), ('tjP kR',), ('999907',), ('011100',), ('qJPHNSJOUj',) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/LEXICOGRAPHICAL_CONCATENATION_SUBSTRINGS_STRING.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold(str1, str2): if (len(str1) > len(str2)): t = str1 str1 = str2 str2 = t str = "" n1 = len(str1) n2 = len(str2) str1 = str1[:: - 1] str2 = str2[:: - 1] carry = 0 for i in range(n1): sum = ((ord(str1[i]) - 48) + ((ord(str2[i]) - 48) + carry)) str += chr(sum % 10 + 48) carry = int(sum / 10) for i in range(n1, n2): sum = ((ord(str2[i]) - 48) + carry) str += chr(sum % 10 + 48) carry = (int)(sum / 10) if (carry): str += chr(carry + 48) str = str[:: - 1] return str #TOFILL if __name__ == '__main__': param = [ ('VkfzrPG', 'rKZ',), ('0526110506447', '903',), ('011010010', '110100000',), ('sPAwZACc ', 'liYMsojPiinOV',), ('3', '611',), ('0101', '01110101011',), ('VTtNu', 'Wsmc',), ('2317170', '898421173423',), ('111111000010', '01100001110111',), ('Ktt', 'CTbbVX wGBkE',) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success += 1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/SUM_TWO_LARGE_NUMBERS.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( num , divisor ) : while ( num >= divisor ) : num -= divisor ; return num ; #TOFILL if __name__ == '__main__': param = [ (70,13,), (77,3,), (77,73,), (88,54,), (96,39,), (6,10,), (79,95,), (44,32,), (26,86,), (82,91,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/PROGRAM_TO_FIND_REMAINDER_WITHOUT_USING_MODULO_OR_OPERATOR_2.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( n ) : while ( int ( n / 100 ) ) : last_digit = int ( n % 10 ) n = int ( n / 10 ) n += last_digit * 3 return ( n % 29 == 0 ) #TOFILL if __name__ == '__main__': param = [ (29,), (0,), (65,), (1419,), (54,), (7,), (44,), (34,), (1160,), (292929002929,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/NUMBER_IS_DIVISIBLE_BY_29_OR_NOT.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( n ) : num = n ; dec_value = 0 ; base1 = 1 ; len1 = len ( num ) ; for i in range ( len1 - 1 , - 1 , - 1 ) : if ( num [ i ] == '1' ) : dec_value += base1 ; base1 = base1 * 2 ; return dec_value ; #TOFILL if __name__ == '__main__': param = [ ('uEmIAgF',), ('753310137',), ('010011010',), ('kNi',), ('04562016903312',), ('000111101',), ('bk',), ('9',), ('1',), ('XxT nXLlk',) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/PROGRAM_BINARY_DECIMAL_CONVERSION_1.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( arr , n ) : found = False arr.sort ( ) for i in range ( 0 , n - 1 ) : l = i + 1 r = n - 1 x = arr [ i ] while ( l < r ) : if ( x + arr [ l ] + arr [ r ] == 0 ) : print ( x , arr [ l ] , arr [ r ] ) l += 1 r -= 1 found = True elif ( x + arr [ l ] + arr [ r ] < 0 ) : l += 1 else : r -= 1 if ( found == False ) : print ( " No Triplet Found" ) #TOFILL if __name__ == '__main__': param = [ ([4, 24, 27, 34, 39, 41, 67, 69, 84, 91, 94],7,), ([14, 8, 92, 46, 62, 8, 8, 70, 98, -20, -16, -6, -2, -36, 46, 46, -26, 50, 76, 96, -32, 2, -32, 72, 48, 24, 64, 42, 40, 92],29,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],15,), ([47, 69, 42, 36, 82, 65, 84],3,), ([-98, -74, -62, -60, -60, -32],5,), ([1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0],35,), ([1, 4, 4, 9, 20, 23, 24, 27, 28, 29, 31, 35, 42, 45, 46, 47, 49, 52, 55, 57, 62, 67, 72, 78, 79, 82, 86, 86, 88],26,), ([92, 0, 56, 90, -10, -46, 44, -86, -16, -90, -92, -44, -88, 24, -80, -98, 68, -86, 98, -10, 18, -40, 98, 40, -58, -6, -38, 72, 90],15,), ([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],17,), ([7, 3, 37, 60, 6, 26, 30, 21, 7, 59, 18, 69, 40, 47, 34, 19, 51, 27, 4, 7, 56, 4, 57, 62, 54, 9, 93, 31, 9, 85],28,) ] filled_function_param = [ ([4, 24, 27, 34, 39, 41, 67, 69, 84, 91, 94],7,), ([14, 8, 92, 46, 62, 8, 8, 70, 98, -20, -16, -6, -2, -36, 46, 46, -26, 50, 76, 96, -32, 2, -32, 72, 48, 24, 64, 42, 40, 92],29,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],15,), ([47, 69, 42, 36, 82, 65, 84],3,), ([-98, -74, -62, -60, -60, -32],5,), ([1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0],35,), ([1, 4, 4, 9, 20, 23, 24, 27, 28, 29, 31, 35, 42, 45, 46, 47, 49, 52, 55, 57, 62, 67, 72, 78, 79, 82, 86, 86, 88],26,), ([92, 0, 56, 90, -10, -46, 44, -86, -16, -90, -92, -44, -88, 24, -80, -98, 68, -86, 98, -10, 18, -40, 98, 40, -58, -6, -38, 72, 90],15,), ([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],17,), ([7, 3, 37, 60, 6, 26, 30, 21, 7, 59, 18, 69, 40, 47, 34, 19, 51, 27, 4, 7, 56, 4, 57, 62, 54, 9, 93, 31, 9, 85],28,) ] n_success = 0 for i, parameters_set in enumerate(param): f_filled(*(filled_function_param[i])) f_gold(*parameters_set) if parameters_set == filled_function_param[i]: n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/FIND_TRIPLETS_ARRAY_WHOSE_SUM_EQUAL_ZERO_2.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( arr , n ) : inc , dcr = dict ( ) , dict ( ) len_inc , len_dcr = [ 0 ] * n , [ 0 ] * n longLen = 0 for i in range ( n ) : len = 0 if inc.get ( arr [ i ] - 1 ) in inc.values ( ) : len = inc.get ( arr [ i ] - 1 ) inc [ arr [ i ] ] = len_inc [ i ] = len + 1 for i in range ( n - 1 , - 1 , - 1 ) : len = 0 if dcr.get ( arr [ i ] - 1 ) in dcr.values ( ) : len = dcr.get ( arr [ i ] - 1 ) dcr [ arr [ i ] ] = len_dcr [ i ] = len + 1 for i in range ( n ) : if longLen < ( len_inc [ i ] + len_dcr [ i ] - 1 ) : longLen = len_inc [ i ] + len_dcr [ i ] - 1 return longLen #TOFILL if __name__ == '__main__': param = [ ([78],0,), ([-6, -18, -48, 58, -54, 76, 80, -56, 86, 58, -86, -86, -88, 32, 12, 58, 58, -16, 86, -24, 84, 86, 36, 18, 30, -32, -4, -36, -72, -4, 42, 94],18,), ([0, 1],1,), ([92, 26, 72, 8, 66, 28, 34, 61, 28],5,), ([-86, -82, -76, -68, -66, -64, -62, -56, -48, -42, -38, -30, -22, -18, -10, -10, -4, -2, 4, 28, 42, 44, 50, 50, 56, 58, 60, 76, 82, 86, 86, 98],25,), ([0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0],17,), ([3, 4, 8, 9, 12, 13, 16, 19, 23, 25, 29, 31, 34, 36, 38, 41, 42, 47, 49, 50, 51, 51, 58, 63, 66, 70, 73, 74, 75, 75, 75, 76, 76, 80, 82, 83, 83, 84, 86, 89, 90, 91, 91, 95, 96],44,), ([4, -76, 60, 48, -14, 72],3,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],17,), ([66, 80, 79, 72, 1, 67, 20, 67, 32, 40, 22, 64, 58, 67, 10, 21, 37, 49],15,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/LENGTH_LONGEST_STRICT_BITONIC_SUBSEQUENCE.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( a , b ) : if ( a < 0 ) : a = - a if ( b < 0 ) : b = - b mod = a while ( mod >= b ) : mod = mod - b if ( a < 0 ) : return - mod return mod #TOFILL if __name__ == '__main__': param = [ (3243.229719038493,5659.926861939672,), (-4362.665881044217,-9196.507113304497,), (7255.066257575837,2623.200060506935,), (-6929.554320261099,-3009.0234530313287,), (3569.942027998315,6920.809419868375,), (-6513.849053096595,-70.95992406437102,), (7333.183189243961,580.3500610971768,), (-2856.1752826258803,-9625.97442825802,), (9787.228111241662,2419.6844962423256,), (-1722.873699288031,-8370.700544254058,) ] n_success = 0 for i, parameters_set in enumerate(param): if abs(1 - (0.0000001 + abs(f_gold(*parameters_set))) / (abs(f_filled(*parameters_set)) + 0.0000001)) < 0.001: n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/MODULUS_TWO_FLOAT_DOUBLE_NUMBERS.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( str ) : n = len ( str ) ; return int ( n * ( n + 1 ) / 2 ) ; #TOFILL if __name__ == '__main__': param = [ ('gZFGZsHCimLf',), ('505357',), ('011011101',), ('ovfwP Osauz',), ('92132238746026',), ('01100',), ('RaOWYQRfiWKSyC',), ('861330202',), ('001100010',), ('uvpKlGUBLOMba',) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/NUMBER_SUBSTRINGS_STRING.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( arr , l , r , x ) : if ( r >= l ) : mid = int ( l + ( r - l ) / 2 ) if ( arr [ mid ] == x ) : return mid if ( mid > l and arr [ mid - 1 ] == x ) : return ( mid - 1 ) if ( mid < r and arr [ mid + 1 ] == x ) : return ( mid + 1 ) if ( arr [ mid ] > x ) : return f_gold ( arr , l , mid - 2 , x ) return f_gold ( arr , mid + 2 , r , x ) return - 1 #TOFILL if __name__ == '__main__': param = [ ([6,7,15,42,47,54,56,59,59,64,68,70,71,75,91,93], 0, 15, 71), ([6,7,15,42,47,56,54,59,59,64,68,71,70, 75,91,93], 0, 15, 71), ([-92,-96,-68,-40,70], 0, 4, , -96), ([-92,-86,-68,-40,70], 0, 4, 20), ([-3,-1,0,30,10,45,70,60], 0, 7, 0), ([-3,-1,0,10,5,45,60,50], 0, 7, 12), ([-3,-1,0,10,30,45,60,70], 0, 7, 18), ([0,0,1], 0, 2, 20), ([1,1,1], 0, 2, 17), ([30,2,30,45], 0, 3, 28) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/SEARCH_ALMOST_SORTED_ARRAY.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( x ) : next = 0 if ( x ) : rightOne = x & - ( x ) nextHigherOneBit = x + int ( rightOne ) rightOnesPattern = x ^ int ( nextHigherOneBit ) rightOnesPattern = ( int ( rightOnesPattern ) / int ( rightOne ) ) rightOnesPattern = int ( rightOnesPattern ) >> 2 next = nextHigherOneBit | rightOnesPattern return next #TOFILL if __name__ == '__main__': param = [ (42,), (75,), (94,), (5,), (52,), (22,), (77,), (44,), (85,), (59,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/NEXT_HIGHER_NUMBER_WITH_SAME_NUMBER_OF_SET_BITS.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import sys def f_gold(arr, n, A, B, C): for i in range(n): arr[i] = (A * arr[i] * arr[i] + B * arr[i] + C) index = - (sys.maxsize - 1) maximum = - (sys.maxsize - 1) for i in range(n): if maximum < arr[i]: index = i maximum = arr[i] i = 0 j = n - 1 new_arr = [0] * n k = 0 while i < index and j > index: if arr[i] < arr[j]: new_arr[k] = arr[i] k += 1 i += 1 else: new_arr[k] = arr[j] k += 1 j -= 1 while i < index: new_arr[k] = arr[i] k += 1 i += 1 while j > index: new_arr[k] = arr[j] k += 1 j -= 1 new_arr[n - 1] = maximum for i in range(n): arr[i] = new_arr[i] #TOFILL if __name__ == '__main__': param = [ ([9, 30, 49, 65, 78, 85, 85, 92], 4, 4, 5, 4,), ([-48, 89, -60, 66, 71, -37, 47, -50, 61, 41, -22, -3, 90, -57, 77, -64, 22, 8, -90, -5, -94, -43, 29, -29, 86, -79, -8, 27, -20, -44, 16], 18, 20, 20, 23,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], 25, 26, 15, 18,), ([87, 70, 77, 87, 73, 81, 66, 19, 83, 7, 63, 42, 42, 59, 20, 73, 17, 27, 47, 2, 63, 62, 19, 17, 69, 39, 82, 71, 81, 39, 36, 40, 45, 4, 25, 69, 30, 76, 68, 88, 29, 73, 68, 51, 24, 14, 69, 18], 33, 42, 35, 41,), ([-91, -85, -77, -73, -70, -68, -24, -21, -12, - 1, 9, 29, 48, 52, 56, 63, 88], 8, 12, 8, 8,), ([0, 0, 0, 1, 1, 0, 1, 1, 1, 1], 7, 8, 6, 7,), ([4, 5, 9, 14, 18, 20, 22, 23, 25, 28, 30, 31, 34, 35, 36, 38, 38, 39, 44, 48, 49, 51, 54, 55, 59, 64, 66, 71, 72, 72, 73, 76, 78, 82, 82, 84, 92, 93, 95], 22, 33, 19, 25,), ([40, 6, 33, 8, 78, -58, 2, 24, 40, 3, 46, 94, -26, 8, 22, -83, 96, -29, - 38, -59, 19, 62, 98, -55, -42, 79, 26, 62, -56, -85, -22], 20, 16, 19, 16,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 23, 21, 19, 23,), ([3, 68, 40, 48, 54, 35, 95, 56, 89, 40, 77, 68, 46, 78, 13, 27, 6, 17, 36, 99, 81, 2, 77, 52, 66, 52, 92, 43, 90, 22, 55, 67, 99, 60, 58], 28, 21, 23, 23,) ] filled_function_param = [ ([9, 30, 49, 65, 78, 85, 85, 92], 4, 4, 5, 4,), ([-48, 89, -60, 66, 71, -37, 47, -50, 61, 41, -22, -3, 90, -57, 77, -64, 22, 8, -90, -5, -94, -43, 29, -29, 86, -79, -8, 27, -20, -44, 16], 18, 20, 20, 23,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1], 25, 26, 15, 18,), ([87, 70, 77, 87, 73, 81, 66, 19, 83, 7, 63, 42, 42, 59, 20, 73, 17, 27, 47, 2, 63, 62, 19, 17, 69, 39, 82, 71, 81, 39, 36, 40, 45, 4, 25, 69, 30, 76, 68, 88, 29, 73, 68, 51, 24, 14, 69, 18], 33, 42, 35, 41,), ([-91, -85, -77, -73, -70, -68, -24, -21, -12, - 1, 9, 29, 48, 52, 56, 63, 88], 8, 12, 8, 8,), ([0, 0, 0, 1, 1, 0, 1, 1, 1, 1], 7, 8, 6, 7,), ([4, 5, 9, 14, 18, 20, 22, 23, 25, 28, 30, 31, 34, 35, 36, 38, 38, 39, 44, 48, 49, 51, 54, 55, 59, 64, 66, 71, 72, 72, 73, 76, 78, 82, 82, 84, 92, 93, 95], 22, 33, 19, 25,), ([40, 6, 33, 8, 78, -58, 2, 24, 40, 3, 46, 94, -26, 8, 22, -83, 96, -29, - 38, -59, 19, 62, 98, -55, -42, 79, 26, 62, -56, -85, -22], 20, 16, 19, 16,), ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 23, 21, 19, 23,), ([3, 68, 40, 48, 54, 35, 95, 56, 89, 40, 77, 68, 46, 78, 13, 27, 6, 17, 36, 99, 81, 2, 77, 52, 66, 52, 92, 43, 90, 22, 55, 67, 99, 60, 58], 28, 21, 23, 23,) ] n_success = 0 for i, parameters_set in enumerate(param): f_filled(*(filled_function_param[i])) f_gold(*parameters_set) if parameters_set == filled_function_param[i]: n_success += 1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/SORT_ARRAY_APPLYING_GIVEN_EQUATION.py
# Copyright (c) 2019-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # def f_gold ( n ) : if n < 3 : return n elif n >= 3 and n < 10 : return n - 1 po = 1 while n / po > 9 : po = po * 10 msd = n / po if msd != 3 : return f_gold ( msd ) * f_gold ( po - 1 ) + f_gold ( msd ) + f_gold ( n % po ) else : return f_gold ( msd * po - 1 ) #TOFILL if __name__ == '__main__': param = [ (85,), (86,), (3,), (35,), (59,), (38,), (33,), (15,), (75,), (74,) ] n_success = 0 for i, parameters_set in enumerate(param): if f_filled(*parameters_set) == f_gold(*parameters_set): n_success+=1 print("#Results: %i, %i" % (n_success, len(param)))
CodeGen-main
data/transcoder_evaluation_gfg/python/COUNT_NUMBERS_THAT_DONT_CONTAIN_3.py