python_code
stringlengths
0
992k
repo_name
stringlengths
8
46
file_path
stringlengths
5
162
from pathlib import Path import pytest from models.openai_model import Model from transformers import GPT2TokenizerFast from services.usage_service import UsageService # Non-ChatGPT -> TODO: make generic test and loop through text models @pytest.mark.asyncio async def test_send_req(): usage_service = UsageService(Path("../tests")) model = Model(usage_service) prompt = "how many hours are in a day?" tokens = len(GPT2TokenizerFast.from_pretrained("gpt2")(prompt)["input_ids"]) res = await model.send_request(prompt, tokens) assert "24" in res["choices"][0]["text"] # ChatGPT version @pytest.mark.asyncio async def test_send_req_gpt(): usage_service = UsageService(Path("../tests")) model = Model(usage_service) prompt = "how many hours are in a day?" res = await model.send_request( prompt, None, is_chatgpt_request=True, model="gpt-3.5-turbo" ) assert "24" in res["choices"][0]["message"]["content"] # GPT4 version @pytest.mark.asyncio async def test_send_req_gpt4(): usage_service = UsageService(Path("../tests")) model = Model(usage_service) prompt = "how many hours are in a day?" res = await model.send_request(prompt, None, is_chatgpt_request=True, model="gpt-4") assert "24" in res["choices"][0]["message"]["content"] # Edit request -> currently broken due to endpoint # @pytest.mark.asyncio # async def test_send_edit_req(): # usage_service = UsageService(Path("../tests")) # model = Model(usage_service) # text = 'how many hours are in a day?' # res = await model.send_edit_request(text) # assert '24' in res['choices'][0]['text']
SwarmsDiscord-main
tests/test_requests.py
Speculative-Decoding-main
sd/__init__.py
import torch import torch.nn.functional as F class SpeculativeDecoder: def __init__(self, Mp, Mq, gamma): """ Initialize the SpeculativeDecoder. Parameters: - Mp (nn.Module): The target model. - Mq (nn.Module): The more efficient approximation model. - gamma (int): The number of completions to generate. """ self.Mp = Mp self.Mq = Mq self.gamma = gamma def speculative_sampling(self, p, q): """ Perform speculative sampling from distribution p(x) using distribution q(x). Parameters: - p (torch.Tensor): The target distribution p(x). - q (torch.Tensor): The approximation distribution q(x). Returns: - x (int): The sampled token from p(x). """ try: # Sample x from q(x) x = torch.multinomial(q, 1).item() # Keep x if q(x) <= p(x), otherwise reject and resample from adjusted distribution if q[x] > p[x]: p_0 = F.normalize(torch.clamp(p - q, min=0), p=1, dim=0) x = torch.multinomial(p_0, 1).item() return x except Exception as e: print("An error occurred in speculative_sampling: ", str(e)) def speculative_decoding_step(self, prefix): """ Perform one step of speculative decoding. Parameters: - prefix (torch.Tensor): The conditioning prefix. Returns: - new_prefix (torch.Tensor): The updated prefix. """ try: # Sample γ guesses from Mq autoregressively prefix = prefix.unsqueeze(0) # Add batch dimension guesses = [] for i in range(self.gamma): with torch.no_grad(): q = self.Mq(prefix) guess = torch.multinomial(q[0], 1) guesses.append(guess) prefix = torch.cat((prefix, guess.unsqueeze(0)), dim=1) # Run Mp in parallel p_values = [] for i in range(self.gamma + 1): with torch.no_grad(): p = self.Mp(prefix[:, :len(prefix[0]) - i]) p_values.append(p[0]) # Determine the number of accepted guesses n = self.gamma for i in range(self.gamma): ri = torch.rand(1).item() if ri > p_values[i][guesses[i].item()] / q[0][guesses[i].item()]: n = i - 1 break # Adjust the distribution from Mp if needed p_0 = p_values[n + 1] if n < self.gamma: q_n = q[0][guesses[n].item()] p_0 = F.normalize(torch.clamp(p_0 - q_n, min=0), p=1, dim=0) # Return one token from Mp, and n tokens from Mq t = torch.multinomial(p_0, 1) new_prefix = torch.cat((prefix[0, :len(prefix[0]) - self.gamma + n], t)) return new_prefix except Exception as e: print("An error occurred in speculative_decoding_step: ", str(e)) # Example Usage # Make sure to define your models Mp and Mq, and provide the prefix and gamma value # Mp = some_target_model # Mq = some_approximation_model # prefix = torch.tensor([some_initial_tokens]) # gamma = some_integer_value # decoder = SpeculativeDecoder(Mp, Mq, gamma) # new_prefix = decoder.speculative_decoding_step(prefix)
Speculative-Decoding-main
sd/main.py
import json import warnings # warning raised by pkg_resources used in a lot of google packages warnings.filterwarnings("ignore", message=r".*declare_namespace\(\'.*google.*", category=DeprecationWarning) # base warning raised when warning above are raised warnings.filterwarnings("ignore", message=r".*pkg_resources is deprecated.*", category=DeprecationWarning) # must import taggers to register them # we import the rust extension here and wrap it in a python module from . import dolma as _dolma # type: ignore # noqa: E402 from .core.errors import DolmaRustPipelineError # noqa: E402 from .taggers import * # noqa: E402 def deduper(config: dict): try: _dolma.deduper_entrypoint(json.dumps(config)) except RuntimeError as e: raise DolmaRustPipelineError(f"Error running deduper: {e}") from e def mixer(config: dict): try: _dolma.mixer_entrypoint(json.dumps(config)) except RuntimeError as e: raise DolmaRustPipelineError(f"Error running mixer: {e}") from e
dolma-main
python/dolma/__init__.py
import math from abc import abstractmethod, abstractproperty from typing import Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np import numpy.typing as npt # # # OLD IMPORT # # # # from sortedcontainers import SortedDict class SummaryTuple(NamedTuple): counts: List[int] bins: List[float] def sort_and_merge_bins( bins: npt.NDArray[np.float64], counts: npt.NDArray[np.int64], mask: Optional[npt.NDArray[np.bool_]] = None ) -> Tuple[npt.NDArray[np.float64], npt.NDArray[np.int64]]: """Sort bins and counts; merge counts for duplicate bins""" masked_bins = bins[mask] if mask is not None else bins masked_counts = counts[mask] if mask is not None else counts uniq_bins, uniq_indices, uniq_counts = np.unique(masked_bins, return_counts=True, return_index=True) uniq_counts *= masked_counts[uniq_indices] return uniq_bins, uniq_counts def merge_bins( bin_a: npt.NDArray[np.float64], count_a: npt.NDArray[np.int64], bin_b: npt.NDArray[np.float64], count_b: npt.NDArray[np.int64], ): """Merge two sets of bins and counts into one set of bins and counts; assumes that bin_a and bin_b are sorted Args: bin_a (npt.NDArray[np.float64]): A sorted array of bins count_a (npt.NDArray[np.int64]): A corresponding array of counts bin_b (npt.NDArray[np.float64]): A sorted array of bins count_b (npt.NDArray[np.int64]): A corresponding array of counts """ if bin_a.size < bin_b.size: # bin_a is always the larger one bin_a, count_a, bin_b, count_b = bin_b, count_b, bin_a, count_a # we first find where the bins in bin_b would be inserted into bin_a # b_locs = np.minimum(np.searchsorted(bin_a, bin_b, side="left"), bin_a.size - 1) b_locs = np.searchsorted(bin_a, bin_b, side="left") # make a masked version of b_locs that only contains indices that are in bounds b_bounded_mask = b_locs < bin_a.size b_bounded_locs = b_locs * b_bounded_mask.astype(b_locs.dtype) # we make a few useful masks and arrays for later operations # we need to keep track of which bins in bin_b are new and which are duplicates of bins in bin_a # for the former, we will insert them into bin_a at the appropriate locations; for the latter, # we will add their counts to the counts of the corresponding bins in bin_a # new mask consists of either the bins in bin_b that are in bounds (i.e., would be between values of # bin_a and not after) and are not equal to the corresponding bins in bin_a, or the bins in bin_b that # will be inserted after the last bin in bin_a. b_new_mask = (bin_a[b_bounded_locs] != bin_b) | ~b_bounded_mask b_new_vals = bin_b[b_new_mask] # now we need to find the locations where the new bins will be inserted into new array bin_c which # is the size of bin_a + the number of new bins in bin_b b_new_locs = np.arange(b_new_vals.size) + b_locs[b_new_mask] # this is were we will store the new bins and counts bin_c = np.empty(bin_a.size + b_new_vals.size, dtype=bin_a.dtype) # we first fill bins from bin_a into bin_c; a_indices is a mask of the indices in bin_c that # should be filled with values from bin_a, so we remove values from bin_c. a_indices = np.ones(bin_c.size, dtype=bool) a_indices[b_new_locs] = False bin_c[a_indices] = bin_a # finally, we add values from bin_b into bin_c bin_c[b_new_locs] = b_new_vals # now onto the counts; we start by creating new container, and populate counts from count_a and count_b # where bin_a values are different from bin_b values. count_c = np.empty_like(bin_c, dtype=count_a.dtype) count_c[b_new_locs] = count_b[b_new_mask] count_c[a_indices] = count_a # finally, for the remaining counts, we group them by bin value and add them to counts from count_a # we must group because `array[locs] += values` does not work if there are duplicate indices in locs. b_uniq_locs, b_repeats, b_rep_cnt = np.unique(b_locs[~b_new_mask], return_counts=True, return_index=True) count_c[b_uniq_locs] += count_b[~b_new_mask][b_repeats] * b_rep_cnt return bin_c, count_c class BaseBucketApi: @abstractproperty def full(self) -> bool: raise NotImplementedError() @abstractmethod def add(self, value: Union[int, float], count: int = 1): raise NotImplementedError() def add_many(self, values: List[Union[int, float]], counts: List[int]): for value, count in zip(values, counts): self.add(value, count) @abstractmethod def summarize(self, n: int, density: bool = False) -> SummaryTuple: raise NotImplementedError() class InferBucketsValTracker(BaseBucketApi): """Keep track of running values by using two bucketed buffers""" _bins: npt.NDArray[np.float64] _counts: npt.NDArray[np.int64] _buffer_bins: npt.NDArray[np.float64] _buffer_counts: npt.NDArray[np.int64] _buffer_idx: int n: int _n: int def __init__(self, n: int, b: Optional[int] = None): self.n = self._n = n self.b = b or int(np.sqrt(n)) self._bins = np.empty(0, dtype=np.float64) self._counts = np.empty_like(self._bins, dtype=np.int64) # hold temporary values in a buffer self._new_buffer() def _new_buffer(self): """Create a new buffer and reset the buffer index""" self._buffer_bins = np.zeros(self.b, dtype=np.float64) self._buffer_counts = np.zeros_like(self._buffer_bins, dtype=np.int64) self._buffer_idx = 0 def _add_buffer_to_bins(self): """Bin the values in the buffer and merge them with the existing bins and counts.""" locs = np.minimum(np.searchsorted(self._bins, self._buffer_bins, side="left"), self._bins.size - 1) trim_og_locs, trim_og_counts = locs[: self._buffer_idx], self._buffer_counts[: self._buffer_idx] trim_locs, repeats_locs, repeats_cnt = np.unique(trim_og_locs, return_counts=True, return_index=True) trim_counts = trim_og_counts[repeats_locs] * repeats_cnt self._counts[trim_locs] += trim_counts self._new_buffer() def _sort_buffer(self): mask = np.arange(0, self._buffer_bins.size) < self._buffer_idx bins, counts = sort_and_merge_bins(bins=self._buffer_bins, counts=self._buffer_counts, mask=mask) self._buffer_bins = bins self._buffer_counts = counts self._buffer_idx = bins.size def _concat_buffer(self): """Concatenate the buffer with the existing bins and counts.""" # make sure the buffer is sorted before merging self._sort_buffer() if self._bins.size == 0: # shortcut: if there are no bins, just copy the buffer self._bins = self._buffer_bins self._counts = self._buffer_counts self._new_buffer() return # actually do the merge here! self._bins, self._counts = merge_bins( bin_a=self._bins, count_a=self._counts, bin_b=self._buffer_bins, count_b=self._buffer_counts ) self._new_buffer() def _add_not_full(self, value: float, count: int = 1): """Add a value to the tracker when the tracker is not full; in this case, the value is added to the buffer and eventually merged with existing bins and counts.""" self._n -= 1 if self._n < 0: return self._add_full(value, count) self._buffer_bins[self._buffer_idx] = value self._buffer_counts[self._buffer_idx] = count self._buffer_idx += 1 if self._buffer_idx == self._buffer_bins.size: self._concat_buffer() def _add_full(self, value: float, count: int = 1): """Add a value to the tracker when the tracker is full; in this case, the value is added by bisecting the tracker and adding the value to the appropriate bucket.""" self._buffer_bins[self._buffer_idx] = value self._buffer_counts[self._buffer_idx] = count self._buffer_idx += 1 if self._buffer_idx == self._buffer_bins.size: self._add_buffer_to_bins() def __len__(self) -> int: return self._counts.size @property def full(self) -> bool: return self._n <= 0 def add(self, value: Union[int, float], count: int = 1): if self._n >= 0: self._add_not_full(value=value, count=count) else: self._add_full(value=value, count=count) def summarize(self, n: int, density: bool = False) -> SummaryTuple: """Return up to n buckets with counts of merged values""" # finalize operations self._concat_buffer() if self._n >= 0 else self._add_buffer_to_bins() if len(self) <= n: # if there are fewer than n buckets, return the buckets as is return SummaryTuple(counts=self._counts.tolist(), bins=self._bins.tolist()) # make weighted histogram using counts new_counts, new_values = np.histogram(a=self._bins, bins=n, weights=self._counts, density=density) # return lists instead of numpy arrays return SummaryTuple(counts=new_counts.tolist(), bins=new_values.tolist()) class FixedBucketsValTracker(BaseBucketApi): def __init__(self, n: int = 2): assert n >= 0 # we use n to determine the precision of the bins; for convenience we store it as a power of 10 self.n = 10**n self._bins: Dict[Tuple[int, int], int] = {} def add(self, value: Union[int, float], count: int = 1): m, e = math.frexp(value) k = int(m * self.n), e if k not in self._bins: self._bins[k] = 0 self._bins[k] += count def __len__(self) -> int: return len(self._bins) @property def full(self) -> bool: return False def summarize(self, n: int, density: bool = False) -> SummaryTuple: bins, counts = zip(*sorted((m / self.n * 2**e, c) for (m, e), c in self._bins.items())) if len(self) <= n: # if there are fewer than n buckets, return the buckets as is return SummaryTuple(counts=[int(c) for c in counts], bins=[float(b) for b in bins]) # computing the weighted histograms new_counts, new_values = np.histogram(a=bins, bins=n, weights=counts, density=density) # return lists instead of numpy arrays return SummaryTuple(counts=new_counts.tolist(), bins=new_values.tolist())
dolma-main
python/dolma/core/binning.py
import glob import re from functools import partial from itertools import chain from pathlib import Path from typing import Any, Dict, Iterable, Iterator, List, Tuple, Union from urllib.parse import urlparse from fsspec import AbstractFileSystem, get_filesystem_class __all__ = [ "glob_path", "sub_prefix", "add_suffix", "sub_suffix", "make_relative", "mkdir_p", "split_path", "join_path", "is_glob", "split_glob", "partition_path", ] FS_KWARGS: Dict[str, Dict[str, Any]] = { "": {"auto_mkdir": True}, } RE_ANY_ESCAPE = re.compile(r"(?<!\\)(\*\?\[\])") RE_GLOB_STAR_ESCAPE = re.compile(r"(?<!\\)\*") RE_GLOB_ONE_ESCAPE = re.compile(r"(?<!\\)\?") RE_GLOB_OPEN_ESCAPE = re.compile(r"(?<!\\)\[") RE_GLOB_CLOSE_ESCAPE = re.compile(r"(?<!\\)\]") ESCAPE_SYMBOLS_MAP = {"*": "\u2581", "?": "\u2582", "[": "\u2583", "]": "\u2584"} REVERSE_ESCAPE_SYMBOLS_MAP = {v: k for k, v in ESCAPE_SYMBOLS_MAP.items()} def _get_fs(path: Union[Path, str]) -> AbstractFileSystem: """ Get the filesystem class for a given path. """ path = str(path) protocol = urlparse(path).scheme fs = get_filesystem_class(protocol)(**FS_KWARGS.get(protocol, {})) # patch glob method to support recursive globbing if protocol == "": fs.glob = partial(glob.glob, recursive=True) return fs def _escape_glob(s: Union[str, Path]) -> str: """ Escape glob characters in a string. """ s = str(s) s = RE_GLOB_STAR_ESCAPE.sub(ESCAPE_SYMBOLS_MAP["*"], s) s = RE_GLOB_ONE_ESCAPE.sub(ESCAPE_SYMBOLS_MAP["?"], s) s = RE_GLOB_OPEN_ESCAPE.sub(ESCAPE_SYMBOLS_MAP["["], s) s = RE_GLOB_CLOSE_ESCAPE.sub(ESCAPE_SYMBOLS_MAP["]"], s) return s def _unescape_glob(s: Union[str, Path]) -> str: """ Unescape glob characters in a string. """ s = str(s) for k, v in REVERSE_ESCAPE_SYMBOLS_MAP.items(): s = s.replace(k, v) return s def _pathify(path: Union[Path, str]) -> Tuple[str, Path]: """ Return the protocol and path of a given path. """ path = _escape_glob(str(path)) parsed = urlparse(path) path = Path(f"{parsed.netloc}/{parsed.path}") if parsed.netloc else Path(parsed.path) return parsed.scheme, path def _unpathify(protocol: str, path: Path) -> str: """ Return a path from its protocol and path components. """ path_str = _unescape_glob(str(path)) if protocol: path_str = f"{protocol}://{path_str.lstrip('/')}" return path_str def partition_path(path: str) -> Tuple[str, Tuple[str, ...], Tuple[str, ...]]: """Partition a path into its protocol, symbols before a glob, and symbols after a glob.""" # split the path into its protocol and path components prot, path_obj = _pathify(path) # we need to first figure out if this path has a glob by checking if any of the escaped symbols for # globs are in the path. glob_locs = [i for i, p in enumerate(path_obj.parts) if any(c in p for c in REVERSE_ESCAPE_SYMBOLS_MAP)] # make the path components before the glob pre_glob_path = path_obj.parts[: glob_locs[0]] if glob_locs else path_obj.parts pre_glob_path = tuple(_unescape_glob(p) for p in pre_glob_path) # make the path components after the glob post_glob_path = path_obj.parts[glob_locs[0] + 1 :] if glob_locs else () post_glob_path = tuple(_unescape_glob(p) for p in post_glob_path) return prot, pre_glob_path, post_glob_path def split_path(path: str) -> Tuple[str, Tuple[str, ...]]: """ Split a path into its protocol and path components. """ protocol, _path = _pathify(path) return protocol, tuple(_unescape_glob(p) for p in _path.parts) def join_path(protocol: Union[str, None], *parts: Union[str, Iterable[str]]) -> str: """ Join a path from its protocol and path components. """ all_parts = (_escape_glob(p) for p in chain.from_iterable([p] if isinstance(p, str) else p for p in parts)) path = str(Path(*all_parts)).rstrip("/") if protocol: path = f"{protocol}://{path.lstrip('/')}" return _unescape_glob(path) def glob_path(path: Union[Path, str], hidden_files: bool = False, autoglob_dirs: bool = True) -> Iterator[str]: """ Expand a glob path into a list of paths. """ path = str(path) protocol = urlparse(path).scheme fs = _get_fs(path) if fs.isdir(path) and autoglob_dirs: path = join_path(None, path, "*") for gl in fs.glob(path): gl = str(gl) if not hidden_files and Path(gl).name.startswith("."): continue yield join_path(protocol, gl) def sub_prefix(a: str, b: str) -> str: """ Return the relative path of b from a. """ prot_a, path_a = _pathify(a) prot_b, path_b = _pathify(b) if prot_a != prot_b: raise ValueError(f"Protocols of {a} and {b} do not match") try: diff = str(path_a.relative_to(path_b)) except ValueError: diff = join_path(prot_a, path_a.parts) return _unescape_glob(diff) def sub_suffix(a: str, b: str) -> str: """ Remove b from the end of a. """ prot_a, path_a = _pathify(a) prot_b, path_b = _pathify(b) if prot_b: raise ValueError(f"{b} is not a relative path") sub_path = re.sub(f"{path_b}$", "", str(path_a)) sub_prot = f"{prot_a}://" if prot_a else "" # need to trim '/' from the end if (a) '/' is not the only symbol in the path or # (b) there is a protocol so absolute paths don't make sense if sub_path != "/" or sub_prot: sub_path = sub_path.rstrip("/") return _unescape_glob(sub_prot + sub_path) def add_suffix(a: str, b: str) -> str: """ Return the the path of a joined with b. """ prot_a, path_a = _pathify(a) prot_b, path_b = _pathify(b) if prot_b: raise ValueError(f"{b} is not a relative path") return join_path(prot_a, str(path_a / path_b)) def mkdir_p(path: str) -> None: """ Create a directory if it does not exist. """ if is_glob(path): raise ValueError(f"Cannot create directory with glob pattern: {path}") fs = _get_fs(path) fs.makedirs(path, exist_ok=True) def make_relative(paths: List[str]) -> Tuple[str, List[str]]: """Find minimum longest root shared among all paths""" if len(paths) == 0: raise ValueError("Cannot make relative path of empty list") common_prot, common_parts, _ = partition_path(paths[0]) for path in paths: current_prot, current_parts, _ = partition_path(path) if current_prot != common_prot: raise ValueError(f"Protocols of {path} and {paths[0]} do not match") for i in range(min(len(common_parts), len(current_parts))): if common_parts[i] != current_parts[i]: common_parts = common_parts[:i] break if len(common_parts) > 0: common_path = (f"{common_prot}://" if common_prot else "") + str(Path(*common_parts)) relative_paths = [sub_prefix(path, common_path) for path in paths] else: common_path = f"{common_prot}://" if common_prot else "" relative_paths = [_unpathify("", _pathify(path)[1]) for path in paths] return common_path, relative_paths def is_glob(path: str) -> bool: """ Check if a path contains a glob wildcard. """ return bool(re.search(r"(?<!\\)[*?[\]]", path)) def split_glob(path: str) -> Tuple[str, str]: """ Partition a path on the first wildcard. """ if not is_glob(path): return path, "" protocol, parts = split_path(path) i = min(i for i, c in enumerate(parts) if is_glob(c)) path = join_path(protocol, *parts[:i]) rest = join_path("", *parts[i:]) return path, rest
dolma-main
python/dolma/core/paths.py
# flake8: noqa # type: ignore import argparse import json import os from contextlib import ExitStack from typing import Dict, List, Optional import msgspec import yaml from .data_types import DocResult, InputSpec, OutputSpec class Visualizer: BASE_S3_PREFIX = "s3://ai2-llm/pretraining-data/sources" def __init__( self, dataset: str, experiment: Optional[str] = None, tagger: Optional[str] = None, type: Optional[str] = None, ): self.dataset = dataset self.experiment = experiment self.tagger = tagger self.type = type def list_tags(self, path: str): prefix, doc_path = path.split("/documents/") attrs_decoder = msgspec.json.Decoder(OutputSpec) doc_decoder = msgspec.json.Decoder(InputSpec) with ExitStack() as stack: doc_file = stack.enter_context(stream_file_for_read(path, "rb")) doc_stream = stack.enter_context(decompress_stream(doc_file, "rt")) exp_path = f"{prefix}/attributes/{self.experiment}/{doc_path}" exp_file = stack.enter_context(stream_file_for_read(exp_path, "rb")) exp_stream = stack.enter_context(decompress_stream(exp_file, "rt")) tags: Dict[str, List[str]] = {} for doc_line, exp_line in zip(doc_stream, exp_stream): # parse out data from the line input_doc = doc_decoder.decode(doc_line) input_exp = attrs_decoder.decode(exp_line) doc_result = DocResult.from_spec(input_doc, input_exp) for span in doc_result.spans: tags.setdefault(str(span.tagger), []).append(span.type) break print(colored(f"from {self.short_path(path)}:", color="yellow")) for tagger, types in sorted(tags.items()): print(colored(f"{tagger}:", color="magenta")) for type in sorted(set(types)): print(colored(f" {type}", color="cyan")) print() def short_path(self, path: str, slack: int = 20) -> str: return f"...{path[-s:]}" if (s := round(os.get_terminal_size().columns - slack)) < len(path) else path def visualize_single(self, path: str): prefix, doc_path = path.split("/documents/") attrs_decoder = msgspec.json.Decoder(OutputSpec) doc_decoder = msgspec.json.Decoder(InputSpec) with ExitStack() as stack: doc_file = stack.enter_context(stream_file_for_read(path, "rb")) doc_stream = stack.enter_context(decompress_stream(doc_file, "rt")) exp_path = f"{prefix}/attributes/{self.experiment}/{doc_path}" exp_file = stack.enter_context(stream_file_for_read(exp_path, "rb")) exp_stream = stack.enter_context(decompress_stream(exp_file, "rt")) i = 0 file_header = colored(f"file: {self.short_path(path)}\n", color="magenta") for doc_line, exp_line in zip(doc_stream, exp_stream): # parse out data from the line input_doc = doc_decoder.decode(doc_line) input_exp = attrs_decoder.decode(exp_line) doc_result = DocResult.from_spec(input_doc, input_exp) example_header = colored(f"example: {i:,}\n", color="yellow") dt = doc_result.doc.text spans = sorted( (s for s in doc_result.spans if s.tagger == self.tagger and s.type == self.type), key=lambda s: s.start, ) if not spans: continue prev_start = 0 text_fragments = [] for span in spans: text_fragments.append(colored(dt[prev_start : span.start].replace("\n", "\\n"), color="black")) text_fragments.append(colored(dt[span.start : span.end].replace("\n", "\\n"), color="green")) text_fragments.append(colored(f"{{{span.type}: {span.score}}}", color="red")) prev_start = span.end text_fragments.append(colored(dt[prev_start:].replace("\n", "\\n"), color="black")) tagger_header = colored(f"tagger: {self.tagger}\n", color="cyan") print("".join(text_fragments) + "\n" + file_header + example_header + tagger_header + "\n") while True: out = input("next? [l/f] ").lower().strip() if out == "l": i += 1 break elif out == "f": return else: print(f"invalid input: {out}; choose between next (l)ine or next (f)ile.") def __call__(self): try: source_prefix = f"{self.BASE_S3_PREFIX}/{self.dataset}/documents" for path in recursively_list_files(source_prefix): # just list tags if no tagger or type is specified if self.tagger is None or self.type is None: self.list_tags(path) return # visualize the specified tagger and type self.visualize_single(path) except KeyboardInterrupt: print("\nExiting... bye!") @classmethod def main(cls): ap = argparse.ArgumentParser() ap.add_argument( "-d", "--dataset", required=True, help="Dataset to visualize", ) ap.add_argument( "-e", "--experiment-name", required=True, help="Experiment name to visualize", ) ap.add_argument( "-t", "--tagger", type=str, default=None, help="Tagger to visualize", ) ap.add_argument( "-y", "--type", type=str, default=None, help="Type to visualize", ) opts = ap.parse_args() cls(dataset=opts.dataset, experiment=opts.experiment_name, tagger=opts.tagger, type=opts.type)() class RawPreviewer: BASE_S3_PREFIX = "s3://ai2-llm/pretraining-data/sources" def __init__(self, dataset: str, type: str, file: str, pretty: bool = False, experiment: Optional[str] = None): self.dataset = dataset self.experiment = experiment self.type = type self.file = file self.pretty = pretty assert type == "documents" or experiment is not None, "Must specify experiment for attributes" def preview_file(self): if self.type == "documents": path = f"{self.BASE_S3_PREFIX}/{self.dataset}/documents/{self.file}" else: path = f"{self.BASE_S3_PREFIX}/{self.dataset}/attributes/{self.experiment}/{self.file}" with ExitStack() as stack: file = stack.enter_context(stream_file_for_read(path, "rb")) stream = stack.enter_context(decompress_stream(file, "rt")) list_colors = ["red", "green", "blue", "magenta", "cyan"] for line in stream: row = json.loads(line) if self.pretty: out = yaml.dump(row, width=float("inf")) for ln in out.split("\n"): if not ln.startswith(" "): key, *rest = ln.split(":") rest = (":" + ":".join(rest) if rest else "").strip() print(colored(key, color=list_colors[0]) + rest) list_colors = list_colors[1:] + list_colors[:1] else: print(ln) else: print(row) input(colored("\n[press enter for next line]", color="yellow")) def list_files(self): prefix = f"{self.BASE_S3_PREFIX}/{self.dataset}/documents" for path in recursively_list_files(prefix): print(path[len(prefix) + 1 :]) def __call__(self): try: if self.file is not None: self.preview_file() else: self.list_files() except KeyboardInterrupt: print("\nExiting... bye!") @classmethod def main(cls): ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="Dataset to preview, e.g. `wikipedia/v0`") ap.add_argument( "-t", "--type", choices=["documents", "attributes"], required=True, help="Type of data to preview; it can be either `documents` or `attributes`.", ) ap.add_argument( "-e", "--experiment", default=None, help="Experiment to preview; this is only used for previewing `attributes` assigned by tagger.", ) ap.add_argument( "-f", "--file", default=None, type=str, help="File to preview; if not sure which file to preview, skip this argument to list all files.", ) ap.add_argument( "-p", "--pretty", action="store_true", help="Whether to use pretty print for previewing JSON lines." ) opts = ap.parse_args() cls(dataset=opts.dataset, type=opts.type, file=opts.file, experiment=opts.experiment, pretty=opts.pretty)()
dolma-main
python/dolma/core/vizualizer.py
from typing import Callable, Dict, Generator, Tuple, Type, TypeVar from .taggers import BaseTagger T = TypeVar("T", bound=BaseTagger) class TaggerRegistry: __taggers: Dict[str, Type[BaseTagger]] = {} @classmethod def taggers(cls) -> Generator[Tuple[str, Type[BaseTagger]], None, None]: yield from cls.__taggers.items() @classmethod def add(cls, name: str) -> Callable[[Type[T]], Type[T]]: def _add( tagger_cls: Type[T], tagger_name: str = name, taggers_dict: Dict[str, Type[BaseTagger]] = cls.__taggers, ) -> Type[T]: if tagger_name in taggers_dict and taggers_dict[tagger_name] != tagger_cls: if tagger_cls.__module__ == "__main__": return tagger_cls raise ValueError(f"Tagger {tagger_name} already exists") taggers_dict[tagger_name] = tagger_cls return tagger_cls return _add @classmethod def get(cls, name: str) -> Type[BaseTagger]: if name not in cls.__taggers: raise ValueError( f"Unknown tagger {name}; available taggers: " + ", ".join([tn for tn, _ in cls.taggers()]) ) return cls.__taggers[name]
dolma-main
python/dolma/core/registry.py
import logging def get_logger(name: str) -> logging.Logger: name = f"dolma.{name}" logger = logging.getLogger(name) logger.setLevel(logging.WARN) if not logger.handlers: handler = logging.StreamHandler() handler.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(name)s %(message)s")) logger.addHandler(handler) return logger
dolma-main
python/dolma/core/loggers.py
import multiprocessing import re import shutil from contextlib import ExitStack from tempfile import TemporaryDirectory from typing import Dict, List, Optional import msgspec import smart_open import tqdm from msgspec.json import Decoder from rich.console import Console from rich.table import Table from .binning import BaseBucketApi, FixedBucketsValTracker, InferBucketsValTracker from .data_types import OutputSpec from .errors import DolmaError from .parallel import BaseParallelProcessor, QueueType from .paths import glob_path, mkdir_p NUM_BINS = 100_000 BUFF_SIZE = 1_000 def _make_tracker(type_: str = "fixed", **kwargs: int) -> BaseBucketApi: """Make a tracker of given type. Choose between `infer` or `fixed`""" if type_ == "infer": return InferBucketsValTracker(**{"n": NUM_BINS, "b": BUFF_SIZE, **kwargs}) elif type_ == "fixed": return FixedBucketsValTracker(**{"n": NUM_BINS, **kwargs}) else: raise ValueError(f"Unknown tracker type {type_}") class SummarySpec(msgspec.Struct): name: str counts: List[int] bins: List[float] @classmethod def from_tracker(cls, name: str, tracker: "BaseBucketApi", n: int) -> "SummarySpec": counts, bins = tracker.summarize(n=n) return SummarySpec(name=name, counts=counts, bins=bins) def to_tracker(self) -> "BaseBucketApi": tracker = _make_tracker() tracker.add_many(values=self.bins, counts=self.counts) return tracker class AnalyzerProcessor(BaseParallelProcessor): @classmethod def increment_progressbar( # type: ignore cls, queue: QueueType, # queue must be the first argument, and it should be a positional-only argument /, files: int = 0, documents: int = 0, ) -> Dict[str, int]: """We override this method to specify which units we want to keep track of in a progress bar. Specifically, we keep track of files and documents in this example. Their default value must be zero.""" # we call the super method to increment the progress bar return super().increment_progressbar(queue, files=files, documents=documents) @classmethod def process_single( cls, source_path: str, destination_path: str, queue: QueueType, **kwargs, ): # instantiate a decoder for faster decoding decoder = Decoder(OutputSpec) # number of bins to use num_bins = kwargs.get("num_bins", 1000) # regex to filter attribute names name_regex = re.compile(r) if (r := kwargs.get("name_regex", None)) else None # keep track of the length and score of each attribute trackers: Dict[str, BaseBucketApi] = {} # interval at which to update the progress bar; will double if queue is too full update_interval = 1 # running document count; gets reset every time we update the progress bar docs_cnt = 0 with smart_open.open(source_path) as f: for ln in f: try: row = decoder.decode(ln) except Exception as e: raise DolmaError( f"Failed to decode line {ln} in {source_path}; " f"are you sure {source_path} is an attributes file?" ) from e # update the length and score trackers for each attribute for attr_name, attr_values in row.attributes.items(): # if a regex is provided, skip attributes that don't match it if name_regex and not name_regex.search(attr_name): continue # empty attributes count as zero attr_values = attr_values or [(0, 0, 0.0)] for start, end, score in attr_values: if "__label__" in attr_name: # annoying fix for fasttext: fasttext sometimes emits probabilities that are slightly # above 1.0, which causes issues with histograms. Therefore, we shift values that are # greater than 1.0 down to 1.0 # # fasttext labels are of the form __label__<label>, so we can just check if the # attribute name contains __label__ score = min(score, 1.0) trackers.setdefault(f"{attr_name}/score", _make_tracker()).add(score) trackers.setdefault(f"{attr_name}/length", _make_tracker()).add(end - start) # increment the number of documents processed so far docs_cnt += 1 if docs_cnt % update_interval == 0: # update the progress bar every 1000 documents to prevent # buffering cls.increment_progressbar(queue, documents=docs_cnt) docs_cnt = 0 if queue.qsize() >= multiprocessing.cpu_count(): # double the update interval if the queue is full update_interval *= 2 with smart_open.open(destination_path, "w") as f: for attr_name, tracker in trackers.items(): summary = SummarySpec.from_tracker(name=attr_name, tracker=tracker, n=num_bins) f.write(msgspec.json.encode(summary).decode("utf-8") + "\n") # update the progress bar one last time cls.increment_progressbar(queue, files=1, documents=docs_cnt) def aggregate_summaries(summaries_path: str, num_bins: int = 1000) -> List[SummarySpec]: # keep track of the length and score of each attribute trackers: Dict[str, BaseBucketApi] = {} # instantiate a decoder for faster decoding decoder = Decoder(SummarySpec) # iterator with nice progress bar it = tqdm.tqdm(list(glob_path(summaries_path)), desc="Aggregating summaries", unit=" files", unit_scale=True) # load partial summaries and aggregate it for path in it: with smart_open.open(path, "rt") as f: for ln in f: summary = decoder.decode(ln) trackers.setdefault(summary.name, _make_tracker()).add_many(summary.bins, summary.counts) # convert trackers to summaries summaries = [ SummarySpec.from_tracker(name=attr_name, tracker=attr_tracker, n=num_bins) for attr_name, attr_tracker in trackers.items() ] return summaries def visualize_summaries(summaries: List[SummarySpec], digits: int = 4, num_viz_bins: int = 10): console = Console() console.print() def round_all(values: List[float], opt_sci: bool = False) -> List[str]: """Logic to round values depending on their range""" if values == [0, 1]: # just 0 and 1; no need to round or add decimal points return ["0", "1"] elif all(-1 <= val <= 1 for val in values): # all values are in the range [-1, 1]; let's attempt rounding with {digits} decimal points # unless some values are identical after rounding. attempt_rounding = [round(val, digits) for val in values] if len(set(attempt_rounding)) != len(values) and opt_sci: # oops, some values collide after rounding; let's use scientific notation instead # with one decimal point (note that we do this only if `opt_sci` is True) return [f"{val:.1e}" for val in values] else: # phew, all good; let's use {digits} decimal points for all values return [f"{round(val, digits):.{digits}f}" for val in values] else: # all values are outside the range [-1, 1]; let's round them to the nearest integer return [f"{int(round(val, 0)):d}" for val in values] for summary in summaries: # we use fewer bins for visualization summary = SummarySpec( name=summary.name, counts=(re_binned := summary.to_tracker().summarize(n=num_viz_bins)).counts, bins=re_binned.bins, ) # build the table here table = Table(title=summary.name, style="bold", min_width=len(summary.name)) table.add_column("value", justify="left", style="cyan") table.add_column("dist", justify="left", style="magenta") table.add_column("count", justify="left", style="green") rounded_bins = round_all(summary.bins) ranges = ( [f"[{lo}, {hi})" for lo, hi in zip(rounded_bins, rounded_bins[1:])] if len(summary.bins) > len(summary.counts) else rounded_bins ) counts_sum = sum(summary.counts) counts_normed = round_all([(count / counts_sum) for count in summary.counts], opt_sci=False) for value, dist, count in zip(ranges, counts_normed, summary.counts): table.add_row(value, dist, f"{count:,}") console.print(table) console.print() def write_output(summaries: List[SummarySpec], report: Optional[str] = None): if report is None: return mkdir_p(report) with smart_open.open(f"{report}/summaries.jsonl.gz", "w") as f: for summary in summaries: f.write(msgspec.json.encode(summary).decode("utf-8") + "\n") def create_and_run_analyzer( attributes: List[str], summaries_path: Optional[str] = None, metadata_path: Optional[str] = None, report: Optional[str] = None, debug: bool = False, seed: int = 0, num_bins: int = 1000, num_processes: int = 1, name_regex: Optional[str] = None, ): """ """ # create the report directory if it doesn't exist if report: mkdir_p(report) with ExitStack() as stack: # use temporary directories if no paths are provided summaries_path = summaries_path or stack.enter_context(TemporaryDirectory()) metadata_path = metadata_path or stack.enter_context(TemporaryDirectory()) # make sure these locations exist mkdir_p(summaries_path) mkdir_p(metadata_path) try: analyzer = AnalyzerProcessor( source_prefix=attributes, destination_prefix=summaries_path, metadata_prefix=metadata_path, debug=debug, seed=seed, ignore_existing=True, retries_on_error=0, num_processes=num_processes, ) analyzer(num_bins=num_bins, name_regex=name_regex) summaries = aggregate_summaries(summaries_path=summaries_path, num_bins=num_bins) visualize_summaries(summaries=summaries) write_output(summaries=summaries, report=report) finally: shutil.rmtree(summaries_path) shutil.rmtree(metadata_path)
dolma-main
python/dolma/core/analyzer.py
from .data_types import DocResult, Document, Span from .registry import TaggerRegistry from .taggers import BaseTagger __all__ = [ "BaseTagger", "DocResult", "Document", "Span", "TaggerRegistry", ]
dolma-main
python/dolma/core/__init__.py
""" Data types assumed by Filters. @kylel, @soldni """ from typing import Any, Dict, List, Optional, Tuple from msgspec import Struct from typing_extensions import TypeAlias TaggerOutputValueType: TypeAlias = Tuple[int, int, float] TaggerOutputType: TypeAlias = List[TaggerOutputValueType] TaggerOutputDictType: TypeAlias = Dict[str, TaggerOutputType] class InputSpec(Struct): id: str text: str source: str version: Optional[str] = None # ignoring metadata for now; taggers run on text only # metadata: Optional[Dict[str, Any]] = None class OutputSpec(Struct): id: str attributes: Dict[str, List[Tuple[int, int, float]]] source: Optional[str] = None class Document: __slots__ = "source", "version", "id", "text" def __init__(self, source: str, id: str, text: str, version: Optional[str] = None) -> None: self.source = source self.version = version self.id = id self.text = text @classmethod def from_spec(cls, spec: InputSpec) -> "Document": return Document(source=spec.source, version=spec.version, id=spec.id, text=spec.text) def to_spec(self) -> InputSpec: return InputSpec(source=self.source, version=self.version, id=self.id, text=self.text) @classmethod def from_json(cls, d: Dict) -> "Document": return Document(source=d["source"], version=d["version"], id=d["id"], text=d["text"]) def to_json(self) -> Dict: return {"source": self.source, "version": self.version, "id": self.id, "text": self.text} def __str__(self) -> str: attributes_string = ",".join([f"{k}:{repr(v)}" for k, v in self.to_json()]) return f"{self.__class__.__name__}({attributes_string})" class Span: __slots__ = "start", "end", "type", "score", "experiment", "tagger" def __init__( self, start: int, end: int, type: str, score: float = 1.0, experiment: Optional[str] = None, tagger: Optional[str] = None, ): self.start = start self.end = end self.type = type self.score = float(score) self.experiment = experiment self.tagger = tagger def mention(self, text: str, window: int = 0) -> str: return text[max(0, self.start - window) : min(len(text), self.end + window)] def select(self, doc: Document) -> str: return doc.text[self.start : self.end] @classmethod def from_spec(cls, attribute_name: str, attribute_value: TaggerOutputValueType) -> "Span": if "__" in attribute_name: # bff tagger has different name exp_name, tgr_name, attr_type = attribute_name.split("__", 2) else: exp_name = tgr_name = attr_type = attribute_name start, end, score = attribute_value return Span( start=int(start), end=int(end), type=attr_type, score=float(score), experiment=exp_name, tagger=tgr_name, ) def to_spec(self) -> Tuple[str, TaggerOutputValueType]: assert self.experiment is not None, "Experiment name must be set to convert to spec" assert self.tagger is not None, "Tagger name must be set to convert to spec" return ( f"{self.experiment}__{self.tagger}__{self.type}", (self.start, self.end, self.score), ) def __len__(self) -> int: return self.end - self.start @classmethod def from_json(cls, di: Dict) -> "Span": return Span(start=di["start"], end=di["end"], type=di["type"], score=di["score"]) def to_json(self, text: Optional[str] = None, window: int = 0) -> dict: span_repr = {"start": self.start, "end": self.end, "type": self.type, "score": self.score} if text is not None: span_repr["mention"] = self.mention(text=text, window=window) return span_repr def __str__(self) -> str: cls_name = self.__class__.__name__ return f"{cls_name}(start={self.start},end={self.end},type={repr(self.type)},score={self.score:.5f})" class DocResult: __slots__ = "doc", "spans" def __init__(self, doc: Document, spans: List[Span]) -> None: self.doc = doc self.spans = spans @classmethod def from_spec(cls, doc: InputSpec, *attrs_groups: OutputSpec) -> "DocResult": spans: List[Span] = [] for attrs in attrs_groups: assert doc.id == attrs.id, f"doc.id={doc.id} != attrs.id={attrs.id}" spans.extend( [ Span.from_spec(attribute_name=attr_name, attribute_value=attr_value) for attr_name, attr_values in attrs.attributes.items() for attr_value in attr_values ] ) return DocResult(doc=Document.from_spec(doc), spans=spans) def to_spec(self) -> Tuple[InputSpec, OutputSpec]: doc_spec = self.doc.to_spec() attributes: Dict[str, List[TaggerOutputValueType]] = {} for span in self.spans: attr_name, attr_value = span.to_spec() attributes.setdefault(attr_name, []).append(attr_value) return doc_spec, OutputSpec(source=self.doc.source, id=self.doc.id, attributes=attributes) @classmethod def from_json(cls, d: Dict[str, Any]) -> "DocResult": return DocResult( doc=Document.from_json(d["doc"]), spans=[Span.from_json(span) for span in d["spans"]], ) def to_json(self, with_doc: bool = False, window: int = 0) -> Dict[str, Any]: d: Dict[str, Any] = {"spans": [span.to_json(text=self.doc.text, window=window) for span in self.spans]} if with_doc: d["doc"] = self.doc.to_json() return d def __str__(self) -> str: return f"{self.__class__.__name__}(doc={self.doc},spans=[{','.join(str(s) for s in self.spans)}])" class TextSlice: """A slice of text from a document.""" __slots__ = "doc", "start", "end" def __init__(self, doc: str, start: int, end: int): self.doc = doc self.start = start self.end = end @property def text(self) -> str: return self.doc[self.start : self.end] def __str__(self) -> str: return f"{self.__class__.__name__}(text={repr(self.text)},start={self.start},end={self.end})"
dolma-main
python/dolma/core/data_types.py
import logging import multiprocessing import tempfile from contextlib import ExitStack, contextmanager from typing import ( IO, Any, Dict, Generator, Iterable, List, NamedTuple, Optional, Set, Union, ) import msgspec import smart_open from .data_types import InputSpec, OutputSpec, TaggerOutputDictType from .errors import DolmaFatalError, DolmaRetryableFailure, DolmaShardError from .loggers import get_logger from .parallel import BaseParallelProcessor, QueueType from .paths import join_path, make_relative, mkdir_p, split_glob, split_path from .registry import TaggerRegistry from .utils import make_variable_name # this placeholder gets used when a user has provided no experiment name, and we want to use taggers' # names as experiment names. EXPERIMENT_PLACEHOLDER_NAME = "_______EXPERIMENT_PLACEHOLDER_NAME_______" def _make_paths_from_substitution(paths: List[str], find: str, replace: str) -> List[str]: """ Utility function to make paths using a find/replace substitution. This is useful if you want to create a destination path from a source path by replacing part of the source path with something else. For example, if you have a source path of `current_paths = ["s3://bucket/data/documents/**.json.gz"]` and you want to replace `documents` with `attributes`, you can use this function to do that. by calling `_make_paths_from_substitution(current_paths, "documents", "attribute")`. This will return the following list `["s3://bucket/data/attributes"]`. Note how glob patterns are removed from the paths. """ new_paths: List[str] = [] for curr in paths: curr_pre_glob, _ = split_glob(curr) curr_prot, curr_parts = split_path(curr_pre_glob) find_dir_index = curr_parts.index(find) if not curr_pre_glob.strip(): raise RuntimeError(f"Path '{curr}' contains a wildcard at the beginning. ") elif find_dir_index < 0: raise RuntimeError(f"Path '{curr}' does not contain a '{find}' component.") dst_parts = [p if i != find_dir_index else replace for i, p in enumerate(curr_parts)] new_paths.append(join_path(curr_prot, dst_parts)) return new_paths def _make_paths_from_prefix(paths: List[str], prefix: str) -> List[str]: """ Utility function to make paths using a prefix. This is useful if you want to create a destination path from a source path by prepending a prefix to the source path. To create destination paths, we first find the longest common prefix among all source paths. Then, we we remove the prefix from each source path and prepend the new prefix to each source path. For example, if you have a source path of ``` current_paths = [ "s3://bucket/data/documentsA/**.json.gz", "s3://bucket/data/documentsB/**.json.gz", ] ``` and you want to replace `s3://bucket/data/` with `s3://bucket/attributes/`, you can use this function to do that. by calling `_make_paths_from_prefix(current_paths, "s3://bucket/attributes/")`. This will return the following list ``` [ "s3://bucket/attributes/documentsA/", "s3://bucket/attributes/documentsB/", ] ``` Note how glob patterns are removed from the paths. """ new_paths: List[str] = [] prefix_prot, prefix_path = split_path(prefix) _, relative_paths = make_relative(paths) for curr_path in relative_paths: base_curr_path, _ = split_glob(curr_path) new_paths.append(join_path(prefix_prot, prefix_path, base_curr_path)) return new_paths class TaggerOutputLocation(NamedTuple): exp: str name: str path: str class TaggerOutputIO(NamedTuple): exp: str taggers: Set[str] path: str io: IO encoder: msgspec.json.Encoder def write(self, d: OutputSpec) -> None: enc = self.encoder.encode(d) self.io.write(enc.decode("utf-8") + "\n") def _determine_output_paths_for_taggers( experiment_name: str, destination: str, taggers: Iterable[str] ) -> Dict[str, TaggerOutputLocation]: """Utility function to derive the paths to which taggers output should be written. If experiment_name is the placeholder name, then the name of each tagger will be used as part of the destination path. Otherwise, the destination path will be used for all taggers.""" if experiment_name == EXPERIMENT_PLACEHOLDER_NAME: return { tagger_name: TaggerOutputLocation( exp=make_variable_name(tagger_name), name=make_variable_name(tagger_name), path=destination.replace(EXPERIMENT_PLACEHOLDER_NAME, tagger_name), ) for tagger_name in taggers } else: return { tagger_name: TaggerOutputLocation( exp=make_variable_name(experiment_name), name=make_variable_name(tagger_name), path=destination ) for tagger_name in taggers } @contextmanager def _make_output_streams( taggers_paths: Dict[str, TaggerOutputLocation], **open_kwargs: Any ) -> Generator[Dict[str, TaggerOutputIO], None, None]: """Utility function to open paths for taggers. It is designed NOT to open duplicate paths if multiple taggers are writing to the same file. """ # keep track of the paths that have been opened opened: Dict[str, TaggerOutputIO] = {} with ExitStack() as stack: for key, loc in taggers_paths.items(): if loc.path not in opened: # make sure the parent directory exists prot, path = split_path(loc.path) parent = join_path(prot, path[:-1]) mkdir_p(parent) # open a new file and create a new encoder io = stack.enter_context(smart_open.open(loc.path, **open_kwargs)) encoder = msgspec.json.Encoder() opened[loc.path] = TaggerOutputIO( exp=loc.exp, taggers=set(), path=loc.path, io=io, encoder=encoder ) # keep track of which taggers are writing to this paths opened[loc.path].taggers.add(key) yield opened @contextmanager def _write_sample_to_streams( taggers_paths: Dict[str, TaggerOutputLocation], output_streams: Dict[str, TaggerOutputIO], row: InputSpec, ) -> Generator[Dict[str, TaggerOutputDictType], None, None]: """Utility function to write a sample to the output streams; yields a dictionary that should be used to collect the output of each tagger.""" samples_collectors: Dict[str, TaggerOutputDictType] = {} yield samples_collectors attributes_by_stream: Dict[str, TaggerOutputDictType] = {} for tagger_name, tagger_data in samples_collectors.items(): tagger_output = taggers_paths[tagger_name] for tagger_key, tagger_value in tagger_data.items(): tagger_key = f"{tagger_output.exp}__{tagger_output.name}__{make_variable_name(tagger_key)}" attributes_by_stream.setdefault(tagger_output.path, {})[tagger_key] = tagger_value for stream_path, attributes in attributes_by_stream.items(): output = OutputSpec(source=row.source, id=row.id, attributes=attributes) output_streams[stream_path].write(output) class TaggerProcessor(BaseParallelProcessor): @classmethod def get_logger(cls) -> logging.Logger: return get_logger(cls.__name__) @classmethod def increment_progressbar( # type: ignore cls, queue: QueueType, # queue must be the first argument, and it should be a positional-only argument /, files: int = 0, documents: int = 0, ) -> Dict[str, int]: """We override this method to specify which units we want to keep track of in a progress bar. Specifically, we keep track of files and documents in this example. Their default value must be zero.""" # we call the super method to increment the progress bar return super().increment_progressbar(queue, files=files, documents=documents) @classmethod def process_single( cls, source_path: str, destination_path: str, queue: QueueType, **kwargs, ): """Lets count run the taggers! We will use the destination path to save each tagger output.""" # get names of taggers taggers_names = kwargs.get("taggers_names", None) if taggers_names is None: raise RuntimeError("Taggers not in kwargs, this is a bug! Please report it.") elif not isinstance(taggers_names, list) or not all(isinstance(t, str) for t in taggers_names): raise RuntimeError("Taggers are in the wrong format, this is a bug! Please report it.") taggers = {make_variable_name(t): TaggerRegistry.get(t)() for t in taggers_names} # get name of experiment if (experiment_name := kwargs.get("experiment_name", None)) is None: raise RuntimeError("Experiment name not in kwargs, this is a bug! Please report it.") # this is the dictionary that will hold the output of each tagger taggers_paths = _determine_output_paths_for_taggers( experiment_name=experiment_name, destination=destination_path, taggers=taggers ) # skip on failure skip_on_failure = kwargs.get("skip_on_failure", False) # interval at which to update the progress bar; will double if it gets # too full update_interval = 1 # running document count; gets reset every time we update the progress # bar docs_cnt = 0 # creating dedicated decoder speeds up the process decoder = msgspec.json.Decoder(InputSpec) with smart_open.open(source_path, "rt", encoding="utf-8") as in_stream, _make_output_streams( taggers_paths=taggers_paths, mode="wt", encoding="utf-8" ) as output_streams: try: for raw in in_stream: row = decoder.decode(raw) with _write_sample_to_streams( taggers_paths=taggers_paths, output_streams=output_streams, row=row, ) as samples_collectors: # we run the taggers; the context manager will write the output to the output streams for tagger_name, tagger in taggers.items(): samples_collectors[tagger_name] = tagger.tag(row) # increment the number of documents processed so far docs_cnt += 1 if docs_cnt % update_interval == 0: # update the progress bar every 1000 documents to prevent # buffering cls.increment_progressbar(queue, documents=docs_cnt) docs_cnt = 0 if queue.qsize() >= multiprocessing.cpu_count(): # double the update interval if the queue is full update_interval *= 2 except Exception as e: # handle any exception that might have occurred msg = f"Failed to process {source_path} due to {e.__class__.__name__}: {' '.join(e.args)}" if e.__class__.__name__ == "IncompleteReadError": # Intermittent error that occurs when reading from S3 raise DolmaRetryableFailure(msg) from e else: if skip_on_failure: raise DolmaShardError(msg) from e else: raise DolmaFatalError(msg) from e # increment the files progress bar cls.increment_progressbar(queue, files=1, documents=docs_cnt) def create_and_run_tagger( documents: List[str], taggers: List[str], experiment: Optional[str] = None, destination: Union[None, str, List[str]] = None, metadata: Union[None, str, List[str]] = None, debug: bool = False, seed: int = 0, ignore_existing: bool = False, skip_on_failure: bool = False, retries_on_error: int = 0, num_processes: int = 1, ): """This function creates a tagger and runs it on a list of documents. Args: documents (List[str]): List of documents to run the taggers on. Each element of the list is a path to a file containing documents in json lines format, or a glob pattern that matches such files. taggers (List[str]): List of taggers to run. Each element of the list is the name of a tagger. experiment (str, optional): The name of the experiment. This will be used to prefix the names of the attributes, as well as the name of the directory where the outputs will be saved in `destination`. If not provided, the name of each tagger will be used as the experiment name. destination (Union[None, str, List[str]], optional): The path where the outputs will be saved. If `None`, the outputs will be saved in a directory parallel to the directory containing the documents, with the same name as `experiment`. If a string, paths corresponding to each element of `documents` will be created by determining a relative path from the directory containing the documents. metadata (Union[None, str, List[str]], optional): Location where to save metadata that keeps track of which documents have been processed. If `None`, the metadata will be saved in a temporary directory. debug (bool, optional): Whether to run in debug mode. Defaults to False. seed (int, optional): The seed to use for the random number generator. Defaults to 0. ignore_existing (bool, optional): Whether to ignore existing outputs and re-run the taggers. Defaults to False. skip_on_failure (bool, optional): Whether to skip a document if it fails to process. Defaults to False. retries_on_error (int, optional): Number of times to retry processing a document if it fails. Defaults to 0 (fail immediately) num_processes (int, optional): Number of processes to use. Defaults to 1. """ # use placeholder experiment name if none is provided; raise an error if the placeholder name is used if experiment == EXPERIMENT_PLACEHOLDER_NAME: raise RuntimeError(f"Experiment name cannot be {EXPERIMENT_PLACEHOLDER_NAME}; reserved for internal use.") elif experiment is None: experiment = EXPERIMENT_PLACEHOLDER_NAME if destination is None: try: destination = _make_paths_from_substitution(documents, "documents", f"attributes/{experiment}") except Exception as e: raise RuntimeError("Could not make destination paths from documents paths") from e elif isinstance(destination, str): try: destination = _make_paths_from_prefix(documents, join_path(None, destination, experiment)) except Exception as e: raise RuntimeError(f"Could not make destination paths from prefix {destination}") from e metadata = metadata or tempfile.mkdtemp() if isinstance(metadata, str): try: metadata = _make_paths_from_prefix(documents, metadata) except Exception as e: raise RuntimeError(f"Could not make metadata paths from prefix {metadata}") from e tagger = TaggerProcessor( source_prefix=documents, destination_prefix=destination, metadata_prefix=metadata, debug=debug, seed=seed, ignore_existing=ignore_existing, retries_on_error=retries_on_error, num_processes=num_processes, ) tagger( experiment_name=experiment, taggers_names=taggers, skip_on_failure=skip_on_failure, )
dolma-main
python/dolma/core/runtime.py
""" Base implementation for a fasttext tagger; all fasttext taggers should inherit from this class. @kylel, @soldni """ import os from tempfile import NamedTemporaryFile from typing import Iterable, Literal, NamedTuple, Optional import smart_open from cached_path import cached_path from fasttext import train_supervised from fasttext.FastText import _FastText from .data_types import DocResult, Document, Span, TextSlice from .taggers import BaseTagger from .utils import split_paragraphs, split_sentences class Prediction(NamedTuple): label: str score: float class BaseFastTextTagger(BaseTagger): SENTENCE_LEVEL_TAGGER = "sentence" PARAGRAPH_LEVEL_TAGGER = "paragraph" DOCUMENT_LEVEL_TAGGER = "document" def __init__(self, model_path: str, model_mode: str) -> None: # we use this private attribute to avoid a warning from the fasttext library. See this comment: # https://github.com/facebookresearch/fastText/issues/1056#issuecomment-1278058705 self.classifier = _FastText(str(cached_path(model_path))) self.mode = model_mode @classmethod def train( cls, train_file: str, save_path: str, learning_rate: float = 0.1, word_vectors_dim: int = 100, context_window_size: int = 5, max_epochs: int = 100, # non-default min_word_count: int = 1, min_label_count: int = 1, min_char_ngram: int = 0, max_char_ngram: int = 0, num_negative_samples: int = 5, max_word_ngram: int = 2, # non-default loss_function: Literal["ns", "hs", "softmax", "ova"] = "softmax", num_buckets: int = 2_000_000, num_threads: int = 0, learning_rate_update_rate: int = 100, sampling_threshold: float = 0.0001, label_prefix: str = "__label__", verbose: int = 2, pretrained_vectors: Optional[str] = None, ) -> _FastText: # download potentially remote files local_train_file = cached_path(train_file) local_pretrained_vectors = cached_path(pretrained_vectors) if pretrained_vectors else None # base checks on file format with open(local_train_file, "r") as f: # check a few lines to see if the file is in the right format i = 0 for ln in f: if label_prefix not in ln: raise ValueError(f"{train_file} not the fasttext format, no labels found!") if (i := i + 1) > 5: break if i == 0: raise ValueError(f"{train_file} is empty!") # train the fasttext model classifier = train_supervised( input=local_train_file, lr=learning_rate, dim=word_vectors_dim, ws=context_window_size, epoch=max_epochs, minCount=min_word_count, minCountLabel=min_label_count, minn=min_char_ngram, maxn=max_char_ngram, neg=num_negative_samples, wordNgrams=max_word_ngram, loss=loss_function, bucket=num_buckets, thread=num_threads, lrUpdateRate=learning_rate_update_rate, t=sampling_threshold, label=label_prefix, verbose=verbose, pretrainedVectors=local_pretrained_vectors, ) local_save_path = None try: # create a local temp file where we save the model with NamedTemporaryFile("w", delete=False) as f: local_save_path = f.name # save the model classifier.save_model(local_save_path) # upload to remote if save_path is s3 path with smart_open.open(save_path, "wb") as fo, smart_open.open(local_save_path, "rb") as fi: fo.write(fi.read()) finally: # regardless to what happened, remove the local temp file if it # exists if local_save_path is not None and os.path.exists(local_save_path): os.remove(local_save_path) return classifier @classmethod def test( cls, test_file: str, model_path: Optional[str] = None, classifier: Optional[_FastText] = None, ): # load the model if one is not provided if classifier is None: assert model_path is not None, "Please provide either a model path or a model" classifier = _FastText(str(cached_path(model_path))) local_test_file = cached_path(test_file) model_performance = classifier.test(local_test_file) print(model_performance) def predict(self, doc: Document) -> DocResult: if self.mode == self.SENTENCE_LEVEL_TAGGER: units = split_sentences(doc.text) elif self.mode == self.PARAGRAPH_LEVEL_TAGGER: units = split_paragraphs(doc.text) elif self.mode == self.DOCUMENT_LEVEL_TAGGER: units = [TextSlice(doc=doc.text, start=0, end=len(doc.text))] else: raise ValueError(f"Unknown mode {self.mode}") spans = [] for unit in units: for prediction in self.predict_slice(unit): spans.append(Span(start=unit.start, end=unit.end, type=prediction.label, score=prediction.score)) return DocResult(doc=doc, spans=spans) def predict_slice(self, text_slice: TextSlice) -> Iterable[Prediction]: raise NotImplementedError("Please implement the predict slice method")
dolma-main
python/dolma/core/ft_tagger.py
""" Builds a dataset for training a FastText model from 2 or more pretraining datasets. @rauthur """ import argparse import gzip import json import os import random from dataclasses import dataclass from functools import partial from multiprocessing import Manager, Pool, Process, Queue from threading import Event from typing import Generator, List, Optional import smart_open from .data_types import TextSlice from .ft_tagger import BaseFastTextTagger from .paths import glob_path from .utils import split_paragraphs, split_sentences _WRITER_EXIT_MSG = "__WRITE__EXIT__" @dataclass class Config: target_path: str sample_paths: List[str] out_path: str mode: str newlines: str n_proc: int n_segments: Optional[int] pos_label: str neg_label: str def gzip_open(file, mode, **open_kwargs): return gzip.open(filename=file, mode=mode, **open_kwargs) def _split(text: str, config: Config) -> Generator[TextSlice, None, None]: if config.mode == BaseFastTextTagger.SENTENCE_LEVEL_TAGGER: for sentence in split_sentences(text): yield sentence elif config.mode == BaseFastTextTagger.PARAGRAPH_LEVEL_TAGGER: for paragraph in split_paragraphs(text): yield paragraph elif config.mode == BaseFastTextTagger.DOCUMENT_LEVEL_TAGGER: yield TextSlice(doc=text, start=0, end=len(text)) else: raise RuntimeError(f"Unknown data split mode: {config.mode}") @dataclass class ReadResult: examples: List[str] def process_file(config: Config, q: "Queue[str]", flag: Event, label: str, fn): # Check a global exit flag and stop processing file if flag.is_set(): return print(f"Processing {fn}") with smart_open.open(fn, "rt") as f: for line in f: # Abort part way through processing this file is flag set if flag.is_set(): return # Expected JSONL format following OLMo data spec data = json.loads(line) line_text = data["text"] if len(line_text) == 0: continue for slice in _split(line_text, config): final_text = slice.text if "\n" in final_text: if config.newlines == "replace": final_text = final_text.replace("\n", " ") elif config.newlines == "skip": continue q.put(f"__label__{label} {final_text}") def write_results(config: Config, q: "Queue[str]", flag: Event): written = 0 with smart_open.open(config.out_path, "wb") as o: while True: msg = q.get() if msg == _WRITER_EXIT_MSG: break if not flag.is_set(): o.write(q.get()) o.write("\n") written += 1 if config.n_segments is not None and written >= config.n_segments: flag.set() written = 0 def process_paths(paths: List[str], config: Config, q: "Queue[str]", flag: Event, label: str): fns = [fn for p in paths for fn in glob_path(p)] random.shuffle(fns) work_fn = partial(process_file, config, q, flag, label) with Pool(processes=max(1, config.n_proc - 1)) as pool: pool.map(work_fn, fns) pool.close() pool.join() def main(config: Config): random.seed(117) with Manager() as manager: q: "Queue[str]" = manager.Queue() # type: ignore flag = manager.Event() writer = Process(target=write_results, args=(config, q, flag)) writer.start() # Generate expected number of positive examples process_paths([config.target_path], config, q, flag, config.pos_label) # Reset early exit flag as all positive examples processed flag.clear() # Generate expected number of negative examples process_paths(config.sample_paths, config, q, flag, config.neg_label) q.put(_WRITER_EXIT_MSG) writer.join() if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-t", "--target", required=True, type=str, help="Local or remote path including OLMo formatted TARGET dataset", ) parser.add_argument( "-s", "--sample", required=True, type=str, nargs="+", help="Sample these paths to create negative examples", ) parser.add_argument( "-p", "--processes", type=int, required=False, default=os.cpu_count(), help="Number of processes to launch", ) parser.add_argument( "-m", "--mode", type=str, required=True, choices=[ BaseFastTextTagger.SENTENCE_LEVEL_TAGGER, BaseFastTextTagger.PARAGRAPH_LEVEL_TAGGER, BaseFastTextTagger.DOCUMENT_LEVEL_TAGGER, ], help="Output examples at this level", ) parser.add_argument( "-o", "--output-filename", type=str, required=True, help="Path to write the processed result (can be on S3)", ) parser.add_argument( "--n-segments", type=int, required=False, help="Stop after generating this many segments (e.g., sentences)", ) parser.add_argument( "--newlines", type=str, required=False, choices=["skip", "keep", "replace"], default="skip", help="Skip, keep or replace with ' ' examples with newlines after splitting", ) parser.add_argument( "--pos-label", type=str, required=False, default="pos", help="Use this class label for positive instances", ) parser.add_argument( "--neg-label", type=str, required=False, default="neg", help="Use this class label for negative instances", ) args = parser.parse_args() config = Config( target_path=args.target, sample_paths=args.sample, out_path=args.output_filename, mode=args.mode, newlines=args.newlines, n_proc=args.processes, n_segments=args.n_segments, pos_label=args.pos_label, neg_label=args.neg_label, ) main(config)
dolma-main
python/dolma/core/ft_dataset.py
""" Filters. @kylel, @soldni """ from abc import abstractmethod from typing import List from .data_types import DocResult, Document, InputSpec, TaggerOutputDictType # digits after the decimal point TAGGER_SCORE_PRECISION = 5 class BaseTagger: FIELDS: List[str] = ["text"] @classmethod def train(cls, *args, **kwargs): raise RuntimeError("This tagger does not support training") @classmethod def test(cls, *args, **kwargs): raise RuntimeError("This tagger does not support testing") @abstractmethod def predict(self, doc: Document) -> DocResult: raise NotImplementedError def tag(self, row: InputSpec) -> TaggerOutputDictType: """Internal function that is used by the tagger to get data""" doc = Document(source=row.source, version=row.version, id=row.id, text=row.text) doc_result = self.predict(doc) tagger_output: TaggerOutputDictType = {} for span in doc_result.spans: output = (span.start, span.end, round(float(span.score), TAGGER_SCORE_PRECISION)) tagger_output.setdefault(span.type, []).append(output) return tagger_output
dolma-main
python/dolma/core/taggers.py
import re import string from typing import List try: import blingfire BLINGFIRE_AVAILABLE = True except Exception: BLINGFIRE_AVAILABLE = False import nltk from nltk.tokenize.punkt import PunktSentenceTokenizer try: nltk.data.find("tokenizers/punkt") except LookupError: nltk.download("punkt") from .data_types import TextSlice sent_tokenizer = PunktSentenceTokenizer() def make_variable_name(name: str, remove_multiple_underscores: bool = False) -> str: # use underscores for any non-valid characters in variable name name = re.sub(r"[^a-zA-Z0-9_]", "_", name) if remove_multiple_underscores: # replace multiple underscores with a single underscore name = re.sub(r"__+", "_", name) if name[0] in string.digits: raise ValueError(f"Invalid variable name {name}") return name def split_paragraphs(text: str, remove_empty: bool = True) -> List[TextSlice]: """ Split a string into paragraphs. A paragraph is defined as a sequence of zero or more characters, followed by a newline character, or a sequence of one or more characters, followed by the end of the string. """ text_slices = [ TextSlice(doc=text, start=match.start(), end=match.end()) for match in re.finditer(r"([^\n]*\n|[^\n]+$)", text) ] if remove_empty is True: text_slices = [text_slice for text_slice in text_slices if text_slice.text.strip()] return text_slices def split_sentences(text: str, remove_empty: bool = True) -> List[TextSlice]: """ Split a string into sentences. """ if text and BLINGFIRE_AVAILABLE: _, offsets = blingfire.text_to_sentences_and_offsets(text) elif text: offsets = [(start, end) for start, end in sent_tokenizer.span_tokenize(text)] else: offsets = [] if remove_empty is True: return [TextSlice(doc=text, start=start, end=end) for (start, end) in offsets] else: raise NotImplementedError("remove_empty=False is not implemented yet")
dolma-main
python/dolma/core/utils.py
class DolmaError(Exception): """Base class for all errors""" class DolmaFatalError(DolmaError): """Fatal error. Abort the entire process""" class DolmaShardError(DolmaError): """Fail the shard and continue""" class DolmaRetryableFailure(DolmaError): """Retry if a shard throws this error""" class DolmaRustPipelineError(DolmaError): """Error raised by the rust pipeline""" class DolmaConfigError(DolmaError): """Error raised while parsing config"""
dolma-main
python/dolma/core/errors.py
""" Code to train a Filter. @kylel """
dolma-main
python/dolma/core/trainer.py
import inspect import itertools import multiprocessing import os import pickle import random import re import time from contextlib import ExitStack from datetime import datetime from functools import partial from queue import Queue from threading import Thread from typing import Any, Dict, List, Optional, Tuple, Union import smart_open import tqdm from typing_extensions import TypeAlias from .errors import DolmaError, DolmaRetryableFailure from .paths import ( add_suffix, glob_path, join_path, make_relative, mkdir_p, split_path, sub_prefix, ) METADATA_SUFFIX = ".done.txt" # we need to quote the type alias because we want to support Python 3.8 QueueType: TypeAlias = "Queue[Union[None, Tuple[int, ...]]]" class BaseParallelProcessor: """A base parallel processor that supports applying the same process_single method to a list of files. This class is meant to be subclassed. The subclass must implement: - `process_single` method, which takes a source path file to transform, and a destination path where to save the transformed file. - `increment_progressbar` method, which defines which units to keep track of in the progress bar. See documentation of both methods for more details on how to implement them correctly. """ def __init__( self, source_prefix: Union[str, List[str]], destination_prefix: Union[str, List[str]], metadata_prefix: Union[str, List[str]], num_processes: int = 1, debug: bool = False, seed: int = 0, pbar_timeout: float = 1e-3, ignore_existing: bool = False, include_paths: Optional[List[str]] = None, exclude_paths: Optional[List[str]] = None, files_regex_pattern: Optional[str] = None, retries_on_error: int = 0, ): """Initialize the parallel processor. Args: source_prefix (str): The location where source files are stored. This can be a local directory or a prefix to an S3 location. destination_prefix (str): The location where to save the transformed files. This can be a local directory or a prefix to an S3 location. Local directories will be created if they do not exist. The directory structure from the source prefix will be replicated in the destination prefix; file names will also be the same. metadata_prefix (str): The prefix of the metadata files to save. This can be a local path or an S3 path. Metadata output will be created for each file after it is processed. Filenames are checked to verify if a file has been processed and can be skipped unless `ignore_existing` is set to true. num_processes (int, optional): The number of processes to use. Defaults to 1. debug (bool, optional): Whether to run in debug mode; if true, no multiprocessing will be used. Defaults to False. seed (int, optional): The random seed to use when shuffling input files. Defaults to 0. pbar_timeout (float, optional): How often to update progress bars in seconds. Defaults to 0.01 seconds. ignore_existing (bool, optional): Whether to ignore files that have been already processed and re-run the processor on all files from scratch. Defaults to False. include_paths (Optional[List[str]], optional): A list of paths to include. If provided, only files that match one of the paths will be processed. Defaults to None. exclude_paths (Optional[List[str]], optional): A list of paths to exclude. If provided, files that match one of the paths will be skipped. Defaults to None. """ self.src_prefixes = [source_prefix] if isinstance(source_prefix, str) else source_prefix self.dst_prefixes = [destination_prefix] if isinstance(destination_prefix, str) else destination_prefix self.meta_prefixes = [metadata_prefix] if isinstance(metadata_prefix, str) else metadata_prefix self.num_processes = num_processes self.debug = debug self.seed = seed self.pbar_timeout = pbar_timeout self.ignore_existing = ignore_existing self.include_paths = set(include_paths) if include_paths is not None else None self.exclude_paths = set(exclude_paths) if exclude_paths is not None else None self.files_regex_pattern = re.compile(files_regex_pattern) if files_regex_pattern else None self.retries_on_error = retries_on_error # checking that the increment_progressbar method is subclassed correctly sig = inspect.signature(self.increment_progressbar) if "queue" not in sig.parameters or sig.parameters["queue"].kind != inspect.Parameter.POSITIONAL_ONLY: raise AttributeError( "increment_progressbar must have a positional-only argument named 'queue'; " "Check that you have subclassed BaseParallelProcessor correctly!" ) if "kwargs" in sig.parameters and sig.parameters["kwargs"].kind == inspect.Parameter.VAR_KEYWORD: raise AttributeError( "increment_progressbar must not have a **kwargs argument; " "Check that you have subclassed BaseParallelProcessor correctly!" ) if any(p.name != "queue" and p.default != 0 for p in sig.parameters.values()): raise AttributeError( "increment_progressbar must have a default value of 0 for all arguments except 'queue'; " "Check that you have subclassed BaseParallelProcessor correctly!" ) if len(self.src_prefixes) != len(self.dst_prefixes) or len(self.src_prefixes) != len(self.meta_prefixes): raise ValueError("The number of source, destination and metadata prefixes must be the same.") if len(self.src_prefixes) == 0: raise ValueError("At least one source prefix must be provided.") if any("*" in p for p in itertools.chain(self.dst_prefixes, self.meta_prefixes)): raise ValueError("Destination and metadata prefixes cannot contain wildcards.") @classmethod def process_single( cls, source_path: str, destination_path: str, queue: QueueType, **kwargs: Any, ): """Process a single file. This method must be implemented by the subclass. It takes a source path file to transform, and a destination path where to save the transformed file. It also takes a queue to increment the progress bars. The queue should be passed to the `increment_progressbar` method. Args: source_path (str): The path to the source file to transform. Can be an S3 path or a local path. destination_path (str): The path to the destination file to save. Can be an S3 path or a local path. queue (QueueType): The queue to increment the progress bars. """ raise NotImplementedError() @classmethod def _process_single_and_save_status( cls, source_path: str, destination_path: str, metadata_path: str, queue: QueueType, serialized_kwargs: bytes, ): """A wrapper around process single that saves a metadata file if processing is successful.""" kwargs = pickle.loads(serialized_kwargs) retries_on_error = kwargs.get("retries_on_error", 0) + 1 while True: try: cls.process_single( source_path=source_path, destination_path=destination_path, queue=queue, **kwargs ) break except DolmaRetryableFailure as e: retries_on_error -= 1 if retries_on_error == 0: raise DolmaError from e with smart_open.open(metadata_path, "wt") as f: f.write(datetime.now().isoformat()) @classmethod def increment_progressbar(cls, queue: QueueType, /, **kwargs: int) -> Dict[str, int]: """Increment the progress bar by putting a tuple in the queue. When subclassing, we recommend defining which units to keep track of in the progress bar by defining keyword arguments. Then you can call the base class via `super()` and pass the keyword. Example: ```python class MyProcessor(BaseParallelProcessor): def increment_progressbar(self, queue, /, files = 0, documents = 0): # we use two progress bars return super().increment_progressbar(queue, files=files, documents=documents) ``` """ queue.put(tuple(kwargs.get(k, 0) for k in kwargs)) return kwargs @classmethod def _run_threaded_progressbar( cls, queue: QueueType, timeout: float, ): """Run a progress bar in a separate thread. Args: queue (QueueType): The queue to increment the progress bars. timeout (float): How often to update the progress bars in seconds. """ sample_queue_output = cls.increment_progressbar(queue) with ExitStack() as stack: pbars = [ stack.enter_context( tqdm.tqdm(desc=str(k), unit=str(k)[:1], position=i, unit_scale=True) # pyright: ignore ) for i, k in enumerate(sample_queue_output) ] while True: item = queue.get() if item is None: break for pbar, value in zip(pbars, item): pbar.update(value) time.sleep(timeout) def _debug_run_all( self, all_source_paths: List[str], all_destination_paths: List[str], all_metadata_paths: List[str], **process_single_kwargs: Any, ): """Run files one by one on the main process Args: all_source_paths (List[MultiPath]): The list of source paths to process. all_destination_paths (List[MultiPath]): The list of destination paths to save. all_metadata_paths (List[MultiPath]): The locations where to save metadata. """ it = zip(all_source_paths, all_destination_paths, all_metadata_paths) pbar_queue: QueueType = Queue() thread = Thread(target=self._run_threaded_progressbar, args=(pbar_queue, self.pbar_timeout), daemon=True) thread.start() for source_prefix, destination_prefix, metadata_prefix in it: self._process_single_and_save_status( source_path=source_prefix, destination_path=destination_prefix, metadata_path=metadata_prefix, queue=pbar_queue, serialized_kwargs=pickle.dumps(process_single_kwargs), ) pbar_queue.put(None) thread.join() def _multiprocessing_run_all( self, all_source_paths: List[str], all_destination_paths: List[str], all_metadata_paths: List[str], **process_single_kwargs: Any, ): """Run files in parallel using multiprocessing. Args: all_source_paths (List[MultiPath]): The list of source paths to process. all_destination_paths (List[MultiPath]): The list of destination paths to save. all_metadata_paths (List[MultiPath]): The locations where to save metadata. """ try: multiprocessing.set_start_method("spawn") except RuntimeError: assert multiprocessing.get_start_method() == "spawn", "Multiprocessing start method must be spawn" with multiprocessing.Pool(processes=self.num_processes) as pool: pbar_queue: QueueType = (manager := multiprocessing.Manager()).Queue() thread = Thread( target=self._run_threaded_progressbar, args=(pbar_queue, self.pbar_timeout), daemon=True ) thread.start() process_single_fn = partial(self.process_single, queue=pbar_queue) results = [] for s, d, m in zip(all_source_paths, all_destination_paths, all_metadata_paths): process_single_fn = partial( self._process_single_and_save_status, queue=pbar_queue, source_path=s, destination_path=d, metadata_path=m, serialized_kwargs=pickle.dumps(process_single_kwargs), ) result = pool.apply_async(process_single_fn) results.append(result) for result in results: result.get() pool.close() pool.join() pbar_queue.put(None) thread.join() manager.shutdown() def _valid_path(self, path: str) -> bool: if self.include_paths is not None and path not in self.include_paths: return False if self.exclude_paths is not None and path in self.exclude_paths: return False if self.files_regex_pattern is not None and not self.files_regex_pattern.search(path): return False return True def _get_all_paths(self) -> Tuple[List[str], List[str], List[str]]: """Get all paths to process using prefixes provided""" all_source_paths, all_destination_paths, all_metadata_paths = [], [], [] for src_prefix, dst_prefix, meta_prefix in zip(self.src_prefixes, self.dst_prefixes, self.meta_prefixes): current_source_prefixes = sorted(glob_path(src_prefix)) if len(current_source_prefixes) > 1: # make relative only makes sense if there is more than one path; otherwise, it's unclear # what a relative path would be. prefix, rel_paths = make_relative(current_source_prefixes) elif len(current_source_prefixes) == 1: # in case we have a single path, we can just use the path minus the file as the shared prefix, # and the file as the relative path prot, parts = split_path(current_source_prefixes[0]) prefix, rel_paths = join_path(prot, *parts[:-1]), [parts[-1]] else: raise ValueError(f"Could not find any files matching {src_prefix}") # shuffle the order of the files so time estimation in progress bars is more accurate random.shuffle(rel_paths) # get a list of which metadata files already exist existing_metadata_names = set( sub_prefix(path, meta_prefix).strip(METADATA_SUFFIX) for path in glob_path(meta_prefix) ) for path in rel_paths: if not self.ignore_existing and path in existing_metadata_names: continue if not self._valid_path(path): continue # get relative path from source prefix rel_dir, _ = os.path.split(path) # make sure destination/metadata directories exists mkdir_p(os.path.join(dst_prefix, rel_dir)) mkdir_p(os.path.join(meta_prefix, rel_dir)) # create new paths to pass to taggers all_source_paths.append(add_suffix(prefix, path)) all_destination_paths.append(add_suffix(dst_prefix, path)) all_metadata_paths.append(add_suffix(meta_prefix, path) + METADATA_SUFFIX) return all_source_paths, all_destination_paths, all_metadata_paths def __call__(self, **process_single_kwargs: Any): """Run the processor.""" random.seed(self.seed) # in case the user wants to override the default kwargs for retries process_single_kwargs.setdefault("retries_on_error", self.retries_on_error) all_source_paths, all_destination_paths, all_metadata_paths = self._get_all_paths() print(f"Found {len(all_source_paths):,} files to process") fn = self._debug_run_all if self.debug else self._multiprocessing_run_all fn( all_source_paths=all_source_paths, all_destination_paths=all_destination_paths, all_metadata_paths=all_metadata_paths, **process_single_kwargs, )
dolma-main
python/dolma/core/parallel.py
import multiprocessing from typing import List, TypeVar from cached_path import cached_path from omegaconf.omegaconf import OmegaConf as om from omegaconf.omegaconf import Resolver from ..core.paths import glob_path __all__ = ["cache", "glob", "processes"] C = TypeVar("C", bound=Resolver) def resolver(resolver: C) -> C: resolver_name = f"d.{resolver.__name__}" om.register_new_resolver(resolver_name, resolver, replace=True) return resolver @resolver def cache(path: str) -> str: return str(cached_path(path)) @resolver def glob(path: str) -> List[str]: globbed = list(glob_path(path)) assert len(globbed) > 0, f"Path {path} does not match any files" return globbed @resolver def processes(n: int = 0) -> int: return max(1, multiprocessing.cpu_count() - n)
dolma-main
python/dolma/cli/resolvers.py
from dataclasses import dataclass from typing import List, Optional from dolma.cli import BaseCli, field, print_config from dolma.cli.shared import WorkDirConfig, make_workdirs from dolma.core.analyzer import create_and_run_analyzer from dolma.core.errors import DolmaConfigError from dolma.core.loggers import get_logger from dolma.core.paths import glob_path @dataclass class AnalyzerConfig: attributes: List[str] = field( default=[], help="One or more attributes paths to process; Can be either local or S3 paths. Globs are supported.", ) report: Optional[str] = field( default=None, help=( "Path where to save the report. Can be either local or S3 path. " "If not provided, the report will be printed to stdout." ), ) bins: int = field( default=1_000, help="Number of bins to use for the histograms.", ) processes: int = field( default=1, help="Number of parallel processes to use.", ) seed: int = field( default=0, help="Seed to use for reproducibility.", ) debug: bool = field( default=False, help="Whether to run in debug mode.", ) work_dir: WorkDirConfig = field(default=WorkDirConfig(), help="Configuration for temporary work directories.") regex: Optional[str] = field( default=None, help="Regex to use for filtering the attributes by name.", ) class AnalyzerCli(BaseCli): CONFIG = AnalyzerConfig DESCRIPTION = "Analyze the distribution of attributes values in a dataset." @classmethod def run(cls, parsed_config: AnalyzerConfig): logger = get_logger("analyzer") # perform some path validation to make sure we don't call the mixer with invalid config total_matching_documents = 0 for document in parsed_config.attributes: current_matching_documents = sum(1 for _ in glob_path(document)) if current_matching_documents == 0: # only raise a warning if no documents are found for a single path logger.warn(f"No documents found for path {document}") total_matching_documents += current_matching_documents if total_matching_documents == 0: # but raise an error if no documents are found for all paths raise DolmaConfigError(f"No documents found for paths {parsed_config.attributes}.") print_config(parsed_config) with make_workdirs(parsed_config.work_dir) as work_dirs: create_and_run_analyzer( attributes=parsed_config.attributes, report=parsed_config.report, summaries_path=work_dirs.output, metadata_path=work_dirs.input, debug=parsed_config.debug, seed=parsed_config.seed, num_bins=parsed_config.bins, num_processes=parsed_config.processes, name_regex=parsed_config.regex, )
dolma-main
python/dolma/cli/analyzer.py
""" Utilities to work with a OmegaConf structured config object Author: Luca Soldaini (@soldni) """ from argparse import ArgumentParser, Namespace from collections.abc import Iterable from copy import deepcopy from dataclasses import Field from dataclasses import field as dataclass_field from dataclasses import is_dataclass from logging import warn from typing import Any, Dict, Generic, Literal, Optional, Protocol, Type, TypeVar, Union from omegaconf import MISSING, DictConfig, ListConfig from omegaconf import OmegaConf as om from rich.console import Console from rich.syntax import Syntax __all__ = [ "BaseCli", "field", "make_parser", "namespace_to_nested_omegaconf", "print_config", ] T = TypeVar("T", bound=Any) D = TypeVar("D", bound="DataClass") A = TypeVar("A", bound="ArgumentParser") def _field_nargs(default: Any) -> Union[Literal["?"], Literal["*"]]: # return '+' if _default is iterable but not string/bytes, else 1 if isinstance(default, str) or isinstance(default, bytes): return "?" elif isinstance(default, Iterable): return "*" else: return "?" def field(default: T = MISSING, help: Optional[str] = None, **extra: Any) -> T: metadata = {"help": help, "type": type(default), "default": default, "nargs": _field_nargs(default), **extra} return dataclass_field(default_factory=lambda: deepcopy(default), metadata=metadata) class DataClass(Protocol): __dataclass_fields__: Dict[str, Field] def make_parser(parser: A, config: Type[DataClass], prefix: Optional[str] = None) -> A: for field_name, field in config.__dataclass_fields__.items(): # get type from annotations or metadata typ_ = config.__annotations__.get(field_name, field.metadata.get("type", MISSING)) if typ_ is MISSING: warn(f"No type annotation for field {field_name} in {config.__name__}") continue if is_dataclass(typ_): # recursively add subparsers make_parser(parser, typ_, prefix=field_name) continue field_name = f"{prefix}.{field_name}" if prefix else field_name parser.add_argument( f"--{field_name}", help=field.metadata.get("help"), nargs=field.metadata.get("nargs", "?"), default=MISSING, ) return parser def _make_nested_dict(key: str, value: Any, d: Optional[Dict[str, Any]] = None) -> Dict[str, Any]: d = d or {} if "." in key: key, rest = key.split(".", 1) value = _make_nested_dict(rest, value, d.get(key)) if value is not MISSING: d[key] = value return d def namespace_to_nested_omegaconf(args: Namespace, structured: Type[T], config: Optional[dict] = None) -> T: nested_config_dict: Dict[str, Any] = {} for key, value in vars(args).items(): nested_config_dict = _make_nested_dict(key, value, nested_config_dict) untyped_config: DictConfig = om.merge( om.create(config or {}), om.create(nested_config_dict) ) # pyright: ignore (pylance is confused because om.create might return a DictConfig or a ListConfig) base_structured_config: DictConfig = om.structured(structured) merged_config = om.merge(base_structured_config, untyped_config) assert isinstance(merged_config, DictConfig) return merged_config # pyright: ignore def print_config(config: Any, console: Optional[Console] = None) -> None: if not isinstance(config, (DictConfig, ListConfig)): config = om.create(config) console = console or Console() syntax = Syntax(code=om.to_yaml(config).strip(), lexer="yaml", theme="ansi_dark") console.print(syntax) class BaseCli(Generic[D]): CONFIG: Type[D] DESCRIPTION: Optional[str] = None @classmethod def make_parser(cls, parser: A) -> A: assert hasattr(cls, "CONFIG"), f"{cls.__name__} must have a CONFIG attribute" return make_parser(parser, cls.CONFIG) @classmethod def run_from_args(cls, args: Namespace, config: Optional[dict] = None): assert hasattr(cls, "CONFIG"), f"{cls.__name__} must have a CONFIG attribute" parsed_config = namespace_to_nested_omegaconf(args=args, structured=cls.CONFIG, config=config) return cls.run(parsed_config) @classmethod def run(cls, parsed_config: D): raise NotImplementedError("Abstract method; must be implemented in subclass")
dolma-main
python/dolma/cli/__init__.py
import copy import tempfile from contextlib import ExitStack, contextmanager from dataclasses import dataclass from typing import Generator, Optional from dolma.cli import field @dataclass class WorkDirConfig: input: Optional[str] = field(default=None, help="Path to the input directory.") output: Optional[str] = field(default=None, help="Path to the output directory.") @contextmanager def make_workdirs(config: WorkDirConfig) -> Generator[WorkDirConfig, None, None]: """Create temporary work directories and update the config with their paths.""" # make a copy of the configuration config = copy.deepcopy(config) with ExitStack() as stack: if config.input is None: config.input = stack.enter_context(tempfile.TemporaryDirectory()) if config.output is None: config.output = stack.enter_context(tempfile.TemporaryDirectory()) yield config
dolma-main
python/dolma/cli/shared.py
from dataclasses import dataclass from typing import List, Optional from rich.console import Console from rich.table import Table from dolma.cli import BaseCli, field, print_config from dolma.cli.shared import WorkDirConfig, make_workdirs from dolma.core.errors import DolmaConfigError from dolma.core.loggers import get_logger from dolma.core.paths import glob_path from dolma.core.registry import TaggerRegistry from dolma.core.runtime import create_and_run_tagger @dataclass class TaggerConfig: documents: List[str] = field( default=[], help="One or more document paths to process; Can be either local or S3 paths. Globs are supported.", ) destination: Optional[List[str]] = field( default=None, nargs="*", help=( "Destination paths to save the outputs; should match the number of document paths. " "If not provided, destination will be derived from the document path." ), ) taggers: List[str] = field( default=[], help="List of taggers to run.", ) experiment: Optional[str] = field( default=None, help="Name of the experiment.", ) processes: int = field( default=1, help="Number of parallel processes to use.", ) ignore_existing: bool = field( default=False, help="Whether to ignore existing outputs and re-run the taggers.", ) debug: bool = field( default=False, help="Whether to run in debug mode.", ) work_dir: WorkDirConfig = field(default=WorkDirConfig(), help="Configuration for temporary work directories.") class TaggerCli(BaseCli): CONFIG = TaggerConfig DESCRIPTION = ( "Tag documents or spans of documents using one or more taggers. " "For a list of available taggers, run `dolma list`." ) @classmethod def run(cls, parsed_config: TaggerConfig): logger = get_logger("tagger") with make_workdirs(parsed_config.work_dir) as work_dirs: documents = [str(p) for p in parsed_config.documents] taggers = [str(p) for p in parsed_config.taggers] # perform some path validation to make sure we don't call the mixer with invalid config total_matching_documents = 0 for document in documents: current_matching_documents = sum(1 for _ in glob_path(document)) if current_matching_documents == 0: # only raise a warning if no documents are found for a single path logger.warn(f"No documents found for path {document}") total_matching_documents += current_matching_documents if total_matching_documents == 0: # but raise an error if no documents are found for all paths raise DolmaConfigError(f"No documents found for paths {documents}.") print_config(parsed_config) create_and_run_tagger( documents=documents, destination=parsed_config.destination, metadata=work_dirs.output, taggers=taggers, ignore_existing=parsed_config.ignore_existing, num_processes=parsed_config.processes, experiment=parsed_config.experiment, debug=parsed_config.debug, ) @dataclass class ListTaggerConfig: ... class ListTaggerCli(BaseCli): CONFIG = ListTaggerConfig DESCRIPTION = "List available taggers." @classmethod def run(cls, parsed_config: ListTaggerConfig): table = Table(title="dolma taggers", style="bold") table.add_column("name", justify="left", style="cyan") table.add_column("class", justify="left", style="magenta") for tagger_name, tagger_cls in sorted(TaggerRegistry.taggers()): tagger_repr = f"{tagger_cls.__module__}.{tagger_cls.__name__}" table.add_row(tagger_name, tagger_repr) console = Console() console.print(table)
dolma-main
python/dolma/cli/tagger.py
from dataclasses import dataclass from typing import Any, Dict, List, Optional from omegaconf import OmegaConf as om from dolma import deduper from dolma.cli import BaseCli, field, print_config from dolma.cli.shared import WorkDirConfig, make_workdirs from dolma.core.errors import DolmaConfigError from dolma.core.loggers import get_logger from dolma.core.paths import glob_path @dataclass class ParagraphDedupeConfig: attribute_name: str = field(help="Name of the output field in the tagger") @dataclass class DocumentDedupeConfig: attribute_name: str = field(help="Name of the output field in the tagger") key: str = field(help="Name of the input field to use for deduplication, e.g. `$.metadata.url`") @dataclass class BloomFilterConfig: file: str = field(help="Path where to read/write the bloom filter file to/from. Required.") size_in_bytes: int = field( default=-1, help=( "Size of the bloom filter in bytes. Either this value is provided, or both estimated_doc_count " "and desired_false_positive_rate." ), ) read_only: bool = field(help="If true, the bloom filter will be read from the file and not updated. Required.") estimated_doc_count: int = field( default=-1, help=( "Estimated number of documents to be added to the bloom filter. Either this value is provided, " "or both size_in_bytes and desired_false_positive_rate." ), ) desired_false_positive_rate: float = field( default=-1.0, help=( "Desired false positive rate. Either this value is provided, or both size_in_bytes and " "estimated_doc_count." ), ) @dataclass class DedupeConfig: name: str = field(help="Name of the deduper. Required.") documents: Optional[DocumentDedupeConfig] = field( default=None, help="Configuration for document deduplication" ) paragraphs: Optional[ParagraphDedupeConfig] = field( default=None, help="Configuration for paragraph deduplication" ) skip_empty: Optional[bool] = field(default=False, help="If true, empty documents/paragraphs will be skipped") @dataclass class DeduperConfig: documents: List[str] = field(default=[], help="Paths to the documents to be deduplicated. Required.") work_dir: WorkDirConfig = field(default=WorkDirConfig(), help="Configuration for temporary work directories.") dedupe: DedupeConfig = field(help="Deduplication configuration. Required.") bloom_filter: BloomFilterConfig = field(help="Bloom filter configuration. Required.") processes: int = field( default=1, help="Number of processes to use for deduplication. If 1, no multiprocessing will be used." ) class DeduperCli(BaseCli): CONFIG = DeduperConfig DESCRIPTION = "Deduplicate documents or paragraphs using a bloom filter." @classmethod def run(cls, parsed_config: DeduperConfig): logger = get_logger("tagger") dict_config: Dict[str, Any] = {} with make_workdirs(parsed_config.work_dir) as work_dirs: dict_config["dedupe"] = { "name": parsed_config.dedupe.name, "skip_empty": parsed_config.dedupe.skip_empty, } if parsed_config.dedupe.documents is not None: dict_config["dedupe"]["documents"] = om.to_container(parsed_config.dedupe.documents) elif parsed_config.dedupe.paragraphs is not None: dict_config["dedupe"]["paragraphs"] = om.to_container(parsed_config.dedupe.paragraphs) else: raise ValueError("Either dedupe.documents or dedupe.paragraphs must be specified") # perform some path validation to make sure we don't call the mixer with invalid config total_matching_documents = 0 for document in parsed_config.documents: if document.count("*") > 1: raise DolmaConfigError("Only one wildcard is allowed in the document path") current_matching_documents = sum(1 for _ in glob_path(document)) if current_matching_documents == 0: # only raise a warning if no documents are found for a single path logger.warn(f"No documents found for path {document}") total_matching_documents += current_matching_documents if total_matching_documents == 0: # but raise an error if no documents are found for all paths raise DolmaConfigError(f"No documents found for the paths {parsed_config.documents}.") dict_config["bloom_filter"] = { "file": parsed_config.bloom_filter.file, "read_only": parsed_config.bloom_filter.read_only, "size_in_bytes": getattr(parsed_config.bloom_filter, "size_in_bytes", 0), "estimated_doc_count": getattr(parsed_config.bloom_filter, "estimated_doc_count", 0), "desired_false_positive_rate": getattr( parsed_config.bloom_filter, "desired_false_positive_rate", 0 ), } if dict_config["bloom_filter"]["size_in_bytes"] <= 0 and ( dict_config["bloom_filter"]["estimated_doc_count"] <= 0 or dict_config["bloom_filter"]["desired_false_positive_rate"] <= 0 ): raise ValueError( "Either bloom_filter.size_in_bytes or bloom_filter.estimated_doc_count and " "bloom_filter.desired_false_positive_rate must be specified" ) dict_config["work_dir"] = {"input": work_dirs.input, "output": work_dirs.output} dict_config["processes"] = parsed_config.processes dict_config["documents"] = list(om.to_container(parsed_config.documents)) # pyright: ignore if len(dict_config["documents"]) == 0: raise ValueError("At least one document must be specified") print_config(dict_config) return deduper(dict_config)
dolma-main
python/dolma/cli/deduper.py
from dataclasses import dataclass from typing import Any, Dict, List, Optional from dolma import mixer from dolma.cli import BaseCli, field, print_config from dolma.cli.shared import WorkDirConfig, make_workdirs from dolma.core.errors import DolmaConfigError from dolma.core.loggers import get_logger from dolma.core.paths import glob_path @dataclass class StreamOutputConfig: path: str = field(help="Path where to write the mixed documents to. Required.") max_size_in_bytes: int = field( default=2 * 2**30, help="Maximum size of the output file in bytes. Defaults to 2GB." ) discard_fields: List[str] = field(default=[], help="List of fields to discard from the output documents.") @dataclass class FilterConfig: include: List[str] = field(default=[], help="JSONPath expressions to include documents") exclude: List[str] = field(default=[], help="JSONPath expressions to exclude documents") @dataclass class SpanReplacementConfig: span: str = field(help="JSONPath expression for the span to replace") min_score: float = field(default=0.5, help="Minimum score for the span to be replaced") replacement: str = field(default="", help="Replacement for the span") @dataclass class StreamConfig: name: str = field(help="Name of the stream. Required.") documents: List[str] = field(default=[], help="Paths to the documents to be mixed. Required.") output: StreamOutputConfig = field( default=StreamOutputConfig(), help="Configuration for the output of the stream." ) attributes: List[str] = field(default=[], help="List of attributes files to used for mixing.") filter: Optional[FilterConfig] = field( # pyright: ignore default=None, help="Configuration for filtering documents." ) span_replacement: List[SpanReplacementConfig] = field(default=[], help="Configuration for replacing spans.") @dataclass class MixerConfig: streams: List[StreamConfig] = field(default=[], help="List configurations of streams to be mixed") work_dir: WorkDirConfig = field(default=WorkDirConfig(), help="Configuration for temporary work directories.") processes: int = field(default=1, help="Number of processes to use for mixing. By default 1 process is used.") class MixerCli(BaseCli): CONFIG = MixerConfig DESCRIPTION = "Mix documents from multiple streams." @classmethod def run(cls, parsed_config: MixerConfig): logger = get_logger("mixer") with make_workdirs(parsed_config.work_dir) as work_dirs: dict_config: Dict[str, Any] = { "work_dir": {"input": work_dirs.input, "output": work_dirs.output}, "processes": parsed_config.processes, "streams": [], } for stream_config in parsed_config.streams: stream_config_dict: Dict[str, Any] = {} if stream_config.filter is not None: if not stream_config.filter.include and not stream_config.filter.exclude: raise DolmaConfigError("Either `include` or `exclude` must be specified for filter") stream_config_dict["filter"] = { "include": list(stream_config.filter.include), "exclude": list(stream_config.filter.exclude), } for span_replacement in stream_config.span_replacement: stream_config_dict.setdefault("span_replacement", []).append( { "span": span_replacement.span, "min_score": span_replacement.min_score, "replacement": span_replacement.replacement, } ) if "span_replacement" not in stream_config_dict and "filter" not in stream_config_dict: raise DolmaConfigError("Either `filter` or `span_replacement` must be specified") # perform some path validation to make sure we don't call the mixer with invalid config total_matching_documents = 0 for document in stream_config.documents: if document.count("*") > 1: raise DolmaConfigError("Only one wildcard is allowed in the document path") current_matching_documents = sum(1 for _ in glob_path(document)) if current_matching_documents == 0: # only raise a warning if no documents are found for a single path logger.warn(f"No documents found for path {document}") total_matching_documents += current_matching_documents if total_matching_documents == 0: # but raise an error if no documents are found for all paths raise DolmaConfigError(f"No documents found for the paths for {stream_config.name} config.") # populate the stream config dict stream_config_dict["name"] = stream_config.name stream_config_dict["documents"] = list(stream_config.documents) stream_config_dict["attributes"] = list(stream_config.attributes) stream_config_dict["output"] = { "path": stream_config.output.path, "max_size_in_bytes": stream_config.output.max_size_in_bytes, } if stream_config.output.discard_fields: stream_config_dict["output"]["discard_fields"] = list(stream_config.output.discard_fields) if len(stream_config_dict["documents"]) == 0: raise ValueError("No documents to mix") dict_config["streams"].append(stream_config_dict) if len(dict_config["streams"]) == 0: raise DolmaConfigError("No streams to mix") print_config(dict_config) return mixer(dict_config)
dolma-main
python/dolma/cli/mixer.py
from argparse import ArgumentParser from pathlib import Path from typing import List, Optional from yaml import safe_load from .analyzer import AnalyzerCli from .deduper import DeduperCli from .mixer import MixerCli # must import these to register the resolvers from .resolvers import * # noqa: F401,F403 from .tagger import ListTaggerCli, TaggerCli AVAILABLE_COMMANDS = { "dedupe": DeduperCli, "mix": MixerCli, "tag": TaggerCli, "list": ListTaggerCli, "stat": AnalyzerCli, # following functionality is not yet implemented # "train-ft": None, # "train-lm": None, } def main(argv: Optional[List[str]] = None): parser = ArgumentParser( prog="dolma", usage="dolma [command] [options]", description="Command line interface for the DOLMa dataset processing toolkit", ) parser.add_argument( "-c", "--config", help="Path to configuration optional file", type=Path, default=None, ) subparsers = parser.add_subparsers(dest="command") subparsers.required = True subparsers.choices = AVAILABLE_COMMANDS.keys() # type: ignore for command, cli in AVAILABLE_COMMANDS.items(): cli.make_parser(subparsers.add_parser(command, help=cli.DESCRIPTION)) args = parser.parse_args(argv) # try parsing the config file config: Optional[dict] = None if config_path := args.__dict__.pop("config"): assert config_path.exists(), f"Config file {config_path} does not exist" with open(config_path) as f: config = dict(safe_load(f)) AVAILABLE_COMMANDS[args.__dict__.pop("command")].run_from_args(args=args, config=config)
dolma-main
python/dolma/cli/__main__.py
import logging import os from dataclasses import dataclass from typing import List, Set from ..core.data_types import DocResult, Document, Span from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger MIN_WORDS_PER_LINE = 3 naughty_lines = ( open(os.path.join(os.path.dirname(os.path.dirname(__file__)), "data", "naughty_words_en.txt")) .read() .splitlines() ) NAUGHTY_WORDS: Set[str] = set(w for w in naughty_lines if " " not in w) NAUGHTY_PHRASES: Set[str] = set(w for w in naughty_lines if " " in w) @dataclass class C4Attributes: lines_with_no_ending_punctuation: List[Span] lines_with_too_few_words: List[Span] has_naughty_word: bool = False has_javascript: bool = False has_lorem_ipsum: bool = False has_curly_brace: bool = False line_count: int = 0 character_count: int = 0 def as_spans(self) -> List[Span]: spans = [] spans.extend(self.lines_with_no_ending_punctuation) spans.extend(self.lines_with_too_few_words) if self.has_naughty_word: spans.append(Span(0, self.character_count, type="has_naughty_word")) if self.has_javascript: spans.append(Span(0, self.character_count, type="has_javascript")) if self.has_lorem_ipsum: spans.append(Span(0, self.character_count, type="has_lorem_ipsum")) if self.has_curly_brace: spans.append(Span(0, self.character_count, type="has_curly_brace")) spans.append(Span(0, self.character_count, type="line_count", score=self.line_count)) return spans def get_attributes(text: str) -> C4Attributes: attrs = C4Attributes([], []) attrs.character_count = len(text) try: lines = text.split("\n") attrs.line_count = len(lines) offset = 0 for line_no in range(0, len(lines)): original_line = lines[line_no] end_offset = offset + len(original_line) if line_no < len(lines) - 1: end_offset += 1 line = original_line.lower().strip() if not line.endswith((".", "?", "!", '"')): attrs.lines_with_no_ending_punctuation.append( Span(offset, end_offset, type="lines_with_no_ending_punctuation") ) words = line.split() if len(words) < MIN_WORDS_PER_LINE: attrs.lines_with_too_few_words.append(Span(offset, end_offset, type="lines_with_too_few_words")) if any(word in NAUGHTY_WORDS for word in words) or any(phrase in line for phrase in NAUGHTY_PHRASES): attrs.has_naughty_word = True if any(word == "javascript" for word in words): attrs.has_javascript = True if "lorem ipsum" in line: attrs.has_lorem_ipsum = True if "{" in line: attrs.has_curly_brace = True offset = end_offset except Exception: logging.exception(f"Error parsing text: {text[:200]}") return attrs @TaggerRegistry.add("c4_v1") class C4Tagger(BaseTagger): def predict(self, doc: Document) -> DocResult: attrs = get_attributes(doc.text) result = DocResult(doc=doc, spans=attrs.as_spans()) return result
dolma-main
python/dolma/taggers/c4.py
import logging from collections import Counter from dataclasses import dataclass from statistics import median from typing import Counter as CounterType from typing import List, Tuple from ..core.data_types import DocResult, Document, Span from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger REQUIRED_ENGLISH_WORDS = {"the", "be", "to", "of", "and", "that", "have", "with"} SYMBOLS = {"#", "\u2026"} BULLET_POINTS = {"*", "-"} @dataclass class GopherAttributes: fraction_of_characters_in_most_common_ngram: List[Tuple[int, float]] fraction_of_characters_in_duplicate_ngrams: List[Tuple[int, float]] character_count: int = 0 word_count: int = 0 median_word_length: float = False symbol_to_word_ratio: float = 0.0 fraction_of_words_with_alpha_character: float = 0.0 required_word_count: int = 0 fraction_of_lines_starting_with_bullet_point: float = 0.0 fraction_of_lines_ending_with_ellipsis: float = 0.0 fraction_of_duplicate_lines: float = 0.0 fraction_of_characters_in_duplicate_lines: float = 0.0 def as_spans(self) -> List[Span]: spans = [] spans.extend( [ Span(0, self.character_count, f"fraction_of_characters_in_most_common_{n}grams", v) for n, v in self.fraction_of_characters_in_most_common_ngram ] ) spans.extend( [ Span(0, self.character_count, f"fraction_of_characters_in_duplicate_{n}grams", v) for n, v in self.fraction_of_characters_in_duplicate_ngrams ] ) spans.append(Span(0, self.character_count, type="character_count", score=self.character_count)) spans.append(Span(0, self.character_count, type="word_count", score=self.word_count)) spans.append(Span(0, self.character_count, type="median_word_length", score=self.median_word_length)) spans.append(Span(0, self.character_count, type="symbol_to_word_ratio", score=self.symbol_to_word_ratio)) spans.append( Span( 0, self.character_count, type="fraction_of_words_with_alpha_character", score=self.fraction_of_words_with_alpha_character, ) ) spans.append(Span(0, self.character_count, type="required_word_count", score=self.required_word_count)) spans.append( Span( 0, self.character_count, type="fraction_of_lines_starting_with_bullet_point", score=self.fraction_of_lines_starting_with_bullet_point, ) ) spans.append( Span( 0, self.character_count, type="fraction_of_lines_ending_with_ellipsis", score=self.fraction_of_lines_ending_with_ellipsis, ) ) spans.append( Span( 0, self.character_count, type="fraction_of_duplicate_lines", score=self.fraction_of_duplicate_lines ) ) spans.append( Span( 0, self.character_count, type="fraction_of_characters_in_duplicate_lines", score=self.fraction_of_characters_in_duplicate_lines, ) ) return spans def get_attributes(text: str) -> GopherAttributes: attrs = GopherAttributes([], []) attrs.character_count = len(text) if attrs.character_count == 0: return attrs try: words = text.split() word_count = len(words) character_count = sum(len(word) for word in words) attrs.word_count = word_count attrs.median_word_length = median([len(word) for word in words]) attrs.symbol_to_word_ratio = sum(1 for word in words if any(s in word for s in SYMBOLS)) / word_count attrs.fraction_of_words_with_alpha_character = ( sum(1 for word in words if any(c.isalpha() for c in word)) / word_count ) attrs.required_word_count = sum(1 for word in words if word in REQUIRED_ENGLISH_WORDS) all_counts = all_ngram_counts(words) count_most_common_ngrams = {2, 3, 4} for n, ngram_counts in all_counts: if not ngram_counts: continue if n in count_most_common_ngrams: most_common_ngram, count = ngram_counts.most_common(1)[0] value = count * sum(len(w) for w in most_common_ngram) / character_count attrs.fraction_of_characters_in_most_common_ngram.append((n, value)) else: ng_char_count = sum(count * sum(len(w) for w in ng) for ng, count in ngram_counts.items()) value = ( sum(count * sum(len(w) for w in ng) for ng, count in ngram_counts.items() if count > 1) / ng_char_count ) attrs.fraction_of_characters_in_duplicate_ngrams.append((n, value)) lines = text.split("\n") line_count = len(lines) for line in lines: if any(line.startswith(s) for s in BULLET_POINTS): attrs.fraction_of_lines_starting_with_bullet_point += 1 if line.endswith("\u2026"): attrs.fraction_of_lines_ending_with_ellipsis += 1 attrs.fraction_of_lines_starting_with_bullet_point /= line_count attrs.fraction_of_lines_ending_with_ellipsis /= line_count line_counts = Counter(lines) attrs.fraction_of_duplicate_lines = ( sum(count for line, count in line_counts.items() if count > 1) / line_count ) attrs.fraction_of_characters_in_duplicate_lines = ( sum(len(line) * count for line, count in line_counts.items() if count > 1) / character_count ) except Exception as e: logging.exception(f"Error processing text {e}: {text[:200]}") return attrs def all_ngram_counts(words) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]: return [(n, Counter(list(zip(*[words[i:] for i in range(n)])))) for n in range(2, 11)] def all_ngram_counts_alt(words: List[str]) -> List[Tuple[int, CounterType[Tuple[str, ...]]]]: """Seems like it should be faster, but isn't""" ngram: List[Tuple[str, ...]] = list(zip(words, words[1:])) all_counts: List[Tuple[int, CounterType[Tuple[str, ...]]]] = [(2, Counter(ngram))] for n in range(3, 11): ngram = list(a + (b,) for a, b in zip(ngram, words[n - 1 :])) all_counts.append((n, Counter(ngram))) return all_counts @TaggerRegistry.add("gopher_v1") class GopherTagger(BaseTagger): def predict(self, doc: Document) -> DocResult: attrs = get_attributes(doc.text) result = DocResult(doc=doc, spans=attrs.as_spans()) return result
dolma-main
python/dolma/taggers/gopher.py
""" Filters. @kylel, @soldni """ import regex import uniseg.wordbreak from tokenizers import Regex, pre_tokenizers from ..core.data_types import DocResult, Document, Span from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger from ..core.utils import split_paragraphs @TaggerRegistry.add("char_length_v1") class CharLengthV1(BaseTagger): def predict(self, doc: Document) -> DocResult: score = len(doc.text) return DocResult(doc=doc, spans=[Span(start=0, end=len(doc.text), type="length", score=score)]) @TaggerRegistry.add("char_length_with_paragraphs_v1") class CharLengthWithParagraphsV1(BaseTagger): def predict(self, doc: Document) -> DocResult: spans = [ Span(start=p.start, end=p.end, type="paragraph", score=len(p.text)) for p in split_paragraphs(doc.text) ] spans.append(Span(start=0, end=len(doc.text), type="document", score=len(doc.text))) return DocResult(doc=doc, spans=spans) @TaggerRegistry.add("whitespace_tokenizer_v1") class WhitespaceLengthV1(BaseTagger): WHITESPACE_REGEX = regex.compile(r"\w+|[^\w\s]+") def predict(self, doc: Document) -> DocResult: score = len(self.WHITESPACE_REGEX.split(doc.text)) return DocResult(doc=doc, spans=[Span(start=0, end=len(doc.text), type="length", score=score)]) @TaggerRegistry.add("whitespace_tokenizer_with_paragraphs_v1") class WhitespaceLengthParagraphsV1(WhitespaceLengthV1): def predict(self, doc: Document) -> DocResult: spans = [ Span(start=p.start, end=p.end, type="paragraph", score=len(self.WHITESPACE_REGEX.split(p.text))) for p in split_paragraphs(doc.text) ] spans.append(Span(start=0, end=len(doc.text), type="document", score=sum(s.score for s in spans))) return DocResult(doc=doc, spans=spans) @TaggerRegistry.add("uniseg_length_paragraphs_v1") class UnisegParagraphsV1(BaseTagger): def predict(self, doc: Document) -> DocResult: spans = [] for para in split_paragraphs(doc.text): # we ignore whitespace-only tokens when counting words para_length = sum(1 for w in uniseg.wordbreak.words(para.text.strip()) if w.strip()) spans.append(Span(start=para.start, end=para.end, type="paragraph", score=para_length)) # we have to record negative length because mixer can only work on greater than operations, # and we might want to drop paragraphs that are shorter than a certain length n, so we need # to filter on >= n spans.append(Span(start=para.start, end=para.end, type="negative_paragraph", score=-para_length)) return DocResult(doc=doc, spans=spans) @TaggerRegistry.add("uniseg_length_paragraphs_with_doc_length_v1") class UnisegParagraphsWithDocLengthV1(UnisegParagraphsV1): def predict(self, doc: Document) -> DocResult: doc_results = super().predict(doc) pos_len = sum(s.score for s in doc_results.spans if s.type == "paragraph") neg_len = sum(s.score for s in doc_results.spans if s.type == "negative_paragraph") doc_results.spans.append(Span(start=0, end=len(doc.text), type="document", score=pos_len)) doc_results.spans.append(Span(start=0, end=len(doc.text), type="negative_document", score=neg_len)) return doc_results @TaggerRegistry.add("olmo_pretokenizer_v1") class OlmoPreTokenizerV1(BaseTagger): def __init__(self) -> None: self.pre_tokenizer = pre_tokenizers.Sequence( [ # Split on all punctuation. pre_tokenizers.Split( pattern=Regex(" ?[[:punct:]]"), behavior="isolated", invert=False, ), # Split up digits. pre_tokenizers.Split( pattern=Regex(" ?\\d"), behavior="isolated", invert=False, ), pre_tokenizers.ByteLevel(add_prefix_space=False, use_regex=True), ] ) def predict(self, doc: Document) -> DocResult: score = len(self.pre_tokenizer.pre_tokenize_str(doc.text)) return DocResult(doc=doc, spans=[Span(start=0, end=len(doc.text), type="length", score=score)]) @TaggerRegistry.add("olmo_pretokenizer_with_paragraphs_v1") class OlmoPreTokenizerParagraphsV1(OlmoPreTokenizerV1): def predict(self, doc: Document) -> DocResult: spans = [ Span( start=p.start, end=p.end, type="paragraph", score=len(self.pre_tokenizer.pre_tokenize_str(p.text)) ) for p in split_paragraphs(doc.text) ] spans.append(Span(start=0, end=len(doc.text), type="document", score=sum(s.score for s in spans))) return DocResult(doc=doc, spans=spans)
dolma-main
python/dolma/taggers/length.py
""" Code-related taggers. @akshitab """ import logging import re from typing import Generator, List import numpy as np import regex from detect_secrets import SecretsCollection from detect_secrets.core.scan import ( PotentialSecret, _process_line_based_plugins, get_plugins, ) from detect_secrets.settings import default_settings from ..core.data_types import DocResult, Document, Span from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger logger = logging.getLogger(__name__) def scan_code(code: str) -> Generator[PotentialSecret, None, None]: if not get_plugins(): logger.error("No plugins to scan with!") return has_secret = False for lines in [code.splitlines()]: for secret in _process_line_based_plugins( lines=list(enumerate(lines, start=1)), filename="code_str.yml", ): has_secret = True yield secret if has_secret: break class SecretsCollectionForStringInput(SecretsCollection): def scan_str(self, code_str: str): for secret in scan_code(code_str): self["code_str.yml"].add(secret) def get_secrets(code: str): secrets = SecretsCollectionForStringInput() with default_settings(): secrets.scan_str(code) return secrets @TaggerRegistry.add("code_secrets_v1") class CodeSecretsTagger(BaseTagger): @classmethod def _extract_code_secrets(cls, text: str) -> List[Span]: secrets_spans: List[Span] = [] text_lines = text.splitlines() secrets = get_secrets(text) for _, secret in secrets: line_number = secret.line_number - 1 span = secret.secret_value span_line = text_lines[line_number] line_start = text.find(span_line) start = line_start + span_line.find(span) end = start + len(span) assert text[start:end] == span secret_type = secret.type.replace(" ", "_") secrets_spans.append(Span(start=start, end=end, type=f"SECRET_{secret_type}")) # , span]) return secrets_spans def predict(self, doc: Document) -> DocResult: """Main runner.""" spans = self._extract_code_secrets(doc.text) # document-level score score = self._score(text=doc.text, secrets_spans=spans) spans.append(Span(start=0, end=len(doc.text), type="doc", score=score)) return DocResult(doc=doc, spans=spans) def _score(self, text: str, secrets_spans: List[Span]) -> float: try: score = len(secrets_spans) * 1.0 / len(text.split()) except ZeroDivisionError: score = -1.0 return score @TaggerRegistry.add("code_copyright_comments_v1") class CodeCopyrightTagger(BaseTagger): """ Based on RedPajama code filtering. """ def __init__(self): self.cpat = re.compile("copyright", re.IGNORECASE) self.pat = re.compile("/\\*[^*]*\\*+(?:[^/*][^*]*\\*+)*/") def _extract_copyright_spans(self, text: str) -> List[Span]: copyright_spans: List[Span] = [] reg = self.pat.search(text) if reg: # found one, now see if it contains "copyright", if so strip it span = reg.span() sub = text[span[0] : span[1]] if self.cpat.search(sub): copyright_spans.append(Span(start=span[0], end=span[1], type="copyright_notice", score=1.0)) return copyright_spans lines = text.split("\n") skip = 0 # Greedy replace any file that begins with comment block, most # are copyright headers end = 0 for k in range(len(lines)): if lines[k].startswith("//") or lines[k].startswith("#") or lines[k].startswith("--") or not lines[k]: skip = skip + 1 if not lines[k]: end += 1 else: end += len(lines[k]) else: break if skip: copyright_spans.append(Span(start=0, end=end, type="comment_block", score=1.0)) return copyright_spans def predict(self, doc: Document) -> DocResult: """Main runner.""" spans = self._extract_copyright_spans(doc.text) # document-level score score = self._score(text=doc.text, copyright_spans=spans) spans.append(Span(start=0, end=len(doc.text), type="doc", score=score)) return DocResult(doc=doc, spans=spans) def _score(self, text: str, copyright_spans: List[Span]) -> float: try: if len(copyright_spans) == 0: score = 0.0 else: span = copyright_spans[0] # percentage of content affected score = (span.end - span.start + 1) * 1.0 / len(text) except ZeroDivisionError: score = -1.0 return score @TaggerRegistry.add("code_redpajama_taggers_v1") class CodeRedPajamaTaggers(BaseTagger): """ Based on RedPajama code filtering. """ WHITESPACE_REGEX = regex.compile(r"\w+|[^\w\s]+") def _get_num_tokens(self, text: str): return len(self.WHITESPACE_REGEX.split(text)) def predict(self, doc: Document) -> DocResult: """Main runner.""" spans: List[Span] = [] doc_length = len(doc.text) line_lengths = list(map(len, doc.text.splitlines())) max_line_length = max(line_lengths, default=0.0) avg_line_length = np.mean(line_lengths) if len(line_lengths) > 0 else 0.0 alnum_count = sum(map(lambda char: 1 if char.isalnum() else 0, doc.text)) alnum_prop = (alnum_count / doc_length) if doc_length > 0 else 0.0 num_tokens = self._get_num_tokens(doc.text) num_alpha = len([c for c in doc.text if c.isalpha()]) alpha_token_prop = (num_alpha / num_tokens) if num_tokens > 0 else 0.0 # document-level scores spans.append(Span(start=0, end=doc_length, type="max_line_length_doc", score=max_line_length)) spans.append(Span(start=0, end=doc_length, type="avg_line_length_doc", score=avg_line_length)) spans.append(Span(start=0, end=doc_length, type="alnum_prop_doc", score=alnum_prop)) spans.append(Span(start=0, end=doc_length, type="alpha_token_prop_doc", score=alpha_token_prop)) return DocResult(doc=doc, spans=spans)
dolma-main
python/dolma/taggers/code.py
from . import c4, code, gopher, jigsaw, language, length, pii, sampling
dolma-main
python/dolma/taggers/__init__.py
import random from multiprocessing import current_process from ..core.data_types import DocResult, Document, Span from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger @TaggerRegistry.add("random_number_v1") class RandomNumberTagger(BaseTagger): def __init__(self, seed: int = 1) -> None: assert seed > 0 # we multiply the seed by the current process id to ensure that each # process has a different seed self.seed = ((current_process().pid or 0) + 1) * seed random.seed(self.seed) def predict(self, doc: Document) -> DocResult: score = random.random() return DocResult(doc=doc, spans=[Span(start=0, end=len(doc.text), type="random", score=score)])
dolma-main
python/dolma/taggers/sampling.py
""" Filters. @kylel, @soldni """ from typing import Iterable from ..core.data_types import TextSlice from ..core.ft_tagger import BaseFastTextTagger, Prediction from ..core.registry import TaggerRegistry @TaggerRegistry.add("jigsaw_hatespeech_document_v2") class FastTextJigsawHatespeechDocumentTagger(BaseFastTextTagger): MODEL_PATH = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/aakankshan/olmo-data-filters/jigsaw_fasttext_bigrams_hatespeech_final.bin" # noqa: E501 def __init__(self): super().__init__(model_path=self.MODEL_PATH, model_mode=self.DOCUMENT_LEVEL_TAGGER) def predict_slice(self, text_slice: TextSlice) -> Iterable[Prediction]: labels, probs = self.classifier.predict(text_slice.text.replace("\n", " ").strip(), k=-1) label_index = 1 if "non" in labels[0] else 0 # pyright: ignore return ( Prediction(label=labels[label_index], score=probs[label_index]), Prediction(label=labels[1 - label_index], score=probs[1 - label_index]), ) @TaggerRegistry.add("jigsaw_hatespeech_sentence_v2") class FastTextJigsawHatespeechSentenceTagger(FastTextJigsawHatespeechDocumentTagger): def __init__(self): BaseFastTextTagger.__init__(self, model_path=self.MODEL_PATH, model_mode=self.SENTENCE_LEVEL_TAGGER) @TaggerRegistry.add("jigsaw_nsfw_document_v1") class FastTextJigsawNsfwDocumentTagger(FastTextJigsawHatespeechDocumentTagger): MODEL_PATH = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/aakankshan/olmo-data-filters/jigsaw_fasttext_bigrams_nsfw_final.bin" # noqa: E501 @TaggerRegistry.add("jigsaw_nsfw_sencence_v2") class FastTextJigsawNsfwSentenceTagger(FastTextJigsawHatespeechSentenceTagger): MODEL_PATH = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/aakankshan/olmo-data-filters/jigsaw_fasttext_bigrams_nsfw_final.bin" # noqa: E501
dolma-main
python/dolma/taggers/jigsaw.py
""" Filters. @kylel, @soldni """ from typing import Iterable, List, Tuple try: import cld3 CLD3_AVAILABLE = True except ImportError: CLD3_AVAILABLE = False import pycld2 as cld2 import regex from anyascii import anyascii from ..core.data_types import DocResult, Document, Span, TextSlice from ..core.ft_tagger import BaseFastTextTagger, Prediction from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger from ..core.utils import split_paragraphs @TaggerRegistry.add("cld3_en_doc_v2") class Cld3LanguageTagger(BaseTagger): def __init__(self) -> None: if not CLD3_AVAILABLE: raise ImportError(f"cld3 is not install, cannot instantiate {self.__class__.__name__}") def _predict_text(self, text: str) -> Tuple[str, float]: pred = cld3.get_language(text) # pyright: ignore score = pred.probability if pred.language == "en" else 0.0 return "en", score def predict(self, doc: Document) -> DocResult: lang, score = self._predict_text(doc.text) positive_span = Span(start=0, end=len(doc.text), type=lang, score=score) negative_span = Span(start=0, end=len(doc.text), type=f"not_{lang}", score=1.0 - score) return DocResult(doc=doc, spans=[positive_span, negative_span]) @TaggerRegistry.add("cld3_en_paragraph_v2") class Cld3LanguageTaggerParagraph(Cld3LanguageTagger): def predict(self, doc: Document) -> DocResult: paragraphs = split_paragraphs(doc.text) spans: List[Span] = [] for paragraph in paragraphs: lang, score = self._predict_text(paragraph.text) # pyright: ignore positive_span = Span(start=paragraph.start, end=paragraph.end, type=lang, score=score) negative_span = Span(start=paragraph.start, end=paragraph.end, type=f"not_{lang}", score=1.0 - score) spans.extend((positive_span, negative_span)) return DocResult(doc=doc, spans=spans) @TaggerRegistry.add("cld2_en_doc_v2") class Cld2LanguageFilter(BaseTagger): RE_BAD_CHARS = regex.compile(r"[\p{Cc}\p{Cs}]+") def _sanitize_input(self, text: str) -> str: return self.RE_BAD_CHARS.sub("", text) def _to_ascii_input(self, text: str) -> str: return anyascii(text) def _identity_fn(self, text: str) -> str: return text def _predict_text(self, text: str) -> Tuple[str, float]: details = [] is_reliable = False for fn in (self._identity_fn, self._to_ascii_input, self._sanitize_input): try: is_reliable, _, details = cld2.detect(fn(text)) break except cld2.error: ... score = max([d[2] for d in details if d[0] == "ENGLISH" and is_reliable] or [0]) return "en", score / 100.0 def predict(self, doc: Document) -> DocResult: lang, score = self._predict_text(doc.text) positive_span = Span(start=0, end=len(doc.text), type=lang, score=score) negative_span = Span(start=0, end=len(doc.text), type=f"not_{lang}", score=1.0 - score) return DocResult(doc=doc, spans=[positive_span, negative_span]) @TaggerRegistry.add("cld2_en_paragraph_v2") class Cld2LanguageFilterParagraph(Cld2LanguageFilter): def predict(self, doc: Document) -> DocResult: paragraphs = split_paragraphs(doc.text) spans: List[Span] = [] for paragraph in paragraphs: lang, score = self._predict_text(paragraph.text) # pyright: ignore positive_span = Span(start=paragraph.start, end=paragraph.end, type=lang, score=score) negative_span = Span(start=paragraph.start, end=paragraph.end, type=f"not_{lang}", score=1.0 - score) spans.extend((positive_span, negative_span)) return DocResult(doc=doc, spans=spans) @TaggerRegistry.add("ft_lang_id_en_doc_v2") class FastTextEnglishLanguageDocumentTagger(BaseFastTextTagger): MODEL_PATH = "https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin" def __init__(self): super().__init__(model_path=self.MODEL_PATH, model_mode=self.DOCUMENT_LEVEL_TAGGER) def predict_slice(self, text_slice: TextSlice) -> Iterable[Prediction]: pred = self.classifier.predict(text_slice.text.lower().replace("\n", " ").strip(), k=-1) for label, score in zip(*pred): if label == "__label__en": return Prediction(label="en", score=score), Prediction(label="not_en", score=1.0 - score) return Prediction(label="en", score=0.0), Prediction(label="not_en", score=1.0) @TaggerRegistry.add("ft_lang_id_en_paragraph_v2") class FastTextEnglishLanguageParagraphTagger(FastTextEnglishLanguageDocumentTagger): def __init__(self): BaseFastTextTagger.__init__(self, model_path=self.MODEL_PATH, model_mode=self.PARAGRAPH_LEVEL_TAGGER) def add_global_language_score_from_slice_score(result: DocResult) -> DocResult: # the total document score is # of characters in each "english" span multiplied by the likelihood # of said span being english try: doc_en_score = sum((s.end - s.start) * s.score for s in result.spans if s.type == "en") / len( result.doc.text ) doc_not_en_score = 1 - doc_en_score except ZeroDivisionError: doc_en_score = doc_not_en_score = 0.0 doc_level = ( Span(start=0, end=len(result.doc.text), type="doc_en", score=doc_en_score), Span(start=0, end=len(result.doc.text), type="doc_not_en", score=doc_not_en_score), ) result.spans.extend(doc_level) return result @TaggerRegistry.add("cld2_en_paragraph_with_doc_score_v2") class Cld2LanguageFilterParagraphWithDocScoreTagger(Cld2LanguageFilterParagraph): def predict(self, doc: Document) -> DocResult: doc_result = super().predict(doc) doc_result = add_global_language_score_from_slice_score(doc_result) return doc_result @TaggerRegistry.add("cld3_en_paragraph_with_doc_score_v2") class Cld3LanguageFilterParagraphWithDocScoreTagger(Cld3LanguageTaggerParagraph): def predict(self, doc: Document) -> DocResult: doc_result = super().predict(doc) doc_result = add_global_language_score_from_slice_score(doc_result) return doc_result @TaggerRegistry.add("ft_lang_id_en_paragraph_with_doc_score_v2") class FastTextEnglishLanguageParagraphWithDocScoreTagger(FastTextEnglishLanguageParagraphTagger): def predict(self, doc: Document) -> DocResult: doc_result = super().predict(doc) doc_result = add_global_language_score_from_slice_score(doc_result) return doc_result
dolma-main
python/dolma/taggers/language.py
""" Filters. @kylel, @soldni """ try: import re2 as re except ImportError: import re else: re.set_fallback_notification(re.FALLBACK_WARNING) from typing import List from warnings import warn from presidio_analyzer import AnalyzerEngine from ..core.data_types import DocResult, Document, Span, TextSlice from ..core.registry import TaggerRegistry from ..core.taggers import BaseTagger from ..core.utils import split_paragraphs __all__ = ["PiiPresidioV1", "PiiRegexV1", "PiiRegexV2", "FastPiiRegex", "PiiRegexWithCountV2"] class BasePiiFilter(BaseTagger): EMAIL = "EMAIL_ADDRESS" PHONE = "PHONE_NUMBER" IP = "IP_ADDRESS" PRESIDIO = "presidio" REGEX = "regex" ENGLISH = "en" WINDOW = 100 def __init__( self, method: str, postprocess: bool, window: int, ) -> None: assert method in [ self.PRESIDIO, self.REGEX, ], f"Please provide a valid method for filtering ({self.PRESIDIO} or {self.REGEX})" # configs self.method = method self.postprocess = postprocess self.window = window # Regular expressions for different types of PII self.pii_type_to_regex = { self.EMAIL: re.compile("[.\\s@,?!;:)(]*([^\\s@]+@[^\\s@,?!;:)(]+?)[.\\s@,?!;:)(]?[\\s\n\r]"), self.PHONE: re.compile("\\s+\\(?(\\d{3})\\)?[-\\. ]*(\\d{3})[-. ]?(\\d{4})"), self.IP: re.compile( "(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)" ), } self.url_regex = re.compile( "(?i)\b((?:https?://|www\\d{0,3}[.]|[a-z0-9.\\-]+[.][a-z]{2,4}/)(?:[^\\s()<>]+|\\(([^\\s()<>]+|" "(\\([^\\s()<>]+\\)))*\\))+(?:\\(([^\\s()<>]+|(\\([^\\s()<>]+\\)))*\\)|[^\\s`!()\\[\\]" "{};:'\".,<>?«»“”‘’]))" ) # presidio if self.method == self.PRESIDIO: self.analyzer = AnalyzerEngine() def predict(self, doc: Document) -> DocResult: """Main runner.""" # extract if self.method == self.PRESIDIO: pii_spans = self._extract_pii_presidio(text=doc.text) elif self.method == self.REGEX: pii_spans = self._extract_pii_regex(text=doc.text) else: raise NotImplementedError # post process if self.postprocess: new_pii_spans = self._postprocess(text=doc.text, pii_spans=pii_spans, window=self.window) else: new_pii_spans = pii_spans # document-level score score = self._score(text=doc.text, pii_spans=new_pii_spans) new_pii_spans.append(Span(start=0, end=len(doc.text), type="doc", score=score)) return DocResult(doc=doc, spans=new_pii_spans) def _score(self, text: str, pii_spans: List[Span]) -> float: return len(pii_spans) * 1.0 / len(text.split()) def _extract_pii_regex(self, text: str) -> List[Span]: pii_spans: List[Span] = [] for pii_type, regex in self.pii_type_to_regex.items(): for match in regex.finditer(text): start, end = match.span() pii_spans.append(Span(start=start, end=end, type=pii_type)) return pii_spans def _extract_pii_presidio(self, text: str) -> List[Span]: analyzer_results = self.analyzer.analyze( text=text, entities=[self.EMAIL, self.PHONE, self.IP], language=self.ENGLISH, ) pii_spans: List[Span] = [] for res in analyzer_results: pii_spans.append(Span(start=res.start, end=res.end, type=res.entity_type)) return pii_spans def _postprocess(self, text: str, pii_spans: List[Span], window: int) -> List[Span]: """Applies some rules to remove over-prediction of PII types.""" new_pii_spans = [] for pii_span in pii_spans: if pii_span.type == self.EMAIL: if self._is_email(text, pii_span): new_pii_spans.append(pii_span) else: pass elif pii_span.type == self.PHONE or pii_span.type == self.IP: context = pii_span.mention(text=text, window=window) # for both phone numbers & IP addresses, context shouldnt # contain these strings if "isbn" in context or "doi" in context or "#" in context: pass elif pii_span.type == self.IP: new_pii_spans.append(pii_span) elif pii_span.type == self.PHONE: # for phone numbers, additionally shouldnt be URL if self._contains_url(text=text): pass else: new_pii_spans.append(pii_span) else: raise NotImplementedError(f"Unsupported PII type for Postprocess: {pii_span.type}") return new_pii_spans def _contains_url(self, text: str) -> bool: return len(self.url_regex.findall(text)) > 0 def _is_email(self, text: str, pii_span: Span) -> bool: """ Rules: (1) The email address besides the domain, cannot be only "(" (2) There must be a "." in the domain """ mention = pii_span.mention(text=text) addressee = mention.split("@")[0] domain = mention.split("@")[1] if addressee.strip() == "(" or "." not in domain: return False return True @TaggerRegistry.add("pii_presidio_v1") class PiiPresidioV1(BasePiiFilter): def __init__(self): super().__init__(method=self.PRESIDIO, postprocess=True, window=self.WINDOW) @TaggerRegistry.add("pii_regex_v1") class PiiRegexV1(BasePiiFilter): def __init__(self): super().__init__(method=self.REGEX, postprocess=True, window=self.WINDOW) @TaggerRegistry.add("pii_regex_v2") class PiiRegexV2(PiiRegexV1): def _score(self, text: str, pii_spans: List[Span]) -> float: try: score = len(pii_spans) * 1.0 / len(text.split()) except ZeroDivisionError: score = -1.0 return score @TaggerRegistry.add("pii_regex_with_counts_fast_v2") class FastPiiRegex(BaseTagger): EMAIL_KEY = "EMAIL_ADDRESS" PHONE_KEY = "PHONE_NUMBER" IP_KEY = "IP_ADDRESS" EMAIL_REGEX = "[.\\s@,?!;:)(]*([^\\s@]+@[^\\s@,?!;:)(]+?)[.\\s@,?!;:)(]?[\\s\n\r]" PHONE_REGEX = "\\s+\\(?(\\d{3})\\)?[-\\. ]*(\\d{3})[-. ]?(\\d{4})" IP_REGEX = "(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)" URL_REGEX = "(?i)\b((?:https?://|www\\d{0,3}[.]|[a-z0-9.\\-]+[.][a-z]{2,4}/)(?:[^\\s()<>]+|\\(([^\\s()<>]+|(\\([^\\s()<>]+\\)))*\\))+(?:\\(([^\\s()<>]+|(\\([^\\s()<>]+\\)))*\\)|[^\\s`!()\\[\\]{};:'\".,<>?«»“”‘’]))" # noqa: E501 def __init__( self, email_regex: str = EMAIL_REGEX, phone_regex: str = PHONE_REGEX, ip_regex: str = IP_REGEX, url_regex: str = URL_REGEX, ) -> None: self.email_regex = re.compile(email_regex) self.phone_regex = re.compile(phone_regex) self.ip_regex = re.compile(ip_regex) self.url_regex = re.compile(url_regex) self.pre_ip_regex = re.compile(r"\.[^\s]") self.pre_phone_regex = re.compile(r"\d") def _false_positive_identifiers(self, text: str) -> bool: return "isbn" in text or "doi" in text or "#" in text def _predict_email(self, slice: TextSlice) -> List[Span]: if "@" not in slice.text: return [] spans = [] for match in self.email_regex.finditer(slice.text): addressee, domain = match.group(1).split("@", 1) if addressee.strip() == "(" or "." not in domain: continue start, end = match.span() spans.append(Span(start=start + slice.start, end=end + slice.start, type=self.EMAIL_KEY)) return spans def _predict_phone(self, slice: TextSlice) -> List[Span]: if not self.pre_phone_regex.search(slice.text): return [] spans = [] for match in self.phone_regex.finditer(slice.text): start, end = match.span() spans.append(Span(start=start + slice.start, end=end + slice.start, type=self.PHONE_KEY)) return spans def _predict_ip(self, slice: TextSlice) -> List[Span]: if not self.pre_ip_regex.search(slice.text): return [] spans = [] for match in self.ip_regex.finditer(slice.text): if self._contains_url(match.group(0)): continue start, end = match.span() spans.append(Span(start=start + slice.start, end=end + slice.start, type=self.IP_KEY)) return spans def _contains_url(self, text: str) -> bool: return self.url_regex.search(text) is not None def predict(self, doc: Document) -> DocResult: paragraphs = split_paragraphs(doc.text) spans: List[Span] = [] if doc.text.count("?") > 10_000: warn("Skipping regex PII detection for doc with >10k question marks") paragraphs = [] for paragraph in paragraphs: spans.extend(self._predict_email(paragraph)) spans.extend(self._predict_phone(paragraph)) spans.extend(self._predict_ip(paragraph)) # doc level score is the count of spans matching any of the PII types score = sum(1.0 for s in spans if s.type != "doc") spans.append(Span(start=0, end=len(doc.text), type="doc_count", score=score)) try: # fraction of words that are PII score = sum(len(s) for s in spans) / len(doc.text) except ZeroDivisionError: # empty doc score = -1.0 spans.append(Span(start=0, end=len(doc.text), type="doc_frac", score=score)) return DocResult(doc=doc, spans=spans) @TaggerRegistry.add("pii_regex_with_counts_v2") class PiiRegexWithCountV2(BasePiiFilter): def __init__(self): super().__init__(method=self.REGEX, postprocess=True, window=self.WINDOW) def predict(self, doc: Document) -> DocResult: doc_result = super().predict(doc=doc) count = sum(1 for s in doc_result.spans if s.type != "doc") doc_result.spans.append(Span(start=0, end=len(doc.text), type="doc_count", score=count)) return doc_result
dolma-main
python/dolma/taggers/pii.py
from argparse import ArgumentParser from dataclasses import dataclass from unittest import TestCase from omegaconf import MissingMandatoryValue from dolma.cli import field, make_parser, namespace_to_nested_omegaconf @dataclass class _1: a: int = field(help="a") b: str = field(help="b") @dataclass class _2: a: _1 = field(help="a") c: float = field(help="c", default=1.0) class TestOmegaconf(TestCase): def test_make_parser(self): ap = ArgumentParser() parser = make_parser(ap, _1) args = parser.parse_args(["--a", "1", "--b", "2"]) opts = namespace_to_nested_omegaconf(args=args, structured=_1) self.assertEqual(opts.a, 1) self.assertEqual(opts.b, "2") def test_nested_parser(self): ap = ArgumentParser() parser = make_parser(ap, _2) args = parser.parse_args(["--a.a", "1", "--a.b", "2", "--c", "3"]) opts = namespace_to_nested_omegaconf(args=args, structured=_2) self.assertEqual(opts.a.a, 1) self.assertEqual(opts.a.b, "2") self.assertEqual(opts.c, 3.0) def test_fail_omegaconf(self): ap = ArgumentParser() parser = make_parser(ap, _2) args = parser.parse_args(["--a.a", "1", "--c", "3"]) conf = namespace_to_nested_omegaconf(args, _2) with self.assertRaises(MissingMandatoryValue): conf.a.b
dolma-main
tests/python/test_omegaconf.py
""" Tests for the utils module. @kylel """ from unittest import TestCase from dolma.core.data_types import TextSlice from dolma.core.utils import split_paragraphs, split_sentences class TestUtils(TestCase): def test_make_variable_name(self): pass def test_split_paragraphs(self): text = "This is a paragraph.\nThis is another paragraph.\nThis is a third paragraph." paragraphs = split_paragraphs(text=text) self.assertIsInstance(paragraphs[0], TextSlice) self.assertEqual(len(paragraphs), 3) self.assertEqual(paragraphs[0].text, "This is a paragraph.\n") self.assertEqual(text[paragraphs[0].start : paragraphs[0].end], paragraphs[0].text) self.assertEqual(paragraphs[1].text, "This is another paragraph.\n") self.assertEqual(text[paragraphs[1].start : paragraphs[1].end], paragraphs[1].text) paragraphs2 = split_paragraphs(text=text, remove_empty=False) self.assertListEqual([p.text for p in paragraphs], [p.text for p in paragraphs2]) def test_split_paragraphs_empty(self): text = "" paragraphs = split_paragraphs(text=text) self.assertEqual(len(paragraphs), 0) def test_split_paragraphs_with_newline_and_spaces(self): text = "This is a sentence. \n \n This is another sentence.\n\n This is a third sentence." paragraphs = split_paragraphs(text=text) self.assertEqual(len(paragraphs), 3) self.assertIsInstance(paragraphs[0], TextSlice) self.assertEqual(len(paragraphs), 3) self.assertEqual(paragraphs[0].text, "This is a sentence. \n") self.assertEqual(text[paragraphs[0].start : paragraphs[0].end], paragraphs[0].text) self.assertEqual(paragraphs[1].text, " This is another sentence.\n") self.assertEqual(text[paragraphs[1].start : paragraphs[1].end], paragraphs[1].text) paragraphs = split_paragraphs(text=text, remove_empty=False) self.assertEqual(len(paragraphs), 5) self.assertIsInstance(paragraphs[0], TextSlice) self.assertEqual(len(paragraphs), 5) self.assertEqual(paragraphs[0].text, "This is a sentence. \n") self.assertEqual(text[paragraphs[0].start : paragraphs[0].end], paragraphs[0].text) self.assertEqual(paragraphs[1].text, " \n") self.assertEqual(text[paragraphs[1].start : paragraphs[1].end], paragraphs[1].text) self.assertEqual(paragraphs[2].text, " This is another sentence.\n") self.assertEqual(text[paragraphs[2].start : paragraphs[2].end], paragraphs[2].text) def test_split_sentences(self): text = "This is a sentence. This is another sentence. This is a third sentence." sentences = split_sentences(text=text) self.assertIsInstance(sentences[0], TextSlice) self.assertEqual(len(sentences), 3) self.assertEqual(sentences[0].text, "This is a sentence.") self.assertEqual(text[sentences[0].start : sentences[0].end], sentences[0].text) self.assertEqual(sentences[1].text, "This is another sentence.") self.assertEqual(text[sentences[1].start : sentences[1].end], sentences[1].text) def test_split_sentences_empty(self): text = "" sentences = split_sentences(text=text) self.assertEqual(len(sentences), 0) def test_split_sentences_with_newline_and_spaces(self): text = "This is a sentence. \n \n This is another sentence.\n\n This is a third sentence." sentences = split_sentences(text=text) self.assertEqual(len(sentences), 3) self.assertIsInstance(sentences[0], TextSlice) self.assertEqual(len(sentences), 3) self.assertEqual(sentences[0].text, "This is a sentence.") self.assertEqual(text[sentences[0].start : sentences[0].end], sentences[0].text) self.assertEqual(sentences[1].text, "This is another sentence.") self.assertEqual(text[sentences[1].start : sentences[1].end], sentences[1].text)
dolma-main
tests/python/test_utils.py
import unittest import numpy as np from dolma.core.binning import ( FixedBucketsValTracker, InferBucketsValTracker, merge_bins, ) class TestBinning(unittest.TestCase): def setUp(self) -> None: np.random.seed(0) def test_binning(self): bin_a = np.arange(0, 10_000, 55).astype(np.float64) bin_b = np.arange(0, 10_000, 100).astype(np.float64) count_a = np.random.randint(0, 15, len(bin_a)) count_b = np.random.randint(0, 15, len(bin_b)) bin_c, count_c = merge_bins(bin_a, count_a, bin_b, count_b) self.assertEqual(set(bin_c), set(np.concatenate([bin_a, bin_b]))) self.assertEqual(sum(count_c), sum(count_a) + sum(count_b)) def test_binning_with_repetitions(self): bin_a = np.random.randint(0, 100, 10_000).astype(np.float64) bin_b = np.random.randint(0, 100, 1_000).astype(np.float64) bin_a = np.sort(bin_a) bin_b = np.sort(bin_b) count_a = np.ones_like(bin_a, dtype=np.int64) count_b = np.ones_like(bin_b, dtype=np.int64) bin_c, count_c = merge_bins(bin_a, count_a, bin_b, count_b) self.assertEqual(set(bin_c), set(np.concatenate([bin_a, bin_b]))) self.assertEqual(sum(count_c), sum(count_a) + sum(count_b)) def test_binning_no_overlap(self): bin_a = np.arange(0, 1_000, 3).astype(np.float64) bin_b = np.arange(17, 1_000, 17).astype(np.float64) count_a = np.ones_like(bin_a, dtype=np.int64) count_b = np.ones_like(bin_b, dtype=np.int64) bin_c, count_c = merge_bins(bin_a, count_a, bin_b, count_b) self.assertEqual(set(bin_c), set(np.concatenate([bin_a, bin_b]))) self.assertEqual(sum(count_c), sum(count_a) + sum(count_b)) def test_bucket_val_trackers(self): tracker = InferBucketsValTracker(n=100_000) values = np.random.randn(1_000_000) for v in values: tracker.add(v) tracker_counts, tracker_bins = tracker.summarize(10) self.assertEqual(sum(tracker_counts), len(values)) self.assertEqual(sorted(tracker_bins), tracker_bins) tracker_dist, tracker_bins = tracker.summarize(10, density=True) hist_dist, hist_bins = np.histogram(values, bins=10, density=True) for td, hd in zip(tracker_dist, hist_dist): self.assertAlmostEqual(np.abs(td - hd), 0, delta=0.1) for tb, hb in zip(tracker_bins, hist_bins): self.assertAlmostEqual(np.abs(tb - hb), 0, delta=0.5) class FixedBinning(unittest.TestCase): def setUp(self) -> None: np.random.seed(0) def test_normal_bins(self): tr = FixedBucketsValTracker() vals = np.random.randn(2_000_000) * 100 total_count = len(vals) for v in vals: tr.add(v) for (tr_c, tr_b), (hist_c, hist_b) in zip(zip(*tr.summarize(10)), zip(*np.histogram(vals, bins=10))): count_diff = np.abs(tr_c - hist_c) / total_count bin_diff = np.abs(tr_b - hist_b) self.assertLess(count_diff, 0.01) self.assertLess(bin_diff, 10) def test_uniform_bins(self): tr = FixedBucketsValTracker() vals = np.random.rand(2_000_000) total_count = len(vals) for v in vals: tr.add(v) for (tr_c, tr_b), (hist_c, hist_b) in zip(zip(*tr.summarize(10)), zip(*np.histogram(vals, bins=10))): count_diff = np.abs(tr_c - hist_c) / total_count bin_diff = np.abs(tr_b - hist_b) self.assertLess(count_diff, 0.01) self.assertLess(bin_diff, 0.01)
dolma-main
tests/python/test_binning.py
import json import os from pathlib import Path from tempfile import TemporaryDirectory from unittest import TestCase import smart_open from dolma.core.runtime import ( _make_paths_from_prefix, _make_paths_from_substitution, create_and_run_tagger, ) LOCAL_DATA = Path(__file__).parent.parent / "data" class TestRuntimeUtilities(TestCase): def test_make_paths_from_substitution(self): paths = [ "s3://bucket/common-crawl/documents/cc_*/*.json.gz", "/local/path/to/documents/train/*", ] new_paths = _make_paths_from_substitution( paths=paths, find="documents", replace="attributes", ) self.assertEqual(new_paths, ["s3://bucket/common-crawl/attributes", "/local/path/to/attributes/train"]) def test_make_paths_from_prefix(self): paths = [ "s3://bucket/common-crawl/documents/cc_head/*.json.gz", "s3://bucket/common-crawl/documents/cc_middle/*.json.gz", "s3://bucket/common-crawl/documents/cc_tail/*.json.gz", ] new_paths = _make_paths_from_prefix( paths=paths, prefix="s3://bucket/common-crawl/attributes/", ) self.assertEqual( new_paths, [ "s3://bucket/common-crawl/attributes/cc_head", "s3://bucket/common-crawl/attributes/cc_middle", "s3://bucket/common-crawl/attributes/cc_tail", ], ) paths = [ "s3://bucket/common-crawl/documents/*.json.gz", "s3://bucket2/c4/documents/**/data/*.json.gz", ] new_paths = _make_paths_from_prefix( paths=paths, prefix="/local/path/", ) self.assertEqual( new_paths, [ "/local/path/bucket/common-crawl/documents", "/local/path/bucket2/c4/documents", ], ) def test_runtime_e2e(self): documents_path = f"{LOCAL_DATA}/provided/documents/000.json.gz" experiment_name = "test" taggers = ["c4_v1"] with TemporaryDirectory() as temp_dir: create_and_run_tagger( documents=[documents_path], destination=temp_dir, taggers=taggers, experiment=experiment_name, debug=True, ) destination_file = os.path.join(temp_dir, experiment_name, "000.json.gz") self.assertTrue(os.path.exists(destination_file)) with smart_open.open(documents_path, "rt") as f: document = [json.loads(ln) for ln in f] with smart_open.open(destination_file, "rt") as f: attributes = [json.loads(ln) for ln in f] self.assertEqual(len(document), len(attributes)) for d, a in zip(document, attributes): self.assertEqual(d["id"], a["id"]) self.assertTrue(sorted(a.keys()), ["attributes", "id", "source"]) for key, value in a["attributes"].items(): parts = key.split("__") self.assertEqual(len(parts), 3) self.assertEqual(parts[0], experiment_name) self.assertTrue(parts[1] in taggers) for elem in value: self.assertEqual(len(elem), 3) self.assertTrue(isinstance(elem[0], int)) self.assertTrue(isinstance(elem[1], int)) self.assertTrue(isinstance(elem[2], float)) if len(value) == 1: self.assertEqual(value[0][0], 0) self.assertEqual(value[0][1], len(d["text"])) def test_alt_src(self): taggers = ["c4_v1"] experiment_name = "test" with TemporaryDirectory() as temp_dir: create_and_run_tagger( documents=[f"{LOCAL_DATA}/provided/documents/000.json.gz"], destination=temp_dir, taggers=taggers, experiment=experiment_name, debug=True, ) destination_file = os.path.join(temp_dir, experiment_name, "000.json.gz") self.assertTrue(os.path.exists(destination_file)) with smart_open.open(destination_file, "rt") as f: attributes_full_name = [json.loads(ln) for ln in f] with TemporaryDirectory() as temp_dir: create_and_run_tagger( documents=[f"{LOCAL_DATA}/provided/documents/*"], destination=temp_dir, taggers=taggers, experiment=experiment_name, debug=True, ) destination_file = os.path.join(temp_dir, experiment_name, "000.json.gz") self.assertTrue(os.path.exists(destination_file)) with smart_open.open(destination_file, "rt") as f: attributes_star_in_path = [json.loads(ln) for ln in f] with TemporaryDirectory() as temp_dir: create_and_run_tagger( documents=[f"{LOCAL_DATA}/provided/documents/"], destination=temp_dir, taggers=taggers, experiment=experiment_name, debug=True, ) destination_file = os.path.join(temp_dir, experiment_name, "000.json.gz") self.assertTrue(os.path.exists(destination_file)) with smart_open.open(destination_file, "rt") as f: attributes_only_dir = [json.loads(ln) for ln in f] self.assertEqual(attributes_full_name, attributes_star_in_path) self.assertEqual(attributes_full_name, attributes_only_dir) def test_alt_exp(self): documents_path = f"{LOCAL_DATA}/provided/documents/000.json.gz" taggers = ["c4_v1"] with TemporaryDirectory() as temp_dir: create_and_run_tagger( documents=[documents_path], destination=temp_dir, taggers=taggers, experiment="test", debug=True, ) destination_file = os.path.join(temp_dir, "test", "000.json.gz") self.assertTrue(os.path.exists(destination_file)) with smart_open.open(destination_file, "rt") as f: attributes_with_exp = [json.loads(ln) for ln in f] with TemporaryDirectory() as temp_dir: create_and_run_tagger( documents=[documents_path], destination=temp_dir, taggers=taggers, experiment=None, debug=True, ) destination_file = os.path.join(temp_dir, "c4_v1", "000.json.gz") self.assertTrue(os.path.exists(destination_file)) with smart_open.open(destination_file, "rt") as f: attributes_without_exp = [json.loads(ln) for ln in f] for row_with_exp, row_without_exp in zip(attributes_with_exp, attributes_without_exp): for key_with_exp, key_without_exp in zip(row_with_exp["attributes"], row_without_exp["attributes"]): parts_with_exp = key_with_exp.split("__") parts_without_exp = key_without_exp.split("__") self.assertNotEqual(parts_with_exp[0], parts_without_exp[0]) self.assertEqual(parts_with_exp[1], parts_without_exp[1]) self.assertEqual(parts_with_exp[2], parts_without_exp[2]) self.assertEqual(parts_with_exp[0], "test") self.assertEqual(parts_without_exp[0], "c4_v1")
dolma-main
tests/python/test_runtime.py
import json from pathlib import Path from tempfile import NamedTemporaryFile from unittest import TestCase from dolma.cli.__main__ import main from .utils import ( clean_test_data, download_s3_prefix, get_test_prefix, load_jsonl, skip_aws_tests, upload_s3_prefix, ) EMAIL_SPANS = Path(__file__).parent.parent / "config/email-spans.json" FILTER_BY_SPANS = Path(__file__).parent.parent / "config/filter-by-spans.json" MIXER = Path(__file__).parent.parent / "config/mixer.json" PARAGRAPH_SPANS = Path(__file__).parent.parent / "config/paragraph-spans.json" class TestMixer(TestCase): def setUp(self) -> None: if skip_aws_tests(): self.remote_test_prefix = None else: self.remote_test_prefix = get_test_prefix() upload_s3_prefix(s3_prefix=f"{self.remote_test_prefix}", local_prefix="tests/data/provided/**/*.gz") upload_s3_prefix( s3_prefix=f"{self.remote_test_prefix}", local_prefix="tests/data/provided/attributes/**/*.gz" ) def tearDown(self) -> None: if self.remote_test_prefix is not None: clean_test_data(self.remote_test_prefix) def test_email_spans(self): main(argv=["-c", str(EMAIL_SPANS), "mix"]) self.assertEqual( load_jsonl("tests/data/expected/email-spans.json.gz"), load_jsonl("tests/work/output/email-spans/email-spans-0000.json.gz"), ) def test_filter_by_spans(self): main(argv=["-c", str(FILTER_BY_SPANS), "mix"]) self.assertEqual( load_jsonl("tests/data/expected/filter-by-spans.json.gz"), load_jsonl("tests/work/output/filter-by-spans/filter-by-spans-test-0000.json.gz"), ) def test_mixer(self): main(argv=["-c", str(MIXER), "mix"]) self.assertEqual( load_jsonl("tests/data/expected/mixer.json.gz"), load_jsonl("tests/work/output/mixer/mixer-test-0000.json.gz"), ) def test_paragraph_spans(self): main(argv=["-c", str(PARAGRAPH_SPANS), "mix"]) self.assertEqual( load_jsonl("tests/data/expected/remove-paragraphs.json.gz"), load_jsonl("tests/work/output/paragraph-spans/paragraph-spans-test-0000.json.gz"), ) def test_local_input_remote_output(self): if self.remote_test_prefix is None: return self.skipTest("Skipping AWS tests") with open(MIXER, "r") as f: config = json.load(f) # keep track of local output path local_output = config["streams"][0]["output"]["path"] # replace results path with s3 path config["streams"][0]["output"]["path"] = f"{self.remote_test_prefix}/{local_output}" with NamedTemporaryFile("w") as f: json.dump(config, f) f.flush() main(argv=["-c", f.name, "mix"]) download_s3_prefix(f"{self.remote_test_prefix}/tests/work", "tests/work/remote") self.assertEqual( load_jsonl("tests/data/expected/mixer.json.gz"), load_jsonl("tests/work/remote/output/mixer/mixer-test-0000.json.gz"), ) def test_remote_input_remote_output(self): if self.remote_test_prefix is None: return self.skipTest("Skipping AWS tests") with open(MIXER, "r") as f: config = json.load(f) # keep track of local output path local_input = config["streams"][0]["documents"][0] local_output = config["streams"][0]["output"]["path"] # replace results path with s3 path config["streams"][0]["output"]["path"] = f"{self.remote_test_prefix}/{local_output}" # upload local input to s3, replace local input with s3 path config["streams"][0]["documents"][0] = f"{self.remote_test_prefix}/{local_input}" with NamedTemporaryFile("w") as f: json.dump(config, f) f.flush() main(argv=["-c", f.name, "mix"]) download_s3_prefix(f"{self.remote_test_prefix}/tests/work", "tests/work/remote") self.assertEqual( load_jsonl("tests/data/expected/mixer.json.gz"), load_jsonl("tests/work/remote/output/mixer/mixer-test-0000.json.gz"), ) def test_remote_input_local_output(self): if self.remote_test_prefix is None: return self.skipTest("Skipping AWS tests") with open(MIXER, "r") as f: config = json.load(f) # keep track of local output path local_input = config["streams"][0]["documents"][0] # upload local input to s3, replace local input with s3 path config["streams"][0]["documents"][0] = f"{self.remote_test_prefix}/{local_input}" with NamedTemporaryFile("w") as f: json.dump(config, f) f.flush() main(argv=["-c", f.name, "mix"]) self.assertEqual( load_jsonl("tests/data/expected/mixer.json.gz"), load_jsonl("tests/work/output/mixer/mixer-test-0000.json.gz"), )
dolma-main
tests/python/test_mixer.py
import warnings # warning raised by pkg_resources used in a lot of google packages warnings.filterwarnings("ignore", message=r".*declare_namespace\(\'.*google.*", category=DeprecationWarning) # base warning raised when warning above are raised warnings.filterwarnings("ignore", message=r".*pkg_resources is deprecated.*", category=DeprecationWarning)
dolma-main
tests/python/__init__.py
import json import shutil from contextlib import ExitStack from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from unittest import TestCase from dolma.cli.__main__ import main from .utils import ( clean_test_data, download_s3_prefix, get_test_prefix, load_jsonl, skip_aws_tests, upload_s3_prefix, ) DEDUPE_BY_URL = Path(__file__).parent.parent / "config/dedupe-by-url.json" DEDUPE_PARAGRAPHS = Path(__file__).parent.parent / "config/dedupe-paragraphs.json" class TestDeduper(TestCase): def setUp(self) -> None: self.stack = ExitStack() self.local_temp_dir = self.stack.enter_context(TemporaryDirectory()).rstrip("/") if skip_aws_tests(): self.remote_test_prefix = None else: self.remote_test_prefix = get_test_prefix() # upload test data upload_s3_prefix( s3_prefix=f"{self.remote_test_prefix}", local_prefix="tests/data/provided/documents/*.gz" ) # copy provided config files to local temp dir shutil.copytree( "tests/data/provided/documents", f"{self.local_temp_dir}/tests/data/provided/documents", dirs_exist_ok=True, ) def tearDown(self) -> None: if self.remote_test_prefix is not None: clean_test_data(self.remote_test_prefix) self.stack.close() def test_dedupe_by_url(self): with open(DEDUPE_BY_URL, "r") as f: config = json.load(f) config["documents"][0] = f'{self.local_temp_dir}/{config["documents"][0]}' config["bloom_filter"]["file"] = f'{self.local_temp_dir}/{config["bloom_filter"]["file"]}' with NamedTemporaryFile("w") as f: json.dump(config, f) f.flush() main(argv=["-c", f.name, "dedupe"]) expected = load_jsonl("tests/data/expected/dedupe-by-url.json.gz") computed = load_jsonl(f"{self.local_temp_dir}/tests/data/provided/attributes/dedupe_by_url/000.json.gz") self.assertEqual(expected, computed) def test_dedupe_paragraphs(self): with open(DEDUPE_PARAGRAPHS, "r") as f: config = json.load(f) config["documents"][0] = f'{self.local_temp_dir}/{config["documents"][0]}' config["bloom_filter"]["file"] = f'{self.local_temp_dir}/{config["bloom_filter"]["file"]}' with NamedTemporaryFile("w") as f: json.dump(config, f) f.flush() main(argv=["-c", f.name, "dedupe"]) expected = load_jsonl("tests/data/expected/dedupe-paragraphs.json.gz") computed = load_jsonl( f"{self.local_temp_dir}/tests/data/provided/attributes/dedupe_paragraphs/000.json.gz" ) self.assertEqual(expected, computed) def test_dedupe_by_url_remote_input(self): if self.remote_test_prefix is None: return self.skipTest("Skipping AWS tests") with open(DEDUPE_BY_URL, "r") as f: config = json.load(f) config["documents"][0] = f'{self.remote_test_prefix}/{config["documents"][0]}' config["bloom_filter"]["file"] = f'{self.local_temp_dir}/{config["bloom_filter"]["file"]}' with NamedTemporaryFile("w") as f: json.dump(config, f) f.flush() main(argv=["-c", f.name, "dedupe"]) download_s3_prefix(self.remote_test_prefix, self.local_temp_dir) expected = load_jsonl("tests/data/expected/dedupe-by-url.json.gz") computed = load_jsonl(f"{self.local_temp_dir}/tests/data/provided/attributes/dedupe_by_url/000.json.gz") self.assertEqual(expected, computed)
dolma-main
tests/python/test_deduper.py
# mypy: disable-error-code="unused-ignore" import os from pathlib import Path from tempfile import TemporaryDirectory from typing import Any from unittest import TestCase import smart_open from dolma.core.parallel import BaseParallelProcessor, QueueType LOCAL_DATA = Path(__file__).parent.parent / "data" class MockProcessor(BaseParallelProcessor): @classmethod def increment_progressbar(cls, queue, /, cnt: int = 0): # type: ignore[override] return super().increment_progressbar(queue, cnt=cnt) @classmethod def process_single( cls, source_path: str, destination_path: str, queue: QueueType, **kwargs: Any, ): with smart_open.open(source_path, "rb") as f, smart_open.open(destination_path, "wb") as g: g.write(f.read()) queue.put((1,)) class TestParallel(TestCase): def test_base_parallel_processor(self): with self.assertRaises(ValueError): MockProcessor(source_prefix=[], destination_prefix=[], metadata_prefix=[]) with TemporaryDirectory() as d: proc = MockProcessor( source_prefix=str(LOCAL_DATA / "expected"), destination_prefix=f"{d}/destination", metadata_prefix=f"{d}/metadata", ignore_existing=False, ) proc() src = [p for p in os.listdir(LOCAL_DATA / "expected") if not p.startswith(".")] meta = [p.rstrip(".done.txt") for p in os.listdir(f"{d}/metadata")] dest = [p for p in os.listdir(f"{d}/destination") if not p.startswith(".")] self.assertEqual(sorted(src), sorted(meta)) self.assertEqual(sorted(src), sorted(dest)) with TemporaryDirectory() as d: proc = MockProcessor( source_prefix=str(LOCAL_DATA / "expected" / "*-paragraphs.*"), destination_prefix=f"{d}/destination", metadata_prefix=f"{d}/metadata", ignore_existing=False, ) proc() src = [p for p in os.listdir(LOCAL_DATA / "expected") if "paragraphs" in p] meta = [p.rstrip(".done.txt") for p in os.listdir(f"{d}/metadata")] dest = [p for p in os.listdir(f"{d}/destination")] self.assertEqual(sorted(src), sorted(meta)) self.assertEqual(sorted(src), sorted(dest))
dolma-main
tests/python/test_parallel.py
import json import os import re import uuid from typing import List, Tuple from urllib.parse import urlparse import boto3 import smart_open from smart_open import open from dolma.core.paths import glob_path, mkdir_p DOLMA_TESTS_S3_PREFIX_ENV_VAR = "DOLMA_TESTS_S3_PREFIX" DOLMA_TESTS_SKIP_AWS_ENV_VAR = "DOLMA_TESTS_SKIP_AWS" DOLMA_TESTS_S3_PREFIX_DEFAULT = "s3://dolma-tests" def parse_s3_path(s3_path: str) -> Tuple[str, str]: """ Parse an s3 path into a bucket and key. Args: s3_path: The s3 path to parse. Returns: A tuple containing the bucket and key. """ if not re.match(r"^s3://[\w-]+", s3_path): raise RuntimeError(f"Invalid s3 path: {s3_path}") # use urlparse to parse the s3 path parsed = urlparse(s3_path) return parsed.netloc, parsed.path.lstrip("/") def get_test_prefix() -> str: # get the test prefix from the environment, or use the default if not set test_prefix = os.environ.get(DOLMA_TESTS_S3_PREFIX_ENV_VAR, DOLMA_TESTS_S3_PREFIX_DEFAULT) # this will check if it is a valid path bucket, _ = parse_s3_path(test_prefix) # check if the user has access to the test bucket using boto3 s3 = boto3.client("s3") try: s3.head_bucket(Bucket=bucket) except Exception: if not skip_aws_tests(): raise RuntimeError( f"Unable to access test bucket '{test_prefix}'. To provide a different bucket, " f"set the '{DOLMA_TESTS_S3_PREFIX_ENV_VAR}' environment variable before running the tests." ) # add a uuid to the test prefix to avoid collisions return f"{test_prefix.rstrip()}/{uuid.uuid4()}" def skip_aws_tests() -> bool: dolma_tests_skip = os.environ.get(DOLMA_TESTS_SKIP_AWS_ENV_VAR) print(f"{DOLMA_TESTS_SKIP_AWS_ENV_VAR}: {dolma_tests_skip}") return (dolma_tests_skip or "false").lower() == "true" def upload_test_documents(local_input: str, test_prefix: str) -> Tuple[str, str]: remote_input = f"{test_prefix}/input/documents" remote_output = f"{test_prefix}/output/documents" for i, local_fp in enumerate(glob_path(local_input)): remote_fp = f"{remote_input}/{i:05d}.json.gz" with open(local_fp, "rb") as f, open(remote_fp, "wb") as g: g.write(f.read()) return remote_input, remote_output def upload_test_attributes(local_attributes: str, test_prefix: str): remote_attributes = f"{test_prefix}/input/attributes" for i, local_fp in enumerate(glob_path(local_attributes)): matched = re.match(r"^(attributes|duplicate)-(\w+)", local_fp) if not matched: raise RuntimeError(f"Unexpected filename: {local_fp}") _, name = matched.groups() remote_fp = f"{remote_attributes}/{name}/{i:05d}.json.gz" with open(local_fp, "rb") as f, open(remote_fp, "wb") as g: g.write(f.read()) def clean_test_data(test_prefix: str): s3 = boto3.client("s3") bucket_name, prefix = parse_s3_path(test_prefix) for obj in s3.list_objects_v2(Bucket=bucket_name, Prefix=prefix).get("Contents", []): s3.delete_object(Bucket=bucket_name, Key=obj["Key"]) def download_s3_prefix(s3_prefix: str, local_prefix: str): s3 = boto3.client("s3") bucket_name, prefix = parse_s3_path(s3_prefix) for obj in s3.list_objects_v2(Bucket=bucket_name, Prefix=prefix).get("Contents", []): name = obj["Key"].replace(prefix, "").lstrip("/") local_fp = os.path.join(local_prefix, name) mkdir_p(os.path.dirname(local_fp)) s3.download_file(Bucket=bucket_name, Key=obj["Key"], Filename=local_fp) def upload_s3_prefix(s3_prefix: str, local_prefix: str): s3 = boto3.client("s3") bucket_name, prefix = parse_s3_path(s3_prefix) for local_fp in glob_path(local_prefix): name = local_fp.replace(local_prefix, "").lstrip("/") s3.upload_file(Bucket=bucket_name, Key=f"{prefix}/{name}", Filename=local_fp) def load_jsonl(fp: str) -> List[dict]: with smart_open.open(fp, "r") as f: return [json.loads(ln) for ln in f]
dolma-main
tests/python/utils.py
""" Unit tests for core/data_types.py @kylel """ from unittest import TestCase from dolma.core.data_types import DocResult, Document, InputSpec, Span, TextSlice class TestDocument(TestCase): def test_document_to_from_json(self): doc = Document(source="source", version="version", id="id", text="text") doc_json = doc.to_json() doc_json2 = { "source": "source", "version": "version", "id": "id", "text": "text", } self.assertEqual(doc_json, doc_json2) doc2 = Document.from_json(doc_json2) self.assertEqual(doc_json, doc2.to_json()) def test_document_to_from_spec(self): doc = Document(source="source", version="version", id="id", text="text") spec = doc.to_spec() spec2 = InputSpec(source="source", version="version", id="id", text="text") self.assertEqual(spec, spec2) doc2 = Document.from_spec(spec2) self.assertEqual(spec, doc2.to_spec()) class TestSpan(TestCase): def test_span_to_from_json(self): span = Span(start=0, end=1, type="type", score=1.0) span_json = span.to_json() span_json2 = {"start": 0, "end": 1, "type": "type", "score": 1.0} self.assertEqual(span_json, span_json2) span2 = Span.from_json(span_json2) self.assertEqual(span_json, span2.to_json()) # TODO: add tests for to/from Spec def test_span_to_from_spec(self): span = Span(start=0, end=1, type="type", score=1.0) with self.assertRaises(AssertionError): span.to_spec() class TestDocResult(TestCase): def test_doc_result_to_from_json(self): doc = Document(source="source", version="version", id="id", text="text") spans = [ Span(start=0, end=2, type="xxx", score=1.0), Span(start=2, end=4, type="yyy", score=0.5), ] doc_result = DocResult(doc=doc, spans=spans) # to_json() doesnt return Document by default # also, it returns this extra field called `"mention"` doc_result_json = doc_result.to_json() doc_result_json2 = { "spans": [ {"start": 0, "end": 2, "type": "xxx", "score": 1.0, "mention": "te"}, {"start": 2, "end": 4, "type": "yyy", "score": 0.5, "mention": "xt"}, ] } self.assertEqual(doc_result_json, doc_result_json2) # from_json() requires also providing the Document with self.assertRaises(KeyError): DocResult.from_json(doc_result_json2) doc_result_json3 = { "doc": { "source": "source", "version": "version", "id": "id", "text": "text", }, "spans": [ {"start": 0, "end": 2, "type": "xxx", "score": 1.0, "mention": "te"}, {"start": 2, "end": 4, "type": "yyy", "score": 0.5, "mention": "xt"}, ], } doc_result3 = DocResult.from_json(doc_result_json3) self.assertEqual(doc_result_json, doc_result3.to_json()) class TestTextSlice(TestCase): def test_text_slice_text(self): text = "This is a test" slice = TextSlice(doc=text, start=0, end=4) self.assertEqual(slice.text, "This")
dolma-main
tests/python/test_data_types.py
import itertools import os from pathlib import Path from unittest import TestCase from dolma.core.paths import ( _escape_glob, _pathify, _unescape_glob, add_suffix, glob_path, is_glob, join_path, make_relative, split_glob, split_path, sub_prefix, sub_suffix, ) from .utils import clean_test_data, get_test_prefix, skip_aws_tests, upload_s3_prefix LOCAL_DATA = Path(__file__).parent.parent / "data" class TestPaths(TestCase): def setUp(self) -> None: if skip_aws_tests(): self.remote_test_prefix = None else: self.remote_test_prefix = get_test_prefix() upload_s3_prefix(s3_prefix=f"{self.remote_test_prefix}", local_prefix="tests/data/expected/*") def tearDown(self) -> None: if self.remote_test_prefix is not None: clean_test_data(self.remote_test_prefix) def test_pathify(self): path = "s3://path/to/file" protocol, path = _pathify(path) self.assertEqual(protocol, "s3") self.assertEqual(path, Path("path/to/file")) path = "path/to/file" protocol, path = _pathify(path) self.assertEqual(protocol, "") self.assertEqual(path, Path("path/to/file")) path = "/path/to/file" protocol, path = _pathify(path) self.assertEqual(protocol, "") self.assertEqual(path, Path("/path/to/file")) def test_local_glob_path(self): local_glob = str(LOCAL_DATA / "*.json.gz") paths = list(glob_path(local_glob)) expected = [str(LOCAL_DATA / fn) for fn in os.listdir(LOCAL_DATA) if fn.endswith(".json.gz")] self.assertEqual(sorted(paths), sorted(expected)) def test_remote_glob_path(self): if self.remote_test_prefix is None: return self.skipTest("Skipping AWS tests") paths = list(glob_path(f"{self.remote_test_prefix}/**/*.json.gz")) expected = [ f"{self.remote_test_prefix}/tests/data/expected/{fn}" for fn in os.listdir(LOCAL_DATA / "expected") if fn.endswith(".json.gz") ] self.assertEqual(sorted(paths), sorted(expected)) def test_local_glob_with_recursive(self): local_glob = str(LOCAL_DATA / "**/*-paragraphs.json.gz") paths = list(glob_path(local_glob)) expected = list( itertools.chain.from_iterable( (str(fp),) if (fp := LOCAL_DATA / fn).is_file() and "paragraphs" in fn else ((str(fp / sn) for sn in os.listdir(fp) if "paragraphs" in sn) if fp.is_dir() else ()) for fn in os.listdir(LOCAL_DATA) ) ) self.assertEqual(sorted(paths), sorted(expected)) def test_sub_prefix(self): path_a = "s3://path/to/b/and/more" path_b = "s3://path/to/b" self.assertEqual(sub_prefix(path_a, path_b), "and/more") self.assertEqual(sub_prefix(path_b, path_a), path_b) path_c = "/path/to/c" path_d = "/path/to/c/and/more" self.assertEqual(sub_prefix(path_d, path_c), "and/more") self.assertEqual(sub_prefix(path_c, path_d), path_c) with self.assertRaises(ValueError): sub_prefix(path_a, path_c) def test_sub_suffix(self): path_a = "s3://path/to/dir/and/more" path_b = "and/more" self.assertEqual(sub_suffix(path_a, path_b), "s3://path/to/dir") path_c = "/path/to/dir/and/more" path_d = "path/to/dir/and/more" self.assertEqual(sub_suffix(path_c, path_d), "/") def test_add_prefix(self): path_a = "s3://path/to/b" path_b = "and/more" self.assertEqual(add_suffix(path_a, path_b), "s3://path/to/b/and/more") path_c = "/path/to/c" path_d = "and/more" self.assertEqual(add_suffix(path_c, path_d), "/path/to/c/and/more") with self.assertRaises(ValueError): add_suffix(path_a, path_c) add_suffix(path_c, path_a) add_suffix(path_a, path_a) def test_wildcard_operations(self): path_a = "s3://path/to/dir" self.assertEqual(add_suffix(path_a, "*"), "s3://path/to/dir/*") path_b = "/path/to/dir/**" self.assertEqual(add_suffix(path_b, "*"), "/path/to/dir/**/*") path_c = "s3://path/to/dir/**" self.assertEqual(sub_prefix(path_c, path_a), "**") def test_make_relative(self): paths = [ "/path/to/dir/and/more", "/path/to/dir/and/**.zip", "/path/to/dir/more/**/stuff", ] base, relative_paths = make_relative(paths) self.assertEqual(base, "/path/to/dir") self.assertEqual(relative_paths, ["and/more", "and/**.zip", "more/**/stuff"]) paths = [ "/foo", "/bar/**", "/baz/**/**", ] base, relative_paths = make_relative(paths) self.assertEqual(base, "/") self.assertEqual(relative_paths, ["foo", "bar/**", "baz/**/**"]) paths = [ "s3://path/to/a/and/b", "s3://path/to/a/and/**.zip", "s3://path/to/b/more/**/stuff", ] base, relative_paths = make_relative(paths) self.assertEqual(base, "s3://path/to") self.assertEqual(relative_paths, ["a/and/b", "a/and/**.zip", "b/more/**/stuff"]) paths = [ "s3://path_a/to/dir/and/more", "s3://path_b/to/dir/and/**.zip", "s3://path_c/to/dir/more/**/stuff", ] base, relative_paths = make_relative(paths) self.assertEqual(base, "s3://") self.assertEqual( relative_paths, [ "path_a/to/dir/and/more", "path_b/to/dir/and/**.zip", "path_c/to/dir/more/**/stuff", ], ) def test_split(self): prot, parts = split_path("s3://path/to/dir") self.assertEqual(prot, "s3") self.assertEqual(parts, ("path", "to", "dir")) prot, parts = split_path("s3://path/to/[abc]/dir") self.assertEqual(prot, "s3") self.assertEqual(parts, ("path", "to", "[abc]", "dir")) prot, parts = split_path("/path/to/dir") self.assertEqual(prot, "") self.assertEqual(parts, ("/", "path", "to", "dir")) prot, parts = split_path("s3://path/to/dir/") self.assertEqual(prot, "s3") self.assertEqual(parts, ("path", "to", "dir")) prot, parts = split_path("path/to/dir/") self.assertEqual(prot, "") self.assertEqual(parts, ("path", "to", "dir")) def test_join(self): path = join_path("s3", ("path", "to", "dir")) self.assertEqual(path, "s3://path/to/dir") path = join_path("", ("/", "path", "to", "dir")) self.assertEqual(path, "/path/to/dir") path = join_path("s3", ("/", "path", "to", "dir", "")) self.assertEqual(path, "s3://path/to/dir") path = join_path("", ("path", "to", "dir", "")) self.assertEqual(path, "path/to/dir") path = join_path("s3", ("path/to", "dir/")) self.assertEqual(path, "s3://path/to/dir") path = join_path("", "path", ("to", "a", "very", "hidden"), "dir" "/with_file.txt") self.assertEqual(path, "path/to/a/very/hidden/dir/with_file.txt") def test_split_and_join(self): paths = [ "s3://path/to/a/and/b", "s3://path/to/a/and/**.zip", "s3://path/to/b/more/**/stuff", "/path/to/dir/and/more", "/path/to/dir/and/**.zip", "*", ] for path in paths: self.assertEqual(join_path(*split_path(path)), path) def test_is_glob(self): path = "s3://path/to/a/and/b" self.assertFalse(is_glob(path)) path = "/user/?/docs/*" self.assertTrue(is_glob(path)) path = "/user/1/docs/file.txt" self.assertFalse(is_glob(path)) path = r"/user/\?/docs/*" self.assertTrue(is_glob(path)) path = r"/user/\?/docs/\*" self.assertFalse(is_glob(path)) def test_escape_glob(self): path = "/user/?/docs/*" self.assertEqual(_escape_glob(path), "/user/\u2582/docs/\u2581") path = "/user/[abc]/docs/*" self.assertEqual(_escape_glob(path), "/user/\u2583abc\u2584/docs/\u2581") path = "/user/[abc]/docs/[a-z]/\\*" self.assertEqual(_escape_glob(path), "/user/\u2583abc\u2584/docs/\u2583a-z\u2584/\\*") path = "/no/glob/here" self.assertEqual(_escape_glob(path), path) def test_unescape_glob(self): path = "/user/?/docs/*" self.assertEqual(_unescape_glob(_escape_glob(path)), path) path = "/user/[abc]/docs/*" self.assertEqual(_unescape_glob(_escape_glob(path)), path) path = "/user/[abc]/docs/[a-z]/\\*" self.assertEqual(_unescape_glob(_escape_glob(path)), path) path = "/no/glob/here" self.assertEqual(_unescape_glob(_escape_glob(path)), path) def test_split_glob(self): path = "/user/_/docs/*" self.assertEqual(split_glob(path), ("/user/_/docs", "*")) path = "/user/?/docs/*" self.assertEqual(split_glob(path), ("/user", "?/docs/*")) path = "/user/[abc]/docs/*" self.assertEqual(split_glob(path), ("/user", "[abc]/docs/*")) path = "/user/\\[abc\\]/docs/[a-z]/\\*" self.assertEqual(split_glob(path), ("/user/\\[abc\\]/docs", "[a-z]/\\*")) path = "/no/glob/here" self.assertEqual(split_glob(path), ("/no/glob/here", ""))
dolma-main
tests/python/test_paths.py
""" Unit tests for taggers/*.py @kylel """ from unittest import TestCase from dolma.core.data_types import Document from dolma.taggers.gopher import GopherTagger class TestGopherTagger(TestCase): def test_predict_short(self): tagger = GopherTagger() doc = Document(source="", version="", id="", text="This is a test.") doc_result = tagger.predict(doc=doc) d = doc_result.to_json() self.assertEqual(len(d["spans"]), 13) self.assertEqual( d["spans"][0], { "start": 0, "end": 15, "type": "fraction_of_characters_in_most_common_2grams", "score": 0.5, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][1], { "start": 0, "end": 15, "type": "fraction_of_characters_in_most_common_3grams", "score": 0.5833333333333334, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][2], { "start": 0, "end": 15, "type": "fraction_of_characters_in_most_common_4grams", "score": 1.0, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][3], {"start": 0, "end": 15, "type": "character_count", "score": 15.0, "mention": "This is a test."}, ) self.assertEqual( d["spans"][4], {"start": 0, "end": 15, "type": "word_count", "score": 4.0, "mention": "This is a test."}, ) self.assertEqual( d["spans"][5], {"start": 0, "end": 15, "type": "median_word_length", "score": 3.0, "mention": "This is a test."}, ) self.assertEqual( d["spans"][6], {"start": 0, "end": 15, "type": "symbol_to_word_ratio", "score": 0.0, "mention": "This is a test."}, ) self.assertEqual( d["spans"][7], { "start": 0, "end": 15, "type": "fraction_of_words_with_alpha_character", "score": 1.0, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][8], {"start": 0, "end": 15, "type": "required_word_count", "score": 0.0, "mention": "This is a test."}, ) self.assertEqual( d["spans"][9], { "start": 0, "end": 15, "type": "fraction_of_lines_starting_with_bullet_point", "score": 0.0, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][10], { "start": 0, "end": 15, "type": "fraction_of_lines_ending_with_ellipsis", "score": 0.0, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][11], { "start": 0, "end": 15, "type": "fraction_of_duplicate_lines", "score": 0.0, "mention": "This is a test.", }, ) self.assertEqual( d["spans"][12], { "start": 0, "end": 15, "type": "fraction_of_characters_in_duplicate_lines", "score": 0.0, "mention": "This is a test.", }, ) def test_predict_multiline(self): tagger = GopherTagger() text = "This is a sentence. \n \n This is another sentence.\n\n This is a third sentence." doc = Document(source="", version="", id="", text=text) doc_result = tagger.predict(doc=doc) d = doc_result.to_json() self.assertEqual(len(d["spans"]), 19) self.assertEqual( d["spans"][0], { "start": 0, "end": 79, "type": "fraction_of_characters_in_most_common_2grams", "score": 0.3050847457627119, "mention": text, }, ) self.assertEqual( d["spans"][1], { "start": 0, "end": 79, "type": "fraction_of_characters_in_most_common_3grams", "score": 0.23728813559322035, "mention": text, }, ) self.assertEqual( d["spans"][2], { "start": 0, "end": 79, "type": "fraction_of_characters_in_most_common_4grams", "score": 0.2711864406779661, "mention": text, }, ) self.assertEqual( d["spans"][3], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_5grams", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][4], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_6grams", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][5], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_7grams", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][6], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_8grams", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][7], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_9grams", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][8], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_10grams", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][9], {"start": 0, "end": 79, "type": "character_count", "score": 79.0, "mention": text} ) self.assertEqual( d["spans"][10], {"start": 0, "end": 79, "type": "word_count", "score": 13.0, "mention": text} ) self.assertEqual( d["spans"][11], {"start": 0, "end": 79, "type": "median_word_length", "score": 4.0, "mention": text} ) self.assertEqual( d["spans"][12], {"start": 0, "end": 79, "type": "symbol_to_word_ratio", "score": 0.0, "mention": text} ) self.assertEqual( d["spans"][13], { "start": 0, "end": 79, "type": "fraction_of_words_with_alpha_character", "score": 1.0, "mention": text, }, ) self.assertEqual( d["spans"][14], {"start": 0, "end": 79, "type": "required_word_count", "score": 0.0, "mention": text} ) self.assertEqual( d["spans"][15], { "start": 0, "end": 79, "type": "fraction_of_lines_starting_with_bullet_point", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][16], { "start": 0, "end": 79, "type": "fraction_of_lines_ending_with_ellipsis", "score": 0.0, "mention": text, }, ) self.assertEqual( d["spans"][17], {"start": 0, "end": 79, "type": "fraction_of_duplicate_lines", "score": 0.0, "mention": text}, ) self.assertEqual( d["spans"][18], { "start": 0, "end": 79, "type": "fraction_of_characters_in_duplicate_lines", "score": 0.0, "mention": text, }, ) def test_word_count_is_whitespace_sep(self): tagger = GopherTagger() text = "T h i s \n \n\n\n isoneword !!!" doc = Document(source="", version="", id="", text=text) doc_result = tagger.predict(doc=doc) d = doc_result.to_json() self.assertEqual(d["spans"][6]["type"], "word_count") self.assertEqual(d["spans"][6]["score"], 6.0) def test_required_word_count(self): tagger = GopherTagger() text = "The.and.that" doc = Document(source="", version="", id="", text=text) doc_result = tagger.predict(doc=doc) d = doc_result.to_json() self.assertEqual(d["spans"][5]["type"], "required_word_count") self.assertEqual(d["spans"][5]["score"], 0.0) text = "The and that" doc = Document(source="", version="", id="", text=text) doc_result = tagger.predict(doc=doc) d = doc_result.to_json() self.assertEqual(d["spans"][7]["type"], "required_word_count") self.assertEqual(d["spans"][7]["score"], 2.0)
dolma-main
tests/python/test_taggers.py
import argparse import bisect import copy import hashlib import json import multiprocessing import os from collections import defaultdict from contextlib import ExitStack from copy import deepcopy from dataclasses import dataclass, field from itertools import chain from queue import Queue from tempfile import TemporaryDirectory from typing import Any, Dict, Generator, List, Tuple, Type, TypeVar, Union import blingfire import msgspec import numpy as np import smart_open import tldextract import tqdm from dolma.core.data_types import InputSpec, OutputSpec from dolma.core.parallel import BaseParallelProcessor from dolma.core.paths import glob_path T = TypeVar("T", bound=Type["BaseStatsProcessor"]) PRONOUNS = ( ("she", "her", "her", "hers", "herself"), ("he", "him", "his", "his", "himself"), ("they", "them", "their", "theirs", "themselves"), ("ze", "hir", "hir", "hirs", "hirself"), ("ze", "zir", "zir", "zirs", "zirself"), ("xey", "xem", "xyr", "xyrs", "xemself"), ("ae", "aer", "aer", "aers", "aerself"), ("e", "em", "eir", "eirs", "emself"), ("ey", "em", "eir", "eirs", "eirself"), ("fae", "faer", "faer", "faers", "faerself"), ("fey", "fem", "feir", "feirs", "feirself"), ("hu", "hum", "hus", "hus", "humself"), ("it", "it", "its", "its", "itself"), ("jee", "jem", "jeir", "jeirs", "jemself"), ("kit", "kit", "kits", "kits", "kitself"), ("ne", "nem", "nir", "nirs", "nemself"), ("peh", "pehm", "peh's", "peh's", "pehself"), ("per", "per", "per", "pers", "perself"), ("sie", "hir", "hir", "hirs", "hirself"), ("se", "sim", "ser", "sers", "serself"), ("shi", "hir", "hir", "hirs", "hirself"), ("si", "hyr", "hyr", "hyrs", "hyrself"), ("they", "them", "their", "theirs", "themself"), ("thon", "thon", "thons", "thons", "thonself"), ("ve", "ver", "vis", "vis", "verself"), ("ve", "vem", "vir", "virs", "vemself"), ("vi", "ver", "ver", "vers", "verself"), ("vi", "vim", "vir", "virs", "vimself"), ("vi", "vim", "vim", "vims", "vimself"), ("xie", "xer", "xer", "xers", "xerself"), ("xe", "xem", "xyr", "xyrs", "xemself"), ("xey", "xem", "xeir", "xeirs", "xemself"), ("yo", "yo", "yos", "yos", "yosself"), ("ze", "zem", "zes", "zes", "zirself"), ("ze", "mer", "zer", "zers", "zemself"), ("zee", "zed", "zeta", "zetas", "zedself"), ("zie", "zir", "zir", "zirs", "zirself"), ("zie", "zem", "zes", "zes", "zirself"), ("zie", "hir", "hir", "hirs", "hirself"), ("zme", "zmyr", "zmyr", "zmyrs", "zmyrself"), ) @dataclass class Domains: pages: Dict[str, int] = field(default_factory=dict) words: Dict[str, int] = field(default_factory=dict) _size: int = 100_000 def add(self, domain: str, count_words: int, count_pages: int = 1, no_limit: bool = False) -> bool: if domain not in self.pages: if self._size < len(self.pages) and not no_limit: return False self.pages[domain] = 0 self.words[domain] = 0 self.pages[domain] += count_pages self.words[domain] += count_words return True def shrink(self, to_size: bool = False) -> bool: th = 1 if to_size: # find the threshold that will keep the top self._size domains p = max((1 - self._size / len(self.pages)) * 100, 0) th = max(th, round(np.percentile(sorted(self.pages.values()), p))) previous_size = len(self.pages) self.pages = {k: v for k, v in self.pages.items() if v > th} self.words = {k: v for k, v in self.words.items() if k in self.pages} current_size = len(self.pages) return previous_size < current_size def to_dict(self) -> Dict[str, Any]: return { "pages": {k: v for k, v in sorted(self.pages.items(), key=lambda e: -e[1])}, "words": {k: v for k, v in sorted(self.words.items(), key=lambda e: -e[1])}, } @classmethod def from_dict(cls, d: Dict[str, Any]) -> "Domains": return cls(pages=d["pages"], words=d["words"]) def merge(self, other: "Domains", inplace: bool = True, shrink: bool = False) -> "Domains": self = self if inplace else deepcopy(self) for page in other.pages: self.add(domain=page, count_words=other.words[page], count_pages=other.pages[page], no_limit=True) if shrink: self.shrink(to_size=True) return self @dataclass class Counts: documents: int = 0 tokens: int = 0 domains: Domains = field(default_factory=Domains) pronouns: Dict[str, int] = field(default_factory=lambda: {k: 0 for k in chain.from_iterable(PRONOUNS)}) _flush: int = 250_000 _current: int = 0 def shrink(self) -> bool: self._current += 1 if self._current >= self._flush: self._current = 0 self.domains.shrink() return True return False def add(self, text: str, url: str) -> bool: if not (text := text.strip()): return False words = [w.lower() for w in blingfire.text_to_words(text).split()] extracted_url = tldextract.extract(url) domain = ".".join(extracted_url[1:]).lower() for w in words: if w in self.pronouns: self.pronouns[w] += 1 self.documents += 1 self.tokens += len(words) self.domains.add(domain=domain, count_words=len(words)) self.shrink() return True def to_dict(self) -> Dict[str, Any]: return { "domains": self.domains.to_dict(), "pronouns": {k: v for k, v in sorted(self.pronouns.items(), key=lambda e: -e[1])}, "documents": self.documents, "words": self.tokens, } @classmethod def from_dict(cls, d: Dict[str, Any]) -> "Counts": return cls( documents=d["documents"], tokens=d["words"], domains=Domains.from_dict(d["domains"]), pronouns=d["pronouns"], ) def merge(self, other: "Counts", inplace: bool = True, shrink: bool = False) -> "Counts": self = self if inplace else deepcopy(self) self.documents += other.documents self.tokens += other.tokens self.domains.merge(other.domains, inplace=True, shrink=shrink) for pronoun, count in other.pronouns.items(): self.pronouns[pronoun] += count return self class Registry: __registry__: Dict[str, Type["BaseStatsProcessor"]] = {} @classmethod def add(cls, obj: T) -> T: cls.__registry__[obj.__name__] = obj return obj @classmethod def get(cls, name: str) -> Type["BaseStatsProcessor"]: return cls.__registry__[name] @classmethod def all(cls) -> Generator[Tuple[str, Type["BaseStatsProcessor"]], None, None]: yield from cls.__registry__.items() class BaseStatsProcessor(BaseParallelProcessor): @classmethod def increment_progressbar( # type: ignore[override] cls, queue: Queue[Union[Tuple[int, ...], None]], /, files: int = 0, documents: int = 0, ) -> Dict[str, int]: return super().increment_progressbar(queue, files=files, documents=documents) @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: raise NotImplementedError() @Registry.add class common_crawl(BaseStatsProcessor): @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): os.environ["TOKENIZERS_PARALLELISM"] = "false" # for the data sheet, what statistics you think we should include? I could # do # of docs, # tokens, distribution of URLs, pronouns, s2 FOS, stack # languages? decoder = msgspec.json.Decoder(InputSpec) counts = Counts() interval = 10_000 with smart_open.open(source_path, "rb") as source_file: for line in source_file: document = decoder.decode(line) counts.add(text=document.text, url=document.id) if counts.documents % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=counts.documents % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps(counts.to_dict(), indent=2)) @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: with TemporaryDirectory() as tempdir: documents = "s3://ai2-llm/pretraining-data/sources/olmo-mix/v1/documents/common-crawl/cc_en_*/*.gz" stats = "s3://ai2-llm/stats/olmo-mix/v1/web/common-crawl" metadata = os.path.join(tempdir, "common-crawl") processor = cls( source_prefix=documents, destination_prefix=stats, metadata_prefix=metadata, num_processes=num_workers, debug=debug, ) processor(**process_single_kwargs) @Registry.add class books(BaseStatsProcessor): documents: str = "s3://ai2-llm/pretraining-data/sources/olmo-mix/v1/documents/books/*.gz" stats: str = "s3://ai2-llm/stats/olmo-mix/v1/books/gutenberg/*.gz" @staticmethod # read all paths in using threads def _read_json(path: str) -> Counts: with smart_open.open(path, "rt") as source_file: return msgspec.json.decode(source_file.read()) @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): os.environ["TOKENIZERS_PARALLELISM"] = "false" # for the data sheet, what statistics you think we should include? I could # do # of docs, # tokens, distribution of URLs, pronouns, s2 FOS, stack # languages? decoder = msgspec.json.Decoder(InputSpec) documents = words = 0 interval = 10_000 with smart_open.open(source_path, "rb") as source_file: for line in source_file: document = decoder.decode(line) documents += 1 words += len(blingfire.text_to_words(document.text).split()) if documents % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=documents % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps({"documents": documents, "words": words}, indent=2)) @classmethod def _merge_dicts(cls, d1, d2): d1 = copy.deepcopy(d1) for k, v in d2.items(): if isinstance(v, dict): d1[k] = cls._merge_dicts(d1.get(k, {}), v) else: d1[k] = d1.get(k, 0) + v return d1 @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: stats_root = cls.stats.split("*", 1)[0].rstrip("/") with TemporaryDirectory() as tempdir: metadata = os.path.join(tempdir, hashlib.md5(cls.documents.encode()).hexdigest()) processor = cls( source_prefix=cls.documents, destination_prefix=stats_root, metadata_prefix=metadata, num_processes=num_workers, debug=debug, ) processor(**process_single_kwargs) paths = list(glob_path(cls.stats)) counts: dict = {} with multiprocessing.Pool(num_workers) as pool: data = (cls._read_json(path) for path in paths) if debug else pool.imap(cls._read_json, paths) for content in tqdm.tqdm(data, desc=f"Merging {cls.__name__} stats", unit=" files", total=len(paths)): counts = cls._merge_dicts(counts, content) summary_dest = f"{stats_root}/summary.json" with smart_open.open(summary_dest, "wt") as destination_file: destination_file.write(json.dumps(counts, indent=2, sort_keys=True)) @Registry.add class wiki(books): documents: str = "s3://ai2-llm/pretraining-data/sources/olmo-mix/v1/documents/wiki/*.gz" stats: str = "s3://ai2-llm/stats/olmo-mix/v1/wiki/en_simple/*.gz" @Registry.add class cc_v1(books): documents: str = "s3://ai2-llm/pretraining-data/sources/common-crawl/v1/documents/cc_en_*/*.gz" stats: str = "s3://ai2-llm/stats/olmo-mix/v1/cc/v1/**/*.gz" @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): attributes = [source_path.replace("/documents/", "/attributes/c4_rules/")] # for the data sheet, what statistics you think we should include? I could # do # of docs, # tokens, distribution of URLs, pronouns, s2 FOS, stack languages? doc_decoder = msgspec.json.Decoder(InputSpec) attr_decoder = msgspec.json.Decoder(OutputSpec) stats = { "length": 0, "count": 0, "c4_count": 0, "c4_length": 0, "c4_matches": 0, } documents = 0 interval = 10_000 with ExitStack() as stack: doc_file = stack.enter_context(smart_open.open(source_path, "rb")) atts_files = [stack.enter_context(smart_open.open(path, "rb")) for path in attributes] for doc_line, *attr_lines in zip(doc_file, *atts_files): doc = doc_decoder.decode(doc_line) stats["length"] += len(doc.text) stats["count"] += 1 attrs = {} for line in attr_lines: attrs.update(attr_decoder.decode(line).attributes) # C4 stats c4_removal = attrs.get("c4_rules__c4_v1__lines_with_no_ending_punctuation", []) stats["c4_count"] += len(c4_removal) stats["c4_length"] += sum(s[-1] for s in c4_removal) stats["c4_matches"] += 1 if c4_removal else 0 documents += 1 if documents % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=documents % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps(stats, indent=2)) @Registry.add class cc_v1_c4_cleaned(books): documents: str = "s3://ai2-llm/pretraining-data/sources/common-crawl/v1-c4-cleaned/documents/cc_en_*/*.gz" stats: str = "s3://ai2-llm/stats/olmo-mix/v1/cc/v1_c4_cleaned/**/*.gz" @classmethod def gopher_rules(cls, attrs: Dict[str, List[Tuple[int, int, float]]]) -> List[Tuple[int, int, float]]: matching_spans: List[Tuple[int, int, float]] = [] for span in attrs.get("gopher_rules__gopher_v1__word_count", []): if span[2] < 50 or span[2] > 100000: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__median_word_length", []): if span[2] < 3 or span[2] > 10: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__symbol_to_word_ratio", []): if span[2] > 0.1: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_words_with_alpha_character", []): if span[2] < 0.8: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__required_word_count", []): if span[2] < 2: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_lines_starting_with_bullet_point", []): if span[2] > 0.9: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_lines_ending_with_ellipsis", []): if span[2] > 0.3: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_duplicate_lines", []): if span[2] > 0.3: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_lines", []): if span[2] > 0.3: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_most_common_2gram", []): if span[2] > 0.2: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_most_common_3gram", []): if span[2] > 0.18: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_most_common_4gram", []): if span[2] > 0.16: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_5grams", []): if span[2] > 0.15: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_6grams", []): if span[2] > 0.14: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_7grams", []): if span[2] > 0.13: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_8grams", []): if span[2] > 0.12: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_9grams", []): if span[2] > 0.11: bisect.insort(matching_spans, (span[0], span[1], 1.0)) for span in attrs.get("gopher_rules__gopher_v1__fraction_of_characters_in_duplicate_10grams", []): if span[2] > 0.10: bisect.insort(matching_spans, (span[0], span[1], 1.0)) return cls._merge_spans(matching_spans) @classmethod def _merge_spans(cls, matching_spans: List[Tuple[int, int, float]]) -> List[Tuple[int, int, float]]: # merge spans if overlapping merged_spans: List[Tuple[int, int, float]] = [] current_span = None for span in matching_spans: if span[1] - span[0] <= 0: continue elif current_span is None: current_span = span elif span[0] <= current_span[1]: # type: ignore current_span = (current_span[0], span[1], 1.0) else: merged_spans.append(current_span) current_span = span if current_span: merged_spans.append(current_span) return merged_spans @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): attributes = [ source_path.replace("/documents/", "/attributes/gopher_rules/"), source_path.replace("/documents/", "/attributes/decontamination/"), source_path.replace("/documents/", "/attributes/hatespeech_nsfw_cc_v3/"), source_path.replace("/documents/", "/attributes/pii_detection/"), ] doc_decoder = msgspec.json.Decoder(InputSpec) attr_decoder = msgspec.json.Decoder(OutputSpec) stats = { "length": 0, "count": 0, "gopher_count": 0, "gopher_length": 0, "gopher_matches": 0, "decontamination_count": 0, "decontamination_length": 0, "decontamination_matches": 0, "hatespeech_nsfw_count": 0, "hatespeech_nsfw_length": 0, "hatespeech_nsfw_matches": 0, "pii_count": 0, "pii_length": 0, "pii_matches": 0, "pii_matches_gt_5": 0, } documents = 0 interval = 10_000 with ExitStack() as stack: doc_file = stack.enter_context(smart_open.open(source_path, "rb")) atts_files = [stack.enter_context(smart_open.open(path, "rb")) for path in attributes] for doc_line, *attr_lines in zip(doc_file, *atts_files): doc = doc_decoder.decode(doc_line) stats["length"] += len(doc.text) stats["count"] += 1 attrs = {} for line in attr_lines: attrs.update(attr_decoder.decode(line).attributes) # # C4 stats # c4_removal = attrs.get('c4_rules__c4_v1__lines_with_no_ending_punctuation', []) # stats["c4_count"] += len(c4_removal) # stats["c4_length"] += sum(s[-1] for s in c4_removal) # stats["c4_matches"] += 1 if c4_removal else 0 # Gopher stats gopher_removal = cls.gopher_rules(attrs) stats["gopher_count"] += len(gopher_removal) stats["gopher_length"] += sum(s[1] - s[0] for s in gopher_removal) stats["gopher_matches"] += 1 if gopher_removal else 0 # Deduplication stats decontamination_removal = attrs.get("bff_duplicate_paragraph_spans_decontamination", []) stats["decontamination_count"] += len(decontamination_removal) stats["decontamination_length"] += sum(s[1] - s[0] for s in decontamination_removal) stats["decontamination_matches"] += 1 if decontamination_removal else 0 # jigsaw stats jigsaw_match: List[Tuple[int, int, float]] = [] nsfw = attrs.get("hatespeech_nsfw_cc_v3__jigsaw_nsfw_sencence_v2____label__nsfw", []) for span in nsfw: if span[2] > 0.4: bisect.insort(jigsaw_match, (span[0], span[1], 1.0)) toxic = attrs.get("hatespeech_nsfw_cc_v3__jigsaw_hatespeech_sentence_v2____label__toxic", []) for span in toxic: if span[2] > 0.4: bisect.insort(jigsaw_match, (span[0], span[1], 1.0)) jigsaw_match = cls._merge_spans(jigsaw_match) stats["hatespeech_nsfw_count"] += len(jigsaw_match) stats["hatespeech_nsfw_length"] += sum(s[1] - s[0] for s in jigsaw_match) stats["hatespeech_nsfw_matches"] += 1 if jigsaw_match else 0 # PII stats pii_removal = ( attrs.get("pii_detection__pii_regex_with_counts_fast_v2__EMAIL_ADDRESS", []) + attrs.get("pii_detection__pii_regex_with_counts_fast_v2__PHONE_NUMBER", []) + attrs.get("pii_detection__pii_regex_with_counts_fast_v2__IP_ADDRESS", []) ) stats["pii_count"] += len(pii_removal) stats["pii_length"] += sum(s[1] - s[0] for s in pii_removal) stats["pii_matches"] += 1 if pii_removal else 0 stats["pii_matches_gt_5"] += 1 if len(pii_removal) > 5 else 0 documents += 1 if documents % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=documents % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps(stats, indent=2)) class C4InputSpec(InputSpec): metadata: Dict[str, Any] = msgspec.field(default_factory=dict) @Registry.add class c4(BaseStatsProcessor): @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): attrs_path = source_path.replace("/documents/", "/attributes/decontamination/") documents_decoder = msgspec.json.Decoder(C4InputSpec) attributes_decoder = msgspec.json.Decoder(OutputSpec) counts = Counts() interval = 10_000 with smart_open.open(source_path, "rb") as doc_file, smart_open.open(attrs_path, "rb") as attrs_file: for source_line, attributes_line in zip(doc_file, attrs_file): document = documents_decoder.decode(source_line) attributes = attributes_decoder.decode(attributes_line) text = document.text for start, end, _ in sorted( attributes.attributes.get("bff_duplicate_paragraph_spans_decontamination", []), key=lambda t: -t[1], ): # remove duplicate text = text[:start] + text[end:] counts.add(text=text, url=document.metadata["url"]) if counts.documents % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=counts.documents % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps(counts.to_dict(), indent=2)) @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: with TemporaryDirectory() as tempdir: documents = "s3://ai2-llm/pretraining-data/sources/c4/v0/documents/train/*.gz" stats = "s3://ai2-llm/stats/olmo-mix/v1/web/c4" metadata = os.path.join(tempdir, "c4") processor = cls( source_prefix=documents, destination_prefix=stats, metadata_prefix=metadata, num_processes=num_workers, debug=debug, ) processor(**process_single_kwargs) @Registry.add class s2(BaseStatsProcessor): @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): attrs_path = source_path.replace("/documents/", "/attributes/decontamination/") documents_decoder = msgspec.json.Decoder(C4InputSpec) attributes_decoder = msgspec.json.Decoder(OutputSpec) interval = 10_000 counts: dict = { f: {"year": {}, "s2fos": {}, "documents": 0, "tokens": 0} for f in ["full_text", "abstract"] } key = "full_text" if "dataset=s2orc" in source_path else "abstract" cnt = 0 with smart_open.open(source_path, "rb") as doc_file, smart_open.open(attrs_path, "rb") as attrs_file: for source_line, attributes_line in zip(doc_file, attrs_file): cnt += 1 document = documents_decoder.decode(source_line) attributes = attributes_decoder.decode(attributes_line) text = document.text for start, end, _ in sorted( attributes.attributes.get("bff_duplicate_paragraph_spans_decontamination", []), key=lambda t: -t[1], ): # remove duplicate text = text[:start] + text[end:] if not (text := text.strip()): continue counts[key]["documents"] += 1 counts[key]["tokens"] += len(blingfire.text_to_words(text).split()) if document.metadata["year"] not in counts[key]["year"]: counts[key]["year"][document.metadata["year"]] = 0 counts[key]["year"][document.metadata["year"]] += 1 if len(document.metadata["s2fieldsofstudy"]) == 0: document.metadata["s2fieldsofstudy"] = ["null"] for fos in document.metadata["s2fieldsofstudy"]: if fos not in counts[key]["s2fos"]: counts[key]["s2fos"][fos] = 0 counts[key]["s2fos"][fos] += 1 if cnt % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=cnt % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps(counts, indent=2)) @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: with TemporaryDirectory() as tempdir: documents = ( "s3://ai2-llm/pretraining-data/sources/s2/v3-fos/documents/dataset=*/split=train/part_id=*/*.gz" ) stats = "s3://ai2-llm/stats/olmo-mix/v1/papers/peS2o" metadata = os.path.join(tempdir, "s2") processor = cls( source_prefix=documents, destination_prefix=stats, metadata_prefix=metadata, num_processes=num_workers, debug=debug, ) processor(**process_single_kwargs) class StackInputSpec(InputSpec): metadata: Dict[str, Any] = msgspec.field(default_factory=dict) attributes: Dict[str, Any] = msgspec.field(default_factory=dict) @Registry.add class stack(BaseStatsProcessor): @classmethod def process_single( cls, source_path: str, destination_path: str, queue: Queue[Union[Tuple[int, ...], None]], **kwargs: Any ): attrs_basic = source_path.replace("/documents/", "/attributes/basic/") attrs_code_secrets = source_path.replace("/documents/", "/attributes/code_secrets/") # attrs_dedupe_documents = source_path.replace("/documents/", "/attributes/dedupe_documents/") attrs_pii = source_path.replace("/documents/", "/attributes/pii/") documents_decoder = msgspec.json.Decoder(StackInputSpec) attributes_decoder = msgspec.json.Decoder(OutputSpec) interval = 10_000 counts: dict = {"extension": defaultdict(int), "license": defaultdict(int), "documents": 0, "tokens": 0} cnt = 0 with ExitStack() as stack: doc_file = stack.enter_context(smart_open.open(source_path, "rb")) attrs_basic_file = stack.enter_context(smart_open.open(attrs_basic, "rb")) attrs_code_secrets_file = stack.enter_context(smart_open.open(attrs_code_secrets, "rb")) # attrs_dedupe_documents_file = stack.enter_context(smart_open.open(attrs_dedupe_documents, "rb")) attrs_pii_file = stack.enter_context(smart_open.open(attrs_pii, "rb")) # with smart_open.open(source_path, "rb") as doc_file, smart_open.open(attrs_path, "rb") as attrs_file: for source_line, *attributes_line in zip( doc_file, attrs_basic_file, attrs_code_secrets_file, # attrs_dedupe_documents_file, attrs_pii_file, ): cnt += 1 document = documents_decoder.decode(source_line) for ln in attributes_line: attributes = attributes_decoder.decode(ln) document.attributes.update(attributes.attributes) if document.attributes["basic__random_number_v1__random"][-1][-1] > 0.996: # test set; see # https://github.com/allenai/LLM/blob/642d0fad3fb2efd816af507250c4c65c8678cb44/pretrain_data/the_stack/v2-mixer/ablations/v2-mixer-held-out.json#L15 continue counts["documents"] += 1 counts["tokens"] += len(blingfire.text_to_words(document.text).split()) counts["extension"][document.metadata["ext"]] += 1 for license in document.metadata["max_forks_repo_licenses"]: counts["license"][license] += 1 cnt += 1 if cnt % interval == 0: cls.increment_progressbar(queue, documents=interval) cls.increment_progressbar(queue, files=1, documents=cnt % interval) with smart_open.open(destination_path, "wt") as destination_file: destination_file.write(json.dumps(counts, indent=2)) @staticmethod # read all paths in using threads def _read_json(path: str) -> dict: with smart_open.open(path, "rt") as source_file: content = msgspec.json.decode(source_file.read()) return content @classmethod def _merge_dicts(cls, d1, d2): d1 = copy.deepcopy(d1) for k, v in d2.items(): if isinstance(v, dict): d1[k] = cls._merge_dicts(d1.get(k, {}), v) else: d1[k] = d1.get(k, 0) + v return d1 @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: with TemporaryDirectory() as tempdir: documents = "s3://ai2-llm/pretraining-data/sources/stack-dedup/v2-mixer/documents/*.gz" stats = "s3://ai2-llm/stats/olmo-mix/v1/code/stack" metadata = os.path.join(tempdir, "stack") processor = cls( source_prefix=documents, destination_prefix=stats, metadata_prefix=metadata, num_processes=num_workers, debug=debug, ) processor(**process_single_kwargs) paths = list(glob_path(f"{stats}/*.gz")) counts: dict = {} with multiprocessing.Pool(num_workers) as pool: data = (cls._read_json(path) for path in paths) if debug else pool.imap(cls._read_json, paths) for content in tqdm.tqdm(data, desc="Merging code stats", unit=" files", total=len(paths)): counts = cls._merge_dicts(counts, content) with smart_open.open("s3://ai2-llm/stats/olmo-mix/v1/code/summary.json", "wt") as destination_file: destination_file.write(json.dumps(counts, indent=2, sort_keys=True)) # # # BELOW HERE: AGGREGATION # # # @Registry.add class web(BaseStatsProcessor): @staticmethod # read all paths in using threads def _read_json(path: str) -> Counts: with smart_open.open(path, "rt") as source_file: content = msgspec.json.decode(source_file.read()) return Counts.from_dict(content) @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: paths = list( chain( glob_path("s3://ai2-llm/stats/olmo-mix/v1/web/c4/*"), glob_path("s3://ai2-llm/stats/olmo-mix/v1/web/common-crawl/**/*"), ) ) assert len(paths), "Run c4 and common-crawl first" with multiprocessing.Pool(num_workers) as pool: data = (cls._read_json(path) for path in paths) if debug else pool.imap(cls._read_json, paths) counts = Counts() for content in tqdm.tqdm(data, desc="Merging web stats", unit=" files", total=len(paths)): counts.merge(content, shrink=True) with smart_open.open("s3://ai2-llm/stats/olmo-mix/v1/web/summary.json", "wt") as destination_file: destination_file.write(json.dumps(counts.to_dict(), indent=2)) @Registry.add class papers(BaseStatsProcessor): @staticmethod # read all paths in using threads def _read_json(path: str) -> dict: with smart_open.open(path, "rt") as source_file: return json.loads(source_file.read()) @classmethod def cli(cls, num_workers: int = 1, debug: bool = False, **process_single_kwargs: Any) -> None: paths = list(glob_path("s3://ai2-llm/stats/olmo-mix/v1/papers/peS2o/**/*.gz")) assert len(paths), "Run s2 first" with multiprocessing.Pool(num_workers) as pool: data = (cls._read_json(path) for path in paths) if debug else pool.imap(cls._read_json, paths) counts: dict = { f: {"year": {}, "s2fos": {}, "documents": 0, "tokens": 0} for f in ["full_text", "abstract"] } for content in tqdm.tqdm(data, desc="Merging web stats", unit=" files", total=len(paths)): for key, values in content.items(): counts[key]["documents"] += values["documents"] counts[key]["tokens"] += values["tokens"] for year, count in values["year"].items(): if year not in counts[key]["year"]: counts[key]["year"][year] = 0 counts[key]["year"][year] += count for fos, count in values["s2fos"].items(): if fos not in counts[key]["s2fos"]: counts[key]["s2fos"][fos] = 0 counts[key]["s2fos"][fos] += count with smart_open.open("s3://ai2-llm/stats/olmo-mix/v1/papers/summary.json", "wt") as destination_file: destination_file.write(json.dumps(counts, indent=2)) if __name__ == "__main__": os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["PYTHONBREAKPOINT"] = "ipdb.set_trace" ap = argparse.ArgumentParser() ap.add_argument("stat", choices=[name for name, _ in Registry.all()]) ap.add_argument("--debug", action="store_true") ap.add_argument("--num-workers", type=int, default=multiprocessing.cpu_count()) args = ap.parse_args() Registry.get(args.stat).cli(num_workers=args.num_workers, debug=args.debug)
dolma-main
scripts/stats.py
blockwise-parallel-transformer-1-main
bpt/__init__.py
# coding=utf-8 # Copyright 2021 The EleutherAI and The HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional, Tuple import json import numpy as np import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from flax.linen import partitioning as nn_partitioning from transformers.configuration_utils import PretrainedConfig from transformers.modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput from transformers.modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from transformers.generation.flax_logits_process import FlaxLogitsProcessorList from transformers import AutoTokenizer from jax.sharding import PartitionSpec as PS from ml_collections import ConfigDict from ml_collections.config_dict import config_dict from bpt.tools.utils import function_args_to_config, load_pickle, open_file from bpt.tools.jax_utils import ( with_sharding_constraint, get_jax_mesh, get_gradient_checkpoint_policy ) from bpt.blocks.memeff import AttentionBlock as MemEffAttentionBlock from bpt.blocks.blockwise_parallel_v1 import AttentionBlock as BlockwiseParallelBlock_v1 from bpt.blocks.blockwise_parallel import AttentionBlock as BlockwiseParallelBlock, Blockwise_LM_Head from bpt.blocks.vanilla import AttentionBlock as VanillaAttentionBlock GPT_STANDARD_CONFIGS = { # 1.3B '1b': { 'vocab_size': 50432, 'n_embd': 2048, 'n_inner': 8192, 'n_layer': 24, 'n_head': 16, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 128, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, # 2.7B '3b': { 'vocab_size': 50432, 'n_embd': 2560, 'n_inner': 10240, 'n_layer': 32, 'n_head': 32, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 80, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, # 6.7B '7b': { 'vocab_size': 50432, 'n_embd': 4096, 'n_inner': 16384, 'n_layer': 32, 'n_head': 32, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 128, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, # 13B '13b': { 'vocab_size': 50432, 'n_embd': 5120, 'n_inner': 20480, 'n_layer': 40, 'n_head': 40, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 128, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, # 30B '30b': { 'vocab_size': 50432, 'n_embd': 7168, 'n_inner': 28672, 'n_layer': 48, 'n_head': 56, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 128, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, # 70B '70b': { 'vocab_size': 50432, 'n_embd': 8192, 'n_inner': 32768, 'n_layer': 80, 'n_head': 64, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 128, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, 'debug': { # A small model for debugging 'vocab_size': 50432, 'n_embd': 128, 'n_inner': 256, 'n_layer': 2, 'n_head': 4, 'n_positions': 16384, 'initializer_range': 0.02, 'layer_norm_epsilon': 1e-5, 'use_cache': True, 'tie_word_embeddings': False, 'rotary_dim': 32, 'bos_token_id': 50256, 'eos_token_id': 50256, 'n_real_tokens': 50257, }, } class GPTConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTModel`]. It is used to instantiate a GPT-J model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-J [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50432): Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTModel`]. n_positions (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. rotary_dim (`int`, *optional*, defaults to 64): Number of dimensions in the embedding that Rotary Position Embedding is applied to. n_inner (`int`, *optional*, defaults to 0): Dimensionality of the inner feed-forward layers. 0 will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_new"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_attn_weights (`bool`, *optional*, defaults to `True`): Scale attention weights by dividing by sqrt(hidden_size). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import GPTModel, GPTConfig >>> # Initializing a GPT-J 6B configuration >>> configuration = GPTConfig() >>> # Initializing a model from the configuration >>> model = GPTModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt" attribute_map = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50432, n_positions=2048, n_embd=4096, n_layer=28, n_head=16, rotary_dim=64, n_inner=None, activation_function="gelu_new", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, layer_norm_epsilon=1e-5, initializer_range=0.02, scale_attn_weights=True, use_cache=True, bos_token_id=50256, eos_token_id=50256, tie_word_embeddings=False, gradient_checkpointing='nothing_saveable', n_real_tokens=50257, fcm_min_ratio=0.0, fcm_max_ratio=0.0, causal=True, attn_type='dot', q_chunk_size=1024, k_chunk_size=2048, scan_layers=True, param_scan_axis=0, float32_logits=False, **kwargs ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.rotary_dim = rotary_dim self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.scale_attn_weights = scale_attn_weights self.use_cache = use_cache self.gradient_checkpointing = gradient_checkpointing self.n_real_tokens = n_real_tokens self.fcm_min_ratio = fcm_min_ratio self.fcm_max_ratio = fcm_max_ratio self.causal = causal self.attn_type = attn_type self.q_chunk_size = q_chunk_size self.k_chunk_size = k_chunk_size self.scan_layers = scan_layers self.param_scan_axis = param_scan_axis self.float32_logits = float32_logits if self.n_real_tokens is None: self.n_real_tokens = self.vocab_size self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) @classmethod def get_default_config(cls, updates=None): none_arg_types = dict( n_inner=int, rotary_dim=int, ) config = function_args_to_config(cls.__init__, none_arg_types=none_arg_types) if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @staticmethod def get_jax_mesh(axis_dims): return get_jax_mesh(axis_dims, ('dp', 'fsdp', 'mp')) @staticmethod def get_partition_rules(scan_layers=False): """ Parition rules for GPT. Note that these rules are orderd, so that the beginning rules match first. It is important to use PartitionSpec() instead of None here because JAX does not treat None as a pytree leaf. """ if scan_layers: return ( ('transformer/wte/embedding', PS('mp', 'fsdp')), ('attn/(k_proj|q_proj|v_proj)/kernel', PS(None, 'fsdp', 'mp')), ('attn/out_proj/kernel', PS(None, 'mp', 'fsdp')), ('attn/fc_in/kernel', PS(None, 'fsdp', 'mp')), ('attn/fc_in/bias', PS(None, 'mp')), ('attn/fc_out/kernel', PS(None, 'mp', 'fsdp')), ('attn/fc_out/bias', PS(None, None)), ('ln_[0-9]+/bias', PS(None, None)), ('[0-9]+/ln_[0-9]+/scale', PS(None, None)), ('ln_f/bias', PS(None)), ('ln_f/scale', PS(None)), ('lm_head/kernel', PS('fsdp', 'mp')), ('lm_head/bias', PS('mp')), ('.*', PS(None)), ) else: return ( ('transformer/wte/embedding', PS('mp', 'fsdp')), ('attn/(k_proj|q_proj|v_proj)/kernel', PS('fsdp', 'mp')), ('attn/out_proj/kernel', PS('mp', 'fsdp')), ('attn/fc_in/kernel', PS('fsdp', 'mp')), ('attn/fc_in/bias', PS('mp')), ('attn/fc_out/kernel', PS('mp', 'fsdp')), ('attn/fc_out/bias', PS(None)), ('ln_[0-9]+/bias', PS(None)), ('[0-9]+/ln_[0-9]+/scale', PS(None)), ('ln_f/bias', PS(None)), ('ln_f/scale', PS(None)), ('lm_head/kernel', PS('fsdp', 'mp')), ('lm_head/bias', PS('mp')), ('.*', PS(None)), ) @staticmethod def get_weight_decay_exclusions(): return ( 'ln_[0-9]+/bias', 'ln_[0-9]+/scale', 'ln_f/bias', 'ln_f/scale', 'bias' ) @staticmethod def rng_keys(): return ('params', 'dropout', 'fcm') @staticmethod def get_tokenizer_config(updates=None): config = ConfigDict() config.name = 'EleutherAI/gpt-j-6B' config.bos_token = '<|endoftext|>' config.eos_token = '<|endoftext|>' config.pad_token = '<|extratoken_40|>' config.cls_token = '<|extratoken_41|>' config.mask_token = '<|extratoken_42|>' if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_tokenizer(cls, config, padding_side='left', truncation_side='right'): config = cls.get_tokenizer_config(config) return AutoTokenizer.from_pretrained( config.name, bos_token=config.bos_token, eos_token=config.eos_token, pad_token=config.pad_token, cls_token=config.cls_token, mask_token=config.mask_token, padding_side=padding_side, truncation_side=truncation_side, ) @staticmethod def load_pretrained(name, dtype=jnp.float32): with jax.default_device(jax.devices("cpu")[0]): params = FlaxGPTForCausalLM.from_pretrained( name, _do_init=False, dtype=dtype )[1] params = freeze({'params': params}) return jax.device_get(params) @classmethod def load_config(cls, path): if path in GPT_STANDARD_CONFIGS: return cls.from_dict(GPT_STANDARD_CONFIGS[path]) load_type, load_path = path.split('::', 1) if load_type == 'pickle': return cls.from_dict(load_pickle(load_path)['gpt_config']) elif load_type == 'json': with open_file(load_path, 'r') as fin: raw_config = fin.read() return cls.from_dict(json.loads(raw_config)) elif load_type == 'huggingface': return cls.from_pretrained(load_path) else: raise ValueError(f'Unsupported load config type: {load_type}') logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "gpt" _CONFIG_FOR_DOC = "GPTConfig" GPT_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`GPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ GPT_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp) sentinel = dim // 2 + dim % 2 out = np.zeros((num_pos, dim)) out[:, 0:sentinel] = sin out[:, sentinel:] = cos return jnp.array(out) def rotate_every_two(tensor): rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1) rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,)) return rotate_half_tensor def apply_rotary_pos_emb(tensor, sincos): sin_pos, cos_pos = sincos sin_pos = sin_pos[:, :, None, :].repeat(2, 3) cos_pos = cos_pos[:, :, None, :].repeat(2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class FlaxGPTBlock(nn.Module): config: GPTConfig dtype: jnp.dtype = jnp.float32 def setup(self): hidden_size = self.config.hidden_size inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size attention_blocks = { # default vanilla transformer (Vaswani et al). 'vanilla': VanillaAttentionBlock, # default memory efficient transformer (Rabe et al and Dao et al). 'memeff': MemEffAttentionBlock, # default blockwise parallel transformer (Liu et al). 'blockwise_parallel': BlockwiseParallelBlock, # less cleaner blockwise parallel transformer used in the paper. 'blockwise_parallel_v1': BlockwiseParallelBlock_v1, } if self.config.attn_type in attention_blocks: Block = attention_blocks[self.config.attn_type] else: raise ValueError(f"Unknown attention type {self.config.attn_type}") self.attn = Block( self.config.q_chunk_size, self.config.k_chunk_size, self.config.hidden_size, self.config.num_attention_heads, self.config.rotary_dim, inner_dim, self.config.layer_norm_epsilon, self.config.activation_function, self.config.attn_pdrop, self.config.resid_pdrop, self.config.max_position_embeddings, self.dtype, self.config.causal, policy=self.config.gradient_checkpointing, prevent_cse=not self.config.scan_layers, float32_logits=self.config.float32_logits, ) def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, fcm_mask=None, ): attn_outputs = self.attn( hidden_states, attention_mask=attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, ) attn_weights = None if self.config.scan_layers: # NOTE: this is a hack to work with scan_layers outputs = attn_outputs, None else: outputs = (attn_outputs, attn_weights) if output_attentions else (attn_outputs,) return outputs class FlaxGPTPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTConfig base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: GPTConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, position_ids, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return init_variables["cache"] def _get_logits_processor(self,*args, **kwargs) -> FlaxLogitsProcessorList: processors = super()._get_logits_processor(*args, **kwargs) def squash_extra_tokens(input_ids, scores, cur_len): return scores.at[:, self.config.n_real_tokens:].set(-float('inf')) processors.append(squash_extra_tokens) return processors @add_start_docstrings_to_model_forward(GPT_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxGPTBlockCollection(nn.Module): config: GPTConfig dtype: jnp.dtype = jnp.float32 @nn.compact def __call__( self, hidden_states, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if not deterministic and self.config.fcm_max_ratio > 0: # Apply forgetful causal mask batch_size, seq_length = hidden_states.shape[0], hidden_states.shape[1] fcm_ratio = jax.random.uniform( self.make_rng('fcm'), shape=(batch_size, 1, 1, 1), minval=self.config.fcm_min_ratio, maxval=self.config.fcm_max_ratio ) fcm_mask = jax.random.uniform( self.make_rng('fcm'), shape=(batch_size, 1, seq_length, seq_length) ) > fcm_ratio fcm_mask = fcm_mask.at[:, :, :, 0].set(True) fcm_mask = fcm_mask.astype('bool') else: fcm_mask = None block = FlaxGPTBlock if self.config.gradient_checkpointing != '': FlaxGPT2CheckpointBlock = nn.remat( block, static_argnums=(3, 4, 5, 6), prevent_cse=not self.config.scan_layers, policy=get_gradient_checkpoint_policy(self.config.gradient_checkpointing) ) block = FlaxGPT2CheckpointBlock if self.config.scan_layers: initializing = self.is_mutable_collection('params') params_spec = ( self.config.param_scan_axis if initializing else nn_partitioning.ScanIn(self.config.param_scan_axis)) cache_spec = 0 hidden_states, _ = nn.scan( block, variable_axes={ 'params': params_spec, 'cache': cache_spec, 'intermediates': 0 }, split_rngs={ 'params': True, 'dropout': True }, in_axes=(nn.broadcast, nn.broadcast, nn.broadcast, nn.broadcast, nn.broadcast, nn.broadcast), length=self.config.num_hidden_layers, metadata_params={nn.PARTITION_NAME: 'scan_decoder_layer'}, )(config=self.config, name='scan_decoder', dtype=self.dtype)( hidden_states, attention_mask, position_ids, deterministic, init_cache, output_attentions, fcm_mask, ) else: blocks = [ block(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] for block in blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask, position_ids, deterministic, init_cache, output_attentions, fcm_mask, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxGPTModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs class FlaxGPTModule(nn.Module): config: GPTConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embed_dim = self.config.hidden_size self.wte = nn.Embed( self.config.vocab_size, self.config.hidden_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.dropout = nn.Dropout(rate=self.config.embd_pdrop) self.h = FlaxGPTBlockCollection(self.config, dtype=self.dtype) self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.wte(input_ids.astype("i4")) hidden_states = self.dropout(input_embeds, deterministic=deterministic) outputs = self.h( hidden_states, attention_mask, position_ids=position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], ) @add_start_docstrings( "The bare GPT Model transformer outputting raw hidden-states without any specific head on top.", GPT_START_DOCSTRING, ) class FlaxGPTModel(FlaxGPTPreTrainedModel): module_class = FlaxGPTModule append_call_sample_docstring( FlaxGPTModel, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC, ) class FlaxGPTForCausalLMModule(nn.Module): config: GPTConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.transformer = FlaxGPTModule(self.config, dtype=self.dtype) if self.config.attn_type == 'blockwise_parallel' or self.config.attn_type == 'blockwise_parallel_v1': self.lm_head = Blockwise_LM_Head(self.config.vocab_size, self.config.q_chunk_size, dtype=self.dtype, prevent_cse=not self.config.scan_layers) else: self.lm_head = nn.Dense( self.config.vocab_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) def __call__( self, input_ids, attention_mask=None, position_ids=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): batch_size, seq_length = input_ids.shape if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to( jnp.clip(jnp.cumsum(attention_mask, axis=-1) - 1, a_min=0), (batch_size, seq_length) ) outputs = self.transformer( input_ids, attention_mask, position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """ The GPT Model transformer with a language modeling head on top. """, GPT_START_DOCSTRING, ) class FlaxGPTForCausalLM(FlaxGPTPreTrainedModel): module_class = FlaxGPTForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since GPT uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxGPTForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC, )
blockwise-parallel-transformer-1-main
bpt/model.py
import dataclasses import pprint from functools import partial import re from tqdm import tqdm, trange import numpy as np import bpt.tools.utils as utils import jax import jax.numpy as jnp from jax.experimental.pjit import pjit from jax.sharding import PartitionSpec as PS import flax from flax import linen as nn from flax.jax_utils import prefetch_to_device from flax.training.train_state import TrainState import optax from bpt.data import Dataset, TextProcessor from bpt.tools.checkpoint import StreamingCheckpointer from bpt.tools.optimizers import OptimizerFactory from bpt.tools.jax_utils import ( JaxRNG, next_rng, match_partition_rules, cross_entropy_loss_and_accuracy, named_tree_map, global_norm, set_random_seed, average_metrics, get_weight_decay_mask, make_shard_and_gather_fns, with_sharding_constraint, tree_apply, get_metrics, ) from bpt.model import GPTConfig, FlaxGPTForCausalLMModule from bpt.blocks.blockwise_parallel import blockwise_cross_entropy FLAGS, FLAGS_DEF = utils.define_flags_with_default( seed=42, initialize_jax_distributed=False, mesh_dim='1,-1,1', total_steps=10000, load_gpt_config='', update_gpt_config='', load_checkpoint='', load_dataset_state='', log_freq=50, save_model_freq=0, save_milestone_freq=0, eval_steps=0, tokenizer=GPTConfig.get_tokenizer_config(), text_processor=TextProcessor.get_default_config(), train_dataset=Dataset.get_default_config(), eval_dataset=Dataset.get_default_config(), optimizer=OptimizerFactory.get_default_config(), checkpointer=StreamingCheckpointer.get_default_config(), gpt=GPTConfig.get_default_config(), logger=utils.WandBLogger.get_default_config(), log_all_worker=False, profile_steps=0, stop_after_profile=True, ) def main(argv): if FLAGS.initialize_jax_distributed: jax.distributed.initialize() variant = utils.get_user_flags(FLAGS, FLAGS_DEF) flags_config_dict = utils.user_flags_to_config_dict(FLAGS, FLAGS_DEF) logger = utils.WandBLogger( config=FLAGS.logger, variant=variant, enable=FLAGS.log_all_worker or (jax.process_index() == 0), ) set_random_seed(FLAGS.seed) if FLAGS.load_dataset_state != '': dataset = utils.load_pickle(FLAGS.load_dataset_state) else: tokenizer = GPTConfig.get_tokenizer(FLAGS.tokenizer) text_processor = TextProcessor(FLAGS.text_processor, tokenizer) dataset = Dataset(FLAGS.train_dataset, tokenizer, text_processor) if FLAGS.eval_steps > 0: eval_dataset = Dataset( FLAGS.eval_dataset, dataset.tokenizer, dataset.text_processor, ) eval_iterator = iter(eval_dataset.val_iter()) seq_length = dataset.seq_length if FLAGS.load_gpt_config != '': gpt_config = GPTConfig.load_config(FLAGS.load_gpt_config) update_gpt_config = GPTConfig(**FLAGS.gpt) gpt_config.update(dict( q_chunk_size=update_gpt_config.q_chunk_size, k_chunk_size=update_gpt_config.k_chunk_size, attn_type=update_gpt_config.attn_type, n_positions=update_gpt_config.n_positions, gradient_checkpointing=update_gpt_config.gradient_checkpointing, scan_layers=update_gpt_config.scan_layers, param_scan_axis=update_gpt_config.param_scan_axis, )) else: gpt_config = GPTConfig(**FLAGS.gpt) if FLAGS.update_gpt_config != '': gpt_config.update(dict(eval(FLAGS.update_gpt_config))) gpt_config.update(dict( bos_token_id=dataset.tokenizer.bos_token_id, eos_token_id=dataset.tokenizer.eos_token_id, )) if gpt_config.vocab_size < dataset.vocab_size: gpt_config.update(dict(vocab_size=dataset.vocab_size)) model = FlaxGPTForCausalLMModule(gpt_config) optimizer, optimizer_info = OptimizerFactory.get_optimizer( FLAGS.optimizer, get_weight_decay_mask(GPTConfig.get_weight_decay_exclusions()), ) def create_trainstate_from_params(params): return TrainState.create(params=params, tx=optimizer, apply_fn=None) def init_fn(rng): rng_generator = JaxRNG(rng) params = model.init( input_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), position_ids=jnp.zeros((4, seq_length), dtype=jnp.int32), attention_mask=jnp.ones((4, seq_length), dtype=jnp.int32), rngs=rng_generator(gpt_config.rng_keys()), ) return TrainState.create(params=params, tx=optimizer, apply_fn=None) if FLAGS.gpt.attn_type == 'blockwise_parallel' or FLAGS.gpt.attn_type == 'blockwise_parallel_v1': cross_entropy_loss_and_accuracy_fn = partial(blockwise_cross_entropy, policy=FLAGS.gpt.gradient_checkpointing, chunk_size=FLAGS.gpt.q_chunk_size, prevent_cse=not FLAGS.gpt.scan_layers,) else: cross_entropy_loss_and_accuracy_fn = cross_entropy_loss_and_accuracy def train_step(train_state, rng, batch): rng_generator = JaxRNG(rng) input_tokens = with_sharding_constraint(batch['input_tokens'], PS(('dp', 'fsdp'))) output_tokens = with_sharding_constraint(batch['output_tokens'], PS(('dp', 'fsdp'))) loss_masks = with_sharding_constraint(batch['loss_masks'], PS(('dp', 'fsdp'))) def loss_and_accuracy(params): logits = model.apply( params, input_tokens, deterministic=False, rngs=rng_generator(gpt_config.rng_keys()), ).logits return cross_entropy_loss_and_accuracy_fn(logits, output_tokens, loss_masks) grad_fn = jax.value_and_grad(loss_and_accuracy, has_aux=True) (loss, accuracy), grads = grad_fn(train_state.params) train_state = train_state.apply_gradients(grads=grads) metrics = dict( loss=loss, accuracy=accuracy, learning_rate=optimizer_info['learning_rate_schedule'](train_state.step), gradient_norm=global_norm(grads), param_norm=global_norm(train_state.params), ) return train_state, rng_generator(), metrics def eval_step(train_state, rng, batch): rng_generator = JaxRNG(rng) input_tokens = with_sharding_constraint(batch['input_tokens'], PS(('dp', 'fsdp'))) output_tokens = with_sharding_constraint(batch['output_tokens'], PS(('dp', 'fsdp'))) loss_masks = with_sharding_constraint(batch['loss_masks'], PS(('dp', 'fsdp'))) logits = model.apply( train_state.params, input_tokens, deterministic=True, rngs=rng_generator(gpt_config.rng_keys()), ).logits loss, accuracy = cross_entropy_loss_and_accuracy_fn(logits, output_tokens, loss_masks) metrics = dict( loss=loss, accuracy=accuracy, ) return rng_generator(), metrics train_state_shapes = jax.eval_shape(init_fn, next_rng()) train_state_partition = match_partition_rules( GPTConfig.get_partition_rules(FLAGS.gpt.scan_layers), train_state_shapes ) num_params = sum(x.size for x in jax.tree_leaves(train_state_shapes.params)) num_nonembed_params = num_params - gpt_config.vocab_size * gpt_config.n_embd param_stats = {"num_params": num_params,"num_nonembed_params": num_nonembed_params} logger.log(param_stats) tqdm.write("\n" + pprint.pformat(param_stats) + "\n") shard_fns, gather_fns = make_shard_and_gather_fns( train_state_partition, train_state_shapes ) checkpointer = StreamingCheckpointer( FLAGS.checkpointer, logger.output_dir, enable=jax.process_index() == 0, ) sharded_init_fn = pjit( init_fn, in_shardings=PS(), out_shardings=train_state_partition ) sharded_create_trainstate_from_params = pjit( create_trainstate_from_params, in_shardings=(train_state_partition.params, ), out_shardings=train_state_partition, donate_argnums=(0, ), ) sharded_train_step = pjit( train_step, in_shardings=(train_state_partition, PS(), PS()), out_shardings=(train_state_partition, PS(), PS()), donate_argnums=(0, 1), ) sharded_eval_step = pjit( eval_step, in_shardings=(train_state_partition, PS(), PS()), out_shardings=(PS(), PS()), donate_argnums=(1,), ) def save_checkpoint(train_state, milestone=False): step = int(jax.device_get(train_state.step)) metadata = dict( step=step, variant=variant, flags=flags_config_dict, gpt_config=gpt_config.to_dict(), ) checkpointer.save_all( train_state=train_state, gather_fns=gather_fns, metadata=metadata, dataset=dataset.get_state_dict(), milestone=milestone, ) if FLAGS.profile_steps > 0: import os os.makedirs(logger.profile_dir, exist_ok=True) mesh = GPTConfig.get_jax_mesh(FLAGS.mesh_dim) with mesh: train_state, restored_params = None, None if train_state is None and restored_params is None: # Initialize from scratch train_state = sharded_init_fn(next_rng()) elif train_state is None and restored_params is not None: # Restore from params but initialize train_state train_state = sharded_create_trainstate_from_params(restored_params) del restored_params sharded_rng = next_rng() # warmup for batch, dataset_metrics in dataset: train_state, sharded_rng, metrics = sharded_train_step( train_state, sharded_rng, batch ) break # profile jax.profiler.start_trace(logger.profile_dir) for step, (batch, dataset_metrics) in zip(trange(FLAGS.profile_steps), dataset): train_state, sharded_rng, metrics = sharded_train_step( train_state, sharded_rng, batch ) jax.block_until_ready(train_state) jax.profiler.save_device_memory_profile(f'{logger.profile_dir}/memory{step}.prof') jax.profiler.stop_trace() if FLAGS.stop_after_profile: exit() mesh = GPTConfig.get_jax_mesh(FLAGS.mesh_dim) with mesh: train_state, restored_params = None, None if FLAGS.load_checkpoint != '': load_type, load_path = FLAGS.load_checkpoint.split('::', 1) if load_type == 'huggingface': restored_params = tree_apply( shard_fns.params, gpt_config.load_pretrained(load_path) ) train_state = None else: train_state, restored_params = checkpointer.load_trainstate_checkpoint( FLAGS.load_checkpoint, train_state_shapes, shard_fns ) if train_state is None and restored_params is None: # Initialize from scratch train_state = sharded_init_fn(next_rng()) elif train_state is None and restored_params is not None: # Restore from params but initialize train_state train_state = sharded_create_trainstate_from_params(restored_params) del restored_params start_step = int(jax.device_get(train_state.step)) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) sharded_rng = next_rng() step_counter = trange(start_step, FLAGS.total_steps, ncols=0) def run_eval(sharded_rng, eval_fn, batch, eval_steps, eval_name): eval_metric_list = [] for _ in range(eval_steps): sharded_rng, eval_metrics = eval_fn( train_state, sharded_rng, batch ) eval_metric_list.append(eval_metrics) log_metrics = get_metrics(eval_metric_list, stack=True) mean_metrics = { f"{eval_name}/{k}": np.mean(v) for k, v in log_metrics.items() } mean_metrics["step"] = step logger.log(mean_metrics) tqdm.write("\n" + pprint.pformat(mean_metrics) + "\n") return sharded_rng for step, (batch, dataset_metrics) in zip(step_counter, dataset): train_state, sharded_rng, metrics = sharded_train_step( train_state, sharded_rng, batch ) if step % FLAGS.log_freq == 0: if FLAGS.eval_steps > 0: batch, _ = next(eval_iterator) sharded_rng = run_eval(sharded_rng, sharded_eval_step, batch, FLAGS.eval_steps, "val") log_metrics = {"step": step} log_metrics.update(metrics) log_metrics.update(dataset_metrics) log_metrics = jax.device_get(log_metrics) logger.log(log_metrics) tqdm.write("\n" + pprint.pformat(log_metrics) + "\n") if FLAGS.save_milestone_freq > 0 and (step + 1) % FLAGS.save_milestone_freq == 0: save_checkpoint(train_state, milestone=True) elif FLAGS.save_model_freq > 0 and (step + 1) % FLAGS.save_model_freq == 0: save_checkpoint(train_state) if FLAGS.save_model_freq > 0: save_checkpoint(train_state) if __name__ == "__main__": utils.run(main)
blockwise-parallel-transformer-1-main
bpt/train.py
import dataclasses import pprint import time from functools import partial import json from multiprocessing import Pool import h5py import bpt.tools.utils as utils from ml_collections.config_dict import config_dict from ml_collections import ConfigDict from tqdm import tqdm, trange import numpy as np from datasets import load_dataset class TextProcessor(object): """ Example processor that converts a dictionary of texts into tokens. """ @staticmethod def get_default_config(updates=None): config = ConfigDict() config.fields_from_example = '' config.fields = '' config.subfield_separator = ' ' config.add_eos_token = True config.prepend_text = '' if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, tokenizer): self.config = self.get_default_config(config) assert self.config.fields != '' or self.config.fields_from_example != '', ( 'Either fields or fields_from_example must be specified.' ) self.tokenizer = tokenizer def __call__(self, example, has_aux=False): if has_aux: example, *aux = example else: aux = tuple() token_buffer = [] loss_mask_buffer = [] if self.config.fields_from_example != '': fields = example[self.config.fields_from_example].split(',') else: fields = self.config.fields.split(',') for i, field in enumerate(fields): if field.startswith('[') and field.endswith(']'): # No loss for this field. field = field[1:-1] mask = 0.0 else: mask = 1.0 if field == '<|bos|>': token_buffer.append(self.tokenizer.bos_token_id) loss_mask_buffer.append(mask) elif field == '<|eos|>': token_buffer.append(self.tokenizer.eos_token_id) loss_mask_buffer.append(mask) else: subfields = field.split('+') text = self.config.subfield_separator.join( [example[subfield] for subfield in subfields] ) if i == 0: text = self.config.prepend_text + text tokens = self.tokenizer.encode(text) token_buffer.extend(tokens) loss_mask_buffer.extend([mask for _ in range(len(tokens))]) if self.config.add_eos_token: token_buffer.append(self.tokenizer.eos_token_id) loss_mask_buffer.append(1.0) return token_buffer, loss_mask_buffer, *aux class Dataset(object): @staticmethod def get_default_config(updates=None): config = ConfigDict() config.path = '' config.seq_length = 1024 config.batch_size = 8 config.start_seek_loc = 0 config.index_at_start = 0 config.tokenizer_processes = 1 config.tokenizer_parallel_chunk_size = 32 config.tokenizer_parallel_batch_size = 1024 if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, tokenizer, text_processor): self.config = self.get_default_config(config) assert self.config.path != '' self._tokenizer = tokenizer self._text_processor = text_processor self._index = self.config.index_at_start self._file_loc = self.config.start_seek_loc self._n_batch = 0 def parse_json(self, line): if not line or line == '\n': return None try: data = json.loads(line) except json.decoder.JSONDecodeError: print(f'Error parsing json line:\n{line}') return None return data def json_iterator(self): with utils.open_file(self.config.path, 'r') as fin: fin.seek(self._file_loc) while True: line = fin.readline() self._file_loc = fin.tell() if not line: # Reached EOF self._index = 0 fin.seek(0) continue data = self.parse_json(line) if data is not None: # JSON parsing succeeded yield data, self._file_loc, self._index self._index += 1 def batched(self, iterator, batch_size): batch = [] for example in iterator: batch.append(example) if len(batch) == batch_size: yield batch batch = [] if len(batch) > 0: yield batch def parallel_example_iterator(self): if self.config.tokenizer_processes == 1: for example, loc, index in self.json_iterator(): yield self.text_processor((example, loc, index), has_aux=True) else: process_pool = Pool(self.config.tokenizer_processes) batched_iterator = self.batched( self.json_iterator(), self.config.tokenizer_parallel_batch_size ) with process_pool as pool: map_fn = partial(self.text_processor, has_aux=True) next_batch = pool.map_async( map_fn, next(batched_iterator), chunksize=self.config.tokenizer_parallel_chunk_size ) while True: current_batch = next_batch next_batch = pool.map_async( map_fn, next(batched_iterator), chunksize=self.config.tokenizer_parallel_chunk_size ) for example in current_batch.get(): yield example def __iter__(self): chunk_size = self.config.batch_size * self.config.seq_length token_buffer = [] loss_mask_buffer = [] total_tokens = 0 last_time = 0.0 for tokens, loss_masks, loc, index in self.parallel_example_iterator(): token_buffer.extend(tokens) loss_mask_buffer.extend(loss_masks) while len(token_buffer) > chunk_size + 1: total_tokens += chunk_size metrics = { 'dataset_file_loc': loc, 'dataset_example_index': index, 'dataset_total_tokens': total_tokens, 'dataset_throughput_tps': chunk_size / (time.time() - last_time), } last_time = time.time() input_tokens = np.array(token_buffer[:chunk_size], dtype=np.int32) output_tokens = np.array(token_buffer[1:chunk_size+1], dtype=np.int32) # reshape to batch_size x seq_length input_tokens = input_tokens.reshape(self.config.batch_size, -1) output_tokens = output_tokens.reshape(self.config.batch_size, -1) loss_masks = np.array(loss_mask_buffer[:chunk_size], dtype=np.float32).reshape(self.config.batch_size, -1) yield { "input_tokens": input_tokens, "output_tokens": output_tokens, "loss_masks": loss_masks, }, metrics token_buffer = token_buffer[chunk_size:] loss_mask_buffer = loss_mask_buffer[chunk_size:] def val_iter(self): chunk_size = self.config.batch_size * self.config.seq_length token_buffer = [] loss_mask_buffer = [] total_tokens = 0 last_time = 0.0 for tokens, loss_masks, loc, index in self.parallel_example_iterator(): token_buffer.extend(tokens) loss_mask_buffer.extend(loss_masks) while len(token_buffer) > chunk_size + 1: total_tokens += chunk_size metrics = { 'dataset_file_loc': loc, 'dataset_example_index': index, 'dataset_total_tokens': total_tokens, 'dataset_throughput_tps': chunk_size / (time.time() - last_time), } last_time = time.time() input_tokens = np.array(token_buffer[:chunk_size], dtype=np.int32) output_tokens = np.array(token_buffer[1:chunk_size+1], dtype=np.int32) # reshape to batch_size x seq_length input_tokens = input_tokens.reshape(self.config.batch_size, -1) output_tokens = output_tokens.reshape(self.config.batch_size, -1) loss_masks = np.array(loss_mask_buffer[:chunk_size], dtype=np.float32).reshape(self.config.batch_size, -1) yield { "input_tokens": input_tokens, "output_tokens": output_tokens, "loss_masks": loss_masks, }, metrics token_buffer = token_buffer[chunk_size:] loss_mask_buffer = loss_mask_buffer[chunk_size:] def get_state_dict(self): return dict( config=self.config, index=self._index, file_loc=self._file_loc, ) def load_state_dict(self, state_dict): self.config = state_dict.get('config', self.config) self._index = state_dict.get('index', self.config.index_at_start) self._file_loc = state_dict.get('file_loc', self.config.start_seek_loc) @property def seq_length(self): return self.config.seq_length @property def tokenizer(self): return self._tokenizer @property def text_processor(self): return self._text_processor @property def vocab_size(self): return len(self.tokenizer)
blockwise-parallel-transformer-1-main
bpt/data.py
import functools import json import math from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from einops import rearrange from flax.linen import combine_masks, make_causal_mask from jax import lax from jax import numpy as jnp def quick_gelu(x): return x * jax.nn.sigmoid(1.702 * x) ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } MASK_VALUE = -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp) sentinel = dim // 2 + dim % 2 out = np.zeros((num_pos, dim)) out[:, 0:sentinel] = sin out[:, sentinel:] = cos return jnp.array(out) def rotate_every_two(tensor): rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1) rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,)) return rotate_half_tensor def apply_rotary_pos_emb(tensor, sincos): sin_pos, cos_pos = sincos sin_pos = sin_pos[:, :, None, :].repeat(2, 3) cos_pos = cos_pos[:, :, None, :].repeat(2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class _AttentionBlock(nn.Module): hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True float32_logits: bool = False def setup(self): self.embed_dim = self.hidden_size self.head_dim = self.embed_dim // self.num_heads dense = partial( nn.Dense, self.embed_dim, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.ln_1 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.ln_2 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.fc_out = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.act = ACT2FN[self.activation_function] self.resid_dropout = nn.Dropout(rate=self.resid_pdrop) if self.rotary_dim is not None and self.rotary_dim > 0: pos_embd_dim = self.rotary_dim else: pos_embd_dim = self.embed_dim // self.num_heads self.embed_positions = create_sinusoidal_positions(self.max_position_embeddings, pos_embd_dim) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def attn_out_proj(self, attn_output, deterministic): attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) return attn_output def forward_qkv( self, hidden_states, position_ids, deterministic: bool = True, ): hidden_states = self.ln_1(hidden_states) query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) if self.rotary_dim is not None and self.rotary_dim > 0: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) q_rot = apply_rotary_pos_emb(q_rot, sincos) key = jnp.concatenate([k_rot, k_pass], axis=-1) query = jnp.concatenate([q_rot, q_pass], axis=-1) else: key = apply_rotary_pos_emb(key, sincos) query = apply_rotary_pos_emb(query, sincos) if self.float32_logits: query = query.astype(jnp.float32) key = key.astype(jnp.float32) return query, key, value def forward_ffn( self, hidden_states, deterministic: bool = True, ): hidden_states = self.ln_2(hidden_states) hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.resid_dropout(hidden_states, deterministic=deterministic) return hidden_states class AttentionBlock(nn.Module): q_chunk_size: int # not used k_chunk_size: int # not used hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" attn_pdrop: float = 0.0 resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True policy: str = None # not used prevent_cse: bool = False # not used float32_logits: bool = False def setup(self): self.attn = _AttentionBlock( self.hidden_size, self.num_heads, self.rotary_dim, self.intermediate_size, self.layer_norm_epsilon, self.activation_function, self.resid_pdrop, self.max_position_embeddings, self.dtype, self.causal, self.float32_logits, ) self.causal_mask = make_causal_mask(jnp.ones((1, self.max_position_embeddings), dtype="bool"), dtype="bool") @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, ): query, key, value = self.attn.forward_qkv( hidden_states, position_ids, deterministic=deterministic, ) query_length, key_length = query.shape[1], key.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] batch_size = hidden_states.shape[0] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) if self.causal: attention_mask = combine_masks(attention_mask, causal_mask) else: attention_mask = attention_mask dropout_rng = None if not deterministic and self.attn_pdrop > 0.0: dropout_rng = self.make_rng("dropout") # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype), ) attn_weights = nn.dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.attn_pdrop, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self.attn.attn_out_proj(attn_output, deterministic=deterministic) ffn_output = self.attn.forward_ffn(hidden_states + attn_output, deterministic=deterministic) outputs = attn_output + ffn_output + hidden_states return outputs if __name__ == '__main__': with jax.profiler.trace('/tmp/prof/vanilla'): class Model(nn.Module): def setup(self): self.blocks = [ AttentionBlock( q_chunk_size=256, k_chunk_size=256, hidden_size=2048, num_heads=16, rotary_dim=128, intermediate_size=8192, layer_norm_epsilon=1e-5, activation_function="gelu", resid_pdrop=0.0, max_position_embeddings=2048, dtype=jnp.float32, causal=True, ) for _ in range(2) ] def __call__(self, hidden_states, attention_mask, position_ids): for block in self.blocks: hidden_states = block(hidden_states, attention_mask, position_ids) return hidden_states hidden_states = jnp.zeros((2, 1024, 2048)) attention_mask = jnp.zeros((2, 1024), dtype=jnp.int32) position_ids = jnp.zeros((2, 1024), dtype=jnp.int32) model = Model() variables = model.init(jax.random.PRNGKey(0), hidden_states, attention_mask, position_ids) output = model.apply(variables, hidden_states, attention_mask, position_ids) output = output.block_until_ready()
blockwise-parallel-transformer-1-main
bpt/blocks/vanilla.py
import functools import json import math from functools import partial from typing import Callable, NamedTuple, Optional import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from einops import rearrange from flax.linen import combine_masks, make_causal_mask from jax import lax from jax import numpy as jnp def quick_gelu(x): return x * jax.nn.sigmoid(1.702 * x) ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } def get_gradient_checkpoint_policy(name): return { 'everything_saveable': jax.checkpoint_policies.everything_saveable, 'nothing_saveable': jax.checkpoint_policies.nothing_saveable, 'dots_saveable': jax.checkpoint_policies.dots_saveable, 'dots_with_no_batch_dims_saveable': jax.checkpoint_policies.dots_with_no_batch_dims_saveable, }[name] MASK_VALUE = -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp) sentinel = dim // 2 + dim % 2 out = np.zeros((num_pos, dim)) out[:, 0:sentinel] = sin out[:, sentinel:] = cos return jnp.array(out) def rotate_every_two(tensor): rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1) rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,)) return rotate_half_tensor def apply_rotary_pos_emb(tensor, sincos): sin_pos, cos_pos = sincos sin_pos = sin_pos[:, :, None, :].repeat(2, 3) cos_pos = cos_pos[:, :, None, :].repeat(2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class _AttentionBlock(nn.Module): hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True float32_logits: bool = False def setup(self): self.embed_dim = self.hidden_size self.head_dim = self.embed_dim // self.num_heads dense = partial( nn.Dense, self.embed_dim, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.ln_1 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.ln_2 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.fc_out = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.act = ACT2FN[self.activation_function] self.resid_dropout = nn.Dropout(rate=self.resid_pdrop) if self.rotary_dim is not None and self.rotary_dim > 0: pos_embd_dim = self.rotary_dim else: pos_embd_dim = self.embed_dim // self.num_heads self.embed_positions = create_sinusoidal_positions(self.max_position_embeddings, pos_embd_dim) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def attn_out_proj(self, attn_output, deterministic): attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) return attn_output def forward_qkv( self, hidden_states, position_ids, deterministic: bool = True, ): hidden_states = self.ln_1(hidden_states) query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) if self.rotary_dim is not None and self.rotary_dim > 0: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) q_rot = apply_rotary_pos_emb(q_rot, sincos) key = jnp.concatenate([k_rot, k_pass], axis=-1) query = jnp.concatenate([q_rot, q_pass], axis=-1) else: key = apply_rotary_pos_emb(key, sincos) query = apply_rotary_pos_emb(query, sincos) if self.float32_logits: query = query.astype(jnp.float32) key = key.astype(jnp.float32) return query, key, value def forward_ffn( self, hidden_states, deterministic: bool = True, ): hidden_states = self.ln_2(hidden_states) hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.resid_dropout(hidden_states, deterministic=deterministic) return hidden_states def forward_query( self, hidden_states, position_ids, deterministic: bool = True, ): hidden_states = self.ln_1(hidden_states) query = self.q_proj(hidden_states) query = self._split_heads(query) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) if self.rotary_dim is not None and self.rotary_dim > 0: q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] q_rot = apply_rotary_pos_emb(q_rot, sincos) query = jnp.concatenate([q_rot, q_pass], axis=-1) else: query = apply_rotary_pos_emb(query, sincos) if self.float32_logits: query = query.astype(jnp.float32) return query def forward_key_value( self, hidden_states, position_ids, deterministic: bool = True, ): hidden_states = self.ln_1(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) key = self._split_heads(key) value = self._split_heads(value) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) if self.rotary_dim is not None and self.rotary_dim > 0: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) key = jnp.concatenate([k_rot, k_pass], axis=-1) else: key = apply_rotary_pos_emb(key, sincos) if self.float32_logits: key = key.astype(jnp.float32) return key, value class AttentionBlock(nn.Module): q_chunk_size: int k_chunk_size: int hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" attn_pdrop: float = 0.0 resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True policy: str = 'nothing_saveable' prevent_cse: bool = False float32_logits: bool = False def setup(self): self.attn = _AttentionBlock( self.hidden_size, self.num_heads, self.rotary_dim, self.intermediate_size, self.layer_norm_epsilon, self.activation_function, self.resid_pdrop, self.max_position_embeddings, self.dtype, self.causal, self.float32_logits, ) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, ): dropout_rng = None if not deterministic and self.attn_pdrop > 0.0: dropout_rng = self.make_rng("dropout") attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype), ) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: query, key, value = self.attn.forward_qkv(hidden_states, position_ids) key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # use standard dot product attention since query length is 1 attn_weights = nn.dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attn_pdrop, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self.attn.attn_out_proj(attn_output, deterministic=deterministic) ffn_output = self.attn.forward_ffn(hidden_states + attn_output, deterministic=deterministic) outputs = attn_output + ffn_output + hidden_states else: outputs = blockwise_compute( self.attn, hidden_states, hidden_states, position_ids, num_heads=self.num_heads, bias=attention_bias, deterministic=deterministic, dropout_rng=dropout_rng, attn_pdrop=self.attn_pdrop, causal_mask=self.causal, query_chunk_size=self.q_chunk_size, key_chunk_size=self.k_chunk_size, dtype=self.dtype, policy=self.policy, precision=None, prevent_cse=self.prevent_cse, ) return outputs def _chunk_attention_bias(query_chunk_size, key_chunk_size, bias, deterministic, attn_dropout, attn_pdrop, causal_mask, query_chunk_idx, key_chunk_idx): query_offset = query_chunk_idx * query_chunk_size key_offset = key_chunk_idx * key_chunk_size chunk_bias = jnp.zeros((1, 1, 1, 1)) if bias is not None: chunk_bias = lax.dynamic_slice( bias, start_indices=(0, 0, query_offset, key_offset), slice_sizes=(*bias.shape[:2], min(bias.shape[-2], query_chunk_size), min(bias.shape[-1], key_chunk_size)), ) if causal_mask: query_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(query_chunk_size, 1), dimension=0) key_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(1, key_chunk_size), dimension=1) offset = query_offset - key_offset query_idx += offset causal_mask_value = (query_idx < key_idx) * MASK_VALUE chunk_bias += causal_mask_value.reshape(1, 1, *causal_mask_value.shape) if not deterministic and attn_pdrop > 0.0: attn_dropout_slice = lax.dynamic_slice( attn_dropout, start_indices=(0, 0, query_offset, key_offset), slice_sizes=( *attn_dropout.shape[:2], min(attn_dropout.shape[-2], query_chunk_size), min(attn_dropout.shape[-1], key_chunk_size), ), ) chunk_bias -= attn_dropout_slice * 1e6 return chunk_bias class Carry(NamedTuple): numerator: jax.Array denominator: jax.Array max_so_far: jax.Array def blockwise_compute(cell, q_inputs, kv_inputs, position_ids, num_heads, bias=None, deterministic=False, dropout_rng=None, attn_pdrop=0.0, causal_mask=True, query_chunk_size=None, key_chunk_size=None, dtype=jnp.float32, policy='nothing_saveable', precision=lax.Precision.HIGHEST, prevent_cse=False,): q_len = q_inputs.shape[1] kv_len = kv_inputs.shape[1] q_inputs = rearrange(q_inputs, 'b (n c) d -> b n c d', c=query_chunk_size) kv_inputs = rearrange(kv_inputs, 'b (n c) d -> b n c d', c=key_chunk_size) q_inputs, kv_inputs = map(lambda t: rearrange(t, 'b n c d -> n b c d'), (q_inputs, kv_inputs)) num_q, batch, _, _ = q_inputs.shape num_kv, _, _, _ = kv_inputs.shape q_position_ids = rearrange(position_ids, 'b (n c) -> n b c', c=query_chunk_size) kv_position_ids = rearrange(position_ids, 'b (n c) -> n b c', c=key_chunk_size) for bias_dim, broadcast_dim in zip(bias.shape, (batch, num_heads, q_len, kv_len)): assert bias_dim == 1 or bias_dim == broadcast_dim if not deterministic and attn_pdrop > 0.0: attn_dropout_rng, dropout_rng = jax.random.split(dropout_rng) attn_dropout = jax.random.bernoulli(attn_dropout_rng, attn_pdrop, (batch, num_heads, q_len, kv_len)) else: attn_dropout = None _chunk_bias_fn = functools.partial( _chunk_attention_bias, query_chunk_size, key_chunk_size, bias, deterministic, attn_dropout, attn_pdrop, causal_mask) def _query_chunk_attention(cell, _, args): input_chunk, query_chunk_idx, query_position_ids_chunk = args query_chunk = cell.forward_query(input_chunk, query_position_ids_chunk) query_chunk = query_chunk / jnp.sqrt(query_chunk.shape[-1]) dim_per_head = query_chunk.shape[-1] def summarize_chunk(cell, carry, args): kv_chunk, key_chunk_idx, kv_position_ids_chunk = args (numerator, denominator, prev_max_score) = carry key_chunk, value_chunk = cell.forward_key_value(kv_chunk, kv_position_ids_chunk) attn_weights = jnp.einsum('bqhd,bkhd->bqhk', query_chunk, key_chunk, precision=precision) bias_chunk = _chunk_bias_fn(query_chunk_idx, key_chunk_idx) bias_chunk = jnp.moveaxis(bias_chunk, 1, 2) attn_weights = attn_weights + bias_chunk max_score = jnp.max(attn_weights, axis=-1, keepdims=True) max_score = jnp.maximum(prev_max_score, max_score) max_score = jax.lax.stop_gradient(max_score) exp_weights = jnp.exp(attn_weights - max_score) exp_values = jnp.einsum( 'bqhv,bvhf->bqhf', exp_weights, value_chunk, precision=precision ) correction = jnp.exp(prev_max_score - max_score) numerator = numerator * correction + exp_values denominator = denominator * correction + exp_weights.sum(axis=-1, keepdims=True) return Carry(numerator, denominator, max_score), None init_carry = Carry( jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=dtype), jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=dtype), (-jnp.inf) * jnp.ones((batch, query_chunk_size, num_heads, 1), dtype=dtype), ) summarize_chunk = nn.remat( summarize_chunk, variables="params", rngs={"params" : False, "dropout": False}, prevent_cse=prevent_cse, policy=get_gradient_checkpoint_policy(policy), ) (numerator, denominator, max_score), _ = nn.scan( summarize_chunk, variable_broadcast="params", split_rngs={"params" : False, "dropout": False}, in_axes=0, out_axes=0, length=num_kv, )(cell, init_carry, (kv_inputs, jnp.arange(0, num_kv), kv_position_ids)) attn_chunk = (numerator / denominator).astype(dtype) attn_chunk = cell.attn_out_proj(attn_chunk, deterministic) ffn_chunk = cell.forward_ffn(attn_chunk + input_chunk, deterministic) outputs = ffn_chunk + attn_chunk + input_chunk return _, outputs _query_chunk_attention = nn.remat( _query_chunk_attention, variables="params", rngs={"params" : False, "dropout": False}, prevent_cse=prevent_cse, policy=get_gradient_checkpoint_policy(policy), ) _, res = nn.scan( _query_chunk_attention, variable_broadcast="params", split_rngs={"params" : False, "dropout": False}, in_axes=0, out_axes=0, length=num_q, )(cell, None, (q_inputs, jnp.arange(0, num_q), q_position_ids)) res = rearrange(res, 'n b c d -> b (n c) d') return res if __name__ == '__main__': with jax.profiler.trace('/tmp/prof/blockwise_parallel_v1'): class Model(nn.Module): def setup(self): self.blocks = [ AttentionBlock( q_chunk_size=256, k_chunk_size=256, hidden_size=2048, num_heads=16, rotary_dim=128, intermediate_size=8192, layer_norm_epsilon=1e-5, activation_function="gelu", resid_pdrop=0.0, max_position_embeddings=2048, dtype=jnp.float32, causal=True, ) for _ in range(2) ] def __call__(self, hidden_states, attention_mask, position_ids): for block in self.blocks: hidden_states = block(hidden_states, attention_mask, position_ids) return hidden_states hidden_states = jnp.zeros((2, 1024, 2048)) attention_mask = jnp.zeros((2, 1024), dtype=jnp.int32) position_ids = jnp.zeros((2, 1024), dtype=jnp.int32) model = Model() variables = model.init(jax.random.PRNGKey(0), hidden_states, attention_mask, position_ids) output = model.apply(variables, hidden_states, attention_mask, position_ids) output = output.block_until_ready()
blockwise-parallel-transformer-1-main
bpt/blocks/blockwise_parallel_v1.py
blockwise-parallel-transformer-1-main
bpt/blocks/__init__.py
import functools import json import math from functools import partial from typing import Callable, NamedTuple, Optional import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from einops import rearrange from flax.linen import combine_masks, make_causal_mask from jax import lax from jax import numpy as jnp def quick_gelu(x): return x * jax.nn.sigmoid(1.702 * x) ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } def get_gradient_checkpoint_policy(name): return { 'everything_saveable': jax.checkpoint_policies.everything_saveable, 'nothing_saveable': jax.checkpoint_policies.nothing_saveable, 'dots_saveable': jax.checkpoint_policies.dots_saveable, 'dots_with_no_batch_dims_saveable': jax.checkpoint_policies.dots_with_no_batch_dims_saveable, }[name] MASK_VALUE = -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp) sentinel = dim // 2 + dim % 2 out = np.zeros((num_pos, dim)) out[:, 0:sentinel] = sin out[:, sentinel:] = cos return jnp.array(out) def rotate_every_two(tensor): rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1) rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,)) return rotate_half_tensor def apply_rotary_pos_emb(tensor, sincos): sin_pos, cos_pos = sincos sin_pos = sin_pos[:, :, None, :].repeat(2, 3) cos_pos = cos_pos[:, :, None, :].repeat(2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class _AttentionBlock(nn.Module): hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True float32_logits: bool = False def setup(self): self.embed_dim = self.hidden_size self.head_dim = self.embed_dim // self.num_heads dense = partial( nn.Dense, self.embed_dim, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.ln_1 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.ln_2 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.fc_out = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.act = ACT2FN[self.activation_function] self.resid_dropout = nn.Dropout(rate=self.resid_pdrop) if self.rotary_dim is not None and self.rotary_dim > 0: pos_embd_dim = self.rotary_dim else: pos_embd_dim = self.embed_dim // self.num_heads self.embed_positions = create_sinusoidal_positions(self.max_position_embeddings, pos_embd_dim) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def attn_out_proj(self, attn_output, deterministic): attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) return attn_output def forward_qkv( self, hidden_states, position_ids, deterministic: bool = True, ): hidden_states = self.ln_1(hidden_states) query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) if self.rotary_dim is not None and self.rotary_dim > 0: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) q_rot = apply_rotary_pos_emb(q_rot, sincos) key = jnp.concatenate([k_rot, k_pass], axis=-1) query = jnp.concatenate([q_rot, q_pass], axis=-1) else: key = apply_rotary_pos_emb(key, sincos) query = apply_rotary_pos_emb(query, sincos) if self.float32_logits: query = query.astype(jnp.float32) key = key.astype(jnp.float32) return query, key, value def forward_ffn( self, hidden_states, deterministic: bool = True, ): hidden_states = self.ln_2(hidden_states) hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.resid_dropout(hidden_states, deterministic=deterministic) return hidden_states class AttentionBlock(nn.Module): q_chunk_size: int k_chunk_size: int hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" attn_pdrop: float = 0.0 resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True policy: str = 'nothing_saveable' prevent_cse: bool = False float32_logits: bool = False def setup(self): self.attn = _AttentionBlock( self.hidden_size, self.num_heads, self.rotary_dim, self.intermediate_size, self.layer_norm_epsilon, self.activation_function, self.resid_pdrop, self.max_position_embeddings, self.dtype, self.causal, self.float32_logits, ) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, ): query, key, value = self.attn.forward_qkv(hidden_states, position_ids) query = query / jnp.sqrt(query.shape[-1]) dropout_rng = None if not deterministic and self.attn_pdrop > 0.0: dropout_rng = self.make_rng("dropout") attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype), ) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: query, key, value = self.attn.forward_qkv(hidden_states, position_ids) key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # use standard dot product attention since query length is 1 attn_weights = nn.dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attn_pdrop, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self.attn.attn_out_proj(attn_output, deterministic=deterministic) ffn_output = self.attn.forward_ffn(hidden_states + attn_output, deterministic=deterministic) outputs = attn_output + ffn_output + hidden_states else: attn_output = blockwise_compute_attn( query, key, value, bias=attention_bias, deterministic=not deterministic, dropout_rng=dropout_rng, attn_pdrop=self.attn_pdrop, causal_mask=self.causal, query_chunk_size=self.q_chunk_size, key_chunk_size=self.k_chunk_size, dtype=self.dtype, policy=self.policy, precision=None, prevent_cse=self.prevent_cse, ) attn_output = self.attn.attn_out_proj(attn_output, deterministic=deterministic) ffn_output = blockwise_compute_ffn( self.attn, hidden_states + attn_output, chunk_size=self.q_chunk_size, deterministic=deterministic, policy=self.policy, prevent_cse=self.prevent_cse, ) outputs = ffn_output + hidden_states + attn_output return outputs def _chunk_attention_bias(query_chunk_size, key_chunk_size, bias, deterministic, attn_dropout, attn_pdrop, causal_mask, query_chunk_idx, key_chunk_idx): query_offset = query_chunk_idx * query_chunk_size key_offset = key_chunk_idx * key_chunk_size chunk_bias = jnp.zeros((1, 1, 1, 1)) if bias is not None: chunk_bias = lax.dynamic_slice( bias, start_indices=(0, 0, query_offset, key_offset), slice_sizes=(*bias.shape[:2], min(bias.shape[-2], query_chunk_size), min(bias.shape[-1], key_chunk_size)), ) if causal_mask: query_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(query_chunk_size, 1), dimension=0) key_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(1, key_chunk_size), dimension=1) offset = query_offset - key_offset query_idx += offset causal_mask_value = (query_idx < key_idx) * MASK_VALUE chunk_bias += causal_mask_value.reshape(1, 1, *causal_mask_value.shape) if not deterministic and attn_pdrop > 0.0: attn_dropout_slice = lax.dynamic_slice( attn_dropout, start_indices=(0, 0, query_offset, key_offset), slice_sizes=( *attn_dropout.shape[:2], min(attn_dropout.shape[-2], query_chunk_size), min(attn_dropout.shape[-1], key_chunk_size), ), ) chunk_bias -= attn_dropout_slice * 1e6 return chunk_bias class Carry(NamedTuple): numerator: jax.Array denominator: jax.Array max_so_far: jax.Array def blockwise_compute_attn(query, key, value, bias=None, deterministic=False, dropout_rng=None, attn_pdrop=0.0, causal_mask=True, query_chunk_size=None, key_chunk_size=None, dtype=jnp.float32, policy='nothing_saveable', precision=lax.Precision.HIGHEST, prevent_cse=False,): q_len = query.shape[1] kv_len = key.shape[1] query = rearrange(query, 'b (n c) h q -> b n c h q', c=query_chunk_size) key, value = map(lambda t: rearrange(t, 'b (n c) h v -> b n c h v', c=key_chunk_size), (key, value)) query, key, value = map(lambda t: rearrange(t, 'b n c h d -> n b c h d'), (query, key, value)) num_q, batch, _, num_heads, dim_per_head = query.shape num_kv, _, _, _, _ = key.shape for bias_dim, broadcast_dim in zip(bias.shape, (batch, num_heads, q_len, kv_len)): assert bias_dim == 1 or bias_dim == broadcast_dim if not deterministic and attn_pdrop > 0.0: attn_dropout_rng, dropout_rng = jax.random.split(dropout_rng) attn_dropout = jax.random.bernoulli(attn_dropout_rng, attn_pdrop, (batch, num_heads, q_len, kv_len)) else: attn_dropout = None _chunk_bias_fn = functools.partial( _chunk_attention_bias, query_chunk_size, key_chunk_size, bias, deterministic, attn_dropout, attn_pdrop, causal_mask) def _query_chunk_attention(args): query_chunk, query_chunk_idx = args @functools.partial(jax.checkpoint, prevent_cse=prevent_cse, policy=get_gradient_checkpoint_policy(policy)) def summarize_chunk(carry, args): key_chunk, value_chunk, key_chunk_idx = args (numerator, denominator, prev_max_score) = carry attn_weights = jnp.einsum('bqhd,bkhd->bqhk', query_chunk, key_chunk, precision=precision) bias_chunk = _chunk_bias_fn(query_chunk_idx, key_chunk_idx) bias_chunk = jnp.moveaxis(bias_chunk, 1, 2) attn_weights = attn_weights + bias_chunk max_score = jnp.max(attn_weights, axis=-1, keepdims=True) max_score = jnp.maximum(prev_max_score, max_score) max_score = jax.lax.stop_gradient(max_score) exp_weights = jnp.exp(attn_weights - max_score) exp_values = jnp.einsum( 'bqhv,bvhf->bqhf', exp_weights, value_chunk, precision=precision ) correction = jnp.exp(prev_max_score - max_score) numerator = numerator * correction + exp_values denominator = denominator * correction + exp_weights.sum(axis=-1, keepdims=True) return Carry(numerator, denominator, max_score), None init_carry = Carry( jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=dtype), jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=dtype), (-jnp.inf) * jnp.ones((batch, query_chunk_size, num_heads, 1), dtype=dtype), ) (numerator, denominator, max_score), _ = lax.scan( summarize_chunk, init_carry, xs=(key, value, jnp.arange(0, num_kv)) ) outputs = (numerator / denominator).astype(dtype) return outputs _, res = lax.scan( lambda _, x: ((), _query_chunk_attention(x)), (), xs=(query, jnp.arange(0, num_q)) ) res = rearrange(res, 'n b c h d -> b (n c) h d') return res def blockwise_compute_ffn(cell, inputs, chunk_size, deterministic, policy, prevent_cse): inputs = rearrange(inputs, 'b (n c) d -> b n c d', c=chunk_size) inputs = rearrange(inputs, 'b n c d -> n b c d') num_q, _, _, _ = inputs.shape def ffn(cell, _, hidden_states): outputs = cell.forward_ffn(hidden_states, deterministic=deterministic) return _, outputs ffn_remat = nn.remat( ffn, variables="params", rngs={"params" : False}, prevent_cse=prevent_cse, policy=get_gradient_checkpoint_policy(policy), ) _, res = nn.scan( ffn_remat, variable_broadcast="params", split_rngs={"params": False}, in_axes=0, out_axes=0, length=num_q, )(cell, None, inputs) res = rearrange(res, 'n b c d -> b (n c) d') return res class Blockwise_LM_Head(nn.Module): vocab_size: int chunk_size: int policy: str = 'nothing_saveable' dtype: jnp.dtype = jnp.float32 prevent_cse: bool = False def setup(self): self.lm_head = nn.Dense( self.vocab_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) def __call__(self, inputs): inputs = rearrange(inputs, 'b (n c) d -> b n c d', c=self.chunk_size) inputs = rearrange(inputs, 'b n c d -> n b c d') num_q, _, _, _ = inputs.shape def lm_head(cell, _, hidden_states): outputs = cell(hidden_states) return _, outputs lm_head_remat = nn.remat( lm_head, variables="params", rngs={"params" : False}, prevent_cse=self.prevent_cse, policy=get_gradient_checkpoint_policy(self.policy), ) _, res = nn.scan( lm_head_remat, variable_broadcast="params", split_rngs={"params": False}, in_axes=0, out_axes=0, length=num_q, )(self.lm_head, None, inputs) res = rearrange(res, 'n b c d -> b (n c) d') return res def blockwise_cross_entropy(logits, tokens, valid=None, chunk_size=None, policy=None, prevent_cse=None): if valid is None: valid = jnp.ones(tokens.shape[:2]) valid = valid.astype(jnp.float32) logits = jnp.reshape(logits, (-1, logits.shape[-1])) tokens = jnp.reshape(tokens, (-1,)) valid = jnp.reshape(valid, (-1,)) def _cross_entropy_loss_and_accuracy(logits, tokens, valid): valid_text_length = jnp.maximum(jnp.sum(valid, axis=-1), 1e-10) token_log_prob = jnp.squeeze( jnp.take_along_axis( jax.nn.log_softmax(logits, axis=-1), jnp.expand_dims(tokens, -1), axis=-1, ), -1, ) token_log_prob = jnp.where(valid > 0.0, token_log_prob, jnp.array(0.0)) correct = jnp.where( valid > 0.0, jnp.argmax(logits, axis=-1) == tokens, jnp.array(False) ) return token_log_prob, correct, valid_text_length @partial(jax.checkpoint, prevent_cse=prevent_cse, policy=get_gradient_checkpoint_policy(policy)) def _loss_and_accuracy(carry, args): loss, accuracy, num = carry logits, tokens, valid = args token_log_prob, correct, valid_text_length = \ _cross_entropy_loss_and_accuracy(logits, tokens, valid) loss = loss + jnp.sum(token_log_prob, axis=-1) / valid_text_length accuracy = accuracy + jnp.sum(correct, axis=-1) / valid_text_length num = num + 1 return (loss, accuracy, num), None num_chunk = logits.shape[0] // chunk_size logits = rearrange(logits, '(n c) d -> n c d', c=chunk_size) tokens = rearrange(tokens, '(n c) -> n c', c=chunk_size) valid = rearrange(valid, '(n c) -> n c', c=chunk_size) (loss, accuracy, num), _ = jax.lax.scan( _loss_and_accuracy, (0.0, 0.0, 0), xs=(logits, tokens, valid), length=num_chunk, ) loss = - loss / num accuracy = accuracy / num return loss, accuracy if __name__ == '__main__': with jax.profiler.trace('/tmp/prof/blockwise_parallel_simplified'): class Model(nn.Module): def setup(self): self.blocks = [ AttentionBlock( q_chunk_size=256, k_chunk_size=256, hidden_size=2048, num_heads=16, rotary_dim=128, intermediate_size=8192, layer_norm_epsilon=1e-5, activation_function="gelu", resid_pdrop=0.0, max_position_embeddings=2048, dtype=jnp.float32, causal=True, ) for _ in range(2) ] def __call__(self, hidden_states, attention_mask, position_ids): for block in self.blocks: hidden_states = block(hidden_states, attention_mask, position_ids) return hidden_states hidden_states = jnp.zeros((2, 1024, 2048)) attention_mask = jnp.zeros((2, 1024), dtype=jnp.int32) position_ids = jnp.zeros((2, 1024), dtype=jnp.int32) model = Model() variables = model.init(jax.random.PRNGKey(0), hidden_states, attention_mask, position_ids) output = model.apply(variables, hidden_states, attention_mask, position_ids) output = output.block_until_ready()
blockwise-parallel-transformer-1-main
bpt/blocks/blockwise_parallel.py
import functools import json import math from functools import partial from typing import Callable, NamedTuple, Optional import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from einops import rearrange from flax.linen import combine_masks, make_causal_mask from jax import lax from jax import numpy as jnp def quick_gelu(x): return x * jax.nn.sigmoid(1.702 * x) ACT2FN = { "gelu": partial(nn.gelu, approximate=False), "relu": nn.relu, "silu": nn.swish, "swish": nn.swish, "gelu_new": partial(nn.gelu, approximate=True), "quick_gelu": quick_gelu, } def get_gradient_checkpoint_policy(name): return { 'everything_saveable': jax.checkpoint_policies.everything_saveable, 'nothing_saveable': jax.checkpoint_policies.nothing_saveable, 'dots_saveable': jax.checkpoint_policies.dots_saveable, 'dots_with_no_batch_dims_saveable': jax.checkpoint_policies.dots_with_no_batch_dims_saveable, }[name] MASK_VALUE = -1e10 Q_CHUNK_SIZE = 1024 K_CHUNK_SIZE = 1024 def create_sinusoidal_positions(num_pos, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp) sentinel = dim // 2 + dim % 2 out = np.zeros((num_pos, dim)) out[:, 0:sentinel] = sin out[:, sentinel:] = cos return jnp.array(out) def rotate_every_two(tensor): rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1) rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,)) return rotate_half_tensor def apply_rotary_pos_emb(tensor, sincos): sin_pos, cos_pos = sincos sin_pos = sin_pos[:, :, None, :].repeat(2, 3) cos_pos = cos_pos[:, :, None, :].repeat(2, 3) return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos) class _AttentionBlock(nn.Module): hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True float32_logits: bool = False def setup(self): self.embed_dim = self.hidden_size self.head_dim = self.embed_dim // self.num_heads dense = partial( nn.Dense, self.embed_dim, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.ln_1 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.ln_2 = nn.LayerNorm(epsilon=self.layer_norm_epsilon, dtype=self.dtype) self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.fc_out = nn.Dense(self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.variance_scaling( scale=1.0, mode='fan_in', distribution='normal', ) ) self.act = ACT2FN[self.activation_function] self.resid_dropout = nn.Dropout(rate=self.resid_pdrop) if self.rotary_dim is not None and self.rotary_dim > 0: pos_embd_dim = self.rotary_dim else: pos_embd_dim = self.embed_dim // self.num_heads self.embed_positions = create_sinusoidal_positions(self.max_position_embeddings, pos_embd_dim) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) def attn_out_proj(self, attn_output, deterministic): attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) return attn_output def forward_qkv( self, hidden_states, position_ids, deterministic: bool = True, ): hidden_states = self.ln_1(hidden_states) query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) sincos = jnp.take(self.embed_positions, position_ids, axis=0) sincos = jnp.split(sincos, 2, axis=-1) if self.rotary_dim is not None and self.rotary_dim > 0: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] k_rot = apply_rotary_pos_emb(k_rot, sincos) q_rot = apply_rotary_pos_emb(q_rot, sincos) key = jnp.concatenate([k_rot, k_pass], axis=-1) query = jnp.concatenate([q_rot, q_pass], axis=-1) else: key = apply_rotary_pos_emb(key, sincos) query = apply_rotary_pos_emb(query, sincos) if self.float32_logits: query = query.astype(jnp.float32) key = key.astype(jnp.float32) return query, key, value def forward_ffn( self, hidden_states, deterministic: bool = True, ): hidden_states = self.ln_2(hidden_states) hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.resid_dropout(hidden_states, deterministic=deterministic) return hidden_states class AttentionBlock(nn.Module): q_chunk_size: int k_chunk_size: int hidden_size: int num_heads: int rotary_dim: Optional[int] intermediate_size: int layer_norm_epsilon: float = 1e-5 activation_function: str = "gelu" attn_pdrop: float = 0.0 resid_pdrop: float = 0.0 max_position_embeddings: int = 1024 dtype: jnp.dtype = jnp.float32 causal: bool = True policy: str = 'nothing_saveable' prevent_cse: bool = False float32_logits: bool = False def setup(self): self.attn = _AttentionBlock( self.hidden_size, self.num_heads, self.rotary_dim, self.intermediate_size, self.layer_norm_epsilon, self.activation_function, self.resid_pdrop, self.max_position_embeddings, self.dtype, self.causal, self.float32_logits, ) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, ): query, key, value = self.attn.forward_qkv( hidden_states, position_ids, deterministic=deterministic, ) query = query / jnp.sqrt(query.shape[-1]) dropout_rng = None if not deterministic and self.attn_pdrop > 0.0: dropout_rng = self.make_rng("dropout") attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e9).astype(self.dtype), ) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: query, key, value = self.attn.forward_qkv(hidden_states, position_ids) key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # use standard dot product attention since query length is 1 attn_weights = nn.dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attn_pdrop, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self.attn.attn_out_proj(attn_output, deterministic=deterministic) ffn_output = self.attn.forward_ffn(hidden_states + attn_output, deterministic=deterministic) outputs = attn_output + ffn_output + hidden_states else: attn_output = blockwise_compute_attn( query, key, value, bias=attention_bias, deterministic=not deterministic, dropout_rng=dropout_rng, attn_pdrop=self.attn_pdrop, causal_mask=self.causal, query_chunk_size=self.q_chunk_size, key_chunk_size=self.k_chunk_size, dtype=self.dtype, policy=self.policy, precision=None, prevent_cse=self.prevent_cse, ) attn_output = self.attn.attn_out_proj(attn_output, deterministic=deterministic) ffn_output = self.attn.forward_ffn(hidden_states + attn_output, deterministic=deterministic) outputs = ffn_output + hidden_states + attn_output return outputs def _chunk_attention_bias(query_chunk_size, key_chunk_size, bias, deterministic, attn_dropout, attn_pdrop, causal_mask, query_chunk_idx, key_chunk_idx): query_offset = query_chunk_idx * query_chunk_size key_offset = key_chunk_idx * key_chunk_size chunk_bias = jnp.zeros((1, 1, 1, 1)) if bias is not None: chunk_bias = lax.dynamic_slice( bias, start_indices=(0, 0, query_offset, key_offset), slice_sizes=(*bias.shape[:2], min(bias.shape[-2], query_chunk_size), min(bias.shape[-1], key_chunk_size)), ) if causal_mask: query_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(query_chunk_size, 1), dimension=0) key_idx = lax.broadcasted_iota(dtype=jnp.int32, shape=(1, key_chunk_size), dimension=1) offset = query_offset - key_offset query_idx += offset causal_mask_value = (query_idx < key_idx) * MASK_VALUE chunk_bias += causal_mask_value.reshape(1, 1, *causal_mask_value.shape) if not deterministic and attn_pdrop > 0.0: attn_dropout_slice = lax.dynamic_slice( attn_dropout, start_indices=(0, 0, query_offset, key_offset), slice_sizes=( *attn_dropout.shape[:2], min(attn_dropout.shape[-2], query_chunk_size), min(attn_dropout.shape[-1], key_chunk_size), ), ) chunk_bias -= attn_dropout_slice * 1e6 return chunk_bias class Carry(NamedTuple): numerator: jax.Array denominator: jax.Array max_so_far: jax.Array def blockwise_compute_attn(query, key, value, bias=None, deterministic=False, dropout_rng=None, attn_pdrop=0.0, causal_mask=True, query_chunk_size=None, key_chunk_size=None, dtype=jnp.float32, policy='nothing_saveable', precision=lax.Precision.HIGHEST, prevent_cse=False,): q_len = query.shape[1] kv_len = key.shape[1] query = rearrange(query, 'b (n c) h q -> b n c h q', c=query_chunk_size) key, value = map(lambda t: rearrange(t, 'b (n c) h v -> b n c h v', c=key_chunk_size), (key, value)) query, key, value = map(lambda t: rearrange(t, 'b n c h d -> n b c h d'), (query, key, value)) num_q, batch, _, num_heads, dim_per_head = query.shape num_kv, _, _, _, _ = key.shape for bias_dim, broadcast_dim in zip(bias.shape, (batch, num_heads, q_len, kv_len)): assert bias_dim == 1 or bias_dim == broadcast_dim if not deterministic and attn_pdrop > 0.0: attn_dropout_rng, dropout_rng = jax.random.split(dropout_rng) attn_dropout = jax.random.bernoulli(attn_dropout_rng, attn_pdrop, (batch, num_heads, q_len, kv_len)) else: attn_dropout = None _chunk_bias_fn = functools.partial( _chunk_attention_bias, query_chunk_size, key_chunk_size, bias, deterministic, attn_dropout, attn_pdrop, causal_mask) def _query_chunk_attention(args): query_chunk, query_chunk_idx = args @functools.partial(jax.checkpoint, prevent_cse=prevent_cse, policy=get_gradient_checkpoint_policy(policy)) def summarize_chunk(carry, args): key_chunk, value_chunk, key_chunk_idx = args (numerator, denominator, prev_max_score) = carry attn_weights = jnp.einsum('bqhd,bkhd->bqhk', query_chunk, key_chunk, precision=precision) bias_chunk = _chunk_bias_fn(query_chunk_idx, key_chunk_idx) bias_chunk = jnp.moveaxis(bias_chunk, 1, 2) attn_weights = attn_weights + bias_chunk max_score = jnp.max(attn_weights, axis=-1, keepdims=True) max_score = jnp.maximum(prev_max_score, max_score) max_score = jax.lax.stop_gradient(max_score) exp_weights = jnp.exp(attn_weights - max_score) exp_values = jnp.einsum( 'bqhv,bvhf->bqhf', exp_weights, value_chunk, precision=precision ) correction = jnp.exp(prev_max_score - max_score) numerator = numerator * correction + exp_values denominator = denominator * correction + exp_weights.sum(axis=-1, keepdims=True) return Carry(numerator, denominator, max_score), None init_carry = Carry( jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=dtype), jnp.zeros((batch, query_chunk_size, num_heads, dim_per_head), dtype=dtype), (-jnp.inf) * jnp.ones((batch, query_chunk_size, num_heads, 1), dtype=dtype), ) (numerator, denominator, max_score), _ = lax.scan( summarize_chunk, init_carry, xs=(key, value, jnp.arange(0, num_kv)) ) outputs = (numerator / denominator).astype(dtype) return outputs _, res = lax.scan( lambda _, x: ((), _query_chunk_attention(x)), (), xs=(query, jnp.arange(0, num_q)) ) res = rearrange(res, 'n b c h d -> b (n c) h d') return res if __name__ == '__main__': with jax.profiler.trace('/tmp/prof/memeff'): class Model(nn.Module): def setup(self): self.blocks = [ AttentionBlock( q_chunk_size=256, k_chunk_size=256, hidden_size=2048, num_heads=16, rotary_dim=128, intermediate_size=8192, layer_norm_epsilon=1e-5, activation_function="gelu", resid_pdrop=0.0, max_position_embeddings=2048, dtype=jnp.float32, causal=True, ) for _ in range(2) ] def __call__(self, hidden_states, attention_mask, position_ids): for block in self.blocks: hidden_states = block(hidden_states, attention_mask, position_ids) return hidden_states hidden_states = jnp.zeros((2, 1024, 2048)) attention_mask = jnp.zeros((2, 1024), dtype=jnp.int32) position_ids = jnp.zeros((2, 1024), dtype=jnp.int32) model = Model() variables = model.init(jax.random.PRNGKey(0), hidden_states, attention_mask, position_ids) output = model.apply(variables, hidden_states, attention_mask, position_ids) output = output.block_until_ready()
blockwise-parallel-transformer-1-main
bpt/blocks/memeff.py
import os import numpy as np from ml_collections import ConfigDict import bpt.tools.utils as utils import jax import jax.numpy as jnp import flax from flax.serialization import ( from_bytes, to_bytes, to_state_dict, from_state_dict ) from flax.traverse_util import flatten_dict, unflatten_dict, empty_node import msgpack from bpt.tools.jax_utils import tree_apply, float_tensor_to_dtype class StreamingCheckpointer(object): """ Custom msgpack checkpointer that saves large train states by serializing and saving tensors one by one in a streaming fashion. Avoids running out of memory or local TPU disk with default flax checkpointer. """ @staticmethod def get_default_config(updates=None): config = ConfigDict() config.float_dtype = 'bf16' config.save_optimizer_state = False if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, checkpoint_dir, enable=True): self.config = self.get_default_config(config) self.checkpoint_dir = checkpoint_dir self.enable = enable def save_checkpoint(self, train_state, filename, gather_fns=None): if self.enable: path = os.path.join(self.checkpoint_dir, filename) else: path = '/dev/null' self.save_train_state_to_file( train_state, path, gather_fns, self.config.float_dtype ) @staticmethod def save_train_state_to_file(train_state, path, gather_fns=None, float_dtype=None): train_state = to_state_dict(train_state) packer = msgpack.Packer() flattend_train_state = flatten_dict(train_state) if gather_fns is not None: gather_fns = flatten_dict(to_state_dict(gather_fns)) with utils.open_file(path, "wb") as fout: for key, value in flattend_train_state.items(): if gather_fns is not None: value = gather_fns[key](value) value = float_tensor_to_dtype(value, float_dtype) fout.write(packer.pack((key, to_bytes(value)))) def save_pickle(self, obj, filename): if self.enable: path = os.path.join(self.checkpoint_dir, filename) else: path = '/dev/null' utils.save_pickle(obj, path) def save_all(self, train_state, gather_fns, metadata=None, dataset=None, milestone=False): step = int(jax.device_get(train_state.step)) if self.config.save_optimizer_state: checkpoint_state = train_state checkpoint_name = 'streaming_train_state' checkpoint_gather_fns = gather_fns else: checkpoint_state = train_state.params['params'] checkpoint_name = 'streaming_params' checkpoint_gather_fns = gather_fns.params['params'] if milestone: # Save a milestone checkpoint that will not be overwritten self.save_pickle(metadata, f'metadata_{step}.pkl') self.save_pickle(dataset, f'dataset_{step}.pkl') self.save_checkpoint( checkpoint_state, f'{checkpoint_name}_{step}', checkpoint_gather_fns ) else: # Save a normal checkpoint that can be overwritten self.save_pickle(metadata, 'metadata.pkl') self.save_pickle(dataset, 'dataset.pkl') self.save_checkpoint( checkpoint_state, f'{checkpoint_name}', checkpoint_gather_fns ) @staticmethod def load_checkpoint(path, target=None, shard_fns=None, remove_dict_prefix=None): if shard_fns is not None: shard_fns = flatten_dict( to_state_dict(shard_fns) ) if remove_dict_prefix is not None: remove_dict_prefix = tuple(remove_dict_prefix) flattend_train_state = {} with utils.open_file(path) as fin: # 83886080 bytes = 80 MB, which is 16 blocks on GCS unpacker = msgpack.Unpacker(fin, read_size=83886080, max_buffer_size=0) for key, value in unpacker: key = tuple(key) if remove_dict_prefix is not None: if key[:len(remove_dict_prefix)] == remove_dict_prefix: key = key[len(remove_dict_prefix):] else: continue tensor = from_bytes(None, value) if shard_fns is not None: tensor = shard_fns[key](tensor) flattend_train_state[key] = tensor if target is not None: flattened_target = flatten_dict( to_state_dict(target), keep_empty_nodes=True ) for key, value in flattened_target.items(): if key not in flattend_train_state and value == empty_node: flattend_train_state[key] = value train_state = unflatten_dict(flattend_train_state) if target is None: return train_state return from_state_dict(target, train_state) @staticmethod def load_flax_checkpoint(path, target=None, shard_fns=None): """ Load a standard flax checkpoint that's not saved with the msgpack streaming format. """ with utils.open_file(path, "rb") as fin: encoded_bytes = fin.read() state_dict = flax.serialization.msgpack_restore(encoded_bytes) if shard_fns is not None: shard_fns = to_state_dict(shard_fns) state_dict = tree_apply(shard_fns, state_dict) if target is None: return state_dict return from_state_dict(target, state_dict) @classmethod def load_trainstate_checkpoint(cls, load_from, trainstate_target=None, trainstate_shard_fns=None, disallow_trainstate=False): if trainstate_target is not None: params_target = trainstate_target.params['params'] else: params_target = None if trainstate_shard_fns is not None: params_shard_fns = trainstate_shard_fns.params['params'] else: params_shard_fns = None load_type, load_path = load_from.split('::', 1) if disallow_trainstate: assert load_type != 'trainstate', 'Loading full trainstate is not allowed!' train_state = None restored_params = None if load_type == 'trainstate': # Load the entire train state in the streaming format train_state = cls.load_checkpoint( path=load_path, target=trainstate_target, shard_fns=trainstate_shard_fns, ) elif load_type == 'trainstate_params': # Load the params part of the train state in the streaming format restored_params = cls.load_checkpoint( path=load_path, target=params_target, shard_fns=params_shard_fns, remove_dict_prefix=('params', 'params'), ) restored_params = flax.core.frozen_dict.freeze( {'params': restored_params} ) elif load_type == 'params': # Load the params in the streaming format restored_params = cls.load_checkpoint( path=load_path, target=params_target, shard_fns=params_shard_fns, ) restored_params = flax.core.frozen_dict.freeze( {'params': restored_params} ) elif load_type == 'flax_params': # Load the params in the standard flax format (non-streaming) # This requires the entire params to fit in memory restored_params = cls.load_flax_checkpoint( path=load_path, target=params_target, shard_fns=params_shard_fns ) restored_params = flax.core.frozen_dict.freeze( {'params': restored_params} ) else: raise ValueError(f'Invalid load_from type: {load_type}') return train_state, restored_params
blockwise-parallel-transformer-1-main
bpt/tools/checkpoint.py
from datasets import load_dataset import json from multiprocessing import Pool, cpu_count dataset = load_dataset("openwebtext") split_dataset = dataset["train"].train_test_split(test_size=0.0005, seed=2357, shuffle=True) split_dataset['val'] = split_dataset.pop('test') def save_split(split): with open(f"openwebtext_{split}.jsonl", "w") as f: for example in split_dataset[split]: json.dump({"text": example["text"]}, f) f.write("\n") with Pool(cpu_count()) as p: p.map(save_split, ["train", "val"])
blockwise-parallel-transformer-1-main
bpt/tools/prepare_owt.py
blockwise-parallel-transformer-1-main
bpt/tools/__init__.py
import os import math from typing import Any, Mapping, Text, Tuple, Union, NamedTuple from functools import partial import re import dataclasses import random import dill import flax import jax import jax.numpy as jnp from jax.sharding import PartitionSpec as PS from jax.sharding import Mesh from jax.experimental.pjit import with_sharding_constraint as _with_sharding_constraint from jax.experimental.pjit import pjit from jax.interpreters import pxla import numpy as np from absl import logging from flax import jax_utils from flax.training.train_state import TrainState from flax.core import FrozenDict import optax from transformers import FlaxLogitsWarper class JaxRNG(object): """ A convenient stateful Jax RNG wrapper. Can be used to wrap RNG inside pure function. """ @classmethod def from_seed(cls, seed): return cls(jax.random.PRNGKey(seed)) def __init__(self, rng): self.rng = rng def __call__(self, keys=None): if keys is None: self.rng, split_rng = jax.random.split(self.rng) return split_rng elif isinstance(keys, int): split_rngs = jax.random.split(self.rng, num=keys + 1) self.rng = split_rngs[0] return tuple(split_rngs[1:]) else: split_rngs = jax.random.split(self.rng, num=len(keys) + 1) self.rng = split_rngs[0] return {key: val for key, val in zip(keys, split_rngs[1:])} class FlaxTemperatureLogitsWarper(FlaxLogitsWarper): """ JIT traceable version of FlaxLogitsWarper that performs temperature scaling.""" def __init__(self, temperature): self.temperature = temperature def __call__(self, input_ids, scores, cur_len): return scores / jnp.clip(self.temperature, a_min=1e-8) def make_shard_and_gather_fns(partition_specs, dtype_specs=None): """ Create pytree of sharding and gathering functions from pytree of partition specs. """ float_dtypes = (jnp.bfloat16, jnp.float16, jnp.float32, jnp.float64) def make_to_dtype_fn(dtype_spec): def to_dtype(tensor): if dtype_specs in float_dtypes and getattr(tensor, 'dtype', None) in float_dtypes: # Convert all float tensors to the same dtype return tensor.astype(dtype_specs) elif hasattr(dtype_spec, 'dtype') and hasattr(tensor, 'dtype'): return tensor.astype(dtype_spec.dtype) return tensor return to_dtype def make_shard_fn(partition_spec, dtype_spec=None): jax_shard_function = pjit( make_to_dtype_fn(dtype_spec), in_shardings=None, out_shardings=partition_spec ) def shard_fn(tensor): return jax_shard_function(tensor).block_until_ready() return shard_fn def make_gather_fn(partition_spec, dtype_spec=None): jax_gather_fn = pjit( make_to_dtype_fn(dtype_spec), in_shardings=partition_spec, out_shardings=None ) def gather_fn(tensor): return jax.device_get(jax_gather_fn(tensor)) return gather_fn if dtype_specs is None or dtype_specs in float_dtypes: shard_fns = jax.tree_util.tree_map(make_shard_fn, partition_specs) gather_fns = jax.tree_util.tree_map(make_gather_fn, partition_specs) else: shard_fns = jax.tree_util.tree_map( make_shard_fn, partition_specs, dtype_specs ) gather_fns = jax.tree_util.tree_map( make_gather_fn, partition_specs, dtype_specs ) return shard_fns, gather_fns def set_random_seed(seed): np.random.seed(seed) random.seed(seed) init_rng(seed) def get_jax_mesh(axis_dims, names): if ':' in axis_dims: dims = [] dim_names = [] for axis in axis_dims.split(','): name, dim = axis.split(':') assert name in names dims.append(int(dim)) dim_names.append(name) assert(set(dim_names) == set(names)) else: dims = [int(x) for x in axis_dims.split(',')] dim_names = names assert len(dims) == len(names) return Mesh(np.array(jax.devices()).reshape(dims), dim_names) def names_in_current_mesh(*names): """ Check if current mesh axes contain these names. """ mesh_axis_names = pxla.thread_resources.env.physical_mesh.axis_names return set(names) <= set(mesh_axis_names) def get_names_from_parition_spec(partition_specs): """ Return axis names from partition specs. """ names = set() if isinstance(partition_specs, dict): partition_specs = partition_specs.values() for item in partition_specs: if item is None: continue elif isinstance(item, str): names.add(item) else: names.update(get_names_from_parition_spec(item)) return list(names) def with_sharding_constraint(x, partition_specs): """ A smarter version of with_sharding_constraint that only applies the constraint if the current mesh contains the axes in the partition specs. """ axis_names = get_names_from_parition_spec(partition_specs) if names_in_current_mesh(*axis_names): x = _with_sharding_constraint(x, partition_specs) return x def wrap_function_with_rng(rng): """ To be used as decorator, automatically bookkeep a RNG for the wrapped function. """ def wrap_function(function): def wrapped(*args, **kwargs): nonlocal rng rng, split_rng = jax.random.split(rng) return function(split_rng, *args, **kwargs) return wrapped return wrap_function def init_rng(seed): global jax_utils_rng jax_utils_rng = JaxRNG.from_seed(seed) def next_rng(*args, **kwargs): global jax_utils_rng return jax_utils_rng(*args, **kwargs) def get_metrics(metrics, unreplicate=False, stack=False): if unreplicate: metrics = flax.jax_utils.unreplicate(metrics) metrics = jax.device_get(metrics) if stack: return jax.tree_map(lambda *args: np.stack(args), *metrics) else: return {key: float(val) for key, val in metrics.items()} def mse_loss(val, target, valid=None): if valid is None: valid = jnp.ones((*target.shape[:2], 1)) valid = valid.astype(jnp.float32) loss = jnp.mean( jnp.where( valid > 0.0, jnp.square(val - target), 0.0 ) ) return loss def cross_entropy_loss(logits, labels, smoothing_factor=0.): num_classes = logits.shape[-1] if labels.dtype == jnp.int32 or labels.dtype == jnp.int64: labels = jax.nn.one_hot(labels, num_classes) if smoothing_factor > 0.: labels = labels * (1. - smoothing_factor) + smoothing_factor / num_classes logp = jax.nn.log_softmax(logits, axis=-1) return -jnp.mean(jnp.sum(logp * labels, axis=-1)) def cross_entropy_loss_and_accuracy(logits, tokens, valid=None): if valid is None: valid = jnp.ones(tokens.shape[:2]) valid = valid.astype(jnp.float32) valid_text_length = jnp.maximum(jnp.sum(valid, axis=-1), 1e-10) token_log_prob = jnp.squeeze( jnp.take_along_axis( jax.nn.log_softmax(logits, axis=-1), jnp.expand_dims(tokens, -1), axis=-1, ), -1, ) token_log_prob = jnp.where(valid > 0.0, token_log_prob, jnp.array(0.0)) loss = -jnp.mean(jnp.sum(token_log_prob, axis=-1) / valid_text_length) correct = jnp.where( valid > 0.0, jnp.argmax(logits, axis=-1) == tokens, jnp.array(False) ) accuracy = jnp.mean(jnp.sum(correct, axis=-1) / valid_text_length) return loss, accuracy def global_norm(tree): """ Return the global L2 norm of a pytree. """ squared = jax.tree_util.tree_map(lambda x: jnp.sum(jnp.square(x)), tree) flattened, _ = jax.flatten_util.ravel_pytree(squared) return jnp.sqrt(jnp.sum(flattened)) def average_metrics(metrics): return jax.tree_map( lambda *args: jnp.mean(jnp.stack(args)), *metrics ) def get_float_dtype_by_name(dtype): return { 'bf16': jnp.bfloat16, 'fp16': jnp.float16, 'fp32': jnp.float32, 'fp64': jnp.float64, }[dtype] def float_tensor_to_dtype(tensor, dtype): if dtype is None or dtype == '': return tensor if isinstance(dtype, str): dtype = get_float_dtype_by_name(dtype) float_dtypes = (jnp.bfloat16, jnp.float16, jnp.float32, jnp.float64) if getattr(tensor, 'dtype', None) in float_dtypes: tensor = tensor.astype(dtype) return tensor def float_to_dtype(tree, dtype): return jax.tree_util.tree_map( partial(float_tensor_to_dtype, dtype=dtype), tree ) def get_gradient_checkpoint_policy(name): return { 'everything_saveable': jax.checkpoint_policies.everything_saveable, 'nothing_saveable': jax.checkpoint_policies.nothing_saveable, 'dots_saveable': jax.checkpoint_policies.dots_saveable, 'dots_with_no_batch_dims_saveable': jax.checkpoint_policies.dots_with_no_batch_dims_saveable, }[name] def tree_path_to_string(path, sep=None): keys = [] for key in path: if isinstance(key, jax.tree_util.SequenceKey): keys.append(str(key.idx)) elif isinstance(key, jax.tree_util.DictKey): keys.append(str(key.key)) elif isinstance(key, jax.tree_util.GetAttrKey): keys.append(str(key.name)) elif isinstance(key, jax.tree_util.FlattenedIndexKey): keys.append(str(key.key)) else: keys.append(str(key)) if sep is None: return tuple(keys) return sep.join(keys) def flatten_tree(xs, is_leaf=None, sep=None): flattened, _ = jax.tree_util.tree_flatten_with_path(xs, is_leaf=is_leaf) output = {} for key, val in flattened: output[tree_path_to_string(key, sep=sep)] = val return output def named_tree_map(f, tree, *rest, is_leaf=None, sep=None): """ An extended version of jax.tree_util.tree_map, where the mapped function f takes both the name (path) and the tree leaf as input. """ return jax.tree_util.tree_map_with_path( lambda path, x, *r: f(tree_path_to_string(path, sep=sep), x, *r), tree, *rest, is_leaf=is_leaf ) def match_partition_rules(rules, params): """ Returns a pytree of PartitionSpec according to rules. Supports handling Flax TrainState and Optax optimizer state. """ def get_partition_spec(name, leaf): if len(leaf.shape) == 0 or np.prod(leaf.shape) == 1: """ Don't partition scalar values. """ return PS() for rule, ps in rules: if re.search(rule, name) is not None: return ps raise ValueError(f'Partition rule not found for param: {name}') return named_tree_map(get_partition_spec, params, sep='/') def get_weight_decay_mask(exclusions): """ Return a weight decay mask function that computes the pytree masks according to the given exclusion rules. """ def decay(name, _): for rule in exclusions: if re.search(rule, name) is not None: return False return True def weight_decay_mask(params): return named_tree_map(decay, params, sep='/') return weight_decay_mask def tree_apply(fns, tree): """ Apply a pytree of functions to the pytree. """ return jax.tree_util.tree_map(lambda fn, x: fn(x), fns, tree)
blockwise-parallel-transformer-1-main
bpt/tools/jax_utils.py
import os import time from typing import Any, Mapping, Text, Tuple, Union, NamedTuple from functools import partial import re import dataclasses import random from ml_collections.config_dict import config_dict from ml_collections import ConfigDict import jax import jax.numpy as jnp import numpy as np from absl import logging import optax from bpt.tools.jax_utils import float_to_dtype class OptimizerFactory(object): """ Configurable optax optimizer factory. """ def __init__(self): raise NotImplementedError @staticmethod def get_default_config(updates=None): config = ConfigDict() config.accumulate_gradient_steps = 1 config.type = 'adamw' config.palm_optimizer = PalmOptimizerFactory.get_default_config() config.adamw_optimizer = AdamWOptimizerFactory.get_default_config() if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_optimizer(cls, config, weight_decay_mask=None): config = cls.get_default_config(config) if config.type == 'palm': optimizer, optimizer_info = PalmOptimizerFactory.get_optimizer( config.palm_optimizer, weight_decay_mask ) elif config.type == 'adamw': optimizer, optimizer_info = AdamWOptimizerFactory.get_optimizer( config.adamw_optimizer, weight_decay_mask ) else: raise ValueError(f'Unknown optimizer type: {config.type}') if config.accumulate_gradient_steps > 1: optimizer = optax.MultiSteps( optimizer, config.accumulate_gradient_steps ) return optimizer, optimizer_info class PalmOptimizerFactory(object): """ PaLM optimizer factory. This optimizer implements the optimizer described in the PaLM paper: https://arxiv.org/abs/2204.02311 """ def __init__(self): raise NotImplementedError @staticmethod def get_default_config(updates=None): config = ConfigDict() config.lr = 0.01 config.lr_warmup_steps = 10000 config.b1 = 0.9 config.b2 = 0.99 config.clip_gradient = 1.0 config.weight_decay = 1e-4 config.bf16_momentum = True if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_optimizer(cls, config, weight_decay_mask=None): config = cls.get_default_config(config) def learning_rate_schedule(step): multiplier = config.lr / 0.01 return multiplier / jnp.sqrt(jnp.maximum(step, config.lr_warmup_steps)) def weight_decay_schedule(step): multiplier = config.weight_decay / 1e-4 return -multiplier * jnp.square(learning_rate_schedule(step)) optimizer_info = dict( learning_rate_schedule=learning_rate_schedule, weight_decay_schedule=weight_decay_schedule, ) optimizer = optax.chain( optax.clip_by_global_norm(config.clip_gradient), optax.adafactor( learning_rate=learning_rate_schedule, multiply_by_parameter_scale=True, momentum=config.b1, decay_rate=config.b2, factored=False, clipping_threshold=None, dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32, ), optax_add_scheduled_weight_decay( weight_decay_schedule, weight_decay_mask ) ) return optimizer, optimizer_info class AdamWOptimizerFactory(object): """ AdamW optimizer with cosine schedule. """ def __init__(self): raise NotImplementedError @staticmethod def get_default_config(updates=None): config = ConfigDict() config.init_lr = 0.0 config.end_lr = 0.001 config.lr = 0.01 config.lr_warmup_steps = 2000 config.lr_decay_steps = 500000 config.b1 = 0.9 config.b2 = 0.95 config.clip_gradient = 1.0 config.weight_decay = 1e-4 config.bf16_momentum = True config.multiply_by_parameter_scale = True if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config @classmethod def get_optimizer(cls, config, weight_decay_mask=None): config = cls.get_default_config(config) learning_rate_schedule = optax.warmup_cosine_decay_schedule( init_value=config.init_lr, peak_value=config.lr, warmup_steps=config.lr_warmup_steps, decay_steps=config.lr_decay_steps, end_value=config.end_lr, ) optimizer_info = dict( learning_rate_schedule=learning_rate_schedule, ) if config.multiply_by_parameter_scale: optimizer = optax.chain( optax.clip_by_global_norm(config.clip_gradient), optax.adafactor( learning_rate=learning_rate_schedule, multiply_by_parameter_scale=True, momentum=config.b1, decay_rate=config.b2, factored=False, clipping_threshold=None, dtype_momentum=jnp.bfloat16 if config.bf16_momentum else jnp.float32, ), optax_add_scheduled_weight_decay( lambda step: -learning_rate_schedule(step) * config.weight_decay, weight_decay_mask ) ) else: optimizer = optax.chain( optax.clip_by_global_norm(config.clip_gradient), optax.adamw( learning_rate=learning_rate_schedule, weight_decay=config.weight_decay, b1=0.9, b2=0.95, mask=weight_decay_mask, mu_dtype=jnp.bfloat16 if config.bf16_momentum else jnp.float32, ), ) return optimizer, optimizer_info class OptaxScheduledWeightDecayState(NamedTuple): count: jnp.DeviceArray def optax_add_scheduled_weight_decay(schedule_fn, mask=None): """ Apply weight decay with schedule. """ def init_fn(params): del params return OptaxScheduledWeightDecayState(count=jnp.zeros([], jnp.int32)) def update_fn(updates, state, params): if params is None: raise ValueError('Params cannot be None for weight decay!') weight_decay = schedule_fn(state.count) updates = jax.tree_util.tree_map( lambda g, p: g + weight_decay * p, updates, params ) return updates, OptaxScheduledWeightDecayState( count=optax.safe_int32_increment(state.count) ) if mask is not None: return optax.masked(optax.GradientTransformation(init_fn, update_fn), mask) return optax.GradientTransformation(init_fn, update_fn)
blockwise-parallel-transformer-1-main
bpt/tools/optimizers.py
import inspect import logging import os import pprint import random import tempfile import time import uuid from concurrent.futures import ThreadPoolExecutor from copy import copy from io import BytesIO from socket import gethostname import dataclasses import absl.flags import absl.logging import cloudpickle as pickle import flax import gcsfs import jax import jax.numpy as jnp import msgpack import numpy as np import wandb from flax.serialization import from_bytes, to_bytes from ml_collections import ConfigDict from ml_collections.config_dict.config_dict import placeholder from ml_collections.config_flags import config_flags from flax.training.train_state import TrainState from flax.core import FrozenDict from absl.app import run class WandBLogger(object): @staticmethod def get_default_config(updates=None): config = ConfigDict() config.project_id = "" config.project_entity = placeholder(str) config.experiment_id = placeholder(str) config.append_uuid = True config.experiment_note = placeholder(str) config.output_dir = "/tmp/" config.wandb_dir = "" config.profile_dir = "" config.online = False if updates is not None: config.update(ConfigDict(updates).copy_and_resolve_references()) return config def __init__(self, config, variant, enable=True): self.enable = enable self.config = self.get_default_config(config) if self.config.experiment_id is None or self.config.experiment_id == "": self.config.experiment_id = uuid.uuid4().hex else: if self.config.append_uuid: self.config.experiment_id = ( str(self.config.experiment_id) + "_" + uuid.uuid4().hex ) else: self.config.experiment_id = str(self.config.experiment_id) if self.enable: if self.config.output_dir == "": self.config.output_dir = tempfile.mkdtemp() else: self.config.output_dir = os.path.join( self.config.output_dir, self.config.experiment_id ) if not self.config.output_dir.startswith("gs://"): os.makedirs(self.config.output_dir, exist_ok=True) if self.config.wandb_dir == "": if not self.config.output_dir.startswith("gs://"): # Use the same directory as output_dir if it is not a GCS path. self.config.wandb_dir = self.config.output_dir else: # Otherwise, use a temporary directory. self.config.wandb_dir = tempfile.mkdtemp() else: # Join the wandb_dir with the experiment_id. self.config.wandb_dir = os.path.join( self.config.wandb_dir, self.config.experiment_id ) os.makedirs(self.config.wandb_dir, exist_ok=True) if self.config.profile_dir == "": if not self.config.output_dir.startswith("gs://"): # Use the same directory as output_dir if it is not a GCS path. self.config.profile_dir = self.config.output_dir else: # Otherwise, use a temporary directory. self.config.profile_dir = tempfile.mkdtemp() else: # Join the profile_dir with the experiment_id. self.config.profile_dir = os.path.join( self.config.profile_dir, self.config.experiment_id ) os.makedirs(self.config.profile_dir, exist_ok=True) self._variant = flatten_config_dict(variant) if "hostname" not in self._variant: self._variant["hostname"] = gethostname() if self.enable: self.run = wandb.init( reinit=True, config=self._variant, project=self.config.project_id, dir=self.config.wandb_dir, id=self.config.experiment_id, resume="allow", notes=self.config.experiment_note, entity=self.config.project_entity, settings=wandb.Settings( start_method="thread", _disable_stats=True, ), mode="online" if self.config.online else "offline", ) else: self.run = None def log(self, *args, **kwargs): if self.enable: self.run.log(*args, **kwargs) def save_pickle(self, obj, filename): if self.enable: save_pickle(obj, os.path.join(self.config.output_dir, filename)) @property def experiment_id(self): return self.config.experiment_id @property def variant(self): return self.config.variant @property def output_dir(self): return self.config.output_dir @property def wandb_dir(self): return self.config.wandb_dir @property def profile_dir(self): return self.config.profile_dir def config_dict(*args, **kwargs): return ConfigDict(dict(*args, **kwargs)) def define_flags_with_default(**kwargs): for key, val in kwargs.items(): if isinstance(val, tuple): val, help_str = val else: help_str = "" if isinstance(val, ConfigDict): config_flags.DEFINE_config_dict(key, val) elif isinstance(val, bool): # Note that True and False are instances of int. absl.flags.DEFINE_bool(key, val, help_str) elif isinstance(val, int): absl.flags.DEFINE_integer(key, val, help_str) elif isinstance(val, float): absl.flags.DEFINE_float(key, val, help_str) elif isinstance(val, str): absl.flags.DEFINE_string(key, val, help_str) else: raise ValueError("Incorrect value type") return absl.flags.FLAGS, kwargs def print_flags(flags, flags_def): flag_srings = [ "{}: {}".format(key, val) for key, val in get_user_flags(flags, flags_def).items() ] logging.info( "Hyperparameter configs: \n{}".format( pprint.pformat(flag_srings) ) ) def get_user_flags(flags, flags_def): output = {} for key in flags_def: val = getattr(flags, key) if isinstance(val, ConfigDict): output.update(flatten_config_dict(val, prefix=key)) else: output[key] = val return output def user_flags_to_config_dict(flags, flags_def): output = ConfigDict() for key in flags_def: output[key] = getattr(flags, key) return output def flatten_config_dict(config, prefix=None): output = {} for key, val in config.items(): if isinstance(val, ConfigDict) or isinstance(val, dict): output.update(flatten_config_dict(val, prefix=key)) else: if prefix is not None: output["{}.{}".format(prefix, key)] = val else: output[key] = val return output def function_args_to_config(fn, none_arg_types=None, exclude_args=None, override_args=None): config = ConfigDict() arg_spec = inspect.getargspec(fn) n_args = len(arg_spec.defaults) arg_names = arg_spec.args[-n_args:] default_values = arg_spec.defaults for name, value in zip(arg_names, default_values): if exclude_args is not None and name in exclude_args: continue elif override_args is not None and name in override_args: config[name] = override_args[name] elif none_arg_types is not None and value is None and name in none_arg_types: config[name] = placeholder(none_arg_types[name]) else: config[name] = value return config def prefix_metrics(metrics, prefix): return {"{}/{}".format(prefix, key): value for key, value in metrics.items()} def open_file(path, mode='rb', cache_type='readahead'): if path.startswith("gs://"): logging.getLogger("fsspec").setLevel(logging.WARNING) return gcsfs.GCSFileSystem().open(path, mode, cache_type=cache_type) else: return open(path, mode) def save_pickle(obj, path): with open_file(path, "wb") as fout: pickle.dump(obj, fout) def load_pickle(path): with open_file(path, "rb") as fin: data = pickle.load(fin) return data def text_to_array(text, encoding="utf-8"): return np.frombuffer(text.encode(encoding), dtype="uint8") def array_to_text(array, encoding="utf-8"): with BytesIO(array) as fin: text = fin.read().decode(encoding) return text class JaxRNG(object): """ A convenient stateful Jax RNG wrapper. Can be used to wrap RNG inside pure function. """ @classmethod def from_seed(cls, seed): return cls(jax.random.PRNGKey(seed)) def __init__(self, rng): self.rng = rng def __call__(self, keys=None): if keys is None: self.rng, split_rng = jax.random.split(self.rng) return split_rng elif isinstance(keys, int): split_rngs = jax.random.split(self.rng, num=keys + 1) self.rng = split_rngs[0] return tuple(split_rngs[1:]) else: split_rngs = jax.random.split(self.rng, num=len(keys) + 1) self.rng = split_rngs[0] return {key: val for key, val in zip(keys, split_rngs[1:])} def wrap_function_with_rng(rng): """ To be used as decorator, automatically bookkeep a RNG for the wrapped function. """ def wrap_function(function): def wrapped(*args, **kwargs): nonlocal rng rng, split_rng = jax.random.split(rng) return function(split_rng, *args, **kwargs) return wrapped return wrap_function def init_rng(seed): global jax_utils_rng jax_utils_rng = JaxRNG.from_seed(seed) def next_rng(*args, **kwargs): global jax_utils_rng return jax_utils_rng(*args, **kwargs) def flatten_tree(xs, is_leaf=None, sep=None): """ A stronger version of flax.traverse_util.flatten_dict, supports dict, tuple, list and TrainState. Tuple and list indices will be converted to strings. """ tree_node_classes = (FrozenDict, dict, tuple, list, TrainState) if not isinstance(xs, tree_node_classes): ValueError('fUnsupported node type: {type(xs)}') def _is_leaf(prefix, fx): if is_leaf is not None: return is_leaf(prefix, xs) return False def _key(path): if sep is None: return path return sep.join(path) def _convert_to_dict(xs): if isinstance(xs, (FrozenDict, dict)): return xs elif isinstance(xs, (tuple, list)): return {f'{i}': v for i, v in enumerate(xs)} elif isinstance(xs, TrainState): output = {} for field in dataclasses.fields(xs): if 'pytree_node' not in field.metadata or field.metadata['pytree_node']: output[field.name] = getattr(xs, field.name) return output else: raise ValueError('fUnsupported node type: {type(xs)}') def _flatten(xs, prefix): if not isinstance(xs, tree_node_classes) or _is_leaf(prefix, xs): return {_key(prefix): xs} result = {} is_empty = True for (key, value) in _convert_to_dict(xs).items(): is_empty = False path = prefix + (key, ) result.update(_flatten(value, path)) return result return _flatten(xs, ()) def named_tree_map(f, tree, is_leaf=None, sep=None): """ An extended version of jax.tree_util.tree_map, where the mapped function f takes both the name (path) and the tree leaf as input. """ flattened_tree = flatten_tree(tree, is_leaf=is_leaf, sep=sep) id_to_name = {id(val): key for key, val in flattened_tree.items()} def map_fn(leaf): name = id_to_name[id(leaf)] return f(name, leaf) return jax.tree_util.tree_map(map_fn, tree) def get_pytree_shape_info(tree): flattend_tree = flatten_tree(tree, sep='/') shapes = [] for key in sorted(list(flattend_tree.keys())): val = flattend_tree[key] shapes.append(f'{key}: {val.dtype}, {val.shape}') return '\n'.join(shapes) def collect_metrics(metrics, names, prefix=None): collected = {} for name in names: if name in metrics: collected[name] = jnp.mean(metrics[name]) if prefix is not None: collected = { '{}/{}'.format(prefix, key): value for key, value in collected.items() } return collected def set_random_seed(seed): np.random.seed(seed) random.seed(seed) init_rng(seed)
blockwise-parallel-transformer-1-main
bpt/tools/utils.py
# Python file for Paperspace Gradient NLP Text Generation Tutorial example # It runs the GPT-2 model from HuggingFace: https://huggingface.co/gpt2 # # The Workflow is triggered when its YAML file is present in the .gradient/workflows/ directory # in a GitHub repository linked to the user's Gradient project # It clones this repo and then in turn calls this file # This file outputs the generated text to outputs.txt in a Gradient-managed Dataset # The Workflow runs on the Paperspace HuggingFace NLP container (paperspace/transformers-gpu:0.4.0) # See the Gradient documentation page for more details: ... # # The 4 values under "Settings" below can be altered to generate different text # If the resulting updated version of this file is uploaded to the repo .gradient/workflows/ # directory, the Workflow will be rerun, and a new output.txt file will be generated # # Last updated: Sep 13th 2021 # Setup from transformers import pipeline, set_seed # Settings random_seed = 42 max_length = 30 num_return_sequences = 5 initial_sentence = "Hello, I'm a language model," # Create generator that uses GPT-2 generator = pipeline('text-generation', model='gpt2') # Random seed for text generation set_seed(random_seed) # Run the generator output = generator(initial_sentence, max_length = max_length, num_return_sequences = num_return_sequences) # Write the output to a file with open('output.txt', 'w') as f: ival = 1 for val in output: print('---\nOutput {} of {}\n---\n'.format(ival, num_return_sequences), file=f) print(val['generated_text'], file=f) if ival < num_return_sequences: print(file=f) ival += 1 print('Done')
kosmos-model-main
nlp_text_generation.py
import os INITIAL_PEERS = os.environ.get("INITIAL_PEERS") if not INITIAL_PEERS: raise RuntimeError("Must specify INITIAL_PEERS environment variable with one or more peer ids") INITIAL_PEERS = INITIAL_PEERS.split() MODEL_NAME = os.environ.get("MODEL_NAME") if not MODEL_NAME: raise RuntimeError("Must specify MODEL_NAME as an index of a transformer block to be tested") REF_NAME = os.environ.get("REF_NAME") ADAPTER_NAME = os.environ.get("ADAPTER_NAME")
TheGrid-main
tests/test_utils.py
import asyncio import gc from contextlib import suppress import psutil import pytest from hivemind.utils.crypto import RSAPrivateKey from hivemind.utils.logging import get_logger from hivemind.utils.mpfuture import MPFuture logger = get_logger(__name__) @pytest.fixture def event_loop(): """ This overrides the ``event_loop`` fixture from pytest-asyncio (e.g. to make it compatible with ``asyncio.subprocess``). This fixture is identical to the original one but does not call ``loop.close()`` in the end. Indeed, at this point, the loop is already stopped (i.e. next tests are free to create new loops). However, finalizers of objects created in the current test may reference the current loop and fail if it is closed. For example, this happens while using ``asyncio.subprocess`` (the ``asyncio.subprocess.Process`` finalizer fails if the loop is closed, but works if the loop is only stopped). """ yield asyncio.get_event_loop() @pytest.fixture(autouse=True, scope="session") def cleanup_children(): yield with RSAPrivateKey._process_wide_key_lock: RSAPrivateKey._process_wide_key = None gc.collect() # Call .__del__() for removed objects children = psutil.Process().children(recursive=True) if children: logger.info(f"Cleaning up {len(children)} leftover child processes") for child in children: with suppress(psutil.NoSuchProcess): child.terminate() psutil.wait_procs(children, timeout=1) for child in children: with suppress(psutil.NoSuchProcess): child.kill() MPFuture.reset_backend()
TheGrid-main
tests/conftest.py
import random import pytest import torch import transformers from tensor_parallel import TensorParallel from tensor_parallel.slicing_configs import get_bloom_config from grid.server.from_pretrained import load_pretrained_block from test_utils import MODEL_NAME @pytest.mark.forked @pytest.mark.parametrize("custom_config", [True, False]) @pytest.mark.parametrize("devices", [("cpu",) * 2, ("cpu",) * 3, ("cpu",) * 4]) def test_tp_block(devices, custom_config): block_index = random.randint(0, 10) model_config = transformers.AutoConfig.from_pretrained(MODEL_NAME) block = load_pretrained_block(MODEL_NAME, block_index=block_index, torch_dtype=torch.float32).to(devices[0]) tp_config = None if custom_config: tp_config = get_bloom_config(model_config, devices) batch_size = 2 prefix_length = 5 test_inputs1 = torch.randn(batch_size, 3, 1024, requires_grad=True, device=devices[0]) test_inputs2 = test_inputs1.detach().clone().requires_grad_(True) test_prefix1 = torch.randn(batch_size, prefix_length, 1024, requires_grad=True, device=devices[0]) test_prefix2 = test_prefix1.detach().clone().requires_grad_(True) grad_proj = torch.rand_like(test_inputs1) y_prefix_ref, layer_past = block(test_prefix1, use_cache=True) y_ref, cache_ref = block(test_inputs1, use_cache=True, layer_past=layer_past) y_ref.backward(grad_proj) block_tp = TensorParallel(block, devices, config=tp_config) y_prefix, layer_past = block_tp(test_prefix2, use_cache=True) y_ours, cache_ours = block_tp(test_inputs2, use_cache=True, layer_past=layer_past) y_ours.backward(grad_proj) assert torch.allclose(y_prefix, y_prefix_ref, atol=1e-5) assert torch.allclose(y_ours, y_ref, atol=1e-5) assert torch.allclose(test_inputs1.grad, test_inputs2.grad, atol=1e-4) assert torch.allclose(test_prefix1.grad, test_prefix2.grad, atol=1e-4)
TheGrid-main
tests/test_tensor_parallel.py
import subprocess import sys import pytest import torch from grid import AutoDistributedConfig from grid.server.throughput import measure_compute_rps from grid.utils.convert_block import QuantType from test_utils import MODEL_NAME def test_bnb_not_imported_when_unnecessary(): """ We avoid importing bitsandbytes when it's not used, since bitsandbytes doesn't always find correct CUDA libs and may raise exceptions because of that. If this test fails, please change your code to import bitsandbytes and/or grid.utils.peft in the function's/method's code when it's actually needed instead of importing them in the beginning of the file. This won't slow down the code - importing a module for the 2nd time doesn't rerun module code. """ subprocess.check_call([sys.executable, "-c", "import grid, sys; assert 'bitsandbytes' not in sys.modules"]) @pytest.mark.forked @pytest.mark.parametrize("inference", [False, True]) @pytest.mark.parametrize("n_tokens", [1, 16]) @pytest.mark.parametrize("tensor_parallel", [False, True]) def test_compute_throughput(inference: bool, n_tokens: int, tensor_parallel: bool): config = AutoDistributedConfig.from_pretrained(MODEL_NAME) tensor_parallel_devices = ("cpu", "cpu") if tensor_parallel else () compute_rps = measure_compute_rps( config, device=torch.device("cpu"), dtype=torch.bfloat16, quant_type=QuantType.NONE, tensor_parallel_devices=tensor_parallel_devices, n_tokens=n_tokens, n_steps=5, inference=inference, ) assert isinstance(compute_rps, float) and compute_rps > 0
TheGrid-main
tests/test_aux_functions.py
import os import shutil import pytest from huggingface_hub import snapshot_download from grid.utils.peft import check_peft_repository, load_peft UNSAFE_PEFT_REPO = "artek0chumak/bloom-560m-unsafe-peft" SAFE_PEFT_REPO = "artek0chumak/bloom-560m-safe-peft" TMP_CACHE_DIR = "tmp_cache/" def clear_dir(path_to_dir): shutil.rmtree(path_to_dir) os.mkdir(path_to_dir) def dir_empty(path_to_dir): files = os.listdir(path_to_dir) return len(files) == 0 @pytest.mark.forked def test_check_peft(): assert not check_peft_repository(UNSAFE_PEFT_REPO), "NOSAFE_PEFT_REPO is safe to load." assert check_peft_repository(SAFE_PEFT_REPO), "SAFE_PEFT_REPO is not safe to load." @pytest.mark.forked def test_load_noncached(tmpdir): clear_dir(tmpdir) with pytest.raises(Exception): load_peft(UNSAFE_PEFT_REPO, cache_dir=tmpdir) assert dir_empty(tmpdir), "UNSAFE_PEFT_REPO is loaded" load_peft(SAFE_PEFT_REPO, cache_dir=tmpdir) assert not dir_empty(tmpdir), "SAFE_PEFT_REPO is not loaded" @pytest.mark.forked def test_load_cached(tmpdir): clear_dir(tmpdir) snapshot_download(SAFE_PEFT_REPO, cache_dir=tmpdir) load_peft(SAFE_PEFT_REPO, cache_dir=tmpdir) @pytest.mark.forked def test_load_layer_exists(tmpdir): clear_dir(tmpdir) load_peft(SAFE_PEFT_REPO, block_idx=2, cache_dir=tmpdir) @pytest.mark.forked def test_load_layer_nonexists(tmpdir): clear_dir(tmpdir) load_peft( SAFE_PEFT_REPO, block_idx=1337, cache_dir=tmpdir, )
TheGrid-main
tests/test_peft.py
import multiprocessing as mp import time import pytest import torch from hivemind.moe.server.runtime import Runtime from grid.server.task_pool import PrioritizedTaskPool @pytest.mark.forked def test_priority_pools(): outputs_queue = mp.SimpleQueue() results_valid = mp.Event() def dummy_pool_func(x): time.sleep(0.1) y = x**2 outputs_queue.put((x, y)) return (y,) class DummyBackend: def __init__(self, pools): self.pools = pools def get_pools(self): return self.pools pools = ( PrioritizedTaskPool(dummy_pool_func, name="A", max_batch_size=1), PrioritizedTaskPool(dummy_pool_func, name="B", max_batch_size=1), ) runtime = Runtime({str(i): DummyBackend([pool]) for i, pool in enumerate(pools)}, prefetch_batches=0) runtime.start() def process_tasks(): futures = [] futures.append(pools[0].submit_task(torch.tensor([0]), priority=1)) futures.append(pools[0].submit_task(torch.tensor([1]), priority=1)) time.sleep(0.01) futures.append(pools[1].submit_task(torch.tensor([2]), priority=1)) futures.append(pools[0].submit_task(torch.tensor([3]), priority=2)) futures.append(pools[0].submit_task(torch.tensor([4]), priority=10)) futures.append(pools[0].submit_task(torch.tensor([5]), priority=0)) futures.append(pools[0].submit_task(torch.tensor([6]), priority=1)) futures.append(pools[1].submit_task(torch.tensor([7]), priority=11)) futures.append(pools[1].submit_task(torch.tensor([8]), priority=1)) for i, f in enumerate(futures): assert f.result()[0].item() == i**2 results_valid.set() proc = mp.Process(target=process_tasks) proc.start() proc.join() assert results_valid.is_set() ordered_outputs = [] while not outputs_queue.empty(): ordered_outputs.append(outputs_queue.get()[0].item()) assert ordered_outputs == [0, 5, 1, 2, 6, 8, 3, 4, 7] # 0 - first batch is loaded immediately, before everything else # 5 - highest priority task overall # 1 - first of several tasks with equal lowest priority (1) # 2 - second earliest task with priority 1, fetched from pool B # 6 - third earliest task with priority 1, fetched from pool A again # 8 - last priority-1 task, pool B # 3 - task with priority 2 from pool A # 4 - task with priority 10 from pool A # 7 - task with priority 11 from pool B
TheGrid-main
tests/test_priority_pool.py
import time import hivemind import pytest import torch from grid import DistributedBloomConfig, RemoteSequential from grid.server.handler import CACHE_TOKENS_AVAILABLE from test_utils import * @pytest.mark.forked def test_server_info(block_from: int = 22, block_to: int = 24, max_length: int = 100, max_length2: int = 50): config = DistributedBloomConfig.from_pretrained(MODEL_NAME) dht = hivemind.DHT(initial_peers=INITIAL_PEERS, client_mode=True, start=True) blocks1 = RemoteSequential(config, dht=dht, start_block=block_from, end_block=block_to) blocks2 = RemoteSequential(config, dht=dht, start_block=block_to - 1, end_block=block_to) info_before = blocks1.sequence_manager.rpc_info with blocks1.inference_session(max_length=max_length) as sess: sess.step(torch.randn(1, 1, config.hidden_size)) blocks1.sequence_manager.state.rpc_info = None # invalidate cache info_inside = blocks1.sequence_manager.rpc_info with blocks2.inference_session(max_length=max_length2) as sess2: sess2.step(torch.randn(1, 1, config.hidden_size)) blocks2.sequence_manager.state.rpc_info = None # invalidate cache info_inside2 = blocks2.sequence_manager.rpc_info time.sleep(0.1) blocks1.sequence_manager.state.rpc_info = None # invalidate cache info_after = blocks1.sequence_manager.rpc_info assert info_before[CACHE_TOKENS_AVAILABLE] == info_after[CACHE_TOKENS_AVAILABLE] assert info_before[CACHE_TOKENS_AVAILABLE] - info_inside[CACHE_TOKENS_AVAILABLE] == max_length * len(blocks1) assert info_inside[CACHE_TOKENS_AVAILABLE] - info_inside2[CACHE_TOKENS_AVAILABLE] == max_length2 * len(blocks2)
TheGrid-main
tests/test_server_stats.py
import pytest import torch import torch.nn.functional as F from hivemind import DHT, BatchTensorDescriptor, get_logger from hivemind.proto import runtime_pb2 from grid import DistributedBloomConfig from grid.client import RemoteSequenceManager, RemoteSequential from grid.data_structures import UID_DELIMITER from grid.server.from_pretrained import load_pretrained_block from test_utils import * logger = get_logger(__name__) @pytest.mark.forked def test_remote_sequential(): config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) dht = DHT(initial_peers=config.initial_peers, client_mode=True, start=True) test_inputs = torch.randn(1, 5, config.hidden_size, requires_grad=True) grad_proj = torch.randn(1, 5, config.hidden_size) sequential = RemoteSequential(config, dht=dht) full_outputs = sequential(test_inputs) (full_outputs * grad_proj).sum().backward() assert test_inputs.grad is not None full_grad = test_inputs.grad.clone() test_inputs.grad.data.zero_() first_half = sequential[: config.num_hidden_layers // 2] second_half = sequential[config.num_hidden_layers // 2 :] assert len(first_half) + len(second_half) == len(sequential) assert abs(len(first_half) - len(second_half)) == config.num_hidden_layers % 2 for m in sequential, first_half, second_half: assert isinstance(repr(m), str) hidden = first_half(test_inputs) assert isinstance(hidden, torch.Tensor) assert hidden.shape == test_inputs.shape assert hidden.requires_grad second_half_outputs = second_half(hidden) assert torch.allclose(second_half_outputs, full_outputs, atol=1e-4) (second_half_outputs * grad_proj).sum().backward() assert torch.allclose(test_inputs.grad, full_grad, atol=1e-3) # test RemoteSequential with lossy compression block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(config.num_hidden_layers)] lossy_sequential = RemoteSequential( config, sequence_manager=DummyCustomSequenceManager(config, block_uids, dht=dht) ) test_inputs.grad = None approx_outputs = lossy_sequential(test_inputs) (approx_outputs * grad_proj).sum().backward() assert not torch.allclose(approx_outputs, full_outputs, rtol=0, atol=1e-4), "compression was not used" assert not torch.allclose(test_inputs.grad, full_grad, rtol=0, atol=1e-2), "compression was not used" assert abs(approx_outputs - full_outputs).mean() < 0.01 absmax = abs(full_grad).max() assert abs(test_inputs.grad / absmax - full_grad / absmax).mean() < 0.05 class DummyCustomSequenceManager(RemoteSequenceManager): """A sequence manager that compresses inputs/outputs during forward and backward pass.""" @property def rpc_info(self): rpc_info = super().rpc_info dims = (2048, 1024) compressed_input_schema = BatchTensorDescriptor(dims, compression=runtime_pb2.CompressionType.FLOAT16) rpc_info["forward_schema"] = (compressed_input_schema,), dict() # (args, kwargs) return rpc_info def get_request_metadata(self, protocol: str, *args, **kwargs): metadata = super().get_request_metadata(protocol, *args, **kwargs) if protocol == "rpc_forward": metadata["output_compression"] = (runtime_pb2.CompressionType.FLOAT16,) elif protocol == "rpc_backward": metadata["output_compression"] = (runtime_pb2.CompressionType.FLOAT16,) # FIXME: Initially, we used CompressionType.BLOCKWISE_8BIT for rpc_backward() here. # This is currently broken since hivemind==1.1.8 is not compatible with bitsandbytes==0.39.1. # Please revert to BLOCKWISE_8BIT once this is fixed: https://github.com/learning-at-home/hivemind/issues/572 return metadata @pytest.mark.forked def test_remote_sequential_prompts(batch_size=2, seq_len=5, pre_seq_len=3): config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) remote_sequential = RemoteSequential(config) inputs = F.normalize(torch.randn(batch_size, seq_len, config.hidden_size), dim=-1) output_proj = F.normalize(torch.randn(batch_size, seq_len + pre_seq_len, config.hidden_size), dim=-1) input_prompts = F.normalize(torch.randn(batch_size, pre_seq_len, config.hidden_size, requires_grad=True), dim=-1) intermediate_prompts = torch.randn( config.num_hidden_layers, batch_size, pre_seq_len, config.hidden_size, requires_grad=True ) input_prompts = input_prompts.detach().requires_grad_(True) intermediate_prompts = intermediate_prompts.detach().requires_grad_(True) inputs_with_prompts = torch.cat([inputs, input_prompts], dim=1) assert inputs_with_prompts.shape == (batch_size, seq_len + pre_seq_len, config.hidden_size) outputs = remote_sequential(inputs_with_prompts, prompts=intermediate_prompts) (outputs * output_proj).sum().backward() assert intermediate_prompts.grad is not None input_prompts_ref = input_prompts.clone().detach().requires_grad_(True) intermediate_prompts_ref = intermediate_prompts.clone().detach().requires_grad_(True) assert input_prompts_ref.grad is None assert intermediate_prompts_ref.grad is None outputs_ref = torch.cat([inputs, input_prompts_ref], dim=1) for block_index in range(config.num_hidden_layers): block_prompt = intermediate_prompts_ref[block_index] outputs_ref[:, : block_prompt.shape[1]] += block_prompt block = load_pretrained_block(MODEL_NAME, block_index=block_index, torch_dtype=torch.float32) (outputs_ref,) = block(outputs_ref) assert torch.allclose(outputs_ref, outputs, atol=1e-3) (outputs_ref * output_proj).sum().backward() assert input_prompts_ref.grad is not None assert torch.allclose(input_prompts_ref.grad, input_prompts.grad, atol=1e-2) assert intermediate_prompts_ref.grad is not None assert torch.allclose(intermediate_prompts_ref.grad, intermediate_prompts.grad, atol=1e-2)
TheGrid-main
tests/test_remote_sequential.py
import peft import pytest import torch import transformers from hivemind import get_logger from transformers.generation import BeamSearchScorer from transformers.models.bloom import BloomForCausalLM from grid import DistributedBloomForCausalLM from test_utils import * logger = get_logger(__name__) @pytest.mark.forked @pytest.mark.parametrize("use_peft", (True, False) if ADAPTER_NAME else (False,)) @pytest.mark.parametrize("pass_empty_tensors", (True, False)) def test_full_model_exact_match(use_peft: bool, pass_empty_tensors: bool, atol_forward=1e-3, atol_inference=1e-3): tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32, active_adapter=ADAPTER_NAME if use_peft else None, ) config = model.config assert isinstance(model, DistributedBloomForCausalLM) assert len(model.transformer.h) == model.config.num_hidden_layers test_inputs = tokenizer("A quick brown fox was minding its own buisness", return_tensors="pt")["input_ids"] with torch.inference_mode(): parallel_outputs = model.forward(test_inputs).logits assert torch.all(torch.isfinite(parallel_outputs)) logger.info("Forward outputs are finite") embs = model.transformer.word_embeddings(test_inputs) embs = model.transformer.word_embeddings_layernorm(embs) recurrent_outputs = [] with model.transformer.h.inference_session(max_length=embs.shape[1]) as sess: if pass_empty_tensors: recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size))) for t in range(embs.shape[1]): if t == 4: recurrent_outputs.append(sess.step(embs[:, 4:9, :])) elif 4 < t < 9: continue else: recurrent_outputs.append(sess.step(embs[:, t : t + 1, :])) if t == 2 and pass_empty_tensors: recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size))) recurrent_outputs.append(sess.step(torch.empty(1, 0, config.hidden_size))) recurrent_outputs = torch.cat(recurrent_outputs, dim=1) recurrent_outputs = model.transformer.ln_f(recurrent_outputs) recurrent_outputs = model.lm_head(recurrent_outputs) assert torch.allclose(recurrent_outputs, parallel_outputs, rtol=0, atol=atol_inference) logger.info("Inference is consistent with forward") del model, embs, recurrent_outputs if REF_NAME: ref_model = transformers.BloomForCausalLM.from_pretrained( REF_NAME, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) if use_peft: ref_model = peft.PeftModel.from_pretrained(ref_model, ADAPTER_NAME) ref_model.train(False) if config.vocab_size < ref_model.config.vocab_size: ref_model.resize_token_embeddings(config.vocab_size) logger.warning(f"Resized the reference model embeddings, new total = {ref_model.config.vocab_size}") dummy_mask = torch.ones_like(test_inputs, dtype=torch.bool) # note: this creates a dummy mask to make the test compatible with older transformer versions # prior to https://github.com/huggingface/transformers/pull/17837 ref_outputs = ref_model.forward(test_inputs, attention_mask=dummy_mask).logits.float() assert torch.allclose(ref_outputs, parallel_outputs, rtol=0, atol=atol_forward) logger.warning(f"Distributed forward is consistent with {type(ref_model)}.forward") del ref_model, ref_outputs, dummy_mask else: logger.warning("Did not test exact match with local model: REF_NAME environment variable is not set") assert False @pytest.mark.forked def test_greedy_generation(max_new_tokens=4): tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"] remote_outputs = model.generate( inputs, max_new_tokens=max_new_tokens, ) hf_outputs = BloomForCausalLM.greedy_search(model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens) assert torch.allclose(remote_outputs, hf_outputs), "Greedy search results are not identical to HF" inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[ "input_ids" ] remote_outputs_batch = model.generate( inputs_batch, max_new_tokens=max_new_tokens, ) hf_outputs_batch = BloomForCausalLM.greedy_search( model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens ) assert torch.allclose( remote_outputs_batch, hf_outputs_batch ), "Greedy search results are not identical to HF in multibatch mode" @pytest.mark.forked @pytest.mark.parametrize("sampling_options", [dict(), dict(temperature=100.0), dict(top_k=5), dict(top_p=0.9)]) @pytest.mark.skip("Sampling is currently not consistent with outputs from Transformers") def test_sampling(sampling_options, max_new_tokens=4): torch.manual_seed(0) tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) logits_warper = BloomForCausalLM._get_logits_warper(model, num_beams=1, **sampling_options) inputs = tokenizer("A cat sat on a mat", return_tensors="pt")["input_ids"] with torch.random.fork_rng(): remote_outputs = model.generate( inputs, max_new_tokens=max_new_tokens, do_sample=True, **sampling_options, ) with torch.random.fork_rng(): hf_outputs = BloomForCausalLM.sample( model, input_ids=inputs, max_length=inputs.size(1) + max_new_tokens, logits_warper=logits_warper ) assert torch.allclose(remote_outputs, hf_outputs), "Sampling results are not identical to HF" inputs_batch = tokenizer(["A cat sat on a mat", "A dog sat on a mat"], return_tensors="pt", padding=True)[ "input_ids" ] with torch.random.fork_rng(): remote_outputs_batch = model.generate( inputs_batch, max_new_tokens=max_new_tokens, do_sample=True, **sampling_options, ) with torch.random.fork_rng(): hf_outputs_batch = BloomForCausalLM.sample( model, input_ids=inputs_batch, max_length=inputs_batch.size(1) + max_new_tokens, logits_warper=logits_warper, ) assert torch.allclose( remote_outputs_batch, hf_outputs_batch ), "Sampling results are not identical to HF in multibatch mode" @pytest.mark.forked def test_beam_search_generation(max_new_tokens=4, num_beams=2): tokenizer = transformers.BloomTokenizerFast.from_pretrained(MODEL_NAME) model = DistributedBloomForCausalLM.from_pretrained( MODEL_NAME, initial_peers=INITIAL_PEERS, low_cpu_mem_usage=True, torch_dtype=torch.float32 ) text = "A cat sat on a mat" inputs = tokenizer(text, return_tensors="pt")["input_ids"] remote_outputs = model.generate( inputs, max_new_tokens=max_new_tokens, num_beams=num_beams, ) beam_scorer = BeamSearchScorer( batch_size=inputs.size(0), num_beams=num_beams, device=inputs.device, length_penalty=0, do_early_stopping=False, ) hf_inputs = tokenizer([text] * 2, return_tensors="pt")["input_ids"] hf_outputs = BloomForCausalLM.beam_search( model, input_ids=hf_inputs, max_length=inputs.size(1) + max_new_tokens, beam_scorer=beam_scorer ) assert torch.allclose(remote_outputs, hf_outputs), "Beam search results are not identical to HF"
TheGrid-main
tests/test_full_model.py
###### # Warning:torch this test is a work in progress. It will be modified soon. # - if you want more stable tests, see test_block_exact_match # - if you want to figure out chained inference, ask yozh import pytest import torch from grid import DistributedBloomConfig from grid.client.remote_sequential import RemoteSequential from grid.server.from_pretrained import load_pretrained_block from test_utils import * @pytest.mark.forked def test_forward_backward_exact_match(atol_forward=1e-4, atol_backward=1e-4, seq_length=1): config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) remote_blocks = RemoteSequential(config, start_block=3, end_block=6) assert isinstance(remote_blocks, RemoteSequential) ref_blocks = [ load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32), load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32), load_pretrained_block(MODEL_NAME, 5, torch_dtype=torch.float32), ] inputs = torch.randn(1, seq_length, config.hidden_size, requires_grad=True) outputs_rpc = remote_blocks.forward(inputs) outputs_rpc.sum().backward() grads_rpc = inputs.grad inputs.grad = None hidden_states = inputs for ref_block in ref_blocks: hidden_states = ref_block.forward(hidden_states)[0] outputs_ref = hidden_states outputs_ref.sum().backward() grads_ref = inputs.grad assert torch.allclose(outputs_ref, outputs_rpc, rtol=0, atol=atol_forward) assert torch.allclose(grads_ref, grads_rpc, rtol=0, atol=atol_backward) @pytest.mark.forked def test_chained_inference_exact_match(atol_inference=1e-4): config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) remote_blocks = RemoteSequential(config, start_block=3, end_block=5) inputs = torch.randn(1, 8, config.hidden_size) outputs_inference = [] with remote_blocks.inference_session(max_length=inputs.shape[1]) as sess: for i in range(inputs.shape[1]): outputs_inference.append(sess.step(inputs[:, i : i + 1, :])) outputs_inference = torch.cat(outputs_inference, dim=1) ref_blocks = [ load_pretrained_block(MODEL_NAME, 3, torch_dtype=torch.float32), load_pretrained_block(MODEL_NAME, 4, torch_dtype=torch.float32), ] outputs_ref = [] caches = [None, None] for i in range(inputs.shape[1]): new_caches = [] hidden_states = inputs[:, i : i + 1, :] for ref_block, cache in zip(ref_blocks, caches): with torch.no_grad(): hidden_states, new_cache = ref_block.forward(hidden_states, use_cache=True, layer_past=cache) new_caches.append(new_cache) outputs_ref.append(hidden_states) caches = new_caches outputs_ref = torch.cat(outputs_ref, dim=1) assert torch.allclose(outputs_ref, outputs_inference, rtol=0, atol=atol_inference)
TheGrid-main
tests/test_chained_calls.py
import threading import time import pytest import torch from hivemind import DHT, get_logger from grid import DistributedBloomConfig from grid.client import RemoteSequenceManager, RemoteSequential from grid.data_structures import UID_DELIMITER from test_utils import * logger = get_logger(__name__) @pytest.mark.forked @pytest.mark.parametrize("mode", ["max_throughput", "min_latency"]) def test_sequence_manager_basics(mode: str): config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) dht = DHT(initial_peers=config.initial_peers, client_mode=True, start=True) sequential = RemoteSequential(config, dht=dht) shutdown_evt = threading.Event() # test RemoteSequential with lossy compression block_uids = [f"{config.dht_prefix}{UID_DELIMITER}{i}" for i in range(config.num_hidden_layers)] sequential = RemoteSequential( config, sequence_manager=RemoteSequenceManagerWithChecks(config, block_uids, dht=dht, _was_shut_down=shutdown_evt), ) sequence = sequential.sequence_manager.make_sequence(mode=mode) assert all(sequence[i].peer_id != sequence[i + 1].peer_id for i in range(len(sequence) - 1)) assert sequential.sequence_manager.is_alive() assert sequential.sequence_manager._thread.ready.is_set() assert not shutdown_evt.is_set() sequential(torch.randn(1, 2, config.hidden_size)) sequential.sequence_manager.shutdown() del sequential time.sleep(1) assert shutdown_evt.is_set() class RemoteSequenceManagerWithChecks(RemoteSequenceManager): """A sequence manager that signals if it was shut down""" def __init__(self, *args, _was_shut_down: threading.Event, **kwargs): super().__init__(*args, **kwargs) self._was_shut_down = _was_shut_down def shutdown(self): super().shutdown() assert not self.is_alive() self._was_shut_down.set()
TheGrid-main
tests/test_sequence_manager.py
import pytest import torch from grid.server.block_utils import resolve_block_dtype from grid.server.from_pretrained import load_pretrained_block from grid.utils.auto_config import AutoDistributedConfig from test_utils import MODEL_NAME @pytest.mark.forked @pytest.mark.parametrize("torch_dtype", [torch.float32, torch.float16, "auto"]) def test_block_dtype(torch_dtype): config = AutoDistributedConfig.from_pretrained(MODEL_NAME) block = load_pretrained_block(MODEL_NAME, 0, config=config, torch_dtype=torch_dtype) expected_dtype = resolve_block_dtype(config, torch_dtype) assert all(param.dtype == expected_dtype for param in block.parameters())
TheGrid-main
tests/test_dtype.py
import random import pytest import torch from grid import DistributedBloomConfig, RemoteSequential from grid.server.from_pretrained import load_pretrained_block from test_utils import * @pytest.mark.forked def test_remote_block_exact_match(atol_forward=1e-4, atol_inference=1e-3): config = DistributedBloomConfig.from_pretrained(MODEL_NAME, initial_peers=INITIAL_PEERS) remote_sequential = RemoteSequential(config) for block_index in random.sample(range(config.num_hidden_layers), 3): remote_block = remote_sequential[block_index] inputs = torch.randn(1, 8, config.hidden_size) outputs_forward = remote_block(inputs) outputs_inference = [] with torch.inference_mode(): with remote_block.inference_session(max_length=inputs.shape[1]) as sess: for i in range(inputs.shape[1]): outputs_inference.append(sess.step(inputs[:, i : i + 1, :])) # test that max length is respected with pytest.raises(ValueError, match=r"Maximum length exceeded") as exc_info: sess.step(inputs[:, -1:, :]) assert "Maximum length exceeded" in repr(exc_info.value) outputs_inference = torch.cat(outputs_inference, dim=1) ref_block = load_pretrained_block(MODEL_NAME, block_index, torch_dtype=torch.float32) (outputs_local,) = ref_block(inputs) assert torch.allclose(outputs_local, outputs_forward, rtol=0, atol=atol_forward) assert torch.allclose(outputs_local, outputs_inference, rtol=0, atol=atol_inference)
TheGrid-main
tests/test_block_exact_match.py
#!/usr/bin/env python3 import argparse import multiprocessing as mp from time import perf_counter import numpy as np import torch from hivemind.utils.logging import get_logger from grid import AutoDistributedModelForCausalLM, AutoDistributedModelForSequenceClassification from grid.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS logger = get_logger() def main(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="Agora/bloom") parser.add_argument("--device", type=str, default="cpu") parser.add_argument("--task", type=str, default="cls") parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS) parser.add_argument("--torch_dtype", type=str, default="bfloat16") parser.add_argument("--n_processes", type=str, default=1) parser.add_argument("--seq_len", type=int, default=128) parser.add_argument("--pre_seq_len", type=int, default=16) parser.add_argument("--n_steps", type=int, default=10) parser.add_argument("--batch_size", type=int, required=True) parser.add_argument("--warmup_steps", type=int, default=1) args = parser.parse_args() assert args.task in ["cls", "causal_lm"] if args.n_processes == "n_gpus": args.n_processes = torch.cuda.device_count() else: args.n_processes = int(args.n_processes) processes = [mp.Process(target=benchmark_training, args=(i, args)) for i in range(args.n_processes)] for proc in processes: proc.start() for proc in processes: proc.join() def benchmark_training(process_idx, args): if args.task == "cls": model = AutoDistributedModelForSequenceClassification.from_pretrained( args.model, initial_peers=args.initial_peers, torch_dtype=DTYPE_MAP[args.torch_dtype], tuning_mode="deep_ptune", pre_seq_len=args.pre_seq_len, num_labels=2, ) elif args.task == "causal_lm": model = AutoDistributedModelForCausalLM.from_pretrained( args.model, initial_peers=args.initial_peers, torch_dtype=DTYPE_MAP[args.torch_dtype], tuning_mode="deep_ptune", pre_seq_len=args.pre_seq_len, ) model = model.to(args.device) opt = torch.optim.Adam(model.parameters()) logger.info(f"Created model: {process_idx=} {model.device=}") torch.manual_seed(42) fwd_times = [] bwd_times = [] for step in range(args.warmup_steps + args.n_steps): input_ids = torch.randint(0, model.config.vocab_size, size=(args.batch_size, args.seq_len), device=args.device) if args.task == "cls": labels = torch.randint(0, 2, size=[args.batch_size], device=args.device) else: labels = input_ids logger.info(f"{process_idx=} {step=} Forward") start_time = perf_counter() outputs = model(input_ids, labels=labels) if step >= args.warmup_steps: fwd_times.append(perf_counter() - start_time) logger.info(f"{process_idx=} {step=} Backward") start_time = perf_counter() outputs.loss.backward() if step >= args.warmup_steps: bwd_times.append(perf_counter() - start_time) logger.info(f"{process_idx=} {step=} Optimizer step") opt.step() opt.zero_grad() if step >= args.warmup_steps: fwd_speed = input_ids.numel() / np.mean(fwd_times) bwd_speed = input_ids.numel() / np.mean(bwd_times) logger.info(f"{process_idx=} Fwd speed: {fwd_speed:.2f} | Bwd speed: {bwd_speed:.2f}") logger.info(f"Final result: {process_idx=} {fwd_speed=:.2f} | {bwd_speed=:.2f}") if __name__ == "__main__": main()
TheGrid-main
benchmarks/benchmark_training.py
#!/usr/bin/env python3 import argparse import multiprocessing as mp from time import perf_counter import numpy as np import torch from hivemind.utils.logging import get_logger from transformers import AutoTokenizer from grid import AutoDistributedModelForCausalLM from grid.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS logger = get_logger() def main(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="Agora/bloom") parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS) parser.add_argument("--torch_dtype", type=str, default="bfloat16") parser.add_argument("--n_processes", type=str, default=1) parser.add_argument("--seq_len", type=int, default=2048) parser.add_argument("--warmup_steps", type=int, default=1) args = parser.parse_args() if args.n_processes == "n_gpus": args.n_processes = torch.cuda.device_count() else: args.n_processes = int(args.n_processes) processes = [mp.Process(target=benchmark_inference, args=(i, args)) for i in range(args.n_processes)] for proc in processes: proc.start() for proc in processes: proc.join() @torch.inference_mode() def benchmark_inference(process_idx, args): tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=False) # Using use_fast=False since LlamaTokenizerFast takes a long time to start, and we decode 1 token at a time anyway model = AutoDistributedModelForCausalLM.from_pretrained( args.model, initial_peers=args.initial_peers, torch_dtype=DTYPE_MAP[args.torch_dtype] ) logger.info(f"Created model: {process_idx=} {model.device=}") result = "" step_times = [] with model.transformer.h.inference_session(max_length=args.seq_len) as sess: for step in range(args.seq_len): start_time = perf_counter() outputs = model.generate(max_new_tokens=1, session=sess) result += tokenizer.decode(outputs[0]) if step >= args.warmup_steps: step_times.append(perf_counter() - start_time) speed = 1 / np.mean(step_times) logger.info(f"{process_idx=} {step=} {speed=:.2f}") logger.info(f"Final result: {process_idx=} {speed=:.2f}") if __name__ == "__main__": main()
TheGrid-main
benchmarks/benchmark_inference.py
#!/usr/bin/env python3 import argparse import multiprocessing as mp from time import perf_counter import numpy as np import torch from hivemind.utils.logging import get_logger from grid import AutoDistributedModel from grid.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS logger = get_logger() def main(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str, default="Agora/bloom") parser.add_argument("--initial_peers", type=str, nargs="+", default=PUBLIC_INITIAL_PEERS) parser.add_argument("--torch_dtype", type=str, default="bfloat16") parser.add_argument("--n_processes", type=str, default=1) parser.add_argument("--seq_len", type=int, default=128) parser.add_argument("--n_steps", type=int, default=100) parser.add_argument("--batch_size", type=int, required=True) parser.add_argument("--warmup_steps", type=int, default=1) args = parser.parse_args() if args.n_processes == "n_gpus": args.n_processes = torch.cuda.device_count() else: args.n_processes = int(args.n_processes) processes = [mp.Process(target=benchmark_forward, args=(i, args)) for i in range(args.n_processes)] for proc in processes: proc.start() for proc in processes: proc.join() @torch.inference_mode() def benchmark_forward(process_idx, args): model = AutoDistributedModel.from_pretrained( args.model, initial_peers=args.initial_peers, torch_dtype=DTYPE_MAP[args.torch_dtype], ) logger.info(f"Created model: {process_idx=} {model.device=}") torch.manual_seed(42) step_times = [] for step in range(args.warmup_steps + args.n_steps): start_time = perf_counter() input_ids = torch.randint(0, model.config.vocab_size, size=(args.batch_size, args.seq_len)) logger.info(f"{process_idx=} Fwd begin {input_ids.shape=}") model(input_ids) # We don't use model.lm_head logger.info(f"{process_idx=} Fwd end") if step >= args.warmup_steps: step_times.append(perf_counter() - start_time) speed = input_ids.numel() / np.mean(step_times) logger.info(f"{process_idx=} {step=} {speed=:.2f}") logger.info(f"Final result: {process_idx=} {speed=:.2f}") if __name__ == "__main__": main()
TheGrid-main
benchmarks/benchmark_forward.py
""" Utilities for declaring and retrieving active model layers using a shared DHT. """ from __future__ import annotations import math from functools import partial from typing import Dict, List, Optional, Sequence, Union from hivemind.dht import DHT, DHTNode, DHTValue from hivemind.p2p import PeerID from hivemind.utils import DHTExpiration, MPFuture, get_dht_time, get_logger from grid.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ModuleUID, RemoteModuleInfo, ServerInfo logger = get_logger(__name__) def declare_active_modules( dht: DHT, uids: Sequence[ModuleUID], server_info: ServerInfo, expiration_time: DHTExpiration, wait: bool = True, ) -> Union[Dict[ModuleUID, bool], MPFuture[Dict[ModuleUID, bool]]]: """ Declare that your node serves the specified modules; update timestamps if declared previously :param uids: a list of module ids to declare :param wait: if True, awaits for declaration to finish, otherwise runs in background :param throughput: specify your performance in terms of compute throughput :param expiration_time: declared modules will be visible for this many seconds :returns: if wait, returns store status for every key (True = store succeeded, False = store rejected) """ if isinstance(uids, str): uids = [uids] if not isinstance(uids, list): uids = list(uids) for uid in uids: assert isinstance(uid, ModuleUID) and UID_DELIMITER in uid and CHAIN_DELIMITER not in uid return dht.run_coroutine( partial(_declare_active_modules, uids=uids, server_info=server_info, expiration_time=expiration_time), return_future=not wait, ) async def _declare_active_modules( dht: DHT, node: DHTNode, uids: List[ModuleUID], server_info: ServerInfo, expiration_time: DHTExpiration, ) -> Dict[ModuleUID, bool]: num_workers = len(uids) if dht.num_workers is None else min(len(uids), dht.num_workers) return await node.store_many( keys=uids, subkeys=[dht.peer_id.to_base58()] * len(uids), values=[server_info.to_tuple()] * len(uids), expiration_time=expiration_time, num_workers=num_workers, ) def get_remote_module_infos( dht: DHT, uids: Sequence[ModuleUID], expiration_time: Optional[DHTExpiration] = None, active_adapter: Optional[str] = None, *, latest: bool = False, return_future: bool = False, ) -> Union[List[Optional[RemoteModuleInfo]], MPFuture]: return dht.run_coroutine( partial( _get_remote_module_infos, uids=uids, active_adapter=active_adapter, expiration_time=expiration_time, latest=latest, ), return_future=return_future, ) async def _get_remote_module_infos( dht: DHT, node: DHTNode, uids: List[ModuleUID], active_adapter: Optional[str], expiration_time: Optional[DHTExpiration], latest: bool, ) -> List[Optional[RemoteModuleInfo]]: if latest: assert expiration_time is None, "You should define either `expiration_time` or `latest`, not both" expiration_time = math.inf elif expiration_time is None: expiration_time = get_dht_time() num_workers = len(uids) if dht.num_workers is None else min(len(uids), dht.num_workers) found: Dict[ModuleUID, DHTValue] = await node.get_many(uids, expiration_time, num_workers=num_workers) modules: List[Optional[RemoteModuleInfo]] = [None] * len(uids) for i, uid in enumerate(uids): metadata = found[uid] if metadata is None or not isinstance(metadata.value, dict): if metadata is not None: logger.warning(f"Incorrect metadata for {uid}: {metadata}") continue servers = {} for peer_id, server_info in metadata.value.items(): try: peer_id = PeerID.from_base58(peer_id) server_info = ServerInfo.from_tuple(server_info.value) if active_adapter and active_adapter not in server_info.adapters: logger.debug(f"Skipped server {peer_id} since it does not have adapter {active_adapter}") continue servers[peer_id] = server_info except (TypeError, ValueError) as e: logger.warning(f"Incorrect peer entry for uid={uid}, peer_id={peer_id}: {e}") if servers: modules[i] = RemoteModuleInfo(uid, servers) return modules
TheGrid-main
grid/dht_utils.py
import torch PUBLIC_INITIAL_PEERS = [ # IPv4 DNS addresses "/dns/bootstrap1.grid.dev/tcp/31337/p2p/QmedTaZXmULqwspJXz44SsPZyTNKxhnnFvYRajfH7MGhCY", "/dns/bootstrap2.grid.dev/tcp/31338/p2p/QmQGTqmM7NKjV6ggU1ZCap8zWiyKR89RViDXiqehSiCpY5", # IPv6 DNS addresses "/dns6/bootstrap1.grid.dev/tcp/31337/p2p/QmedTaZXmULqwspJXz44SsPZyTNKxhnnFvYRajfH7MGhCY", "/dns6/bootstrap2.grid.dev/tcp/31338/p2p/QmQGTqmM7NKjV6ggU1ZCap8zWiyKR89RViDXiqehSiCpY5", # Reserved IPs "/ip4/159.89.214.152/tcp/31337/p2p/QmedTaZXmULqwspJXz44SsPZyTNKxhnnFvYRajfH7MGhCY", "/ip4/159.203.156.48/tcp/31338/p2p/QmQGTqmM7NKjV6ggU1ZCap8zWiyKR89RViDXiqehSiCpY5", ] # The reachability API is currently used only when connecting to the public swarm REACHABILITY_API_URL = "https://health.grid.dev" DTYPE_MAP = dict(bfloat16=torch.bfloat16, float16=torch.float16, float32=torch.float32, auto="auto")
TheGrid-main
grid/constants.py
import os os.environ.setdefault("BITSANDBYTES_NOWELCOME", "1") import hivemind import transformers from packaging import version from grid.client import * from grid.models import * from grid.utils import * from grid.utils.logging import initialize_logs as _initialize_logs __version__ = "2.0.1" if not os.getenv("GRID_IGNORE_DEPENDENCY_VERSION"): assert ( version.parse("4.31.0") <= version.parse(transformers.__version__) < version.parse("5.0.0") ), "Please install a proper transformers version: pip install transformers>=4.31.0,<5.0.0" def _override_bfloat16_mode_default(): if os.getenv("USE_LEGACY_BFLOAT16") is None: hivemind.compression.base.USE_LEGACY_BFLOAT16 = False _initialize_logs() _override_bfloat16_mode_default()
TheGrid-main
grid/__init__.py
import dataclasses from enum import Enum from typing import Any, Dict, Optional, Sequence, Tuple import pydantic from hivemind import PeerID from hivemind.moe.expert_uid import ExpertUID from grid.server.memory_cache import Handle ModuleUID = str UID_DELIMITER = "." # delimits parts of one module uid, e.g. "bloom.transformer.h.4.self_attention" CHAIN_DELIMITER = " " # delimits multiple uids in a sequence, e.g. "bloom.layer3 bloom.layer4" class ServerState(Enum): OFFLINE = 0 JOINING = 1 ONLINE = 2 RPS = pydantic.confloat(ge=0, allow_inf_nan=False, strict=True) @pydantic.dataclasses.dataclass class ServerInfo: state: ServerState throughput: RPS public_name: Optional[str] = None version: Optional[str] = None network_rps: Optional[RPS] = None forward_rps: Optional[RPS] = None inference_rps: Optional[RPS] = None adapters: Sequence[str] = () torch_dtype: Optional[str] = None quant_type: Optional[str] = None using_relay: Optional[bool] = None cache_tokens_left: Optional[pydantic.conint(ge=0, strict=True)] = None next_pings: Optional[Dict[str, pydantic.confloat(ge=0, strict=True)]] = None def to_tuple(self) -> Tuple[int, float, dict]: extra_info = dataclasses.asdict(self) del extra_info["state"], extra_info["throughput"] return (self.state.value, self.throughput, extra_info) @classmethod def from_tuple(cls, source: tuple): state, throughput = source[:2] extra_info = source[2] if len(source) > 2 else {} # pydantic will validate existing fields and ignore extra ones return cls(state=ServerState(state), throughput=throughput, **extra_info) @dataclasses.dataclass class RemoteModuleInfo: """A remote module that is served by one or more servers""" uid: ModuleUID servers: Dict[PeerID, ServerInfo] @dataclasses.dataclass class RemoteSpanInfo: """A chain of remote blocks served by one specific remote peer""" peer_id: PeerID start: int end: int server_info: ServerInfo @property def length(self): return self.end - self.start RPCInfo = Dict[str, Any] @dataclasses.dataclass(frozen=True) class InferenceMetadata: uid: ExpertUID prefix_length: int cache_handles: Tuple[Handle, ...] active_adapter: Optional[str]
TheGrid-main
grid/data_structures.py
""" A pytorch memory cache that can be allocated by ConnectionHandler (on cpu) and used over multiple calls to Runtime. For now, the only purpose of this code is to ensure that allocated memory will be deleted properly. """ import asyncio import contextlib import ctypes import multiprocessing as mp import os import time from typing import AsyncContextManager, Dict, Optional, Sequence import hivemind import torch from hivemind.utils import TensorDescriptor, get_logger from grid.utils.asyncio import shield_and_wait logger = get_logger(__name__) Handle = int class MemoryCache: """A shared cache for storing tensors that persist across calls. Main use case: storing past attention KVs""" def __init__(self, max_size_bytes: Optional[int], alloc_timeout: float): self.max_size_bytes = max_size_bytes if max_size_bytes is not None else (2**64 - 1) self.alloc_timeout = alloc_timeout self._lock_metadata = mp.Lock() self._current_size = mp.Value(ctypes.c_int64, 0, lock=False) self._handle_counter = mp.Value(ctypes.c_int64, 0, lock=False) self._allocated_tensors: Dict[Handle, torch.Tensor] = {} self.runtime_pid = os.getpid() self._pipe_recv, self._pipe_send = mp.Pipe(duplex=False) # any ConnectionHandler -> runtime self._lock_acquire_memory = mp.Lock() self._memory_freed_event = mp.Event() @property def current_size_bytes(self) -> int: return self._current_size.value @current_size_bytes.setter def current_size_bytes(self, value: int): self._current_size.value = value @property def bytes_left(self) -> int: return self.max_size_bytes - self.current_size_bytes @property def handle_counter(self) -> int: return self._handle_counter.value @handle_counter.setter def handle_counter(self, value: int): self._handle_counter.value = value @contextlib.asynccontextmanager async def allocate_cache(self, *descriptors: TensorDescriptor) -> AsyncContextManager[Sequence[Handle]]: """ Create a handle that is associated with buffers on unique device. If cache full, raises AllocationFailed. :param descriptors: one or more tensors tensor of this size, dtype, etc :note: if descriptors reside on different devices, it is expected that they are approximately balanced across devices; if not, it will count maximum tensor allocation across devices for the purposes of size limit :note: This function should be called by connection handlers, it can be called concurrently from multiple processes. Furthermore, it can be called concurrently with at most one use_cache call in runtime. """ assert os.getpid() != self.runtime_pid, "must be called by a ConnectionHandler, not runtime" assert all(descr.device is not None for descr in descriptors), "please specify allocated devices" max_alloc_size = self.get_allocation_size(*descriptors) gib = 1024**3 cur_size, max_size = self.current_size_bytes, self.max_size_bytes friendly_max_size = f"{max_size / gib:.2f}" if max_size != 2**64 - 1 else "inf" logger.info( f"rpc_inference.wait_for_alloc(size={max_alloc_size / gib:.2f} GiB), " f"already used {cur_size / gib:.2f}/{friendly_max_size} GiB ({cur_size / max_size * 100:.1f}%)" ) alloc_task = asyncio.create_task(self._schedule_alloc(max_alloc_size, *descriptors)) try: handles = await shield_and_wait(alloc_task) logger.info(f"rpc_inference.alloc(size={max_alloc_size / gib:.2f} GiB)") yield handles finally: self._free(max_alloc_size, alloc_task) @staticmethod def get_allocation_size(*descriptors: TensorDescriptor) -> int: """Return the memory size (bytes) to be allocated on a device. If there are many devices, return maximum""" alloc_size_by_device = {} for descr in descriptors: tensor_size = descr.numel() * torch.finfo(descr.dtype).bits // 8 alloc_size_by_device[descr.device] = alloc_size_by_device.get(descr.device, 0) + tensor_size return max(alloc_size_by_device.values()) async def _schedule_alloc(self, alloc_size: int, *descriptors: TensorDescriptor) -> Sequence[Handle]: """ This method should be called inside asyncio.shield() because: - hivemind.utils.enter_asynchronously() does not always release the lock on cancellation """ loop = asyncio.get_event_loop() async with hivemind.utils.enter_asynchronously(self._lock_acquire_memory): if self.current_size_bytes + alloc_size > self.max_size_bytes: await loop.run_in_executor(None, self._wait_until_available, alloc_size, self.alloc_timeout) with self._lock_metadata: handles = tuple(int(self.handle_counter) + i for i in range(len(descriptors))) self.current_size_bytes += alloc_size self.handle_counter += len(handles) # note: this will eventually overflow and it is okay self._pipe_send.send((handles, descriptors)) return handles def _free(self, alloc_size: int, alloc_task: asyncio.Task) -> None: if alloc_task.exception() is not None: return handles = alloc_task.result() with self._lock_metadata: self._pipe_send.send((handles, None)) # signal runtime to free these handles self.current_size_bytes -= alloc_size self._memory_freed_event.set() def _wait_until_available(self, allocated_size: int, timeout: Optional[float] = None): # note: this function should only be called inside _lock_acquire_memory! if allocated_size > self.max_size_bytes: raise AllocationFailed( f"Could not allocate {allocated_size} bytes, max cache size = {self.max_size_bytes} bytes" ) deadline = None if timeout is None else time.perf_counter() + timeout while self.current_size_bytes + allocated_size > self.max_size_bytes: remaining_time = deadline - time.perf_counter() if timeout is not None else None if not self._memory_freed_event.wait(remaining_time): raise AllocationFailed( f"Server's attention cache is full, failed to allocate {allocated_size} bytes in {timeout} seconds" ) self._memory_freed_event.clear() @contextlib.contextmanager def use_cache(self, *handles: Handle) -> Sequence[torch.Tensor]: """ Return one or more tensors previously allocated with allocate_cache, :note: This method is called by ModuleBackend in runtime: a single process with NO process parallelism. However, runtime may call use_cache concurrently with one or more connection handlers calling allocate_cache """ assert os.getpid() == self.runtime_pid # note: this specific function is not concurrent, so you can safely allocate/offload/defragment data here # read creation/deletion requests from connection handlers while self._pipe_recv.poll(): recv_handles, recv_data = self._pipe_recv.recv() if recv_data is not None: # create new tensors assert len(recv_handles) == len(recv_data) for handle, descr in zip(recv_handles, recv_data): self._allocated_tensors[handle] = descr.make_zeros() assert handle in self._allocated_tensors, f"Sanity check failed: no such handle ({handle})" else: # delete tensors by handle for handle in recv_handles: if handle not in self._allocated_tensors: logger.warning( f"Sanity check failed: asked to delete handle {handle}, but there is no such handle" ) self._allocated_tensors.pop(handle, None) yield tuple(self._allocated_tensors[handle] for handle in handles) class AllocationFailed(Exception): pass
TheGrid-main
grid/server/memory_cache.py
import ctypes import multiprocessing as mp import threading import time from concurrent.futures._base import PENDING from dataclasses import dataclass, field from queue import PriorityQueue from typing import Any, List, Optional, Sequence, Tuple, Union import torch from hivemind import get_logger from hivemind.moe.server.task_pool import TaskPoolBase from hivemind.utils.mpfuture import ALL_STATES, MPFuture logger = get_logger(__name__) @dataclass(order=True, frozen=True) class Task: priority: float time_submitted: float future: MPFuture = field(compare=False) args: Sequence[torch.Tensor] = field(compare=False) @property def uid(self) -> int: return self.future._uid class PrioritizedTaskPool(TaskPoolBase): """ Aggregates requests from multiple ConnectionHandler instances, orders them for processing in Runtime, then returns results (or exception) to the corresponding ConnectionHandler. Runs a background process. A single PrioritizedTaskPool services a specific function (e.g. layer1.forward, layer2.forward or layer1.backward) :note: unlike hivemind.moe TaskPool, this pool does *not* combine incoming requests into batches. This would require grouping requests of different length. :param process_func: function to be applied to every formed batch; called by Runtime Note that process_func should accept only positional args (Tensors) and return a flat tuple of Tensors :param max_batch_size: process at most this many inputs in a batch (task contains have one or several inputs) Measured in the total number of tokens (i.e. batch size * sequence length) :param name: pool name, used for logging :param min_batch_size: process at least this many inputs in a batch, otherwise wait for more :param device: if specified, input tensors will be moved to that device by default :param start: if True, start automatically at the end of __init__ """ def __init__( self, process_func: callable, max_batch_size: int, name: str, min_batch_size=1, device: Optional[torch.device] = None, daemon=True, start=False, ): super().__init__(process_func, daemon=daemon, name=name) self.min_batch_size, self.max_batch_size = min_batch_size, max_batch_size self.device = device self.submitted_tasks = mp.SimpleQueue() # interaction with ConnectionHandlers self._ordered_tasks = PriorityQueue() # interaction with Runtime - only valid inside Runtime self._prioritizer_thread = threading.Thread( name=self.name + "_prioritizer", target=self._prioritize_tasks, args=[self.submitted_tasks, self._ordered_tasks], daemon=True, ) self._dispatched_tasks = {} self.batch_receiver, self.batch_sender = mp.Pipe(duplex=False) self._oldest_undispatched_timestamp = mp.Value(ctypes.c_double, 1.0) self.priority = float("inf"), float("inf") # (first task priority, first task timestamp) self._stop = mp.Event() if start: self.start() @staticmethod def _prioritize_tasks(submitted_tasks: mp.SimpleQueue, ordered_tasks: PriorityQueue): """Read tasks from incoming queue and put them into a local priority queue""" while True: task = submitted_tasks.get() if task is None: logger.debug("Shutting down prioritizer thread") break ordered_tasks.put(task, block=True) def start(self): assert not self.is_alive() and not self._prioritizer_thread.is_alive() self._prioritizer_thread.start() super().start() def shutdown(self, timeout: float = 3): self.submitted_tasks.put(None) # Shuts down self._prioritizer_thread self._stop.set() self.join(timeout) if self.is_alive(): logger.warning(f"{self.__class__.__name__} failed to shut down gracefully, sending SIGTERM") self.terminate() def submit_task(self, *args: Any, priority: float = 0.0) -> MPFuture: """Add task to this pool's queue, return Future for its output""" future = MPFuture() # Remove shmem from MPFuture. This disables the .cancel() feature but # saves the server from "could not unlink the shared memory file" crashes during rebalancing future._shared_state_code = torch.tensor([ALL_STATES.index(PENDING)], dtype=torch.uint8) task = Task(priority, time.monotonic(), future, args) if self.get_task_size(task) > self.max_batch_size: exc = ValueError(f"Task size greater than max_batch_size ({self.max_batch_size}), it can't be processed") task.future.set_exception(exc) else: self.submitted_tasks.put(task) self.batch_sender.send(None) # use this pipe to count the number of unfinished batches if (task.priority, task.time_submitted) < self.priority: self.priority = (task.priority, task.time_submitted) return task.future def get_task_size(self, task: Task) -> int: """compute task processing complexity; defaults to the total number of tokens""" if task.args and task.args[0].ndim >= 2: return task.args[0].shape[0] * task.args[0].shape[1] return 1 def load_batch_to_runtime( self, timeout: Optional[float] = None, device: Optional[torch.device] = None ) -> Tuple[Any, List[torch.Tensor]]: """receive next batch of arrays""" device = device if device is not None else self.device task = self._ordered_tasks.get(block=True, timeout=timeout) batch_inputs = [_move_to_device_if_tensor(arg, device, share_memory=False) for arg in task.args] self._dispatched_tasks[task.uid] = task self.batch_receiver.recv() # reduce the number of active batches if not self._ordered_tasks.empty(): first_remaining_task: Task = self._ordered_tasks.queue[0] self.priority = (first_remaining_task.priority, first_remaining_task.time_submitted) return task.uid, batch_inputs def send_outputs_from_runtime(self, uid: int, batch_outputs: List[torch.Tensor]): """send results for a processed batch, previously loaded through load_batch_to_runtime""" batch_outputs = [_move_to_device_if_tensor(output, device="cpu", share_memory=True) for output in batch_outputs] task = self._dispatched_tasks.pop(uid, None) if task is None: logger.error( f"Internal error: task task with index {uid} is missing from the dictionary; " f"Could not set result" ) else: task.future.set_result(batch_outputs) def send_exception_from_runtime(self, uid: int, exception: BaseException): task = self._dispatched_tasks.pop(uid, None) if task is None: logger.error( f"Internal error: task task with index {uid} is missing from the dictionary; " f"Could not set exception {exception}" ) else: task.future.set_exception(exception) def run(self, *args, **kwargs): self._stop.wait() @property def empty(self): return not self.batch_receiver.poll() @property def priority(self) -> Tuple[float, float]: """The priority of this pool equals the (priority, timestamp) of the most important task in it.""" return float(self._priority.value), float(self._oldest_undispatched_timestamp.value) @priority.setter def priority(self, item: Tuple[float, float]): assert len(item) == 2 self._priority.value = float(item[0]) self._oldest_undispatched_timestamp.value = float(item[1]) def _move_to_device_if_tensor(arg: Any, device: Union[torch.device, str], share_memory: bool = False): if isinstance(arg, torch.Tensor): arg = arg.detach().to(device, non_blocking=not share_memory).requires_grad_(arg.requires_grad) # note: it is important that non_blocking is disabled if share_memory=True; using share_memory on a tensor # produced by a non-blocking copy will result in undefined behavior (depending on your gpu speed) if share_memory: arg = arg.share_memory_() return arg
TheGrid-main
grid/server/task_pool.py
from __future__ import annotations import gc import math import multiprocessing as mp import random import threading import time from typing import Dict, List, Optional, Sequence, Union import hivemind import torch from hivemind import DHT, MAX_DHT_TIME_DISCREPANCY_SECONDS, BatchTensorDescriptor, get_dht_time from hivemind.moe.server.layers import add_custom_models_from_file from hivemind.moe.server.runtime import Runtime from hivemind.proto.runtime_pb2 import CompressionType from hivemind.utils.logging import get_logger from transformers import PretrainedConfig import grid from grid.constants import DTYPE_MAP, PUBLIC_INITIAL_PEERS from grid.data_structures import CHAIN_DELIMITER, UID_DELIMITER, ServerInfo, ServerState from grid.dht_utils import declare_active_modules, get_remote_module_infos from grid.server import block_selection from grid.server.backend import TransformerBackend, merge_inference_pools_inplace from grid.server.block_utils import get_block_size, resolve_block_dtype from grid.server.from_pretrained import load_pretrained_block from grid.server.handler import TransformerConnectionHandler from grid.server.memory_cache import MemoryCache from grid.server.reachability import ReachabilityProtocol, check_direct_reachability, validate_reachability from grid.server.throughput import get_dtype_name, get_server_throughput from grid.utils.auto_config import AutoDistributedConfig from grid.utils.convert_block import QuantType, check_device_balance, convert_block from grid.utils.ping import PingAggregator from grid.utils.random import sample_up_to from grid.utils.version import get_compatible_model_repo logger = get_logger(__name__) class Server: """ Runs ModuleContainer, periodically checks that the network is balanced, restarts the ModuleContainer with other layers if the imbalance is significant """ def __init__( self, *, initial_peers: List[str], dht_prefix: Optional[str], converted_model_name_or_path: str, public_name: Optional[str] = None, throughput: Union[float, str], num_blocks: Optional[int] = None, block_indices: Optional[str] = None, num_handlers: int = 8, inference_max_length: Optional[int] = None, min_batch_size: int = 1, max_batch_size: Optional[int] = None, max_chunk_size_bytes: int = 256 * 1024 * 1024, attn_cache_tokens: Optional[int] = None, torch_dtype: str = "auto", revision: Optional[str] = None, cache_dir: Optional[str] = None, max_disk_space: Optional[int] = None, alloc_timeout: float = 5, device: Optional[Union[str, torch.device]] = None, compression=CompressionType.NONE, stats_report_interval: Optional[int] = None, custom_module_path=None, update_period: float = 60, expiration: Optional[float] = None, request_timeout: float = 3 * 60, session_timeout: float = 30 * 60, step_timeout: float = 5 * 60, prefetch_batches: int = 1, sender_threads: int = 1, balance_quality: float = 0.75, mean_balance_check_period: float = 120, mean_block_selection_delay: float = 2.5, token: Optional[Union[str, bool]] = None, quant_type: Optional[QuantType] = None, tensor_parallel_devices: Optional[Sequence[torch.device]] = None, skip_reachability_check: bool = False, dht_client_mode: Optional[bool] = None, use_relay: bool = True, use_auto_relay: bool = True, adapters: Sequence[str] = (), **kwargs, ): """Create a server with one or more bloom blocks. See run_server.py for documentation.""" converted_model_name_or_path = get_compatible_model_repo(converted_model_name_or_path) self.converted_model_name_or_path = converted_model_name_or_path self.num_handlers = num_handlers self.compression = compression self.stats_report_interval, self.update_period = stats_report_interval, update_period self.prefetch_batches, self.sender_threads = prefetch_batches, sender_threads self.revision, self.token = revision, token if custom_module_path is not None: add_custom_models_from_file(custom_module_path) self.block_config = AutoDistributedConfig.from_pretrained( converted_model_name_or_path, use_auth_token=token, revision=revision, ) if dht_prefix is None: dht_prefix = self.block_config.dht_prefix assert UID_DELIMITER not in dht_prefix and CHAIN_DELIMITER not in dht_prefix, ( f"DHT prefix should not contain '{UID_DELIMITER}' or '{CHAIN_DELIMITER}'. " f"Please specify another --dht_prefix manually when starting a server" ) self.dht_prefix = dht_prefix if expiration is None: expiration = max(2 * update_period, MAX_DHT_TIME_DISCREPANCY_SECONDS) self.expiration = expiration self.request_timeout = request_timeout self.session_timeout, self.step_timeout = session_timeout, step_timeout self.module_uids = [ f"{self.dht_prefix}{UID_DELIMITER}{block_index}" for block_index in range(self.block_config.num_hidden_layers) ] if dht_client_mode is None: is_reachable = check_direct_reachability(initial_peers=initial_peers, use_relay=False, **kwargs) dht_client_mode = is_reachable is False # if could not check reachability (returns None), run a full peer logger.info(f"This server is accessible {'via relays' if dht_client_mode else 'directly'}") self.dht = DHT( initial_peers=initial_peers, start=True, num_workers=self.block_config.num_hidden_layers, use_relay=use_relay, use_auto_relay=use_auto_relay, client_mode=dht_client_mode, **kwargs, ) self.reachability_protocol = ReachabilityProtocol.attach_to_dht(self.dht) if not dht_client_mode else None visible_maddrs_str = [str(a) for a in self.dht.get_visible_maddrs()] if initial_peers == PUBLIC_INITIAL_PEERS: logger.info("Connecting to the public swarm") else: logger.info(f"Connecting to a private swarm, initial peers: {initial_peers}") logger.info(f"Running a server on {visible_maddrs_str}") self.should_validate_reachability = not skip_reachability_check and initial_peers == PUBLIC_INITIAL_PEERS if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" device = torch.device(device) if device.type == "cuda" and device.index is None: device = torch.device(device.type, index=0) self.device = device torch_dtype = resolve_block_dtype(self.block_config, DTYPE_MAP[torch_dtype]) self.torch_dtype = torch_dtype if tensor_parallel_devices is None: tensor_parallel_devices = (device,) self.tensor_parallel_devices = tuple(map(torch.device, tensor_parallel_devices)) if len(self.tensor_parallel_devices) > 1: logger.info(f"Model weights will be split between {', '.join(tensor_parallel_devices)}") check_device_balance(self.tensor_parallel_devices) if quant_type is None: if device.type == "cuda": quant_type = QuantType.NF4 if self.block_config.model_type == "llama" else QuantType.INT8 else: quant_type = QuantType.NONE self.quant_type = quant_type logger.info(f"Model weights are loaded in {get_dtype_name(torch_dtype, quant_type)} format") is_multiquery_attn = self.block_config.num_key_value_groups > 1 if max_batch_size is None: max_batch_size = 8192 if is_multiquery_attn else 2048 if inference_max_length is None: inference_max_length = 8192 if is_multiquery_attn else 2048 self.min_batch_size, self.max_batch_size = min_batch_size, max_batch_size self.inference_max_length = inference_max_length self.max_chunk_size_bytes = max_chunk_size_bytes # For attention cache in GPU or RAM if attn_cache_tokens is None: attn_cache_tokens = 32768 if is_multiquery_attn else 8192 cache_values_per_block = 2 * self.block_config.hidden_size * attn_cache_tokens cache_values_per_block //= self.block_config.num_key_value_groups self._cache_bytes_per_block = cache_values_per_block * torch.finfo(self.torch_dtype).bits // 8 # For disk cache self.cache_dir = cache_dir self.max_disk_space = max_disk_space self.adapters = adapters assert num_blocks is None or block_indices is None, "Please specify num_blocks or block_indices, not both" if num_blocks is None and block_indices is None: num_blocks = self._choose_num_blocks() if block_indices is not None: try: first_block_index, last_block_index = block_indices.split(":") first_block_index, last_block_index = map(int, map(str.strip, (first_block_index, last_block_index))) except Exception: raise ValueError(f"Failed to parse `--block_indices {block_indices}`, must be start:end (e.g. 0:18)") block_indices = range(first_block_index, last_block_index) num_blocks = len(block_indices) self.strict_block_indices, self.num_blocks = block_indices, num_blocks gib = 1024**3 self.attn_cache_bytes = self._cache_bytes_per_block * num_blocks logger.info(f"Attention cache for all blocks will consume up to {self.attn_cache_bytes / gib:.2f} GiB") self.alloc_timeout = alloc_timeout assert isinstance(throughput, float) or throughput in ["auto", "eval"] if throughput in ["auto", "eval"]: throughput_info = get_server_throughput( converted_model_name_or_path, self.block_config, device, torch_dtype, num_blocks=num_blocks, quant_type=quant_type, tensor_parallel_devices=self.tensor_parallel_devices, force_eval=(throughput == "eval"), cache_dir=cache_dir, ) else: throughput_info = {"throughput": throughput} self.server_info = ServerInfo( state=ServerState.JOINING, public_name=public_name, version=grid.__version__, adapters=tuple(adapters), torch_dtype=str(torch_dtype).replace("torch.", ""), quant_type=quant_type.name.lower(), using_relay=self.dht.client_mode, **throughput_info, ) self.balance_quality = balance_quality self.mean_balance_check_period = mean_balance_check_period self.mean_block_selection_delay = mean_block_selection_delay self.stop = threading.Event() def _choose_num_blocks(self) -> int: assert self.device.type == "cuda", ( "GPU is not available. If you want to run a CPU-only server, please specify --num_blocks. " "CPU-only servers in the public swarm are discouraged since they are much slower" ) num_devices = len(self.tensor_parallel_devices) if self.tensor_parallel_devices else 1 if num_devices > 1: memory_per_device = tuple( torch.cuda.get_device_properties(device).total_memory for device in self.tensor_parallel_devices ) total_memory = min(memory_per_device) * num_devices if max(memory_per_device) / min(memory_per_device) > 1.5: raise ValueError( "GPU devices have highly uneven memory, which makes tensor parallelism inefficient. " "Please launch individual servers on each GPU or set --num_blocks manually to " "override this exception." ) else: total_memory = torch.cuda.get_device_properties(self.device).total_memory gib = 1024**3 # Estimate of GPU memory used in rpc_backward (2 GiB for BLOOM, proportional for other models) autograd_memory = 2 * gib * num_devices / 14336 * self.block_config.hidden_size block_size = get_block_size(self.block_config, "memory", dtype=self.torch_dtype, quant_type=self.quant_type) total_memory_per_block = block_size + self._cache_bytes_per_block if self.adapters: # Delay import of grid.utils.peft to avoid unnecessary import of bitsandbytes from grid.utils.peft import estimate_adapter_memory_per_block total_memory_per_block += estimate_adapter_memory_per_block( self.block_config, self.torch_dtype, self.adapters, token=self.token, cache_dir=self.cache_dir, max_disk_space=self.max_disk_space, ) num_blocks = math.floor((total_memory - autograd_memory) / total_memory_per_block) assert num_blocks >= 1, "Your GPU does not have enough memory to serve at least one block" num_blocks = min(num_blocks, self.block_config.num_hidden_layers) logger.info( f"Server will fill all your GPU memory with {num_blocks} transformer blocks. " f"If you want to leave some free GPU memory, please specify a lesser --num_blocks manually" ) return num_blocks def run(self): while True: block_indices = self._choose_blocks() self.module_container = ModuleContainer.create( dht=self.dht, dht_prefix=self.dht_prefix, converted_model_name_or_path=self.converted_model_name_or_path, block_config=self.block_config, attn_cache_bytes=self.attn_cache_bytes, alloc_timeout=self.alloc_timeout, server_info=self.server_info, block_indices=block_indices, num_handlers=self.num_handlers, min_batch_size=self.min_batch_size, max_batch_size=self.max_batch_size, max_chunk_size_bytes=self.max_chunk_size_bytes, inference_max_length=self.inference_max_length, torch_dtype=self.torch_dtype, cache_dir=self.cache_dir, max_disk_space=self.max_disk_space, device=self.device, compression=self.compression, stats_report_interval=self.stats_report_interval, update_period=self.update_period, expiration=self.expiration, request_timeout=self.request_timeout, session_timeout=self.session_timeout, step_timeout=self.step_timeout, prefetch_batches=self.prefetch_batches, sender_threads=self.sender_threads, revision=self.revision, token=self.token, quant_type=self.quant_type, tensor_parallel_devices=self.tensor_parallel_devices, should_validate_reachability=self.should_validate_reachability, start=True, ) try: self.module_container.ready.wait() while True: timeout = random.random() * 2 * self.mean_balance_check_period if self.stop.wait(timeout): return if not self.module_container.is_healthy(): logger.warning("One of subprocesses crashed, restarting the server") break if self._should_choose_other_blocks(): logger.info("Swarm is imbalanced, server will load other blocks") break # Stop serving this set of modules finally: self.module_container.shutdown() self._clean_memory_and_fds() def _clean_memory_and_fds(self): del self.module_container gc.collect() # In particular, this closes unused file descriptors if self.device.type == "cuda": torch.cuda.empty_cache() allocated_vram = torch.cuda.memory_allocated(self.device) reserved_vram = torch.cuda.memory_reserved(self.device) gib = 1024**3 logger.info( f"Cleaning up, left {allocated_vram / gib:.1f} GiB allocated memory, " f"{reserved_vram / gib:.1f} GiB reserved memory" ) def _choose_blocks(self) -> List[int]: if self.strict_block_indices is not None: return self.strict_block_indices # If multiple servers (e.g., launched on the same machine by a script) get to this line at the same time, # this delay decreases the probability of a race condition while choosing the best blocks to serve. time.sleep(random.random() * 2 * self.mean_block_selection_delay) module_infos = get_remote_module_infos(self.dht, self.module_uids, latest=True) return block_selection.choose_best_blocks(self.num_blocks, module_infos) def _should_choose_other_blocks(self) -> bool: if self.strict_block_indices is not None: return False module_infos = get_remote_module_infos(self.dht, self.module_uids, latest=True) return block_selection.should_choose_other_blocks(self.dht.peer_id, module_infos, self.balance_quality) def shutdown(self): self.stop.set() if self.reachability_protocol is not None: self.reachability_protocol.shutdown() self.dht.shutdown() self.dht.join() class ModuleContainer(threading.Thread): """Serves a set of specific Bloom layers for inference, forward, and backward. Announces itself over the DHT.""" # noinspection PyMethodOverriding @classmethod def create( cls, *, dht: DHT, dht_prefix: str, converted_model_name_or_path: str, block_config: PretrainedConfig, attn_cache_bytes: int, alloc_timeout: float, server_info: ServerInfo, block_indices: List[int], min_batch_size: int, max_batch_size: int, max_chunk_size_bytes: int, torch_dtype: torch.dtype, cache_dir: str, max_disk_space: int, device: Union[str, torch.device], compression: CompressionType, update_period: float, expiration: Optional[float], revision: Optional[str], token: Optional[Union[str, bool]], quant_type: QuantType, tensor_parallel_devices: Sequence[torch.device], should_validate_reachability: bool, **kwargs, ) -> ModuleContainer: module_uids = [f"{dht_prefix}{UID_DELIMITER}{block_index}" for block_index in block_indices] memory_cache = MemoryCache(attn_cache_bytes, alloc_timeout) server_info.state = ServerState.JOINING dht_announcer = ModuleAnnouncerThread( module_uids, dht, server_info, block_config=block_config, memory_cache=memory_cache, update_period=update_period, expiration=expiration, daemon=True, ) dht_announcer.start() logger.info(f"Announced that blocks {block_indices} are joining") assert len(tensor_parallel_devices) >= 1 and all(isinstance(d, torch.device) for d in tensor_parallel_devices) blocks = {} try: for module_uid, block_index in zip(module_uids, block_indices): block = load_pretrained_block( converted_model_name_or_path, block_index, config=block_config, torch_dtype=torch_dtype, revision=revision, token=token, cache_dir=cache_dir, max_disk_space=max_disk_space, ) block = convert_block( block, block_index, block_config, tensor_parallel_devices, device, quant_type, adapters=server_info.adapters, freeze=True, token=token, cache_dir=cache_dir, max_disk_space=max_disk_space, ) blocks[module_uid] = TransformerBackend( module_uid, block, config=block_config, memory_cache=memory_cache, backend_dtype=torch_dtype, max_chunk_size_bytes=max_chunk_size_bytes, args_schema=( BatchTensorDescriptor( 1, 2048, block_config.hidden_size, dtype=torch_dtype, compression=compression ), ), kwargs_schema={}, outputs_schema=( BatchTensorDescriptor( 1, 2048, block_config.hidden_size, dtype=torch_dtype, compression=compression ), ), min_batch_size=min_batch_size, max_batch_size=max_batch_size, ) merge_inference_pools_inplace(blocks) if should_validate_reachability: validate_reachability(dht.peer_id) except: logger.debug("Shutting down backends") for backend in blocks.values(): backend.shutdown() dht_announcer.announce(ServerState.OFFLINE) logger.info(f"Announced that blocks {module_uids} are offline") raise return cls( dht, dht_prefix, blocks, dht_announcer=dht_announcer, server_info=server_info, update_period=update_period, expiration=expiration, **kwargs, ) def __init__( self, dht: DHT, dht_prefix: str, module_backends: Dict[str, TransformerBackend], *, inference_max_length: int, num_handlers: int, dht_announcer: ModuleAnnouncerThread, server_info: ServerInfo, update_period: float, expiration: Optional[float] = None, request_timeout: float, session_timeout: float, step_timeout: float, start: bool, **kwargs, ): super().__init__() self.dht, self.module_backends = dht, module_backends self.server_info, self.update_period, self.expiration = server_info, update_period, expiration handler_event_queues = [mp.Queue() for _ in range(num_handlers)] self.conn_handlers = [ TransformerConnectionHandler( dht, self.module_backends, adapters=server_info.adapters, dht_prefix=dht_prefix, handler_event_queues=handler_event_queues, handler_index=i, inference_max_length=inference_max_length, request_timeout=request_timeout, session_timeout=session_timeout, step_timeout=step_timeout, ) for i in range(num_handlers) ] self.runtime = RuntimeWithDeduplicatedPools(self.module_backends, device=None, **kwargs) # note: We set device=None in runtime to avoid moving all modules to device 0 in runtime.run(). tensor_parallel has already moved it as needed. dht_announcer.announce(ServerState.ONLINE) self.dht_announcer = dht_announcer if start: self.run_in_background(await_ready=True) def run(self): """ Runs ModuleContainer in the current thread. Initializes dht if necessary, starts connection handlers, runs Runtime (self.runtime) to process incoming requests. """ for handler in self.conn_handlers: handler.run_in_background() self.runtime.run() def run_in_background(self, await_ready=True, timeout=None): """ Starts ModuleContainer in a background thread. if await_ready, this method will wait until the container is ready to process incoming requests or for :timeout: seconds max. """ self.start() if await_ready and not self.ready.wait(timeout=timeout): raise TimeoutError("ModuleContainer didn't notify .ready in {timeout} seconds") @property def ready(self) -> mp.synchronize.Event: """ An event (multiprocessing.Event) that is set when the container is ready to process requests. Example ======= >>> container.start() >>> container.ready.wait(timeout=10) >>> print("Container ready" if container.ready.is_set() else "Container didn't start in 10 seconds") """ return self.runtime.ready # mp.Event that is true if self is ready to process batches def is_healthy(self) -> bool: return all(handler.is_alive() for handler in self.conn_handlers) and all( pool.is_alive() for pool in self.runtime.pools ) def shutdown(self): """ Gracefully terminate the container, process-safe. Please note that terminating container otherwise (e.g. by killing processes) may result in zombie processes. If you did already cause a zombie outbreak, your only option is to kill them with -9 (SIGKILL). """ self.dht_announcer.announce(ServerState.OFFLINE) logger.info(f"Announced that blocks {list(self.module_backends.keys())} are offline") self.ready.clear() logger.debug("Shutting down connection handlers") for handler in self.conn_handlers: handler.shutdown() logger.debug("Shutting down pools") for pool in self.runtime.pools: if pool.is_alive(): pool.shutdown() logger.debug("Shutting down runtime") self.runtime.shutdown() logger.debug("Shutting down backends") for backend in self.module_backends.values(): backend.shutdown() logger.info("Module container shut down successfully") class ModuleAnnouncerThread(threading.Thread): """Periodically announces that this container hosts the specified modules, visible to all DHT peers""" def __init__( self, module_uids: List[str], dht: DHT, server_info: ServerInfo, *, block_config: PretrainedConfig, memory_cache: MemoryCache, update_period: float, expiration: float, max_pinged: int = 5, **kwargs, ): super().__init__(**kwargs) self.module_uids = module_uids self.dht = dht self.server_info = server_info self.memory_cache = memory_cache self.bytes_per_token = block_config.hidden_size * torch.finfo(DTYPE_MAP[server_info.torch_dtype]).bits // 8 self.bytes_per_token //= block_config.num_key_value_groups self.update_period = update_period self.expiration = expiration self.trigger = threading.Event() self.max_pinged = max_pinged dht_prefix = module_uids[0].split(UID_DELIMITER)[0] block_indices = [int(uid.split(UID_DELIMITER)[-1]) for uid in module_uids] start_block, end_block = min(block_indices), max(block_indices) + 1 self.next_uids = [f"{dht_prefix}{UID_DELIMITER}{i}" for i in range(start_block + 1, end_block + 1)] self.ping_aggregator = PingAggregator(self.dht) def run(self) -> None: while True: start_time = time.perf_counter() self.server_info.cache_tokens_left = self.memory_cache.bytes_left // self.bytes_per_token if self.server_info.state != ServerState.OFFLINE: self._ping_next_servers() self.server_info.next_pings = { peer_id.to_base58(): rtt for peer_id, rtt in self.ping_aggregator.to_dict().items() } else: self.server_info.next_pings = None # No need to ping if we're disconnecting declare_active_modules( self.dht, self.module_uids, self.server_info, expiration_time=get_dht_time() + self.expiration, ) if self.server_info.state == ServerState.OFFLINE: break delay = self.update_period - (time.perf_counter() - start_time) if delay < 0: logger.warning("Declaring blocs to DHT takes more than --update_period, consider increasing it") self.trigger.wait(max(delay, 0)) self.trigger.clear() def announce(self, state: ServerState) -> None: self.server_info.state = state self.trigger.set() if state == ServerState.OFFLINE: self.join() def _ping_next_servers(self) -> Dict[hivemind.PeerID, float]: module_infos = get_remote_module_infos(self.dht, self.next_uids, latest=True) middle_servers = {peer_id for info in module_infos[:-1] if info is not None for peer_id in info.servers} pinged_servers = set(sample_up_to(middle_servers, self.max_pinged)) pinged_servers.discard(self.dht.peer_id) if module_infos[-1] is not None: # Sample servers hosting the block after the last one (most likely continuations) separately pinged_servers |= set(sample_up_to(module_infos[-1].servers, self.max_pinged)) self.ping_aggregator.ping(list(pinged_servers)) class RuntimeWithDeduplicatedPools(Runtime): """A version of hivemind.moe.server.runtime.Runtime that allows multiple backends to reuse a task pool""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.pools = tuple(set(self.pools))
TheGrid-main
grid/server/server.py
from abc import ABC, abstractmethod import torch class TaskPrioritizerBase(ABC): """Abstract class for TaskPrioritizer whose responsibility is to evaluate task priority""" @abstractmethod def prioritize(self, *input: torch.Tensor, points: float = 0.0, **kwargs) -> float: """Evaluates task value by the amount of points given, task input and additional kwargs. Lower priority is better""" pass class DummyTaskPrioritizer(TaskPrioritizerBase): """Simple implementation of TaskPrioritizer which gives constant zero priority for every task""" def prioritize(self, *input: torch.Tensor, points: float = 0.0, **kwargs) -> float: if kwargs.get("type") == "inference": return 1.0 # inference steps go first since they are more latency-sensitive return 2.0 # forward, backward
TheGrid-main
grid/server/task_prioritizer.py
from __future__ import annotations from collections import Counter from itertools import chain from typing import Any, Dict, Optional, Sequence, Tuple, Union import torch from hivemind import BatchTensorDescriptor, TensorDescriptor from hivemind.moe.expert_uid import ExpertUID from hivemind.moe.server.module_backend import ModuleBackend from hivemind.utils import get_logger from tensor_parallel import TensorParallel from tensor_parallel.tensor_parallel import PerDeviceTensors from transformers import PretrainedConfig from grid.data_structures import InferenceMetadata from grid.server.memory_cache import MemoryCache from grid.server.task_pool import PrioritizedTaskPool from grid.utils.misc import is_dummy logger = get_logger(__name__) class TransformerBackend(ModuleBackend): """A wrapper for a transformer block that can process requests for forward, backward and inference""" _peft_module = None def __init__( self, *args, config: PretrainedConfig, memory_cache: MemoryCache, backend_dtype: torch.dtype, max_chunk_size_bytes: int, **kwargs, ): import grid.utils.peft as _peft_module self._peft_module = _peft_module super().__init__(*args, **kwargs) assert isinstance(self.module, TensorParallel) self.config = config self.memory_cache = memory_cache self.max_chunk_size_bytes = max_chunk_size_bytes for name, param in self.module.named_parameters(): assert not param.requires_grad, f"Block parameters must not accumulate gradients, but {name} does" for name, buf in self.module.named_buffers(): assert not buf.requires_grad, f"Block parameters must not accumulate gradients, but {name} does" max_batch_size = self.forward_pool.max_batch_size device = self.module.devices[self.module.output_device_index] self.inference_pool = PrioritizedTaskPool( self.inference_step, max_batch_size=max_batch_size, device=device, name=f"{self.name}_inference" ) # note: inference_pools may be merged later, see merge_inference_pools_inplace self.forward_pool = PrioritizedTaskPool( self.forward, max_batch_size=max_batch_size, device=device, name=f"{self.name}_forward" ) self.backward_pool = PrioritizedTaskPool( self.backward, max_batch_size=max_batch_size, device=device, name=f"{self.name}_backward" ) self.dtype = backend_dtype self.dtype_bytes = torch.finfo(self.dtype).bits // 8 self.shard_num_heads = [] for shard in self.module.module_shards: for submodule in shard.modules(): if isinstance(submodule, config.attn_class): self.shard_num_heads.append(submodule.num_heads) assert len(self.shard_num_heads) == len(self.module.devices) assert sum(self.shard_num_heads) == config.num_attention_heads self.inference_schema = ( ( *self.args_schema, BatchTensorDescriptor((), dtype=self.dtype), BatchTensorDescriptor((), dtype=torch.int64), ), self.kwargs_schema, ) self.cache_bytes_per_token: Dict[torch.device, int] = Counter() for descr in self.get_inference_cache_descriptors(batch_size=1, max_length=1): self.cache_bytes_per_token[descr.device] += descr.numel() * torch.finfo(descr.dtype).bits // 8 def get_inference_cache_descriptors(self, batch_size: int, max_length: int) -> Sequence[TensorDescriptor]: """Create tensor descriptors for attention cache tensors used during inference_step""" head_dim = self.config.hidden_size // self.config.num_attention_heads cache_tensors = [] for device, num_heads in zip(self.module.devices, self.shard_num_heads): num_heads //= self.config.num_key_value_groups keys = TensorDescriptor((batch_size, num_heads, head_dim, max_length), dtype=self.dtype, device=device) values = TensorDescriptor((batch_size, num_heads, max_length, head_dim), dtype=self.dtype, device=device) cache_tensors.extend((keys, values)) return cache_tensors def forward(self, *inputs: Union[torch.Tensor, str]) -> Tuple[torch.Tensor, ...]: *inputs, active_adapter = inputs with self._peft_module.using_adapter(active_adapter): return super().forward(*inputs) def backward(self, *inputs: Union[torch.Tensor, str]) -> Tuple[torch.Tensor, ...]: *inputs, active_adapter = inputs with self._peft_module.using_adapter(active_adapter): return super().backward(*inputs) @torch.inference_mode() def inference_step( self, hidden_states: torch.Tensor, hypo_ids: torch.LongTensor, inference_info: InferenceMetadata, ) -> Tuple[torch.Tensor, ...]: assert hidden_states.ndim == 3, "expected hidden states to be 3-dimensional: [batch_size, seq_len, hid_size]" seq_len = hidden_states.shape[1] with self.memory_cache.use_cache( *inference_info.cache_handles ) as cache_tensors, self._peft_module.using_adapter(inference_info.active_adapter): self._reorder_cache_inplace(cache_tensors, hypo_ids) # We chunk the inputs so that peak memory for long sequences fits into `autograd_memory` # reserved in `Server._choose_num_blocks()`. This saves us from OOMs if `max_chunk_size_bytes` # is at least 4-6x less than `autograd_memory`. max_chunk_length = self._estimate_max_chunk_length(hidden_states, inference_info) output_hidden_states = torch.empty_like(hidden_states) if seq_len > max_chunk_length else None layer_past = self._select_layer_past(cache_tensors, inference_info.prefix_length) for offset in range(0, seq_len, max_chunk_length): hidden_states_chunk = hidden_states[:, offset : offset + max_chunk_length, :] output_hidden_states_chunk, new_kvs = self.module.forward( hidden_states_chunk, layer_past=layer_past, use_cache=True ) if seq_len > max_chunk_length: output_hidden_states[:, offset : offset + max_chunk_length] = output_hidden_states_chunk else: output_hidden_states = output_hidden_states_chunk # saves one memcopy layer_past = new_kvs self._update_cache_inplace(cache_tensors, new_kvs, inference_info.prefix_length) return (output_hidden_states,) def _estimate_max_chunk_length(self, hidden_states: torch.Tensor, inference_info: InferenceMetadata) -> int: # We assume that attention logit matrices are the main thing that consumes memory, given that # the model uses multi-query attention batch_size, seq_length, hidden_size = hidden_states.shape worst_case_length = inference_info.prefix_length + seq_length attn_bytes_per_token = max(self.shard_num_heads) * batch_size * self.dtype_bytes * worst_case_length return max(1, self.max_chunk_size_bytes // attn_bytes_per_token) def _reorder_cache_inplace(self, cache_tensors: torch.Tensor, hypo_ids: torch.Tensor): """If hypo_ids is specified, reorder elements of each cache tensor in-place by taking indices from hypo_ids""" if not is_dummy(hypo_ids): for cache_tensor in cache_tensors: cache_tensor[...] = cache_tensor[hypo_ids.to(cache_tensor.device)] # in-place reorder cache by hypo ids def _select_layer_past(self, cache_tensors: Sequence[torch.Tensor], prefix_length: int) -> Sequence[torch.Tensor]: """Extract first {prefix_length} tokens and reshape them such that they can be used as layer_past""" key_cache, value_cache = list(cache_tensors[0::2]), list(cache_tensors[1::2]) for i in range(len(key_cache)): key_cache[i] = key_cache[i].flatten(0, 1)[:, :, :prefix_length] # shape: [batch * num_kv_heads, head_dim, kv_length] value_cache[i] = value_cache[i].flatten(0, 1)[:, :prefix_length] # shape: [batch * num_kv_heads, kv_length, head_dim] layer_past = tuple(chain(*zip(key_cache, value_cache))) return PerDeviceTensors(*layer_past) if len(self.module.module_shards) > 1 else layer_past def _update_cache_inplace( self, cache_tensors: Sequence[torch.Tensor], new_kvs: Sequence[torch.Tensor], prefix_length: int ): """Writes new key/value tensors back into cache, works in-place""" _batch_size_times_num_kv_heads, head_dim, new_length = new_kvs[0].shape for cache_key, new_key in zip(cache_tensors[0::2], new_kvs[0::2]): new_key = new_key.view(*cache_key.shape[:3], new_length) cache_key[:, :, :, prefix_length:new_length] = new_key[:, :, :, prefix_length:new_length] for cache_value, new_value in zip(cache_tensors[1::2], new_kvs[1::2]): new_value = new_value.view(*cache_value.shape[:2], new_length, head_dim) cache_value[:, :, prefix_length:new_length, :] = new_value[:, :, prefix_length:new_length, :] def get_pools(self) -> Sequence[PrioritizedTaskPool]: return self.forward_pool, self.backward_pool, self.inference_pool def get_info(self) -> Dict[str, Any]: """Get module parameters and stats. Used by RemoteExpert to check shapes and for DMoE orchestration.""" return dict(super().get_info(), inference_schema=self.inference_schema) def shutdown(self): # Break the cyclic references, otherwise TransformerBackend may be not garbage-collected self.forward_pool = self.backward_pool = self.inference_pool = None # Explicitly free the GPU memory. This is not necessary at the time this code is written, # but may help to avoid future issues when the module is not garbage-collected for some reasons dummy = torch.tensor([]) for p in self.module.parameters(): p.data = dummy def merge_inference_pools_inplace(backends: Dict[ExpertUID, TransformerBackend]): """Replace each backend's rpc_inference pools with a combined pool runs multiple blocks in one call""" assert len(backends) != 0 and all(isinstance(b, TransformerBackend) for b in backends.values()) first_pool = next(iter(backends.values())).inference_pool merged_pool = PrioritizedTaskPool( _MergedInferenceStep(backends), max_batch_size=first_pool.max_batch_size, device=first_pool.device, name="merged_inference", ) for backend in backends.values(): assert not backend.inference_pool.is_alive() backend.inference_pool = merged_pool class _MergedInferenceStep: def __init__(self, backends: Dict[ExpertUID, TransformerBackend]): self.backends = backends @torch.inference_mode() def __call__( self, hidden_states: torch.Tensor, hypo_ids: torch.LongTensor, inference_infos: Sequence[InferenceMetadata], *optional_prompts: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, ...]: assert len(inference_infos) == len( optional_prompts ), f"found {len(inference_infos)} blocks but {len(optional_prompts)} prompts" for inference_info, optional_prompt in zip(inference_infos, optional_prompts): if optional_prompt is not None: hidden_states[:, : optional_prompt.shape[1]] += optional_prompt (hidden_states,) = self.backends[inference_info.uid].inference_step(hidden_states, hypo_ids, inference_info) return (hidden_states,)
TheGrid-main
grid/server/backend.py
from __future__ import annotations import asyncio import contextlib import multiprocessing as mp import sys from enum import Enum from itertools import chain from typing import Any, AsyncIterator, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from async_timeout import timeout from hivemind import ( DHT, MSGPackSerializer, P2PContext, PeerID, deserialize_tensor_stream, deserialize_torch_tensor, nested_flatten, nested_pack, serialize_torch_tensor, ) from hivemind.moe.server.connection_handler import ConnectionHandler from hivemind.p2p.p2p_daemon import DEFAULT_MAX_MSG_SIZE from hivemind.proto import runtime_pb2 from hivemind.utils.asyncio import amap_in_executor, anext from hivemind.utils.logging import get_logger from hivemind.utils.streaming import split_for_streaming import grid from grid.data_structures import CHAIN_DELIMITER, UID_DELIMITER, InferenceMetadata, ModuleUID from grid.server.backend import TransformerBackend from grid.server.memory_cache import Handle from grid.server.task_pool import PrioritizedTaskPool from grid.server.task_prioritizer import DummyTaskPrioritizer, TaskPrioritizerBase from grid.utils.misc import DUMMY, is_dummy logger = get_logger(__name__) # Fix pickling protobufs, see https://stackoverflow.com/a/74873028 sys.modules["runtime_pb2"] = runtime_pb2 CACHE_TOKENS_AVAILABLE = "cache_tokens_available" class Event(Enum): NEW_SESSION = 0 END_SESSION = 1 PUSH = 2 SHUTDOWN = 3 class TransformerConnectionHandler(ConnectionHandler): """Handles three request types: forward, backward and forward-incremental (inference)""" module_backends: Dict[ModuleUID, TransformerBackend] def __init__( self, dht: DHT, module_backends: Dict[str, TransformerBackend], *, adapters: Optional[Sequence[str]], dht_prefix: str, handler_event_queues: Sequence[mp.Queue], handler_index: int, inference_max_length: int, request_timeout: float, session_timeout: float, step_timeout: float, task_prioritizer: TaskPrioritizerBase = DummyTaskPrioritizer(), ): super().__init__(dht, module_backends) for module_backend in self.module_backends.values(): assert isinstance(module_backend, TransformerBackend) self.dht_prefix = dht_prefix self.adapters = adapters self._handler_event_queues = handler_event_queues self._handler_index = handler_index self._own_event_queue = handler_event_queues[handler_index] self._listener_task: Optional[asyncio.Task] = None self._session_queues: Dict[str, asyncio.Queue] = {} self._session_handlers: Dict[str, int] = {} self.inference_max_length = inference_max_length self.request_timeout = request_timeout self.session_timeout, self.step_timeout = session_timeout, step_timeout self._prioritizer = task_prioritizer async def add_p2p_handlers(self, *args, **kwargs) -> None: if self._listener_task is None: # Start listening to our own event queue before we accept any requests self._listener_task = asyncio.create_task(self._listen_to_event_queue()) await super().add_p2p_handlers(*args, **kwargs) def shutdown(self): if self.is_alive(): self._outer_pipe.send("_shutdown") self._own_event_queue.put((Event.SHUTDOWN, None, None)) self.join(self.shutdown_timeout) if self.is_alive(): logger.warning(f"{self.__class__.__name__} failed to shut down gracefully, sending SIGTERM") self.terminate() async def _gather_inputs( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext ) -> Tuple[str, List[torch.Tensor], Dict]: block_uid, metadata = None, None def _unpack(req: runtime_pb2.ExpertRequest) -> Iterable[runtime_pb2.Tensor]: nonlocal block_uid, metadata if block_uid is None: block_uid = req.uid elif block_uid != req.uid: raise ValueError("Block uids differ in one request") if metadata is None: metadata = MSGPackSerializer.loads(req.metadata) if req.metadata else {} return req.tensors tensors_stream = amap_in_executor(_unpack, requests) inputs = await deserialize_tensor_stream(tensors_stream) assert isinstance(block_uid, str) and isinstance(metadata, dict) return block_uid, inputs, metadata async def rpc_inference( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext, ) -> AsyncIterator[runtime_pb2.ExpertResponse]: """Compute a single step of inference using attention cache; update attention cache accordingly.""" async with timeout(self.session_timeout): try: request = await asyncio.wait_for(anext(requests), self.step_timeout) except asyncio.TimeoutError: self._log_request("rpc_inference.open", None, context, warning="timed out") return requested_uids = self._check_uids(request.uid) self._log_request("rpc_inference.open", requested_uids, context) try: metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {} requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) max_length = metadata.get("max_length") active_adapter = self._get_active_adapter(metadata) points = metadata.get("points", 0) session_id = metadata.get("session_id") if not requested_uids: raise ValueError("User must specify at least one block for inference, but got none") assert isinstance( max_length, int ), f"rpc_inference metadata must contain int max_length, got {max_length}" assert isinstance( points, (float, int) ), f"rpc_inference should have number of points as a number or None, got {points}" if not 0 <= max_length <= self.inference_max_length: raise ValueError( f"Cannot allocate KV cache for {max_length} tokens, max = {self.inference_max_length}" ) point_per_piece = points / max_length if max_length > 0 else 0.0 batch_size = request.tensors[0].size[0] if request.tensors else 1 prefix_length = 0 async with self._allocate_cache(requested_backends, batch_size, max_length) as cache_handles: assert len(cache_handles) == len(requested_backends) first_request = request background_tasks = set() async for request, metadata in self._iterate_inference_steps( first_request, requests, session_id, requested_uids, context ): hidden_states, prompts, hypo_ids = map(deserialize_torch_tensor, request.tensors) # Cast inputs to backend dtype hidden_states = hidden_states.to(requested_backends[0].dtype) assert hypo_ids.dtype == torch.int64, f"hypo ids must be int64, got {hypo_ids.dtype}" # parse deep prompts (optional argument) has_prompts = prompts is not None and not is_dummy(prompts) if not has_prompts: prompts = [None] * len(requested_backends) else: prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)] prompts = [prompt if not is_dummy(prompt) else None for prompt in prompts] if not (len(requested_backends) == len(prompts)): raise ValueError(f"Received {len(prompts)} prompts for {len(requested_backends)} backends") length_increment = hidden_states.shape[1] # how many tokens are added this step (in each seq) if prefix_length + length_increment > max_length: raise ValueError( f"Maximum length exceeded: prefix {prefix_length} + current {length_increment}" f" exceeds pre-allocated maximum {max_length}" ) priority = self._prioritizer.prioritize( hidden_states, hypo_ids, points=point_per_piece, requested_uids=requested_uids, type="inference", ) inference_infos = tuple( InferenceMetadata(uid, prefix_length, tuple(handles), active_adapter) for uid, handles in zip(requested_uids, cache_handles) ) if hidden_states.numel() == 0: pass # user passed a tensor with 0 tokens. This is a special case that occurs, e.g. # when user wants to pre-allocate cache or check that server *can* allocate that cache else: assert hidden_states.ndim == 3, "hidden states must be a single 3d tensor" (hidden_states,) = await self.module_backends[requested_uids[0]].inference_pool.submit_task( hidden_states, hypo_ids, inference_infos, *prompts, priority=priority ) # serialize and send last layer outputs output_tensors = [ serialize_torch_tensor(result.to(proto.dtype), proto.compression, allow_inplace=True) for result, proto in zip( (hidden_states,), nested_flatten(requested_backends[-1].outputs_schema) ) ] if not has_prompts: task = asyncio.create_task(self._push_outputs(request, output_tensors[0], metadata)) background_tasks.add(task) # Keep reference until it is done to save it from GC task.add_done_callback(background_tasks.discard) yield runtime_pb2.ExpertResponse(tensors=output_tensors) # prepare for next step prefix_length += length_increment finally: self._log_request("rpc_inference.close", requested_uids, context) @contextlib.contextmanager def _managed_session(self, session_id: str): assert session_id not in self._session_queues, f"session id {session_id} is not unique" try: self._session_queues[session_id] = asyncio.Queue() self._session_handlers[session_id] = self._handler_index for other_index, other_queue in enumerate(self._handler_event_queues): if other_index != self._handler_index: other_queue.put_nowait((Event.NEW_SESSION, session_id, self._handler_index)) yield finally: self._session_queues.pop(session_id).put_nowait(None) # put None so that the get task will not hang del self._session_handlers[session_id] for other_index, other_queue in enumerate(self._handler_event_queues): if other_index != self._handler_index: other_queue.put_nowait((Event.END_SESSION, session_id, self._handler_index)) def _put_into_session_queue(self, session_id: str, request: runtime_pb2.ExpertRequest): handler_index = self._session_handlers.get(session_id) if handler_index is None: logger.debug(f"Ignored rpc_push to unknown session ID: {session_id}") elif handler_index == self._handler_index: self._session_queues[session_id].put_nowait(request) else: self._handler_event_queues[handler_index].put_nowait((Event.PUSH, session_id, request)) async def _get_from_session_queue(self, session_id: str) -> Optional[runtime_pb2.ExpertRequest]: assert self._session_handlers[session_id] == self._handler_index, "session belongs to another handler" return await self._session_queues[session_id].get() async def _listen_to_event_queue(self): loop = asyncio.get_event_loop() while True: try: event, session_id, payload = await loop.run_in_executor(None, self._own_event_queue.get) if event == Event.SHUTDOWN: break elif event == Event.NEW_SESSION: self._session_handlers[session_id] = payload # index of the handler that owns that session elif event == Event.END_SESSION: self._session_handlers.pop(session_id, None) elif event == Event.PUSH: maybe_session_queue = self._session_queues.get(session_id) if maybe_session_queue is not None: maybe_session_queue.put_nowait(payload) else: raise RuntimeError(f"Unexpected event: {event}") except Exception as e: logger.exception(e) async def _iterate_inference_steps( self, first_request: runtime_pb2.ExpertRequest, requests: AsyncIterator[runtime_pb2.ExpertRequest], session_id: Optional[str], requested_uids: Sequence[str], context: P2PContext, ) -> AsyncIterator[Tuple[runtime_pb2.ExpertRequest, dict]]: processed_step_ids = set() n_pushes = n_late_pushes = 0 request = first_request anext_task = get_push_task = None try: with self._managed_session(session_id) if session_id is not None else contextlib.nullcontext(): while request.tensors: # iterate while user is willing to supply tensors metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {} step_id = metadata.get("step_id") pushed = metadata.get("pushed") if pushed: n_pushes += 1 self._log_request("rpc_inference.push", requested_uids, context, debug="session received push") if step_id is None or step_id not in processed_step_ids: yield request, metadata if step_id is not None: processed_step_ids.add(step_id) elif pushed: n_late_pushes += 1 self._log_request( "rpc_inference.push", requested_uids, context, warning=f"arrived late {n_late_pushes / n_pushes * 100:.1f}% of the time", ) # Wait for the next request, coming either from the `requests` iterator or `push_queue` if anext_task is None: anext_task = asyncio.create_task(anext(requests)) if get_push_task is None: if session_id is not None: get_push_task = asyncio.create_task(self._get_from_session_queue(session_id)) else: get_push_task = asyncio.create_task(asyncio.Event().wait()) # Dummy never-ending task done, _ = await asyncio.wait( [anext_task, get_push_task], timeout=self.step_timeout, return_when=asyncio.FIRST_COMPLETED ) if anext_task in done: request = await anext_task anext_task = None elif get_push_task in done: request = await get_push_task get_push_task = None else: self._log_request("rpc_inference.step", requested_uids, context, warning="timed out") anext_task.cancel() get_push_task.cancel() return except Exception: logger.warning("rpc_inference._iterate_inference_steps() exception:", exc_info=True) raise async def rpc_push(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse: """Directly push activation tensors from one server to another""" requested_uids = self._check_uids(request.uid) metadata = MSGPackSerializer.loads(request.metadata) session_id = metadata["session_id"] self._log_request("rpc_push", requested_uids, context, debug=f"session_id={session_id}") self._put_into_session_queue(session_id, request) return runtime_pb2.ExpertResponse() async def _push_outputs( self, request: runtime_pb2.ExpertRequest, serialized_outputs: runtime_pb2.Tensor, metadata: dict ) -> None: try: next_servers = metadata.get("next_servers") if not next_servers: return next_peer_id, next_session_id, next_start, next_end = next_servers[0] next_peer_id = PeerID.from_base58(next_peer_id) next_uid = CHAIN_DELIMITER.join(f"{self.dht_prefix}{UID_DELIMITER}{i}" for i in range(next_start, next_end)) # Sending hidden states serialized with output_schema to avoid double serialization next_tensors = [serialized_outputs] + request.tensors[1:] next_metadata = metadata.copy() next_metadata.update(session_id=next_session_id, next_servers=next_servers[1:], pushed=True) stub = self.get_stub(self._p2p, next_peer_id) await stub.rpc_push( runtime_pb2.ExpertRequest( uid=next_uid, tensors=next_tensors, metadata=MSGPackSerializer.dumps(next_metadata), ), timeout=self.request_timeout, ) except Exception: logger.debug( f"Failed to push outputs to peer_id={next_peer_id}, session_id={next_session_id}, blocks={next_start}:{next_end}:", exc_info=True, ) async def rpc_forward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse: async with timeout(self.request_timeout): # Parse request and prepare backends flat_inputs = [deserialize_torch_tensor(tensor) for tensor in request.tensors] requested_uids = self._check_uids(request.uid) self._log_request("rpc_forward", requested_uids, context) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {} active_adapter = self._get_active_adapter(metadata) points = metadata.get("points", 0) assert isinstance( points, (float, int) ), f"rpc_forward should have number of points as number or None, got {points}" hidden_states = await _rpc_forward( *flat_inputs, requested_backends=requested_backends, prioritizer=self._prioritizer, active_adapter=active_adapter, points=points, ) return runtime_pb2.ExpertResponse( tensors=self._serialize_outputs(hidden_states, requested_backends, metadata) ) async def rpc_forward_stream( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext ) -> AsyncIterator[runtime_pb2.ExpertRequest]: async with timeout(self.request_timeout): # Parse requests and prepare backends uid_str, flat_inputs, metadata = await self._gather_inputs(requests, context) requested_uids = self._check_uids(uid_str) self._log_request("rpc_forward_stream", requested_uids, context) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) active_adapter = self._get_active_adapter(metadata) points = metadata.get("points", 0) assert isinstance( points, (float, int) ), f"rpc_forward_stream should have number of points as number or None, got {points}" hidden_states = await _rpc_forward( *flat_inputs, requested_backends=requested_backends, prioritizer=self._prioritizer, active_adapter=active_adapter, points=points, ) # Split the serialized_output for streaming and respond to client for tensor in self._serialize_outputs(hidden_states, requested_backends, metadata): for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE): yield runtime_pb2.ExpertResponse(tensors=[part]) def _serialize_outputs( self, hidden_states: torch.Tensor, requested_backends: Sequence[TransformerBackend], metadata: Dict[str, Any], ) -> Sequence[runtime_pb2.Tensor]: """Serialize forward outputs using either outputs_schema or custom user-specified schema""" assert isinstance(hidden_states, torch.Tensor) and hidden_states.ndim == 3, "hidden_states must be a 3d tensor" outputs_schema = requested_backends[-1].outputs_schema if metadata.get("output_compression") is not None: assert isinstance(metadata["output_compression"], (list, tuple)), "output_compression must be a tuple/list" output_compression = tuple(metadata["output_compression"]) assert all(isinstance(c, int) for c in output_compression), "output_compression must contain integers" assert len(output_compression) == 1, "output_compression tuple should have 1 element" else: output_compression = tuple(tensor.compression for tensor in outputs_schema) return [ serialize_torch_tensor(result.to(proto.dtype), compression, allow_inplace=True) for result, proto, compression in zip([hidden_states], outputs_schema, output_compression) ] async def rpc_backward(self, request: runtime_pb2.ExpertRequest, context: P2PContext) -> runtime_pb2.ExpertResponse: async with timeout(self.request_timeout): # Parse requests and prepare backends flat_tensors = [deserialize_torch_tensor(tensor) for tensor in request.tensors] requested_uids = self._check_uids(request.uid) self._log_request("rpc_backward", requested_uids, context) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) metadata = MSGPackSerializer.loads(request.metadata) if request.metadata else {} active_adapter = self._get_active_adapter(metadata) points = metadata.get("points", 0) assert isinstance( points, (float, int) ), f"rpc_backward should have number of points as number or None, got {points}" grads = await _rpc_backward( *flat_tensors, requested_backends=requested_backends, prioritizer=self._prioritizer, active_adapter=active_adapter, points=points, ) return runtime_pb2.ExpertResponse(tensors=self._serialize_grads(grads, requested_backends, metadata)) async def rpc_backward_stream( self, requests: AsyncIterator[runtime_pb2.ExpertRequest], context: P2PContext ) -> AsyncIterator[runtime_pb2.ExpertResponse]: async with timeout(self.request_timeout): uids_header, flat_tensors, metadata = await self._gather_inputs(requests, context) requested_uids = self._check_uids(uids_header) self._log_request("rpc_backward_stream", requested_uids, context) requested_backends = tuple(self.module_backends[uid] for uid in requested_uids) active_adapter = self._get_active_adapter(metadata) points = metadata.get("points", 0) assert isinstance( points, (float, int) ), f"rpc_backward_stream should have number of points as number or None, got {points}" grads = await _rpc_backward( *flat_tensors, requested_backends=requested_backends, prioritizer=self._prioritizer, active_adapter=active_adapter, points=points, ) # Split the serialized_grad_inputs for streaming and respond for tensor in self._serialize_grads(grads, requested_backends, metadata): for part in split_for_streaming(tensor, DEFAULT_MAX_MSG_SIZE): yield runtime_pb2.ExpertResponse(tensors=[part]) def _get_active_adapter(self, metadata: dict) -> str: active_adapter = metadata.get("active_adapter", "") if active_adapter and (active_adapter not in self.adapters): raise KeyError(f"adapter {active_adapter} not found") return active_adapter def _serialize_grads( self, grads: Sequence[torch.Tensor], requested_backends: Sequence[TransformerBackend], metadata: Dict[str, Any], ) -> Sequence[runtime_pb2.Tensor]: """Serialize backward gradients w.r.t. inputs using either default schema or custom user-specified schema""" # Modify grad_inputs_schema to support grad_prompts assert len(requested_backends[0].args_schema) == 1 and len(grads) in (1, 2) # TODO generalize flat_grads_schema = tuple( nested_flatten((requested_backends[0].args_schema * len(grads), requested_backends[0].kwargs_schema)) ) # TODO generalize if metadata.get("output_compression") is not None: assert isinstance(metadata["output_compression"], (list, tuple)), "output_compression must be a tuple/list" output_compression = tuple(metadata["output_compression"]) assert all(isinstance(c, int) for c in output_compression), "output_compression must contain integers" assert len(output_compression) == len(grads), f"output_compression should have {len(grads)} elements" else: output_compression = tuple(tensor.compression for tensor in flat_grads_schema) return [ serialize_torch_tensor(result.to(proto.dtype), compression, allow_inplace=True) for result, proto, compression in zip(grads, flat_grads_schema, output_compression) ] def _check_uids(self, uids: str) -> Tuple[ModuleUID, ...]: """Check that the first request to rpc_inference is valid""" uids = (uids or "").split(CHAIN_DELIMITER) if not uids: raise RuntimeError("User did not provide any uids") for uid in uids: if uid not in self.module_backends: raise RuntimeError(f"Remote peer does not serve {uid}") return tuple(uids) @contextlib.asynccontextmanager async def _allocate_cache( self, backends: Sequence[TransformerBackend], batch_size: int, max_length: int ) -> Sequence[Sequence[Handle]]: """ Allocate memory cache for all transformer blocks, return cache handle :returns: a list of {len(backends)} elements, where i-th element is a tuple of cache handles for i-th backend """ descriptors = [backend.get_inference_cache_descriptors(batch_size, max_length) for backend in backends] async with backends[0].memory_cache.allocate_cache(*chain(*descriptors)) as handles: yield nested_pack(handles, descriptors) def _log_request( self, method: str, uids: Optional[Sequence[ModuleUID]], context: P2PContext, *, debug: Optional[str] = None, warning: Optional[str] = None, ) -> None: if uids is not None: friendly_uids = [uid.split(".")[-1] for uid in uids if "." in uid] friendly_uids = [int(uid) for uid in friendly_uids if uid.isdigit()] friendly_uids = f"{min(friendly_uids)}:{max(friendly_uids) + 1}" if friendly_uids else uids else: friendly_uids = "n/a" friendly_remote_id = "..." + str(context.remote_id)[-6:] message = f"{method}(blocks={friendly_uids}, remote_peer={friendly_remote_id})" if warning is not None: logger.warning(f"{message}: {warning}") elif debug is not None: logger.debug(f"{message}: {debug}") else: logger.info(message) async def rpc_info(self, request: runtime_pb2.ExpertUID, context: P2PContext) -> runtime_pb2.ExpertInfo: """Return metadata about stored block uids and current load""" backend = self.module_backends[request.uid] if request.uid else next(iter(self.module_backends.values())) result = { "version": grid.__version__, "dht_client_mode": self.dht.client_mode, CACHE_TOKENS_AVAILABLE: backend.memory_cache.bytes_left // max(backend.cache_bytes_per_token.values()), } if request.uid: block_info = self.module_backends[request.uid].get_info() common_keys = set(result.keys()) & set(block_info.keys()) if common_keys: raise RuntimeError(f"The block's rpc_info has keys reserved for the server's rpc_info: {common_keys}") result.update(block_info) return runtime_pb2.ExpertInfo(serialized_info=MSGPackSerializer.dumps(result)) async def _rpc_forward( *flat_tensors: torch.Tensor, requested_backends: Sequence[TransformerBackend], active_adapter: str = "", prioritizer: TaskPrioritizerBase, points: int = 0, ) -> torch.Tensor: """ Run forward pass on deserialized inputs and prompts, used by rpc_forward and rpc_forward_stream :param flat_tensors: a list of tensors that includes first layer inputs, optional prompts and extra tensors :note: some input tensors can be missing, in which case they will be replaced with dummy tensors (see is_dummy) :param requested_backends: a sequence of transformer blocks in the same order as they appear in forward pass :returns: hidden states after the last layer [batch_size, seq_length, hid_size] """ hidden_states, prompts = flat_tensors dtype = requested_backends[0].dtype # check parse input tensors and cast dtypes hidden_states = hidden_states.to(dtype) assert hidden_states.ndim == 3 if prompts is None or is_dummy(prompts): prompts = [DUMMY] * len(requested_backends) else: prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)] # Run a chain of requested backends for backend, prompt in zip(requested_backends, prompts): if not is_dummy(prompt): hidden_states[:, : prompt.shape[1]] += prompt assert isinstance(backend.inference_pool, PrioritizedTaskPool), "grid support only prioritized pools" priority = prioritizer.prioritize( hidden_states, points=points / len(requested_backends), backend=backend, type="forward" ) (hidden_states,) = await backend.forward_pool.submit_task( hidden_states, active_adapter, priority=priority, ) assert isinstance(hidden_states, torch.Tensor) assert ( hidden_states.ndim == 3 ), f"inputs to {type(backend)} must be a list with a single 3d tensor of hidden states" return hidden_states async def _rpc_backward( *flat_tensors: torch.Tensor, requested_backends: Sequence[TransformerBackend], active_adapter: str = "", prioritizer: TaskPrioritizerBase, points: int = 0, ) -> Union[torch.Tensor, Sequence[torch.Tensor]]: inputs, grad_outputs, prompts = flat_tensors # Cast inputs & grad outputs to backend dtype inputs = inputs.to(requested_backends[0].dtype) grad_outputs = grad_outputs.to(requested_backends[-1].dtype) if prompts is None or is_dummy(prompts): prompts = [DUMMY] * len(requested_backends) else: prompts = [p.squeeze(0) for p in prompts.to(requested_backends[0].dtype).split(1, dim=0)] # Run a forward chain to collect intermediate inputs # Note that we do not forward for the last module since we do not need its output inter_inputs = [] for backend, prompt in zip(requested_backends[:-1], prompts[:-1]): assert inputs.ndim == 3, f"inputs to {type(backend)} must be a single 3d tensor of hidden states" if not is_dummy(prompt): inputs[:, : prompt.shape[1]] += prompt inter_inputs.append(inputs) assert isinstance(backend.inference_pool, PrioritizedTaskPool), "grid support only prioritized pools" priority = prioritizer.prioritize( inputs, points=points / len(requested_backends), backend=backend, type="forward_in_backward" ) (inputs,) = await backend.forward_pool.submit_task(inputs, active_adapter, priority=priority) assert isinstance(inputs, torch.Tensor) if not is_dummy(prompts[-1]): inputs[:, : prompts[-1].shape[1]] += prompts[-1] inter_inputs.append(inputs) assert len(inter_inputs) == len(prompts) == len(requested_backends), "internal shape error during backward" grad_prompts_reversed = [] # Run a chain of requested backends for inp, prompt, backend in zip(*map(reversed, (inter_inputs, prompts, requested_backends))): assert isinstance(backend.inference_pool, PrioritizedTaskPool), "grid support only prioritized pools" priority = prioritizer.prioritize( inp, grad_outputs, points=points / len(requested_backends), backend=backend, type="backward" ) (grad_outputs,) = await backend.backward_pool.submit_task(inp, grad_outputs, active_adapter, priority=priority) assert isinstance(grad_outputs, torch.Tensor) if not is_dummy(prompt): grad_prompts_reversed.append(grad_outputs[:, : prompt.shape[1]].unsqueeze(0)) grad_prompts = torch.cat(grad_prompts_reversed[::-1], dim=0) if grad_prompts_reversed else DUMMY return [grad_outputs] if is_dummy(grad_prompts) else [grad_outputs, grad_prompts] # TODO un-duct-tape
TheGrid-main
grid/server/handler.py
import fcntl import json import math import multiprocessing as mp import os import time from collections import Counter from pathlib import Path from typing import Dict, Optional, Sequence, Union import torch from hivemind.utils.logging import get_logger from transformers import PretrainedConfig from grid.server.block_utils import resolve_block_dtype from grid.utils.convert_block import QuantType, convert_block from grid.utils.disk_cache import DEFAULT_CACHE_DIR logger = get_logger(__name__) try: import speedtest except ImportError: raise ImportError("Please `pip install speedtest-cli==2.1.3`") if not hasattr(speedtest, "Speedtest"): raise ImportError( "You are using the wrong speedtest module. Please replace speedtest with speedtest-cli.\n" "To do that, run `pip uninstall -y speedtest`. Depending on your python environment, " "you may need to run uninstall speedtest two or more times, until it says 'not installed'.\n" "After that, please `pip install speedtest-cli==2.1.3` to install the correct version." ) def get_server_throughput( model_name: str, config: PretrainedConfig, device: torch.device, dtype: Union[str, torch.dtype], *, num_blocks: int, quant_type: QuantType, tensor_parallel_devices: Sequence[torch.device], force_eval: bool = False, cache_dir: Optional[str] = None, ) -> Dict[str, float]: dtype = resolve_block_dtype(config, dtype) if cache_dir is None: cache_dir = DEFAULT_CACHE_DIR lock_path = Path(cache_dir, "throughput.lock") cache_path = Path(cache_dir, "throughput_v4.json") # We use the system-wide lock since only one process at a time can measure the host throughput os.makedirs(lock_path.parent, exist_ok=True) with open(lock_path, "wb") as lock_fd: logger.info("Loading throughput info") fcntl.flock(lock_fd.fileno(), fcntl.LOCK_EX) # The OS will release the lock when lock_fd is closed or the process is killed cache_key = f"model_{model_name}" cache_key += f"_device_{get_device_name(device).replace(' ', '_')}" cache_key += f"_dtype_{get_dtype_name(dtype, quant_type)}" if len(tensor_parallel_devices) > 1: for i, device_i in enumerate(tensor_parallel_devices): cache_key += f"_tp{i}_{get_device_name(device_i).replace(' ', '_')}" cache = {} try: if not force_eval and os.path.exists(cache_path): with open(cache_path) as cache_fd: cache = json.load(cache_fd) assert isinstance(cache, dict) except Exception: logger.exception(f"Failed to read throughput info from {cache_path}") cache = {} if cache_key not in cache: cache[cache_key] = measure_throughput_info( config, device, dtype, quant_type=quant_type, tensor_parallel_devices=tensor_parallel_devices ) try: os.makedirs(cache_path.parent, exist_ok=True) with open(cache_path, "w") as cache_fd: json.dump(cache, cache_fd) except Exception: logger.exception(f"Failed to save throughput info in {cache_path}") throughput_info = cache[cache_key] # Most requests start at some block hosted by a server, then use all next blocks hosted on this server. # Assuming the start block index is distributed uniformly, the average number of blocks used per request is # E[Uniform{1, 2, ..., num_blocks}] = (num_blocks + 1) / 2 average_blocks_used = (num_blocks + 1) / 2 throughput = throughput_info["forward_rps"] / average_blocks_used throughput = min(throughput, throughput_info.get("network_rps", math.inf)) throughput_info["throughput"] = throughput logger.info(f"Reporting throughput: {throughput:.1f} tokens/sec for {num_blocks} blocks") return throughput_info def measure_throughput_info( config: PretrainedConfig, device: torch.device, dtype: torch.dtype, *, quant_type: QuantType, tensor_parallel_devices: Sequence[torch.device], ) -> Dict[str, float]: logger.info( "Measuring network and compute throughput. This takes about a minute and will be cached for future runs" ) return { "inference_rps": measure_compute_rps( config, device, dtype, quant_type=quant_type, tensor_parallel_devices=tensor_parallel_devices, n_tokens=1, n_steps=100, inference=True, ), "forward_rps": measure_compute_rps( config, device, dtype, quant_type=quant_type, tensor_parallel_devices=tensor_parallel_devices, n_tokens=1024, n_steps=10, inference=False, ), "network_rps": measure_network_rps(config), } def measure_network_rps( config: PretrainedConfig, *, timeout: float = 60, default_speed: float = 100e6 # 100 Mbit/s ) -> Optional[float]: bits_per_request = config.hidden_size * 16 # Clients usually send 16-bit tensors for forward/backward try: pipe_recv, pipe_send = mp.Pipe(duplex=False) process = mp.Process(target=_measure_bits_per_second, args=(pipe_send,)) process.start() if not pipe_recv.poll(timeout): process.terminate() raise RuntimeError(f"speedtest did not finish in {timeout} seconds") network_info = pipe_recv.recv() if "exception" in network_info: raise RuntimeError(f"speedtest failed: {network_info['exception']}") network_rps = min(network_info["download"], network_info["upload"]) / bits_per_request if network_rps == 0: raise RuntimeError("speedtest has returned network_rps == 0") logger.info( f"Network throughput: {network_rps:.1f} tokens/sec " f"({network_info['download'] / 1e6:.2f} Mbit/s on download, " f"{network_info['upload'] / 1e6:.2f} Mbit/s on upload)" ) return network_rps except RuntimeError as e: logger.info(f"Network throughput is not available: {e}. Using default of {default_speed / 1e6:.2f} Mbit/s") return default_speed / bits_per_request def _measure_bits_per_second(pipe_send: mp.Pipe): try: s = speedtest.Speedtest() s.get_servers() s.get_best_server() s.download() s.upload() pipe_send.send(s.results.dict()) except Exception as e: pipe_send.send({"exception": repr(e)}) def measure_compute_rps( config: PretrainedConfig, device: torch.device, dtype: torch.dtype, *, quant_type: QuantType, tensor_parallel_devices: Sequence[torch.device], n_tokens: int, n_steps: int, inference: bool, ) -> float: if not tensor_parallel_devices: tensor_parallel_devices = (device,) with torch.inference_mode(): block = config.block_class(config).to(dtype) block = convert_block(block, 0, config, tensor_parallel_devices, device, quant_type=quant_type, freeze=True) cache = None elapsed = 0 for step in range(n_steps + 1): dummy_input = torch.randn(n_tokens, 1, config.hidden_size, device=device, dtype=dtype) start_time = time.perf_counter() _, cache = block.forward(dummy_input, use_cache=True, layer_past=cache if inference else None) if step >= 1: # Skip the 1st step to exclude the initialization time elapsed += time.perf_counter() - start_time device_rps = n_steps * n_tokens / elapsed devices_repr = get_device_name(device) if len(tensor_parallel_devices) > 1: device_names = tuple(map(get_device_name, map(torch.device, tensor_parallel_devices))) devices_repr = ", ".join(f"{count}x {name}" for name, count in Counter(device_names).most_common()) logger.info( f"{'Inference' if inference else 'Forward pass'} throughput: {device_rps:.1f} tokens/sec per block " f"({n_tokens} tokens/batch, {devices_repr}, {get_dtype_name(dtype, quant_type)})" ) return device_rps def get_device_name(device: torch.device) -> str: return f"{torch.cuda.get_device_name(device)} GPU" if device.type == "cuda" else "CPU" def get_dtype_name(dtype: torch.dtype, quant_type: QuantType) -> str: name = str(dtype).replace("torch.", "") if quant_type != QuantType.NONE: name += f", quantized to {quant_type.name.lower()}" return name
TheGrid-main
grid/server/throughput.py
from dataclasses import dataclass from typing import Dict, List, Optional, Tuple import numpy as np from hivemind import PeerID, get_logger from grid.data_structures import RemoteModuleInfo, ServerState __all__ = ["choose_best_blocks", "should_choose_other_blocks"] logger = get_logger(__name__) @dataclass class Span: start: int end: int throughput: float state: ServerState @property def length(self): return self.end - self.start def move_to(self, new_start: int) -> None: self.start, self.end = new_start, new_start + self.length def compute_spans(module_infos: List[Optional[RemoteModuleInfo]]) -> Tuple[Dict[PeerID, Span], np.ndarray]: spans = {} throughputs = np.zeros(len(module_infos)) for block, module in enumerate(module_infos): if module is None: continue # We sort servers here to ensure that we get exactly the same throughputs for a given set of servers. # If the order were not defined, we would get slightly different values due to floating point errors, # which may cause excess block replacements. for peer_id, server in sorted(module.servers.items()): if server.state == ServerState.OFFLINE: continue if peer_id in spans: spans[peer_id].start = min(spans[peer_id].start, block) spans[peer_id].end = max(spans[peer_id].start, block + 1) else: spans[peer_id] = Span(start=block, end=block + 1, throughput=server.throughput, state=server.state) throughputs[block] += server.throughput return spans, throughputs def _choose_best_start(throughputs: np.ndarray, num_blocks: int) -> int: options = ((sorted(throughputs[i : i + num_blocks]), i) for i in range(0, len(throughputs) - num_blocks + 1)) return min(options)[-1] def choose_best_blocks(num_blocks: int, module_infos: List[Optional[RemoteModuleInfo]]) -> List[int]: _, throughputs = compute_spans(module_infos) start = _choose_best_start(throughputs, num_blocks) return list(range(start, start + num_blocks)) def should_choose_other_blocks( local_peer_id: PeerID, module_infos: List[Optional[RemoteModuleInfo]], balance_quality: float ) -> bool: if balance_quality > 1.0: return True # Forces rebalancing on each check (may be used for debugging purposes) spans, throughputs = compute_spans(module_infos) initial_throughput = throughputs.min() eps = 1e-3 assert local_peer_id in spans, "Span served by this server is not present in the DHT" local_span = spans[local_peer_id] throughputs[local_span.start : local_span.end] -= local_span.throughput * (1 + eps) # Without (1 + eps) here, we would sometimes subtract a value slightly less than local_span.throughput # due to the floating point error, which would cause excess block replacements. # Also, subtracting local_span.throughput * (1 + eps) makes _choose_best_start() prefer # the previous server position in case of other things being almost equal. if initial_throughput > eps and throughputs.min() <= 0: return False # Switching blocks would make the swarm disjoint new_start = _choose_best_start(throughputs, local_span.length) if local_span.start == new_start: return False # This server is on its best place already throughputs[local_span.start : local_span.end] += local_span.throughput * eps local_span.move_to(new_start) throughputs[local_span.start : local_span.end] += local_span.throughput moved = True while moved: servers = list(spans.keys()) np.random.shuffle(servers) moved = False for peer_id in servers: span = spans[peer_id] throughputs[span.start : span.end] -= span.throughput * (1 + eps) new_start = _choose_best_start(throughputs, span.length) throughputs[span.start : span.end] += span.throughput * eps if span.start != new_start: span.move_to(new_start) moved = True throughputs[span.start : span.end] += span.throughput new_throughput = throughputs.min() if new_throughput < initial_throughput or new_throughput < eps: return False actual_quality = initial_throughput / new_throughput logger.info(f"Swarm balance quality: {actual_quality * 100:.1f}%") return actual_quality < balance_quality - eps
TheGrid-main
grid/server/block_selection.py
from typing import Optional, Union import torch from accelerate import init_empty_weights from transformers import PretrainedConfig from grid.utils.convert_block import QuantType def resolve_block_dtype(config: PretrainedConfig, dtype: Union[str, torch.dtype]) -> torch.dtype: """If dtype is "auto", resolves it using BloomConfig. Returns `dtype` intact otherwise.""" if dtype not in ("auto", None): return dtype if config.torch_dtype not in ("auto", None): return config.torch_dtype return torch.bfloat16 def get_block_size( config: PretrainedConfig, location: str, *, dtype: Optional[Union[str, torch.dtype]] = None, quant_type: QuantType = QuantType.NONE, eps: float = 0.01, # eps accounts for ~1% of metainfo for tensor descriptions, quantization tables, etc. ) -> int: if location == "memory": assert ( dtype is not None and quant_type is not None ), 'get_block_size(..., location="memory") requires to specify dtype and quant_type for calculations' with init_empty_weights(include_buffers=True): block = config.block_class(config) n_params = sum(param.numel() for param in block.parameters()) if location == "memory": if quant_type == QuantType.NONE: dtype = resolve_block_dtype(config, dtype) bytes_per_value = torch.finfo(dtype).bits // 8 elif quant_type == QuantType.INT8: bytes_per_value = 1 elif quant_type == QuantType.NF4: bytes_per_value = 4.25 / 8 # Bitness of NF4 with this config (measured empirically) else: raise ValueError(f"Unsupported quant_type={quant_type}") elif location == "disk": dtype = resolve_block_dtype(config, "auto") bytes_per_value = torch.finfo(dtype).bits // 8 return round(n_params * bytes_per_value * (1 + eps))
TheGrid-main
grid/server/block_utils.py
TheGrid-main
grid/server/__init__.py
import asyncio import math import threading import time from concurrent.futures import Future from contextlib import asynccontextmanager from functools import partial from typing import Optional import requests from hivemind.dht import DHT, DHTNode from hivemind.moe.client.remote_expert_worker import RemoteExpertWorker from hivemind.p2p import P2P, P2PContext, PeerID, ServicerBase from hivemind.proto import dht_pb2 from hivemind.utils import get_logger from grid.constants import REACHABILITY_API_URL logger = get_logger(__name__) def validate_reachability(peer_id, wait_time: float = 7 * 60, retry_delay: float = 15) -> None: """verify that your peer is reachable from a (centralized) validator, whether directly or through a relay""" for attempt_no in range(math.floor(wait_time / retry_delay) + 1): try: r = requests.get(f"{REACHABILITY_API_URL}/api/v1/is_reachable/{peer_id}", timeout=10) r.raise_for_status() response = r.json() if response["success"]: logger.info("Server is reachable from the Internet. It will appear at https://health.grid.dev soon") return if attempt_no == 0: # Usually, libp2p manages to set up relays before we finish loading blocks. # In other cases, we may need to wait for up to `wait_time` seconds before it's done. logger.info("Detected a NAT or a firewall, connecting to libp2p relays. This takes a few minutes") time.sleep(retry_delay) except Exception as e: logger.warning(f"Skipping reachability check because health.grid.dev is down: {repr(e)}") return raise RuntimeError( f"Server has not become reachable from the Internet:\n\n" f"{response['message']}\n\n" f"You need to fix your port forwarding and/or firewall settings. How to do that:\n\n" f" 1. Choose a specific port for the Grid server, for example, 31337.\n" f" 2. Ensure that this port is accessible from the Internet and not blocked by your firewall.\n" f" 3. Add these arguments to explicitly announce your IP address and port to other peers:\n" f" python -m grid.cli.run_server ... --public_ip {response['your_ip']} --port 31337\n" f" 4. If it does not help, ask for help in our Discord: https://discord.gg/Wuk8BnrEPH\n" ) def check_direct_reachability(max_peers: int = 5, threshold: float = 0.5, **kwargs) -> Optional[bool]: """test if your peer is accessible by others in the swarm with the specified network options in **kwargs""" async def _check_direct_reachability(): target_dht = await DHTNode.create(client_mode=True, **kwargs) try: protocol = ReachabilityProtocol(probe=target_dht.protocol.p2p) async with protocol.serve(target_dht.protocol.p2p): successes = requests = 0 for remote_peer in list(target_dht.protocol.routing_table.peer_id_to_uid.keys()): probe_available = await protocol.call_check(remote_peer=remote_peer, check_peer=target_dht.peer_id) if probe_available is None: continue # remote peer failed to check probe successes += probe_available requests += 1 if requests >= max_peers: break logger.debug(f"Direct reachability: {successes}/{requests}") return (successes / requests) >= threshold if requests > 0 else None finally: await target_dht.shutdown() return RemoteExpertWorker.run_coroutine(_check_direct_reachability()) STRIPPED_PROBE_ARGS = dict( dht_mode="client", use_relay=False, auto_nat=False, nat_port_map=False, no_listen=True, startup_timeout=60 ) class ReachabilityProtocol(ServicerBase): """Mini protocol to test if a locally running peer is accessible by other devices in the swarm""" def __init__(self, *, probe: Optional[P2P] = None, wait_timeout: float = 5.0): self.probe = probe self.wait_timeout = wait_timeout self._event_loop = self._stop = None async def call_check(self, remote_peer: PeerID, *, check_peer: PeerID) -> Optional[bool]: """Returns True if remote_peer can reach check_peer, False if it cannot, None if it did not respond""" try: request = dht_pb2.PingRequest(peer=dht_pb2.NodeInfo(node_id=check_peer.to_bytes())) timeout = self.wait_timeout if check_peer == remote_peer else self.wait_timeout * 2 response = await self.get_stub(self.probe, remote_peer).rpc_check(request, timeout=timeout) logger.debug(f"call_check(remote_peer={remote_peer}, check_peer={check_peer}) -> {response.available}") return response.available except Exception: logger.debug(f"Requested {remote_peer} to check {check_peer}, but got:", exc_info=True) return None async def rpc_check(self, request: dht_pb2.PingRequest, context: P2PContext) -> dht_pb2.PingResponse: """Help another peer to check its reachability""" response = dht_pb2.PingResponse(available=True) check_peer = PeerID(request.peer.node_id) if check_peer != context.local_id: # remote peer wants us to check someone other than ourselves response.available = await self.call_check(check_peer, check_peer=check_peer) is True logger.info( f"reachability.rpc_check(remote_peer=...{str(context.remote_id)[-6:]}, " f"check_peer=...{str(check_peer)[-6:]}) -> {response.available}" ) return response @asynccontextmanager async def serve(self, p2p: P2P): try: await self.add_p2p_handlers(p2p) yield self finally: await self.remove_p2p_handlers(p2p) @classmethod def attach_to_dht(cls, dht: DHT, await_ready: bool = False, **kwargs) -> Optional["ReachabilityProtocol"]: protocol = cls(**kwargs) ready = Future() async def _serve_with_probe(): try: common_p2p = await dht.replicate_p2p() protocol._event_loop = asyncio.get_event_loop() protocol._stop = asyncio.Event() initial_peers = [str(addr) for addr in await common_p2p.get_visible_maddrs(latest=True)] for info in await common_p2p.list_peers(): initial_peers.extend(f"{addr}/p2p/{info.peer_id}" for addr in info.addrs) protocol.probe = await P2P.create(initial_peers, **STRIPPED_PROBE_ARGS) ready.set_result(True) logger.info("Reachability service started") async with protocol.serve(common_p2p): await protocol._stop.wait() except Exception as e: logger.debug("Reachability service failed:", exc_info=True) if not ready.done(): ready.set_exception(e) finally: if protocol is not None and protocol.probe is not None: await protocol.probe.shutdown() logger.debug("Reachability service shut down") threading.Thread(target=partial(asyncio.run, _serve_with_probe()), daemon=True).start() if await_ready: ready.result() # Propagates startup exceptions, if any return protocol def shutdown(self): if self._event_loop is not None and self._stop is not None: self._event_loop.call_soon_threadsafe(self._stop.set)
TheGrid-main
grid/server/reachability.py
""" Utils for fetching pretrained model parts. Currently, this relies on huggingface transformers' from_pretrained code. If necessary, one can rewrite this to implement a different behavior, such as: - loading files from a local data source (e.g. S3) - load files via BitTorrent ( https://pypi.org/project/libtorrent/ ) or IPFS( https://docs.ipfs.io/how-to ) - fetch the weights over IPoAC, using a fleet of trained pigeons ( http://www.faqs.org/rfcs/rfc1149.html ) """ import json import time from typing import Dict, Optional, Union import torch import torch.nn as nn from accelerate import init_empty_weights from accelerate.utils import set_module_tensor_to_device from hivemind.utils.logging import get_logger from huggingface_hub import get_hf_file_metadata, hf_hub_url from transformers import PretrainedConfig from transformers.utils import get_file_from_repo from grid.constants import DTYPE_MAP from grid.server.block_utils import resolve_block_dtype from grid.utils.auto_config import AutoDistributedConfig from grid.utils.disk_cache import DEFAULT_CACHE_DIR, allow_cache_reads, allow_cache_writes, free_disk_space_for from grid.utils.hf_auth import always_needs_auth logger = get_logger(__name__) def load_pretrained_block( model_name: str, block_index: int, *, config: Optional[PretrainedConfig] = None, torch_dtype: Union[torch.dtype, str] = "auto", revision: Optional[str] = None, token: Optional[Union[str, bool]] = None, cache_dir: Optional[str] = None, max_disk_space: Optional[int] = None, ) -> nn.Module: if config is None: config = AutoDistributedConfig.from_pretrained(model_name, use_auth_token=token) if cache_dir is None: cache_dir = DEFAULT_CACHE_DIR assert torch_dtype in DTYPE_MAP.values(), f"torch_dtype must be one of {list(DTYPE_MAP.values())}" torch_dtype = resolve_block_dtype(config, torch_dtype) with init_empty_weights(): block = config.block_class(config) block_prefix = f"{config.block_prefix}.{block_index}." state_dict = _load_state_dict_from_repo( model_name, block_prefix, revision=revision, token=token, cache_dir=cache_dir, max_disk_space=max_disk_space, ) # dummy load, check that keys match report = block.load_state_dict(state_dict, strict=True) assert not report.missing_keys, f"Some block weights are missing: {report.missing_keys}" for param_name, _ in block.named_parameters(): assert param_name in state_dict, f"{param_name} not in state dict" param = state_dict[param_name] if not str(param.dtype).startswith(("torch.uint", "torch.int", "torch.bool")): param = param.to(torch_dtype) set_module_tensor_to_device(block, param_name, "cpu", value=param, dtype=param.dtype) logger.info(f"Loaded {model_name} block {block_index}, {report}") return block StateDict = Dict[str, torch.Tensor] def _load_state_dict_from_repo( model_name: str, block_prefix: str, *, revision: Optional[str] = None, token: Optional[Union[str, bool]] = None, cache_dir: str, max_disk_space: Optional[int] = None, ) -> StateDict: if always_needs_auth(model_name) and token is None: token = True index_file = get_file_from_repo( model_name, filename="pytorch_model.bin.index.json", use_auth_token=token, cache_dir=cache_dir ) if index_file is not None: # Sharded model with open(index_file) as f: index = json.load(f) filenames = { filename for param_name, filename in index["weight_map"].items() if param_name.startswith(block_prefix) } if not filenames: raise RuntimeError(f"Block {block_prefix}* not found in the index: {index['weight_map']}") else: # Non-sharded model filenames = {"pytorch_model.bin"} logger.debug(f"Loading {block_prefix}* from {filenames}") state_dict = {} for filename in filenames: shard_state_dict = _load_state_dict_from_file( model_name, filename, revision=revision, token=token, cache_dir=cache_dir, max_disk_space=max_disk_space, ) shard_state_dict = { param_name[len(block_prefix) :]: param for param_name, param in shard_state_dict.items() if param_name.startswith(block_prefix) } # Remove unused parameters from memory state_dict.update(shard_state_dict) return state_dict def _load_state_dict_from_file( model_name: str, filename: str, *, revision: Optional[str] = None, token: Optional[Union[str, bool]] = None, cache_dir: str, max_disk_space: Optional[int] = None, delay: float = 30, ) -> StateDict: # First, try to find the weights locally try: with allow_cache_reads(cache_dir): path = get_file_from_repo( model_name, filename, revision=revision, use_auth_token=token, cache_dir=cache_dir, local_files_only=True, ) if path is not None: return torch.load(path, map_location="cpu") except Exception: logger.warning(f"Cache for file {filename} is corrupted, it will be downloaded again", exc_info=True) # If not found, ensure that we have enough disk space to download them (maybe remove something) while True: try: with allow_cache_writes(cache_dir): url = hf_hub_url(model_name, filename, revision=revision) file_size = get_hf_file_metadata(url, token=token).size if file_size is not None: free_disk_space_for(file_size, cache_dir=cache_dir, max_disk_space=max_disk_space) else: logger.warning(f"Failed to fetch size of file {filename} from repo {model_name}") path = get_file_from_repo( model_name, filename, revision=revision, use_auth_token=token, cache_dir=cache_dir, local_files_only=False, ) if path is None: raise RuntimeError(f"File {filename} does not exist in repo {model_name}") return torch.load(path, map_location="cpu") except Exception: logger.warning(f"Failed to load file {filename} from HF Hub (retry in {delay:.0f} sec)", exc_info=True) time.sleep(delay)
TheGrid-main
grid/server/from_pretrained.py
import os from hivemind.utils import logging as hm_logging def initialize_logs(): """Initialize Grid logging tweaks. This function is called when you import the `grid` module.""" # Env var GRID_LOGGING=False prohibits Grid do anything with logs if os.getenv("GRID_LOGGING", "True").lower() in ("false", "0"): return hm_logging.use_hivemind_log_handler("in_root_logger") # We suppress asyncio error logs by default since they are mostly not relevant for the end user, # unless there is env var GRID_ASYNCIO_LOGLEVEL asyncio_loglevel = os.getenv("GRID_ASYNCIO_LOGLEVEL", "FATAL" if hm_logging.loglevel != "DEBUG" else "DEBUG") hm_logging.get_logger("asyncio").setLevel(asyncio_loglevel)
TheGrid-main
grid/utils/logging.py
import torch DUMMY = torch.empty(0) # dummy tensor that replaces empty prompt or adapter parameters def is_dummy(tensor: torch.Tensor): return tensor.numel() == 0
TheGrid-main
grid/utils/misc.py