python_code
stringlengths
0
1.02M
repo_name
stringlengths
9
48
file_path
stringlengths
5
114
from .adamod import AdaMod
AdaMod-master
adamod/__init__.py
import math import torch from torch.optim import Optimizer class AdaMod(Optimizer): """Implements AdaMod algorithm with Decoupled Weight Decay (arxiv.org/abs/1711.05101) It has been proposed in `Adaptive and Momental Bounds for Adaptive Learning Rate Methods`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) beta3 (float, optional): smoothing coefficient for adaptive learning rates (default: 0.9999) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), beta3=0.999, eps=1e-8, weight_decay=0): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= beta3 < 1.0: raise ValueError("Invalid beta3 parameter: {}".format(beta3)) defaults = dict(lr=lr, betas=betas, beta3=beta3, eps=eps, weight_decay=weight_decay) super(AdaMod, self).__init__(params, defaults) def __setstate__(self, state): super(AdaMod, self).__setstate__(state) def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data if grad.is_sparse: raise RuntimeError( 'AdaMod does not support sparse gradients') state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) # Exponential moving average of actual learning rates state['exp_avg_lr'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq, exp_avg_lr = state['exp_avg'], state['exp_avg_sq'], state['exp_avg_lr'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 if group['weight_decay'] != 0: p.data.add_(-group['weight_decay'] * group['lr'], p.data) # Applies momental bounds on actual learning rates step_size = torch.full_like(denom, step_size) step_size.div_(denom) exp_avg_lr.mul_(group['beta3']).add_(1 - group['beta3'], step_size) step_size = torch.min(step_size, exp_avg_lr) step_size.mul_(exp_avg) p.data.add_(-step_size) return loss
AdaMod-master
adamod/adamod.py
import os #%matplotlib notebook import matplotlib.pyplot as plt import torch import numpy as np LABELS = ['SGD','Adam', 'AdaMod'] def get_folder_path(use_pretrained=True): if use_pretrained: path = 'pretrained' else: path = 'curve' return path def get_curve_data(use_pretrained=True, model='ResNet'): folder_path = get_folder_path(use_pretrained) filenames = [name for name in os.listdir(folder_path) if name.startswith(model.lower())] paths = [os.path.join(folder_path, name) for name in filenames] keys = [name.split('-')[1] for name in filenames] return {key: torch.load(fp) for key, fp in zip(keys, paths)} def plot(use_pretrained=True, model='ResNet', optimizers=None, curve_type='train'): assert model in ['ResNet', 'DenseNet'], 'Invalid model name: {}'.format(model) assert curve_type in ['train', 'test'], 'Invalid curve type: {}'.format(curve_type) assert all(_ in LABELS for _ in optimizers), 'Invalid optimizer' curve_data = get_curve_data(use_pretrained, model=model) plt.figure() plt.title('{} Accuracy for {} on CIFAR-100'.format(curve_type.capitalize(), model)) plt.xlabel('Epoch') plt.ylabel('{} Accuracy %'.format(curve_type.capitalize())) if curve_type == 'train': plt.ylim(80, 101) else: plt.ylim(50, 81) for optim in optimizers: accuracies = np.array(curve_data[optim.lower()]['{}_acc'.format(curve_type)]) plt.plot(accuracies, label=optim) plt.grid(ls='--') plt.legend() plt.show() plt.savefig('cifar100-{}-{}.png'.format(model, curve_type.capitalize())) def main(): # plot(use_pretrained=True, model='ResNet', optimizers=LABELS, curve_type='train') # plot(use_pretrained=True, model='ResNet', optimizers=LABELS, curve_type='test') plot(use_pretrained=True, model='DenseNet', optimizers=LABELS, curve_type='train') plot(use_pretrained=True, model='DenseNet', optimizers=LABELS, curve_type='test') if __name__ == '__main__': main()
AdaMod-master
demos/cifar100/visualization.py
"""Train CIFAR100 with PyTorch.""" from __future__ import print_function import torch import torch.optim as optim import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse from models import * from adamod import AdaMod def get_parser(): parser = argparse.ArgumentParser(description='PyTorch CIFAR100 Training') parser.add_argument('--model', default='resnet', type=str, help='model', choices=['resnet', 'densenet']) parser.add_argument('--optim', default='adamod', type=str, help='optimizer', choices=['sgd', 'adam', 'adamod']) parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--beta3', default=0.999, type=float, help=' smoothing coefficient term of AdaMod') parser.add_argument('--momentum', default=0.9, type=float, help='momentum term') parser.add_argument('--beta1', default=0.9, type=float, help='Adam coefficients beta_1') parser.add_argument('--beta2', default=0.999, type=float, help='Adam coefficients beta_2') parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--weight_decay', default=5e-4, type=float, help='weight decay for optimizers') return parser def build_dataset(): print('==> Preparing data..') transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.507, 0.487, 0.441), (0.267, 0.256, 0.276)), ]) trainset = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=transform_train) train_loader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform_test) test_loader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2) # classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') return train_loader, test_loader def get_ckpt_name(dataset='cifar100', model='resnet', optimizer='adamod', lr=0.1, momentum=0.9, beta1=0.9, beta2=0.999, beta3=0.999): name = { 'sgd': 'lr{}-momentum{}'.format(lr, momentum), 'adam': 'lr{}-betas{}-{}'.format(lr, beta1, beta2), 'adamod': 'lr{}-betas{}-{}-{}'.format(lr, beta1, beta2, beta3), }[optimizer] return '{}-{}-{}'.format(model, optimizer, name) def load_checkpoint(ckpt_name): print('==> Resuming from checkpoint..') path = os.path.join('checkpoint', ckpt_name) assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' assert os.path.exists(path), 'Error: checkpoint {} not found'.format(ckpt_name) return torch.load(ckpt_name) def build_model(args, device, ckpt=None): print('==> Building model..') net = { 'resnet': ResNet34, 'densenet': DenseNet121, }[args.model]() net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True if ckpt: net.load_state_dict(ckpt['net']) return net def create_optimizer(args, model_params): if args.optim == 'sgd': return optim.SGD(model_params, args.lr, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optim == 'adam': return optim.AdamW(model_params, args.lr, betas=(args.beta1, args.beta2), weight_decay=args.weight_decay) elif args.optim == 'adamod': return AdaMod(model_params, args.lr, betas=(args.beta1, args.beta2), beta3=args.beta3, weight_decay=args.weight_decay) def train(net, epoch, device, data_loader, optimizer, criterion): print('\nEpoch: %d' % epoch) net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(data_loader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() accuracy = 100. * correct / total print('train acc %.3f' % accuracy) return accuracy def test(net, device, data_loader, criterion): net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(data_loader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() accuracy = 100. * correct / total print(' test acc %.3f' % accuracy) return accuracy def main(): parser = get_parser() args = parser.parse_args() train_loader, test_loader = build_dataset() device = 'cuda' if torch.cuda.is_available() else 'cpu' ckpt_name = get_ckpt_name(model=args.model, optimizer=args.optim, lr=args.lr, momentum=args.momentum, beta1=args.beta1, beta2=args.beta2, beta3=args.beta3) if args.resume: ckpt = load_checkpoint(ckpt_name) best_acc = ckpt['acc'] start_epoch = ckpt['epoch'] else: ckpt = None best_acc = 0 start_epoch = -1 net = build_model(args, device, ckpt=ckpt) criterion = nn.CrossEntropyLoss() optimizer = create_optimizer(args, net.parameters()) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [150, 225], gamma=0.1, last_epoch=start_epoch) train_accuracies = [] test_accuracies = [] for epoch in range(start_epoch + 1, 300): scheduler.step() train_acc = train(net, epoch, device, train_loader, optimizer, criterion) test_acc = test(net, device, test_loader, criterion) # Save checkpoint. if test_acc > best_acc: print('Saving..') state = { 'net': net.state_dict(), 'acc': test_acc, 'epoch': epoch, } if not os.path.isdir('checkpoint'): os.mkdir('checkpoint') torch.save(state, os.path.join('checkpoint', ckpt_name)) best_acc = test_acc train_accuracies.append(train_acc) test_accuracies.append(test_acc) if not os.path.isdir('curve'): os.mkdir('curve') torch.save({'train_acc': train_accuracies, 'test_acc': test_accuracies}, os.path.join('curve', ckpt_name)) if __name__ == '__main__': main()
AdaMod-master
demos/cifar100/main.py
""" .. Densely Connected Convolutional Networks: https://arxiv.org/abs/1608.06993 """ import math import torch import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): def __init__(self, in_planes, growth_rate): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, 4 * growth_rate, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm2d(4 * growth_rate) self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat([out, x], 1) return out class Transition(nn.Module): def __init__(self, in_planes, out_planes): super(Transition, self).__init__() self.bn = nn.BatchNorm2d(in_planes) self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out class DenseNet(nn.Module): def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=100): super(DenseNet, self).__init__() self.growth_rate = growth_rate num_planes = 2 * growth_rate self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0]) num_planes += nblocks[0] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans1 = Transition(num_planes, out_planes) num_planes = out_planes self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1]) num_planes += nblocks[1] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans2 = Transition(num_planes, out_planes) num_planes = out_planes self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2]) num_planes += nblocks[2] * growth_rate out_planes = int(math.floor(num_planes * reduction)) self.trans3 = Transition(num_planes, out_planes) num_planes = out_planes self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3]) num_planes += nblocks[3] * growth_rate self.bn = nn.BatchNorm2d(num_planes) self.linear = nn.Linear(num_planes, num_classes) def _make_dense_layers(self, block, in_planes, nblock): layers = [] for i in range(nblock): layers.append(block(in_planes, self.growth_rate)) in_planes += self.growth_rate return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.trans1(self.dense1(out)) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DenseNet121(): return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=32) def DenseNet169(): return DenseNet(Bottleneck, [6, 12, 32, 32], growth_rate=32) def DenseNet201(): return DenseNet(Bottleneck, [6, 12, 48, 32], growth_rate=32) def DenseNet161(): return DenseNet(Bottleneck, [6, 12, 36, 24], growth_rate=48) def densenet_cifar(): return DenseNet(Bottleneck, [6, 12, 24, 16], growth_rate=12) def test(): net = densenet_cifar() x = torch.randn(1, 3, 32, 32) y = net(x) print(y) # test()
AdaMod-master
demos/cifar100/models/densenet.py
from .resnet import * from .densenet import *
AdaMod-master
demos/cifar100/models/__init__.py
""" .. Deep Residual Learning for Image Recognition: https://arxiv.org/abs/1512.03385 """ import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=100): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512 * block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2]) def ResNet34(): return ResNet(BasicBlock, [3, 4, 6, 3]) def ResNet50(): return ResNet(Bottleneck, [3, 4, 6, 3]) def ResNet101(): return ResNet(Bottleneck, [3, 4, 23, 3]) def ResNet152(): return ResNet(Bottleneck, [3, 8, 36, 3]) def test(): net = ResNet18() y = net(torch.randn(1, 3, 32, 32)) print(y.size()) # test()
AdaMod-master
demos/cifar100/models/resnet.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import importlib import os from .fairseq_lr_scheduler import FairseqLRScheduler LR_SCHEDULER_REGISTRY = {} def build_lr_scheduler(args, optimizer): return LR_SCHEDULER_REGISTRY[args.lr_scheduler](args, optimizer) def register_lr_scheduler(name): """Decorator to register a new LR scheduler.""" def register_lr_scheduler_cls(cls): if name in LR_SCHEDULER_REGISTRY: raise ValueError('Cannot register duplicate LR scheduler ({})'.format(name)) if not issubclass(cls, FairseqLRScheduler): raise ValueError('LR Scheduler ({}: {}) must extend FairseqLRScheduler'.format(name, cls.__name__)) LR_SCHEDULER_REGISTRY[name] = cls return cls return register_lr_scheduler_cls # automatically import any Python files in the optim/lr_scheduler/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith('.py') and not file.startswith('_'): module = file[:file.find('.py')] importlib.import_module('fairseq.optim.lr_scheduler.' + module)
AdaMod-master
demos/nmt/lr_scheduler/__init__.py
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. from . import FairseqLRScheduler, register_lr_scheduler @register_lr_scheduler('cold_start') class ColdStartSchedule(FairseqLRScheduler): """Decay the LR based on the inverse square root of the update number. We also support a warmup phase where we linearly increase the learning rate from some initial learning rate (``--warmup-init-lr``) until the configured learning rate (``--lr``). Thereafter we decay proportional to the number of updates, with a decay factor set to align with the configured learning rate. During warmup:: lrs = torch.linspace(args.warmup_init_lr, args.lr, args.warmup_updates) lr = lrs[update_num] After warmup:: decay_factor = args.lr * sqrt(args.warmup_updates) lr = decay_factor / sqrt(update_num) """ def __init__(self, args, optimizer): super().__init__(args, optimizer) if len(args.lr) > 1: raise ValueError( 'Cannot use a fixed learning rate schedule with inverse_sqrt.' ' Consider --lr-scheduler=fixed instead.' ) warmup_end_lr = args.lr[0] if args.warmup_init_lr < 0: args.warmup_init_lr = warmup_end_lr # linearly warmup for the first args.warmup_updates self.lr_step = (warmup_end_lr - args.warmup_init_lr) / args.warmup_updates # then, decay prop. to the inverse square root of the update number self.decay_factor = warmup_end_lr * args.warmup_updates**0.5 # initial learning rate self.lr = args.warmup_init_lr self.optimizer.set_lr(self.lr) @staticmethod def add_args(parser): """Add arguments to the parser for this LR scheduler.""" # fmt: off parser.add_argument('--warmup-updates', default=4000, type=int, metavar='N', help='warmup the learning rate linearly for the first N updates') parser.add_argument('--warmup-init-lr', default=-1, type=float, metavar='LR', help='initial learning rate during warmup phase; default is args.lr') # fmt: on def step(self, epoch, val_loss=None): """Update the learning rate at the end of the given epoch.""" super().step(epoch, val_loss) # we don't change the learning rate at epoch boundaries return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates < self.args.warmup_updates: self.lr = self.args.lr[0] else: self.lr = self.decay_factor * num_updates**-0.5 self.optimizer.set_lr(self.lr) return self.lr
AdaMod-master
demos/nmt/lr_scheduler/cold_start_scheduler.py
from setuptools import setup, find_packages setup( name = 'uniformer-pytorch', packages = find_packages(), version = '0.0.4', license='MIT', description = 'Uniformer - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/uniformer-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'video classification' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
uniformer-pytorch-main
setup.py
import torch from torch import nn, einsum from einops import rearrange from einops.layers.torch import Reduce # helpers def exists(val): return val is not None # classes class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.g = nn.Parameter(torch.ones(1, dim, 1, 1, 1)) self.b = nn.Parameter(torch.zeros(1, dim, 1, 1, 1)) def forward(self, x): std = torch.var(x, dim = 1, unbiased = False, keepdim = True).sqrt() mean = torch.mean(x, dim = 1, keepdim = True) return (x - mean) / (std + self.eps) * self.g + self.b def FeedForward(dim, mult = 4, dropout = 0.): return nn.Sequential( LayerNorm(dim), nn.Conv3d(dim, dim * mult, 1), nn.GELU(), nn.Dropout(dropout), nn.Conv3d(dim * mult, dim, 1) ) # MHRAs (multi-head relation aggregators) class LocalMHRA(nn.Module): def __init__( self, dim, heads, dim_head = 64, local_aggr_kernel = 5 ): super().__init__() self.heads = heads inner_dim = dim_head * heads # they use batchnorm for the local MHRA instead of layer norm self.norm = nn.BatchNorm3d(dim) # only values, as the attention matrix is taking care of by a convolution self.to_v = nn.Conv3d(dim, inner_dim, 1, bias = False) # this should be equivalent to aggregating by an attention matrix parameterized as a function of the relative positions across each axis self.rel_pos = nn.Conv3d(heads, heads, local_aggr_kernel, padding = local_aggr_kernel // 2, groups = heads) # combine out across all the heads self.to_out = nn.Conv3d(inner_dim, dim, 1) def forward(self, x): x = self.norm(x) b, c, *_, h = *x.shape, self.heads # to values v = self.to_v(x) # split out heads v = rearrange(v, 'b (c h) ... -> (b c) h ...', h = h) # aggregate by relative positions out = self.rel_pos(v) # combine heads out = rearrange(out, '(b c) h ... -> b (c h) ...', b = b) return self.to_out(out) class GlobalMHRA(nn.Module): def __init__( self, dim, heads, dim_head = 64, dropout = 0. ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = dim_head * heads self.norm = LayerNorm(dim) self.to_qkv = nn.Conv1d(dim, inner_dim * 3, 1, bias = False) self.to_out = nn.Conv1d(inner_dim, dim, 1) def forward(self, x): x = self.norm(x) shape, h = x.shape, self.heads x = rearrange(x, 'b c ... -> b c (...)') q, k, v = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h d) n -> b h n d', h = h), (q, k, v)) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) # attention attn = sim.softmax(dim = -1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h n d -> b (h d) n', h = h) out = self.to_out(out) return out.view(*shape) class Transformer(nn.Module): def __init__( self, *, dim, depth, heads, mhsa_type = 'g', local_aggr_kernel = 5, dim_head = 64, ff_mult = 4, ff_dropout = 0., attn_dropout = 0. ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): if mhsa_type == 'l': attn = LocalMHRA(dim, heads = heads, dim_head = dim_head, local_aggr_kernel = local_aggr_kernel) elif mhsa_type == 'g': attn = GlobalMHRA(dim, heads = heads, dim_head = dim_head, dropout = attn_dropout) else: raise ValueError('unknown mhsa_type') self.layers.append(nn.ModuleList([ nn.Conv3d(dim, dim, 3, padding = 1), attn, FeedForward(dim, mult = ff_mult, dropout = ff_dropout), ])) def forward(self, x): for dpe, attn, ff in self.layers: x = dpe(x) + x x = attn(x) + x x = ff(x) + x return x # main class class Uniformer(nn.Module): def __init__( self, *, num_classes, dims = (64, 128, 256, 512), depths = (3, 4, 8, 3), mhsa_types = ('l', 'l', 'g', 'g'), local_aggr_kernel = 5, channels = 3, ff_mult = 4, dim_head = 64, ff_dropout = 0., attn_dropout = 0. ): super().__init__() init_dim, *_, last_dim = dims self.to_tokens = nn.Conv3d(channels, init_dim, (3, 4, 4), stride = (2, 4, 4), padding = (1, 0, 0)) dim_in_out = tuple(zip(dims[:-1], dims[1:])) mhsa_types = tuple(map(lambda t: t.lower(), mhsa_types)) self.stages = nn.ModuleList([]) for ind, (depth, mhsa_type) in enumerate(zip(depths, mhsa_types)): is_last = ind == len(depths) - 1 stage_dim = dims[ind] heads = stage_dim // dim_head self.stages.append(nn.ModuleList([ Transformer( dim = stage_dim, depth = depth, heads = heads, mhsa_type = mhsa_type, ff_mult = ff_mult, ff_dropout = ff_dropout, attn_dropout = attn_dropout ), nn.Sequential( nn.Conv3d(stage_dim, dims[ind + 1], (1, 2, 2), stride = (1, 2, 2)), LayerNorm(dims[ind + 1]), ) if not is_last else None ])) self.to_logits = nn.Sequential( Reduce('b c t h w -> b c', 'mean'), nn.LayerNorm(last_dim), nn.Linear(last_dim, num_classes) ) def forward(self, video): x = self.to_tokens(video) for transformer, conv in self.stages: x = transformer(x) if exists(conv): x = conv(x) return self.to_logits(x)
uniformer-pytorch-main
uniformer_pytorch/uniformer_pytorch.py
from uniformer_pytorch.uniformer_pytorch import Uniformer
uniformer-pytorch-main
uniformer_pytorch/__init__.py
import csv from clap.datasets import tokenize import torch import torchaudio # constants MAX_TOKEN_LENGTH = 256 DATA_DIR = './data' NUM_MEL = 80 TSV_FILE_NAME = 'subset.tsv' # helpers def tsv_to_dict(path): with open(path) as fd: rd = csv.DictReader(fd, delimiter = "\t", quotechar = '"') return [row for row in rd] # script voice_clips = tsv_to_dict(f'{DATA_DIR}/{TSV_FILE_NAME}') for clip in voice_clips: filename = clip['path'] text = clip['sentence'] waveform, sample_rate = torchaudio.load(f"{DATA_DIR}/clips/{filename}", normalization = True) output = torchaudio.transforms.MelSpectrogram(sample_rate, n_mels = NUM_MEL)(waveform)[0] tokenized = torch.tensor([int(byte) for i, byte in enumerate(text.encode('utf-8'))], dtype = torch.uint8) save_path = f"{DATA_DIR}/{filename}.pt" torch.save({ 'audio': output.t(), 'text': tokenized }, save_path)
CLAP-main
preprocess.py
from setuptools import setup, find_packages setup( name="clap-jax", packages=find_packages(), version="0.0.1", license="MIT", description="CLAP - Contrastive Language-Audio Pretraining", author="Charles Foster", author_email="", url="https://github.com/cfoster0/CLAP", keywords=[ "artificial intelligence", "deep learning", "contrastive learning", "audio", ], install_requires=[ "click", "click-option-group", "einops>=0.3", "flax", "jax", "jaxlib", "lm_dataformat", "optax", "torch", ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Scientific/Engineering :: Artificial Intelligence", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", ], )
CLAP-main
setup.py
import click from click_option_group import optgroup import jax from jax import random, numpy as np, value_and_grad, jit, tree_util from optax import chain, clip_by_global_norm, scale_by_adam, scale, apply_updates, add_decayed_weights, masked from clap.models import CLAP # data from torch.utils.data import DataLoader from clap.datasets import pair_text_spectrogram_dataset_collate_fn, PairTextSpectrogramDataset @click.command() @optgroup.group('Model settings') @optgroup.option('--text_vocab', default = 256, type = int) @optgroup.option('--text_dim', default = 512, type = int) @optgroup.option('--text_depth', default = 1, type = int) @optgroup.option('--text_heads', default = 8, type = int) @optgroup.option('--audio_dim', default = 512, type = int) @optgroup.option('--audio_depth', default = 1, type = int) @optgroup.option('--audio_heads', default = 8, type = int) @optgroup.group('Training settings') @optgroup.option('--data_folder', default = './data', type = str) @optgroup.option('--batch_size', default = 16, type = int) @optgroup.option('--epochs', default = 100, type = int) @optgroup.option('--learning_rate', default = 3e-4, type = float) @optgroup.option('--weight_decay', default = 1e-1, type = float) @optgroup.option('--seed', default = 0, type = int) @optgroup.option('--max_norm', default = 0.5, type = float) def train( *, data_folder, batch_size, epochs, learning_rate, weight_decay, seed, max_norm, text_vocab, text_dim, text_depth, text_heads, audio_dim, audio_depth, audio_heads ): # rng rng_key = random.PRNGKey(seed) # data dataset = PairTextSpectrogramDataset(data_folder) dl = DataLoader(dataset, batch_size = batch_size, collate_fn = pair_text_spectrogram_dataset_collate_fn, drop_last = True, shuffle = True) # model model = CLAP( text_vocab = text_vocab, text_dim = text_dim, text_depth = text_depth, text_heads = text_heads, audio_dim = audio_dim, audio_depth = audio_depth, audio_heads = audio_heads ) # optimizer exclude_bias = lambda params: tree_util.tree_map(lambda x: x.ndim != 1, params) optim = chain( clip_by_global_norm(max_norm), scale_by_adam(eps=1e-4), add_decayed_weights(weight_decay, exclude_bias), scale(-learning_rate) ) # init audio, audio_mask, text, text_mask = next(iter(dl)) params = model.init(rng_key, text, audio, text_mask, audio_mask) optim_state = optim.init(params) # loss function, for use with value_and_grad @jit @value_and_grad def loss_fn(params, text, audio, text_mask, audio_mask): return model.apply(params, text, audio, text_mask, audio_mask) # train loop for _ in range(epochs): for audio, audio_mask, text, text_mask in dl: loss, grads = loss_fn(params, text, audio, text_mask, audio_mask) updates, optim_state = optim.update(grads, optim_state, params) params = apply_updates(params, updates) print(f'loss: {loss}') # finished if __name__ == "__main__": train()
CLAP-main
train.py
import jax from typing import Any, Callable, Sequence, Optional from jax import lax, random, numpy as np, vmap, jit from jax.ops import index, index_update # einsum and einops from jax.numpy import einsum from einops import rearrange, repeat # flax import flax from flax.core import freeze, unfreeze from flax import linen as nn # constants LARGE_NEG_VALUE = -1e10 # config from jax.config import config config.enable_omnistaging() # Linen requires enabling omnistaging # helpers def cross_entropy(logits, targets, axis=-1): logprobs = nn.log_softmax(logits, axis=axis) nll = np.take_along_axis(logprobs, np.expand_dims(targets, axis=axis), axis=axis) ce = -np.mean(nll) return ce def fixed_pos_embedding(seq, dim): inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) sinusoid_inp = np.einsum("i , j -> i j", np.arange(seq), inv_freq) return np.sin(sinusoid_inp), np.cos(sinusoid_inp) def rotate_every_two(x): x1 = x[:, :, ::2] x2 = x[:, :, 1::2] x = np.stack((-x2, x1), axis=-1) return rearrange(x, "... d j -> ... (d j)") def apply_rotary_pos_emb(x, sincos): sin, cos = map(lambda t: repeat(t, "b n -> b (n j)", j=2)[:, None, :], sincos) return (x * cos) + (rotate_every_two(x) * sin) # main class class Attention(nn.Module): dim: int heads: int dim_head: int = 64 causal: bool = False @nn.compact def __call__(self, x, pos_emb, mask): dim_in, h = x.shape[-1], self.heads scale = dim_in ** -0.5 norm = nn.LayerNorm() to_qkv = nn.Dense(features=self.dim_head * h * 3, use_bias=False) to_out = nn.Dense(features=dim_in) x = norm(x) qkv = np.split(to_qkv(x), 3, axis=-1) q, k, v = map(lambda t: rearrange(t, "i (h d) -> i h d", h=h), qkv) q = index_update(q, index[1:], apply_rotary_pos_emb(q[1:], pos_emb)) k = index_update(k, index[1:], apply_rotary_pos_emb(k[1:], pos_emb)) sim = einsum("i h d, j h d -> i j h", q, k) * scale mask = np.pad(mask, (1, 0), constant_values=True) mask = rearrange(mask, "j -> () j ()") if self.causal: i, j = sim.shape[:2] tri_mask = np.ones((i - 1, j - 1), dtype=bool) tri_mask = np.pad(tri_mask, ((1, 0), (1, 0)), constant_values=False) causal_mask = np.triu(tri_mask, j - i + 1) causal_mask = rearrange(causal_mask, "i j -> i j ()") mask = ~causal_mask * mask sim = np.where(mask, sim, LARGE_NEG_VALUE) attn = nn.softmax(sim, axis=-2) out = einsum("i j h, j h d -> i h d", attn, v) out = rearrange(out, "i h d -> i (h d)") return to_out(out) class FeedForward(nn.Module): mult: int = 4 @nn.compact def __call__(self, x): dim_in, mult = x.shape[-1], self.mult norm = nn.LayerNorm() to_intermediate = nn.Dense(features=dim_in * mult) to_out = nn.Dense(features=dim_in) x = norm(x) x = to_intermediate(x) x = nn.gelu(x) x = to_out(x) return x class Transformer(nn.Module): dim: int depth: int heads: int dim_head: int = 64 causal: bool = False cls_init: Callable = nn.initializers.lecun_normal() def setup(self): self.layers = [ ( Attention( dim=self.dim, heads=self.heads, dim_head=self.dim_head, causal=self.causal, ), FeedForward(), ) for _ in range(self.depth) ] @nn.compact def __call__(self, x, mask): n, d, h, dh, dim = *x.shape, self.heads, self.dim_head, self.dim if d != dim: x = nn.Dense(features=dim)(x) cls_token = self.param("cls", self.cls_init, (1, x.shape[-1])) to_norm_out = nn.LayerNorm() sincos = fixed_pos_embedding(n, self.dim_head) x = np.concatenate((cls_token, x), axis=0) for attn, ff in self.layers: x = attn(x, pos_emb=sincos, mask=mask) + x x = ff(x) + x x = to_norm_out(x) return x class CLAP(nn.Module): text_vocab: int text_dim: int text_depth: int text_heads: int audio_dim: int audio_depth: int audio_heads: int temp_init: Callable = nn.initializers.zeros def setup(self): self.audio_encoder = Transformer( dim=self.audio_dim, depth=self.audio_depth, heads=self.audio_heads ) self.text_encoder = Transformer( dim=self.text_dim, depth=self.text_depth, heads=self.text_heads, causal=True ) @nn.compact def __call__(self, text, audio, text_mask, audio_mask, return_loss=True): b, text_vocab, text_dim = text.shape[0], self.text_vocab, self.text_dim to_text_tokens = nn.Embed(num_embeddings=text_vocab, features=text_dim) temp = self.param("temperature", self.temp_init, tuple()) text = to_text_tokens(text) enc_text = vmap(self.text_encoder)(text, mask=text_mask) enc_audio = vmap(self.audio_encoder)(audio, mask=audio_mask) enc_text = enc_text[:, 0] enc_audio = enc_audio[:, 0] enc_text = enc_text / np.linalg.norm(enc_text, axis=-1, keepdims=True) enc_audio = enc_audio / np.linalg.norm(enc_audio, axis=-1, keepdims=True) sim = einsum("i d, j d -> i j", enc_text, enc_audio) * np.exp(temp) if not return_loss: return sim labels = np.arange(b) loss = ( cross_entropy(sim, labels, axis=0) + cross_entropy(sim, labels, axis=1) ) / 2 return loss
CLAP-main
clap/models.py
import glob import torch from pathlib import Path import lm_dataformat as lmd from itertools import cycle, islice, chain import torch.nn.functional as F from torch.utils.data import Dataset, TensorDataset, ConcatDataset, IterableDataset class CaptionedAudioMetadataset(IterableDataset): def __init__(self, path_pairs, lazy=False): self.datasets = [ CaptionedAudioDataset(captions_path, spectrograms_path, lazy=lazy) for (captions_path, spectrograms_path) in path_pairs ] def __iter__(self): def roundrobin(datasets): num_active = len(datasets) nexts = cycle(iter(it).__next__ for it in datasets) while num_active: try: for next in nexts: yield next() except StopIteration: # Remove the iterator we just exhausted from the cycle. num_active -= 1 nexts = cycle(islice(nexts, num_active)) iterator = roundrobin(self.datasets) return iterator class CaptionedAudioDataset(IterableDataset): def __init__(self, captions_path, spectrograms_path, lazy=False): self.lazy = lazy if self.lazy: # Warning: The lazy path does not check whether the cpation metadata # links it to the spectrogram. It assumes that the specrogram data, # read from the files from the path in sorted order, loaded in as # tensors, follows the exact same ordering as the LMD-encoded captions. self.captions = lmd.Reader(captions_path).stream_data(get_meta=False) self.spectrograms = SpectrogramLazyDataset(spectrograms_path) else: self.captions = lmd.Reader(captions_path).stream_data(get_meta=True) self.spectrograms = SpectrogramDataset(spectrograms_path) def __iter__(self): if self.lazy: iterator = ( (tokenize(text), spectrogram) for ((text, _), spectrogram) in zip(self.captions, self.spectrograms) ) else: iterator = ( (tokenize(text), self.spectrograms[meta["index"]]) for (text, meta) in self.captions ) return iterator class SpectrogramDataset(Dataset): def __init__(self, path): self.shard_paths = sorted(glob.glob(f"{path}/*.pt")) self.data = ConcatDataset( [SpectrogramDatasetShard(shard_path) for shard_path in self.shard_paths] ) def __len__(self): return len(self.data) def __getitem__(self, idx): return self.data[idx] class SpectrogramLazyDataset(IterableDataset): def __init__(self, path): self.shard_paths = sorted(glob.glob(f"{path}/*.pt")) def __iter__(self): def lazy_shard_loader(): for shard_path in self.shard_paths: self.shard_data = SpectrogramDatasetShard(shard_path) for example in self.shard_data: yield example return lazy_shard_loader() class SpectrogramDatasetShard(Dataset): def __init__(self, path): self.dataset_shard = TensorDataset(torch.load(path)) def __len__(self): # Layout is [examples, frames, channels] return len(self.dataset_shard) def __getitem__(self, idx): return self.dataset_shard[idx] class PairTextSpectrogramDataset(Dataset): def __init__(self, folder, max_audio_len = 2048, max_text_len = 256): self.paths = [path for path in Path(folder).glob('*.pt')] self.max_audio_len = max_audio_len self.max_text_len = max_text_len def __len__(self): return len(self.paths) def __getitem__(self, idx): max_audio_len, max_text_len = self.max_audio_len, self.max_text_len path = self.paths[idx] data = torch.load(path) audio, text = data['audio'], data['text'] audio = audio[:max_audio_len] text = text[:max_text_len] audio_mask = torch.ones(audio.shape[:-1]).bool() text_mask = torch.ones_like(text).bool() return audio, audio_mask, text, text_mask def pair_text_spectrogram_dataset_collate_fn(batch): audios = [el[0] for el in batch] texts = [el[2] for el in batch] max_audio_len = max([audio.shape[0] for audio in audios]) max_text_len = max([text.shape[0] for text in texts]) padded_batch = [] for audio, audio_mask, text, text_mask in batch: audio_len = audio.shape[0] text_len = text.shape[0] audio_pad_len = max_audio_len - audio_len text_pad_len = max_text_len - text_len if audio_pad_len > 0: audio = F.pad(audio, (0, 0, audio_pad_len, 0), value = 0.) audio_mask = F.pad(audio_mask, (audio_pad_len, 0), value = False) if text_pad_len > 0: text = F.pad(text, (text_pad_len, 0), value = 0.) text_mask = F.pad(text_mask, (text_pad_len, 0), value = False) padded_batch.append((audio, audio_mask, text, text_mask)) output = tuple(map(lambda t: torch.stack(t).numpy(), zip(*padded_batch))) return output def tokenize(text, pad_to=256): # Padding token is 0, the null byte tokens = torch.zeros(pad_to, dtype=torch.uint8) # Truncate to context window size on the right if need be for i, byte in enumerate(text.encode("utf-8")): if i < pad_to: tokens[i] = int(byte) else: break return torch.tensor(tokens) def roundrobin(*iterables): "roundrobin('ABC', 'D', 'EF') --> A D E B F C" # Recipe credited to George Sakkis num_active = len(iterables) nexts = cycle(iter(it).__next__ for it in iterables) while num_active: try: for next in nexts: yield next() except StopIteration: # Remove the iterator we just exhausted from the cycle. num_active -= 1 nexts = cycle(islice(nexts, num_active))
CLAP-main
clap/datasets.py
from clap.models import CLAP from clap.datasets import CaptionedAudioDataset, CaptionedAudioMetadataset, tokenize
CLAP-main
clap/__init__.py
# Modified from Google's Vision Transformer repo, whose notice is reproduced below. # # Copyright 2021 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any import einops import flax.linen as nn import jax.numpy as jnp class MlpBlock(nn.Module): mlp_dim: int @nn.compact def __call__(self, x): y = nn.Dense(self.mlp_dim)(x) y = nn.gelu(y) return nn.Dense(x.shape[-1])(y) class MixerBlock(nn.Module): """Mixer block layer.""" tokens_mlp_dim: int channels_mlp_dim: int @nn.compact def __call__(self, x): y = nn.LayerNorm()(x) y = jnp.swapaxes(y, 0, 1) y = MlpBlock(self.tokens_mlp_dim, name="token_mixing")(y) y = jnp.swapaxes(y, 0, 1) x = x + y y = nn.LayerNorm()(x) return x + MlpBlock(self.channels_mlp_dim, name="channel_mixing")(y) class MlpMixer(nn.Module): """Mixer architecture.""" patches: Any strides: Any num_classes: int num_blocks: int hidden_dim: int tokens_mlp_dim: int channels_mlp_dim: int @nn.compact def __call__(self, inputs): x = nn.Conv( self.hidden_dim, self.patches.size, strides=self.strides.size, name="stem" )(inputs) x = einops.rearrange(x, "h w c -> (h w) c") for _ in range(self.num_blocks): x = MixerBlock(self.tokens_mlp_dim, self.channels_mlp_dim)(x) x = nn.LayerNorm(name="pre_head_layer_norm")(x) x = jnp.mean(x, axis=0) return nn.Dense( self.num_classes, kernel_init=nn.initializers.zeros, name="head" )(x)
CLAP-main
clap/trunks.py
from setuptools import setup, find_packages setup( name = 'robocat-pytorch', packages = find_packages(exclude=[]), version = '0.0.1', license='MIT', description = 'RoboCat - A Self-Improving Foundation Agent for Robotic Manipulation', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/robocat-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformers', 'attention mechanism', 'self-improving robotic manipulation' ], install_requires=[ 'einops>=0.6.1', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
robocat-pytorch-main
setup.py
robocat-pytorch-main
robocat_pytorch/__init__.py
robocat-pytorch-main
robocat_pytorch/robocat.py
from setuptools import setup, find_packages exec(open('gigagan_pytorch/version.py').read()) setup( name = 'gigagan-pytorch', packages = find_packages(exclude=[]), version = __version__, license='MIT', description = 'GigaGAN - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/ETSformer-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'generative adversarial networks' ], install_requires=[ 'accelerate', 'beartype', 'einops>=0.6', 'ema-pytorch', 'kornia', 'numerize', 'open-clip-torch>=2.0.0,<3.0.0', 'pillow', 'torch>=1.6', 'torchvision', 'tqdm' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
gigagan-pytorch-main
setup.py
__version__ = '0.2.19'
gigagan-pytorch-main
gigagan_pytorch/version.py
from collections import namedtuple from pathlib import Path from math import log2, sqrt from random import random from functools import partial from torchvision import utils import torch import torch.nn.functional as F from torch import nn, einsum, Tensor from torch.autograd import grad as torch_grad from torch.utils.data import DataLoader from torch.cuda.amp import GradScaler from beartype import beartype from beartype.typing import List, Optional, Tuple, Dict, Union, Iterable from einops import rearrange, pack, unpack, repeat, reduce from einops.layers.torch import Rearrange, Reduce from kornia.filters import filter2d from ema_pytorch import EMA from gigagan_pytorch.version import __version__ from gigagan_pytorch.open_clip import OpenClipAdapter from gigagan_pytorch.optimizer import get_optimizer from gigagan_pytorch.distributed import all_gather from tqdm import tqdm from numerize import numerize from accelerate import Accelerator, DistributedType from accelerate.utils import DistributedDataParallelKwargs # helpers def exists(val): return val is not None @beartype def is_empty(arr: Iterable): return len(arr) == 0 def default(*vals): for val in vals: if exists(val): return val return None def cast_tuple(t, length = 1): return t if isinstance(t, tuple) else ((t,) * length) def is_power_of_two(n): return log2(n).is_integer() def safe_unshift(arr): if len(arr) == 0: return None return arr.pop(0) def divisible_by(numer, denom): return (numer % denom) == 0 def group_by_num_consecutive(arr, num): out = [] for ind, el in enumerate(arr): if ind > 0 and divisible_by(ind, num): yield out out = [] out.append(el) if len(out) > 0: yield out def is_unique(arr): return len(set(arr)) == len(arr) def cycle(dl): while True: for data in dl: yield data def num_to_groups(num, divisor): groups, remainder = divmod(num, divisor) arr = [divisor] * groups if remainder > 0: arr.append(remainder) return arr def mkdir_if_not_exists(path): path.mkdir(exist_ok = True, parents = True) @beartype def set_requires_grad_( m: nn.Module, requires_grad: bool ): for p in m.parameters(): p.requires_grad = requires_grad # activation functions def leaky_relu(neg_slope = 0.2): return nn.LeakyReLU(neg_slope) def conv2d_3x3(dim_in, dim_out): return nn.Conv2d(dim_in, dim_out, 3, padding = 1) # tensor helpers def log(t, eps = 1e-20): return t.clamp(min = eps).log() def gradient_penalty( images, outputs, grad_output_weights = None, weight = 10, scaler: Optional[GradScaler] = None, eps = 1e-4 ): if not isinstance(outputs, (list, tuple)): outputs = [outputs] if exists(scaler): outputs = [*map(scaler.scale, outputs)] if not exists(grad_output_weights): grad_output_weights = (1,) * len(outputs) maybe_scaled_gradients, *_ = torch_grad( outputs = outputs, inputs = images, grad_outputs = [(torch.ones_like(output) * weight) for output, weight in zip(outputs, grad_output_weights)], create_graph = True, retain_graph = True, only_inputs = True ) gradients = maybe_scaled_gradients if exists(scaler): scale = scaler.get_scale() inv_scale = 1. / max(scale, eps) gradients = maybe_scaled_gradients * inv_scale gradients = rearrange(gradients, 'b ... -> b (...)') return weight * ((gradients.norm(2, dim = 1) - 1) ** 2).mean() # hinge gan losses def generator_hinge_loss(fake): return fake.mean() def discriminator_hinge_loss(real, fake): return (F.relu(1 + real) + F.relu(1 - fake)).mean() # auxiliary losses def aux_matching_loss(real, fake): """ making logits negative, as in this framework, discriminator is 0 for real, high value for fake. GANs can have this arbitrarily swapped, as it only matters if the generator and discriminator are opposites """ return (log(1 + (-real).exp()) + log(1 + (-fake).exp())).mean() @beartype def aux_clip_loss( clip: OpenClipAdapter, images: Tensor, texts: Optional[List[str]] = None, text_embeds: Optional[Tensor] = None ): assert exists(texts) ^ exists(text_embeds) images, batch_sizes = all_gather(images, 0, None) if exists(texts): text_embeds, _ = clip.embed_texts(texts) text_embeds, _ = all_gather(text_embeds, 0, batch_sizes) return clip.contrastive_loss(images = images, text_embeds = text_embeds) # differentiable augmentation - Karras et al. stylegan-ada # start with horizontal flip class DiffAugment(nn.Module): def __init__( self, *, prob, horizontal_flip, horizontal_flip_prob = 0.5 ): super().__init__() self.prob = prob assert 0 <= prob <= 1. self.horizontal_flip = horizontal_flip self.horizontal_flip_prob = horizontal_flip_prob def forward( self, images, rgbs: List[Tensor] ): if random() >= self.prob: return images, rgbs if random() < self.horizontal_flip_prob: images = torch.flip(images, (-1,)) rgbs = [torch.flip(rgb, (-1,)) for rgb in rgbs] return images, rgbs # rmsnorm (newer papers show mean-centering in layernorm not necessary) class ChannelRMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim, 1, 1)) def forward(self, x): normed = F.normalize(x, dim = 1) return normed * self.scale * self.gamma class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): normed = F.normalize(x, dim = -1) return normed * self.scale * self.gamma # down and upsample class Blur(nn.Module): def __init__(self): super().__init__() f = torch.Tensor([1, 2, 1]) self.register_buffer('f', f) def forward(self, x): f = self.f f = f[None, None, :] * f [None, :, None] return filter2d(x, f, normalized = True) def Upsample(*args): return nn.Sequential( nn.Upsample(scale_factor = 2, mode = 'bilinear', align_corners = False), Blur() ) class PixelShuffleUpsample(nn.Module): def __init__(self, dim): super().__init__() conv = nn.Conv2d(dim, dim * 4, 1) self.net = nn.Sequential( conv, nn.SiLU(), nn.PixelShuffle(2) ) self.init_conv_(conv) def init_conv_(self, conv): o, i, h, w = conv.weight.shape conv_weight = torch.empty(o // 4, i, h, w) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...') conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): return self.net(x) def Downsample(dim): return nn.Sequential( Rearrange('b c (h s1) (w s2) -> b (c s1 s2) h w', s1 = 2, s2 = 2), nn.Conv2d(dim * 4, dim, 1) ) # skip layer excitation def SqueezeExcite(dim, dim_out, reduction = 4, dim_min = 32): dim_hidden = max(dim_out // reduction, dim_min) return nn.Sequential( Reduce('b c h w -> b c', 'mean'), nn.Linear(dim, dim_hidden), nn.SiLU(), nn.Linear(dim_hidden, dim_out), nn.Sigmoid(), Rearrange('b c -> b c 1 1') ) # adaptive conv # the main novelty of the paper - they propose to learn a softmax weighted sum of N convolutional kernels, depending on the text embedding def get_same_padding(size, kernel, dilation, stride): return ((size - 1) * (stride - 1) + dilation * (kernel - 1)) // 2 class AdaptiveConv2DMod(nn.Module): def __init__( self, dim, dim_out, kernel, *, demod = True, stride = 1, dilation = 1, eps = 1e-8, num_conv_kernels = 1 # set this to be greater than 1 for adaptive ): super().__init__() self.eps = eps self.dim_out = dim_out self.kernel = kernel self.stride = stride self.dilation = dilation self.adaptive = num_conv_kernels > 1 self.weights = nn.Parameter(torch.randn((num_conv_kernels, dim_out, dim, kernel, kernel))) self.demod = demod nn.init.kaiming_normal_(self.weights, a = 0, mode = 'fan_in', nonlinearity = 'leaky_relu') def forward( self, fmap, mod: Optional[Tensor] = None, kernel_mod: Optional[Tensor] = None ): """ notation b - batch n - convs o - output i - input k - kernel """ b, h = fmap.shape[0], fmap.shape[-2] # account for feature map that has been expanded by the scale in the first dimension # due to multiscale inputs and outputs if mod.shape[0] != b: mod = repeat(mod, 'b ... -> (s b) ...', s = b // mod.shape[0]) if exists(kernel_mod): kernel_mod_has_el = kernel_mod.numel() > 0 assert self.adaptive or not kernel_mod_has_el if kernel_mod_has_el and kernel_mod.shape[0] != b: kernel_mod = repeat(kernel_mod, 'b ... -> (s b) ...', s = b // kernel_mod.shape[0]) # prepare weights for modulation weights = self.weights if self.adaptive: weights = repeat(weights, '... -> b ...', b = b) # determine an adaptive weight and 'select' the kernel to use with softmax assert exists(kernel_mod) and kernel_mod.numel() > 0 kernel_attn = kernel_mod.softmax(dim = -1) kernel_attn = rearrange(kernel_attn, 'b n -> b n 1 1 1 1') weights = reduce(weights * kernel_attn, 'b n ... -> b ...', 'sum') # do the modulation, demodulation, as done in stylegan2 mod = rearrange(mod, 'b i -> b 1 i 1 1') weights = weights * (mod + 1) if self.demod: inv_norm = reduce(weights ** 2, 'b o i k1 k2 -> b o 1 1 1', 'sum').clamp(min = self.eps).rsqrt() weights = weights * inv_norm fmap = rearrange(fmap, 'b c h w -> 1 (b c) h w') weights = rearrange(weights, 'b o ... -> (b o) ...') padding = get_same_padding(h, self.kernel, self.dilation, self.stride) fmap = F.conv2d(fmap, weights, padding = padding, groups = b) return rearrange(fmap, '1 (b o) ... -> b o ...', b = b) # attention # they use an attention with a better Lipchitz constant - l2 distance similarity instead of dot product - also shared query / key space - shown in vitgan to be more stable # not sure what they did about token attention to self, so masking out, as done in some other papers using shared query / key space class SelfAttention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, dot_product = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_inner = dim_head * heads self.dot_product = dot_product self.norm = ChannelRMSNorm(dim) self.to_q = nn.Conv2d(dim, dim_inner, 1, bias = False) self.to_k = nn.Conv2d(dim, dim_inner, 1, bias = False) if dot_product else None self.to_v = nn.Conv2d(dim, dim_inner, 1, bias = False) self.null_kv = nn.Parameter(torch.randn(2, heads, dim_head)) self.to_out = nn.Conv2d(dim_inner, dim, 1, bias = False) def forward(self, fmap): """ einstein notation b - batch h - heads x - height y - width d - dimension i - source seq (attend from) j - target seq (attend to) """ batch = fmap.shape[0] fmap = self.norm(fmap) x, y = fmap.shape[-2:] h = self.heads q, v = self.to_q(fmap), self.to_v(fmap) k = self.to_k(fmap) if exists(self.to_k) else q q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> (b h) (x y) d', h = self.heads), (q, k, v)) # add a null key / value, so network can choose to pay attention to nothing nk, nv = map(lambda t: repeat(t, 'h d -> (b h) 1 d', b = batch), self.null_kv) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) # l2 distance or dot product if self.dot_product: sim = einsum('b i d, b j d -> b i j', q, k) else: # using pytorch cdist leads to nans in lightweight gan training framework, at least q_squared = (q * q).sum(dim = -1) k_squared = (k * k).sum(dim = -1) l2dist_squared = rearrange(q_squared, 'b i -> b i 1') + rearrange(k_squared, 'b j -> b 1 j') - 2 * einsum('b i d, b j d -> b i j', q, k) # hope i'm mathing right sim = -l2dist_squared # scale sim = sim * self.scale # attention attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', x = x, y = y, h = h) return self.to_out(out) class CrossAttention(nn.Module): def __init__( self, dim, dim_context, dim_head = 64, heads = 8 ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_inner = dim_head * heads kv_input_dim = default(dim_context, dim) self.norm = ChannelRMSNorm(dim) self.norm_context = RMSNorm(kv_input_dim) self.to_q = nn.Conv2d(dim, dim_inner, 1, bias = False) self.to_kv = nn.Linear(kv_input_dim, dim_inner * 2, bias = False) self.to_out = nn.Conv2d(dim_inner, dim, 1, bias = False) def forward(self, fmap, context, mask = None): """ einstein notation b - batch h - heads x - height y - width d - dimension i - source seq (attend from) j - target seq (attend to) """ fmap = self.norm(fmap) context = self.norm_context(context) x, y = fmap.shape[-2:] h = self.heads q, k, v = (self.to_q(fmap), *self.to_kv(context).chunk(2, dim = -1)) k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (k, v)) q = rearrange(q, 'b (h d) x y -> (b h) (x y) d', h = self.heads) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if exists(mask): mask = repeat(mask, 'b j -> (b h) 1 j', h = self.heads) sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) (x y) d -> b (h d) x y', x = x, y = y, h = h) return self.to_out(out) # classic transformer attention, stick with l2 distance class TextAttention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8 ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 dim_inner = dim_head * heads self.norm = RMSNorm(dim) self.to_qkv = nn.Linear(dim, dim_inner * 3, bias = False) self.null_kv = nn.Parameter(torch.randn(2, heads, dim_head)) self.to_out = nn.Linear(dim_inner, dim, bias = False) def forward(self, encodings, mask = None): """ einstein notation b - batch h - heads x - height y - width d - dimension i - source seq (attend from) j - target seq (attend to) """ batch = encodings.shape[0] encodings = self.norm(encodings) h = self.heads q, k, v = self.to_qkv(encodings).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = self.heads), (q, k, v)) # add a null key / value, so network can choose to pay attention to nothing nk, nv = map(lambda t: repeat(t, 'h d -> (b h) 1 d', b = batch), self.null_kv) k = torch.cat((nk, k), dim = -2) v = torch.cat((nv, v), dim = -2) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale # key padding mask if exists(mask): mask = F.pad(mask, (1, 0), value = True) mask = repeat(mask, 'b n -> (b h) 1 n', h = h) sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h = h) return self.to_out(out) # feedforward def FeedForward( dim, mult = 4, channel_first = False ): dim_hidden = int(dim * mult) norm_klass = ChannelRMSNorm if channel_first else RMSNorm proj = partial(nn.Conv2d, kernel_size = 1) if channel_first else nn.Linear return nn.Sequential( norm_klass(dim), proj(dim, dim_hidden), nn.GELU(), proj(dim_hidden, dim) ) # different types of transformer blocks or transformers (multiple blocks) class SelfAttentionBlock(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, ff_mult = 4, dot_product = False ): super().__init__() self.attn = SelfAttention(dim = dim, dim_head = dim_head, heads = heads, dot_product = dot_product) self.ff = FeedForward(dim = dim, mult = ff_mult, channel_first = True) def forward(self, x): x = self.attn(x) + x x = self.ff(x) + x return x class CrossAttentionBlock(nn.Module): def __init__( self, dim, dim_context, dim_head = 64, heads = 8, ff_mult = 4 ): super().__init__() self.attn = CrossAttention(dim = dim, dim_context = dim_context, dim_head = dim_head, heads = heads) self.ff = FeedForward(dim = dim, mult = ff_mult, channel_first = True) def forward(self, x, context, mask = None): x = self.attn(x, context = context, mask = mask) + x x = self.ff(x) + x return x class Transformer(nn.Module): def __init__( self, dim, depth, dim_head = 64, heads = 8, ff_mult = 4 ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ TextAttention(dim = dim, dim_head = dim_head, heads = heads), FeedForward(dim = dim, mult = ff_mult) ])) self.norm = RMSNorm(dim) def forward(self, x, mask = None): for attn, ff in self.layers: x = attn(x, mask = mask) + x x = ff(x) + x return self.norm(x) # text encoder class TextEncoder(nn.Module): @beartype def __init__( self, *, dim, depth, clip: Optional[OpenClipAdapter] = None, dim_head = 64, heads = 8, ): super().__init__() self.dim = dim if not exists(clip): clip = OpenClipAdapter() self.clip = clip set_requires_grad_(clip, False) self.learned_global_token = nn.Parameter(torch.randn(dim)) self.project_in = nn.Linear(clip.dim_latent, dim) if clip.dim_latent != dim else nn.Identity() self.transformer = Transformer( dim = dim, depth = depth, dim_head = dim_head, heads = heads ) @beartype def forward( self, texts: Optional[List[str]] = None, text_encodings: Optional[Tensor] = None ): assert exists(texts) ^ exists(text_encodings) if not exists(text_encodings): with torch.no_grad(): self.clip.eval() _, text_encodings = self.clip.embed_texts(texts) mask = (text_encodings != 0.).any(dim = -1) text_encodings = self.project_in(text_encodings) mask_with_global = F.pad(mask, (1, 0), value = True) batch = text_encodings.shape[0] global_tokens = repeat(self.learned_global_token, 'd -> b d', b = batch) text_encodings, ps = pack([global_tokens, text_encodings], 'b * d') text_encodings = self.transformer(text_encodings, mask = mask_with_global) global_tokens, text_encodings = unpack(text_encodings, ps, 'b * d') return global_tokens, text_encodings, mask # style mapping network class EqualLinear(nn.Module): def __init__( self, dim, dim_out, lr_mul = 1, bias = True ): super().__init__() self.weight = nn.Parameter(torch.randn(dim_out, dim)) if bias: self.bias = nn.Parameter(torch.zeros(dim_out)) self.lr_mul = lr_mul def forward(self, input): return F.linear(input, self.weight * self.lr_mul, bias=self.bias * self.lr_mul) class StyleNetwork(nn.Module): def __init__( self, dim, depth, lr_mul = 0.1, dim_text_latent = 0 ): super().__init__() self.dim = dim self.dim_text_latent = dim_text_latent layers = [] for i in range(depth): is_first = i == 0 dim_in = (dim + dim_text_latent) if is_first else dim layers.extend([EqualLinear(dim_in, dim, lr_mul), leaky_relu()]) self.net = nn.Sequential(*layers) def forward( self, x, text_latent = None ): x = F.normalize(x, dim = 1) if self.dim_text_latent > 0: assert exists(text_latent) x = torch.cat((x, text_latent), dim = -1) return self.net(x) # noise class Noise(nn.Module): def __init__(self, dim): super().__init__() self.weight = nn.Parameter(torch.zeros(dim, 1, 1)) def forward( self, x, noise = None ): b, _, h, w, device = *x.shape, x.device if not exists(noise): noise = torch.randn(b, 1, h, w, device = device) return x + self.weight * noise # generator class BaseGenerator(nn.Module): pass class Generator(BaseGenerator): @beartype def __init__( self, *, image_size, dim_capacity = 16, dim_max = 2048, channels = 3, style_network: Optional[Union[StyleNetwork, Dict]] = None, style_network_dim = None, text_encoder: Optional[Union[TextEncoder, Dict]] = None, dim_latent = 512, self_attn_resolutions: Tuple[int, ...] = (32, 16), self_attn_dim_head = 64, self_attn_heads = 8, self_attn_dot_product = True, self_attn_ff_mult = 4, cross_attn_resolutions: Tuple[int, ...] = (32, 16), cross_attn_dim_head = 64, cross_attn_heads = 8, cross_attn_ff_mult = 4, num_conv_kernels = 2, # the number of adaptive conv kernels num_skip_layers_excite = 0, unconditional = False, pixel_shuffle_upsample = False ): super().__init__() self.channels = channels if isinstance(style_network, dict): style_network = StyleNetwork(**style_network) self.style_network = style_network assert exists(style_network) ^ exists(style_network_dim), 'style_network_dim must be given to the generator if StyleNetwork not passed in as style_network' if not exists(style_network_dim): style_network_dim = style_network.dim self.style_network_dim = style_network_dim if isinstance(text_encoder, dict): text_encoder = TextEncoder(**text_encoder) self.text_encoder = text_encoder self.unconditional = unconditional assert not (unconditional and exists(text_encoder)) assert not (unconditional and exists(style_network) and style_network.dim_text_latent > 0) assert unconditional or (exists(text_encoder) and text_encoder.dim == style_network.dim_text_latent), 'the `dim_text_latent` on your StyleNetwork must be equal to the `dim` set for the TextEncoder' assert is_power_of_two(image_size) num_layers = int(log2(image_size) - 1) self.num_layers = num_layers # generator requires convolutions conditioned by the style vector # and also has N convolutional kernels adaptively selected (one of the only novelties of the paper) is_adaptive = num_conv_kernels > 1 dim_kernel_mod = num_conv_kernels if is_adaptive else 0 style_embed_split_dims = [] adaptive_conv = partial(AdaptiveConv2DMod, kernel = 3, num_conv_kernels = num_conv_kernels) # initial 4x4 block and conv self.init_block = nn.Parameter(torch.randn(dim_latent, 4, 4)) self.init_conv = adaptive_conv(dim_latent, dim_latent) style_embed_split_dims.extend([ dim_latent, dim_kernel_mod ]) # main network num_layers = int(log2(image_size) - 1) self.num_layers = num_layers resolutions = image_size / ((2 ** torch.arange(num_layers).flip(0))) resolutions = resolutions.long().tolist() dim_layers = (2 ** (torch.arange(num_layers) + 1)) * dim_capacity dim_layers.clamp_(max = dim_max) dim_layers = torch.flip(dim_layers, (0,)) dim_layers = F.pad(dim_layers, (1, 0), value = dim_latent) dim_layers = dim_layers.tolist() dim_pairs = list(zip(dim_layers[:-1], dim_layers[1:])) self.num_skip_layers_excite = num_skip_layers_excite self.layers = nn.ModuleList([]) # go through layers and construct all parameters for ind, ((dim_in, dim_out), resolution) in enumerate(zip(dim_pairs, resolutions)): is_last = (ind + 1) == len(dim_pairs) is_first = ind == 0 should_upsample = not is_first should_upsample_rgb = not is_last should_skip_layer_excite = num_skip_layers_excite > 0 and (ind + num_skip_layers_excite) < len(dim_pairs) has_self_attn = resolution in self_attn_resolutions has_cross_attn = resolution in cross_attn_resolutions and not unconditional skip_squeeze_excite = None if should_skip_layer_excite: dim_skip_in, _ = dim_pairs[ind + num_skip_layers_excite] skip_squeeze_excite = SqueezeExcite(dim_in, dim_skip_in) resnet_block = nn.ModuleList([ adaptive_conv(dim_in, dim_out), Noise(dim_out), leaky_relu(), adaptive_conv(dim_out, dim_out), Noise(dim_out), leaky_relu() ]) to_rgb = AdaptiveConv2DMod(dim_out, channels, 1, num_conv_kernels = 1, demod = False) self_attn = cross_attn = rgb_upsample = upsample = None upsample_klass = Upsample if not pixel_shuffle_upsample else PixelShuffleUpsample upsample = upsample_klass(dim_in) if should_upsample else None rgb_upsample = upsample_klass(channels) if should_upsample_rgb else None if has_self_attn: self_attn = SelfAttentionBlock( dim_out, dim_head = self_attn_dim_head, heads = self_attn_heads, ff_mult = self_attn_ff_mult, dot_product = self_attn_dot_product ) if has_cross_attn: cross_attn = CrossAttentionBlock( dim_out, dim_context = text_encoder.dim, dim_head = cross_attn_dim_head, heads = cross_attn_heads, ff_mult = cross_attn_ff_mult, ) style_embed_split_dims.extend([ dim_in, # for first conv in resnet block dim_kernel_mod, # first conv kernel selection dim_out, # second conv in resnet block dim_kernel_mod, # second conv kernel selection dim_out, # to RGB conv 0, # RGB conv kernel selection ]) self.layers.append(nn.ModuleList([ skip_squeeze_excite, resnet_block, to_rgb, self_attn, cross_attn, upsample, rgb_upsample ])) # determine the projection of the style embedding to convolutional modulation weights (+ adaptive kernel selection weights) for all layers self.style_to_conv_modulations = nn.Linear(style_network_dim, sum(style_embed_split_dims)) self.style_embed_split_dims = style_embed_split_dims self.apply(self.init_) nn.init.normal_(self.init_block, std = 0.02) def init_(self, m): if type(m) in {nn.Conv2d, nn.Linear}: nn.init.kaiming_normal_(m.weight, a = 0, mode = 'fan_in', nonlinearity = 'leaky_relu') @property def total_params(self): return sum([p.numel() for p in self.parameters() if p.requires_grad]) @property def device(self): return next(self.parameters()).device @beartype def forward( self, styles = None, noise = None, texts: Optional[List[str]] = None, text_encodings: Optional[Tensor] = None, global_text_tokens = None, fine_text_tokens = None, text_mask = None, batch_size = 1, return_all_rgbs = False ): # take care of text encodings # which requires global text tokens to adaptively select the kernels from the main contribution in the paper # and fine text tokens to attend to using cross attention if not self.unconditional: if exists(texts) or exists(text_encodings): assert exists(texts) ^ exists(text_encodings), 'either raw texts as List[str] or text_encodings (from clip) as Tensor is passed in, but not both' assert exists(self.text_encoder) if exists(texts): text_encoder_kwargs = dict(texts = texts) elif exists(text_encodings): text_encoder_kwargs = dict(text_encodings = text_encodings) global_text_tokens, fine_text_tokens, text_mask = self.text_encoder(**text_encoder_kwargs) else: assert all([*map(exists, (global_text_tokens, fine_text_tokens, text_mask))]), 'raw text or text embeddings were not passed in for conditional training' else: assert not any([*map(exists, (texts, global_text_tokens, fine_text_tokens))]) # determine styles if not exists(styles): assert exists(self.style_network) if not exists(noise): noise = torch.randn((batch_size, self.style_network_dim), device = self.device) styles = self.style_network(noise, global_text_tokens) # project styles to conv modulations conv_mods = self.style_to_conv_modulations(styles) conv_mods = conv_mods.split(self.style_embed_split_dims, dim = -1) conv_mods = iter(conv_mods) # prepare initial block batch_size = styles.shape[0] x = repeat(self.init_block, 'c h w -> b c h w', b = batch_size) x = self.init_conv(x, mod = next(conv_mods), kernel_mod = next(conv_mods)) rgb = torch.zeros((batch_size, self.channels, 4, 4), device = self.device, dtype = x.dtype) # skip layer squeeze excitations excitations = [None] * self.num_skip_layers_excite # all the rgb's of each layer of the generator is to be saved for multi-resolution input discrimination rgbs = [] # main network for squeeze_excite, (resnet_conv1, noise1, act1, resnet_conv2, noise2, act2), to_rgb_conv, self_attn, cross_attn, upsample, upsample_rgb in self.layers: if exists(upsample): x = upsample(x) if exists(squeeze_excite): skip_excite = squeeze_excite(x) excitations.append(skip_excite) excite = safe_unshift(excitations) if exists(excite): x = x * excite x = resnet_conv1(x, mod = next(conv_mods), kernel_mod = next(conv_mods)) x = noise1(x) x = act1(x) x = resnet_conv2(x, mod = next(conv_mods), kernel_mod = next(conv_mods)) x = noise2(x) x = act2(x) if exists(self_attn): x = self_attn(x) if exists(cross_attn): x = cross_attn(x, context = fine_text_tokens, mask = text_mask) layer_rgb = to_rgb_conv(x, mod = next(conv_mods), kernel_mod = next(conv_mods)) rgb = rgb + layer_rgb rgbs.append(rgb) if exists(upsample_rgb): rgb = upsample_rgb(rgb) # sanity check assert is_empty([*conv_mods]), 'convolutions were incorrectly modulated' if return_all_rgbs: return rgb, rgbs return rgb # discriminator @beartype class SimpleDecoder(nn.Module): def __init__( self, dim, *, dims: Tuple[int, ...], patch_dim: int = 1, frac_patches: float = 1., dropout: float = 0.5 ): super().__init__() assert 0 < frac_patches <= 1. self.patch_dim = patch_dim self.frac_patches = frac_patches self.dropout = nn.Dropout(dropout) dims = [dim, *dims] layers = [conv2d_3x3(dim, dim)] for dim_in, dim_out in zip(dims[:-1], dims[1:]): layers.append(nn.Sequential( Upsample(dim_in), conv2d_3x3(dim_in, dim_out), leaky_relu() )) self.net = nn.Sequential(*layers) @property def device(self): return next(self.parameters()).device def forward( self, fmap, orig_image ): fmap = self.dropout(fmap) if self.frac_patches < 1.: batch, patch_dim = fmap.shape[0], self.patch_dim fmap_size, img_size = fmap.shape[-1], orig_image.shape[-1] assert divisible_by(fmap_size, patch_dim), f'feature map dimensions are {fmap_size}, but the patch dim was designated to be {patch_dim}' assert divisible_by(img_size, patch_dim), f'image size is {img_size} but the patch dim was specified to be {patch_dim}' fmap, orig_image = map(lambda t: rearrange(t, 'b c (p1 h) (p2 w) -> b (p1 p2) c h w', p1 = patch_dim, p2 = patch_dim), (fmap, orig_image)) total_patches = patch_dim ** 2 num_patches_recon = max(int(self.frac_patches * total_patches), 1) batch_arange = torch.arange(batch, device = self.device)[..., None] batch_randperm = torch.randn((batch, total_patches)).sort(dim = -1).indices patch_indices = batch_randperm[..., :num_patches_recon] fmap, orig_image = map(lambda t: t[batch_arange, patch_indices], (fmap, orig_image)) fmap, orig_image = map(lambda t: rearrange(t, 'b p ... -> (b p) ...'), (fmap, orig_image)) recon = self.net(fmap) return F.mse_loss(recon, orig_image) class RandomFixedProjection(nn.Module): def __init__( self, dim, dim_out, channel_first = True ): super().__init__() weights = torch.randn(dim, dim_out) nn.init.kaiming_normal_(weights, mode = 'fan_out', nonlinearity = 'linear') self.channel_first = channel_first self.register_buffer('fixed_weights', weights) def forward(self, x): if not self.channel_first: return x @ self.fixed_weights return einsum('b c ..., c d -> b d ...', x, self.fixed_weights) class VisionAidedDiscriminator(nn.Module): """ the vision-aided gan loss """ @beartype def __init__( self, *, depth = 2, dim_head = 64, heads = 8, clip: Optional[OpenClipAdapter] = None, layer_indices = (-1, -2, -3), conv_dim = None, text_dim = None, unconditional = False, num_conv_kernels = 2 ): super().__init__() if not exists(clip): clip = OpenClipAdapter() self.clip = clip dim = clip._dim_image_latent self.unconditional = unconditional text_dim = default(text_dim, dim) conv_dim = default(conv_dim, dim) self.layer_discriminators = nn.ModuleList([]) self.layer_indices = layer_indices conv_klass = partial(AdaptiveConv2DMod, kernel = 3, num_conv_kernels = num_conv_kernels) if not unconditional else conv2d_3x3 for _ in layer_indices: self.layer_discriminators.append(nn.ModuleList([ RandomFixedProjection(dim, conv_dim), conv_klass(conv_dim, conv_dim), nn.Linear(text_dim, conv_dim) if not unconditional else None, nn.Linear(text_dim, num_conv_kernels) if not unconditional else None, nn.Sequential( conv2d_3x3(conv_dim, 1), Rearrange('b 1 ... -> b ...') ) ])) def parameters(self): return self.layer_discriminators.parameters() @property def total_params(self): return sum([p.numel() for p in self.parameters()]) @beartype def forward( self, images, texts: Optional[List[str]] = None, text_embeds: Optional[Tensor] = None, return_clip_encodings = False ): assert self.unconditional or (exists(text_embeds) ^ exists(texts)) with torch.no_grad(): if not self.unconditional and exists(texts): self.clip.eval() text_embeds = self.clip.embed_texts _, image_encodings = self.clip.embed_images(images) logits = [] for layer_index, (rand_proj, conv, to_conv_mod, to_conv_kernel_mod, to_logits) in zip(self.layer_indices, self.layer_discriminators): image_encoding = image_encodings[layer_index] cls_token, rest_tokens = image_encoding[:, :1], image_encoding[:, 1:] height_width = int(sqrt(rest_tokens.shape[-2])) # assume square img_fmap = rearrange(rest_tokens, 'b (h w) d -> b d h w', h = height_width) img_fmap = img_fmap + rearrange(cls_token, 'b 1 d -> b d 1 1 ') # pool the cls token into the rest of the tokens img_fmap = rand_proj(img_fmap) if self.unconditional: img_fmap = conv(img_fmap) else: assert exists(text_embeds) img_fmap = conv( img_fmap, mod = to_conv_mod(text_embeds), kernel_mod = to_conv_kernel_mod(text_embeds) ) layer_logits = to_logits(img_fmap) logits.append(layer_logits) if not return_clip_encodings: return logits return logits, image_encodings class Predictor(nn.Module): def __init__( self, dim, depth = 4, num_conv_kernels = 2, unconditional = False ): super().__init__() self.unconditional = unconditional self.residual_fn = nn.Conv2d(dim, dim, 1) self.residual_scale = 2 ** -0.5 self.layers = nn.ModuleList([]) klass = nn.Conv2d if unconditional else partial(AdaptiveConv2DMod, num_conv_kernels = num_conv_kernels) klass_kwargs = dict(padding = 1) if unconditional else dict() for ind in range(depth): self.layers.append(nn.ModuleList([ klass(dim, dim, 3, **klass_kwargs), leaky_relu(), klass(dim, dim, 3, **klass_kwargs), leaky_relu() ])) self.to_logits = nn.Conv2d(dim, 1, 1) def forward( self, x, mod = None, kernel_mod = None ): residual = self.residual_fn(x) kwargs = dict() if not self.unconditional: kwargs = dict(mod = mod, kernel_mod = kernel_mod) for conv1, activation, conv2, activation in self.layers: inner_residual = x x = conv1(x, **kwargs) x = activation(x) x = conv2(x, **kwargs) x = activation(x) x = x + inner_residual x = x * self.residual_scale x = x + residual return self.to_logits(x) class Discriminator(nn.Module): @beartype def __init__( self, *, dim_capacity = 16, image_size, dim_max = 2048, channels = 3, attn_resolutions: Tuple[int, ...] = (32, 16), attn_dim_head = 64, attn_heads = 8, self_attn_dot_product = False, ff_mult = 4, text_encoder: Optional[Union[TextEncoder, Dict]] = None, text_dim = None, filter_input_resolutions: bool = True, multiscale_input_resolutions: Tuple[int, ...] = (64, 32, 16, 8), multiscale_output_skip_stages: int = 1, aux_recon_resolutions: Tuple[int, ...] = (8,), aux_recon_patch_dims: Tuple[int, ...] = (2,), aux_recon_frac_patches: Tuple[float, ...] = (0.25,), aux_recon_fmap_dropout: float = 0.5, resize_mode = 'bilinear', num_conv_kernels = 2, num_skip_layers_excite = 0, unconditional = False, predictor_depth = 2 ): super().__init__() self.unconditional = unconditional assert not (unconditional and exists(text_encoder)) assert is_power_of_two(image_size) assert all([*map(is_power_of_two, attn_resolutions)]) if filter_input_resolutions: multiscale_input_resolutions = [*filter(lambda t: t < image_size, multiscale_input_resolutions)] assert is_unique(multiscale_input_resolutions) assert all([*map(is_power_of_two, multiscale_input_resolutions)]) assert all([*map(lambda t: t < image_size, multiscale_input_resolutions)]) self.multiscale_input_resolutions = multiscale_input_resolutions assert multiscale_output_skip_stages > 0 multiscale_output_resolutions = [resolution // (2 ** multiscale_output_skip_stages) for resolution in multiscale_input_resolutions] assert all([*map(lambda t: t >= 4, multiscale_output_resolutions)]) assert all([*map(lambda t: t < image_size, multiscale_output_resolutions)]) if len(multiscale_input_resolutions) > 0 and len(multiscale_output_resolutions) > 0: assert max(multiscale_input_resolutions) > max(multiscale_output_resolutions) assert min(multiscale_input_resolutions) > min(multiscale_output_resolutions) self.multiscale_output_resolutions = multiscale_output_resolutions assert all([*map(is_power_of_two, aux_recon_resolutions)]) assert len(aux_recon_resolutions) == len(aux_recon_patch_dims) == len(aux_recon_frac_patches) self.aux_recon_resolutions_to_patches = {resolution: (patch_dim, frac_patches) for resolution, patch_dim, frac_patches in zip(aux_recon_resolutions, aux_recon_patch_dims, aux_recon_frac_patches)} self.resize_mode = resize_mode num_layers = int(log2(image_size) - 1) self.num_layers = num_layers self.image_size = image_size resolutions = image_size / ((2 ** torch.arange(num_layers))) resolutions = resolutions.long().tolist() dim_layers = (2 ** (torch.arange(num_layers) + 1)) * dim_capacity dim_layers = F.pad(dim_layers, (1, 0), value = channels) dim_layers.clamp_(max = dim_max) dim_layers = dim_layers.tolist() dim_last = dim_layers[-1] dim_pairs = list(zip(dim_layers[:-1], dim_layers[1:])) self.num_skip_layers_excite = num_skip_layers_excite self.residual_scale = 2 ** -0.5 self.layers = nn.ModuleList([]) upsample_dims = [] predictor_dims = [] dim_kernel_attn = (num_conv_kernels if num_conv_kernels > 1 else 0) for ind, ((dim_in, dim_out), resolution) in enumerate(zip(dim_pairs, resolutions)): is_first = ind == 0 is_last = (ind + 1) == len(dim_pairs) should_downsample = not is_last should_skip_layer_excite = not is_first and num_skip_layers_excite > 0 and (ind + num_skip_layers_excite) < len(dim_pairs) has_attn = resolution in attn_resolutions has_multiscale_output = resolution in multiscale_output_resolutions has_aux_recon_decoder = resolution in aux_recon_resolutions upsample_dims.insert(0, dim_in) skip_squeeze_excite = None if should_skip_layer_excite: dim_skip_in, _ = dim_pairs[ind + num_skip_layers_excite] skip_squeeze_excite = SqueezeExcite(dim_in, dim_skip_in) # multi-scale rgb input to feature dimension from_rgb = nn.Conv2d(channels, dim_in, 7, padding = 3) # residual convolution residual_conv = nn.Conv2d(dim_in, dim_out, 1, stride = (2 if should_downsample else 1)) # main resnet block resnet_block = nn.Sequential( conv2d_3x3(dim_in, dim_out), leaky_relu(), conv2d_3x3(dim_out, dim_out), leaky_relu() ) # multi-scale output multiscale_output_predictor = None if has_multiscale_output: multiscale_output_predictor = Predictor(dim_out, num_conv_kernels = num_conv_kernels, depth = 2, unconditional = unconditional) predictor_dims.extend([dim_out, dim_kernel_attn]) aux_recon_decoder = None if has_aux_recon_decoder: patch_dim, frac_patches = self.aux_recon_resolutions_to_patches[resolution] aux_recon_decoder = SimpleDecoder( dim_out, dims = tuple(upsample_dims), patch_dim = patch_dim, frac_patches = frac_patches, dropout = aux_recon_fmap_dropout ) self.layers.append(nn.ModuleList([ skip_squeeze_excite, from_rgb, resnet_block, residual_conv, SelfAttentionBlock(dim_out, heads = attn_heads, dim_head = attn_dim_head, ff_mult = ff_mult, dot_product = self_attn_dot_product) if has_attn else None, multiscale_output_predictor, aux_recon_decoder, Downsample(dim_out) if should_downsample else None, ])) self.to_logits = nn.Sequential( conv2d_3x3(dim_last, dim_last), Rearrange('b c h w -> b (c h w)'), nn.Linear(dim_last * (4 ** 2), 1), Rearrange('b 1 -> b') ) # take care of text conditioning in the multiscale predictor branches assert unconditional or (exists(text_dim) ^ exists(text_encoder)) if not unconditional: if isinstance(text_encoder, dict): text_encoder = TextEncoder(**text_encoder) self.text_dim = default(text_dim, text_encoder.dim) self.predictor_dims = predictor_dims self.text_to_conv_conditioning = nn.Linear(self.text_dim, sum(predictor_dims)) if exists(self.text_dim) else None self.text_encoder = text_encoder self.apply(self.init_) def init_(self, m): if type(m) in {nn.Conv2d, nn.Linear}: nn.init.kaiming_normal_(m.weight, a = 0, mode = 'fan_in', nonlinearity = 'leaky_relu') def resize_image_to(self, images, resolution): return F.interpolate(images, resolution, mode = self.resize_mode) def real_images_to_rgbs(self, images): return [self.resize_image_to(images, resolution) for resolution in self.multiscale_input_resolutions] @property def total_params(self): return sum([p.numel() for p in self.parameters()]) @property def device(self): return next(self.parameters()).device @beartype def forward( self, images, rgbs: List[Tensor], # multi-resolution inputs (rgbs) from the generator texts: Optional[List[str]] = None, text_encodings: Optional[Tensor] = None, text_embeds = None, real_images = None, # if this were passed in, the network will automatically append the real to the presumably generated images passed in as the first argument, and generate all intermediate resolutions through resizing and concat appropriately return_multiscale_outputs = True, # can force it not to return multi-scale logits calc_aux_loss = True ): if not self.unconditional: assert (exists(texts) ^ exists(text_encodings)) ^ exists(text_embeds), 'either texts as List[str] is passed in, or clip text_encodings as Tensor' if exists(texts): assert exists(self.text_encoder) text_embeds, *_ = self.text_encoder(texts = texts) elif exists(text_encodings): assert exists(self.text_encoder) text_embeds, *_ = self.text_encoder(text_encodings = text_encodings) assert exists(text_embeds), 'raw text or text embeddings were not passed into discriminator for conditional training' conv_mods = self.text_to_conv_conditioning(text_embeds).split(self.predictor_dims, dim = -1) conv_mods = iter(conv_mods) else: assert not any([*map(exists, (texts, text_embeds))]) x = images image_size = (self.image_size, self.image_size) assert x.shape[-2:] == image_size batch = x.shape[0] # index the rgbs by resolution rgbs_index = {t.shape[-1]: t for t in rgbs} if exists(rgbs) else {} # assert that the necessary resolutions are there assert is_empty(set(self.multiscale_input_resolutions) - set(rgbs_index.keys())), f'rgbs of necessary resolution {self.multiscale_input_resolutions} were not passed in' # hold multiscale outputs multiscale_outputs = [] # hold auxiliary recon losses aux_recon_losses = [] # excitations excitations = [None] * (self.num_skip_layers_excite + 1) # +1 since first image in pixel space is not excited for squeeze_excite, from_rgb, block, residual_fn, attn, predictor, recon_decoder, downsample in self.layers: resolution = x.shape[-1] if exists(squeeze_excite): skip_excite = squeeze_excite(x) excitations.append(skip_excite) excite = safe_unshift(excitations) if exists(excite): excite = repeat(excite, 'b ... -> (s b) ...', s = x.shape[0] // excite.shape[0]) x = x * excite batch_prev_stage = x.shape[0] has_multiscale_input = resolution in self.multiscale_input_resolutions if has_multiscale_input: rgb = rgbs_index.get(resolution, None) # multi-scale input features multi_scale_input_feats = from_rgb(rgb) # expand multi-scale input features, as could include extra scales from previous stage multi_scale_input_feats = repeat(multi_scale_input_feats, 'b ... -> (s b) ...', s = x.shape[0] // rgb.shape[0]) # add the multi-scale input features to the current hidden state from main stem x = x + multi_scale_input_feats # and also concat for scale invariance x = torch.cat((x, multi_scale_input_feats), dim = 0) residual = residual_fn(x) x = block(x) if exists(attn): x = attn(x) if exists(predictor): pred_kwargs = dict() if not self.unconditional: pred_kwargs = dict(mod = next(conv_mods), kernel_mod = next(conv_mods)) if return_multiscale_outputs: predictor_input = x[:batch_prev_stage] multiscale_outputs.append(predictor(predictor_input, **pred_kwargs)) if exists(downsample): x = downsample(x) x = x + residual x = x * self.residual_scale if exists(recon_decoder) and calc_aux_loss: recon_output = x[:batch_prev_stage] recon_output = rearrange(x, '(s b) ... -> s b ...', b = batch) aux_recon_target = images # only use the input real images for aux recon recon_output = recon_output[0] # only reconstruct a fraction of images across batch and scale # for efficiency aux_recon_loss = recon_decoder(recon_output, aux_recon_target) aux_recon_losses.append(aux_recon_loss) # sanity check assert self.unconditional or is_empty([*conv_mods]), 'convolutions were incorrectly modulated' # to logits logits = self.to_logits(x) logits = rearrange(logits, '(s b) ... -> s b ...', b = batch) return logits, multiscale_outputs, aux_recon_losses # gan TrainDiscrLosses = namedtuple('TrainDiscrLosses', [ 'divergence', 'multiscale_divergence', 'vision_aided_divergence', 'total_matching_aware_loss', 'gradient_penalty', 'aux_reconstruction' ]) TrainGenLosses = namedtuple('TrainGenLosses', [ 'divergence', 'multiscale_divergence', 'total_vd_divergence', 'contrastive_loss' ]) class GigaGAN(nn.Module): @beartype def __init__( self, *, generator: Union[BaseGenerator, Dict], discriminator: Union[Discriminator, Dict], vision_aided_discriminator: Optional[Union[VisionAidedDiscriminator, Dict]] = None, diff_augment: Optional[Union[DiffAugment, Dict]] = None, learning_rate = 2e-4, betas = (0.5, 0.9), weight_decay = 0., discr_aux_recon_loss_weight = 1., multiscale_divergence_loss_weight = 0.1, vision_aided_divergence_loss_weight = 0.5, generator_contrastive_loss_weight = 0.1, matching_awareness_loss_weight = 0.1, calc_multiscale_loss_every = 1, apply_gradient_penalty_every = 4, resize_image_mode = 'bilinear', train_upsampler = False, log_steps_every = 20, create_ema_generator_at_init = True, save_and_sample_every = 1000, early_save_thres_steps = 2500, early_save_and_sample_every = 100, num_samples = 25, model_folder = './gigagan-models', results_folder = './gigagan-results', sample_upsampler_dl: Optional[DataLoader] = None, accelerator: Optional[Accelerator] = None, accelerate_kwargs: dict = {}, find_unused_parameters = True, amp = False, mixed_precision_type = 'fp16' ): super().__init__() # create accelerator if accelerator: self.accelerator = accelerator assert is_empty(accelerate_kwargs) else: kwargs = DistributedDataParallelKwargs(find_unused_parameters = find_unused_parameters) self.accelerator = Accelerator( kwargs_handlers = [kwargs], mixed_precision = mixed_precision_type if amp else 'no', **accelerate_kwargs ) # whether to train upsampler or not self.train_upsampler = train_upsampler if train_upsampler: from gigagan_pytorch.unet_upsampler import UnetUpsampler generator_klass = UnetUpsampler else: generator_klass = Generator # gradient penalty and auxiliary recon loss self.apply_gradient_penalty_every = apply_gradient_penalty_every self.calc_multiscale_loss_every = calc_multiscale_loss_every if isinstance(generator, dict): generator = generator_klass(**generator) if isinstance(discriminator, dict): discriminator = Discriminator(**discriminator) if exists(vision_aided_discriminator) and isinstance(vision_aided_discriminator, dict): vision_aided_discriminator = VisionAidedDiscriminator(**vision_aided_discriminator) assert isinstance(generator, generator_klass) # diff augment if isinstance(diff_augment, dict): diff_augment = DiffAugment(**diff_augment) self.diff_augment = diff_augment # use _base to designate unwrapped models self.G = generator self.D = discriminator self.VD = vision_aided_discriminator # validate multiscale input resolutions if train_upsampler: assert is_empty(set(discriminator.multiscale_input_resolutions) - set(generator.allowable_rgb_resolutions)), f'only multiscale input resolutions of {generator.allowable_rgb_resolutions} is allowed based on the unet input and output image size. simply do Discriminator(multiscale_input_resolutions = unet.allowable_rgb_resolutions) to resolve this error' # ema self.has_ema_generator = False if self.is_main and create_ema_generator_at_init: self.create_ema_generator() # print number of parameters self.print('\n') self.print(f'Generator: {numerize.numerize(generator.total_params)}') self.print(f'Discriminator: {numerize.numerize(discriminator.total_params)}') if exists(self.VD): self.print(f'Vision Discriminator: {numerize.numerize(vision_aided_discriminator.total_params)}') self.print('\n') # text encoder assert generator.unconditional == discriminator.unconditional assert not exists(vision_aided_discriminator) or vision_aided_discriminator.unconditional == generator.unconditional self.unconditional = generator.unconditional # optimizers self.G_opt = get_optimizer(self.G.parameters(), lr = learning_rate, betas = betas, weight_decay = weight_decay) self.D_opt = get_optimizer(self.D.parameters(), lr = learning_rate, betas = betas, weight_decay = weight_decay) # prepare for distributed self.G, self.D, self.G_opt, self.D_opt = self.accelerator.prepare(self.G, self.D, self.G_opt, self.D_opt) # vision aided discriminator optimizer if exists(self.VD): self.VD_opt = get_optimizer(self.VD.parameters(), lr = learning_rate, betas = betas, weight_decay = weight_decay) self.VD_opt = self.accelerator.prepare(self.VD_opt) # loss related self.discr_aux_recon_loss_weight = discr_aux_recon_loss_weight self.multiscale_divergence_loss_weight = multiscale_divergence_loss_weight self.vision_aided_divergence_loss_weight = vision_aided_divergence_loss_weight self.generator_contrastive_loss_weight = generator_contrastive_loss_weight self.matching_awareness_loss_weight = matching_awareness_loss_weight # resize image mode self.resize_image_mode = resize_image_mode # steps self.log_steps_every = log_steps_every self.register_buffer('steps', torch.ones(1, dtype = torch.long)) # save and sample self.save_and_sample_every = save_and_sample_every self.early_save_thres_steps = early_save_thres_steps self.early_save_and_sample_every = early_save_and_sample_every self.num_samples = num_samples self.train_dl = None self.sample_upsampler_dl_iter = None if exists(sample_upsampler_dl): self.sample_upsampler_dl_iter = cycle(self.sample_upsampler_dl) self.results_folder = Path(results_folder) self.model_folder = Path(model_folder) mkdir_if_not_exists(self.results_folder) mkdir_if_not_exists(self.model_folder) def save(self, path, overwrite = True): path = Path(path) mkdir_if_not_exists(path.parents[0]) assert overwrite or not path.exists() pkg = dict( G = self.unwrapped_G.state_dict(), D = self.unwrapped_D.state_dict(), G_opt = self.G_opt.state_dict(), D_opt = self.D_opt.state_dict(), steps = self.steps.item(), version = __version__ ) if exists(self.G_opt.scaler): pkg['G_scaler'] = self.G_opt.scaler.state_dict() if exists(self.D_opt.scaler): pkg['D_scaler'] = self.D_opt.scaler.state_dict() if exists(self.VD): pkg['VD'] = self.unwrapped_VD.state_dict() pkg['VD_opt'] = self.VD_opt.state_dict() if exists(self.VD_opt.scaler): pkg['VD_scaler'] = self.VD_opt.scaler.state_dict() if self.has_ema_generator: pkg['G_ema'] = self.G_ema.state_dict() torch.save(pkg, str(path)) def load(self, path, strict = False): path = Path(path) assert path.exists() pkg = torch.load(str(path)) if 'version' in pkg and pkg['version'] != __version__: print(f"trying to load from version {pkg['version']}") self.unwrapped_G.load_state_dict(pkg['G'], strict = strict) self.unwrapped_D.load_state_dict(pkg['D'], strict = strict) if exists(self.VD): self.unwrapped_VD.load_state_dict(pkg['VD'], strict = strict) if self.has_ema_generator: self.G_ema.load_state_dict(pkg['G_ema']) if 'steps' in pkg: self.steps.copy_(torch.tensor([pkg['steps']])) if 'G_opt'not in pkg or 'D_opt' not in pkg: return try: self.G_opt.load_state_dict(pkg['G_opt']) self.D_opt.load_state_dict(pkg['D_opt']) if exists(self.VD): self.VD_opt.load_state_dict(pkg['VD_opt']) if 'G_scaler' in pkg and exists(self.G_opt.scaler): self.G_opt.scaler.load_state_dict(pkg['G_scaler']) if 'D_scaler' in pkg and exists(self.D_opt.scaler): self.D_opt.scaler.load_state_dict(pkg['D_scaler']) if 'VD_scaler' in pkg and exists(self.VD_opt.scaler): self.VD_opt.scaler.load_state_dict(pkg['VD_scaler']) except Exception as e: self.print(f'unable to load optimizers {e.msg}- optimizer states will be reset') pass # accelerate related @property def device(self): return self.accelerator.device @property def unwrapped_G(self): return self.accelerator.unwrap_model(self.G) @property def unwrapped_D(self): return self.accelerator.unwrap_model(self.D) @property def unwrapped_VD(self): return self.accelerator.unwrap_model(self.VD) @property def need_vision_aided_discriminator(self): return exists(self.VD) and self.vision_aided_divergence_loss_weight > 0. @property def need_contrastive_loss(self): return self.generator_contrastive_loss_weight > 0. and not self.unconditional def print(self, msg): self.accelerator.print(msg) @property def is_distributed(self): return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1) @property def is_main(self): return self.accelerator.is_main_process @property def is_local_main(self): return self.accelerator.is_local_main_process def resize_image_to(self, images, resolution): return F.interpolate(images, resolution, mode = self.resize_image_mode) @beartype def set_dataloader(self, dl: DataLoader): assert not exists(self.train_dl), 'training dataloader has already been set' self.train_dl = dl self.train_dl_batch_size = dl.batch_size self.train_dl = self.accelerator.prepare(self.train_dl) # generate function @torch.inference_mode() def generate(self, *args, **kwargs): model = self.G_ema if self.has_ema_generator else self.G model.eval() return model(*args, **kwargs) # create EMA generator def create_ema_generator( self, update_every = 10, update_after_step = 100, decay = 0.995 ): if not self.is_main: return assert not self.has_ema_generator, 'EMA generator has already been created' self.G_ema = EMA(self.unwrapped_G, update_every = update_every, update_after_step = update_after_step, beta = decay) self.has_ema_generator = True def generate_kwargs(self, dl_iter, batch_size): # what to pass into the generator # depends on whether training upsampler or not maybe_text_kwargs = dict() if self.train_upsampler or not self.unconditional: assert exists(dl_iter) if self.unconditional: real_images = next(dl_iter) else: result = next(dl_iter) assert isinstance(result, tuple), 'dataset should return a tuple of two items for text conditioned training, (images: Tensor, texts: List[str])' real_images, texts = result maybe_text_kwargs['texts'] = texts[:batch_size] real_images = real_images.to(self.device) # if training upsample generator, need to downsample real images if self.train_upsampler: size = self.unwrapped_G.input_image_size lowres_real_images = F.interpolate(real_images, (size, size)) G_kwargs = dict(lowres_image = lowres_real_images) else: assert exists(batch_size) G_kwargs = dict(batch_size = batch_size) # create noise noise = torch.randn(batch_size, self.unwrapped_G.style_network.dim, device = self.device) G_kwargs.update(noise = noise) return G_kwargs, maybe_text_kwargs @beartype def train_discriminator_step( self, dl_iter: Iterable, grad_accum_every = 1, apply_gradient_penalty = False, calc_multiscale_loss = True ): total_divergence = 0. total_vision_aided_divergence = 0. total_gp_loss = 0. total_aux_loss = 0. total_multiscale_divergence = 0. if calc_multiscale_loss else None has_matching_awareness = not self.unconditional and self.matching_awareness_loss_weight > 0. total_matching_aware_loss = 0. all_texts = [] all_fake_images = [] all_fake_rgbs = [] all_real_images = [] self.G.train() self.D.train() self.D_opt.zero_grad() if self.need_vision_aided_discriminator: self.VD.train() self.VD_opt.zero_grad() for _ in range(grad_accum_every): if self.unconditional: real_images = next(dl_iter) else: result = next(dl_iter) assert isinstance(result, tuple), 'dataset should return a tuple of two items for text conditioned training, (images: Tensor, texts: List[str])' real_images, texts = result all_real_images.append(real_images) all_texts.extend(texts) # requires grad for real images, for gradient penalty real_images = real_images.to(self.device) real_images.requires_grad_() real_images_rgbs = self.unwrapped_D.real_images_to_rgbs(real_images) # diff augment real images if exists(self.diff_augment): real_images, real_images_rgbs = self.diff_augment(real_images, real_images_rgbs) # batch size batch_size = real_images.shape[0] # for discriminator training, fit upsampler and image synthesis logic under same function G_kwargs, maybe_text_kwargs = self.generate_kwargs(dl_iter, batch_size) # generator with torch.no_grad(), self.accelerator.autocast(): images, rgbs = self.G( **G_kwargs, **maybe_text_kwargs, return_all_rgbs = True ) all_fake_images.append(images) all_fake_rgbs.append(rgbs) # diff augment if exists(self.diff_augment): images, rgbs = self.diff_augment(images, rgbs) # detach output of generator, as training discriminator only images.detach_() for rgb in rgbs: rgb.detach_() # main divergence loss with self.accelerator.autocast(): fake_logits, fake_multiscale_logits, _ = self.D( images, rgbs, **maybe_text_kwargs, return_multiscale_outputs = calc_multiscale_loss, calc_aux_loss = False ) real_logits, real_multiscale_logits, aux_recon_losses = self.D( real_images, real_images_rgbs, **maybe_text_kwargs, return_multiscale_outputs = calc_multiscale_loss, calc_aux_loss = True ) divergence = discriminator_hinge_loss(real_logits, fake_logits) total_divergence += (divergence.item() / grad_accum_every) # handle multi-scale divergence multiscale_divergence = 0. if self.multiscale_divergence_loss_weight > 0. and len(fake_multiscale_logits) > 0: for multiscale_fake, multiscale_real in zip(fake_multiscale_logits, real_multiscale_logits): multiscale_loss = discriminator_hinge_loss(multiscale_real, multiscale_fake) multiscale_divergence = multiscale_divergence + multiscale_loss total_multiscale_divergence += (multiscale_divergence.item() / grad_accum_every) # figure out gradient penalty if needed gp_loss = 0. if apply_gradient_penalty: gp_loss = gradient_penalty( real_images, outputs = [real_logits, *real_multiscale_logits], grad_output_weights = [1., *(self.multiscale_divergence_loss_weight,) * len(real_multiscale_logits)], scaler = self.D_opt.scaler ) if not torch.isnan(gp_loss): total_gp_loss += (gp_loss.item() / grad_accum_every) # handle vision aided discriminator, if needed vd_loss = 0. if self.need_vision_aided_discriminator: fake_vision_aided_logits = self.VD(images, **maybe_text_kwargs) real_vision_aided_logits, clip_encodings = self.VD(real_images, return_clip_encodings = True, **maybe_text_kwargs) for fake_logits, real_logits in zip(fake_vision_aided_logits, real_vision_aided_logits): vd_loss = vd_loss + discriminator_hinge_loss(real_logits, fake_logits) total_vision_aided_divergence += (vd_loss.item() / grad_accum_every) # handle gradient penalty for vision aided discriminator if apply_gradient_penalty: vd_gp_loss = gradient_penalty( clip_encodings, outputs = real_vision_aided_logits, grad_output_weights = [self.vision_aided_divergence_loss_weight] * len(real_vision_aided_logits), scaler = self.VD_opt.scaler ) if not torch.isnan(vd_gp_loss): gp_loss = gp_loss + vd_gp_loss total_gp_loss += (vd_gp_loss.item() / grad_accum_every) # sum up losses total_loss = divergence + gp_loss if self.multiscale_divergence_loss_weight > 0.: total_loss = total_loss + multiscale_divergence * self.multiscale_divergence_loss_weight if self.vision_aided_divergence_loss_weight > 0.: total_loss = total_loss + vd_loss * self.vision_aided_divergence_loss_weight if self.discr_aux_recon_loss_weight > 0.: aux_loss = sum(aux_recon_losses) total_aux_loss += (aux_loss.item() / grad_accum_every) total_loss = total_loss + aux_loss * self.discr_aux_recon_loss_weight # backwards self.accelerator.backward(total_loss / grad_accum_every) # matching awareness loss # strategy would be to rotate the texts by one and assume batch is shuffled enough for mismatched conditions if has_matching_awareness: # rotate texts all_texts = [*all_texts[1:], all_texts[0]] all_texts = group_by_num_consecutive(texts, batch_size) zipped_data = zip( all_fake_images, all_fake_rgbs, all_real_images, all_texts ) total_loss = 0. for fake_images, fake_rgbs, real_images, texts in zipped_data: with self.accelerator.autocast(): fake_logits, *_ = self.D( fake_images, fake_rgbs, texts = texts, return_multiscale_outputs = False, calc_aux_loss = False ) real_images_rgbs = self.D.real_images_to_rgbs(real_images) real_logits, *_ = self.D( real_images, real_images_rgbs, texts = texts, return_multiscale_outputs = False, calc_aux_loss = False ) matching_loss = aux_matching_loss(real_logits, fake_logits) total_matching_aware_loss = (matching_loss.item() / grad_accum_every) loss = matching_loss * self.matching_awareness_loss_weight self.accelerator.backward(loss / grad_accum_every) self.D_opt.step() if self.need_vision_aided_discriminator: self.VD_opt.step() return TrainDiscrLosses( total_divergence, total_multiscale_divergence, total_vision_aided_divergence, total_matching_aware_loss, total_gp_loss, total_aux_loss ) def train_generator_step( self, batch_size = None, dl_iter: Optional[Iterable] = None, grad_accum_every = 1, calc_multiscale_loss = True ): total_divergence = 0. total_multiscale_divergence = 0. if calc_multiscale_loss else None total_vd_divergence = 0. contrastive_loss = 0. self.G.train() self.D.train() self.D_opt.zero_grad() self.G_opt.zero_grad() all_images = [] all_texts = [] for _ in range(grad_accum_every): # generator G_kwargs, maybe_text_kwargs = self.generate_kwargs(dl_iter, batch_size) with self.accelerator.autocast(): images, rgbs = self.G( **G_kwargs, **maybe_text_kwargs, return_all_rgbs = True ) # diff augment if exists(self.diff_augment): images, rgbs = self.diff_augment(images, rgbs) # accumulate all images and texts for maybe contrastive loss if self.need_contrastive_loss: all_images.append(images) all_texts.extend(maybe_text_kwargs['texts']) # discriminator logits, multiscale_logits, _ = self.D( images, rgbs, **maybe_text_kwargs, return_multiscale_outputs = calc_multiscale_loss, calc_aux_loss = False ) # generator hinge loss discriminator and multiscale divergence = generator_hinge_loss(logits) total_divergence += (divergence.item() / grad_accum_every) total_loss = divergence if self.multiscale_divergence_loss_weight > 0. and len(multiscale_logits) > 0: multiscale_divergence = 0. for multiscale_logit in multiscale_logits: multiscale_divergence = multiscale_divergence + generator_hinge_loss(multiscale_logit) total_multiscale_divergence += (multiscale_divergence.item() / grad_accum_every) total_loss = total_loss + multiscale_divergence * self.multiscale_divergence_loss_weight # vision aided generator hinge loss if self.need_vision_aided_discriminator: vd_loss = 0. logits = self.VD(images, **maybe_text_kwargs) for logit in logits: vd_loss = vd_loss + generator_hinge_loss(logit) total_vd_divergence += (vd_loss.item() / grad_accum_every) total_loss = total_loss + vd_loss * self.vision_aided_divergence_loss_weight self.accelerator.backward(total_loss / grad_accum_every, retain_graph = self.need_contrastive_loss) # if needs the generator contrastive loss # gather up all images and texts and calculate it if self.need_contrastive_loss: all_images = torch.cat(all_images, dim = 0) contrastive_loss = aux_clip_loss( clip = self.G.text_encoder.clip, texts = all_texts, images = all_images ) self.accelerator.backward(contrastive_loss * self.generator_contrastive_loss_weight) # generator optimizer step self.G_opt.step() # update exponentially moving averaged generator self.accelerator.wait_for_everyone() if self.is_main and self.has_ema_generator: self.G_ema.update() return TrainGenLosses( total_divergence, total_multiscale_divergence, total_vd_divergence, contrastive_loss ) def sample(self, model, dl_iter, batch_size): G_kwargs, maybe_text_kwargs = self.generate_kwargs(dl_iter, batch_size) with self.accelerator.autocast(): generator_output = model(**G_kwargs, **maybe_text_kwargs) if not self.train_upsampler: return generator_output output_size = generator_output.shape[-1] lowres_image = G_kwargs['lowres_image'] lowres_image = F.interpolate(lowres_image, (output_size, output_size)) return torch.cat([lowres_image, generator_output]) @torch.inference_mode() def save_sample( self, batch_size, dl_iter = None ): milestone = self.steps.item() // self.save_and_sample_every nrow_mult = 2 if self.train_upsampler else 1 batches = num_to_groups(self.num_samples, batch_size) if self.train_upsampler: dl_iter = default(self.sample_upsampler_dl_iter, dl_iter) assert exists(dl_iter) sample_models_and_output_file_name = [(self.unwrapped_G, f'sample-{milestone}.png')] if self.has_ema_generator: sample_models_and_output_file_name.append((self.G_ema, f'ema-sample-{milestone}.png')) for model, filename in sample_models_and_output_file_name: model.eval() all_images_list = list(map(lambda n: self.sample(model, dl_iter, n), batches)) all_images = torch.cat(all_images_list, dim = 0) all_images.clamp_(0., 1.) utils.save_image( all_images, str(self.results_folder / filename), nrow = int(sqrt(self.num_samples)) * nrow_mult ) # Possible to do: Include some metric to save if improved, include some sampler dict text entries self.save(str(self.model_folder / f'model-{milestone}.ckpt')) @beartype def forward( self, *, steps, grad_accum_every = 1 ): assert exists(self.train_dl), 'you need to set the dataloader by running .set_dataloader(dl: Dataloader)' batch_size = self.train_dl_batch_size dl_iter = cycle(self.train_dl) last_gp_loss = 0. last_multiscale_d_loss = 0. last_multiscale_g_loss = 0. for _ in tqdm(range(steps), initial = self.steps.item()): steps = self.steps.item() is_first_step = steps == 1 apply_gradient_penalty = self.apply_gradient_penalty_every > 0 and divisible_by(steps, self.apply_gradient_penalty_every) calc_multiscale_loss = self.calc_multiscale_loss_every > 0 and divisible_by(steps, self.calc_multiscale_loss_every) ( d_loss, multiscale_d_loss, vision_aided_d_loss, matching_aware_loss, gp_loss, recon_loss ) = self.train_discriminator_step( dl_iter = dl_iter, grad_accum_every = grad_accum_every, apply_gradient_penalty = apply_gradient_penalty, calc_multiscale_loss = calc_multiscale_loss ) self.accelerator.wait_for_everyone() ( g_loss, multiscale_g_loss, vision_aided_g_loss, contrastive_loss ) = self.train_generator_step( dl_iter = dl_iter, batch_size = batch_size, grad_accum_every = grad_accum_every, calc_multiscale_loss = calc_multiscale_loss ) if exists(gp_loss): last_gp_loss = gp_loss if exists(multiscale_d_loss): last_multiscale_d_loss = multiscale_d_loss if exists(multiscale_g_loss): last_multiscale_g_loss = multiscale_g_loss if is_first_step or divisible_by(steps, self.log_steps_every): losses = ( ('G', g_loss), ('MSG', last_multiscale_g_loss), ('VG', vision_aided_g_loss), ('D', d_loss), ('MSD', last_multiscale_d_loss), ('VD', vision_aided_d_loss), ('GP', last_gp_loss), ('SSL', recon_loss), ('CL', contrastive_loss), ('MAL', matching_aware_loss) ) losses_str = ' | '.join([f'{loss_name}: {loss:.2f}' for loss_name, loss in losses]) self.print(losses_str) self.accelerator.wait_for_everyone() if self.is_main and (is_first_step or divisible_by(steps, self.save_and_sample_every) or (steps <= self.early_save_thres_steps and divisible_by(steps, self.early_save_and_sample_every))): self.save_sample(batch_size, dl_iter) self.steps += 1 self.print(f'complete {steps} training steps')
gigagan-pytorch-main
gigagan_pytorch/gigagan_pytorch.py
from math import log2 from functools import partial import torch from torch import nn import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange from gigagan_pytorch.attend import Attend from gigagan_pytorch.gigagan_pytorch import ( BaseGenerator, StyleNetwork, AdaptiveConv2DMod, TextEncoder, CrossAttentionBlock, Upsample ) from beartype import beartype from beartype.typing import Optional, List, Union, Dict, Iterable # helpers functions def exists(x): return x is not None def default(val, d): if exists(val): return val return d() if callable(d) else d def cast_tuple(t, length = 1): if isinstance(t, tuple): return t return ((t,) * length) def identity(t, *args, **kwargs): return t def is_power_of_two(n): return log2(n).is_integer() def null_iterator(): while True: yield None # small helper modules class PixelShuffleUpsample(nn.Module): def __init__(self, dim, dim_out = None): super().__init__() dim_out = default(dim_out, dim) conv = nn.Conv2d(dim, dim_out * 4, 1) self.init_conv_(conv) self.net = nn.Sequential( conv, nn.SiLU(), nn.PixelShuffle(2) ) def init_conv_(self, conv): o, *rest_shape = conv.weight.shape conv_weight = torch.empty(o // 4, *rest_shape) nn.init.kaiming_uniform_(conv_weight) conv_weight = repeat(conv_weight, 'o ... -> (o 4) ...') conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def forward(self, x): return self.net(x) def Downsample(dim, dim_out = None): return nn.Sequential( Rearrange('b c (h p1) (w p2) -> b (c p1 p2) h w', p1 = 2, p2 = 2), nn.Conv2d(dim * 4, default(dim_out, dim), 1) ) class RMSNorm(nn.Module): def __init__(self, dim): super().__init__() self.g = nn.Parameter(torch.ones(1, dim, 1, 1)) def forward(self, x): return F.normalize(x, dim = 1) * self.g * (x.shape[1] ** 0.5) # building block modules class Block(nn.Module): def __init__( self, dim, dim_out, groups = 8, num_conv_kernels = 0 ): super().__init__() self.proj = AdaptiveConv2DMod(dim, dim_out, kernel = 3, num_conv_kernels = num_conv_kernels) self.norm = nn.GroupNorm(groups, dim_out) self.act = nn.SiLU() def forward( self, x, conv_mods_iter: Optional[Iterable] = None ): conv_mods_iter = default(conv_mods_iter, null_iterator()) x = self.proj( x, mod = next(conv_mods_iter), kernel_mod = next(conv_mods_iter) ) x = self.norm(x) x = self.act(x) return x class ResnetBlock(nn.Module): def __init__( self, dim, dim_out, *, groups = 8, num_conv_kernels = 0, style_dims: List = [] ): super().__init__() style_dims.extend([ dim, num_conv_kernels, dim_out, num_conv_kernels ]) self.block1 = Block(dim, dim_out, groups = groups, num_conv_kernels = num_conv_kernels) self.block2 = Block(dim_out, dim_out, groups = groups, num_conv_kernels = num_conv_kernels) self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() def forward( self, x, conv_mods_iter: Optional[Iterable] = None ): h = self.block1(x, conv_mods_iter = conv_mods_iter) h = self.block2(h, conv_mods_iter = conv_mods_iter) return h + self.res_conv(x) class LinearAttention(nn.Module): def __init__( self, dim, heads = 4, dim_head = 32 ): super().__init__() self.scale = dim_head ** -0.5 self.heads = heads hidden_dim = dim_head * heads self.norm = RMSNorm(dim) self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Sequential( nn.Conv2d(hidden_dim, dim, 1), RMSNorm(dim) ) def forward(self, x): b, c, h, w = x.shape x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h c (x y)', h = self.heads), qkv) q = q.softmax(dim = -2) k = k.softmax(dim = -1) q = q * self.scale context = torch.einsum('b h d n, b h e n -> b h d e', k, v) out = torch.einsum('b h d e, b h d n -> b h e n', context, q) out = rearrange(out, 'b h c (x y) -> b (h c) x y', h = self.heads, x = h, y = w) return self.to_out(out) class Attention(nn.Module): def __init__( self, dim, heads = 4, dim_head = 32, flash = False ): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.norm = RMSNorm(dim) self.attend = Attend(flash = flash) self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape x = self.norm(x) qkv = self.to_qkv(x).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h c) x y -> b h (x y) c', h = self.heads), qkv) out = self.attend(q, k, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return self.to_out(out) # feedforward def FeedForward(dim, mult = 4): return nn.Sequential( RMSNorm(dim), nn.Conv2d(dim, dim * mult, 1), nn.GELU(), nn.Conv2d(dim * mult, dim, 1) ) # transformers class Transformer(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, depth = 1, flash_attn = True, ff_mult = 4 ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ Attention(dim = dim, dim_head = dim_head, heads = heads, flash = flash_attn), FeedForward(dim = dim, mult = ff_mult) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x class LinearTransformer(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, depth = 1, ff_mult = 4 ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ LinearAttention(dim = dim, dim_head = dim_head, heads = heads), FeedForward(dim = dim, mult = ff_mult) ])) def forward(self, x): for attn, ff in self.layers: x = attn(x) + x x = ff(x) + x return x # model class UnetUpsampler(BaseGenerator): @beartype def __init__( self, dim, *, image_size, input_image_size, init_dim = None, out_dim = None, text_encoder: Optional[Union[TextEncoder, Dict]] = None, style_network: Optional[Union[StyleNetwork, Dict]] = None, style_network_dim = None, dim_mults = (1, 2, 4, 8, 16), channels = 3, resnet_block_groups = 8, full_attn = (False, False, False, True, True), cross_attn = (False, False, False, True, True), flash_attn = True, self_attn_dim_head = 64, self_attn_heads = 8, self_attn_dot_product = True, self_attn_ff_mult = 4, attn_depths = (1, 1, 1, 1, 1), cross_attn_dim_head = 64, cross_attn_heads = 8, cross_ff_mult = 4, mid_attn_depth = 1, num_conv_kernels = 2, resize_mode = 'bilinear', unconditional = True, skip_connect_scale = None ): super().__init__() # style network if isinstance(text_encoder, dict): text_encoder = TextEncoder(**text_encoder) self.text_encoder = text_encoder if isinstance(style_network, dict): style_network = StyleNetwork(**style_network) self.style_network = style_network assert exists(style_network) ^ exists(style_network_dim), 'either style_network or style_network_dim must be passed in' # validate text conditioning and style network hparams self.unconditional = unconditional assert unconditional ^ exists(text_encoder), 'if unconditional, text encoder should not be given, and vice versa' assert not (unconditional and exists(style_network) and style_network.dim_text_latent > 0) assert unconditional or text_encoder.dim == style_network.dim_text_latent, 'the `dim_text_latent` on your StyleNetwork must be equal to the `dim` set for the TextEncoder' assert is_power_of_two(image_size) and is_power_of_two(input_image_size), 'both output image size and input image size must be power of 2' assert input_image_size < image_size, 'input image size must be smaller than the output image size, thus upsampling' num_layer_no_downsample = int(log2(image_size) - log2(input_image_size)) assert num_layer_no_downsample <= len(dim_mults), 'you need more stages in this unet for the level of upsampling' self.image_size = image_size self.input_image_size = input_image_size # setup adaptive conv style_embed_split_dims = [] # determine dimensions self.channels = channels input_channels = channels init_dim = default(init_dim, dim) self.init_conv = nn.Conv2d(input_channels, init_dim, 7, padding = 3) dims = [init_dim, *map(lambda m: dim * m, dim_mults)] *_, mid_dim = dims in_out = list(zip(dims[:-1], dims[1:])) block_klass = partial( ResnetBlock, groups = resnet_block_groups, num_conv_kernels = num_conv_kernels, style_dims = style_embed_split_dims ) # attention full_attn = cast_tuple(full_attn, length = len(dim_mults)) assert len(full_attn) == len(dim_mults) FullAttention = partial(Transformer, flash_attn = flash_attn) cross_attn = cast_tuple(cross_attn, length = len(dim_mults)) assert unconditional or len(full_attn) == len(dim_mults) # skip connection scale self.skip_connect_scale = default(skip_connect_scale, 2 ** -0.5) # layers self.downs = nn.ModuleList([]) self.ups = nn.ModuleList([]) num_resolutions = len(in_out) for ind, ((dim_in, dim_out), layer_full_attn, layer_cross_attn, layer_attn_depth) in enumerate(zip(in_out, full_attn, cross_attn, attn_depths)): ind >= (num_resolutions - 1) should_not_downsample = ind < num_layer_no_downsample has_cross_attn = not self.unconditional and layer_cross_attn attn_klass = FullAttention if layer_full_attn else LinearTransformer self.downs.append(nn.ModuleList([ block_klass(dim_in, dim_in), block_klass(dim_in, dim_in), CrossAttentionBlock(dim_in, dim_context = text_encoder.dim, dim_head = self_attn_dim_head, heads = self_attn_heads, ff_mult = self_attn_ff_mult) if has_cross_attn else None, attn_klass(dim_in, dim_head = self_attn_dim_head, heads = self_attn_heads, depth = layer_attn_depth), Downsample(dim_in, dim_out) if not should_not_downsample else nn.Conv2d(dim_in, dim_out, 3, padding = 1) ])) self.mid_block1 = block_klass(mid_dim, mid_dim) self.mid_attn = FullAttention(mid_dim, dim_head = self_attn_dim_head, heads = self_attn_heads, depth = mid_attn_depth) self.mid_block2 = block_klass(mid_dim, mid_dim) self.mid_to_rgb = nn.Conv2d(mid_dim, channels, 1) for ind, ((dim_in, dim_out), layer_cross_attn, layer_full_attn, layer_attn_depth) in enumerate(zip(reversed(in_out), reversed(full_attn), reversed(cross_attn), reversed(attn_depths))): attn_klass = FullAttention if layer_full_attn else LinearTransformer has_cross_attn = not self.unconditional and layer_cross_attn self.ups.append(nn.ModuleList([ PixelShuffleUpsample(dim_out, dim_in), Upsample(), nn.Conv2d(dim_in, channels, 1), block_klass(dim_in * 2, dim_in), block_klass(dim_in * 2, dim_in), CrossAttentionBlock(dim_in, dim_context = text_encoder.dim, dim_head = self_attn_dim_head, heads = self_attn_heads, ff_mult = cross_ff_mult) if has_cross_attn else None, attn_klass(dim_in, dim_head = cross_attn_dim_head, heads = self_attn_heads, depth = layer_attn_depth), ])) self.out_dim = default(out_dim, channels) self.final_res_block = block_klass(dim, dim) self.final_to_rgb = nn.Conv2d(dim, channels, 1) # resize mode self.resize_mode = resize_mode # determine the projection of the style embedding to convolutional modulation weights (+ adaptive kernel selection weights) for all layers self.style_to_conv_modulations = nn.Linear(style_network.dim, sum(style_embed_split_dims)) self.style_embed_split_dims = style_embed_split_dims @property def allowable_rgb_resolutions(self): input_res_base = int(log2(self.input_image_size)) output_res_base = int(log2(self.image_size)) allowed_rgb_res_base = list(range(input_res_base, output_res_base)) return [*map(lambda p: 2 ** p, allowed_rgb_res_base)] @property def device(self): return next(self.parameters()).device @property def total_params(self): return sum([p.numel() for p in self.parameters()]) def resize_image_to(self, x, size): return F.interpolate(x, (size, size), mode = self.resize_mode) def forward( self, lowres_image, styles = None, noise = None, texts: Optional[List[str]] = None, global_text_tokens = None, fine_text_tokens = None, text_mask = None, return_all_rgbs = False, replace_rgb_with_input_lowres_image = True # discriminator should also receive the low resolution image the upsampler sees ): x = lowres_image shape = x.shape batch_size = shape[0] assert shape[-2:] == ((self.input_image_size,) * 2) # take care of text encodings # which requires global text tokens to adaptively select the kernels from the main contribution in the paper # and fine text tokens to attend to using cross attention if not self.unconditional: if exists(texts): assert exists(self.text_encoder) global_text_tokens, fine_text_tokens, text_mask = self.text_encoder(texts) else: assert all([*map(exists, (global_text_tokens, fine_text_tokens, text_mask))]) else: assert not any([*map(exists, (texts, global_text_tokens, fine_text_tokens))]) # styles if not exists(styles): assert exists(self.style_network) noise = default(noise, torch.randn((batch_size, self.style_network.dim), device = self.device)) styles = self.style_network(noise, global_text_tokens) # project styles to conv modulations conv_mods = self.style_to_conv_modulations(styles) conv_mods = conv_mods.split(self.style_embed_split_dims, dim = -1) conv_mods = iter(conv_mods) # initial conv x = self.init_conv(x) h = [] # downsample stages for block1, block2, cross_attn, attn, downsample in self.downs: x = block1(x, conv_mods_iter = conv_mods) h.append(x) x = block2(x, conv_mods_iter = conv_mods) x = attn(x) if exists(cross_attn): x = cross_attn(x, context = fine_text_tokens, mask = text_mask) h.append(x) x = downsample(x) x = self.mid_block1(x, conv_mods_iter = conv_mods) x = self.mid_attn(x) x = self.mid_block2(x, conv_mods_iter = conv_mods) # rgbs rgbs = [] init_rgb_shape = list(x.shape) init_rgb_shape[1] = self.channels rgb = self.mid_to_rgb(x) rgbs.append(rgb) # upsample stages for upsample, upsample_rgb, to_rgb, block1, block2, cross_attn, attn in self.ups: x = upsample(x) rgb = upsample_rgb(rgb) res1 = h.pop() * self.skip_connect_scale res2 = h.pop() * self.skip_connect_scale fmap_size = x.shape[-1] residual_fmap_size = res1.shape[-1] if residual_fmap_size != fmap_size: res1 = self.resize_image_to(res1, fmap_size) res2 = self.resize_image_to(res2, fmap_size) x = torch.cat((x, res1), dim = 1) x = block1(x, conv_mods_iter = conv_mods) x = torch.cat((x, res2), dim = 1) x = block2(x, conv_mods_iter = conv_mods) if exists(cross_attn): x = cross_attn(x, context = fine_text_tokens, mask = text_mask) x = attn(x) rgb = rgb + to_rgb(x) rgbs.append(rgb) x = self.final_res_block(x, conv_mods_iter = conv_mods) assert len([*conv_mods]) == 0 rgb = rgb + self.final_to_rgb(x) if not return_all_rgbs: return rgb # only keep those rgbs whose feature map is greater than the input image to be upsampled rgbs = list(filter(lambda t: t.shape[-1] > shape[-1], rgbs)) # and return the original input image as the smallest rgb rgbs = [lowres_image, *rgbs] return rgb, rgbs
gigagan-pytorch-main
gigagan_pytorch/unet_upsampler.py
from gigagan_pytorch.gigagan_pytorch import ( GigaGAN, Generator, Discriminator, VisionAidedDiscriminator, AdaptiveConv2DMod, StyleNetwork, TextEncoder ) from gigagan_pytorch.unet_upsampler import UnetUpsampler from gigagan_pytorch.data import ( ImageDataset, TextImageDataset, MockTextImageDataset ) __all__ = [ GigaGAN, Generator, Discriminator, VisionAidedDiscriminator, AdaptiveConv2DMod, StyleNetwork, UnetUpsampler, TextEncoder, ImageDataset, TextImageDataset, MockTextImageDataset ]
gigagan-pytorch-main
gigagan_pytorch/__init__.py
from functools import wraps from packaging import version from collections import namedtuple import torch from torch import nn, einsum import torch.nn.functional as F # constants AttentionConfig = namedtuple('AttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) # helpers def exists(val): return val is not None def once(fn): called = False @wraps(fn) def inner(x): nonlocal called if called: return called = True return fn(x) return inner print_once = once(print) # main class class Attend(nn.Module): def __init__( self, dropout = 0., flash = False ): super().__init__() self.dropout = dropout self.attn_dropout = nn.Dropout(dropout) self.flash = flash assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' # determine efficient attention configs for cuda and cpu self.cpu_config = AttentionConfig(True, True, True) self.cuda_config = None if not torch.cuda.is_available() or not flash: return device_properties = torch.cuda.get_device_properties(torch.device('cuda')) if device_properties.major == 8 and device_properties.minor == 0: print_once('A100 GPU detected, using flash attention if input tensor is on cuda') self.cuda_config = AttentionConfig(True, False, False) else: print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') self.cuda_config = AttentionConfig(False, True, True) def flash_attn(self, q, k, v): is_cuda = q.is_cuda q, k, v = map(lambda t: t.contiguous(), (q, k, v)) # Check if there is a compatible device for flash attention config = self.cuda_config if is_cuda else self.cpu_config # pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale with torch.backends.cuda.sdp_kernel(**config._asdict()): out = F.scaled_dot_product_attention( q, k, v, dropout_p = self.dropout if self.training else 0. ) return out def forward(self, q, k, v): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ if self.flash: return self.flash_attn(q, k, v) scale = q.shape[-1] ** -0.5 # similarity sim = einsum("b h i d, b h j d -> b h i j", q, k) * scale # attention attn = sim.softmax(dim = -1) attn = self.attn_dropout(attn) # aggregate values out = einsum("b h i j, b h j d -> b h i d", attn, v) return out
gigagan-pytorch-main
gigagan_pytorch/attend.py
import torch import torch.nn.functional as F from torch.autograd import Function import torch.distributed as dist from einops import rearrange # helpers def exists(val): return val is not None def pad_dim_to(t, length, dim = 0): pad_length = length - t.shape[dim] zero_pairs = (-dim - 1) if dim < 0 else (t.ndim - dim - 1) return F.pad(t, (*((0, 0) * zero_pairs), 0, pad_length)) # distributed helpers def all_gather_variable_dim(t, dim = 0, sizes = None): device, world_size = t.device, dist.get_world_size() if not exists(sizes): size = torch.tensor(t.shape[dim], device = device, dtype = torch.long) sizes = [torch.empty_like(size, device = device, dtype = torch.long) for i in range(world_size)] dist.all_gather(sizes, size) sizes = torch.stack(sizes) max_size = sizes.amax().item() padded_t = pad_dim_to(t, max_size, dim = dim) gathered_tensors = [torch.empty(padded_t.shape, device = device, dtype = padded_t.dtype) for i in range(world_size)] dist.all_gather(gathered_tensors, padded_t) gathered_tensor = torch.cat(gathered_tensors, dim = dim) seq = torch.arange(max_size, device = device) mask = rearrange(seq, 'j -> 1 j') < rearrange(sizes, 'i -> i 1') mask = rearrange(mask, 'i j -> (i j)') seq = torch.arange(mask.shape[-1], device = device) indices = seq[mask] gathered_tensor = gathered_tensor.index_select(dim, indices) return gathered_tensor, sizes class AllGather(Function): @staticmethod def forward(ctx, x, dim, sizes): is_dist = dist.is_initialized() and dist.get_world_size() > 1 ctx.is_dist = is_dist if not is_dist: return x, None x, batch_sizes = all_gather_variable_dim(x, dim = dim, sizes = sizes) ctx.batch_sizes = batch_sizes.tolist() ctx.dim = dim return x, batch_sizes @staticmethod def backward(ctx, grads, _): if not ctx.is_dist: return grads, None, None batch_sizes, rank = ctx.batch_sizes, dist.get_rank() grads_by_rank = grads.split(batch_sizes, dim = ctx.dim) return grads_by_rank[rank], None, None all_gather = AllGather.apply
gigagan-pytorch-main
gigagan_pytorch/distributed.py
from torch.optim import AdamW, Adam def separate_weight_decayable_params(params): wd_params, no_wd_params = [], [] for param in params: param_list = no_wd_params if param.ndim < 2 else wd_params param_list.append(param) return wd_params, no_wd_params def get_optimizer( params, lr = 1e-4, wd = 1e-2, betas = (0.9, 0.99), eps = 1e-8, filter_by_requires_grad = True, group_wd_params = True, **kwargs ): if filter_by_requires_grad: params = list(filter(lambda t: t.requires_grad, params)) if group_wd_params and wd > 0: wd_params, no_wd_params = separate_weight_decayable_params(params) params = [ {'params': wd_params}, {'params': no_wd_params, 'weight_decay': 0}, ] if wd == 0: return Adam(params, lr = lr, betas = betas, eps = eps) return AdamW(params, lr = lr, weight_decay = wd, betas = betas, eps = eps)
gigagan-pytorch-main
gigagan_pytorch/optimizer.py
from functools import partial from pathlib import Path import torch from torch import nn from torch.utils.data import Dataset, DataLoader from PIL import Image from torchvision import transforms as T from beartype.door import is_bearable from beartype.typing import Tuple # helper functions def exists(val): return val is not None def convert_image_to_fn(img_type, image): if image.mode == img_type: return image return image.convert(img_type) # custom collation function # so dataset can return a str and it will collate into List[str] def collate_tensors_or_str(data): is_one_data = not isinstance(data[0], tuple) if is_one_data: data = torch.stack(data) return (data,) outputs = [] for datum in zip(*data): if is_bearable(datum, Tuple[str, ...]): output = list(datum) else: output = torch.stack(datum) outputs.append(output) return tuple(outputs) # dataset classes class ImageDataset(Dataset): def __init__( self, folder, image_size, exts = ['jpg', 'jpeg', 'png', 'tiff'], augment_horizontal_flip = False, convert_image_to = None ): super().__init__() self.folder = folder self.image_size = image_size self.paths = [p for ext in exts for p in Path(f'{folder}').glob(f'**/*.{ext}')] assert len(self.paths) > 0, 'your folder contains no images' assert len(self.paths) > 100, 'you need at least 100 images, 10k for research paper, millions for miraculous results (try Laion-5B)' maybe_convert_fn = partial(convert_image_to_fn, convert_image_to) if exists(convert_image_to) else nn.Identity() self.transform = T.Compose([ T.Lambda(maybe_convert_fn), T.Resize(image_size), T.RandomHorizontalFlip() if augment_horizontal_flip else nn.Identity(), T.CenterCrop(image_size), T.ToTensor() ]) def get_dataloader(self, *args, **kwargs): return DataLoader(self, *args, shuffle = True, drop_last = True, **kwargs) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = Image.open(path) return self.transform(img) class TextImageDataset(Dataset): def __init__(self): raise NotImplementedError def get_dataloader(self, *args, **kwargs): return DataLoader(self, *args, collate_fn = collate_tensors_or_str, **kwargs) class MockTextImageDataset(TextImageDataset): def __init__( self, image_size, length = int(1e5), channels = 3 ): self.image_size = image_size self.channels = channels self.length = length def get_dataloader(self, *args, **kwargs): return DataLoader(self, *args, collate_fn = collate_tensors_or_str, **kwargs) def __len__(self): return self.length def __getitem__(self, index): mock_image = torch.randn(self.channels, self.image_size, self.image_size) return mock_image, 'mock text'
gigagan-pytorch-main
gigagan_pytorch/data.py
import torch from torch import nn, einsum import torch.nn.functional as F import open_clip from einops import rearrange from beartype import beartype from beartype.typing import List, Optional def exists(val): return val is not None def l2norm(t): return F.normalize(t, dim = -1) class OpenClipAdapter(nn.Module): @beartype def __init__( self, name = 'ViT-B/32', pretrained = 'laion400m_e32', tokenizer_name = 'ViT-B-32-quickgelu', eos_id = 49407 ): super().__init__() clip, _, preprocess = open_clip.create_model_and_transforms(name, pretrained = pretrained) tokenizer = open_clip.get_tokenizer(tokenizer_name) self.clip = clip self.tokenizer = tokenizer self.eos_id = eos_id # hook for getting final text representation text_attention_final = self.find_layer('ln_final') self._dim_latent = text_attention_final.weight.shape[0] self.text_handle = text_attention_final.register_forward_hook(self._text_hook) # hook for getting final image representation # this is for vision-aided gan loss self._dim_image_latent = self.find_layer('visual.ln_post').weight.shape[0] num_visual_layers = len(clip.visual.transformer.resblocks) self.image_handles = [] for visual_layer in range(num_visual_layers): image_attention_final = self.find_layer(f'visual.transformer.resblocks.{visual_layer}') handle = image_attention_final.register_forward_hook(self._image_hook) self.image_handles.append(handle) # normalize fn self.clip_normalize = preprocess.transforms[-1] self.cleared = False @property def device(self): return next(self.parameters()).device def find_layer(self, layer): modules = dict([*self.clip.named_modules()]) return modules.get(layer, None) def clear(self): if self.cleared: return self.text_handle() self.image_handle() def _text_hook(self, _, inputs, outputs): self.text_encodings = outputs def _image_hook(self, _, inputs, outputs): if not hasattr(self, 'image_encodings'): self.image_encodings = [] self.image_encodings.append(outputs) @property def dim_latent(self): return self._dim_latent @property def image_size(self): image_size = self.clip.visual.image_size if isinstance(image_size, tuple): return max(image_size) return image_size @property def image_channels(self): return 3 @property def max_text_len(self): return self.clip.positional_embedding.shape[0] @beartype def embed_texts( self, texts: List[str] ): ids = self.tokenizer(texts) ids = ids.to(self.device) ids = ids[..., :self.max_text_len] is_eos_id = (ids == self.eos_id) text_mask_excluding_eos = is_eos_id.cumsum(dim = -1) == 0 text_mask = F.pad(text_mask_excluding_eos, (1, -1), value = True) text_mask = text_mask & (ids != 0) assert not self.cleared text_embed = self.clip.encode_text(ids) text_encodings = self.text_encodings text_encodings = text_encodings.masked_fill(~text_mask[..., None], 0.) del self.text_encodings return l2norm(text_embed.float()), text_encodings.float() def embed_images(self, images): if images.shape[-1] != self.image_size: images = F.interpolate(images, self.image_size) assert not self.cleared images = self.clip_normalize(images) image_embeds = self.clip.encode_image(images) image_encodings = rearrange(self.image_encodings, 'l n b d -> l b n d') del self.image_encodings return l2norm(image_embeds.float()), image_encodings.float() @beartype def contrastive_loss( self, images, texts: Optional[List[str]] = None, text_embeds: Optional[torch.Tensor] = None ): assert exists(texts) ^ exists(text_embeds) if not exists(text_embeds): text_embeds, _ = self.embed_texts(texts) image_embeds, _ = self.embed_images(images) n = text_embeds.shape[0] temperature = self.clip.logit_scale.exp() sim = einsum('i d, j d -> i j', text_embeds, image_embeds) * temperature labels = torch.arange(n, device = sim.device) return (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
gigagan-pytorch-main
gigagan_pytorch/open_clip.py
import bitsandbytes as bnb import torch p = torch.nn.Parameter(torch.rand(10,10).cuda()) a = torch.rand(10,10).cuda() p1 = p.data.sum().item() adam = bnb.optim.Adam([p]) out = a*p loss = out.sum() loss.backward() adam.step() p2 = p.data.sum().item() assert p1 != p2 print('SUCCESS!') print('Installation was successful!')
bitsandbytes-main
check_bnb_install.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import glob import os from setuptools import find_packages, setup libs = list(glob.glob("./bitsandbytes/libbitsandbytes*.so")) libs = [os.path.basename(p) for p in libs] print("libs:", libs) def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name=f"bitsandbytes", version=f"0.37.0", author="Tim Dettmers", author_email="dettmers@cs.washington.edu", description="8-bit optimizers and matrix multiplication routines.", license="MIT", keywords="gpu optimizers optimization 8-bit quantization compression", url="https://github.com/TimDettmers/bitsandbytes", packages=find_packages(), package_data={"": libs}, long_description=read("README.md"), long_description_content_type="text/markdown", classifiers=[ "Development Status :: 4 - Beta", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
bitsandbytes-main
setup.py
import math import random import time from itertools import product import einops import pytest import torch import numpy as np import bitsandbytes as bnb from bitsandbytes import functional as F from scipy.stats import norm torch.set_printoptions( precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000 ) k = 20 def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: print(f"Too many values not close: assert {sumval} < {count}") torch.testing.assert_allclose(a, b, rtol, atol) class FFN(torch.nn.Module): def __init__(self, input_features, hidden_size, bias=True): super().__init__() self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias) self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias) with torch.no_grad(): torch.nn.init.xavier_uniform_(self.fc1.weight) torch.nn.init.xavier_uniform_(self.fc2.weight) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x class Timer: def __init__(self): self.starts = {} self.ends = {} self.agg = {} def tick(self, name="default"): if name not in self.starts: self.starts[name] = torch.cuda.Event(enable_timing=True) self.ends[name] = torch.cuda.Event(enable_timing=True) self.starts[name].record() else: ms = self.tock(name, evict=True, print_ms=False) def tock(self, name="default", evict=True, print_ms=True): if name in self.ends: self.ends[name].record() torch.cuda.synchronize() ms = self.starts[name].elapsed_time(self.ends[name]) if name not in self.agg: self.agg[name] = 0.0 self.agg[name] += ms if evict: self.starts.pop(name) self.ends.pop(name) if print_ms and name in self.agg: print(f"{name} took: {self.agg[name] / 1000.0:.5f}s") return self.agg[name] def reset(self): self.starts = {} self.ends = {} self.agg = {} print("Resetting benchmark data") def setup(): pass def teardown(): pass @pytest.mark.parametrize( "dtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_estimate_quantiles(dtype): A = torch.rand(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device) torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2) A = torch.randn(1024, 1024, device="cuda") A = A.to(dtype) code = F.estimate_quantiles(A) quantiles = torch.quantile(A.float(), percs) diff = torch.abs(code - quantiles) assert (diff > 5e-02).sum().item() == 0 def test_quantile_quantization(): for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() assert diff < 0.0075 A1 = torch.rand(1024, 1024, device="cuda") code = F.estimate_quantiles(A1) C = F.quantize_no_absmax(A1, code) A2 = F.dequantize_no_absmax(C, code) diff = torch.abs(A1 - A2).mean().item() torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0) assert diff < 0.001 def test_dynamic_quantization(): diffs = [] reldiffs = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, S = F.quantize(A1) A2 = F.dequantize(C, S) diff = torch.abs(A1 - A2) reldiff = diff / torch.abs(A1 + 1e-8) diffs.append(diff.mean().item()) reldiffs.append(reldiff.mean().item()) assert diff.mean().item() < 0.0135 # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, S = F.quantize(A1) A2 = F.dequantize(C, S) diff = torch.abs(A1 - A2).mean().item() torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0) assert diff < 0.004 def test_dynamic_blockwise_quantization(): #print('') for blocksize in [4096, 2048, 1024, 512]: diffs = [] reldiffs = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, S = F.quantize_blockwise(A1, blocksize=blocksize) A2 = F.dequantize_blockwise(C, S, blocksize=blocksize) diff = torch.abs(A1 - A2) reldiff = diff / torch.abs(A1 + 1e-8) diffs.append(diff.mean().item()) reldiffs.append(reldiff.mean().item()) abserr = sum(diffs)/len(diffs) relerr = sum(reldiffs)/len(reldiffs) assert abserr < 0.011 assert relerr < 0.018 #print('randn', blocksize, sum(diffs)/len(diffs)) #print('randn', blocksize, sum(reldiffs)/len(reldiffs)) diffs = [] for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, S = F.quantize_blockwise(A1, blocksize=blocksize) A2 = F.dequantize_blockwise(C, S, blocksize=blocksize) diff = torch.abs(A1 - A2) reldiff = diff / torch.abs(A1 + 1e-8) diffs.append(diff.mean().item()) reldiffs.append(reldiff.mean().item()) #torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0) abserr = sum(diffs)/len(diffs) relerr = sum(reldiffs)/len(reldiffs) assert abserr < 0.0035 assert relerr < 0.015 #print('rand', blocksize, sum(diffs)/len(diffs)) #print('rand', blocksize, sum(reldiffs)/len(reldiffs)) def test_dynamic_blockwise_stochastic_quantization(): diffs = [] reldiffs = [] rand = torch.rand(1024).cuda() for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C1, S1 = F.quantize_blockwise(A1, rand=rand) C2, S2 = F.quantize_blockwise(A1) # a maximunm distance of quantized values of 1 torch.testing.assert_allclose(C1, C2, atol=1, rtol=0) fraction_smaller = (C1 < C2).float().sum() / C1.numel() fraction_larger = (C1 > C2).float().sum() / C1.numel() torch.testing.assert_allclose( fraction_larger, fraction_smaller, atol=0.01, rtol=0 ) @pytest.mark.parametrize( "gtype", [torch.float32, torch.float16], ids=["float", "half"] ) def test_percentile_clipping(gtype): gnorm_vec1 = torch.zeros(100, device="cuda") gnorm_vec2 = torch.zeros(100, device="cuda") n = 4 step = 0 percentile = 5 for i in range(k): step += 1 g = torch.randn(n, n, dtype=gtype, device="cuda") gnorm1, clip2, gnorm_scale = F.percentile_clipping( g, gnorm_vec2, step, percentile=percentile ) assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1 gnorm2 = torch.norm(g.float()) if step == 1: gnorm_vec1[:] = gnorm2 else: gnorm_vec1[step % 100] = gnorm2 vals, idx = torch.sort(gnorm_vec1) clip1 = vals[percentile] torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2)) torch.testing.assert_allclose(clip1, clip2) torch.testing.assert_allclose(gnorm1, gnorm2) def quant(x): max1 = torch.abs(x).max() x = torch.round(x / max1 * 127) return max1, x.to(torch.int8) def dequant(c, maxC): return c.float() * (maxC / 127) def mm_dequant(maxA, maxB, C): return C.float() * (maxA / 127) * (maxB / 127) def quant_multi(x, dim): max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True) max1[max1 == 0] = 1.0 x = torch.round(x / max1 * 127) return max1, x.to(torch.int8) def quant_multi_chunk(x, dim, chunk_size=32): if dim == 1: x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size) max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True) max1 = torch.tile(max1, (1, 1, x.shape[1])) max1 = max1.view(x.shape) elif dim == 0: x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size) max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True) max1 = torch.tile(max1, (x.shape[0], 1, 1)) max1 = max1.view(x.shape) max1[max1 == 0] = 1.0 x = torch.round(x / max1 * 127) return max1, x.to(torch.int8) def quant_minmax(A): minA = A.min() maxA = A.max() def mean(xx): return sum(xx) / float(len(xx)) # dim1 = torch.randint(1,1024*4, size=(4,)).tolist() # dim2 = torch.randint(1,1024*4, size=(4,)).tolist() dim1 = [1024 * 2] dim2 = [1024 * 16] methods = [ ( lambda x, dim: quant(x), lambda x, dim: quant(x), dequant, dequant, mm_dequant, ) ] methods.append((quant_multi, quant_multi, dequant, dequant, mm_dequant)) # methods.append((lambda x: quant_multi_chunk(x, dim=-1), lambda x: quant_multi_chunk(x, dim=0), dequant, dequant, mm_dequant)) method_names = ["linear", "vectorwise"] batched = [False, True] values = list(product(dim1, dim2, methods, batched)) values_names = list(product(dim1, dim2, method_names, batched)) names = [ "dim1_{}_dim2_{}_quant_{}_batched_{}".format(*vals) for vals in values_names ] @pytest.mark.parametrize( "dim1, dim2, quant_methods, batched", values, ids=names ) def test_approx_igemm(dim1, dim2, quant_methods, batched): dim1 = dim1 - (dim1 % 32) dim2 = dim2 - (dim2 % 32) errors = [] relerrors = [] print("") for i in range(5): if batched: A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda") B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda") maxA, Ac = quant_methods[0](A, 2) maxB, Bc = quant_methods[1](B, 1) else: A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda") B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda") maxA, Ac = quant_methods[0](A, 1) maxB, Bc = quant_methods[1](B, 0) torch.testing.assert_allclose( quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05 ) if batched: out2 = torch.bmm(A, B) C = torch.bmm(Ac.float(), Bc.float()) else: out2 = torch.mm(A, B) C = F.igemm(Ac, Bc) out = quant_methods[4](maxA, maxB, C) std = out2.std() out /= std out2 /= std err = torch.abs(out - out2) relerr = err / torch.abs(out2) errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) print(mean(errors)) print(mean(relerrors)) def test_stable_embedding(): layer = bnb.nn.StableEmbedding(1024, 1024) layer.reset_parameters() n = 2 hidden_dim = torch.randint(32, 256, size=(n,)).tolist() batch_dim = torch.randint(16, 256, size=(n,)).tolist() seq_dim = torch.randint(16, 256, size=(n,)).tolist() transpose = [(False, False), (False, True), (True, False), (True, True)] values = list(product(hidden_dim, batch_dim, transpose, seq_dim)) names = [ "hidden_dim_{}_batch_dim_{},transpose_{}_seq_dim_{}".format(*vals) for vals in values ] @pytest.mark.parametrize( "hidden_dim, batch_dim, transpose, seq_dim", values, ids=names ) def test_igemm(hidden_dim, batch_dim, transpose, seq_dim): hidden_dim = hidden_dim - (hidden_dim % 32) batch_dim = batch_dim - (batch_dim % 16) seq_dim = seq_dim - (seq_dim % 16) for i in range(k): shapeA = ( (batch_dim, hidden_dim) if not transpose[0] else (hidden_dim, batch_dim) ) shapeB = ( (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4)) ) A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) if not transpose[0] and not transpose[1]: out2 = torch.matmul(A.float(), B.float()) out = F.igemm(A, B) elif not transpose[0] and transpose[1]: out2 = torch.matmul(A.float(), B.t().float()) out = F.igemm(A, B.t()) elif transpose[0] and not transpose[1]: out2 = torch.matmul(A.t().float(), B.float()) out = F.igemm(A.t(), B) elif transpose[0] and transpose[1]: out2 = torch.matmul(A.t().float(), B.t().float()) out = F.igemm(A.t(), B.t()) torch.testing.assert_allclose(out.float(), out2) for i in range(k): shapeA = (batch_dim, seq_dim, hidden_dim) shapeB = ( (32 * random.randint(1, 4), hidden_dim) if transpose[1] else (hidden_dim, 32 * random.randint(1, 4)) ) A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) if not transpose[0] and not transpose[1]: out2 = torch.matmul(A.float(), B.float()) out = F.igemm(A, B) elif not transpose[0] and transpose[1]: out2 = torch.matmul(A.float(), B.t().float()) out = F.igemm(A, B.t()) torch.testing.assert_allclose(out.float(), out2) n = 3 seq_dim = torch.randint(32, 512, size=(n,)).tolist() hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist() batch_dim = torch.randint(2, 16, size=(n,)).tolist() values = list(product(seq_dim, hidden_dim, batch_dim)) names = [ "seq_dim{}_hidden_dim{}_batch_dim{}".format(*vals) for vals in values ] @pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names) def test_dim3_igemm(seq_dim, hidden_dim, batch_dim): seq_dim = seq_dim - (seq_dim % 32) hidden_dim = hidden_dim - (hidden_dim % 32) batch_dim = batch_dim - (batch_dim % 2) for i in range(25): A = torch.randint( -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda" ).to(torch.int8) B = torch.randint( -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda" ).to(torch.int8) out2 = torch.einsum("bsi, bso->io", A.float(), B.float()) iout = torch.empty( A.shape[2], B.shape[2], dtype=torch.int32, device=A.device ) out = F.igemm(A, B, out=iout) torch.testing.assert_allclose(out.float(), out2) n = 2 seq_dim = torch.randint(32, 512, size=(n,)).tolist() hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist() batch_dim = torch.randint(2, 16, size=(n,)).tolist() transpose = [False, True] values = list(product(seq_dim, hidden_dim, batch_dim, transpose)) names = [ "seq_dim={}_hidden_dim={}_batch_dim={}_transpose{}".format(*vals) for vals in values ] @pytest.mark.parametrize( "seq_dim, hidden_dim, batch_dim, transpose", values, ids=names ) def test_minmax_igemm(seq_dim, hidden_dim, batch_dim, transpose): def min_max(x): maxA = torch.amax(x, dim=2, keepdim=True) minA = torch.amin(x, dim=2, keepdim=True) scale = (maxA - minA) / 2.0 return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale seq_dim = seq_dim - (seq_dim % 16) hidden_dim = hidden_dim - (hidden_dim % 16) batch_dim = batch_dim - (batch_dim % 2) errs = [] relerrs = [] errs2 = [] relerrs2 = [] for i in range(k): A = torch.normal( 0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda" ) if transpose: B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda") else: B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda") Ac, minA, scale = min_max(A) if transpose: maxB, Bc = quant_multi(B, dim=(1 if transpose else 0)) out = F.igemm(Ac, Bc.t()) out2 = torch.matmul(A, B.t()) offset = B.t().sum(0) * (minA + scale) out = out.float() out = (out * maxB.t() * scale / (127 * 127)) + offset maxA, Ac = quant_multi(A, dim=2) out3 = F.igemm(Ac, Bc.t()) out3 = mm_dequant(maxA, maxB.t(), out3) else: maxB, Bc = quant_multi(B, dim=0) offset = B.sum(0) * (minA + scale) out = F.igemm(Ac, Bc) out2 = torch.matmul(A, B) out = out.float() out = (out * maxB * scale / (127 * 127)) + offset maxA, Ac = quant_multi(A, dim=2) out3 = F.igemm(Ac, Bc) out3 = mm_dequant(maxA, maxB, out3) std = out2.std() out2 /= std out /= std out3 /= std err = torch.abs(out - out2) relerr = err / (torch.abs(out2) + 1e-7) err2 = torch.abs(out3 - out2) relerr2 = err2 / (torch.abs(out2) + 1e-7) errs.append(err.mean().item()) relerrs.append(relerr.mean().item()) errs2.append(err2.mean().item()) relerrs2.append(relerr2.mean().item()) # print(mean(errs)) # print(mean(relerrs)) # print(mean(errs2)) # print(mean(relerrs2)) assert mean(errs) < 0.015 assert mean(relerrs) < 0.3 n = 2 dim1 = torch.randint(1, 64, size=(n,)).tolist() dim2 = torch.randint(32, 128, size=(n,)).tolist() dim3 = torch.randint(32, 256, size=(n,)).tolist() dim4 = torch.randint(32, 256, size=(n,)).tolist() transpose = [(False, False), (True, False), (False, True), (True, True)] values = list(product(dim1, dim2, dim3, dim4, transpose)) names = [ "dim1_{}_dim2_{}_dim3_{}_dim4_{}_transpose_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names) def test_ibmm(dim1, dim2, dim3, dim4, transpose): dim2 = dim2 - (dim2 % 16) dim3 = dim3 - (dim3 % 16) dim4 = dim4 - (dim4 % 16) for i in range(k): shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3) shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4) A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8) if not transpose[0] and not transpose[1]: out2 = torch.bmm(A.float(), B.float()) out = F.igemm(A, B) elif not transpose[0] and transpose[1]: out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float()) out = F.igemm(A, B.permute([0, 2, 1])) elif transpose[0] and not transpose[1]: out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float()) out = F.igemm(A.permute([0, 2, 1]), B) elif transpose[0] and transpose[1]: out2 = torch.bmm( A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float() ) out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1])) torch.testing.assert_allclose(out.float(), out2.float()) n = 1 dim1 = torch.randint(1, 64, size=(n,)).tolist() dim2 = torch.randint(32, 128, size=(n,)).tolist() dim3 = torch.randint(32, 256, size=(n,)).tolist() values = list(product(dim1, dim2, dim3)) names = ["dim1_{}_dim2_{}_dim3_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, dim3", values, ids=names) def test_vector_quant(dim1, dim2, dim3): dim2 = dim2 - (dim2 % 16) dim3 = dim3 - (dim3 % 16) for i in range(k): A = torch.randn(size=(dim2, dim3), device="cuda") qA, SA = F.vectorwise_quant(A, dim=0) A1 = F.vectorwise_dequant(qA, SA) n = A1.numel() assert_all_approx_close(A1, A, atol=0.01, rtol=0.1, count=int(n*0.002)) n = 2 dim1 = torch.randint(2, 256, size=(n,)).tolist() dim2 = torch.randint(2, 256, size=(n,)).tolist() dim3 = torch.randint(2, 256, size=(n,)).tolist() # dim1, dim2 = (256,), (256,) dtype = [torch.int8, torch.int32] a_order = ["row"] out_order = ["col", "row", "col32"] transpose = [False] dims = [2, 3] values = list(product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose)) names = ["dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_transpose_{}".format(*vals)for vals in values] @pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names) def test_nvidia_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): if dims == 3 and out_order != "col32": return if dtype == torch.int32 and out_order != "col32": return func = F.get_transform_func(dtype, orderA, orderOut, transpose) if dims == 2: A = torch.randint(-128, 127, size=(dim1, dim2), device="cuda").to(dtype) elif dims == 3: A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to( dtype ) out, S = F.nvidia_transform(A, to_order=orderOut) if orderOut == "row": torch.testing.assert_allclose(A.flatten(), out.flatten()) elif orderOut == "col": torch.testing.assert_allclose(A.t().flatten(), out.flatten()) elif orderOut == "col32": if dims == 2: n = A.shape[0] * (A.shape[1] + (32 - (A.shape[1] % 32))) elif dims == 3: n = ( A.shape[0] * A.shape[1] * (A.shape[2] + (32 - (A.shape[2] % 32))) ) assert out.numel() == n elif orderOut == "col_turing": # 32 col 8 row tiles n = (A.shape[0] + (8 - A.shape[0] % 8)) * ( A.shape[1] + (32 - (A.shape[1] % 32)) ) assert out.numel() == n total_coltile = (A.shape[1] // 32) + (1 if A.shape[1] % 32 != 0 else 0) for row in range(A.shape[0]): for col in range(A.shape[1]): i = row * A.shape[1] j = col coltile = (col // 32) + (1 if col % 32 != 0 else 0) rowtile = ( (row // 8) + (1 if row % 8 != 0 else 0) ) * total_coltile offset = 32 * 8 * (rowtile + coltile) col2 = col % 32 row2 = (row % 8) * 32 assert A.flatten()[i + j] == A[row, col] # assert A.flatten()[i+j] == out.flatten()[row2+col2] # torch.testing.assert_allclose(A.flatten()[i+j], A[row, col]) # torch.testing.assert_allclose(A.flatten()[i+j], out.flatten()[row2+ col2+block_offset]) if orderOut == "col32": out2, S = F.nvidia_transform( out, from_order=orderOut, to_order="row", state=S ) torch.testing.assert_allclose(A, out2) n = 1 dim1 = torch.randint(1, 256, size=(n,)).tolist() dim2 = torch.randint(32, 512, size=(n,)).tolist() dim3 = torch.randint(32, 1024, size=(n,)).tolist() dim4 = torch.randint(32, 1024, size=(n,)).tolist() # dim1 = [2] # dim2 = [2] # dim3 = [2] # dim4 = [2] dims = (2, 3) ldb = [0] # ldb = list(range(256, 1*1024, 256)) values = list(product(dim1, dim2, dim3, dim4, dims, ldb)) names = [ "dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}_ldb_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names) def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb): for i in range(k): if dims == 2: A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to( torch.int8 ) elif dims == 3: A = torch.randint( -128, 127, size=(dim1, dim2, dim3), device="cuda" ).to(torch.int8) B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to( torch.int8 ) C1 = torch.matmul(A.float(), B.t().float()) A2, SA = F.transform(A, "col32") B2, SB = F.transform(B, "col_turing") C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) torch.testing.assert_allclose(C1, C3.float()) # transpose B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to( torch.int8 ) C1 = torch.matmul(A.float(), B.float()) B2t, SBt = F.transform(B, "col_turing", transpose=True) C2, SC = F.igemmlt(A2, B2t, SA, SBt) C3, S = F.nvidia_transform(C2, "row", state=SC) torch.testing.assert_allclose(C1, C3.float()) dim1 = [32] dim2 = [32] dim3 = [32] dim4 = [32] dims = (2,) # ldb = list(range(256, 1*1024, 256)) values = list(product(dim1, dim2, dim3, dim4, dims)) names = [ "dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims", values, ids=names) def test_igemmlt_half(dim1, dim2, dim3, dim4, dims): formatB = F.get_special_format_str() for i in range(k): if dims == 2: A = torch.normal(0, 0.5, size=(dim1, dim3), device="cuda").half() elif dims == 3: A = torch.normal( 0, 0.5, size=(dim1, dim2, dim3), device="cuda" ).half() B = torch.randn((dim4, dim3), device="cuda").half() torch.nn.init.xavier_uniform_(B) C1 = torch.matmul(A, B.t()) C2 = bnb.matmul(A, B.t()) A = A.view(-1, A.shape[-1]) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B) C32A, SA = F.transform(CA, "col32") CxB, SB = F.transform(CB, to_order=formatB) out1_32, Sout1_32 = F.igemmlt(C32A, CxB, SA, SB) output = F.mm_dequant(out1_32, Sout1_32, statsAt, statsBt) # print('') # print(output.flatten()[:10]) # print(C1.flatten()[:10]) # print(C2.flatten()[:10]) # torch.testing.assert_allclose(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05) # transpose # B = torch.randint(-128, 127, size=(dim3, dim4), device='cuda').to(torch.int8) # C1 = torch.matmul(A.float(), B.float()) # B2t, SBt = F.transform2(B, 'col_turing', transpose=True) # C2, SC = F.igemmlt(A2, B2t, SA, SBt) # C3, S = F.transform(C2, 'row', state=SC) # torch.testing.assert_allclose(C1, C3.float()) batch_size = 2 seqdim = 512 # values = [(batch_size, seqdim, 4*1024, 16*1024),(batch_size, seqdim, 5120, 4*5120),(batch_size, seqdim, 12*1024, 4*12*1024)] values = [ (batch_size, seqdim, 4 * 1024, 3 * 4 * 1024), (batch_size, seqdim, 5120, 3 * 5120), (batch_size, seqdim, 12 * 1024, 4 * 12 * 1024), ] # values = list(product(batch, seq, model, hidden)) names = [ "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_8bit_training(batch, seq, model, hidden): formatB = F.get_special_format_str() A = torch.randn(batch, seq, model, device="cuda").half() grad = torch.randn(batch, seq, model, device="cuda").half() w1 = torch.randint(-128, 127, size=(hidden, model), device="cuda").half() w2 = torch.randint(-128, 127, size=(model, hidden), device="cuda").half() print("") # torch.cuda.synchronize() ## warmup # for i in range(100): # torch.matmul(A, w1.t()) # torch.cuda.synchronize() dtype = torch.int8 A = A.view(-1, A.shape[-1]).contiguous() grad = grad.view(-1, grad.shape[-1]).contiguous() torch.cuda.synchronize() t0 = time.time() for i in range(k): out1 = torch.matmul(A, w1.t()) # fc1 # out2 = torch.matmul(out1, w2.t())# fc2 # d1 = torch.matmul(grad, w2) # delta1 # d2 = torch.matmul(d1, w1) # delta2 # grad1 = torch.einsum('bo,bh->oh', out1, grad) # grad w2 # grad2 = torch.einsum('bh,bo->ho', A, d2) # grad w1 torch.cuda.synchronize() t16 = time.time() - t0 print(t16) # torch.cuda.empty_cache() # Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1) # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2) # CTw1, Sw1 = F.transform2(Cw1, formatB) # CTw2, Sw2 = F.transform2(Cw2, formatB) # CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True) # CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True) # CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) # C32A, SA = F.transform2(CA, 'col32') ## fc1 # out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype) ##out1 = F.mm_dequant(out1_32, Sout1_32, statsAt, statsw1t) ## fc2 # Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1) # C32out1, Sout1 = F.transform2(Cout1, 'col32') # out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype) ##out2 = F.mm_dequant(out2_32, Sout2_32, statsout1t, statsw2t) ## delta1 # Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad) # C32grad, Sgrad = F.transform2(Cgrad, 'col32') ##d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype) ##d1 = F.mm_dequant(d1_32, Sd1_32, statsgradt, statsw2) ## delta2 # Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1) # C32d1, Sd1 = F.transform2(Cd1, 'col32') ##d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype) ##d2 = F.mm_dequant(d2_32, Sd2_32, statsd1t, statsw1) ## grad1 # C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True) # CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True) ##grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype) ##grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1, statsgrad) ## grad2 # C32At, SAt = F.transform2(CAt, 'col32', transpose=True) # CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True) ##grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype) ##grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsA, statsd1) # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2) # Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1) # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2) # CTw1, Sw1 = F.transform2(Cw1, formatB) # CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True) # CTw2, Sw2 = F.transform2(Cw2, formatB) # CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True) # torch.cuda.synchronize() # t0 = time.time() # for i in range(k): # #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1) # #CTw1, Sw1 = F.transform2(Cw1, formatB) # #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1) # #CTw1, Sw1 = F.transform2(Cw1, formatB) # #CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A, threshold=3.5) # CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) # #CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True) # #CTw2, Sw2 = F.transform2(Cw2, formatB) # #CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True) # C32A, SA = F.transform2(CA, 'col32') # # fc1 # out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype) # #out1dn = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1) # #print(coo_tensor.nnz) # #out1sp = F.spmm_coo(coo_tensor, w1.t()) # #print(w1.t().shape) # #out1 = out1dn + out1sp # # fc2 # Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1) # C32out1, Sout1 = F.transform2(Cout1, 'col32') # out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype) # #out2 = F.mm_dequant(out2_32, Sout2_32, statsout1, statsw2) # # delta1 # Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad) # C32grad, Sgrad = F.transform2(Cgrad, 'col32') # d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype) # #d1 = F.mm_dequant(d1_32, Sd1_32, statsgrad, statsw2t) # # delta2 # Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1) # C32d1, Sd1 = F.transform2(Cd1, 'col32') # d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype) # #d2 = F.mm_dequant(d2_32, Sd2_32, statsd1, statsw1t) # # grad1 # #C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True) # #CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True) # #grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype) # #grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1t, statsgradt) # ## grad2 # #C32At, SAt = F.transform2(CAt, 'col32', transpose=True) # #CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True) # #grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype) # #grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsAt, statsd1t) # torch.cuda.synchronize() # t8 = time.time() - t0 # print(t8) n = 2 dim1 = torch.randint(64, 256, size=(n,)).tolist() dim4 = torch.randint(64, 1024, size=(n,)).tolist() #dim1 = [2*1024] #dim4 = [2*1024] #dim1 = [4] #dim4 = [4] dims = (2,) formatB = ["col_turing", "col_ampere"] has_bias = [True, False] values = list(product(dim1, dim4, dims, formatB, has_bias)) names = ["dim1_{}_dim4_{}_dims_{}_formatB_{}_has_bias_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim4, dims, formatB, has_bias", values, ids=names) def test_dequant_mm(dim1, dim4, dims, formatB, has_bias): inner = torch.randint(1, 128, size=(1,)).item() bias = None if has_bias: bias = torch.randn(dim4, device='cuda', dtype=torch.float16) formatB = F.get_special_format_str() for i in range(1): A = torch.randn(dim1, inner, device="cuda") B = torch.randn(dim4, inner, device="cuda") C1 = torch.matmul(A.half(), B.t().half()) if has_bias: C1 += bias A1, maxA = F.vectorwise_quant(A, dim=1) B1, maxB = F.vectorwise_quant(B, dim=1) A2, SA = F.nvidia_transform(A1, "col32") B2, SB = F.nvidia_transform(B1, formatB) C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) C4 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t()) if has_bias: C4 += bias # TODO: is something wrong here? If so, the problem goes deeper #n = C1.numel() #p = 0.06 std = C1.std(0).view(1, -1) C1 /= std C4 /= std #assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06)) #assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}" C5 = F.mm_dequant(C2, SC, maxA.flatten(), maxB.flatten(), bias=bias) #torch.testing.assert_allclose(C5, C4, atol=0.015, rtol=0.1) n = C5.numel() assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01*n)) n = 2 dim1 = [1 * 1024] dim2 = [1 * 1024] # dim1 = torch.randint(1,4*1024, size=(n,)).tolist() # dim2 = torch.randint(1,4*1024, size=(n,)).tolist() dims = (2,) # ldb = list(range(256, 1*1024, 256)) values = list(product(dim1, dim2, dims)) names = ["dim1_{}_dim2_{}_dims_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, dims", values, ids=names) def test_colrow_absmax(dim1, dim2, dims): for i in range(k): threshold = 3.0 A = torch.randn(dim1, dim2, device="cuda").half() A_truncated = A.clone() A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0 if dims == 2: row_stats1, _ = torch.abs(A.float()).max(1) col_stats1, _ = torch.abs(A.float()).max(0) row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1) col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0) else: assert False row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=threshold ) A_blocked = einops.rearrange( torch.abs(A), "(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size", row_tiles=16, block_size=64 * 4, ) nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten() nnz_block_ptr1 = torch.zeros( nnz_rows1_counts.shape[0] + 1, dtype=nnz_rows1_counts.dtype, device=nnz_rows1_counts.device, ) nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0) torch.testing.assert_allclose(col_stats1_trunc, col_stats2) torch.testing.assert_allclose(row_stats1_trunc, row_stats2) torch.testing.assert_allclose(nnz_block_ptr1, nnz_block_ptr2) row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax( A, threshold=0.0 ) torch.testing.assert_allclose(col_stats1, col_stats2) torch.testing.assert_allclose(row_stats1, row_stats2) assert nnz_block_ptr2 is None n = 2 # dim1 = [8*1024] # dim2 = [4*1024] dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist() dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist() values = list(product(dim1, dim2)) names = ["dim1_{}_dim2_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_double_quant(dim1, dim2): for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() out_col1, Scol = F.vectorwise_quant(A, dim=0) out_row1, Srow = F.vectorwise_quant(A, dim=1) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) # max difference is 1 due to rounding differences torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0) torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0) n = CAt.numel() num_not_close_rows = ( (torch.isclose(CA, out_row1, atol=1) == 0).sum().item() ) num_not_close_cols = ( (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item() ) # allow for 1:500 error due to rounding differences min_error = 1 / 500 if num_not_close_cols > (min_error * n): print( f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}" ) assert False if num_not_close_rows > (min_error * n): print( f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}" ) assert False torch.testing.assert_allclose(Srow.flatten(), statsA) torch.testing.assert_allclose(Scol.flatten(), statsAt) n = 4 dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist() dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist() inner = torch.randint(1, 4 * 1024, size=(n,)).tolist() values = list(zip(dim1, dim4, inner)) names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) def test_integrated_igemmlt(dim1, dim4, inner): for i in range(k): A = torch.randn(dim1, inner, device="cuda").half() B = torch.randn(dim4, inner, device="cuda").half() out1 = torch.matmul(A.half(), B.t().half()) C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A) C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B) A1, maxA = F.vectorwise_quant(A, dim=1) B1, maxB = F.vectorwise_quant(B, dim=1) torch.testing.assert_allclose(maxA.flatten(), stats1a) torch.testing.assert_allclose(maxB.flatten(), stats2a) torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1) torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1) A2, SA = F.nvidia_transform(C1a, "col32") B2, SB = F.nvidia_transform(C2a, "col_turing") outC32, SC = F.igemmlt(A2, B2, SA, SB) out2 = F.mm_dequant(outC32, SC, stats1a, stats2a) A2, SA = F.nvidia_transform(A1, "col32") B2, SB = F.nvidia_transform(B1, "col_turing") C2, SC = F.igemmlt(A2, B2, SA, SB) C3, S = F.nvidia_transform(C2, "row", state=SC) out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t()) err1 = torch.abs(out1 - out2).mean().item() err2 = torch.abs(out1 - out3).mean().item() assert err2 <= err1 * 1.025 n = 6 dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist() dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist() inner = torch.randint(1, 4 * 1024, size=(n,)).tolist() values = list(zip(dim1, dim4, inner)) names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) @pytest.mark.skip("Row scale has some bugs for ampere") def test_igemmlt_row_scale(dim1, dim4, inner): formatB = F.get_special_format_str() err1, err2, err3 = [], [], [] relerr1, relerr2 = [], [] scale = 1 for i in range(k): A = torch.randn(dim1, inner, device="cuda").half() B = torch.randn(dim4, inner, device="cuda").half() torch.nn.init.xavier_uniform_(B) C1 = torch.matmul(A, B.t()) out1 = torch.matmul(A.half(), B.t().half()) C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A) CB, absmaxB = F.vectorwise_quant(B, quant_type="linear") A2, SA = F.nvidia_transform(C1a, "col32") B2, SB = F.nvidia_transform(CB, formatB) A1, maxA = F.vectorwise_quant(A, dim=1) c = 10.0 * inner * scale row_scale = torch.ones_like(maxA) / c outC32, SC = F.igemmlt( A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale ) C3, S = F.nvidia_transform(outC32, "row", state=SC) maxval = torch.abs(C3).max() if maxval == 127: scale = 1.5 else: scale = maxval / 120 out3 = C3 * maxA * absmaxB * c / (127 * 127) C4 = torch.matmul(C1a.float(), CB.float().t()) C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B) B2, SB = F.nvidia_transform(C2a, formatB) outC32, SC = F.igemmlt(A2, B2, SA, SB) out2 = F.mm_dequant(outC32, SC, stats1a, stats2a) CA, SA = F.vectorwise_quant(A, dim=1, quant_type="vector") CB, SB = F.vectorwise_quant(B, dim=1, quant_type="linear") C = torch.matmul(CA.float(), CB.t().float()) out4 = C * SA * SB / (127 * 127) # out4 = torch.clip(torch.round(C*SA/c), -127, 127)*c*SB/(127*127) # print('='*80) # print(out1) # print(out2) # print(out3) # print(out1) # print(out2) # print(out3) err1.append(torch.abs(out1 - out2).mean().item()) err2.append(torch.abs(out1 - out3).mean().item()) err3.append(torch.abs(out1 - out4).mean().item()) # assert_all_approx_close(C3.float(), torch.round(C4*row_scale), rtol=0, atol=0, count=10) print("") print(sum(err1) / len(err1)) print(sum(err2) / len(err2)) print(sum(err3) / len(err3)) dim1 = [1024, 2048] inner = [12288 * 4, 4096 * 4] dim4 = [12288, 4096] values = list(zip(dim1, dim4, inner)) names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim4, inner", values, ids=names) @pytest.mark.skip("Row scale has some bugs for ampere") def test_row_scale_bench(dim1, dim4, inner): err1, err2, err3 = [], [], [] relerr1, relerr2 = [], [] scale = 1 A = torch.randn(dim1, inner, device="cuda").half() B = torch.randn(dim4, inner, device="cuda").half() torch.nn.init.xavier_uniform_(B) # warmpup for i in range(k): C1 = torch.matmul(A, B.t()) torch.cuda.synchronize() t0 = time.time() for i in range(k): C1 = torch.matmul(A, B.t()) torch.cuda.synchronize() print("16", time.time() - t0) C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A) CB, absmaxB = F.vectorwise_quant(B, quant_type="linear") A2, SA = F.nvidia_transform(C1a, "col32") B2, SB = F.nvidia_transform(CB, formatB) A1, maxA = F.vectorwise_quant(A, dim=1) c = 10.0 * inner * scale row_scale = maxA / c torch.cuda.synchronize() t0 = time.time() for i in range(k): outC32, SC = F.igemmlt( A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale ) torch.cuda.synchronize() print("row-wise", time.time() - t0) C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B) B2, SB = F.nvidia_transform(C2a, formatB) torch.cuda.synchronize() t0 = time.time() for i in range(k): outC32, SC = F.igemmlt(A2, B2, SA, SB) torch.cuda.synchronize() print("vector-wise", time.time() - t0) n = 2 dim1 = torch.randint(2, 1024, size=(n,)).tolist() dim2 = torch.randint(2, 1024, size=(n,)).tolist() # dim1 = [8*1024] # dim2 = [4*1024] dim3 = [0] dtype = [torch.int8] a_order = ["row"] out_order = ["col32", "col_turing", "col_ampere"] transpose = [False, True] dims = [2] values = list( product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose) ) names = [ "dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_{}".format( *vals ) for vals in values ] @pytest.mark.parametrize( "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose", values, ids=names, ) def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose): for i in range(k): if dims == 2: A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to( dtype ) elif dims == 3: A = torch.randint( 10, 99, size=(dim1, dim2, dim3), device="cuda" ).to(dtype) A.view(-1)[-1] = -1 if transpose: At = A.t().contiguous() out1, S1 = F.nvidia_transform(At, to_order=orderOut) else: out1, S1 = F.nvidia_transform(A, to_order=orderOut) out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose) assert S1[0][0] == S2[0][0] assert S1[0][1] == S2[0][1] # print(out1) # print(out2) torch.testing.assert_allclose(out1, out2) n = 2 # dim1 = torch.randint(2,1024, size=(n,)).tolist() # dim2 = torch.randint(2,1024, size=(n,)).tolist() dim1 = [1] dim2 = [33] dtype = [torch.int8] # a_order = ['col_turing', 'col_ampere'] a_order = ["col_turing"] out_order = ["row"] values = list(product(dim1, dim2, dtype, a_order, out_order)) names = [ "dim1_{}_dim2_{}_dtype_{}_orderA_{}_orderOut_{}".format(*vals) for vals in values ] def test_overflow(): formatB = F.get_special_format_str() print(formatB) for i in range(2): a = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1) b = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1) Ca, Sa = F.nvidia_transform(a, "col32") Cb, Sb = F.nvidia_transform(b, formatB) c = F.igemmlt(Ca, Cb, Sa, Sb, dtype=torch.int8) c2 = torch.matmul(a.float(), b.float().t()) n = 2 dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist() dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist() # dim1 = [4] # dim2 = [5] values = list(product(dim1, dim2)) names = ["dim1_{}_dim2_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_coo_double_quant(dim1, dim2): threshold = 3.00 for i in range(k): A = torch.randn(dim1, dim2, device="cuda").half() idx = torch.abs(A) >= threshold CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant( A, threshold=threshold ) if coo_tensor is not None: A1 = A * idx A2 = torch.zeros_like(A) A2[ coo_tensor.rowidx.long(), coo_tensor.colidx.long() ] = coo_tensor.values torch.testing.assert_allclose(A1, A2) A1 = A * (idx == 0) A2 = (CA.float() * statsA.unsqueeze(1) / 127).half() torch.testing.assert_allclose( A * (idx == 0), A2, rtol=0.05, atol=1.5e-2 ) n = 2 dim1 = torch.randint(1, 1 * 1024, size=(n,)).tolist() dim2 = torch.randint(1, 1 * 1024, size=(n,)).tolist() # dim1 = [7] # dim2 = [11] transposed_B = [False, True] values = list(product(dim1, dim2, transposed_B)) names = ["dim1_{}_dim2_{}_transposed_B_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, transposed_B", values, ids=names) def test_spmm_coo(dim1, dim2, transposed_B): threshold = 1.5 dim3 = torch.randint(32, 128, size=(1,)).item() # dim3 = 17 for i in range(k): A = torch.randn(dim1, dim2).cuda().half() if transposed_B: B = torch.randn(dim3, dim2).cuda().half() else: B = torch.randn(dim2, dim3).cuda().half() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx if transposed_B: out2 = F.spmm_coo(cooA, B.t()) out1 = torch.matmul(A2, B.t()) else: out2 = F.spmm_coo(cooA, B) out1 = torch.matmul(A2, B) assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30) def test_spmm_bench(): batch = 2 model = 1024 * 1 hidden = model * 4 seq = 1024 dim1 = batch * seq dim2 = model dim3 = hidden threshold = 4 A = torch.randn(dim1, dim2, device="cuda").half() B = torch.randn(dim2, dim3, device="cuda").half() for i in range(10): C1 = bnb.matmul(A, B.t()) torch.cuda.synchronize() t0 = time.time() for i in range(k): C1 = bnb.matmul(A, B.t()) torch.cuda.synchronize() t8 = time.time() - t0 idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() print(nnz / idx.numel()) rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) for i in range(10): out2 = F.spmm_coo(cooA, B) torch.cuda.synchronize() t0 = time.time() for i in range(k): out2 = F.spmm_coo(cooA, B) torch.cuda.synchronize() tsp = time.time() - t0 print(tsp, t8) print(tsp / t8) n = 2 dim1 = torch.randint(256, 1 * 1024, size=(n,)).tolist() dim2 = torch.randint(256, 1 * 1024, size=(n,)).tolist() values = list(product(dim1, dim2)) names = ["dim1_{}_dim2_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2", values, ids=names) def test_integrated_sparse_decomp(dim1, dim2): threshold = 3.0 formatB = "col_turing" for i in range(k): A = torch.randn(dim1, dim2).cuda().half() w1 = torch.randn(dim1, dim2).cuda().half() out1 = torch.matmul(A, w1.t()) Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1) CTw1, Sw1 = F.transform(Cw1, formatB) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A) C32A, SA = F.transform(CA, "col32") out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1) out2 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1) CA, CAt, statsA, statsAt, coo_tensor = F.double_quant( A, threshold=threshold ) C32A, SA = F.transform(CA, "col32") out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1) out3 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1) assert coo_tensor is not None out4 = F.spmm_coo(coo_tensor, w1.t()) out5 = out3 + out4 err1 = torch.abs(out1 - out2).mean().item() err2 = torch.abs(out1 - out5).mean().item() assert err2 < err1 def test_matmuls(): a = torch.randn(256, 512).half().cuda() b = torch.randn(256, 512).half().cuda() c1 = torch.matmul(a, b.t()) c2 = bnb.matmul(a, b) c3 = bnb.matmul_cublas(a, b.t()) err1 = torch.abs(c1 - c2).mean().item() err2 = torch.abs(c1 - c3).mean().item() assert err1 < 0.2 assert err2 < 0.2 print(err1, err2) n = 2 # dim1 = torch.randint(1,1*1024, size=(n,)).tolist() # dim2 = torch.randint(1,4*1024, size=(n,)).tolist() dim1 = [1 * 2048] dim2 = [12288] # dim1 = [32] # dim2 = [32] # dtype = [torch.float16, torch.int8] dtype = [torch.float16] out_function = ["zeros", "ones"] values = list(product(dim1, dim2, dtype, out_function)) names = [ "dim1_{}_dim2_{}_dtype_{}_out_func_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, dtype, out_func", values, ids=names) def test_spmm_coo_very_sparse(dim1, dim2, dtype, out_func): out_func = getattr(torch, out_func) threshold = 3.3 # threshold = 2.8 # threshold = 0.0 A = torch.randn(dim1, dim2, device="cuda").half() if dtype == torch.float16: B = torch.randn(dim2, dim2 * 4, device="cuda").half() torch.nn.init.xavier_uniform_(B) else: B = torch.randn(dim2, dim2 * 4, device="cuda").half() torch.nn.init.xavier_uniform_(B) B, SB = F.vectorwise_quant(B, quant_type="linear") # B = torch.randint(-127, 127, size=(dim2, dim2*4), device='cuda').to(torch.int8) print("") idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx out1 = torch.matmul(A2.half(), B.half()) out = out_func(out1.shape, dtype=torch.float16, device=out1.device) out1 += out.clone() out2 = F.spmm_coo_very_sparse(cooA, B, out=out) # print(B) # print(out1) # print(out2) p = 200 / (2048 * 12288 * 4) n = out1.numel() count = math.ceil(p * n) std = out1.std() out1 /= std out2 /= std assert_all_approx_close( out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count ) # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count) idx_col = torch.randint(0, A2.shape[-1], size=(15,)) # torch.testing.assert_allclose(out1, out2.half(), rtol=0.05, atol=0.001) # Bt = torch.randn(dim2*4, dim2, device='cuda').half() # torch.cuda.synchronize() # t0 = time.time() # print(A2.shape, B.shape) # for i in range(100): # #out3 = F.spmm_coo(cooA, Bt.t()) # #out2 = F.spmm_coo(cooA, B) # #out2 = F.spmm_coo_very_sparse(cooA, B) # #out1 = torch.matmul(A, Bt.t()) # torch.cuda.synchronize() # print(time.time() - t0) def test_coo2csr(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx csrA = F.coo2csr(cooA) counts = csrA.rowptr[1:] - csrA.rowptr[:-1] assert counts.numel() == A.shape[0] torch.testing.assert_allclose(counts, (A2 != 0).sum(1)) idx = A2 != 0 torch.testing.assert_allclose(A2[idx], csrA.values) def test_coo2csc(): threshold = 1 A = torch.randn(128, 128).half().cuda() idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx cscA = F.coo2csc(cooA) counts = cscA.colptr[1:] - cscA.colptr[:-1] assert counts.numel() == A.shape[1] torch.testing.assert_allclose(counts, (A2 != 0).sum(0)) # torch uses row-major -> use transpose to transfer to col-major idx = A2.t() != 0 torch.testing.assert_allclose(A2.t()[idx], cscA.values) n = 2 # dim1 = torch.randint(1,1*1024, size=(n,)).tolist() # dim2 = torch.randint(1,4*1024, size=(n,)).tolist() dim1 = [1 * 2048] # dim2 = [12288] dim2 = [2048] # dim1 = [2] # dim2 = [2] dtype = [torch.int8] values = list(product(dim1, dim2, dtype)) names = ["dim1_{}_dim2_{}_dtype_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names) def test_spmm_coo_dequant(dim1, dim2, dtype): threshold = 6.0 # threshold = 2.8 # threshold = 0.0 A = torch.randn(dim1, dim2, device="cuda").half() B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16) torch.nn.init.xavier_uniform_(B) Bt = B.t().contiguous() CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B) rowidx = torch.randint(0, A.shape[-1], size=(15,)) A[:, rowidx] = 8.0 idx = torch.abs(A) >= threshold nnz = (idx == 1).sum().item() rows, cols = torch.where(idx) values = A[idx] cooA = F.COOSparseTensor( A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values ) A2 = A * idx out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt) out1 = torch.matmul(A2, B.half()) out3 = F.spmm_coo_very_sparse(cooA, CBt.half()) out3 = out3 * statsBt.half() / 127 values, counts = torch.unique(cooA.rowidx, return_counts=True) offset = counts.cumsum(0).int() max_count, max_idx = torch.sort(counts, descending=True) print(torch.median(max_count.float())) torch.testing.assert_allclose(out2, out3, rtol=0.05, atol=0.001) p = 200 / (2048 * 12288 * 4) n = out1.numel() count = math.ceil(p * n) assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count) # torch.cuda.synchronize() # t0 = time.time() # for i in range(100): # out2 = F.spmm_coo_very_sparse(cooA, B) # torch.cuda.synchronize() # print('fp16', time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = F.spmm_coo(cooA, B) torch.cuda.synchronize() print("cusparse fp16", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = F.spmm_coo_very_sparse(cooA, CBt) torch.cuda.synchronize() print("int8", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt) torch.cuda.synchronize() print("int8+dequant", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out2 = torch.matmul(A, B) torch.cuda.synchronize() print("matmul", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out1 = bnb.matmul(A, Bt) out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt) out = out1 + out2 torch.cuda.synchronize() print("sparse+ matmul", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out1 = bnb.matmul(A, Bt) torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1) torch.cuda.synchronize() print("partial matmul", time.time() - t0) torch.cuda.synchronize() t0 = time.time() for i in range(100): out1 = bnb.matmul(A, Bt) torch.cuda.synchronize() print("partial matmul", time.time() - t0) batch_size = 1 seqdim = 1 values = [] values.append((batch_size, seqdim, 768, 4 * 768)) # values.append((batch_size, seqdim, 1024, 4*1024)) # values.append((batch_size, seqdim, 1536, 4*1536)) # values.append((batch_size, seqdim, 2048, 4*2048)) # values.append((batch_size, seqdim, 2560, 4*2560)) # values.append((batch_size, seqdim, 4096, 4*4096)) # values.append((batch_size, seqdim, 5140, 4*5140)) #values.append((batch_size, seqdim, 12288, 4*12288)) names = [ "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names) def test_bench_matmul(batch, seq, model, hidden): iters = 128 formatB = F.get_special_format_str() A = torch.randn(batch, seq, model, device="cuda").half() B = torch.empty(hidden, model, dtype=torch.float16, device="cuda") torch.nn.init.xavier_uniform_(B) linear8bit = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half() linear8bit.eval() outliers = torch.randint(0, model, size=(5,)).cuda() A[:, :, outliers] = 8.0 linearMixedBit = ( bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half() ) linearMixedBit.eval() # warmup for i in range(iters): torch.matmul(A, B.t()) torch.cuda.synchronize() print("") torch.cuda.synchronize() t0 = time.time() for i in range(iters): torch.matmul(A, B.t()) torch.cuda.synchronize() print( f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul(A, B) torch.cuda.synchronize() print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") torch.cuda.synchronize() t0 = time.time() for i in range(iters): bnb.matmul(A, B, threshold=6.0) torch.cuda.synchronize() print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0) C32A, SA = F.transform(CA, "col32") CB, CBt, SCB, SCBt, coo_tensorB = F.double_quant(B) CxB, SB = F.transform(CB, to_order=formatB) torch.cuda.synchronize() t0 = time.time() for i in range(iters): out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) torch.cuda.synchronize() print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") BA, statsB = F.vectorwise_quant(B, dim=1) CxB, SB = F.nvidia_transform(CB, to_order=formatB) torch.cuda.synchronize() t0 = time.time() for i in range(iters): A2 = A.view(-1, A.shape[-1]).contiguous() CA, statsA = F.vectorwise_quant(A2, dim=1) C32A, SA = F.nvidia_transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32) F.vectorwise_mm_dequant(Cout, statsA, statsB.t()) torch.cuda.synchronize() #print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear") CxB, SB = F.nvidia_transform(CB, to_order=formatB) torch.cuda.synchronize() t0 = time.time() for i in range(iters): A2 = A.view(-1, A.shape[-1]).contiguous() CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear") C32A, SA = F.nvidia_transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB) Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32) out = Cout * statsB * statsA * (1.0 / (127 * 127)) torch.cuda.synchronize() #print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s") linear8bit(A) torch.cuda.synchronize() t0 = time.time() for i in range(iters): linear8bit(A) torch.cuda.synchronize() print( f"bnb linear8bitlt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) linearMixedBit(A) torch.cuda.synchronize() t0 = time.time() for i in range(iters): linearMixedBit(A) torch.cuda.synchronize() print( f"bnb linear8bitlt with threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s" ) def test_zeropoint(): def quant_zp(x): dtype = x.dtype x = x.float() dyna = x.max() - x.min() if dyna == 0: dyna = 1 qx = 254.0 / dyna minx = x.min() # zpx = torch.round(minx* qx) # zpx = 127 - torch.round(x.max()* qx) zpx = torch.round(x.min() * qx) - 127 x = (qx * x) + zpx return x, qx, zpx batch = 2 seq = 512 model = 1024 hidden = 4 * model A = torch.randn(batch * seq, model, device="cuda").half() * 0.1 B = torch.randn(model, hidden, device="cuda").half() * 0.1 C0 = torch.matmul(A, B) # A, SA = F.vectorwise_quant(A, quant_type='linear') # B, SB = F.vectorwise_quant(B, quant_type='linear') A = A.float() B = B.float() C1 = torch.matmul(A, B) C3 = bnb.matmul(A.half(), B.t().contiguous().half()) zp = 1 # C2 = torch.matmul(A-zp, B) # C2 += B.sum(0).view(1, -1)*zp C2 = torch.matmul(A, B - zp) C2 -= A.sum(1).view(-1, 1) * zp ca, cqa, cza = quant_zp(A) print(ca.min(), ca.max()) print((ca - cza).min(), (ca - cza).max()) zp = 1 scale = 2.0 C5 = torch.matmul((A * scale) - zp, B) C5 += B.sum(0) * zp C5 /= scale CA, qa, zpa = quant_zp(A) C4 = torch.matmul(CA, B) C4 -= B.sum(0) * zpa C4 /= qa zpb = 1 zpa = 1 qa = 2 qb = 2 C6 = torch.matmul((A * qa) + zpa, (B * qb) + zpb) C6 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb) C6 -= zpa * zpb * A.shape[1] C6 /= qa * qb CA, qa, zpa = quant_zp(A) CB, qb, zpb = quant_zp(B) C7 = torch.matmul(CA, CB) C7 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb) C7 -= zpa * zpb * A.shape[1] C7 /= qa * qb print("") # print(C0.flatten()[:10]) print(C1.flatten()[:10]) print(C2.flatten()[:10]) print(C3.flatten()[:10]) print(C5.flatten()[:10]) print(C6.flatten()[:10]) print(C7.flatten()[:10]) err1 = torch.abs(C1 - C2).mean().item() err2 = torch.abs(C1 - C3).mean().item() err3 = torch.abs(C1 - C4).mean().item() err4 = torch.abs(C1 - C5).mean().item() err5 = torch.abs(C1 - C6).mean().item() err6 = torch.abs(C1 - C7).mean().item() print(err1, err2, err3, err4, err5, err6) def test_extract_outliers(): for i in range(k): shapeA = (4096, 4096 * 4) idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda() # idx = torch.Tensor([0]).int().cuda() A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8) outliers1 = A[:, idx.long()] CA, SA = F.transform(A, "col_turing") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() torch.testing.assert_allclose(outliers1, outliers2) CA, SA = F.transform(A, "col_ampere") outliers2 = F.extract_outliers(CA, SA, idx) assert outliers2.shape[0] == shapeA[0] assert outliers2.shape[1] == idx.numel() torch.testing.assert_allclose(outliers1, outliers2) def test_blockwise_cpu_large(): diffs = [] reldiffs = [] batch = 128 seq = 128 for hidden in [128]:#, 14336]: for blocksize in [4096, 16384]: for i in range(2): A1 = torch.randn(batch, seq, hidden, device='cpu') t0 = time.time() C, S = F.quantize_blockwise(A1, blocksize=blocksize) A2 = F.dequantize_blockwise(C, S, blocksize=blocksize) print(time.time() - t0) diff = torch.abs(A1 - A2) reldiff = diff / torch.abs(A1 + 1e-8) diffs.append(diff.mean().item()) reldiffs.append(reldiff.mean().item()) assert diffs[-1] < 0.011 # print(sum(diffs)/len(diffs)) # print(sum(reldiffs)/len(reldiffs)) def test_fp8_quant(): for e_bits in range(1, 7): p_bits = 7-e_bits code = F.create_fp8_map(True, e_bits, p_bits).cuda() print(e_bits, p_bits) abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1, code=code) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(sum(abserr)/len(abserr)) #print(sum(relerr)/len(relerr)) abserr = [] relerr = [] for i in range(100): A1 = torch.rand(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1, code=code) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(sum(abserr)/len(abserr)) #print(sum(relerr)/len(relerr)) abserr = [] relerr = [] for i in range(100): A1 = torch.randn(1024, 1024, device="cuda") C, SC = F.quantize_blockwise(A1) A2 = F.dequantize_blockwise(C, SC) diff = torch.abs(A1 - A2) reldiff = diff/torch.abs(A1+1e-8) abserr.append(diff.mean().item()) relerr.append(reldiff.mean().item()) #assert diff < 0.0075 #print(3, sum(abserr)/len(abserr)) #print(3, sum(relerr)/len(relerr)) def test_few_bit_quant(): #print('') for bits in range(2, 9): #print('='*30, bits, '='*30) for method in ['linear', 'fp8', 'dynamic', 'quantile']: abserrs = [] relerrs = [] code = None if method == 'linear': code = F.create_linear_map(True, total_bits=bits).cuda() elif method == 'fp8': ebits = math.ceil(bits/2) pbits = bits-ebits-1 code = F.create_fp8_map(True, ebits, pbits, bits).cuda() elif method == 'dynamic': code = F.create_dynamic_map(True, bits-0, bits).cuda() elif method == 'quantile': values = torch.randn(2048, 2048, device='cuda') code = F.create_quantile_map(values, bits).cuda() # for some data types we have no zero # for some data types we have one zero # for some data types we have two zeros assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}' #print(method, (code==0).sum()) assert code.numel() == 256 for i in range(10): values = torch.randn(1, 32, device='cuda') values /= values.abs().max() #values[values.abs() < 1e-6] += 1e-5 q1 = [] v1 = [] for v in values[0]: idx = torch.abs(v-code).argmin() q1.append(idx.item()) v1.append(code[idx].item()) q1 = torch.Tensor(q1).cuda() v1 = torch.Tensor(v1).cuda() q2, S2 = F.quantize_blockwise(values, code=code) v2 = F.dequantize_blockwise(q2, S2) idx = torch.isclose(q1.int(), q2.int()) err2 = torch.abs(v2-values) abserrs.append(err2.mean().item()) relerrs.append((err2/(1e-10+values).abs()).mean().item()) if idx.sum(): # some weird cases err1 = torch.abs(v1-values).mean() #assert err2.mean() <= err1 else: torch.testing.assert_allclose(q1, q2) #print(method, 'abserr:', sum(abserrs)/len(abserrs), 'relerr:', sum(relerrs)/len(relerrs)) #assert False def test_kbit_quantile_estimation(): for i in range(100): data = torch.randn(1024, 1024, device='cuda') for bits in range(2, 9): p = np.linspace(1.3e-4, 1-1.3e-4, 2**bits) val1 = torch.Tensor(norm.ppf(p)).cuda() val2 = F.estimate_quantiles(data, offset=0, num_quantiles=2**bits) err = torch.abs(val1-val2).mean() assert err < 0.038 for i in range(100): data = torch.randn(1024, 1024, device='cuda') for bits in range(2, 4): total_values = 2**bits-1 p = np.linspace(0, 1, 2*total_values+1) idx = np.arange(1, 2*total_values+1, 2) p = p[idx] offset = 1/(2*total_values) p = np.linspace(offset, 1-offset, total_values) val1 = torch.Tensor(norm.ppf(p)).cuda() val2 = F.estimate_quantiles(data, num_quantiles=2**bits-1) err = torch.abs(val1-val2).mean() assert err < 0.035 def test_bench_dequantization(): a = torch.rand(1024, 1024, device='cuda').half() qa, SA = F.quantize_blockwise(a) max_theoretical_mu = 1024*1024*2/1024**3/672*1000*1000 #print(max_theoretical_mu) torch.cuda.synchronize() t0 = time.time() for i in range(100): F.dequantize_blockwise(qa, SA, blocksize=2048) torch.cuda.synchronize() #print((time.time()-t0)/1e6)
bitsandbytes-main
tests/test_functional.py
import ctypes import os import shutil import time import uuid from itertools import product from os.path import join import pytest from lion_pytorch import Lion import torch import bitsandbytes as bnb import bitsandbytes.functional as F # import apex k = 20 def get_temp_dir(): path = f"/tmp/autoswap/{str(uuid.uuid4())}" os.makedirs(path, exist_ok=True) return path def rm_path(path): shutil.rmtree(path) str2optimizers = {} str2optimizers["adam_pytorch"] = (None, torch.optim.Adam, bnb.optim.Adam) # str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam) # str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam) str2optimizers["lion_pytorch"] = (None, Lion, bnb.optim.Lion) str2optimizers["momentum_pytorch"] = ( None, lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), bnb.optim.Adam, ) str2optimizers["adam"] = (torch.optim.Adam, bnb.optim.Adam) # str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam) str2optimizers["lion"] = (Lion, bnb.optim.Lion) str2optimizers["momentum"] = ( lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["lars"] = ( lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS(pxx, 0.01, 0.9), ) str2optimizers["rmsprop"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["adam8bit"] = ( torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False), ) str2optimizers["lion8bit"] = ( Lion, lambda pxx: bnb.optim.Lion8bit(pxx, block_wise=False), ) str2optimizers["momentum8bit"] = ( lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["rmsprop8bit"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False), ) str2optimizers["lars8bit"] = ( lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS8bit(pxx, 0.01, 0.9), ) str2optimizers["adam8bit_blockwise"] = ( torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True), ) str2optimizers["lion8bit_blockwise"] = ( Lion, lambda pxx: bnb.optim.Lion8bit(pxx, block_wise=True), ) str2optimizers["momentum8bit_blockwise"] = ( lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True), ) str2optimizers["rmsprop8bit_blockwise"] = ( lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True), ) str2statenames = {} str2statenames["adam"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")] str2statenames["lion"] = [("exp_avg", "state1")] str2statenames["momentum"] = [("momentum_buffer", "state1")] str2statenames["lars"] = [("momentum_buffer", "state1")] str2statenames["lamb"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")] str2statenames["rmsprop"] = [("square_avg", "state1")] str2statenames["adam8bit"] = [ ("exp_avg", "state1", "qmap1", "max1"), ("exp_avg_sq", "state2", "qmap2", "max2"), ] str2statenames["lion8bit"] = [ ("exp_avg", "state1", "qmap1", "max1") ] str2statenames["lamb8bit"] = [ ("exp_avg", "state1", "qmap1", "max1"), ("exp_avg_sq", "state2", "qmap2", "max2"), ] str2statenames["adam8bit_blockwise"] = [ ("exp_avg", "state1", "qmap1", "absmax1"), ("exp_avg_sq", "state2", "qmap2", "absmax2"), ] str2statenames["lion8bit_blockwise"] = [ ("exp_avg", "state1", "qmap1", "absmax1") ] str2statenames["momentum8bit"] = [ ("momentum_buffer", "state1", "qmap1", "max1") ] str2statenames["momentum8bit_blockwise"] = [ ("momentum_buffer", "state1", "qmap1", "absmax1") ] str2statenames["lars8bit"] = [("momentum_buffer", "state1", "qmap1", "max1")] str2statenames["rmsprop8bit"] = [("square_avg", "state1", "qmap1", "max1")] str2statenames["rmsprop8bit_blockwise"] = [ ("square_avg", "state1", "qmap1", "absmax1") ] dim1 = [1024] dim2 = [32, 1024, 4097, 1] gtype = [torch.float32, torch.float16] optimizer_names = ["adam", "momentum", "rmsprop", "lars", "lion"] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer32bit(dim1, dim2, gtype, optim_name): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 p2 = p1.clone() p1 = p1.float() torch_optimizer = str2optimizers[optim_name][0]([p1]) bnb_optimizer = str2optimizers[optim_name][1]([p2]) if gtype == torch.float32: atol, rtol = 1e-6, 1e-5 else: atol, rtol = 1e-4, 1e-3 for i in range(k): g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g.clone().float() p2.grad = g.clone() bnb_optimizer.step() torch_optimizer.step() for name1, name2 in str2statenames[optim_name]: torch.testing.assert_allclose( torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol, ) torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol) if i % (k // 5) == 0 and i > 0: path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol) for name1, name2 in str2statenames[optim_name]: torch.testing.assert_allclose( torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol, ) if gtype == torch.float16: # the adam buffers should also be close because they are 32-bit # but the paramters can diverge because they are 16-bit # the difference grow larger and larger with each update # --> copy the state to keep weights close p1.data = p1.data.half().float() p2.copy_(p1.data) torch.testing.assert_allclose(p1.half(), p2) if optim_name in ["lars", "lamb"]: assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0 dim1 = [1024] dim2 = [32, 1024, 4097] gtype = [torch.float32, torch.float16] values = list(product(dim1, dim2, gtype)) names = ["dim1_{}_dim2_{}_gtype_{}".format(*vals) for vals in values] @pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names) def test_global_config(dim1, dim2, gtype): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 p2 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 p3 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 mask = torch.rand_like(p2) < 0.1 beta1 = 0.9 beta2 = 0.999 lr = 0.001 eps = 1e-8 bnb.optim.GlobalOptimManager.get_instance().initialize() bnb.optim.GlobalOptimManager.get_instance().override_config( p3, "optim_bits", 8 ) bnb.optim.GlobalOptimManager.get_instance().register_parameters( [p1, p2, p3] ) p1 = p1.cuda() p2 = p2.cuda() p3 = p3.cuda() adam2 = bnb.optim.Adam([p1, p2, p3], lr, (beta1, beta2), eps) if gtype == torch.float32: atol, rtol = 1e-6, 1e-5 else: atol, rtol = 1e-4, 1e-3 for i in range(50): g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001 g2 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001 g3 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001 p1.grad = g1 p2.grad = g2 p3.grad = g3 adam2.step() assert adam2.state[p3]["state1"].dtype == torch.uint8 assert adam2.state[p3]["state2"].dtype == torch.uint8 dim1 = [1024] dim2 = [32, 1024, 4097] gtype = [torch.float32, torch.float16] optimizer_names = [ "adam8bit", "lion8bit", "momentum8bit", "rmsprop8bit", "adam8bit_blockwise", "lion8bit_blockwise", "lars8bit", "momentum8bit_blockwise", "rmsprop8bit_blockwise", ] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_optimizer8bit(dim1, dim2, gtype, optim_name): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 p2 = p1.clone() p1 = p1.float() blocksize = 2048 torch_optimizer = str2optimizers[optim_name][0]([p1]) bnb_optimizer = str2optimizers[optim_name][1]([p2]) if gtype == torch.float32: atol, rtol = 3e-3, 1e-3 patol, prtol = 1e-5, 1e-3 else: atol, rtol = 3e-3, 1e-3 patol, prtol = 1e-5, 1e-3 errors = [] relerrors = [] for i in range(50): g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g.clone().float() p2.grad = g.clone() bnb_optimizer.step() torch_optimizer.step() torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol) dequant_states = [] for name1, name2, qmap, max_val in str2statenames[optim_name]: # print(bnb_optimizer.state[p2][max_val], name1) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol ) == 0 ) assert num_not_close.sum().item() < 20 dequant_states.append(s1.clone()) err = torch.abs(p1 - p2) relerr = err / torch.abs(p1) assert err.mean() < 0.0001 assert relerr.mean() < 0.001 errors.append(err.mean().item()) relerrors.append(relerr.mean().item()) if i % 10 == 0 and i > 0: for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): s1cpy = s.clone() raws1cpy = bnb_optimizer.state[p2][name2].clone() qmap1 = bnb_optimizer.state[p2][qmap].clone() path = get_temp_dir() torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt")) del bnb_optimizer bnb_optimizer = None bnb_optimizer = str2optimizers[optim_name][1]([p2]) bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt"))) rm_path(path) torch.testing.assert_allclose( raws1cpy, bnb_optimizer.state[p2][name2] ) torch.testing.assert_allclose( qmap1, bnb_optimizer.state[p2][qmap] ) if "blockwise" in optim_name: s1 = F.dequantize_blockwise( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize, ) else: s1 = F.dequantize( code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], ) torch.testing.assert_allclose(s1cpy, s1) num_not_close = ( torch.isclose( torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol, ) == 0 ) assert num_not_close.sum().item() < 20 torch.testing.assert_allclose( p1, p2.float(), atol=patol, rtol=prtol ) # the parameters diverge quickly. Here we keep them close # together so we can test against the Adam error p1.data = p1.data.to(gtype).float() p2.copy_(p1.data) torch.testing.assert_allclose(p1.to(gtype), p2) for (name1, name2, qmap, max_val), s in zip( str2statenames[optim_name], dequant_states ): torch_optimizer.state[p1][name1].copy_(s.data) # print(sum(errors)/len(errors)) # print(sum(relerrors)/len(relerrors)) dim1 = [1024] dim2 = [32, 1024, 4097] gtype = [torch.float32] optim_bits = [32, 8] values = list(product(dim1, dim2, gtype, optim_bits)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_bits_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names) def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1 beta1 = 0.9 beta2 = 0.999 lr = 0.001 eps = 1e-8 p1 = p1.cuda() p2 = p1.clone() adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits) adam2 = bnb.optim.Adam( [p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5, ) gnorm_vec = torch.zeros(100).cuda() step = 0 for i in range(50): step += 1 g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + ( 0.01 * i ) g2 = g1.clone() p2.grad = g2 current_gnorm, clip_val, gnorm_scale = F.percentile_clipping( g1, gnorm_vec, step, 5 ) g1 = (g1.float() * gnorm_scale).to(gtype) p1.grad = g1 adam1.step() adam2.step() # gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state if optim_bits == 32: torch.testing.assert_allclose(p1, p2) torch.testing.assert_allclose( adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=5e-5, rtol=1e-4, ) torch.testing.assert_allclose( adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=5e-5, rtol=1e-4, ) elif optim_bits == 8: torch.testing.assert_allclose(p1, p2, atol=1e-4, rtol=1e-3) torch.testing.assert_allclose( adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=2, rtol=1e-3, ) torch.testing.assert_allclose( adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=2, rtol=1e-3, ) adam1.state[p1]["state1"].copy_(adam2.state[p2]["state1"]) adam1.state[p1]["state2"].copy_(adam2.state[p2]["state2"]) if i % 10 == 0 and i > 0: path = get_temp_dir() torch.save(adam2.state_dict(), join(path, "opt.pt")) del adam2 adam2 = None adam2 = bnb.optim.Adam( [p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5, ) adam2.load_state_dict(torch.load(join(path, "opt.pt"))) dim1 = [4096] dim2 = [4096] gtype = [torch.float32, torch.float16] # optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit'] # optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch'] # optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch'] # optimizer_names = ['lamb_apex', 'lamb8bit'] # optimizer_names = ['lars_apex', 'lars8bit'] optimizer_names = ["adam8bit_blockwise"] values = list(product(dim1, dim2, gtype, optimizer_names)) names = [ "dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values ] @pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names) def test_benchmark_blockwise(dim1, dim2, gtype, optim_name): if dim1 == 1 and dim2 == 1: return p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 bnb_optimizer = str2optimizers[optim_name][1]([p1]) g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01 p1.grad = g for i in range(k): if i == k // 5: # 100 iterations for burn-in torch.cuda.synchronize() t0 = time.time() bnb_optimizer.step() torch.cuda.synchronize() s = time.time() - t0 print("") params = (k - k // 5) * dim1 * dim2 print(optim_name, gtype, s / params) # assert s < 3.9
bitsandbytes-main
tests/test_optim.py
import os from typing import List, NamedTuple import pytest import bitsandbytes as bnb from bitsandbytes.cuda_setup.main import ( CUDA_RUNTIME_LIB, determine_cuda_runtime_lib_path, evaluate_cuda_setup, extract_candidate_paths, ) """ 'LD_LIBRARY_PATH': ':/mnt/D/titus/local/cuda-11.1/lib64/' 'CONDA_EXE': '/mnt/D/titus/miniconda/bin/conda' 'LESSCLOSE': '/usr/bin/lesspipe %s %s' 'OLDPWD': '/mnt/D/titus/src' 'CONDA_PREFIX': '/mnt/D/titus/miniconda/envs/8-bit' 'SSH_AUTH_SOCK': '/mnt/D/titus/.ssh/ssh-agent.tim-uw.sock' 'CONDA_PREFIX_1': '/mnt/D/titus/miniconda' 'PWD': '/mnt/D/titus/src/8-bit' 'HOME': '/mnt/D/titus' 'CONDA_PYTHON_EXE': '/mnt/D/titus/miniconda/bin/python' 'CUDA_HOME': '/mnt/D/titus/local/cuda-11.1/' 'TMUX': '/tmp/tmux-1007/default,59286,1' 'XDG_DATA_DIRS': '/usr/local/share:/usr/share:/var/lib/snapd/desktop' 'SSH_TTY': '/dev/pts/0' 'MAIL': '/var/mail/titus' 'SHELL': '/bin/bash' 'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1007/bus' 'XDG_RUNTIME_DIR': '/run/user/1007' 'PATH': '/mnt/D/titus/miniconda/envs/8-bit/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/mnt/D/titus/local/cuda-11.1/bin' 'LESSOPEN': '| /usr/bin/lesspipe %s' '_': '/mnt/D/titus/miniconda/envs/8-bit/bin/python' # any that include 'CONDA' that are not 'CONDA_PREFIX' # we search for 'CUDA_HOME': '/mnt/D/titus/local/cuda-11.1/' """ class InputAndExpectedOutput(NamedTuple): input: str output: str HAPPY_PATH__LD_LIB_TEST_PATHS: List[InputAndExpectedOutput] = [ ( f"some/other/dir:dir/with/{CUDA_RUNTIME_LIB}", f"dir/with/{CUDA_RUNTIME_LIB}", ), ( f":some/other/dir:dir/with/{CUDA_RUNTIME_LIB}", f"dir/with/{CUDA_RUNTIME_LIB}", ), ( f"some/other/dir:dir/with/{CUDA_RUNTIME_LIB}:", f"dir/with/{CUDA_RUNTIME_LIB}", ), ( f"some/other/dir::dir/with/{CUDA_RUNTIME_LIB}", f"dir/with/{CUDA_RUNTIME_LIB}", ), ( f"dir/with/{CUDA_RUNTIME_LIB}:some/other/dir", f"dir/with/{CUDA_RUNTIME_LIB}", ), ( f"dir/with/{CUDA_RUNTIME_LIB}:other/dir/libcuda.so", f"dir/with/{CUDA_RUNTIME_LIB}", ), ] @pytest.fixture(params=HAPPY_PATH__LD_LIB_TEST_PATHS) def happy_path_path_string(tmpdir, request): for path in extract_candidate_paths(request.param): test_dir.mkdir() if CUDA_RUNTIME_LIB in path: (test_input / CUDA_RUNTIME_LIB).touch() UNHAPPY_PATH__LD_LIB_TEST_PATHS = [ f"a/b/c/{CUDA_RUNTIME_LIB}:d/e/f/{CUDA_RUNTIME_LIB}", f"a/b/c/{CUDA_RUNTIME_LIB}:d/e/f/{CUDA_RUNTIME_LIB}:g/h/j/{CUDA_RUNTIME_LIB}", ] def test_full_system(): ## this only tests the cuda version and not compute capability # if CONDA_PREFIX exists, it has priority before all other env variables # but it does not contain the library directly, so we need to look at the a sub-folder version = "" if "CONDA_PREFIX" in os.environ: ls_output, err = bnb.utils.execute_and_return(f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so') major, minor, revision = (ls_output.split(" ")[-1].replace("libcudart.so.", "").split(".")) version = float(f"{major}.{minor}") if version == "" and "LD_LIBRARY_PATH" in os.environ: ld_path = os.environ["LD_LIBRARY_PATH"] paths = ld_path.split(":") version = "" for p in paths: if "cuda" in p: idx = p.rfind("cuda-") version = p[idx + 5 : idx + 5 + 4].replace("/", "") version = float(version) break assert version > 0 binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() binary_name = binary_name.replace("libbitsandbytes_cuda", "") assert binary_name.startswith(str(version).replace(".", ""))
bitsandbytes-main
tests/test_cuda_setup_evaluator.py
import bitsandbytes as bnb import pytest import torch from bitsandbytes import functional as F from bitsandbytes.autograd import get_inverse_transform_indices, undo_layout from bitsandbytes.nn.modules import Linear8bitLt # contributed by Alex Borzunov, see: # https://github.com/bigscience-workshop/petals/blob/main/tests/test_linear8bitlt.py @pytest.mark.skipif( not torch.cuda.is_available() or torch.cuda.get_device_capability() < (7, 5), reason="this test requires a turing-generation or newer GPU, see bitsandbytes docs", ) def test_layout_exact_match(): x = (torch.randn(14336 * 3, 14336) * 10).to(torch.int8).cuda() for tile_size, order in ((8, 32), "col_turing"), ((32, 32), "col_ampere"): transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device) tile_indices = get_inverse_transform_indices(transform, tile_size) cxb = transform(x) torch.cuda.synchronize() restored_x = undo_layout(cxb, tile_indices) torch.cuda.synchronize() assert restored_x.is_contiguous() assert torch.all(torch.eq(restored_x, x)) @pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU") def test_linear_no_igemmlt(): linear = torch.nn.Linear(1024, 3072) x = torch.randn(3, 1024, dtype=torch.half) linear_custom = Linear8bitLt( linear.in_features, linear.out_features, linear.bias is not None, has_fp16_weights=False, threshold=6.0, ) linear_custom.state.force_no_igemmlt = True linear_custom.weight = bnb.nn.Int8Params( linear.weight.data.clone(), requires_grad=False, has_fp16_weights=False ).to(linear.weight.dtype) linear_custom.bias = linear.bias linear = linear_custom.cuda() linear = linear.half().cuda() x_ref = x.clone().cuda().requires_grad_(True) x_ours = x.clone().cuda().requires_grad_(True) fx_ref = linear(x_ref).float() grad_proj = torch.randn_like(fx_ref) (fx_ref * grad_proj).mean().backward() fx_ours = linear_custom(x_ours).float() (fx_ours * grad_proj).mean().backward() assert torch.allclose(fx_ref, fx_ours, atol=0.02) assert torch.allclose(x_ref.grad, x_ours.grad, atol=0.01) assert not linear_custom.state.has_fp16_weights assert linear_custom.state.CB is not None assert linear_custom.state.CxB is None
bitsandbytes-main
tests/test_linear8bitlt.py
from itertools import permutations, product import pytest import torch import bitsandbytes as bnb n = 1 k = 25 dim1 = torch.randint(16, 64, size=(n,)).tolist() dim2 = torch.randint(32, 96, size=(n,)).tolist() dim3 = torch.randint(32, 96, size=(n,)).tolist() dim4 = torch.randint(32, 96, size=(n,)).tolist() funcs = [(torch.bmm, bnb.bmm_cublas), (torch.matmul, bnb.matmul_cublas)] str_funcs = ["bmm", "matmul"] req_grad = [(False, False), (True, False), (True, True), (False, True)] req_grad_str = ["FF", "TF", "TT", "FT"] transpose = [(False, False), (False, True), (True, True), (True, False)] str_transpose = ["FF", "FT", "TT", "TF"] dtype = [torch.float32, torch.float16] values = list( product(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose) ) str_values = list( product( dim1, dim2, dim3, dim4, str_funcs, dtype, req_grad_str, str_transpose ) ) names = [ "dim1_{}_dim2_{}_dim3_{}_dim4_{}_func_{}_dtype_{}_requires_grad_{}_transpose_{}".format( *vals ) for vals in str_values ] @pytest.mark.parametrize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names, ) def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose): if not torch.cuda.is_available(): pytest.skip('No GPU found.') if dim2 > 0: dim2 = dim2 - (dim2 % 16) dim3 = dim3 - (dim3 % 16) dim4 = dim4 - (dim4 % 16) for i in range(k): # normal multiply if funcs[0] in [torch.mm, torch.matmul]: dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2) dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3) A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0]) B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1]) target = torch.randn( size=(dim2, dim4), device="cuda", requires_grad=req_grad[1] ) torch.nn.init.xavier_uniform_(B) if not transpose[0] and not transpose[1]: out_torch = funcs[0](A, B) out_bnb = funcs[1](A, B) elif not transpose[0] and transpose[1]: out_torch = funcs[0](A, B.t()) out_bnb = funcs[1](A, B.t()) elif transpose[0] and not transpose[1]: out_torch = funcs[0](A.t(), B) out_bnb = funcs[1](A.t(), B) elif transpose[0] and transpose[1]: out_torch = funcs[0](A.t(), B.t()) out_bnb = funcs[1](A.t(), B.t()) n = out_bnb.numel() idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1) assert (idx == 0).sum().item() < n * 0.0175 idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2) assert (idx == 0).sum().item() < n * 0.001 if any(req_grad): out_bnb.data.copy_(out_torch) torch.cuda.synchronize() loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean() loss_bnb.backward() gradA1 = A.grad gradB1 = B.grad A.grad = None B.grad = None loss_torch = torch.nn.functional.mse_loss( out_torch, target ).mean() loss_torch.backward() gradA2 = A.grad gradB2 = B.grad A.grad = None B.grad = None if req_grad[0]: torch.testing.assert_allclose( gradA1, gradA2, atol=0.015, rtol=0.1 ) if req_grad[1]: n = gradB1.numel() idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3) assert (idx == 0).sum().item() < n * 0.1 idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3) assert (idx == 0).sum().item() < n * 0.02 torch.testing.assert_allclose( gradB1, gradB2, atol=0.18, rtol=0.3 ) # batched matrix multiply if funcs[0] in [torch.bmm, torch.matmul]: A = torch.randn( size=(dim1, dim2, dim3), device="cuda", requires_grad=req_grad[0], ) B = torch.randn( size=(dim1, dim3, dim4), device="cuda", requires_grad=req_grad[1], ) target = torch.randn( size=(dim1, dim2, dim4), device="cuda", requires_grad=req_grad[1], ) torch.nn.init.xavier_uniform_(B) out_torch = funcs[0](A, B) out_bnb = funcs[1](A, B) n = out_bnb.numel() idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1) assert (idx == 0).sum().item() < n * 0.01 torch.testing.assert_allclose( out_bnb, out_torch, atol=0.027, rtol=0.2 ) if any(req_grad): out_bnb.data.copy_(out_torch) torch.cuda.synchronize() loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean() loss_bnb.backward() gradA1 = A.grad gradB1 = B.grad A.grad = None B.grad = None loss_torch = torch.nn.functional.mse_loss( out_torch, target ).mean() loss_torch.backward() gradA2 = A.grad gradB2 = B.grad A.grad = None B.grad = None if req_grad[0]: torch.testing.assert_allclose( gradA1, gradA2, atol=0.015, rtol=0.1 ) if req_grad[1]: n = gradB1.numel() idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3) assert (idx == 0).sum().item() < n * 0.1 idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3) assert (idx == 0).sum().item() < n * 0.02 if funcs[0] in [torch.matmul]: dim1 = dim1 - (dim1 % 16) A = torch.randn( size=(dim1, dim2, dim3), device="cuda", requires_grad=req_grad[0], ) dimB = (dim4, dim3) if transpose[1] else (dim3, dim4) B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1]) target = torch.randn( size=(dim1, dim2, dim4), device="cuda", requires_grad=req_grad[1], ) torch.nn.init.xavier_uniform_(B) if transpose[1]: out_torch = funcs[0](A, B.t()) out_bnb = funcs[1](A, B.t()) else: out_torch = funcs[0](A, B) out_bnb = funcs[1](A, B) n = out_bnb.numel() idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1) assert (idx == 0).sum().item() < n * 0.0175 idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2) assert (idx == 0).sum().item() < n * 0.001 if any(req_grad): out_bnb.data.copy_(out_torch) torch.cuda.synchronize() loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean() loss_bnb.backward() gradA1 = A.grad gradB1 = B.grad A.grad = None B.grad = None loss_torch = torch.nn.functional.mse_loss( out_torch, target ).mean() loss_torch.backward() gradA2 = A.grad gradB2 = B.grad A.grad = None B.grad = None if req_grad[0]: torch.testing.assert_allclose( gradA1, gradA2, atol=0.015, rtol=0.1 ) if req_grad[1]: n = gradB1.numel() idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3) assert (idx == 0).sum().item() < n * 0.1 idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3) assert (idx == 0).sum().item() < n * 0.02 n = 1 k = 3 dim1 = torch.randint(16, 64, size=(n,)).tolist() dim2 = torch.randint(32, 96, size=(n,)).tolist() dim3 = torch.randint(32, 96, size=(n,)).tolist() dim4 = torch.randint(32, 96, size=(n,)).tolist() dim2.append(0) decomp = [0.0, 6.0] funcs = [(torch.matmul, bnb.matmul)] str_funcs = ["matmul"] req_grad = [(False, False), (True, False), (True, True), (False, True)] req_grad = list(product([True, False], repeat=3)) req_grad_str = [] for c in req_grad: strval = '' for v in c: if v == True: strval += 'T' else: strval += 'F' req_grad_str.append(strval) transpose = [(False, True), (False, False)] str_transpose = ["NT", "NN"] dtype = [torch.float16, torch.bfloat16, torch.float32] has_fp16_weights = [True, False] has_bias = [True, False] values = list( product( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias ) ) str_values = list( product( dim1, dim2, dim3, dim4, str_funcs, dtype, req_grad_str, str_transpose, decomp, has_fp16_weights, has_bias ) ) names = ["dim1_{}_dim2_{}_dim3_{}_dim4_{}_func_{}_dtype_{}_requires_grad_{}_transpose_{}_decomp_{}_has_fp16_weights_{}_has_bias_{}".format(*vals) for vals in str_values] @pytest.mark.parametrize( "dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias", values, ids=names, ) def test_matmullt( dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights, has_bias ): if not torch.cuda.is_available(): pytest.skip('No GPU found.') dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2) dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3) outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda") if has_bias == False: req_grad = list(req_grad) req_grad[2] = False for i in range(k): # normal multiply if funcs[0] in [torch.mm, torch.matmul]: A = torch.randn( size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype ) if decomp == 6.0: with torch.no_grad(): A[:, outlier_dim] = 6.0 B = torch.randn( size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype ) target = torch.randn( size=(dim2, dim4), device="cuda", requires_grad=req_grad[1], dtype=dtype, ) bias = None bias2 = None if has_bias: bias = torch.randn(dim4, device='cuda', dtype=dtype, requires_grad=req_grad[2]) bias2 = bias.clone() torch.nn.init.xavier_uniform_(B) B2 = B.clone() state = bnb.MatmulLtState() state.threshold = decomp state.has_fp16_weights = has_fp16_weights if not has_fp16_weights: if not transpose[0] and not transpose[1]: B2 = B2.t().contiguous() ( state.CB, CBt, state.SCB, SCBt, coo_tensorB, ) = bnb.functional.double_quant(B2.to(torch.float16)) B2 = state.CB if not transpose[0] and transpose[1]: out_torch = funcs[0](A, B.t()) out_bnb = funcs[1](A, B2, state=state, bias=bias2) elif not transpose[0] and not transpose[1]: out_torch = funcs[0](A, B) out_bnb = funcs[1](A, B2.t(), state=state, bias=bias2) if has_bias: out_torch += bias assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}" n = out_bnb.numel() err = torch.abs(out_bnb - out_torch).mean().item() # print(f'abs error {err:.4f}') idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1) assert (idx == 0).sum().item() <= n * (0.0175 if dtype == torch.float16 else 0.021) idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2) assert (idx == 0).sum().item() <= n * 0.001 if has_fp16_weights: if any(req_grad): out_bnb.data.copy_(out_torch) torch.cuda.synchronize() loss_bnb = torch.nn.functional.mse_loss( out_bnb, target ).mean() loss_bnb.backward() gradA1 = A.grad gradB1 = B.grad A.grad = None B.grad = None if has_bias: gradBias1 = bias.grad bias.grad = None loss_torch = torch.nn.functional.mse_loss( out_torch, target ).mean() loss_torch.backward() gradA2 = A.grad gradB2 = B.grad A.grad = None B.grad = None if has_bias: gradBias2 = bias.grad bias.grad = None if req_grad[0]: torch.testing.assert_allclose( gradA1, gradA2, atol=0.015, rtol=0.1 ) if req_grad[1]: n = gradB1.numel() if dim2 > 0: assert torch.abs(gradB1).sum() > 0.0 assert torch.abs(gradB2).sum() > 0.0 else: assert torch.abs(gradB1).sum() == 0.0 assert torch.abs(gradB2).sum() == 0.0 idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3) assert (idx == 0).sum().item() <= n * 0.1 idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3) assert (idx == 0).sum().item() <= n * 0.02 torch.testing.assert_allclose( gradB1, gradB2, atol=0.18, rtol=0.3 ) if req_grad[2]: torch.testing.assert_allclose(gradBias1, gradBias2)
bitsandbytes-main
tests/test_autograd.py
from itertools import product import pytest import torch from torch import nn import bitsandbytes as bnb class MockArgs: def __init__(self, initial_data): for key in initial_data: setattr(self, key, initial_data[key]) class MLP8bit(torch.nn.Module): def __init__(self, dim1, dim2, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0): super().__init__() self.fc1 = bnb.nn.Linear8bitLt( dim1, dim2, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward, threshold=threshold ) self.fc2 = bnb.nn.Linear8bitLt( dim2, dim1, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward, threshold=threshold ) def forward(self, x): x = self.fc1(x) x = self.fc2(x) return x def get_args(): args = MockArgs([]) args.quant_type = "vector" args.use_8bit_training = "full" args.clip_freq = 9999 return args def assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10): idx = torch.isclose(a, b, rtol, atol) sumval = (idx == 0).sum().item() if sumval > count: print(f"Too many values not close: assert {sumval} < {count}") torch.testing.assert_allclose(a, b, rtol, atol) class LinearFunction(torch.autograd.Function): @staticmethod def get_8bit_linear_trimmed(x, stochastic=False, trim_value=3.0): round_func = ( LinearFunction.round_stoachastic if stochastic else torch.round ) norm = math.sqrt(math.pi) / math.sqrt(2.0) # std = torch.abs(x).mean()*norm std = torch.std(x) max1 = std * trim_value x = x / max1 * 127 x = round_func(x) x[x > 127] = 127 x[x < -127] = -127 x = x / 127 * max1 return x def quant(x, quant_type, dim=1): if quant_type == "linear": max1 = torch.abs(x).max().float() xq = torch.round(x / max1 * 127).to(torch.int8) return xq, max1 elif quant_type == "vector": max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True) xq = torch.round(x / max1 * 127).to(torch.int8) return xq, max1 elif quant_type == "min-max": maxA = torch.amax(x, dim=dim, keepdim=True).float() minA = torch.amin(x, dim=dim, keepdim=True).float() scale = (maxA - minA) / 2.0 xq = torch.round(127 * (x - minA - scale) / scale).to(torch.int8) return xq, (minA.float(), scale.float()) else: return None def dequant(xq, S1, S2, dtype, quant_type): if quant_type == "linear": norm = S1 * S2 / (127 * 127) # double cast needed to prevent overflows return (xq.float() * norm).to(dtype) elif quant_type == "vector": x = xq.float() if len(xq.shape) == 2 and len(S1.shape) == 3: S1 = S1.squeeze(0) if len(xq.shape) == 2 and len(S2.shape) == 3: S2 = S2.squeeze(0) # print(x.shape, S1.shape, S2.shape) if len(S1.shape) == 2: x *= S1.t() / 127 else: x *= S1 / 127 x *= S2 / 127 return x.to(dtype) else: return None def dequant_min_max(xq, A, B, SA, SB, dtype): offset = B.float().t().sum(0) * (SA[0] + SA[1]) x = xq.float() if len(xq.shape) == 2 and len(SB.shape) == 3: SB = SB.squeeze(0) if len(xq.shape) == 2 and len(SA.shape) == 3: SA = SA.squeeze(0) if len(SB.shape) == 2: x *= SB.t() / 127 else: x *= SB / 127 x *= SA[1] / 127 x += offset return x.to(dtype) def get_8bit_linear(x, stochastic=False): round_func = ( LinearFunction.round_stoachastic if stochastic else torch.round ) max1 = torch.abs(x).max() x = x / max1 * 127 x = round_func(x) / 127 * max1 # x = torch.round(x)/128*max1 return x @staticmethod def get_8bit_vector_wise(x, dim, stochastic=False): round_func = ( LinearFunction.round_stoachastic if stochastic else torch.round ) max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True) max1[max1 == 0] = 1.0 x = (x * 127) / max1 x = round_func(x) / 127 * max1 return x @staticmethod def round_stoachastic(x): sign = torch.sign(x) absx = torch.abs(x) decimal = absx - torch.floor(absx) rdm = torch.rand_like(decimal) return sign * (torch.floor(absx) + (rdm < decimal).to(x.dtype)) @staticmethod def fake_8bit_storage(w, exponent_bits): code = bnb.functional.create_dynamic_map(n=exponent_bits).to(w.device) absmax, C = bnb.functional.quantize_blockwise(w.data, code=code) out = bnb.functional.dequantize_blockwise(absmax, C, code) out = out.half() w.copy_(out) return out @staticmethod def fake_8bit_storage_quantile(w, args): code = bnb.functional.estimate_quantiles(w.data, offset=args.offset) # C = bnb.functional.quantize_no_absmax(code, w) # out = bnb.functional.dequantize_no_absmax(code, C, out=w.data) # print(out) # out = out.half() code /= torch.max(torch.abs(code)) absmax, C = bnb.functional.quantize_blockwise(w.data, code=code) out = bnb.functional.dequantize_blockwise(absmax, C, code) out = out.half() w.copy_(out) return out @staticmethod def fake_8bit_storage_stoachstic(w): rand = torch.rand(1024, device=w.device) absmax, C = bnb.functional.quantize_blockwise(w.data, rand=rand) out = bnb.functional.dequantize_blockwise(absmax, C) out = out.half() w.copy_(out) return out @staticmethod def fake_8bit_storage_with_max(w, topk=8): blocked_w = einops.rearrange(w.flatten(), "(h b) -> h b", b=256) max_val, idx = torch.sort(torch.abs(blocked_w), dim=1, descending=True) idx = idx[:, :topk] max_val = max_val[:, :topk] mask = torch.zeros_like(blocked_w) mask.scatter_(dim=1, index=idx, src=torch.ones_like(max_val)) mask = mask.bool() # 1. zero out max values # 2. quantize + dequantize # 3. write back max values # 4. copy matrix back to weight values = blocked_w[mask] blocked_w[mask] = 0 code = bnb.functional.create_dynamic_map() code = code.to(w.device) absmax, C = bnb.functional.quantize_blockwise(blocked_w.data) bnb.functional.dequantize_blockwise(absmax, C, out=blocked_w) blocked_w[mask] = values unblocked_w = blocked_w.flatten().view(w.shape) w.copy_(unblocked_w) return unblocked_w @staticmethod def forward(ctx, x, weight, bias=None, args=None): if args.use_8bit_training != "off": weight8, S1 = LinearFunction.quant(weight, args.quant_type, dim=1) x8, S2 = LinearFunction.quant(x, args.quant_type, dim=2) outputq = bnb.functional.igemm(x8, weight8.t()) output = LinearFunction.dequant( outputq, S1, S2, x.dtype, args.quant_type ) # if torch.rand(1) < 0.01: # output32 = torch.matmul(x, weight.t()) # err = torch.abs(output-output32).float() # relerr = err/(torch.abs(output32).float()+1e-8) # print(f'{err.mean().item():.4f}, {relerr.mean().item():.4f}', args.quant_type, 'forward', proxy) else: # output = torch.matmul(x, weight.t()) output = torch.einsum("bsi,oi->bso", x, weight) ctx.save_for_backward(x, weight, bias) ctx.args = args if bias is not None: output += bias.unsqueeze(0).expand_as(output) return output @staticmethod def backward(ctx, grad_output): x, weight, bias = ctx.saved_tensors args = ctx.args stochastic = False grad_input = grad_weight = grad_bias = None if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0) # weight and x are already 8bit # -> transform grad_output to 8-bit if args.use_8bit_training == "forward+wgrad": grad_output8, S1 = LinearFunction.quant( grad_output, args.quant_type, dim=[0, 1] ) x8, S2 = LinearFunction.quant(x, args.quant_type, dim=[0, 1]) grad_weight8 = bnb.functional.igemm(grad_output8, x8) grad_weight = LinearFunction.dequant( grad_weight8, S1, S2, grad_output.dtype, args.quant_type ) # grad_weight32 = torch.einsum('bso,bsi->oi', grad_output, x) grad_input = grad_output.matmul(weight) elif args.use_8bit_training == "full": grad_output8, S1 = LinearFunction.quant( grad_output, args.quant_type, dim=[0, 1] ) x8, S2 = LinearFunction.quant(x, args.quant_type, dim=[0, 1]) grad_weight8 = torch.zeros_like(weight, dtype=torch.int32) bnb.functional.igemm(grad_output8, x8, out=grad_weight8) grad_weight = LinearFunction.dequant( grad_weight8, S1, S2, grad_output.dtype, args.quant_type ) grad_output8, S1 = LinearFunction.quant( grad_output, args.quant_type, dim=2 ) weight8, S3 = LinearFunction.quant(weight, args.quant_type, dim=0) grad_input8 = bnb.functional.igemm(grad_output8, weight8) grad_input = LinearFunction.dequant( grad_input8, S1, S3, grad_output.dtype, args.quant_type ) else: grad_input = grad_output.matmul(weight) grad_weight = torch.einsum("bsi,bso->oi", x, grad_output) return grad_input, grad_weight, grad_bias, None class Linear8bit(nn.Module): def __init__(self, input_features, output_features, bias=True, args=None): super().__init__() self.input_features = input_features self.output_features = output_features self.args = args self.weight = nn.Parameter(torch.empty(output_features, input_features)) if bias: self.bias = nn.Parameter(torch.empty(output_features)) else: self.register_parameter("bias", None) torch.nn.init.xavier_uniform_(self.weight) if self.bias is not None: torch.nn.init.zeros_(self.bias) def forward(self, x): self.args.training = self.training return LinearFunction.apply(x, self.weight, self.bias, self.args) threshold = [0.0, 3.0] values = threshold names = [f"threshold_{vals}" for vals in values] @pytest.mark.parametrize("threshold", values, ids=names) def test_linear8bitlt_inference(threshold): l1 = bnb.nn.Linear8bitLt(32, 64, threshold=threshold).cuda().half() assert l1.weight.device.type == "cuda" assert l1.weight.dtype == torch.float16 l1.eval() for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = l1(b1) if i == 1: assert l1.state.CxB is not None def test_linear8bitlt_accumulated_gradient(): l1 = torch.nn.Sequential( *[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)] ) l2 = torch.nn.Sequential( *[torch.nn.Linear(32, 32).cuda().half() for i in range(2)] ) l2[0].weight = torch.nn.Parameter(l1[0].weight.clone()) l2[0].bias = torch.nn.Parameter(l1[0].bias.clone()) l2[1].weight = torch.nn.Parameter(l1[1].weight.clone()) l2[1].bias = torch.nn.Parameter(l1[1].bias.clone()) opt1 = bnb.optim.Adam8bit(l1.parameters(), lr=0.001) opt2 = bnb.optim.Adam8bit(l2.parameters(), lr=0.001) acc_steps = 10 for i in range(10): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = l1(b1) o2 = l2(b1) loss1 = o1.mean() loss2 = o2.mean() loss1.backward() loss2.backward() if i == 2: assert l1[0].state.CxB is not None assert l1[1].state.CxB is not None if i > 0 and i % acc_steps == 0: opt1.step() opt1.zero_grad(True) opt2.step() opt2.zero_grad(True) assert_all_approx_close( l1[0].weight, l2[0].weight, rtol=1.05, atol=0.01, count=2 ) assert_all_approx_close( l1[1].weight, l2[1].weight, rtol=1.05, atol=0.01, count=2 ) # we do this copy because otherwise we have small divergences over time that add up l1[0].weight.data.copy_(l2[0].weight.data) l1[1].weight.data.copy_(l2[1].weight.data) else: torch.testing.assert_allclose(l1[0].weight.grad, l2[0].weight.grad) torch.testing.assert_allclose(l1[1].weight.grad, l2[1].weight.grad) threshold = [0.0, 2.0] values = threshold names = [f"threshold_{vals}" for vals in values] @pytest.mark.parametrize("threshold", values, ids=names) @pytest.mark.parametrize("memory_efficient_backward", [False]) def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): l1 = ( bnb.nn.Linear8bitLt( 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward ) .cuda() .half() ) assert l1.weight.dtype == torch.int8 l1.eval() for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = l1(b1) assert o1.dtype == torch.float16 mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).cuda() assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None mlp = ( MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False) .cuda() .half() ) assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None mlp = ( MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False) .half() .cuda() ) for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 mlp = ( MLP8bit( 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward ) .half() .to("cuda") ) for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 assert mlp.fc1.weight.device.type == "cuda" assert mlp.fc2.weight.device.type == "cuda" mlp = MLP8bit( 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward ) w1, w2 = mlp.fc1.weight.clone().cuda(), mlp.fc2.weight.clone().cuda() # grab weights before quantization, mlp = mlp.cuda().half() # and this line triggers quantization for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = mlp(b1) assert o1.dtype == torch.float16 if threshold > 0: assert mlp.fc1.state.idx is not None if threshold > 0: assert mlp.fc2.state.idx is not None assert mlp.fc1.weight.dtype == torch.int8 assert mlp.fc2.weight.dtype == torch.int8 assert mlp.fc1.weight.device.type == "cuda" assert mlp.fc2.weight.device.type == "cuda" if memory_efficient_backward: b1 = torch.randn(16, 8, 32, device="cuda", requires_grad=True, dtype=torch.half) o1 = mlp(b1) assert o1.dtype == torch.float16 assert o1.requires_grad grad_proj = torch.randn_like(o1) mlp.zero_grad() (o1 * grad_proj).sum().backward() grad_ref = grad_proj.flatten(2) @ w2.half() @ w1.half() scale = grad_ref.abs().mean() torch.testing.assert_allclose(b1.grad, grad_ref, rtol=0, atol=0.05 * scale) idx = torch.isclose(b1.grad, grad_ref, atol=0.01 * scale, rtol=0.1) assert (idx == 0).sum().item() <= b1.numel() * 0.005 def test_linear8bitlt_fp32_bias(): # casts model to fp16 -> int8 automatically l1 = bnb.nn.Linear8bitLt(32, 64, has_fp16_weights=False).cuda() assert l1.weight.dtype == torch.int8 assert l1.bias.dtype == torch.float32 for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() # casts bias to fp32 o1 = l1(b1) assert l1.bias.dtype == torch.float16 # casts model to fp16 -> int8 automatically l1 = bnb.nn.Linear8bitLt(32, 64, has_fp16_weights=False, bias=False).cuda() assert l1.weight.dtype == torch.int8 assert l1.bias is None for i in range(100): b1 = torch.randn(16, 8, 32, device="cuda").half() o1 = l1(b1) assert l1.bias is None
bitsandbytes-main
tests/test_modules.py
import ctypes as ct import os import torch from pathlib import Path from warnings import warn from bitsandbytes.cuda_setup.main import CUDASetup setup = CUDASetup.get_instance() if setup.initialized != True: setup.run_cuda_setup() if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0': setup.print_log_stack() lib = setup.lib try: if lib is None and torch.cuda.is_available(): CUDASetup.get_instance().generate_instructions() CUDASetup.get_instance().print_log_stack() raise RuntimeError(''' CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs above to fix your environment! If you cannot find any issues and suspect a bug, please open an issue with detals about your environment: https://github.com/TimDettmers/bitsandbytes/issues''') lib.cadam32bit_g32 lib.get_context.restype = ct.c_void_p lib.get_cusparse.restype = ct.c_void_p COMPILED_WITH_CUDA = True except AttributeError: warn("The installed version of bitsandbytes was compiled without GPU support. " "8-bit optimizers and GPU quantization are unavailable.") COMPILED_WITH_CUDA = False
bitsandbytes-main
bitsandbytes/cextension.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from . import cuda_setup, utils from .autograd._functions import ( MatmulLtState, bmm_cublas, matmul, matmul_cublas, mm_cublas, ) from .cextension import COMPILED_WITH_CUDA from .nn import modules if COMPILED_WITH_CUDA: from .optim import adam __pdoc__ = { "libbitsandbytes": False, "optim.optimizer.Optimizer8bit": False, "optim.optimizer.MockArgs": False, } PACKAGE_GITHUB_URL = "https://github.com/TimDettmers/bitsandbytes"
bitsandbytes-main
bitsandbytes/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import ctypes as ct import itertools import operator import random import torch import itertools import math from functools import reduce # Required in Python 3 from typing import Tuple from torch import Tensor from .cextension import COMPILED_WITH_CUDA, lib # math.prod not compatible with python < 3.8 def prod(iterable): return reduce(operator.mul, iterable, 1) name2qmap = {} if COMPILED_WITH_CUDA: """C FUNCTIONS FOR OPTIMIZERS""" str2optimizer32bit = {} str2optimizer32bit["adam"] = (lib.cadam32bit_g32, lib.cadam32bit_g16) str2optimizer32bit["momentum"] = ( lib.cmomentum32bit_g32, lib.cmomentum32bit_g16, ) str2optimizer32bit["rmsprop"] = ( lib.crmsprop32bit_g32, lib.crmsprop32bit_g16, ) str2optimizer32bit["lion"] = ( lib.clion32bit_g32, lib.clion32bit_g16, ) str2optimizer32bit["adagrad"] = ( lib.cadagrad32bit_g32, lib.cadagrad32bit_g16, ) str2optimizer32bit["lars"] = ( lib.cmomentum32bit_g32, lib.cmomentum32bit_g16, ) str2optimizer32bit["lamb"] = (lib.cadam32bit_g32, lib.cadam32bit_g16) str2optimizer8bit = {} str2optimizer8bit["adam"] = ( lib.cadam_static_8bit_g32, lib.cadam_static_8bit_g16, ) str2optimizer8bit["momentum"] = ( lib.cmomentum_static_8bit_g32, lib.cmomentum_static_8bit_g16, ) str2optimizer8bit["rmsprop"] = ( lib.crmsprop_static_8bit_g32, lib.crmsprop_static_8bit_g16, ) str2optimizer8bit["lion"] = ( lib.clion_static_8bit_g32, lib.clion_static_8bit_g16, ) str2optimizer8bit["lamb"] = ( lib.cadam_static_8bit_g32, lib.cadam_static_8bit_g16, ) str2optimizer8bit["lars"] = ( lib.cmomentum_static_8bit_g32, lib.cmomentum_static_8bit_g16, ) str2optimizer8bit_blockwise = {} str2optimizer8bit_blockwise["adam"] = ( lib.cadam_8bit_blockwise_fp32, lib.cadam_8bit_blockwise_fp16, ) str2optimizer8bit_blockwise["momentum"] = ( lib.cmomentum_8bit_blockwise_fp32, lib.cmomentum_8bit_blockwise_fp16, ) str2optimizer8bit_blockwise["rmsprop"] = ( lib.crmsprop_8bit_blockwise_fp32, lib.crmsprop_8bit_blockwise_fp16, ) str2optimizer8bit_blockwise["lion"] = ( lib.clion_8bit_blockwise_fp32, lib.clion_8bit_blockwise_fp16, ) str2optimizer8bit_blockwise["adagrad"] = ( lib.cadagrad_8bit_blockwise_fp32, lib.cadagrad_8bit_blockwise_fp16, ) class CUBLAS_Context: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def initialize(self): self.context = {} # prev_device = torch.cuda.current_device() # for i in range(torch.cuda.device_count()): # torch.cuda.set_device(torch.device('cuda', i)) # self.context.append(ct.c_void_p(lib.get_context())) # torch.cuda.set_device(prev_device) @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance def get_context(self, device): if device.index not in self.context: prev_device = torch.cuda.current_device() torch.cuda.set_device(device) self.context[device.index] = ct.c_void_p(lib.get_context()) torch.cuda.set_device(prev_device) return self.context[device.index] class Cusparse_Context: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def initialize(self): self.context = ct.c_void_p(lib.get_cusparse()) @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance def create_linear_map(signed=True, total_bits=8, add_zero=True): sign = (-1.0 if signed else 0.0) total_values = 2**total_bits if add_zero or total_bits < 8: # add a zero # since we simulate less bits by having zeros in the data type, we # we need to center the quantization around zero and as such lose # a single value total_values = (2**total_bits if not signed else 2**total_bits-1) values = torch.linspace(sign, 1.0, total_values) gap = 256 - values.numel() if gap == 0: return values else: l = values.numel()//2 #return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist()) return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist()) def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8): e = exponent_bits p = precision_bits has_sign = 1 if signed else 0 assert e+p == total_bits-has_sign # the exponent is biased to 2^(e-1) -1 == 0 evalues = [] pvalues = [] for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)): evalues.append(2**val) values = [] lst = list(itertools.product([0, 1], repeat=precision_bits)) #for ev in evalues: bias = 2**(exponent_bits-1)-1 for evalue in range(2**(exponent_bits)): for bit_pattern in lst: value = (1 if evalue != 0 else 0) for i, pval in enumerate(list(bit_pattern)): value += pval*(2**-(i+1)) if evalue == 0: # subnormals value = value*2**-(bias-1) else: # normals value = value*2**-(evalue-bias-2) values.append(value) if signed: values.append(-value) assert len(values) == 2**total_bits values.sort() if total_bits < 8: gap = 256 - len(values) for i in range(gap): values.append(0) values.sort() code = torch.Tensor(values) code /= code.max() return code def create_dynamic_map(signed=True, max_exponent_bits=7, total_bits=8): """ Creates the dynamic quantiztion map. The dynamic data type is made up of a dynamic exponent and fraction. As the exponent increase from 0 to -7 the number of bits available for the fraction shrinks. This is a generalization of the dynamic type where a certain number of the bits and be reserved for the linear quantization region (the fraction). n determines the maximum number of exponent bits. For more details see (8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561] """ data = [] # these are additional items that come from the case # where all the exponent bits are zero and no # indicator bit is present non_sign_bits = total_bits - (1 if signed else 0) additional_items = 2 ** (non_sign_bits - max_exponent_bits) - 1 if not signed: additional_items = 2 * additional_items for i in range(max_exponent_bits): fraction_items = int((2 ** (i + non_sign_bits - max_exponent_bits) + 1 if signed else 2 ** (i + non_sign_bits - max_exponent_bits + 1) + 1)) boundaries = torch.linspace(0.1, 1, fraction_items) means = (boundaries[:-1] + boundaries[1:]) / 2.0 data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() if signed: data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() if additional_items > 0: boundaries = torch.linspace(0.1, 1, additional_items + 1) means = (boundaries[:-1] + boundaries[1:]) / 2.0 data += ((10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() if signed: data += (-(10 ** (-(max_exponent_bits - 1) + i)) * means).tolist() data.append(0) data.append(1.0) gap = 256 - len(data) for i in range(gap): data.append(0) data.sort() return Tensor(data) def create_quantile_map(A, total_bits=8): q = estimate_quantiles(A, num_quantiles=2**total_bits-1) q = q.tolist() q.append(0) gap = 256 - len(q) for i in range(gap): q.append(0) q.sort() q = Tensor(q) q = q/q.abs().max() return q def get_special_format_str(): if not torch.cuda.is_available(): return 'col_turing' major, _minor = torch.cuda.get_device_capability() if major <= 7: return "col_turing" if major == 8: return "col_ampere" return "col_turing" def is_on_gpu(tensors): on_gpu = True for t in tensors: if t is None: continue # NULL pointers are fine on_gpu &= t.device.type == 'cuda' return on_gpu def get_ptr(A: Tensor) -> ct.c_void_p: """ Get the ctypes pointer from a PyTorch Tensor. Parameters ---------- A : torch.tensor The PyTorch tensor. Returns ------- ctypes.c_void_p """ if A is None: return None else: return ct.c_void_p(A.data.data_ptr()) def pre_call(device): prev_device = torch.cuda.current_device() torch.cuda.set_device(device) return prev_device def post_call(prev_device): torch.cuda.set_device(prev_device) def get_transform_func(dtype, orderA, orderOut, transpose=False): name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}' if not hasattr(lib, name): print(name) raise ValueError( f"Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}" ) else: return getattr(lib, name) def get_transform_buffer( shape, dtype, device, to_order, from_order="row", transpose=False ): # init_func = torch.empty init_func = torch.zeros dims = len(shape) if dims == 2: rows = shape[0] elif dims == 3: rows = shape[0] * shape[1] cols = shape[-1] state = (shape, to_order) if transpose: # swap dims tmp = rows rows = cols cols = tmp state = (shape[::-1], to_order) if to_order == "row" or to_order == "col": return init_func(shape, dtype=dtype, device=device), state elif to_order == "col32": # blocks of 32 columns (padded) cols = 32 * ((cols + 31) // 32) return init_func((rows, cols), dtype=dtype, device=device), state elif to_order == "col_turing": # blocks of 32 columns and 8 rows cols = 32 * ((cols + 31) // 32) rows = 8 * ((rows + 7) // 8) return init_func((rows, cols), dtype=dtype, device=device), state elif to_order == "col_ampere": # blocks of 32 columns and 32 rows cols = 32 * ((cols + 31) // 32) rows = 32 * ((rows + 31) // 32) return init_func((rows, cols), dtype=dtype, device=device), state else: raise NotImplementedError(f"To_order not supported: {to_order}") def nvidia_transform( A, to_order, from_order="row", out=None, transpose=False, state=None, ld=None, ): if state is None: state = (A.shape, from_order) else: from_order = state[1] if out is None: out, new_state = get_transform_buffer( state[0], A.dtype, A.device, to_order, state[1] ) else: new_state = (state[1], to_order) func = get_transform_func(A.dtype, from_order, to_order, transpose) shape = state[0] if len(shape) == 2: dim1 = ct.c_int32(shape[0]) dim2 = ct.c_int32(shape[1]) elif ld is not None: n = prod(shape) dim1 = prod([shape[i] for i in ld]) dim2 = ct.c_int32(n // dim1) dim1 = ct.c_int32(dim1) else: dim1 = ct.c_int32(shape[0] * shape[1]) dim2 = ct.c_int32(shape[2]) ptr = CUBLAS_Context.get_instance().get_context(A.device) func(ptr, get_ptr(A), get_ptr(out), dim1, dim2) return out, new_state def estimate_quantiles(A: Tensor, out: Tensor = None, offset: float = 1 / 512, num_quantiles=256) -> Tensor: ''' Estimates 256 equidistant quantiles on the input tensor eCDF. Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles via the eCDF of the input tensor `A`. This is a fast but approximate algorithm and the extreme quantiles close to 0 and 1 have high variance / large estimation errors. These large errors can be avoided by using the offset variable which trims the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02 usually has a much lower error but is not a minimum entropy encoding. Given an offset of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles. Parameters ---------- A : torch.Tensor The input tensor. Any shape. out : torch.Tensor Tensor with the 256 estimated quantiles. offset : float The offset for the first and last quantile from 0 and 1. Default: 1/(2*num_quantiles) num_quantiles : int The number of equally spaced quantiles. Returns ------- torch.Tensor: The 256 quantiles in float32 datatype. ''' if A.numel() < 256: raise NotImplementedError(f'Quantile estimation needs at least 256 values in the Tensor, but Tensor had only {A.numel()} values.') if num_quantiles > 256: raise NotImplementedError(f"Currently only a maximum of 256 equally spaced quantiles are supported, but the argument num_quantiles={num_quantiles}") if num_quantiles < 256 and offset == 1/(512): # override default arguments offset = 1/(2*num_quantiles) if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device) is_on_gpu([A, out]) device = pre_call(A.device) if A.dtype == torch.float32: lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cestimate_quantiles_fp16(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel())) else: raise NotImplementedError(f"Not supported data type {A.dtype}") post_call(device) if num_quantiles < 256: step = round(256/num_quantiles) idx = torch.linspace(0, 255, num_quantiles).long().to(A.device) out = out[idx] return out def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, rand=None, out: Tensor = None, blocksize=4096) -> Tensor: """ Quantize tensor A in blocks of size 4096 values. Quantizes tensor A by dividing it into blocks of 4096 values. Then the absolute maximum value within these blocks is calculated for the non-linear quantization. Parameters ---------- A : torch.Tensor The input tensor. code : torch.Tensor The quantization map. absmax : torch.Tensor The absmax values. rand : torch.Tensor The tensor for stochastic rounding. out : torch.Tensor The output tensor (8-bit). Returns ------- torch.Tensor: The 8-bit tensor. tuple(torch.Tensor, torch.Tensor): The quantization state to undo the quantization. """ if code is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] if absmax is None: n = A.numel() blocks = n // blocksize blocks += 1 if n % blocksize > 0 else 0 absmax = torch.zeros((blocks,), device=A.device) if out is None: out = torch.zeros_like(A, dtype=torch.uint8) if A.device.type != 'cpu': assert blocksize in [4096, 2048, 1024, 512, 256, 128, 64] cblocksize = ct.c_int32(blocksize) prev_device = pre_call(A.device) code = code.to(A.device) if rand is not None: is_on_gpu([code, A, out, absmax, rand]) assert blocksize==4096 assert rand.numel() >= 1024 rand_offset = random.randint(0, 1023) if A.dtype == torch.float32: lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A),get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") else: is_on_gpu([code, A, out, absmax]) if A.dtype == torch.float32: lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) elif A.dtype == torch.float16: lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), cblocksize, ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: # cpu code = code.cpu() assert rand is None lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out, (absmax, code) def dequantize_blockwise( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, blocksize: int = 4096, ) -> Tensor: """ Dequantizes blockwise quantized values. Dequantizes the tensor A with maximum absolute values absmax in blocks of size 4096. Parameters ---------- A : torch.Tensor The input 8-bit tensor. quant_state : tuple(torch.Tensor, torch.Tensor) Tuple of code and absmax values. absmax : torch.Tensor The absmax values. code : torch.Tensor The quantization map. out : torch.Tensor Dequantized output tensor (default: float32) Returns ------- torch.Tensor: Dequantized tensor (default: float32) """ assert quant_state is not None or absmax is not None if code is None and quant_state is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] if out is None: out = torch.zeros_like(A, dtype=torch.float32) if quant_state is None: quant_state = (absmax, code) else: absmax, code = quant_state if A.device.type != 'cpu': device = pre_call(A.device) code = code.to(A.device) if blocksize not in [2048, 4096, 1024, 512, 256, 128, 64]: raise ValueError(f"The blockwise of {blocksize} is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]") is_on_gpu([A, out]) if out.dtype == torch.float32: lib.cdequantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) elif out.dtype == torch.float16: lib.cdequantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel())) else: raise ValueError(f"Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}") post_call(A.device) else: code = code.cpu() lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_longlong(blocksize), ct.c_longlong(A.numel())) return out def quantize(A: Tensor, code: Tensor = None, out: Tensor = None) -> Tensor: if code is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] code = code.to(A.device) absmax = torch.abs(A).max() inp = A / absmax out = quantize_no_absmax(inp, code, out) return out, (absmax, code) def dequantize( A: Tensor, quant_state: Tuple[Tensor, Tensor] = None, absmax: Tensor = None, code: Tensor = None, out: Tensor = None, ) -> Tensor: assert quant_state is not None or absmax is not None if code is None and quant_state is None: if "dynamic" not in name2qmap: name2qmap["dynamic"] = create_dynamic_map().to(A.device) code = name2qmap["dynamic"] code = code.to(A.device) if quant_state is None: quant_state = (absmax, code) out = dequantize_no_absmax(A, quant_state[1], out) return out * quant_state[0] def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor: ''' Quantizes input tensor to 8-bit. Quantizes the 32-bit input tensor `A` to the 8-bit output tensor `out` using the quantization map `code`. Parameters ---------- A : torch.Tensor The input tensor. code : torch.Tensor The quantization map. out : torch.Tensor, optional The output tensor. Needs to be of type byte. Returns ------- torch.Tensor: Quantized 8-bit tensor. ''' if out is None: out = torch.zeros_like(A, dtype=torch.uint8) is_on_gpu([A, out]) lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel())) return out def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor = None) -> Tensor: ''' Dequantizes the 8-bit tensor to 32-bit. Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via the quantization map `code`. Parameters ---------- A : torch.Tensor The 8-bit input tensor. code : torch.Tensor The quantization map. out : torch.Tensor The 32-bit output tensor. Returns ------- torch.Tensor: 32-bit output tensor. ''' if out is None: out = torch.zeros_like(A, dtype=torch.float32) is_on_gpu([code, A, out]) lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel())) return out def optimizer_update_32bit( optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, beta1: float, eps: float, step: int, lr: float, state2: Tensor = None, beta2: float = 0.0, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, skip_zeros=False, ) -> None: """ Performs an inplace optimizer update with one or two optimizer states. Universal optimizer update for 32-bit state and 32/16-bit gradients/weights. Parameters ---------- optimizer_name : str The name of the optimizer: {adam}. g : torch.Tensor Gradient tensor. p : torch.Tensor Parameter tensor. state1 : torch.Tensor Optimizer state 1. beta1 : float Optimizer beta1. eps : float Optimizer epsilon. weight_decay : float Weight decay. step : int Current optimizer step. lr : float The learning rate. state2 : torch.Tensor Optimizer state 2. beta2 : float Optimizer beta2. gnorm_scale : float The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. skip_zeros : bool Whether to skip zero-valued gradients or not (default: False). """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) if optimizer_name not in str2optimizer32bit: raise NotImplementedError( f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}' ) if g.dtype == torch.float32 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][0]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.float32: str2optimizer32bit[optimizer_name][1]( get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay), ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) def optimizer_update_8bit( optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, unorm_vec: Tensor = None, max_unorm: float = 0.0, ) -> None: """ Performs an inplace Adam update. Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights. Uses AdamW formulation if weight decay > 0.0. Parameters ---------- optimizer_name : str The name of the optimizer. Choices {adam, momentum} g : torch.Tensor Gradient tensor. p : torch.Tensor Parameter tensor. state1 : torch.Tensor Adam state 1. state2 : torch.Tensor Adam state 2. beta1 : float Adam beta1. beta2 : float Adam beta2. eps : float Adam epsilon. weight_decay : float Weight decay. step : int Current optimizer step. lr : float The learning rate. qmap1 : torch.Tensor Quantization map for first Adam state. qmap2 : torch.Tensor Quantization map for second Adam state. max1 : torch.Tensor Max value for first Adam state update. max2 : torch.Tensor Max value for second Adam state update. new_max1 : torch.Tensor Max value for the next Adam update of the first state. new_max2 : torch.Tensor Max value for the next Adam update of the second state. gnorm_scale : float The factor to rescale the gradient to the max clip value. unorm_vec : torch.Tensor The tensor for the update norm. max_unorm : float The maximum update norm relative to the weight norm. """ param_norm = 0.0 if max_unorm > 0.0: param_norm = torch.norm(p.data.float()) if g.dtype == torch.float32 and state1.dtype == torch.uint8: str2optimizer8bit[optimizer_name][0]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.uint8: str2optimizer8bit[optimizer_name][1]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) def optimizer_update_8bit_blockwise( optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor, beta1: float, beta2: float, eps: float, step: int, lr: float, qmap1: Tensor, qmap2: Tensor, absmax1: Tensor, absmax2: Tensor, weight_decay: float = 0.0, gnorm_scale: float = 1.0, skip_zeros=False, ) -> None: if g.dtype == torch.float32 and state1.dtype == torch.uint8: str2optimizer8bit_blockwise[optimizer_name][0]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) elif g.dtype == torch.float16 and state1.dtype == torch.uint8: str2optimizer8bit_blockwise[optimizer_name][1]( get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2), get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()), ) else: raise ValueError( f"Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}" ) def percentile_clipping( grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int = 5 ): """Applies percentile clipping grad: torch.Tensor The gradient tensor. gnorm_vec: torch.Tensor Vector of gradient norms. 100 elements expected. step: int The current optimiation steps (number of past gradient norms). """ is_on_gpu([grad, gnorm_vec]) if grad.dtype == torch.float32: lib.cpercentile_clipping_g32( get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel()), ) elif grad.dtype == torch.float16: lib.cpercentile_clipping_g16( get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel()), ) else: raise ValueError(f"Gradient type {grad.dtype} not supported!") current_gnorm = torch.sqrt(gnorm_vec[step % 100]) vals, idx = torch.sort(gnorm_vec) clip_value = torch.sqrt(vals[percentile]) gnorm_scale = 1.0 if current_gnorm > clip_value: gnorm_scale = clip_value / current_gnorm return current_gnorm, clip_value, gnorm_scale def histogram_scatter_add_2d( histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor ): assert len(histogram.shape) == 2 assert histogram.dtype == torch.float32 assert source.dtype == torch.float32 assert index1.dtype == torch.int32 assert index2.dtype == torch.int32 assert histogram.device.type == "cuda" assert index1.device.type == "cuda" assert index2.device.type == "cuda" assert source.device.type == "cuda" maxdim1 = ct.c_int32(histogram.shape[0]) n = ct.c_int32(index1.numel()) is_on_gpu([histogram, index1, index2, source]) lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n) def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8): if not torch.cuda.is_initialized(): torch.cuda.init() if A.dtype != expected_type or B.dtype != expected_type: raise TypeError( f"Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}" ) sA = A.shape sB = B.shape tA = transposed_A tB = transposed_B correct = True if len(sA) == 2 and len(sB) == 2: if not tA and not tB and A.shape[1] != B.shape[0]: correct = False elif tA and not tB and A.shape[0] != B.shape[0]: correct = False elif tA and tB and A.shape[0] != B.shape[1]: correct = False elif not tA and tB and A.shape[1] != B.shape[1]: correct = False elif len(sA) == 3 and len(sB) == 2: if not tA and not tB and A.shape[2] != B.shape[0]: correct = False elif tA and not tB and A.shape[1] != B.shape[0]: correct = False elif tA and tB and A.shape[1] != B.shape[1]: correct = False elif not tA and tB and A.shape[2] != B.shape[1]: correct = False elif len(sA) == 3 and len(sB) == 3: if not tA and not tB and A.shape[2] != B.shape[1]: correct = False elif tA and not tB and A.shape[1] != B.shape[1]: correct = False elif tA and tB and A.shape[1] != B.shape[2]: correct = False elif not tA and tB and A.shape[2] != B.shape[2]: correct = False if out is not None: sout = out.shape # special case common in backprop if not correct and len(sA) == 3 and len(sB) == 3: if ( sout[0] == sA[2] and sout[1] == sB[2] and sA[0] == sB[0] and sA[1] == sB[1] ): correct = True else: if len(sA) == 2 and len(sB) == 2: if not tA and not tB: sout = (sA[0], sB[1]) elif tA and tB: sout = (sA[1], sB[0]) elif tA and not tB: sout = (sA[1], sB[1]) elif not tA and tB: sout = (sA[0], sB[0]) elif len(sA) == 3 and len(sB) == 2: if not tA and not tB: sout = (sA[0], sA[1], sB[1]) elif tA and tB: sout = (sA[0], sA[2], sB[0]) elif tA and not tB: sout = (sA[0], sA[2], sB[1]) elif not tA and tB: sout = (sA[0], sA[1], sB[0]) elif len(sA) == 3 and len(sB) == 3: if not tA and not tB: sout = (sA[0], sA[1], sB[2]) elif tA and tB: sout = (sA[0], sA[2], sB[1]) elif tA and not tB: sout = (sA[0], sA[2], sB[2]) elif not tA and tB: sout = (sA[0], sA[1], sB[1]) if not correct: raise ValueError( f"Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}." ) return sout def igemm( A: Tensor, B: Tensor, out: Tensor = None, transposed_A=False, transposed_B=False, ): sout = check_matmul(A, B, out, transposed_A, transposed_B) if out is None: out = torch.zeros(size=sout, dtype=torch.int32, device=A.device) if len(A.shape) == 3 and len(B.shape) == 3: if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]: return batched_igemm(A, B, out) sA = A.shape sB = B.shape if transposed_A and len(sA) == 2: sA = (sA[1], sA[0]) elif transposed_A and len(sA) == 3: sA = (sA[0], sA[2], sA[0]) if transposed_B and len(sB) == 2: sB = (sB[1], sB[0]) elif transposed_B and len(sB) == 3: sB = (sB[0], sB[2], sB[0]) # this is a mess: cuBLAS expect column major, but PyTorch is row major. # So to perform the matrix multiplication, we have to treat A, B, and C matrices # (transpose of row major is column major) # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these # matrices in the input arguments for cuBLAS # column major: A @ B = C: [m, k] @ [k, n] = [m, n] # row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n] # column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m] if len(sB) == 2: if B.stride()[0] == B.shape[1]: transposed_B = False elif B.stride()[1] == B.shape[0]: transposed_B = True if len(A.shape) == 2: if A.stride()[0] == A.shape[1]: transposed_A = False elif A.stride()[1] == A.shape[0]: transposed_A = True else: if A.stride()[1] == A.shape[2]: transposed_A = False elif A.stride()[2] == A.shape[1]: transposed_A = True if len(sA) == 2: n = sA[0] ldb = A.stride()[1 if transposed_A else 0] elif len(sA) == 3 and len(sB) == 2: n = sA[0] * sA[1] ldb = sA[2] m = sB[1] k = sB[0] lda = B.stride()[(1 if transposed_B else 0)] ldc = sB[1] elif len(sB) == 3: # special case assert len(sA) == 3 if not (sA[0] == sB[0] and sA[1] == sB[1]): raise ValueError( f"Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}" ) transposed_A = True transposed_B = False m = sB[2] n = sA[2] k = sB[0] * sB[1] lda = m ldb = sA[2] ldc = m ptr = CUBLAS_Context.get_instance().get_context(A.device) # B^T @ A^T = C^T # [km, nk -> mn] is_on_gpu([B, A, out]) lib.cigemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k), get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc)) return out def batched_igemm( A: Tensor, B: Tensor, out: Tensor = None, transposed_A=False, transposed_B=False, ): if not len(A.shape) == 3 or not len(B.shape) == 3: raise ValueError( f"Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}" ) sout = check_matmul(A, B, out, transposed_A, transposed_B) if out is None: out = torch.zeros(size=sout, dtype=torch.int32, device=A.device) if B.is_contiguous(): lda = B.stride()[1] transposed_A = False else: s = B.stride() if s[0] != B.shape[0]: B = B.contiguous() lda = B.stride()[1] elif s[2] == B.shape[1]: transposed_A = True lda = B.stride()[2] else: if s[2] == 1: B = B.contiguous() lda = B.stride()[1] elif s[1] == 1: B = B.contiguous() lda = B.stride()[1] else: B = B.contiguous() lda = B.stride()[1] if A.is_contiguous(): ldb = A.stride()[1] transposed_B = False else: s = A.stride() if s[0] != A.shape[0]: A = A.contiguous() ldb = A.stride()[1] transposed_B = False elif s[2] == A.shape[1]: ldb = A.stride()[2] transposed_B = True else: A = A.contiguous() ldb = A.stride()[1] transposed_B = False # this is a mess: cuBLAS expect column major, but PyTorch is row major. # So to perform the matrix multiplication, we have to treat A, B, and C matrices # (transpose of row major is column major) # This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these # matrices in the input arguments for cuBLAS # column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n] # row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n] # column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m] num_batch = A.shape[0] n = A.shape[1] m = B.shape[2] k = B.shape[1] ldc = m strideA = B.shape[1] * B.shape[2] strideB = A.shape[1] * A.shape[2] strideC = A.shape[1] * B.shape[2] ptr = CUBLAS_Context.get_instance().get_context(A.device) is_on_gpu([B, A, out]) lib.cbatched_igemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k), get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc), ct.c_long(strideA), ct.c_long(strideB), ct.c_long(strideC), ct.c_uint32(num_batch)) return out def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32): shapeA = SA[0] shapeB = SB[0] dimsA = len(shapeA) dimsB = len(shapeB) assert dimsB == 2, 'Only two dimensional matrices are supported for argument B' if dimsA == 2: m = shapeA[0] elif dimsA == 3: m = shapeA[0] * shapeA[1] rows = n = shapeB[0] assert prod(list(shapeA)) > 0, f'Input tensor dimensions need to be > 0: {shapeA}' # if the tensor is empty, return a transformed empty tensor with the right dimensions if shapeA[0] == 0 and dimsA == 2: return torch.empty((0, shapeB[0]), device=A.device, dtype=torch.float16) elif shapeA[1] == 0 and dimsA == 3: return torch.empty(tuple(shapeA[:2] + [shapeB[0]]), device=A.device, dtype=torch.float16) if dimsA == 2 and out is None: out, Sout = get_transform_buffer( (shapeA[0], shapeB[0]), dtype, A.device, "col32", "row" ) elif dimsA == 3 and out is None: out, Sout = get_transform_buffer( (shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, "col32", "row" ) assert dimsB != 3, "len(B.shape)==3 not supported" assert A.device.type == "cuda" assert B.device.type == "cuda" assert A.dtype == torch.int8 assert B.dtype == torch.int8 assert out.dtype == dtype assert SA[1] == "col32" assert SB[1] in ["col_turing", "col_ampere"] assert Sout[1] == "col32" assert ( shapeA[-1] == shapeB[-1] ), f"Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}" formatB = SB[1] prev_device = A.device torch.cuda.set_device(A.device) ptr = CUBLAS_Context.get_instance().get_context(A.device) ptrA = get_ptr(A) ptrB = get_ptr(B) ptrC = get_ptr(out) k = shapeA[-1] lda = ct.c_int32(m * 32) if formatB == "col_turing": # turing: tiles with rows filled up to multiple of 8 rows by 32 columns # n = rows ldb = ct.c_int32(((rows + 7) // 8) * 8 * 32) else: # ampere: tiles with rows filled up to multiple of 32 rows by 32 columns # n = rows ldb = ct.c_int32(((rows + 31) // 32) * 32 * 32) ldc = ct.c_int32(m * 32) m = ct.c_int32(m) n = ct.c_int32(n) k = ct.c_int32(k) has_error = 0 ptrRowScale = get_ptr(None) is_on_gpu([A, B, out]) if formatB == 'col_turing': if dtype == torch.int32: has_error = lib.cigemmlt_turing_32( ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc ) else: has_error = lib.cigemmlt_turing_8( ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc ) elif formatB == "col_ampere": if dtype == torch.int32: has_error = lib.cigemmlt_ampere_32( ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc ) else: has_error = lib.cigemmlt_ampere_8( ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc ) if has_error == 1: print(f'A: {shapeA}, B: {shapeB}, C: {Sout[0]}; (lda, ldb, ldc): {(lda, ldb, ldc)}; (m, n, k): {(m, n, k)}') raise Exception('cublasLt ran into an error!') torch.cuda.set_device(prev_device) return out, Sout def mm_dequant( A, quant_state, row_stats, col_stats, out=None, new_row_stats=None, new_col_stats=None, bias=None ): assert A.dtype == torch.int32 if bias is not None: assert bias.dtype == torch.float16 out_shape = quant_state[0] if len(out_shape) == 3: out_shape = (out_shape[0] * out_shape[1], out_shape[2]) if out is None: out = torch.empty(out_shape, dtype=torch.float16, device=A.device) if new_row_stats is None: new_row_stats = torch.empty( out_shape[0], dtype=torch.float32, device=A.device ) if new_col_stats is None: new_col_stats = torch.empty( out_shape[1], dtype=torch.float32, device=A.device ) assert ( new_row_stats.shape[0] == row_stats.shape[0] ), f"{new_row_stats.shape} vs {row_stats.shape}" assert ( new_col_stats.shape[0] == col_stats.shape[0] ), f"{new_col_stats.shape} vs {col_stats.shape}" prev_device = pre_call(A.device) ptrA = get_ptr(A) ptrOut = get_ptr(out) ptrRowStats = get_ptr(row_stats) ptrColStats = get_ptr(col_stats) ptrNewRowStats = get_ptr(new_row_stats) ptrNewColStats = get_ptr(new_col_stats) ptrBias = get_ptr(bias) numRows = ct.c_int32(out_shape[0]) numCols = ct.c_int32(out_shape[1]) is_on_gpu([A, row_stats, col_stats, out, new_row_stats, new_col_stats, bias]) lib.cdequant_mm_int32_fp16(ptrA, ptrRowStats, ptrColStats, ptrOut, ptrNewRowStats, ptrNewColStats, ptrBias, numRows, numCols) post_call(prev_device) return out def get_colrow_absmax( A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0 ): assert A.dtype == torch.float16 device = A.device cols = A.shape[-1] if len(A.shape) == 3: rows = A.shape[0] * A.shape[1] else: rows = A.shape[0] col_tiles = (cols + 255) // 256 tiled_rows = ((rows + 15) // 16) * 16 if row_stats is None: row_stats = torch.empty( (rows,), dtype=torch.float32, device=device ).fill_(-50000.0) if col_stats is None: col_stats = torch.empty( (cols,), dtype=torch.float32, device=device ).fill_(-50000.0) if nnz_block_ptr is None and threshold > 0.0: nnz_block_ptr = torch.zeros( ((tiled_rows * col_tiles) + 1,), dtype=torch.int32, device=device ) ptrA = get_ptr(A) ptrRowStats = get_ptr(row_stats) ptrColStats = get_ptr(col_stats) ptrNnzrows = get_ptr(nnz_block_ptr) rows = ct.c_int32(rows) cols = ct.c_int32(cols) prev_device = pre_call(A.device) is_on_gpu([A, row_stats, col_stats, nnz_block_ptr]) lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols) post_call(prev_device) if threshold > 0.0: nnz_block_ptr.cumsum_(0) return row_stats, col_stats, nnz_block_ptr class COOSparseTensor: def __init__(self, rows, cols, nnz, rowidx, colidx, values): assert rowidx.dtype == torch.int32 assert colidx.dtype == torch.int32 assert values.dtype == torch.float16 assert values.numel() == nnz assert rowidx.numel() == nnz assert colidx.numel() == nnz self.rows = rows self.cols = cols self.nnz = nnz self.rowidx = rowidx self.colidx = colidx self.values = values class CSRSparseTensor: def __init__(self, rows, cols, nnz, rowptr, colidx, values): assert rowptr.dtype == torch.int32 assert colidx.dtype == torch.int32 assert values.dtype == torch.float16 assert values.numel() == nnz assert colidx.numel() == nnz assert rowptr.numel() == rows + 1 self.rows = rows self.cols = cols self.nnz = nnz self.rowptr = rowptr self.colidx = colidx self.values = values class CSCSparseTensor: def __init__(self, rows, cols, nnz, colptr, rowidx, values): assert colptr.dtype == torch.int32 assert rowidx.dtype == torch.int32 assert values.dtype == torch.float16 assert values.numel() == nnz assert rowidx.numel() == nnz assert colptr.numel() == cols + 1 self.rows = rows self.cols = cols self.nnz = nnz self.colptr = colptr self.rowidx = rowidx self.values = values def coo2csr(cooA): values, counts = torch.unique(cooA.rowidx, return_counts=True) values.add_(1) rowptr = torch.zeros( (cooA.rows + 1,), dtype=torch.int32, device=cooA.rowidx.device ) rowptr.scatter_(index=values.long(), src=counts.int(), dim=0) rowptr.cumsum_(0) return CSRSparseTensor( cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values ) def coo2csc(cooA): val, col2rowidx = torch.sort(cooA.colidx) rowidx = cooA.rowidx[col2rowidx] values = cooA.values[col2rowidx] colvalues, counts = torch.unique(val, return_counts=True) colvalues.add_(1) colptr = torch.zeros( (cooA.cols + 1,), dtype=torch.int32, device=cooA.colidx.device ) colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0) colptr.cumsum_(0) return CSCSparseTensor( cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values ) def coo_zeros(rows, cols, nnz, device, dtype=torch.half): rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device) colidx = torch.zeros((nnz,), dtype=torch.int32, device=device) values = torch.zeros((nnz,), dtype=dtype, device=device) return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values) def double_quant( A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0 ): device = A.device assert A.dtype == torch.half assert device.type == "cuda" prev_device = pre_call(A.device) cols = A.shape[-1] if len(A.shape) == 3: rows = A.shape[0] * A.shape[1] else: rows = A.shape[0] if row_stats is None or col_stats is None: row_stats, col_stats, nnz_row_ptr = get_colrow_absmax( A, threshold=threshold ) if out_col is None: out_col = torch.zeros(A.shape, device=device, dtype=torch.int8) if out_row is None: out_row = torch.zeros(A.shape, device=device, dtype=torch.int8) coo_tensor = None ptrA = get_ptr(A) ptrColStats = get_ptr(col_stats) ptrRowStats = get_ptr(row_stats) ptrOutCol = get_ptr(out_col) ptrOutRow = get_ptr(out_row) is_on_gpu([A, col_stats, row_stats, out_col, out_row]) if threshold > 0.0: nnz = nnz_row_ptr[-1].item() if nnz > 0: coo_tensor = coo_zeros( A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device ) ptrRowIdx = get_ptr(coo_tensor.rowidx) ptrColIdx = get_ptr(coo_tensor.colidx) ptrVal = get_ptr(coo_tensor.values) ptrRowPtr = get_ptr(nnz_row_ptr) lib.cdouble_rowcol_quant( ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, ptrRowIdx, ptrColIdx, ptrVal, ptrRowPtr, ct.c_float(threshold), ct.c_int32(rows), ct.c_int32(cols), ) val, idx = torch.sort(coo_tensor.rowidx) coo_tensor.rowidx = val coo_tensor.colidx = coo_tensor.colidx[idx] coo_tensor.values = coo_tensor.values[idx] else: lib.cdouble_rowcol_quant( ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, None, None, None, None, ct.c_float(0.0), ct.c_int32(rows), ct.c_int32(cols), ) else: lib.cdouble_rowcol_quant( ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, None, None, None, None, ct.c_float(threshold), ct.c_int32(rows), ct.c_int32(cols), ) post_call(prev_device) return out_row, out_col, row_stats, col_stats, coo_tensor def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None): prev_device = pre_call(A.device) if state is None: state = (A.shape, from_order) else: from_order = state[1] if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose) else: new_state = (state[0], to_order) # (shape, order) shape = state[0] if len(shape) == 2: dim1 = ct.c_int32(shape[0]) dim2 = ct.c_int32(shape[1]) else: dim1 = ct.c_int32(shape[0] * shape[1]) dim2 = ct.c_int32(shape[2]) is_on_gpu([A, out]) if to_order == 'col32': if transpose: lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2) else: lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2) elif to_order == "col_turing": if transpose: lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2) else: lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2) elif to_order == "col_ampere": if transpose: lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2) else: lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2) elif to_order == "row": if from_order == "col_turing": lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2) elif from_order == "col_ampere": lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2) else: raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}') post_call(prev_device) return out, new_state def spmm_coo(cooA, B, out=None): if out is None: out = torch.empty( (cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype ) nnz = cooA.nnz assert cooA.rowidx.numel() == nnz assert cooA.colidx.numel() == nnz assert cooA.values.numel() == nnz assert cooA.cols == B.shape[0] transposed_B = False if B.is_contiguous() else True ldb = B.stride()[(1 if transposed_B else 0)] ldc = B.shape[1] ptr = Cusparse_Context.get_instance().context ptrRowidx = get_ptr(cooA.rowidx) ptrColidx = get_ptr(cooA.colidx) ptrValues = get_ptr(cooA.values) ptrB = get_ptr(B) ptrC = get_ptr(out) cnnz = ct.c_int32(cooA.nnz) crowsA = ct.c_int32(cooA.rows) ccolsA = ct.c_int32(cooA.cols) ccolsB = ct.c_int32(B.shape[1]) cldb = ct.c_int32(ldb) cldc = ct.c_int32(ldc) is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out]) lib.cspmm_coo(ptr, ptrRowidx, ptrColidx, ptrValues, cnnz, crowsA, ccolsA, ccolsB, cldb, ptrB, cldc, ptrC, ct.c_bool(transposed_B)) return out def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None): if out is None: out = torch.zeros( (cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype ) nnz = cooA.nnz assert cooA.rowidx.numel() == nnz assert cooA.colidx.numel() == nnz assert cooA.values.numel() == nnz assert cooA.cols == B.shape[0], f"{cooA.cols} vs {B.shape}" transposed_B = False if B.is_contiguous() else True ldb = B.stride()[(1 if transposed_B else 0)] ldc = B.shape[1] values, counts = torch.unique(cooA.rowidx, return_counts=True) offset = counts.cumsum(0).int() max_count, max_idx = torch.sort(counts, descending=True) max_idx = max_idx.int() max_count = max_count.int() assert ( max_count[0] <= 32 ), f"Current max count per row is 8 but found {max_count[0]}." assert B.dtype in [torch.float16, torch.int8] ptrOffset = get_ptr(offset) ptrMaxCount = get_ptr(max_count) ptrMaxIdx = get_ptr(max_idx) ptrRowidx = get_ptr(cooA.rowidx) ptrColidx = get_ptr(cooA.colidx) ptrValues = get_ptr(cooA.values) ptrB = get_ptr(B) ptrC = get_ptr(out) ptrDequantStats = get_ptr(dequant_stats) cnnz_rows = ct.c_int32(counts.numel()) cnnz = ct.c_int32(cooA.nnz) crowsA = ct.c_int32(cooA.rows) ccolsA = ct.c_int32(cooA.cols) crowsB = ct.c_int32(B.shape[1]) ccolsB = ct.c_int32(B.shape[1]) cldb = ct.c_int32(ldb) cldc = ct.c_int32(ldc) # print(cooA.rowidx[:64]) # print(cooA.colidx[:64].sort()[0]) is_on_gpu([cooA.rowidx, cooA.colidx, cooA.values, B, out, dequant_stats]) if B.dtype == torch.float16: lib.cspmm_coo_very_sparse_naive_fp16( ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB, ) elif B.dtype == torch.int8: lib.cspmm_coo_very_sparse_naive_int8( ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB, ) # else: assertion error return out C = 127.0 def vectorwise_quant(x, dim=1, quant_type="vector"): if quant_type == "linear": max1 = torch.abs(x).max().float() xq = torch.round(x / max1 * 127).to(torch.int8) return xq, max1 elif quant_type in ["vector", "row"]: max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True) xq = torch.round(x * (C / max1)).to(torch.int8) return xq, max1 elif quant_type == "zeropoint": dtype = x.dtype x = x.float() dyna = x.max() - x.min() if dyna == 0: dyna = 1 qx = 255.0 / dyna minx = x.min() zpx = torch.round(minx * qx) x = torch.round(qx * x - zpx) + zpx return x, qx elif quant_type in ["vector-zeropoint", "row-zeropoint"]: dtype = x.dtype x = x.float() dyna = torch.amax(x, dim=dim, keepdim=True) - torch.amin( x, dim=dim, keepdim=True ) dyna[dyna == 0] = 1 qx = 255.0 / dyna minx = torch.amin(x, dim=dim, keepdim=True) zpx = torch.round(minx * qx) x = torch.round(qx * x - zpx) + zpx return x, qx elif quant_type == "truncated-vector": with torch.no_grad(): absx = torch.abs(x) max1 = torch.amax(absx, dim=dim, keepdim=True) max1 = max1 * 0.7 idx = absx > max1.expand_as(absx) sign = torch.sign(x[idx]) x[idx] = max1.expand_as(absx)[idx] * sign xq = torch.round(x / max1 * C).to(torch.int8) return xq, max1 else: return None def vectorwise_dequant(xq, max1, quant_type="vector"): if quant_type == "vector": x = (xq / C * max1).to(torch.float32) return x else: return None def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type="vector"): if quant_type == "linear": norm = S1 * S2 / (C * C) # double cast needed to prevent overflows return (xq.float() * norm).to(dtype) elif quant_type == "zeropoint": norm = 1.0 / (S1 * S2) return (xq.float() * norm).to(dtype) elif quant_type == "row-zeropoint": norm = 1.0 / (S1 * S2) x = xq.float() if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) if len(S1.shape) == 2: x *= norm else: x *= norm return x.to(dtype) elif quant_type == "vector-zeropoint": x = xq.float() if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) if len(S1.shape) == 2: x *= 1.0 / S1 else: x *= 1.0 / S1 x *= 1.0 / S2.t() return x.to(dtype) elif quant_type == "row": x = xq.float() if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) if len(S1.shape) == 2: x *= S1 * S2 / (C * C) else: x *= S1 * S2 / (C * C) return x.to(dtype) elif quant_type in ["truncated-vector", "vector"]: x = xq.float() if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0) if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0) if len(S1.shape) == 2: x *= S1 / C else: x *= S1 / C x *= S2 / C return x.to(dtype) else: return None def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half): offset = B.float().t().sum(0) * (SA[0] + SA[1]) x = xq.float() if len(xq.shape) == 2 and len(SB.shape) == 3: SB = SB.squeeze(0) if len(SB.shape) == 2: x *= SB.t() / 127 else: x *= SB / 127 x *= SA[1] / 127 x += offset return x.to(dtype) def extract_outliers(A, SA, idx): shapeA = SA[0] formatA = SA[1] assert formatA in ["col_turing", "col_ampere"] assert A.device.type == "cuda" out = torch.zeros( (shapeA[0], idx.numel()), dtype=torch.int8, device=A.device ) idx_size = ct.c_int32(idx.numel()) rows = ct.c_int32(shapeA[0]) cols = ct.c_int32(shapeA[1]) ptrA = get_ptr(A) ptrIdx = get_ptr(idx) ptrOut = get_ptr(out) prev_device = pre_call(A.device) if formatA == 'col_turing': lib.cextractOutliers_turing(ptrA, ptrIdx, ptrOut, idx_size, rows, cols) elif formatA == "col_ampere": lib.cextractOutliers_ampere(ptrA, ptrIdx, ptrOut, idx_size, rows, cols) post_call(prev_device) return out
bitsandbytes-main
bitsandbytes/functional.py
import shlex import subprocess from typing import Tuple def execute_and_return(command_string: str) -> Tuple[str, str]: def _decode(subprocess_err_out_tuple): return tuple( to_decode.decode("UTF-8").strip() for to_decode in subprocess_err_out_tuple ) def execute_and_return_decoded_std_streams(command_string): return _decode( subprocess.Popen( shlex.split(command_string), stdout=subprocess.PIPE, stderr=subprocess.PIPE, ).communicate() ) std_out, std_err = execute_and_return_decoded_std_streams(command_string) return std_out, std_err
bitsandbytes-main
bitsandbytes/utils.py
import os import sys from warnings import warn import torch HEADER_WIDTH = 60 def print_header( txt: str, width: int = HEADER_WIDTH, filler: str = "+" ) -> None: txt = f" {txt} " if txt else "" print(txt.center(width, filler)) def print_debug_info() -> None: print( "\nAbove we output some debug information. Please provide this info when " f"creating an issue via {PACKAGE_GITHUB_URL}/issues/new/choose ...\n" ) print_header("") print_header("DEBUG INFORMATION") print_header("") print() from . import COMPILED_WITH_CUDA, PACKAGE_GITHUB_URL from .cuda_setup.env_vars import to_be_ignored from .cuda_setup.main import get_compute_capabilities, get_cuda_lib_handle print_header("POTENTIALLY LIBRARY-PATH-LIKE ENV VARS") for k, v in os.environ.items(): if "/" in v and not to_be_ignored(k, v): print(f"'{k}': '{v}'") print_header("") print( "\nWARNING: Please be sure to sanitize sensible info from any such env vars!\n" ) print_header("OTHER") print(f"{COMPILED_WITH_CUDA = }") cuda = get_cuda_lib_handle() print(f"COMPUTE_CAPABILITIES_PER_GPU = {get_compute_capabilities(cuda)}") print_header("") print_header("DEBUG INFO END") print_header("") print( """ Running a quick check that: + library is importable + CUDA function is callable """ ) try: from bitsandbytes.optim import Adam p = torch.nn.Parameter(torch.rand(10, 10).cuda()) a = torch.rand(10, 10).cuda() p1 = p.data.sum().item() adam = Adam([p]) out = a * p loss = out.sum() loss.backward() adam.step() p2 = p.data.sum().item() assert p1 != p2 print("SUCCESS!") print("Installation was successful!") sys.exit(0) except ImportError: print() warn( f"WARNING: {__package__} is currently running as CPU-only!\n" "Therefore, 8-bit optimizers and GPU quantization are unavailable.\n\n" f"If you think that this is so erroneously,\nplease report an issue!" ) print_debug_info() sys.exit(0) except Exception as e: print(e) print_debug_info() sys.exit(1)
bitsandbytes-main
bitsandbytes/__main__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from .modules import Int8Params, Linear8bitLt, StableEmbedding
bitsandbytes-main
bitsandbytes/nn/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, TypeVar, Union, overload import torch import torch.nn.functional as F from torch import Tensor, device, dtype, nn import bitsandbytes as bnb from bitsandbytes.optim import GlobalOptimManager T = TypeVar("T", bound="torch.nn.Module") class StableEmbedding(torch.nn.Embedding): def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, device=None, dtype=None, ) -> None: super().__init__( num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, device, dtype, ) self.norm = torch.nn.LayerNorm(embedding_dim, device=device) GlobalOptimManager.get_instance().register_module_override( self, "weight", {"optim_bits": 32} ) def reset_parameters(self) -> None: torch.nn.init.xavier_uniform_(self.weight) self._fill_padding_idx_with_zero() """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding to make the Layer compatible with Pytorch < 1.9. This means that if this changes in future PyTorch releases this need to change too which is cumbersome. However, with this we can ensure compatibility with previous PyTorch releases. """ def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: emb = F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) # always apply layer norm in full precision emb = emb.to(torch.get_default_dtype()) return self.norm(emb).to(self.weight.dtype) class Embedding(torch.nn.Embedding): def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, max_norm: Optional[float] = None, norm_type: float = 2.0, scale_grad_by_freq: bool = False, sparse: bool = False, _weight: Optional[Tensor] = None, ) -> None: super().__init__( num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight, ) GlobalOptimManager.get_instance().register_module_override( self, "weight", {"optim_bits": 32} ) def reset_parameters(self) -> None: torch.nn.init.xavier_uniform_(self.weight) self._fill_padding_idx_with_zero() """ !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding to make the Layer compatible with Pytorch < 1.9. This means that if this changes in future PyTorch releases this need to change too which is cumbersome. However, with this we can ensure compatibility with previous PyTorch releases. """ def _fill_padding_idx_with_zero(self) -> None: if self.padding_idx is not None: with torch.no_grad(): self.weight[self.padding_idx].fill_(0) def forward(self, input: Tensor) -> Tensor: emb = F.embedding( input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return emb class Int8Params(torch.nn.Parameter): def __new__( cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None, ): cls.has_fp16_weights = has_fp16_weights cls.CB = None cls.SCB = None if data is None: data = torch.empty(0) return torch.Tensor._make_subclass(cls, data, requires_grad) def cuda(self, device): if self.has_fp16_weights: return super().cuda(device) else: # we store the 8-bit rows-major weight # we convert this weight to the turning/ampere weight during the first inference pass B = self.data.contiguous().half().cuda(device) CB, CBt, SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B) del CBt del SCBt self.data = CB setattr(self, "CB", CB) setattr(self, "SCB", SCB) return self @overload def to( self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ..., non_blocking: bool = ..., ) -> T: ... @overload def to(self: T, dtype: Union[dtype, str], non_blocking: bool = ...) -> T: ... @overload def to(self: T, tensor: Tensor, non_blocking: bool = ...) -> T: ... def to(self, *args, **kwargs): device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to( *args, **kwargs ) if ( device is not None and device.type == "cuda" and self.data.device.type == "cpu" ): return self.cuda(device) else: new_param = Int8Params( super().to( device=device, dtype=dtype, non_blocking=non_blocking ), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights, ) new_param.CB = self.CB new_param.SCB = self.SCB return new_param class Linear8bitLt(nn.Linear): def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0, index=None): super().__init__(input_features, output_features, bias) assert not memory_efficient_backward, "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0" self.state = bnb.MatmulLtState() self.index = index self.state.threshold = threshold self.state.has_fp16_weights = has_fp16_weights self.state.memory_efficient_backward = memory_efficient_backward if threshold > 0.0 and not has_fp16_weights: self.state.use_pool = True self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights) def init_8bit_state(self): self.state.CB = self.weight.CB self.state.SCB = self.weight.SCB self.weight.CB = None self.weight.SCB = None def forward(self, x: torch.Tensor): self.state.is_training = self.training if self.weight.CB is not None: self.init_8bit_state() # weights are cast automatically as Int8Params, but the bias has to be cast manually if self.bias is not None and self.bias.dtype != x.dtype: self.bias.data = self.bias.data.to(x.dtype) out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state) if not self.state.has_fp16_weights: if self.state.CB is not None and self.state.CxB is not None: # we converted 8-bit row major to turing/ampere format in the first inference pass # we no longer need the row-major weight del self.state.CB self.weight.data = self.state.CxB return out
bitsandbytes-main
bitsandbytes/nn/modules.py
import operator import warnings from dataclasses import dataclass from functools import reduce # Required in Python 3 from typing import Tuple, Optional import torch import bitsandbytes.functional as F # math.prod not compatible with python < 3.8 def prod(iterable): return reduce(operator.mul, iterable, 1) tensor = torch.Tensor # The inverse transformation for the colTuring and colAmpere format were contributed by Alex Borzunov: # https://github.com/bigscience-workshop/petals/blob/main/src/petals/utils/linear8bitlt_patch.py """ This class pools outlier dimensions across layers. This is particularly important for small models where outlier features are less systematic and occur with low frequency. """ class GlobalOutlierPooler: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def initialize(self): self.outliers = set() self.model_dim = None @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance def add_outliers(self, outlier_idx, feature_dim): if self.model_dim is None: self.model_dim = feature_dim if feature_dim != self.model_dim: return # we do not encode outliers for the 2nd FFN layer self.outliers.update(outlier_idx.tolist()) def get_current_outlier_idx(self): return torch.Tensor(list(self.outliers)).to(torch.int64) def get_inverse_transform_indices(transform_tile: callable, tile_size: Tuple[int, int]): """ Compute a permutation of indices that invert the specified (tiled) matrix transformation :param transform_tile: a function that applies forward transform to a tensor of shape [dim1, dim2] :param tile_size: higher-level tile dimensions, i.e. (8, 32) for Turing and (32, 32) for Ampere :note: we assume that tile_transform applies to a cpu-based int8 tensor of shape tile_size :example: transform_tile function for the turing layout (bitsandbytes.functional as F) :returns: indices """ d1, d2 = tile_size assert 0 < d1 * d2 < 2**64 tile_indices = torch.arange(d1 * d2, dtype=torch.int64).view(d1, d2) # encode each position in tile as a tuple of <= 8 unique bytes permuted_tile_indices = torch.zeros_like(tile_indices) for i in range(8): # select i-th byte, apply transformation and trace where each index ended up ith_dim_indices = torch.div(tile_indices, 256**i, rounding_mode="trunc") % 256 sample_tile_i = (ith_dim_indices - 128).to(torch.int8).contiguous() assert torch.all(sample_tile_i.int() + 128 == ith_dim_indices), "int overflow" permuted_tile_i = transform_tile(sample_tile_i) ith_permuted_indices = permuted_tile_i.to(tile_indices.dtype) + 128 permuted_tile_indices += ith_permuted_indices * (256**i) if d1 * d2 < 256**i: break # if all indices fit in i bytes, stop early return permuted_tile_indices def undo_layout(permuted_tensor: torch.Tensor, tile_indices: torch.LongTensor) -> torch.Tensor: """ Undo a tiled permutation such as turing or ampere layout :param permuted_tensor: torch tensor in a permuted layout :param tile_indices: reverse transformation indices, from get_inverse_transform_indices :return: contiguous row-major tensor """ (rows, cols), (tile_rows, tile_cols) = permuted_tensor.shape, tile_indices.shape assert rows % tile_rows == cols % tile_cols == 0, "tensor must contain a whole number of tiles" tensor = permuted_tensor.reshape(-1, tile_indices.numel()).t() outputs = torch.empty_like(tensor) # note: not using .index_copy because it was slower on cuda outputs[tile_indices.flatten()] = tensor outputs = outputs.reshape(tile_rows, tile_cols, cols // tile_cols, rows // tile_rows) outputs = outputs.permute(3, 0, 2, 1) # (rows // tile_rows, tile_rows), (cols // tile_cols, tile_cols) return outputs.reshape(rows, cols).contiguous() class MatMul8bit(torch.autograd.Function): @staticmethod def forward(ctx, A, B, out=None, quant_type="vector", precision=None): if precision is None: precision = [8, 8, 8] if precision[0] != 8: with torch.no_grad(): output = torch.matmul(A, B) else: if len(B.shape) == 2: dim = 0 else: dim = 1 qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type) qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type) iout = F.igemm(qA, qB) output = F.vectorwise_mm_dequant(iout, SA, SB, A.dtype, quant_type) if A.requires_grad or B.requires_grad: ctx.save_for_backward(A, B) ctx.quant_type = quant_type ctx.precision = precision return output @staticmethod def backward(ctx, grad_output): A, B = ctx.saved_tensors quant_type = ctx.quant_type precision = ctx.precision grad_A = grad_B = None if B.requires_grad: if len(A.shape) == 3: dims = [0, 1] # bsi -> ibs permute_dim = [0, 2, 1] else: dims = [0] # bs -> sb permute_dim = [1, 0] if precision[1] != 8: with torch.no_grad(): grad_B = torch.matmul(A.permute(permute_dim), grad_output) else: if len(B.shape) == 2 and len(A.shape) == 3: grad_output = grad_output.contiguous() if not grad_output.is_contiguous(): grad_output.contiguous() qgrad_output, S1 = F.vectorwise_quant( grad_output.view(-1, grad_output.shape[2]), dim=0, quant_type=quant_type, ) if not A.is_contiguous(): A = A.contiguous() qA, S2 = F.vectorwise_quant( A.view(-1, A.shape[2]), dim=0, quant_type=quant_type ) igrad_B = F.igemm(qA.t(), qgrad_output) grad_B = F.vectorwise_mm_dequant( igrad_B, S2.t(), S1, grad_output.dtype, quant_type ) else: qgrad_output, S1 = F.vectorwise_quant( grad_output, dim=dims, quant_type=quant_type ) qA, S2 = F.vectorwise_quant( A, dim=dims, quant_type=quant_type ) igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output) grad_B = F.vectorwise_mm_dequant( igrad_B, S2.permute(permute_dim), S1, grad_output.dtype, quant_type, ) if A.requires_grad: if len(grad_output.shape) == 3: dims = [2] else: dims = [1] if len(B.shape) == 3: # bio -> boi permute_dim = [0, 2, 1] dim_B = dims else: # io -> oi permute_dim = [1, 0] dim_B = [1] if precision[2] != 8: with torch.no_grad(): grad_A = torch.matmul(grad_output, B.permute(permute_dim)) else: qgrad_output, S1 = F.vectorwise_quant( grad_output, dim=dims, quant_type=quant_type ) qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type) igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim)) grad_A = F.vectorwise_mm_dequant( igrad_A, S1, S3.permute(permute_dim), grad_output.dtype, quant_type, ) return grad_A, grad_B, None, None, None mm_cublas = MatMul8bit.apply bmm_cublas = MatMul8bit.apply matmul_cublas = MatMul8bit.apply @dataclass class MatmulLtState: tile_indices: Optional[torch.Tensor] = None force_no_igemmlt: bool = False CB = None CxB = None SB = None SCB = None CxBt = None SBt = None CBt = None subB = None outlier_pool = None has_accumulated_gradients = False threshold = 0.0 idx = None is_training = True has_fp16_weights = True memory_efficient_backward = False use_pool = False formatB = F.get_special_format_str() def reset_grads(self): self.CB = None self.CxB = None self.SB = None self.SCB = None self.CxBt = None self.SBt = None self.CBt = None def get_tile_size(self): assert self.formatB in ( "col_turing", "col_ampere", ), f"please find this assert and manually enter tile size for {self.formatB}" return (8, 32) if self.formatB == "col_turing" else (32, 32) class MatMul8bitLt(torch.autograd.Function): # forward is the same, but we added the fallback for pre-turing GPUs # backward is mostly the same, but adds one extra clause (see "elif state.CxB is not None") @staticmethod def forward(ctx, A, B, out=None, bias=None, state=MatmulLtState): using_igemmlt = torch.cuda.get_device_capability(device=A.device) >= (7, 5) and not state.force_no_igemmlt # default of pytorch behavior if inputs are empty ctx.is_empty = False if prod(A.shape) == 0: ctx.is_empty = True ctx.A = A ctx.B = B ctx.bias = bias if A.shape[-1] == B.shape[0]: return torch.empty(A.shape[:-1] + B.shape[1:], dtype=A.dtype, device=A.device) else: return torch.empty(A.shape[:-1] + B.shape[:1], dtype=A.dtype, device=A.device) # 1. Quantize A # 2. Quantize B # 3. Matmul # 4. Mixed-precision decomposition matmul # 5. Save state formatB = state.formatB input_shape = A.shape if state.outlier_pool is None: state.outlier_pool = GlobalOutlierPooler.get_instance() # Cast A to fp16 if A.dtype != torch.float16: warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization") # 1. Quantize A if len(A.shape) == 3: A = A.view(-1, A.shape[-1]).contiguous() CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A.to(torch.float16), threshold=state.threshold) if state.threshold > 0.0 and coo_tensorA is not None: if state.has_fp16_weights: idx = torch.unique(coo_tensorA.colidx).long() CA[:, idx] = 0 CAt[:, idx] = 0 subA = A[:, idx] state.subB = B[:, idx].t().contiguous() state.idx = idx else: if state.CxB is None and using_igemmlt: # B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions # we also need to convert it to the turing/ampere format state.CxB, state.SB = F.transform(state.CB, to_order=formatB) else: if not state.has_fp16_weights and state.CxB is None and using_igemmlt: state.CxB, state.SB = F.transform(state.CB, to_order=formatB) subA = None # 2. Quantize B if state.has_fp16_weights: has_grad = True if (getattr(B, "grad", None) is not None) else False is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1) if is_transposed: B = B.contiguous() if (state.is_training and not has_grad) or state.CxB is None: state.reset_grads() ( CB, state.CBt, state.SCB, state.SCBt, coo_tensorB, ) = F.double_quant(B.to(torch.float16)) if using_igemmlt: state.CxB, state.SB = F.transform(CB, to_order=formatB) else: state.CB = CB else: has_grad = False if coo_tensorA is not None and not state.has_fp16_weights: # extract outliers outlier_idx = torch.unique(coo_tensorA.colidx) state.idx = outlier_idx # state.outlier_pool.add_outliers(outlier_idx, A.shape[-1]) # if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]: # # do not use pool for 2nd FFN layer # state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device) # else: # state.idx = outlier_idx if state.CxB is not None: outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int()) else: outliers = state.CB[:, state.idx.long()].clone() state.subB = (outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().to(A.dtype) CA[:, state.idx.long()] = 0 CAt[:, state.idx.long()] = 0 subA = A[:, state.idx.long()] shapeB = state.SB[0] if state.SB else B.shape if len(input_shape) == 3: output_shape = (input_shape[0], input_shape[1], shapeB[0]) else: output_shape = (input_shape[0], shapeB[0]) # 3. Matmul if using_igemmlt: C32A, SA = F.transform(CA, "col32") out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB) if bias is None or bias.dtype == torch.float16: # we apply the fused bias here output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias) output = output.to(A.dtype) else: # apply bias separately output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None) output = output.to(A.dtype).add_(bias) else: A_wo_outliers = A.clone() if state.idx is not None: A_wo_outliers[:, state.idx.long()] = 0 output = torch.nn.functional.linear(A_wo_outliers, state.CB.to(A.dtype)) output = output.mul_(state.SCB.unsqueeze(0).mul(1.0 / 127.0)) if bias is not None: output = output.add_(bias) # 4. Mixed-precision decomposition matmul if coo_tensorA is not None and subA is not None: output += torch.matmul(subA, state.subB) # 5. Save state ctx.state = state ctx.formatB = formatB ctx.grad_shape = input_shape ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype if any(ctx.needs_input_grad[:2]): ctx.tensors = (CAt, subA) ctx.tensor_states = (SCAt, state.idx) else: ctx.tensors = [None, None] ctx.tensor_states = (None, None) ctx.save_for_backward(None, None) clone_func = torch.clone if len(output_shape) == 3 else lambda x: x return clone_func(output.view(output_shape)) @staticmethod def backward(ctx, grad_output): if ctx.is_empty: bias_grad = None if ctx.bias is None else torch.zeros_like(ctx.bias) return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad CAt, subA = ctx.tensors SCAt, idx = ctx.tensor_states formatB = ctx.formatB state = ctx.state grad_A = grad_B = grad_bias = None if req_gradBias: # compute grad_bias first before changing grad_output dtype grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias) # Cast grad_output to fp16 if len(grad_output.shape) == 3: grad_output = grad_output.reshape(-1, grad_output.shape[-1]).contiguous() Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16)) if req_gradB: CxAt, SAt = F.transform(CAt, formatB, transpose=True) C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True) gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt) grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt) if state.threshold > 0.0 and subA is not None: grad_B[:, idx] += torch.matmul(grad_output.t(), subA) if req_gradA: if state.CBt is not None: C32grad, Sgrad = F.transform(Cgrad, "col32") if state.CxBt is None: state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True) gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt) grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A) elif state.CB is not None: CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0)) grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) elif state.CxB is not None: if state.tile_indices is None: order, tile_size = state.formatB, state.get_tile_size() transform = lambda x: F.transform(x.cuda(), from_order="row", to_order=order)[0].to(x.device) with torch.no_grad(): state.tile_indices = get_inverse_transform_indices(transform, tile_size).to(state.CxB.device) CB = ( undo_layout(state.CxB, state.tile_indices) .to(ctx.dtype_A) .mul_(state.SCB.unsqueeze(1).mul(1.0 / 127.0)) ) grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A) else: raise Exception("State must contain either CBt or CB or CxB matrix for backward") return grad_A, grad_B, None, grad_bias, None def matmul( A: tensor, B: tensor, out: tensor = None, state: MatmulLtState = None, threshold=0.0, bias=None ): state = state or MatmulLtState() if threshold > 0.0: state.threshold = threshold return MatMul8bitLt.apply(A, B, out, bias, state)
bitsandbytes-main
bitsandbytes/autograd/_functions.py
from ._functions import undo_layout, get_inverse_transform_indices
bitsandbytes-main
bitsandbytes/autograd/__init__.py
bitsandbytes-main
bitsandbytes/cuda_setup/__init__.py
import os from typing import Dict def to_be_ignored(env_var: str, value: str) -> bool: ignorable = { "PWD", # PWD: this is how the shell keeps track of the current working dir "OLDPWD", "SSH_AUTH_SOCK", # SSH stuff, therefore unrelated "SSH_TTY", "HOME", # Linux shell default "TMUX", # Terminal Multiplexer "XDG_DATA_DIRS", # XDG: Desktop environment stuff "XDG_RUNTIME_DIR", "MAIL", # something related to emails "SHELL", # binary for currently invoked shell "DBUS_SESSION_BUS_ADDRESS", # hardware related "PATH", # this is for finding binaries, not libraries "LESSOPEN", # related to the `less` command "LESSCLOSE", "_", # current Python interpreter } return env_var in ignorable def might_contain_a_path(candidate: str) -> bool: return "/" in candidate def is_active_conda_env(env_var: str) -> bool: return "CONDA_PREFIX" == env_var def is_other_conda_env_var(env_var: str) -> bool: return "CONDA" in env_var def is_relevant_candidate_env_var(env_var: str, value: str) -> bool: return is_active_conda_env(env_var) or ( might_contain_a_path(value) and not is_other_conda_env_var(env_var) and not to_be_ignored(env_var, value) ) def get_potentially_lib_path_containing_env_vars() -> Dict[str, str]: return { env_var: value for env_var, value in os.environ.items() if is_relevant_candidate_env_var(env_var, value) }
bitsandbytes-main
bitsandbytes/cuda_setup/env_vars.py
""" extract factors the build is dependent on: [X] compute capability [ ] TODO: Q - What if we have multiple GPUs of different makes? - CUDA version - Software: - CPU-only: only CPU quantization functions (no optimizer, no matrix multipl) - CuBLAS-LT: full-build 8-bit optimizer - no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`) evaluation: - if paths faulty, return meaningful error - else: - determine CUDA version - determine capabilities - based on that set the default path """ import ctypes as ct import os import errno import torch from warnings import warn from pathlib import Path from typing import Set, Union from .env_vars import get_potentially_lib_path_containing_env_vars CUDA_RUNTIME_LIB: str = "libcudart.so" class CUDASetup: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def generate_instructions(self): if self.cuda is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') return if self.cudart_path is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc') self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') return make_cmd = f'CUDA_VERSION={self.cuda_version_string}' if len(self.cuda_version_string) < 3: make_cmd += ' make cuda92' elif self.cuda_version_string == '110': make_cmd += ' make cuda110' elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: make_cmd += ' make cuda11x' elif self.cuda_version_string == '100': self.add_log_entry('CUDA SETUP: CUDA 10.0 not supported. Please use a different CUDA version.') self.add_log_entry('CUDA SETUP: Before you try again running bitsandbytes, make sure old CUDA 10.0 versions are uninstalled and removed from $LD_LIBRARY_PATH variables.') return has_cublaslt = is_cublasLt_compatible(self.cc) if not has_cublaslt: make_cmd += '_nomatmul' self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:') self.add_log_entry('git clone git@github.com:TimDettmers/bitsandbytes.git') self.add_log_entry('cd bitsandbytes') self.add_log_entry(make_cmd) self.add_log_entry('python setup.py install') def initialize(self): if not getattr(self, 'initialized', False): self.has_printed = False self.lib = None self.initialized = False def run_cuda_setup(self): self.initialized = True self.cuda_setup_log = [] binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() self.cudart_path = cudart_path self.cuda = cuda self.cc = cc self.cuda_version_string = cuda_version_string package_dir = Path(__file__).parent.parent binary_path = package_dir / binary_name try: if not binary_path.exists(): self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?") legacy_binary_name = "libbitsandbytes_cpu.so" self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...") binary_path = package_dir / legacy_binary_name if not binary_path.exists() or torch.cuda.is_available(): self.add_log_entry('') self.add_log_entry('='*48 + 'ERROR' + '='*37) self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:') self.add_log_entry('1. CUDA driver not installed') self.add_log_entry('2. CUDA not installed') self.add_log_entry('3. You have multiple conflicting CUDA libraries') self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!') self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.') self.add_log_entry('CUDA SETUP: The CUDA version for the compile might depend on your conda install. Inspect CUDA version via `conda list | grep cuda`.') self.add_log_entry('='*80) self.add_log_entry('') self.generate_instructions() self.print_log_stack() raise Exception('CUDA SETUP: Setup Failed!') self.lib = ct.cdll.LoadLibrary(binary_path) else: self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...") self.lib = ct.cdll.LoadLibrary(binary_path) except Exception as ex: self.add_log_entry(str(ex)) self.print_log_stack() def add_log_entry(self, msg, is_warning=False): self.cuda_setup_log.append((msg, is_warning)) def print_log_stack(self): for msg, is_warning in self.cuda_setup_log: if is_warning: warn(msg) else: print(msg) @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance def is_cublasLt_compatible(cc): has_cublaslt = False if cc is not None: cc_major, cc_minor = cc.split('.') if int(cc_major) < 7 or (int(cc_major) == 7 and int(cc_minor) < 5): cuda_setup.add_log_entry("WARNING: Compute capability < 7.5 detected! Only slow 8-bit matmul is supported for your GPU!", is_warning=True) else: has_cublaslt = True return has_cublaslt def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]: return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path} def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]: existent_directories: Set[Path] = set() for path in candidate_paths: try: if path.exists(): existent_directories.add(path) except OSError as exc: if exc.errno != errno.ENAMETOOLONG: raise exc non_existent_directories: Set[Path] = candidate_paths - existent_directories if non_existent_directories: CUDASetup.get_instance().add_log_entry("WARNING: The following directories listed in your path were found to " f"be non-existent: {non_existent_directories}", is_warning=True) return existent_directories def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]: return { path / CUDA_RUNTIME_LIB for path in candidate_paths if (path / CUDA_RUNTIME_LIB).is_file() } def resolve_paths_list(paths_list_candidate: str) -> Set[Path]: """ Searches a given environmental var for the CUDA runtime library, i.e. `libcudart.so`. """ return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate)) def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]: return get_cuda_runtime_lib_paths( resolve_paths_list(paths_list_candidate) ) def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None: if len(results_paths) > 1: warning_msg = ( f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. " "We'll flip a coin and try one of these, in order to fail forward.\n" "Either way, this might cause trouble in the future:\n" "If you get `CUDA error: invalid device function` errors, the above " "might be the cause and the solution is to make sure only one " f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env.") CUDASetup.get_instance().add_log_entry(warning_msg, is_warning=True) def determine_cuda_runtime_lib_path() -> Union[Path, None]: """ Searches for a cuda installations, in the following order of priority: 1. active conda env 2. LD_LIBRARY_PATH 3. any other env vars, while ignoring those that - are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`) - don't contain the path separator `/` If multiple libraries are found in part 3, we optimistically try one, while giving a warning message. """ candidate_env_vars = get_potentially_lib_path_containing_env_vars() if "CONDA_PREFIX" in candidate_env_vars: conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib" conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path)) warn_in_case_of_duplicates(conda_cuda_libs) if conda_cuda_libs: return next(iter(conda_cuda_libs)) CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["CONDA_PREFIX"]} did not contain ' f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) if "LD_LIBRARY_PATH" in candidate_env_vars: lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"]) if lib_ld_cuda_libs: return next(iter(lib_ld_cuda_libs)) warn_in_case_of_duplicates(lib_ld_cuda_libs) CUDASetup.get_instance().add_log_entry(f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain ' f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...', is_warning=True) remaining_candidate_env_vars = { env_var: value for env_var, value in candidate_env_vars.items() if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"} } cuda_runtime_libs = set() for env_var, value in remaining_candidate_env_vars.items(): cuda_runtime_libs.update(find_cuda_lib_in(value)) if len(cuda_runtime_libs) == 0: CUDASetup.get_instance().add_log_entry('CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching /usr/local/cuda/lib64...') cuda_runtime_libs.update(find_cuda_lib_in('/usr/local/cuda/lib64')) warn_in_case_of_duplicates(cuda_runtime_libs) return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else None def check_cuda_result(cuda, result_val): # 3. Check for CUDA errors if result_val != 0: error_str = ct.c_char_p() cuda.cuGetErrorString(result_val, ct.byref(error_str)) if error_str.value is not None: CUDASetup.get_instance().add_log_entry(f"CUDA exception! Error code: {error_str.value.decode()}") else: CUDASetup.get_instance().add_log_entry(f"Unknown CUDA exception! Please check your CUDA install. It might also be that your GPU is too old.") # https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION def get_cuda_version(cuda, cudart_path): if cuda is None: return None try: cudart = ct.CDLL(cudart_path) except OSError: CUDASetup.get_instance().add_log_entry(f'ERROR: libcudart.so could not be read from path: {cudart_path}!') return None version = ct.c_int() try: check_cuda_result(cuda, cudart.cudaRuntimeGetVersion(ct.byref(version))) except AttributeError as e: CUDASetup.get_instance().add_log_entry(f'ERROR: {str(e)}') CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: libcudart.so path is {cudart_path}') CUDASetup.get_instance().add_log_entry(f'CUDA SETUP: Is seems that your cuda installation is not in your path. See https://github.com/TimDettmers/bitsandbytes/issues/85 for more information.') version = int(version.value) major = version//1000 minor = (version-(major*1000))//10 if major < 11: CUDASetup.get_instance().add_log_entry('CUDA SETUP: CUDA version lower than 11 are currently not supported for LLM.int8(). You will be only to use 8-bit optimizers and quantization routines!!') return f'{major}{minor}' def get_cuda_lib_handle(): # 1. find libcuda.so library (GPU driver) (/usr/lib) try: cuda = ct.CDLL("libcuda.so") except OSError: CUDASetup.get_instance().add_log_entry('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!') return None check_cuda_result(cuda, cuda.cuInit(0)) return cuda def get_compute_capabilities(cuda): """ 1. find libcuda.so library (GPU driver) (/usr/lib) init_device -> init variables -> call function by reference 2. call extern C function to determine CC (https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html) 3. Check for CUDA errors https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api # bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549 """ nGpus = ct.c_int() cc_major = ct.c_int() cc_minor = ct.c_int() device = ct.c_int() check_cuda_result(cuda, cuda.cuDeviceGetCount(ct.byref(nGpus))) ccs = [] for i in range(nGpus.value): check_cuda_result(cuda, cuda.cuDeviceGet(ct.byref(device), i)) ref_major = ct.byref(cc_major) ref_minor = ct.byref(cc_minor) # 2. call extern C function to determine CC check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device)) ccs.append(f"{cc_major.value}.{cc_minor.value}") return ccs # def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error def get_compute_capability(cuda): """ Extracts the highest compute capbility from all available GPUs, as compute capabilities are downwards compatible. If no GPUs are detected, it returns None. """ if cuda is None: return None # TODO: handle different compute capabilities; for now, take the max ccs = get_compute_capabilities(cuda) if ccs: return ccs[-1] def evaluate_cuda_setup(): if 'BITSANDBYTES_NOWELCOME' not in os.environ or str(os.environ['BITSANDBYTES_NOWELCOME']) == '0': print('') print('='*35 + 'BUG REPORT' + '='*35) print('Welcome to bitsandbytes. For bug reports, please submit your error trace to: https://github.com/TimDettmers/bitsandbytes/issues') print('='*80) if not torch.cuda.is_available(): return 'libsbitsandbytes_cpu.so', None, None, None, None cuda_setup = CUDASetup.get_instance() cudart_path = determine_cuda_runtime_lib_path() cuda = get_cuda_lib_handle() cc = get_compute_capability(cuda) cuda_version_string = get_cuda_version(cuda, cudart_path) failure = False if cudart_path is None: failure = True cuda_setup.add_log_entry("WARNING: No libcudart.so found! Install CUDA or the cudatoolkit package (anaconda)!", is_warning=True) else: cuda_setup.add_log_entry(f"CUDA SETUP: CUDA runtime path found: {cudart_path}") if cc == '' or cc is None: failure = True cuda_setup.add_log_entry("WARNING: No GPU detected! Check your CUDA paths. Proceeding to load CPU-only library...", is_warning=True) else: cuda_setup.add_log_entry(f"CUDA SETUP: Highest compute capability among GPUs detected: {cc}") if cuda is None: failure = True else: cuda_setup.add_log_entry(f'CUDA SETUP: Detected CUDA version {cuda_version_string}') # 7.5 is the minimum CC vor cublaslt has_cublaslt = is_cublasLt_compatible(cc) # TODO: # (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible) # (2) Multiple CUDA versions installed # we use ls -l instead of nvcc to determine the cuda version # since most installations will have the libcudart.so installed, but not the compiler if failure: binary_name = "libbitsandbytes_cpu.so" elif has_cublaslt: binary_name = f"libbitsandbytes_cuda{cuda_version_string}.so" else: "if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so" binary_name = f"libbitsandbytes_cuda{cuda_version_string}_nocublaslt.so" return binary_name, cudart_path, cuda, cc, cuda_version_string
bitsandbytes-main
bitsandbytes/cuda_setup/main.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class RMSprop(Optimizer1State): def __init__( self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if alpha == 0: raise NotImplementedError( "RMSprop with alpha==0.0 is not supported!" ) if centered: raise NotImplementedError("Centered RMSprop is not supported!") super().__init__( "rmsprop", params, lr, (alpha, momentum), eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class RMSprop8bit(Optimizer1State): def __init__( self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if alpha == 0: raise NotImplementedError( "RMSprop with alpha==0.0 is not supported!" ) if centered: raise NotImplementedError("Centered RMSprop is not supported!") super().__init__( "rmsprop", params, lr, (alpha, momentum), eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class RMSprop32bit(Optimizer1State): def __init__( self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if alpha == 0: raise NotImplementedError( "RMSprop with alpha==0.0 is not supported!" ) if centered: raise NotImplementedError("Centered RMSprop is not supported!") super().__init__( "rmsprop", params, lr, (alpha, momentum), eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )
bitsandbytes-main
bitsandbytes/optim/rmsprop.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class Lion(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "lion", params, lr, betas, 0., weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class Lion8bit(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "lion", params, lr, betas, 0., weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class Lion32bit(Optimizer1State): def __init__( self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "lion", params, lr, betas, 0., weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )
bitsandbytes-main
bitsandbytes/optim/lion.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer2State class LAMB(Optimizer2State): def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adam_w_mode=True, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0, ): super().__init__( "lamb", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0, ) class LAMB8bit(Optimizer2State): def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adam_w_mode=True, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0, ): super().__init__( "lamb", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0, ) class LAMB32bit(Optimizer2State): def __init__( self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, adam_w_mode=True, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0, ): super().__init__( "lamb", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0, )
bitsandbytes-main
bitsandbytes/optim/lamb.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class SGD(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if momentum == 0: raise NotImplementedError("SGD without momentum is not supported!") super().__init__( "momentum", params, lr, (momentum, dampening), 0.0, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class SGD8bit(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if momentum == 0: raise NotImplementedError("SGD without momentum is not supported!") super().__init__( "momentum", params, lr, (momentum, dampening), 0.0, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class SGD32bit(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if momentum == 0: raise NotImplementedError("SGD without momentum is not supported!") super().__init__( "momentum", params, lr, (momentum, dampening), 0.0, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )
bitsandbytes-main
bitsandbytes/optim/sgd.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from torch.optim import Optimizer from bitsandbytes.optim.optimizer import Optimizer1State class LARS(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02, ): if momentum == 0: raise NotImplementedError( "LARS without momentum is not supported!" ) super().__init__( "lars", params, lr, (momentum, dampening), 0.0, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False, ) class LARS8bit(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, args=None, min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02, ): if momentum == 0: raise NotImplementedError( "LARS without momentum is not supported!" ) super().__init__( "lars", params, lr, (momentum, dampening), 0.0, weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False, ) class LARS32bit(Optimizer1State): def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, args=None, min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02, ): if momentum == 0: raise NotImplementedError( "LARS without momentum is not supported!" ) super().__init__( "lars", params, lr, (momentum, dampening), 0.0, weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False, ) class PytorchLARS(Optimizer): def __init__( self, params, lr=0.01, momentum=0, dampening=0, weight_decay=0, nesterov=False, max_unorm=0.02, ): if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr}") if momentum < 0.0: raise ValueError(f"Invalid momentum value: {momentum}") if weight_decay < 0.0: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, max_unorm=max_unorm, ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( "Nesterov momentum requires a momentum and zero dampening" ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault("nesterov", False) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] d_p_list = [] momentum_buffer_list = [] weight_decay = group["weight_decay"] momentum = group["momentum"] dampening = group["dampening"] nesterov = group["nesterov"] max_unorm = group["max_unorm"] lr = group["lr"] for p in group["params"]: if p.grad is None: continue state = self.state[p] d_p = p.grad if weight_decay != 0: d_p = d_p.add(p, alpha=weight_decay) if momentum != 0: buf = state.get("momentum_buffer", None) if buf is None: buf = torch.clone(d_p).detach() state["momentum_buffer"] = buf else: buf.mul_(momentum).add_(d_p, alpha=1 - dampening) if nesterov: update = d_p + buf * momentum else: update = buf update_scale = 1.0 if max_unorm > 0.0: assert p.dtype == torch.float32 pnorm = torch.norm(p.detach()) unorm = torch.norm(update) if unorm > max_unorm * pnorm: update_scale = max_unorm * pnorm / unorm p.add_(update, alpha=-lr * update_scale) return loss
bitsandbytes-main
bitsandbytes/optim/lars.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.cextension import COMPILED_WITH_CUDA from .adagrad import Adagrad, Adagrad8bit, Adagrad32bit from .adam import Adam, Adam8bit, Adam32bit from .adamw import AdamW, AdamW8bit, AdamW32bit from .lamb import LAMB, LAMB8bit, LAMB32bit from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS from .optimizer import GlobalOptimManager from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit from .lion import Lion, Lion8bit, Lion32bit from .sgd import SGD, SGD8bit, SGD32bit
bitsandbytes-main
bitsandbytes/optim/__init__.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer1State class Adagrad(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class Adagrad8bit(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") assert block_wise super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class Adagrad32bit(Optimizer1State): def __init__( self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if initial_accumulator_value != 0.0: raise ValueError("Initial accumulator value != 0.0 not supported!") if lr_decay != 0.0: raise ValueError("Lr Decay != 0.0 not supported!") super().__init__( "adagrad", params, lr, (0.0, 0.0), eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )
bitsandbytes-main
bitsandbytes/optim/adagrad.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from bitsandbytes.optim.optimizer import Optimizer2State class AdamW(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class AdamW8bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class AdamW32bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, )
bitsandbytes-main
bitsandbytes/optim/adamw.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import os import torch import torch.distributed as dist import bitsandbytes.functional as F from bitsandbytes.optim.optimizer import Optimizer2State class Adam(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "adam", params, lr, betas, eps, weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, ) class Adam8bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "adam", params, lr, betas, eps, weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, ) class Adam32bit(Optimizer2State): def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, ): super().__init__( "adam", params, lr, betas, eps, weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, ) class AnalysisAdam(torch.optim.Optimizer): """Adam that performs 8-bit vs 32-bit error analysis. This implementation is modified from torch.optim.Adam based on: `Fixed Weight Decay Regularization in Adam` (see https://arxiv.org/abs/1711.05101) It has been proposed in `Adam: A Method for Stochastic Optimization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ .. _Adam: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__( self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, bnb_analysis="dynamic-blockwise", savedir=None, ): defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad, ) super().__init__(params, defaults) self.analysis = bnb_analysis self.savedir = savedir @property def supports_memory_efficient_fp16(self): return True @property def supports_flat_params(self): return True def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p_id, p in enumerate(group["params"]): if p.grad is None: continue grad = p.grad.data if grad.dtype in {torch.float16, torch.bfloat16}: grad = grad.float() if grad.is_sparse: raise RuntimeError( "Adam does not support sparse gradients, please consider SparseAdam instead" ) amsgrad = group.get("amsgrad", False) assert not amsgrad p_data_fp32 = p.data if p.data.dtype in {torch.float16, torch.bfloat16}: p_data_fp32 = p_data_fp32.float() state = self.state[p] # State initialization if len(state) == 0: state["step"] = 0 # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p_data_fp32) # Exponential moving average of squared gradient values state["exp_avg_sq"] = torch.zeros_like(p_data_fp32) state["abserrors"] = torch.zeros( (256, 256), device=p_data_fp32.device ) state["relerrors"] = torch.zeros( (256, 256), device=p_data_fp32.device ) state["counts"] = torch.zeros( (256, 256), device=p_data_fp32.device ) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32) else: state["exp_avg"] = state["exp_avg"].to(p_data_fp32) state["exp_avg_sq"] = state["exp_avg_sq"].to(p_data_fp32) if amsgrad: state["max_exp_avg_sq"] = state["max_exp_avg_sq"].to( p_data_fp32 ) state["step"] += 1 beta1, beta2 = group["betas"] bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] step_size = ( group["lr"] * math.sqrt(bias_correction2) / bias_correction1 ) e = state["abserrors"] rele = state["relerrors"] counts = state["counts"] if group["weight_decay"] != 0: p_data_fp32.add_( p_data_fp32, alpha=-group["weight_decay"] * group["lr"] ) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) denom = exp_avg_sq.sqrt().add_(group["eps"]) update_fp32 = exp_avg / denom if ( p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000 * 1000 ): # embedding layer or too small p_data_fp32 += -step_size * update_fp32 else: if self.analysis == "dynamic-blockwise": code1 = F.create_dynamic_map(signed=True).to(p.device) code2 = F.create_dynamic_map(signed=False).to(p.device) C1, S1 = F.quantize_blockwise(exp_avg, code=code1) state1 = F.dequantize_blockwise(C1, S1) C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2) state2 = F.dequantize_blockwise(C2, S2) elif self.analysis == "dynamic": code1 = F.create_dynamic_map(signed=True).to(p.device) code2 = F.create_dynamic_map(signed=False).to(p.device) C1, S1 = F.quantize(exp_avg, code=code1) state1 = F.dequantize(C1, S1) C2, S2 = F.quantize(exp_avg_sq, code=code2) state2 = F.dequantize(C2, S2) elif self.analysis == "linear": code1 = F.create_linear_map(signed=True).to(p.device) code2 = F.create_linear_map(signed=False).to(p.device) C1, S1 = F.quantize(exp_avg, code=code1) state1 = F.dequantize(C1, S1) C2, S2 = F.quantize(exp_avg_sq, code=code2) state2 = F.dequantize(C2, S2) elif self.analysis == "quantile": code1 = F.estimate_quantiles(exp_avg) code2 = F.estimate_quantiles(exp_avg_sq) C1 = F.quantize_no_absmax(exp_avg, code=code1) state1 = F.dequantize_no_absmax(C1, code1) C2 = F.quantize_no_absmax(exp_avg_sq, code=code2) state2 = F.dequantize_no_absmax(C2, code2) elif self.analysis == "my-quantization-routine": pass # 1. get code # 2. quantize # 3. dequantize # Error will be calculated automatically! else: raise ValueError( f"Invalid analysis value: {self.analysis}!" ) denom = state2.sqrt().add_(group["eps"]) update_8bit = state1 / denom abserr = torch.abs(update_8bit - update_fp32) relerr = abserr / torch.abs(update_fp32 + 1e-6) C1, C2 = C1.int(), C2.int() F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr) F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr) F.histogram_scatter_add_2d( counts, C1.int(), C2.int(), torch.ones_like(abserr) ) p_data_fp32 += -step_size * update_fp32 if not dist.is_initialized() or dist.get_rank() == 0: if self.savedir != "" and state["step"] % 100 == 0: if not os.path.exists(self.savedir): os.makedirs(self.savedir) shapestr = "_".join( [str(dim) for dim in p_data_fp32.shape] ) pathe = os.path.join( self.savedir, f"{p_id}_{shapestr}_abserr.pkl" ) pathrele = os.path.join( self.savedir, f"{p_id}_{shapestr}_relerr.pkl" ) pathcounts = os.path.join( self.savedir, f"{p_id}_{shapestr}_counts.pkl" ) torch.save(e, pathe) torch.save(rele, pathrele) torch.save(counts, pathcounts) if p.data.dtype in {torch.float16, torch.bfloat16}: p.data.copy_(p_data_fp32) return loss
bitsandbytes-main
bitsandbytes/optim/adam.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import abc as container_abcs from collections import defaultdict from copy import deepcopy from itertools import chain import torch import bitsandbytes.functional as F class MockArgs: def __init__(self, initial_data): for key in initial_data: setattr(self, key, initial_data[key]) class GlobalOptimManager: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def initialize(self): self.pid2config = {} self.index2config = {} self.optimizer = None self.uses_config_override = False self.module_weight_config_triple = [] @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance def register_parameters(self, params): param_groups = list(params) if not isinstance(param_groups[0], dict): param_groups = [{"params": param_groups}] for group_index, group in enumerate(param_groups): for p_index, p in enumerate(group["params"]): if id(p) in self.pid2config: self.index2config[(group_index, p_index)] = self.pid2config[ id(p) ] def override_config( self, parameters, key=None, value=None, key_value_dict=None ): """ Overrides initial optimizer config for specific parameters. The key-values of the optimizer config for the input parameters are overridden This can be both, optimizer parameters like "betas", or "lr" or it can be 8-bit specific parameters like "optim_bits", "percentile_clipping". Parameters ---------- parameters : torch.Tensor or list(torch.Tensors) The input parameters. key : str The hyperparamter to override. value : object The value for the hyperparamters. key_value_dict : dict A dictionary with multiple key-values to override. """ self.uses_config_override = True if isinstance(parameters, torch.nn.Parameter): parameters = [parameters] if isinstance(parameters, torch.Tensor): parameters = [parameters] if key is not None and value is not None: assert key_value_dict is None key_value_dict = {key: value} if key_value_dict is not None: for p in parameters: if id(p) in self.pid2config: self.pid2config[id(p)].update(key_value_dict) else: self.pid2config[id(p)] = key_value_dict def register_module_override(self, module, param_name, config): self.module_weight_config_triple.append((module, param_name, config)) class Optimizer8bit(torch.optim.Optimizer): def __init__(self, params, defaults, optim_bits=32): super().__init__(params, defaults) self.initialized = False self.name2qmap = {} self.mng = GlobalOptimManager.get_instance() self.non_castable_tensor_keys = { "qmap1", "qmap2", "max1", "max2", "new_max1", "new_max2", "state1", "state2", "gnorm_vec", "absmax1", "absmax2", "unorm_vec", } if optim_bits == 8: self.fill_qmap() def fill_qmap(self): self.name2qmap["dynamic"] = F.create_dynamic_map(signed=True) self.name2qmap["udynamic"] = F.create_dynamic_map(signed=False) def __setstate__(self, state): super().__setstate__(state) def load_state_dict(self, state_dict): r"""Loads the optimizer state. Args: state_dict (dict): optimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict["param_groups"] if len(groups) != len(saved_groups): raise ValueError( "loaded state dict has a different number of " "parameter groups" ) param_lens = (len(g["params"]) for g in groups) saved_lens = (len(g["params"]) for g in saved_groups) if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError( "loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group" ) # Update the state id_map = { old_id: p for old_id, p in zip( chain.from_iterable(g["params"] for g in saved_groups), chain.from_iterable(g["params"] for g in groups), ) } def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # Floating-point types are a bit special here. They are the only ones # that are assumed to always match the type of params. if param.is_floating_point() and value.dtype != torch.uint8: value = value.to(param.dtype) return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group param_groups = [ update_group(g, ng) for g, ng in zip(groups, saved_groups) ] self.__setstate__({"state": state, "param_groups": param_groups}) def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): self.state[p][k] = v.to(p.device) def check_overrides(self): for module, attr, config in self.mng.module_weight_config_triple: pmodule = getattr(module, attr) assert pmodule is not None assert isinstance(pmodule, torch.Tensor) or isinstance( pmodule, torch.Parameter ) found = False for gindex, group in enumerate(self.param_groups): if found: break for pindex, p in enumerate(group["params"]): if found: break if id(p) == id(pmodule): # found the matching parameter # init override self.mng.pid2config[id(p)] = config self.mng.index2config[ (gindex, pindex) ] = self.mng.pid2config[id(p)] found = True @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() overflows = [] if not self.initialized: self.check_overrides() self.to_gpu() # needed for fairseq pure fp16 training self.initialized = True for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p.grad is None: continue state = self.state[p] if len(state) == 0: self.init_state(group, p, gindex, pindex) self.update_step(group, p, gindex, pindex) return loss def get_config(self, gindex, pindex, group): config = {} config["betas"] = group["betas"] config["eps"] = group["eps"] config["weight_decay"] = group["weight_decay"] config["lr"] = group["lr"] config["optim_bits"] = self.args.optim_bits config["min_8bit_size"] = self.args.min_8bit_size config["percentile_clipping"] = self.args.percentile_clipping config["block_wise"] = self.args.block_wise config["max_unorm"] = self.args.max_unorm config["skip_zeros"] = self.args.skip_zeros if (gindex, pindex) in self.mng.index2config: config.update(self.mng.index2config[(gindex, pindex)]) return config def init_state(self, group, p, gindex, pindex): raise NotImplementedError("init_state method needs to be overridden") def update_step(self, group, p, gindex, pindex): raise NotImplementedError( "The update_step method needs to be overridden" ) class Optimizer2State(Optimizer8bit): def __init__( self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if isinstance(betas, str): # format: '(beta1, beta2)' betas = betas.replace("(", "").replace(")", "").strip().split(",") betas = [float(b) for b in betas] for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError( f'Amount of optimizer bits not supported: {config["optim_bits"]}' ) if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32 or ( dtype == torch.uint8 and p.numel() < 4096 ): state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device, ) state["state2"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device, ) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to( p.device ) self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to( p.device ) state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap1"] = self.name2qmap["dynamic"] state["state2"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap2"] = self.name2qmap["udynamic"] if config["block_wise"]: n = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) state["absmax2"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) else: state["max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["max2"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max2"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) @torch.no_grad() def update_step(self, group, p, gindex, pindex): state = self.state[p] grad = p.grad config = self.get_config(gindex, pindex, group) state["step"] += 1 step = state["step"] if config["percentile_clipping"] < 100: current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( grad, state["gnorm_vec"], step, config["percentile_clipping"] ) else: gnorm_scale = 1.0 if state["state1"].dtype == torch.float: F.optimizer_update_32bit( self.optimizer_name, grad, p, state["state1"], config["betas"][0], config["eps"], step, config["lr"], state["state2"], config["betas"][1], config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], skip_zeros=config["skip_zeros"], ) elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: F.optimizer_update_8bit( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["max1"], state["max2"], state["new_max1"], state["new_max2"], config["weight_decay"], gnorm_scale=gnorm_scale, unorm_vec=state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) # swap maxes state["max1"], state["new_max1"] = state["new_max1"], state["max1"] state["max2"], state["new_max2"] = state["new_max2"], state["max2"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["absmax1"], state["absmax2"], config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], ) class Optimizer1State(Optimizer8bit): def __init__( self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError( f'Amount of optimizer bits not supported: {config["optim_bits"]}' ) if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32 or ( dtype == torch.uint8 and p.numel() < 4096 ): state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device, ) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to( p.device ) state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap1"] = self.name2qmap["dynamic"] if config["block_wise"]: n = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) else: state["max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) @torch.no_grad() def update_step(self, group, p, gindex, pindex): state = self.state[p] grad = p.grad config = self.get_config(gindex, pindex, group) state["step"] += 1 step = state["step"] if config["percentile_clipping"] < 100: current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( grad, state["gnorm_vec"], step, config["percentile_clipping"] ) else: gnorm_scale = 1.0 if state["state1"].dtype == torch.float: F.optimizer_update_32bit( self.optimizer_name, grad, p, state["state1"], config["betas"][0], config["eps"], step, config["lr"], None, 0.0, config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], skip_zeros=config["skip_zeros"], ) elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: F.optimizer_update_8bit( self.optimizer_name, grad, p, state["state1"], None, config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], None, state["max1"], None, state["new_max1"], None, config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) state["max1"], state["new_max1"] = state["new_max1"], state["max1"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], None, config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], None, state["absmax1"], None, config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], )
bitsandbytes-main
bitsandbytes/optim/optimizer.py
from setuptools import setup, find_packages setup( name = 'anymal-belief-state-encoder-decoder-pytorch', packages = find_packages(exclude=[]), version = '0.0.20', license='MIT', description = 'Anymal Belief-state Encoder Decoder - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/anymal-belief-state-encoder-decoder-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'attention gating', 'belief state', 'robotics' ], install_requires=[ 'einops>=0.4', 'einops-exts', 'torch>=1.6', ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
anymal-belief-state-encoder-decoder-pytorch-main
setup.py
from anymal_belief_state_encoder_decoder_pytorch.networks import Student, Teacher, MLP, Anymal from anymal_belief_state_encoder_decoder_pytorch.ppo import PPO, MockEnv
anymal-belief-state-encoder-decoder-pytorch-main
anymal_belief_state_encoder_decoder_pytorch/__init__.py
import torch from torch import nn import torch.nn.functional as F from torch.nn import GRUCell from torch.distributions import Categorical from torch.optim import Adam from einops import rearrange from einops_exts import check_shape from einops.layers.torch import Rearrange from anymal_belief_state_encoder_decoder_pytorch.running import RunningStats # helper functions def exists(val): return val is not None # freezing of neural networks (teacher needs to be frozen) def set_module_requires_grad_(module, requires_grad): for param in module.parameters(): param.requires_grad = requires_grad def freeze_all_layers_(module): set_module_requires_grad_(module, False) def unfreeze_all_layers_(module): set_module_requires_grad_(module, True) # in the paper # the network attention gates the exteroception, and then sums it to the belief state # todo: make sure the padding is on the right side def sum_with_zeropad(x, y): x_dim, y_dim = x.shape[-1], y.shape[-1] if x_dim == y_dim: return x + y if x_dim < y_dim: x = F.pad(x, (y_dim - x_dim, 0)) if y_dim < x_dim: y = F.pad(y, (x_dim - y_dim, 0)) return x + y # add basic MLP class MLP(nn.Module): def __init__( self, dims, activation = nn.LeakyReLU, final_activation = False ): super().__init__() assert isinstance(dims, (list, tuple)) assert len(dims) > 2, 'must have at least 3 dimensions (input, *hiddens, output)' dim_pairs = list(zip(dims[:-1], dims[1:])) *dim_pairs, dim_out_pair = dim_pairs layers = [] for dim_in, dim_out in dim_pairs: layers.extend([ nn.Linear(dim_in, dim_out), activation() ]) layers.append(nn.Linear(*dim_out_pair)) if final_activation: layers.append(activation()) self.net = nn.Sequential(*layers) def forward(self, x): if isinstance(x, (tuple, list)): x = torch.cat(x, dim = -1) return self.net(x) class Student(nn.Module): def __init__( self, num_actions, proprio_dim = 133, extero_dim = 52, # in paper, height samples was marked as 208, but wasn't sure if that was per leg, or (4 legs x 52) = 208 latent_extero_dim = 24, extero_encoder_hidden = (80, 60), belief_state_encoder_hiddens = (64, 64), extero_gate_encoder_hiddens = (64, 64), belief_state_dim = 120, # should be equal to teacher's extero_dim + privileged_dim (part of the GRU's responsibility is to maintain a hidden state that forms an opinion on the privileged information) gru_num_layers = 2, gru_hidden_size = 50, mlp_hidden = (256, 160, 128), num_legs = 4, privileged_dim = 50, privileged_decoder_hiddens = (64, 64), extero_decoder_hiddens = (64, 64), ): super().__init__() assert belief_state_dim > (num_legs * latent_extero_dim) self.num_legs = num_legs self.proprio_dim = proprio_dim self.extero_dim = extero_dim # encoding of exteroception self.extero_encoder = MLP((extero_dim, *extero_encoder_hidden, latent_extero_dim)) # GRU related parameters gru_input_dim = (latent_extero_dim * num_legs) + proprio_dim gru_input_dims = (gru_input_dim, *((gru_hidden_size,) * (gru_num_layers - 1))) self.gru_cells = nn.ModuleList([GRUCell(input_dim, gru_hidden_size) for input_dim in gru_input_dims]) self.gru_hidden_size = gru_hidden_size # belief state encoding self.belief_state_encoder = MLP((gru_hidden_size, *belief_state_encoder_hiddens, belief_state_dim)) # attention gating of exteroception self.to_latent_extero_attn_gate = MLP((gru_hidden_size, *extero_gate_encoder_hiddens, latent_extero_dim * num_legs)) # belief state decoder self.privileged_decoder = MLP((gru_hidden_size, *privileged_decoder_hiddens, privileged_dim)) self.extero_decoder = MLP((gru_hidden_size, *extero_decoder_hiddens, extero_dim * num_legs)) self.to_extero_attn_gate = MLP((gru_hidden_size, *extero_gate_encoder_hiddens, extero_dim * num_legs)) # final MLP to action logits self.to_logits = MLP(( belief_state_dim + proprio_dim, *mlp_hidden )) self.to_action_head = nn.Sequential( nn.LeakyReLU(), nn.Linear(mlp_hidden[-1], num_actions) ) def get_gru_hiddens(self): device = next(self.parameters()).device return torch.zeros((len(self.gru_cells), self.gru_hidden_size)) def forward( self, proprio, extero, hiddens = None, return_estimated_info = False, # for returning estimated privileged info + exterceptive info, for reconstruction loss return_action_categorical_dist = False ): check_shape(proprio, 'b d', d = self.proprio_dim) check_shape(extero, 'b n d', n = self.num_legs, d = self.extero_dim) latent_extero = self.extero_encoder(extero) latent_extero = rearrange(latent_extero, 'b ... -> b (...)') # RNN if not exists(hiddens): prev_hiddens = (None,) * len(self.gru_cells) else: prev_hiddens = hiddens.unbind(dim = -2) gru_input = torch.cat((proprio, latent_extero), dim = -1) next_hiddens = [] for gru_cell, prev_hidden in zip(self.gru_cells, prev_hiddens): gru_input = gru_cell(gru_input, prev_hidden) next_hiddens.append(gru_input) gru_output = gru_input next_hiddens = torch.stack(next_hiddens, dim = -2) # attention gating of exteroception latent_extero_attn_gate = self.to_latent_extero_attn_gate(gru_output) gated_latent_extero = latent_extero * latent_extero_attn_gate.sigmoid() # belief state and add gated exteroception belief_state = self.belief_state_encoder(gru_output) belief_state = sum_with_zeropad(belief_state, gated_latent_extero) # to action logits belief_state_with_proprio = torch.cat(( proprio, belief_state, ), dim = 1) logits = self.to_logits(belief_state_with_proprio) pi_logits = self.to_action_head(logits) return_action = Categorical(pi_logits.softmax(dim = -1)) if return_action_categorical_dist else pi_logits if not return_estimated_info: return return_action, next_hiddens # belief state decoding # for reconstructing privileged and exteroception information from hidden belief states recon_privileged = self.privileged_decoder(gru_output) recon_extero = self.extero_decoder(gru_output) extero_attn_gate = self.to_extero_attn_gate(gru_output) gated_extero = rearrange(extero, 'b ... -> b (...)') * extero_attn_gate.sigmoid() recon_extero = recon_extero + gated_extero recon_extero = rearrange(recon_extero, 'b (n d) -> b n d', n = self.num_legs) # whether to return raw policy logits or action probs wrapped with Categorical return return_action, next_hiddens, (recon_privileged, recon_extero) class Teacher(nn.Module): def __init__( self, num_actions, proprio_dim = 133, extero_dim = 52, # in paper, height samples was marked as 208, but wasn't sure if that was per leg, or (4 legs x 52) = 208 latent_extero_dim = 24, extero_encoder_hidden = (80, 60), privileged_dim = 50, latent_privileged_dim = 24, privileged_encoder_hidden = (64, 32), mlp_hidden = (256, 160, 128), num_legs = 4 ): super().__init__() self.num_legs = num_legs self.proprio_dim = proprio_dim self.extero_dim = extero_dim self.privileged_dim = privileged_dim self.extero_encoder = MLP((extero_dim, *extero_encoder_hidden, latent_extero_dim)) self.privileged_encoder = MLP((privileged_dim, *privileged_encoder_hidden, latent_privileged_dim)) self.to_logits = MLP(( latent_extero_dim * num_legs + latent_privileged_dim + proprio_dim, *mlp_hidden )) self.to_action_head = nn.Sequential( nn.LeakyReLU(), nn.Linear(mlp_hidden[-1], num_actions) ) self.to_value_head = nn.Sequential( nn.LeakyReLU(), nn.Linear(mlp_hidden[-1], 1), Rearrange('... 1 -> ...') ) def forward( self, proprio, extero, privileged, return_value_head = False, return_action_categorical_dist = False ): check_shape(proprio, 'b d', d = self.proprio_dim) check_shape(extero, 'b n d', n = self.num_legs, d = self.extero_dim) check_shape(privileged, 'b d', d = self.privileged_dim) latent_extero = self.extero_encoder(extero) latent_extero = rearrange(latent_extero, 'b ... -> b (...)') latent_privileged = self.privileged_encoder(privileged) latent = torch.cat(( proprio, latent_extero, latent_privileged, ), dim = -1) logits = self.to_logits(latent) pi_logits = self.to_action_head(logits) if not return_value_head: return pi_logits value_logits = self.to_value_head(logits) return_action = Categorical(pi_logits.softmax(dim = -1)) if return_action_categorical_dist else pi_logits return return_action, value_logits # manages both teacher and student under one module class Anymal(nn.Module): def __init__( self, num_actions, proprio_dim = 133, extero_dim = 52, privileged_dim = 50, num_legs = 4, latent_extero_dim = 24, latent_privileged_dim = 24, teacher_extero_encoder_hidden = (80, 60), teacher_privileged_encoder_hidden = (64, 32), student_extero_gate_encoder_hiddens = (64, 64), student_belief_state_encoder_hiddens = (64, 64), student_belief_state_dim = 120, student_gru_num_layers = 2, student_gru_hidden_size = 50, student_privileged_decoder_hiddens = (64, 64), student_extero_decoder_hiddens = (64, 64), student_extero_encoder_hidden = (80, 60), mlp_hidden = (256, 160, 128), recon_loss_weight = 0.5 ): super().__init__() self.proprio_dim = proprio_dim self.num_legs = num_legs self.extero_dim = extero_dim self.student = Student( num_actions = num_actions, proprio_dim = proprio_dim, extero_dim = extero_dim, latent_extero_dim = latent_extero_dim, extero_encoder_hidden = student_extero_encoder_hidden, belief_state_encoder_hiddens = student_belief_state_encoder_hiddens, extero_gate_encoder_hiddens = student_extero_gate_encoder_hiddens, belief_state_dim = student_belief_state_dim, gru_num_layers = student_gru_num_layers, gru_hidden_size = student_gru_hidden_size, mlp_hidden = mlp_hidden, num_legs = num_legs, privileged_dim = privileged_dim, privileged_decoder_hiddens = student_privileged_decoder_hiddens, extero_decoder_hiddens = student_extero_decoder_hiddens, ) self.teacher = Teacher( num_actions = num_actions, proprio_dim = proprio_dim, extero_dim = extero_dim, latent_extero_dim = latent_extero_dim, extero_encoder_hidden = teacher_extero_encoder_hidden, privileged_dim = privileged_dim, latent_privileged_dim = latent_privileged_dim, privileged_encoder_hidden = teacher_privileged_encoder_hidden, mlp_hidden = mlp_hidden, num_legs = num_legs ) self.recon_loss_weight = recon_loss_weight def get_observation_running_stats(self): return RunningStats(self.proprio_dim), RunningStats((self.num_legs, self.extero_dim)) def init_student_with_teacher(self): self.student.extero_encoder.load_state_dict(self.teacher.extero_encoder.state_dict()) self.student.to_logits.load_state_dict(self.teacher.to_logits.state_dict()) self.student.to_action_head.load_state_dict(self.teacher.to_action_head.state_dict()) def forward_teacher(self, *args, return_value_head = False, **kwargs): return self.teacher(*args, return_value_head = return_value_head, **kwargs) def forward_student(self, *args, **kwargs): return self.student(*args, **kwargs) # main forward for training the student with teacher as guide def forward( self, proprio, extero, privileged, teacher_states = None, hiddens = None, noise_strength = 0.1 ): self.teacher.eval() freeze_all_layers_(self.teacher) with torch.no_grad(): teacher_proprio, teacher_extero = teacher_states if exists(teacher_states) else (proprio, extero) teacher_action_logits = self.forward_teacher(teacher_proprio, teacher_extero, privileged) noised_extero = extero + torch.rand_like(extero) * noise_strength student_action_logits, hiddens, recons = self.student(proprio, noised_extero, hiddens = hiddens, return_estimated_info = True) # calculate reconstruction loss of privileged and denoised exteroception (recon_privileged, recon_extero) = recons recon_loss = F.mse_loss(recon_privileged, privileged) + F.mse_loss(recon_extero, extero) # calculate behavior loss, which is also squared distance? behavior_loss = F.mse_loss(teacher_action_logits, student_action_logits) # why not kl div on action probs? loss = behavior_loss + recon_loss * self.recon_loss_weight return loss, hiddens
anymal-belief-state-encoder-decoder-pytorch-main
anymal_belief_state_encoder_decoder_pytorch/networks.py
import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torch.optim import Adam from collections import deque from einops import rearrange from anymal_belief_state_encoder_decoder_pytorch import Anymal class ExperienceDataset(Dataset): def __init__(self, data): super().__init__() self.data = data def __len__(self): return len(self.data[0]) def __getitem__(self, ind): return tuple(map(lambda t: t[ind], self.data)) def create_dataloader(data, batch_size): ds = ExperienceDataset(data) return DataLoader(ds, batch_size = batch_size, drop_last = True) class StudentTrainer(nn.Module): def __init__( self, *, anymal, env, epochs = 2, lr = 5e-4, max_timesteps = 10000, update_timesteps = 5000, minibatch_size = 16, truncate_tpbtt = 10 ): super().__init__() self.env = env self.anymal = anymal self.optimizer = Adam(anymal.student.parameters(), lr = lr) self.epochs = epochs self.max_timesteps = max_timesteps self.update_timesteps = update_timesteps self.minibatch_size = minibatch_size self.truncate_tpbtt = truncate_tpbtt self.running_proprio, self.running_extero = anymal.get_observation_running_stats() def learn_from_memories( self, memories, next_states, noise_strength = 0. ): device = next(self.parameters()).device # retrieve and prepare data from memory for training states = [] teacher_states = [] hiddens = [] dones = [] for (state, teacher_state, hidden, done) in memories: states.append(state) teacher_states.append(teacher_state) hiddens.append(hidden) dones.append(torch.Tensor([done])) states = tuple(zip(*states)) teacher_states = tuple(zip(*teacher_states)) # convert values to torch tensors to_torch_tensor = lambda t: torch.stack(t).to(device).detach() states = map(to_torch_tensor, states) teacher_states = map(to_torch_tensor, teacher_states) hiddens = to_torch_tensor(hiddens) dones = to_torch_tensor(dones) # prepare dataloader for policy phase training dl = create_dataloader([*states, *teacher_states, hiddens, dones], self.minibatch_size) current_hiddens = self.anymal.student.get_gru_hiddens() current_hiddens = rearrange(current_hiddens, 'l d -> 1 l d') for _ in range(self.epochs): for ind, (proprio, extero, privileged, teacher_proprio, teacher_extero, episode_hiddens, done) in enumerate(dl): straight_through_hiddens = current_hiddens - current_hiddens.detach() + episode_hiddens loss, current_hiddens = self.anymal( proprio, extero, privileged, teacher_states = (teacher_proprio, teacher_extero), hiddens = straight_through_hiddens, noise_strength = noise_strength ) loss.backward(retain_graph = True) tbptt_limit = not ((ind + 1) % self.truncate_tpbtt) if tbptt_limit: # how far back in time should the gradients go for recurrence self.optimizer.step() self.optimizer.zero_grad() current_hiddens = current_hiddens.detach() # detacher hiddens depending on whether it is a new episode or not # todo: restructure dataloader to load one episode per batch rows maybe_detached_hiddens = [] for current_hidden, done in zip(current_hiddens.unbind(dim = 0), dones.unbind(dim = 0)): maybe_detached_hiddens.append(current_hidden.detached() if done else current_hidden) current_hiddens = torch.stack(maybe_detached_hiddens) def forward( self, noise_strength = 0. ): device = next(self.parameters()).device time = 0 done = False states = self.env.reset() memories = deque([]) hidden = self.anymal.student.get_gru_hiddens() hidden = rearrange(hidden, 'l d -> 1 l d') self.running_proprio.clear() self.running_extero.clear() for timestep in range(self.max_timesteps): time += 1 states = list(map(lambda t: t.to(device), states)) anymal_states = list(map(lambda t: rearrange(t, '... -> 1 ...'), states)) # teacher needs to have normalized observations (proprio, extero, privileged) = states self.running_proprio.push(proprio) self.running_extero.push(extero) teacher_states = ( self.running_proprio.norm(proprio), self.running_extero.norm(extero) ) teacher_anymal_states = list(map(lambda t: rearrange(t, '... -> 1 ...'), teacher_states)) # add states to memories memories.append(( states, teacher_states, rearrange(hidden, '1 ... -> ...'), done )) dist, hidden = self.anymal.forward_student( *anymal_states[:-1], hiddens = hidden, return_action_categorical_dist = True ) action = dist.sample() action_log_prob = dist.log_prob(action) action = action.item() next_states, _, done, _ = self.env.step(action) states = next_states if time % self.update_timesteps == 0: self.learn_from_memories(memories, next_states, noise_strength = noise_strength) memories.clear() if done: break
anymal-belief-state-encoder-decoder-pytorch-main
anymal_belief_state_encoder_decoder_pytorch/trainer.py
from collections import namedtuple, deque import torch from torch import nn from torch.utils.data import Dataset, DataLoader from torch.optim import Adam from anymal_belief_state_encoder_decoder_pytorch import Anymal from anymal_belief_state_encoder_decoder_pytorch.networks import unfreeze_all_layers_ from einops import rearrange # they use basic PPO for training the teacher with privileged information # then they used noisy student training, using the trained "oracle" teacher as guide # ppo data Memory = namedtuple('Memory', ['state', 'action', 'action_log_prob', 'reward', 'done', 'value']) class ExperienceDataset(Dataset): def __init__(self, data): super().__init__() self.data = data def __len__(self): return len(self.data[0]) def __getitem__(self, ind): return tuple(map(lambda t: t[ind], self.data)) def create_shuffled_dataloader(data, batch_size): ds = ExperienceDataset(data) return DataLoader(ds, batch_size = batch_size, shuffle = True) # ppo helper functions def normalize(t, eps = 1e-5): return (t - t.mean()) / (t.std() + eps) def clipped_value_loss(values, rewards, old_values, clip): value_clipped = old_values + (values - old_values).clamp(-clip, clip) value_loss_1 = (value_clipped.flatten() - rewards) ** 2 value_loss_2 = (values.flatten() - rewards) ** 2 return torch.mean(torch.max(value_loss_1, value_loss_2)) # mock environment class MockEnv(object): def __init__( self, proprio_dim, extero_dim, privileged_dim, num_legs = 4 ): self.proprio_dim = proprio_dim self.extero_dim = extero_dim self.privileged_dim = privileged_dim self.num_legs = num_legs def rand_state(self): return ( torch.randn((self.proprio_dim,)), torch.randn((self.num_legs, self.extero_dim,)), torch.randn((self.privileged_dim,)) ) def reset(self): return self.rand_state() def step(self, action): reward = torch.randn((1,)) done = torch.tensor([False]) return self.rand_state(), reward, done, None # main ppo class class PPO(nn.Module): def __init__( self, *, env, anymal, epochs = 2, lr = 5e-4, betas = (0.9, 0.999), eps_clip = 0.2, beta_s = 0.005, value_clip = 0.4, max_timesteps = 10000, update_timesteps = 5000, lam = 0.95, gamma = 0.99, minibatch_size = 8300 ): super().__init__() assert isinstance(anymal, Anymal) self.env = env self.anymal = anymal self.minibatch_size = minibatch_size self.optimizer = Adam(anymal.teacher.parameters(), lr = lr, betas = betas) self.epochs = epochs self.max_timesteps = max_timesteps self.update_timesteps = update_timesteps self.beta_s = beta_s self.eps_clip = eps_clip self.value_clip = value_clip self.lam = lam self.gamma = gamma # in paper, they said observations fed to teacher were normalized # by running mean self.running_proprio, self.running_extero = anymal.get_observation_running_stats() def learn_from_memories( self, memories, next_states ): device = next(self.parameters()).device # retrieve and prepare data from memory for training states = [] actions = [] old_log_probs = [] rewards = [] masks = [] values = [] for mem in memories: states.append(mem.state) actions.append(torch.tensor(mem.action)) old_log_probs.append(mem.action_log_prob) rewards.append(mem.reward) masks.append(1 - float(mem.done)) values.append(mem.value) states = tuple(zip(*states)) # calculate generalized advantage estimate next_states = map(lambda t: t.to(device), next_states) next_states = map(lambda t: rearrange(t, '... -> 1 ...'), next_states) _, next_value = self.anymal.forward_teacher(*next_states, return_value_head = True) next_value = next_value.detach() values = values + [next_value] returns = [] gae = 0 for i in reversed(range(len(rewards))): delta = rewards[i] + self.gamma * values[i + 1] * masks[i] - values[i] gae = delta + self.gamma * self.lam * masks[i] * gae returns.insert(0, gae + values[i]) # convert values to torch tensors to_torch_tensor = lambda t: torch.stack(t).to(device).detach() states = map(to_torch_tensor, states) actions = to_torch_tensor(actions) old_log_probs = to_torch_tensor(old_log_probs) old_values = to_torch_tensor(values[:-1]) old_values = rearrange(old_values, '... 1 -> ...') rewards = torch.tensor(returns).float().to(device) # prepare dataloader for policy phase training dl = create_shuffled_dataloader([*states, actions, old_log_probs, rewards, old_values], self.minibatch_size) # policy phase training, similar to original PPO for _ in range(self.epochs): for proprio, extero, privileged, actions, old_log_probs, rewards, old_values in dl: dist, values = self.anymal.forward_teacher( proprio, extero, privileged, return_value_head = True, return_action_categorical_dist = True ) action_log_probs = dist.log_prob(actions) entropy = dist.entropy() ratios = (action_log_probs - old_log_probs).exp() advantages = normalize(rewards - old_values.detach()) surr1 = ratios * advantages surr2 = ratios.clamp(1 - self.eps_clip, 1 + self.eps_clip) * advantages policy_loss = - torch.min(surr1, surr2) - self.beta_s * entropy value_loss = clipped_value_loss(values, rewards, old_values, self.value_clip) (policy_loss.mean() + value_loss.mean()).backward() self.optimizer.step() self.optimizer.zero_grad() # does one episodes worth of learning def forward(self): device = next(self.parameters()).device unfreeze_all_layers_(self.anymal) time = 0 states = self.env.reset() # states assumed to be (proprioception, exteroception, privileged information) memories = deque([]) self.running_proprio.clear() self.running_extero.clear() for timestep in range(self.max_timesteps): time += 1 states = list(map(lambda t: t.to(device), states)) proprio, extero, privileged = states # update running means for observations, for teacher self.running_proprio.push(proprio) self.running_extero.push(extero) # normalize observation states for teacher (proprio and extero) states = ( self.running_proprio.norm(proprio), self.running_extero.norm(extero), privileged ) anymal_states = list(map(lambda t: rearrange(t, '... -> 1 ...'), states)) dist, values = self.anymal.forward_teacher( *anymal_states, return_value_head = True, return_action_categorical_dist = True ) action = dist.sample() action_log_prob = dist.log_prob(action) action = action.item() next_states, reward, done, _ = self.env.step(action) memory = Memory(states, action, action_log_prob, reward, done, values) memories.append(memory) states = next_states if time % self.update_timesteps == 0: self.learn_from_memories(memories, next_states) memories.clear() if done: break print('trained for 1 episode')
anymal-belief-state-encoder-decoder-pytorch-main
anymal_belief_state_encoder_decoder_pytorch/ppo.py
import torch from torch import nn class RunningStats(nn.Module): def __init__(self, shape, eps = 1e-5): super().__init__() shape = shape if isinstance(shape, tuple) else (shape,) self.shape = shape self.eps = eps self.n = 0 self.register_buffer('old_mean', torch.zeros(shape), persistent = False) self.register_buffer('new_mean', torch.zeros(shape), persistent = False) self.register_buffer('old_std', torch.zeros(shape), persistent = False) self.register_buffer('new_std', torch.zeros(shape), persistent = False) def clear(self): self.n = 0 def push(self, x): self.n += 1 if self.n == 1: self.old_mean.copy_(x.data) self.new_mean.copy_(x.data) self.old_std.zero_() self.new_std.zero_() return self.new_mean.copy_(self.old_mean + (x - self.old_mean) / self.n) self.new_std.copy_(self.old_std + (x - self.old_mean) * (x - self.new_mean)) self.old_mean.copy_(self.new_mean) self.old_std.copy_(self.new_std) def mean(self): return self.new_mean if self.n else torch.zeros_like(self.new_mean) def variance(self): return (self.new_std / (self.n - 1)) if self.n > 1 else torch.zeros_like(self.new_std) def rstd(self): return torch.rsqrt(self.variance() + self.eps) def norm(self, x): return (x - self.mean()) * self.rstd()
anymal-belief-state-encoder-decoder-pytorch-main
anymal_belief_state_encoder_decoder_pytorch/running.py
from setuptools import find_packages, setup setup( name="PaLM-pytorch", packages=find_packages(exclude=[]), version="0.2.2", license="MIT", description="PaLM: Scaling Language Modeling with Pathways - Pytorch", author="Phil Wang", author_email="lucidrains@gmail.com", long_description_content_type = 'text/markdown', url="https://github.com/lucidrains/PaLM-pytorch", keywords=[ "artificial general intelligence", "deep learning", "transformers", "attention mechanism", ], install_requires=[ "einops>=0.4", "torch>=1.6", "triton>=2.0dev" ], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Scientific/Engineering :: Artificial Intelligence", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", ], )
PaLM-pytorch-main
setup.py
import gzip import random import numpy as np import torch import torch.optim as optim import tqdm from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset from palm_pytorch.triton import PaLM from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 2e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 1024 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return "".join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = PaLM(num_tokens=256, dim=512, depth=8) model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN) model.cuda() # prepare enwik8 data with gzip.open("./examples/enwik8_deepspeed/data/enwik8.gz") as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader)) loss.backward() print(f"training loss: {loss.item()}") torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader)) print(f"validation loss: {loss.item()}") if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f"%s \n\n %s", (prime, "*" * 100)) sample = model.generate(inp[None, ...], GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str)
PaLM-pytorch-main
train.py
import torch import torch.nn.functional as F from einops import rearrange from torch import einsum, nn # normalization # they use layernorm without bias, something that pytorch does not offer class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.register_buffer("beta", torch.zeros(dim)) def forward(self, x): return F.layer_norm(x, x.shape[-1:], self.gamma, self.beta) # residual class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): return self.fn(x) + x # rotary positional embedding # https://arxiv.org/abs/2104.09864 class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) def forward(self, max_seq_len, *, device): seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype) freqs = einsum("i , j -> i j", seq, self.inv_freq) return torch.cat((freqs, freqs), dim=-1) def rotate_half(x): x = rearrange(x, "... (j d) -> ... j d", j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t): return (t * pos.cos()) + (rotate_half(t) * pos.sin()) # classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward # https://arxiv.org/abs/2002.05202 class SwiGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) return F.silu(gate) * x # parallel attention and feedforward with residual # discovered by Wang et al + EleutherAI from GPT-J fame class ParallelTransformerBlock(nn.Module): def __init__(self, dim, dim_head=64, heads=8, ff_mult=4): super().__init__() self.norm = LayerNorm(dim) attn_inner_dim = dim_head * heads ff_inner_dim = dim * ff_mult self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2)) self.heads = heads self.scale = dim_head**-0.5 self.rotary_emb = RotaryEmbedding(dim_head) self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) self.ff_out = nn.Sequential( SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False) ) # for caching causal mask and rotary embeddings self.register_buffer("mask", None, persistent=False) self.register_buffer("pos_emb", None, persistent=False) def get_mask(self, n, device): if self.mask is not None and self.mask.shape[-1] >= n: return self.mask[:n, :n] mask = torch.ones((n, n), device=device, dtype=torch.bool).triu(1) self.register_buffer("mask", mask, persistent=False) return mask def get_rotary_embedding(self, n, device): if self.pos_emb is not None and self.pos_emb.shape[-2] >= n: return self.pos_emb[:n] pos_emb = self.rotary_emb(n, device=device) self.register_buffer("pos_emb", pos_emb, persistent=False) return pos_emb def forward(self, x): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device, h = x.shape[1], x.device, self.heads # pre layernorm x = self.norm(x) # attention queries, keys, values, and feedforward inner q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) # split heads # they use multi-query single-key-value attention, yet another Noam Shazeer paper # they found no performance loss past a certain scale, and more efficient decoding obviously # https://arxiv.org/abs/1911.02150 q = rearrange(q, "b n (h d) -> b h n d", h=h) # rotary embeddings positions = self.get_rotary_embedding(n, device) q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k)) # scale q = q * self.scale # similarity sim = einsum("b h i d, b j d -> b h i j", q, k) # causal mask causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) # aggregate values out = einsum("b h i j, b j d -> b h i d", attn, v) # merge heads out = rearrange(out, "b h n d -> b n (h d)") return self.attn_out(out) + self.ff_out(ff) # transformer def PaLM(*, dim, num_tokens, depth, dim_head=64, heads=8, ff_mult=4): net = nn.Sequential( nn.Embedding(num_tokens, dim), *[ Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult)) for _ in range(depth) ], LayerNorm(dim), nn.Linear(dim, num_tokens, bias=False) ) # they used embedding weight tied projection out to logits, not common, but works net[-1].weight = net[0].weight nn.init.normal_(net[0].weight, std=0.02) return net
PaLM-pytorch-main
palm_pytorch/palm_pytorch.py
import torch import torch.nn.functional as F from einops import rearrange from torch import nn # helper function def exists(val): return val is not None def eval_decorator(fn): def inner(model, *args, **kwargs): was_training = model.training model.eval() out = fn(model, *args, **kwargs) model.train(was_training) return out return inner # top k filtering def top_k(logits, thres=0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float("-inf")) probs.scatter_(1, ind, val) return probs class AutoregressiveWrapper(nn.Module): def __init__(self, net, max_seq_len=2048, pad_value=0): super().__init__() self.max_seq_len = max_seq_len self.pad_value = pad_value self.net = net @torch.no_grad() @eval_decorator def generate( self, start_tokens, seq_len, eos_token=None, temperature=1.0, filter_thres=0.9, **kwargs ): b, t, device = *start_tokens.shape, start_tokens.device out = start_tokens for _ in range(seq_len): logits = self.net(out, **kwargs)[:, -1, :] filtered_logits = top_k(logits, thres=filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) if exists(eos_token): is_eos_token = out == eos_token if is_eos_token.any(dim=-1).all(): # mask out everything after the eos tokens shifted_is_eos_tokens = F.pad(is_eos_token, (1, -1)) mask = shifted_is_eos_tokens.float().cumsum(dim=-1) >= 1 out = out.masked_fill(mask, self.pad_value) break out = out[:, t:] return out def forward(self, x, **kwargs): x_inp, x_labels = x[:, :-1], x[:, 1:] logits = self.net(x_inp, **kwargs) return F.cross_entropy(rearrange(logits, "b c n -> b n c"), x_labels)
PaLM-pytorch-main
palm_pytorch/autoregressive_wrapper.py
from palm_pytorch.palm_pytorch import PaLM
PaLM-pytorch-main
palm_pytorch/__init__.py
import torch import torch.nn.functional as F from einops import rearrange, repeat from torch import einsum, nn from math import log2, floor def exists(val): return val is not None # normalization class RMSNorm(nn.Module): def __init__(self, dim, eps = 1e-8): super().__init__() self.scale = dim ** -0.5 self.eps = eps self.g = nn.Parameter(torch.ones(dim)) def forward(self, x): norm = torch.norm(x, dim = -1, keepdim = True) * self.scale return x / norm.clamp(min = self.eps) * self.g # AliBi class AlibiPositionalBias(nn.Module): def __init__(self, heads, **kwargs): super().__init__() self.heads = heads slopes = torch.Tensor(self._get_slopes(heads)) slopes = rearrange(slopes, 'h -> h 1 1') self.register_buffer('slopes', slopes, persistent = False) self.register_buffer('bias', None, persistent = False) def get_bias(self, i, j, device): i_arange = torch.arange(i, device = device) j_arange = torch.arange(j, device = device) bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) return bias @staticmethod def _get_slopes(heads): def get_slopes_power_of_2(n): start = (2**(-2**-(log2(n)-3))) ratio = start return [start*ratio**i for i in range(n)] if log2(heads).is_integer(): return get_slopes_power_of_2(heads) closest_power_of_2 = 2 ** floor(log2(heads)) return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] def forward(self, qk_sim): h, i, j, device = *qk_sim.shape[-3:], qk_sim.device if exists(self.bias) and self.bias.shape[-1] >= j: return self.bias[..., :i, :j] bias = self.get_bias(i, j, device) bias = bias * self.slopes num_heads_unalibied = h - bias.shape[0] bias = F.pad(bias, (0, 0, 0, 0, 0, num_heads_unalibied)) self.register_buffer('bias', bias, persistent=False) return bias # residual class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): return self.fn(x) + x # classic Noam Shazeer paper, except here they use SwiGLU instead of the more popular GEGLU for gating the feedforward # https://arxiv.org/abs/2002.05202 class SwiGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) return F.silu(gate) * x # parallel attention and feedforward with residual # discovered by Wang et al + EleutherAI from GPT-J fame class ParallelTransformerBlock(nn.Module): def __init__(self, dim, dim_head=64, heads=8, ff_mult=4): super().__init__() self.norm = RMSNorm(dim) attn_inner_dim = dim_head * heads ff_inner_dim = dim * ff_mult self.fused_dims = (attn_inner_dim, dim_head, (ff_inner_dim * 2)) self.heads = heads self.scale = dim_head**-0.5 self.alibi_pos_biases = AlibiPositionalBias(heads = self.heads) self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) self.ff_out = nn.Sequential( SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False) ) # for caching causal mask self.register_buffer("mask", None, persistent=False) def get_mask(self, n, device): if self.mask is not None and self.mask.shape[-1] >= n: return self.mask[:n, :n] mask = torch.triu(torch.ones((n, n), device=device, dtype=torch.bool), 1) self.register_buffer("mask", mask, persistent=False) return mask def forward(self, x): """ einstein notation b - batch h - heads n, i, j - sequence length (base sequence length, source, target) d - feature dimension """ n, device, h = x.shape[1], x.device, self.heads # pre layernorm x = self.norm(x) # attention queries, keys or values (shared key / values is a personal discovery of mine), and feedforward inner q, kv, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) # split heads # they use multi-query single-key-value attention, yet another Noam Shazeer paper # they found no performance loss past a certain scale, and more efficient decoding obviously # https://arxiv.org/abs/1911.02150 q = rearrange(q, "b n (h d) -> b h n d", h = h) # scale q = q * self.scale # similarity sim = einsum("b h i d, b j d -> b h i j", q, kv) # add the alibi bias sim = sim + self.alibi_pos_biases(sim) # causal mask causal_mask = self.get_mask(n, device) sim = sim.masked_fill(causal_mask, -torch.finfo(sim.dtype).max) # attention attn = sim.softmax(dim=-1) out = einsum("b h i j, b j d -> b h i d", attn, kv) # merge heads out = rearrange(out, "b h n d -> b n (h d)") merge_heads = self.attn_out(out) + self.ff_out(ff) return merge_heads def PaLM(*, dim, num_tokens, depth, dim_head=64, heads=8, ff_mult=4): net = nn.Sequential( nn.Embedding(num_tokens, dim), *[Residual(ParallelTransformerBlock(dim, dim_head, heads, ff_mult)) for _ in range(depth)], RMSNorm(dim), nn.Linear(dim, num_tokens, bias=False) ) # they used embedding weight tied projection out to logits, not common, but works net[-1].weight = net[0].weight nn.init.normal_(net[0].weight, std=0.02) return net # For testing functionality of the model if __name__ == "__main__": palm = PaLM( num_tokens = 20000, dim = 512, depth = 1, heads = 8, dim_head = 64, ) tokens = torch.randint(0, 20000, (1, 2048)) logits = palm(tokens) # (1, 2048, 20000) n_params_torch = sum( p.numel() for p in palm.parameters() if p.requires_grad ) print(f"Number of parameters in torch model: {n_params_torch}")
PaLM-pytorch-main
palm_pytorch/palm_lite.py
import torch import torch.nn.functional as F from einops import rearrange from torch import einsum, nn from palm_pytorch.triton.softmax import causal_softmax from palm_pytorch.triton.layernorm import layernorm_without_bias # normalization class LayerNorm(nn.Module): def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return layernorm_without_bias(x, x.shape[-1:], self.gamma) # residual class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x): return self.fn(x) + x # rotary positional embedding class RotaryEmbedding(nn.Module): def __init__(self, dim): super().__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer("inv_freq", inv_freq) def forward(self, max_seq_len, *, device): seq = torch.arange(max_seq_len, device=device, dtype=self.inv_freq.dtype) freqs = einsum("i , j -> i j", seq, self.inv_freq) return torch.cat((freqs, freqs), dim=-1) def rotate_half(x): x = rearrange(x, "... (j d) -> ... j d", j=2) x1, x2 = x.unbind(dim=-2) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(pos, t): return (t * pos.cos()) + (rotate_half(t) * pos.sin()) # feedforward class SwiGLU(nn.Module): def forward(self, x): x, gate = x.chunk(2, dim=-1) return F.silu(gate) * x # parallel attention and feedforward with residual # discovered by Wang et al + EleutherAI from GPT-J fame class ParallelTransformerBlock(nn.Module): def __init__(self, dim, dim_head=64, heads=8, ff_mult=4): super().__init__() self.norm = LayerNorm(dim) attn_inner_dim = dim_head * heads ff_inner_dim = dim * ff_mult self.fused_dims = (attn_inner_dim, dim_head, dim_head, (ff_inner_dim * 2)) self.heads = heads self.scale = dim_head**-0.5 self.rotary_emb = RotaryEmbedding(dim_head) self.fused_attn_ff_proj = nn.Linear(dim, sum(self.fused_dims), bias=False) self.attn_out = nn.Linear(attn_inner_dim, dim, bias=False) self.ff_out = nn.Sequential(SwiGLU(), nn.Linear(ff_inner_dim, dim, bias=False)) # for caching of rotary embeddings self.register_buffer("pos_emb", None, persistent=False) def get_rotary_embedding(self, n, device): if self.pos_emb is not None and self.pos_emb.shape[-2] >= n: return self.pos_emb[:n] pos_emb = self.rotary_emb(n, device=device) self.register_buffer("pos_emb", pos_emb, persistent=False) return pos_emb def forward(self, x): n, device, h = x.shape[1], x.device, self.heads # pre layernorm x = self.norm(x) # attention queries, keys, values, and feedforward inner q, k, v, ff = self.fused_attn_ff_proj(x).split(self.fused_dims, dim=-1) # split heads q = rearrange(q, "b n (h d) -> b h n d", h=h) # rotary embeddings positions = self.get_rotary_embedding(n, device) q, k = map(lambda t: apply_rotary_pos_emb(positions, t), (q, k)) # scale q = q * self.scale # similarity sim = einsum("b h i d, b j d -> b h i j", q, k) # attention attn = causal_softmax(sim) # aggregate values out = einsum("b h i j, b j d -> b h i d", attn, v) # merge heads out = rearrange(out, "b h n d -> b n (h d)") return self.attn_out(out) + self.ff_out(ff) # transformer def PaLM(*, dim, num_tokens, depth, dim_head=64, heads=8, ff_mult=4): net = nn.Sequential( nn.Embedding(num_tokens, dim), *[ Residual(ParallelTransformerBlock(dim=dim, dim_head=dim_head, heads=heads, ff_mult=ff_mult)) for _ in range(depth) ], LayerNorm(dim), nn.Linear(dim, num_tokens, bias=False) ) net[-1].weight = net[0].weight nn.init.normal_(net[0].weight, std=0.02) return net
PaLM-pytorch-main
palm_pytorch/triton/palm.py
# taken from Phil Tillet's layernorm tutorial for Triton # Triton - https://triton-lang.org # Layernorm tutorial - https://triton-lang.org/master/getting-started/tutorials/05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py # modified to be bias-less import torch import triton import triton.language as tl @triton.jit def _layer_norm_fwd_fused(X, Y, W, M, V, stride, N, BLOCK_SIZE: tl.constexpr): row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE) mask = cols < N X += row * stride Y += row * stride x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) mean = tl.sum(x, axis=0) / N xmean = tl.where(mask, x - mean, 0.) var = tl.sum(xmean * xmean, axis=0) / N rstd = 1 / tl.sqrt(var + 1e-5) xhat = xmean * rstd tl.store(M + row, mean) tl.store(V + row, rstd) w = tl.load(W + cols, mask=mask) y = xhat * w tl.store(Y + cols, y, mask=mask) @triton.jit def _layer_norm_bwd_dx_fused(DX, DY, DW, X, W, M, V, Lock, stride, N, GROUP_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): row = tl.program_id(0) cols = tl.arange(0, BLOCK_SIZE_N) mask = cols < N X += row * stride DY += row * stride DX += row * stride lock_id = row % GROUP_SIZE_M Lock += lock_id Count = Lock + GROUP_SIZE_M DW = DW + lock_id * N + cols x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) w = tl.load(W + cols, mask=mask).to(tl.float32) mean = tl.load(M + row) rstd = tl.load(V + row) xhat = (x - mean) * rstd wdy = w * dy xhat = tl.where(mask, xhat, 0.) wdy = tl.where(mask, wdy, 0.) mean1 = tl.sum(xhat * wdy, axis=0) / N mean2 = tl.sum(wdy, axis=0) / N dx = (wdy - (xhat * mean1 + mean2)) * rstd tl.store(DX + cols, dx, mask=mask) partial_dw = (dy * xhat).to(w.dtype) while tl.atomic_cas(Lock, 0, 1) == 1: pass count = tl.load(Count) if count == 0: tl.atomic_xchg(Count, 1) else: partial_dw += tl.load(DW, mask=mask) tl.store(DW, partial_dw, mask=mask) tl.atomic_xchg(Lock, 0) @triton.jit def _layer_norm_bwd_dw(DW, FINAL_DW, M, N, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr): pid = tl.program_id(0) cols = pid * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) dw = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for i in range(0, M, BLOCK_SIZE_M): rows = i + tl.arange(0, BLOCK_SIZE_M) mask = (rows[:, None] < M) & (cols[None, :] < N) offs = rows[:, None] * N + cols[None, :] dw += tl.load(DW + offs, mask=mask, other=0.) sum_dw = tl.sum(dw, axis=0) tl.store(FINAL_DW + cols, sum_dw, mask=cols < N) class LayerNorm(torch.autograd.Function): @staticmethod def forward(ctx, x, normalized_shape, weight): y = torch.empty_like(x) x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape mean = torch.empty((M, ), dtype=torch.float32, device='cuda') rstd = torch.empty((M, ), dtype=torch.float32, device='cuda') MAX_FUSED_SIZE = 65536 // x.element_size() BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) if N > BLOCK_SIZE: raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") num_warps = min(max(BLOCK_SIZE // 256, 1), 8) _layer_norm_fwd_fused[(M,)](x_arg, y, weight, mean, rstd, x_arg.stride(0), N, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps) ctx.save_for_backward(x, weight, mean, rstd) ctx.BLOCK_SIZE = BLOCK_SIZE ctx.num_warps = num_warps return y @staticmethod def backward(ctx, dy): x, w, m, v = ctx.saved_tensors N = w.shape[0] GROUP_SIZE_M = 64 if N <= 8192: GROUP_SIZE_M = 96 if N <= 4096: GROUP_SIZE_M = 128 if N <= 1024: GROUP_SIZE_M = 256 locks = torch.zeros(2 * GROUP_SIZE_M, dtype=torch.int32, device='cuda') _dw = torch.empty((GROUP_SIZE_M, w.shape[0]), dtype=x.dtype, device=w.device) dw = torch.empty((w.shape[0],), dtype=w.dtype, device=w.device) dx = torch.empty_like(dy) x_arg = x.reshape(-1, x.shape[-1]) M, N = x_arg.shape _layer_norm_bwd_dx_fused[(M,)](dx, dy, _dw, x, w, m, v, locks, x_arg.stride(0), N, BLOCK_SIZE_N=ctx.BLOCK_SIZE, GROUP_SIZE_M=GROUP_SIZE_M, num_warps=ctx.num_warps) grid = lambda meta: [triton.cdiv(N, meta['BLOCK_SIZE_N'])] _layer_norm_bwd_dw[grid](_dw, dw, GROUP_SIZE_M, N, BLOCK_SIZE_M=32, BLOCK_SIZE_N=128) return dx, None, dw, None layernorm_without_bias = LayerNorm.apply
PaLM-pytorch-main
palm_pytorch/triton/layernorm.py
from palm_pytorch.triton.palm import PaLM
PaLM-pytorch-main
palm_pytorch/triton/__init__.py
import torch from torch import autograd import torch.nn.functional as F import triton import triton.language as tl from triton_transformer.utils import calc_num_warps @triton.jit def softmax_kernel_forward( output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols, BLOCK_SIZE: tl.constexpr ): row_idx = tl.program_id(0) row_start_ptr = input_ptr + row_idx * input_row_stride col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets mask = col_offsets < n_cols row = tl.load(input_ptrs, mask = mask, other = -float('inf')) causal_mask = col_offsets > (row_idx % n_cols) row = row + tl.where(causal_mask, -float('inf'), 0.) row_minus_max = row - tl.max(row, axis=0) numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask = mask) @triton.jit def softmax_kernel_backward( output_ptr, input_ptr, grad_ptr, grad_row_stride, input_row_stride, output_row_stride, n_cols, BLOCK_SIZE: tl.constexpr ): row_idx = tl.program_id(0) row_start_ptr = input_ptr + row_idx * input_row_stride grad_row_start_ptr = grad_ptr + row_idx * grad_row_stride col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets grad_ptrs = grad_row_start_ptr + col_offsets mask = col_offsets < n_cols probs_row = tl.load(input_ptrs, mask = mask, other = 0.) grad_row = tl.load(grad_ptrs, mask = mask, other = 0.) dxhat = probs_row * grad_row softmax_grad_output = dxhat - probs_row * tl.sum(dxhat, axis = 0) output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_grad_output, mask = mask) class _softmax(autograd.Function): @classmethod def forward(self, ctx, x): shape = x.shape x = x.view(-1, shape[-1]) n_rows, n_cols = x.shape BLOCK_SIZE = triton.next_power_of_2(n_cols) num_warps = calc_num_warps(BLOCK_SIZE) y = torch.empty_like(x) softmax_kernel_forward[(n_rows,)]( y, x, x.stride(0), y.stride(0), n_cols, num_warps = num_warps, BLOCK_SIZE = BLOCK_SIZE, ) if x.requires_grad: ctx.save_for_backward(y) return y.view(*shape) @classmethod def backward(self, ctx, grad_probs): shape = grad_probs.shape probs, = ctx.saved_tensors grad_probs = grad_probs.view(-1, grad_probs.shape[-1]) n_rows, n_cols = grad_probs.shape BLOCK_SIZE = triton.next_power_of_2(n_cols) num_warps = calc_num_warps(BLOCK_SIZE) dx = torch.empty_like(probs) softmax_kernel_backward[(n_rows,)]( dx, probs, grad_probs, grad_probs.stride(0), probs.stride(0), dx.stride(0), n_cols, num_warps = num_warps, BLOCK_SIZE = BLOCK_SIZE ) return dx.view(*shape), None causal_softmax = _softmax.apply
PaLM-pytorch-main
palm_pytorch/triton/softmax.py
import deepspeed from palm_pytorch import PaLM from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from einops import rearrange from torch import einsum, nn import torch.nn.functional as F from torch.utils.data import DataLoader, Dataset def add_argument(): parser=argparse.ArgumentParser(description='enwik8') parser.add_argument('--with_cuda', default=False, action='store_true', help='use CPU in case there\'s no GPU support') parser.add_argument('--use_ema', default=False, action='store_true', help='whether use exponential moving average') parser.add_argument('-b', '--batch_size', default=32, type=int, help='mini-batch size (default: 32)') parser.add_argument('-e', '--epochs', default=30, type=int, help='number of total epochs (default: 30)') parser.add_argument('--local_rank', type=int, default=-1, help='local rank passed from distributed launcher') parser = deepspeed.add_config_arguments(parser) args=parser.parse_args() return args # constants EPOCHS = 20 GRADIENT_ACCUMULATE_EVERY = 4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 1024 # helpers def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return "".join(list(map(decode_token, tokens))) # instantiate GPT-like decoder model model = PaLM(num_tokens = 256, dim = 512, depth = 8) model = AutoregressiveWrapper(model, max_seq_len=2048) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,)) full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long() return full_seq def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) # setup deepspeed cmd_args = add_argument() model_engine, optimizer, trainloader, _ = deepspeed.initialize(args=cmd_args, model=model, model_parameters=model.parameters(), training_data=train_dataset) # training for _ in range(EPOCHS): for i, data in enumerate(trainloader): model_engine.train() data = data.to(model_engine.local_rank) loss = model_engine(data) model_engine.backward(loss) torch.nn.utils.clip_grad_norm_(model_engine.parameters(), 0.5) model_engine.step() print(loss.item() * GRADIENT_ACCUMULATE_EVERY) if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): inp = random.choice(val_dataset)[:-1] loss = model(inp[None, :].cuda()) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp[None, ...].cuda(), GENERATE_LENGTH) output_str = decode_tokens(sample[0]) print(output_str)
PaLM-pytorch-main
examples/enwik8_deepspeed/train.py
from setuptools import setup, find_packages setup( name = 'bottleneck-transformer-pytorch', packages = find_packages(), version = '0.1.4', license='MIT', description = 'Bottleneck Transformer - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/bottleneck-transformer-pytorch', keywords = [ 'artificial intelligence', 'attention mechanism', 'transformers', 'image classification', 'vision' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
bottleneck-transformer-pytorch-main
setup.py
from bottleneck_transformer_pytorch.bottleneck_transformer_pytorch import BottleStack, BottleBlock
bottleneck-transformer-pytorch-main
bottleneck_transformer_pytorch/__init__.py
import math import torch from torch import nn, einsum from einops import rearrange # translated from tensorflow code # https://gist.github.com/aravindsrinivas/56359b79f0ce4449bcb04ab4b56a57a2 # positional embedding helpers def pair(x): return (x, x) if not isinstance(x, tuple) else x def expand_dim(t, dim, k): t = t.unsqueeze(dim = dim) expand_shape = [-1] * len(t.shape) expand_shape[dim] = k return t.expand(*expand_shape) def rel_to_abs(x): b, h, l, _, device, dtype = *x.shape, x.device, x.dtype dd = {'device': device, 'dtype': dtype} col_pad = torch.zeros((b, h, l, 1), **dd) x = torch.cat((x, col_pad), dim = 3) flat_x = rearrange(x, 'b h l c -> b h (l c)') flat_pad = torch.zeros((b, h, l - 1), **dd) flat_x_padded = torch.cat((flat_x, flat_pad), dim = 2) final_x = flat_x_padded.reshape(b, h, l + 1, 2 * l - 1) final_x = final_x[:, :, :l, (l-1):] return final_x def relative_logits_1d(q, rel_k): b, heads, h, w, dim = q.shape logits = einsum('b h x y d, r d -> b h x y r', q, rel_k) logits = rearrange(logits, 'b h x y r -> b (h x) y r') logits = rel_to_abs(logits) logits = logits.reshape(b, heads, h, w, w) logits = expand_dim(logits, dim = 3, k = h) return logits # positional embeddings class AbsPosEmb(nn.Module): def __init__( self, fmap_size, dim_head ): super().__init__() height, width = pair(fmap_size) scale = dim_head ** -0.5 self.height = nn.Parameter(torch.randn(height, dim_head) * scale) self.width = nn.Parameter(torch.randn(width, dim_head) * scale) def forward(self, q): emb = rearrange(self.height, 'h d -> h () d') + rearrange(self.width, 'w d -> () w d') emb = rearrange(emb, ' h w d -> (h w) d') logits = einsum('b h i d, j d -> b h i j', q, emb) return logits class RelPosEmb(nn.Module): def __init__( self, fmap_size, dim_head ): super().__init__() height, width = pair(fmap_size) scale = dim_head ** -0.5 self.fmap_size = fmap_size self.rel_height = nn.Parameter(torch.randn(height * 2 - 1, dim_head) * scale) self.rel_width = nn.Parameter(torch.randn(width * 2 - 1, dim_head) * scale) def forward(self, q): h, w = self.fmap_size q = rearrange(q, 'b h (x y) d -> b h x y d', x = h, y = w) rel_logits_w = relative_logits_1d(q, self.rel_width) rel_logits_w = rearrange(rel_logits_w, 'b h x i y j-> b h (x y) (i j)') q = rearrange(q, 'b h x y d -> b h y x d') rel_logits_h = relative_logits_1d(q, self.rel_height) rel_logits_h = rearrange(rel_logits_h, 'b h x i y j -> b h (y x) (j i)') return rel_logits_w + rel_logits_h # classes class Attention(nn.Module): def __init__( self, *, dim, fmap_size, heads = 4, dim_head = 128, rel_pos_emb = False ): super().__init__() self.heads = heads self.scale = dim_head ** -0.5 inner_dim = heads * dim_head self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias = False) rel_pos_class = AbsPosEmb if not rel_pos_emb else RelPosEmb self.pos_emb = rel_pos_class(fmap_size, dim_head) def forward(self, fmap): heads, b, c, h, w = self.heads, *fmap.shape q, k, v = self.to_qkv(fmap).chunk(3, dim = 1) q, k, v = map(lambda t: rearrange(t, 'b (h d) x y -> b h (x y) d', h = heads), (q, k, v)) q = q * self.scale sim = einsum('b h i d, b h j d -> b h i j', q, k) sim = sim + self.pos_emb(q) attn = sim.softmax(dim = -1) out = einsum('b h i j, b h j d -> b h i d', attn, v) out = rearrange(out, 'b h (x y) d -> b (h d) x y', x = h, y = w) return out class BottleBlock(nn.Module): def __init__( self, *, dim, fmap_size, dim_out, proj_factor, downsample, heads = 4, dim_head = 128, rel_pos_emb = False, activation = nn.ReLU() ): super().__init__() # shortcut if dim != dim_out or downsample: kernel_size, stride, padding = (3, 2, 1) if downsample else (1, 1, 0) self.shortcut = nn.Sequential( nn.Conv2d(dim, dim_out, kernel_size, stride = stride, padding = padding, bias = False), nn.BatchNorm2d(dim_out), activation ) else: self.shortcut = nn.Identity() # contraction and expansion attn_dim_in = dim_out // proj_factor attn_dim_out = heads * dim_head self.net = nn.Sequential( nn.Conv2d(dim, attn_dim_in, 1, bias = False), nn.BatchNorm2d(attn_dim_in), activation, Attention( dim = attn_dim_in, fmap_size = fmap_size, heads = heads, dim_head = dim_head, rel_pos_emb = rel_pos_emb ), nn.AvgPool2d((2, 2)) if downsample else nn.Identity(), nn.BatchNorm2d(attn_dim_out), activation, nn.Conv2d(attn_dim_out, dim_out, 1, bias = False), nn.BatchNorm2d(dim_out) ) # init last batch norm gamma to zero nn.init.zeros_(self.net[-1].weight) # final activation self.activation = activation def forward(self, x): shortcut = self.shortcut(x) x = self.net(x) x = x + shortcut return self.activation(x) # main bottle stack class BottleStack(nn.Module): def __init__( self, *, dim, fmap_size, dim_out = 2048, proj_factor = 4, num_layers = 3, heads = 4, dim_head = 128, downsample = True, rel_pos_emb = False, activation = nn.ReLU() ): super().__init__() fmap_size = pair(fmap_size) self.dim = dim self.fmap_size = fmap_size layers = [] for i in range(num_layers): is_first = i == 0 dim = (dim if is_first else dim_out) layer_downsample = is_first and downsample fmap_divisor = (2 if downsample and not is_first else 1) layer_fmap_size = tuple(map(lambda t: t // fmap_divisor, fmap_size)) layers.append(BottleBlock( dim = dim, fmap_size = layer_fmap_size, dim_out = dim_out, proj_factor = proj_factor, heads = heads, dim_head = dim_head, downsample = layer_downsample, rel_pos_emb = rel_pos_emb, activation = activation )) self.net = nn.Sequential(*layers) def forward(self, x): _, c, h, w = x.shape assert c == self.dim, f'channels of feature map {c} must match channels given at init {self.dim}' assert h == self.fmap_size[0] and w == self.fmap_size[1], f'height and width ({h} {w}) of feature map must match the fmap_size given at init {self.fmap_size}' return self.net(x)
bottleneck-transformer-pytorch-main
bottleneck_transformer_pytorch/bottleneck_transformer_pytorch.py
from setuptools import setup, find_packages setup( name = 'omninet-pytorch', packages = find_packages(), version = '0.0.6', license='MIT', description = 'Omninet - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/omninet-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'transformer', 'attention mechanism' ], install_requires=[ 'einops>=0.3', 'torch>=1.6', 'performer-pytorch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
omninet-pytorch-main
setup.py
import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, repeat from einops.layers.torch import Rearrange # use Performer, as it had the best reported numbers from performer_pytorch import SelfAttention as PerformerAttention # helpers def exists(val): return val is not None def get_module_device(module): return next(module.parameters()).device def find_modules(nn_module, type): return [module for module in nn_module.modules() if isinstance(module, type)] # classes class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): return self.fn(self.norm(x), **kwargs) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x): return self.net(x) class Attention(nn.Module): def __init__( self, *, dim, heads = 8, dim_head = 64, dropout = 0., causal = False ): super().__init__() inner_dim = heads * dim_head self.heads = heads self.scale = dim_head ** -0.5 self.causal = causal self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) def forward(self, x, mask = None): b, n, d, h, device = *x.shape, self.heads, x.device q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale max_neg_value = -torch.finfo(sim.dtype).max if exists(mask): mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j') sim.masked_fill_(~mask, max_neg_value) if self.causal: i, j = sim.shape[-2:] causal_mask = torch.ones(i, j, device = device).triu_(j - i + 1).bool() causal_mask = rearrange(causal_mask, 'i j -> () i j') sim.masked_fill_(causal_mask, max_neg_value) attn = sim.softmax(dim = -1) out = einsum('b i j, b j d -> b i d', attn, v) out = rearrange(out, '(b h) n d -> b n (h d)', h = h) return self.to_out(out) # main class class Omninet(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, pool_layer_tokens_every = 2, attn_dropout = 0., ff_dropout = 0., feature_redraw_interval = 1000 ): super().__init__() layers = nn.ModuleList([]) for ind in range(depth): num_layers = ind + 1 should_pool = num_layers % pool_layer_tokens_every layers.append(nn.ModuleList([ PreNorm(dim, Attention(dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim = dim, dropout = ff_dropout)), PerformerAttention(dim = dim, heads= heads, dim_head = dim_head) if should_pool else None ])) self.layers = layers self.pool_num_layers = pool_layer_tokens_every # keep track of redrawing projection matrix for Performer self.feature_redraw_interval = feature_redraw_interval self.register_buffer('calls_since_last_redraw', torch.tensor(0)) def fix_projection_matrices_(self): self.feature_redraw_interval = None def check_redraw_projections(self): if not self.training: return if exists(self.feature_redraw_interval) and self.calls_since_last_redraw >= self.feature_redraw_interval: device = get_module_device(self) fast_attentions = find_modules(self, FastAttention) for fast_attention in fast_attentions: fast_attention.redraw_projection_matrix(device) self.calls_since_last_redraw.zero_() return self.calls_since_last_redraw += 1 def forward(self, x, mask = None): self.check_redraw_projections() pool_num_layers = self.pool_num_layers hiddens = [x] for attn, ff, efficient_attn in self.layers: x = attn(x, mask = mask) + x x = ff(x) + x hiddens.append(x) if exists(efficient_attn): layers_to_pool = hiddens[-pool_num_layers:] num_layers = len(layers_to_pool) all_tokens = torch.stack(layers_to_pool) all_tokens = rearrange(all_tokens, 'l b n d -> b (n l) d') pool_attn_mask = None if exists(mask): pool_attn_mask = repeat(mask, 'b n -> b (n l)', l = num_layers) attended_tokens = efficient_attn(all_tokens, mask = pool_attn_mask) attended_tokens = rearrange(attended_tokens, 'b n c -> b c n') pooled_tokens = F.max_pool1d(attended_tokens, kernel_size = num_layers, stride = num_layers) x += rearrange(pooled_tokens, 'b c n -> b n c') return x # causal case is sufficiently different to warrant its own class # use layer axial attention for now, until I rewrite the linear attention cuda kernel class OmninetCausal(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, pool_layer_tokens_every = 2, attn_dropout = 0., ff_dropout = 0. ): super().__init__() self.layer_pos_emb = nn.Parameter(torch.randn(depth + 1, dim)) layers = nn.ModuleList([]) for ind in range(depth): num_layers = ind + 1 should_pool = num_layers % pool_layer_tokens_every layers.append(nn.ModuleList([ PreNorm(dim, Attention(causal = True, dim = dim, dim_head = dim_head, heads = heads, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim = dim, dropout = ff_dropout)), Attention(dim = dim, heads= heads, dim_head = dim_head) if should_pool else None ])) self.layers = layers self.pool_num_layers = pool_layer_tokens_every def forward(self, x, mask = None): pool_num_layers = self.pool_num_layers b = x.shape[0] pos_embs = rearrange(self.layer_pos_emb, 'n d -> () n d') x += pos_embs[:, 0] hiddens = [x] for ind, (attn, ff, layer_axial_attn) in enumerate(self.layers): x = attn(x, mask = mask) + x x = ff(x) + x x += pos_embs[:, ind + 1] hiddens.append(x) if exists(layer_axial_attn): layers_to_pool = hiddens[-pool_num_layers:] num_layers = len(layers_to_pool) layer_tokens = rearrange(torch.stack(layers_to_pool), 'l b n d -> (b n) l d') attended_tokens = layer_axial_attn(layer_tokens) attended_tokens = rearrange(attended_tokens, '(b n) l d -> b n l d', b = b) pooled_attended_tokens = attended_tokens.max(dim = -2).values x += pooled_attended_tokens return x
omninet-pytorch-main
omninet_pytorch/omninet_pytorch.py
from omninet_pytorch.omninet_pytorch import Omninet, OmninetCausal
omninet-pytorch-main
omninet_pytorch/__init__.py
from setuptools import setup, find_packages setup( name = 'nystrom-attention', packages = find_packages(), version = '0.0.11', license='MIT', description = 'Nystrom Attention - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/nystrom-attention', keywords = [ 'artificial intelligence', 'attention mechanism' ], install_requires=[ 'einops>=0.3', 'torch>=1.6' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
nystrom-attention-main
setup.py
from math import ceil import torch from torch import nn, einsum import torch.nn.functional as F from einops import rearrange, reduce # helper functions def exists(val): return val is not None def moore_penrose_iter_pinv(x, iters = 6): device = x.device abs_x = torch.abs(x) col = abs_x.sum(dim = -1) row = abs_x.sum(dim = -2) z = rearrange(x, '... i j -> ... j i') / (torch.max(col) * torch.max(row)) I = torch.eye(x.shape[-1], device = device) I = rearrange(I, 'i j -> () i j') for _ in range(iters): xz = x @ z z = 0.25 * z @ (13 * I - (xz @ (15 * I - (xz @ (7 * I - xz))))) return z # main attention class class NystromAttention(nn.Module): def __init__( self, dim, dim_head = 64, heads = 8, num_landmarks = 256, pinv_iterations = 6, residual = True, residual_conv_kernel = 33, eps = 1e-8, dropout = 0. ): super().__init__() self.eps = eps inner_dim = heads * dim_head self.num_landmarks = num_landmarks self.pinv_iterations = pinv_iterations self.heads = heads self.scale = dim_head ** -0.5 self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) self.to_out = nn.Sequential( nn.Linear(inner_dim, dim), nn.Dropout(dropout) ) self.residual = residual if residual: kernel_size = residual_conv_kernel padding = residual_conv_kernel // 2 self.res_conv = nn.Conv2d(heads, heads, (kernel_size, 1), padding = (padding, 0), groups = heads, bias = False) def forward(self, x, mask = None, return_attn = False): b, n, _, h, m, iters, eps = *x.shape, self.heads, self.num_landmarks, self.pinv_iterations, self.eps # pad so that sequence can be evenly divided into m landmarks remainder = n % m if remainder > 0: padding = m - (n % m) x = F.pad(x, (0, 0, padding, 0), value = 0) if exists(mask): mask = F.pad(mask, (padding, 0), value = False) # derive query, keys, values q, k, v = self.to_qkv(x).chunk(3, dim = -1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # set masked positions to 0 in queries, keys, values if exists(mask): mask = rearrange(mask, 'b n -> b () n') q, k, v = map(lambda t: t * mask[..., None], (q, k, v)) q = q * self.scale # generate landmarks by sum reduction, and then calculate mean using the mask l = ceil(n / m) landmark_einops_eq = '... (n l) d -> ... n d' q_landmarks = reduce(q, landmark_einops_eq, 'sum', l = l) k_landmarks = reduce(k, landmark_einops_eq, 'sum', l = l) # calculate landmark mask, and also get sum of non-masked elements in preparation for masked mean divisor = l if exists(mask): mask_landmarks_sum = reduce(mask, '... (n l) -> ... n', 'sum', l = l) divisor = mask_landmarks_sum[..., None] + eps mask_landmarks = mask_landmarks_sum > 0 # masked mean (if mask exists) q_landmarks /= divisor k_landmarks /= divisor # similarities einops_eq = '... i d, ... j d -> ... i j' sim1 = einsum(einops_eq, q, k_landmarks) sim2 = einsum(einops_eq, q_landmarks, k_landmarks) sim3 = einsum(einops_eq, q_landmarks, k) # masking if exists(mask): mask_value = -torch.finfo(q.dtype).max sim1.masked_fill_(~(mask[..., None] * mask_landmarks[..., None, :]), mask_value) sim2.masked_fill_(~(mask_landmarks[..., None] * mask_landmarks[..., None, :]), mask_value) sim3.masked_fill_(~(mask_landmarks[..., None] * mask[..., None, :]), mask_value) # eq (15) in the paper and aggregate values attn1, attn2, attn3 = map(lambda t: t.softmax(dim = -1), (sim1, sim2, sim3)) attn2_inv = moore_penrose_iter_pinv(attn2, iters) out = (attn1 @ attn2_inv) @ (attn3 @ v) # add depth-wise conv residual of values if self.residual: out += self.res_conv(v) # merge and combine heads out = rearrange(out, 'b h n d -> b n (h d)', h = h) out = self.to_out(out) out = out[:, -n:] if return_attn: attn = attn1 @ attn2_inv @ attn3 return out, attn return out # transformer class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.norm = nn.LayerNorm(dim) self.fn = fn def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class FeedForward(nn.Module): def __init__(self, dim, mult = 4, dropout = 0.): super().__init__() self.net = nn.Sequential( nn.Linear(dim, dim * mult), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim * mult, dim) ) def forward(self, x): return self.net(x) class Nystromformer(nn.Module): def __init__( self, *, dim, depth, dim_head = 64, heads = 8, num_landmarks = 256, pinv_iterations = 6, attn_values_residual = True, attn_values_residual_conv_kernel = 33, attn_dropout = 0., ff_dropout = 0. ): super().__init__() self.layers = nn.ModuleList([]) for _ in range(depth): self.layers.append(nn.ModuleList([ PreNorm(dim, NystromAttention(dim = dim, dim_head = dim_head, heads = heads, num_landmarks = num_landmarks, pinv_iterations = pinv_iterations, residual = attn_values_residual, residual_conv_kernel = attn_values_residual_conv_kernel, dropout = attn_dropout)), PreNorm(dim, FeedForward(dim = dim, dropout = ff_dropout)) ])) def forward(self, x, mask = None): for attn, ff in self.layers: x = attn(x, mask = mask) + x x = ff(x) + x return x
nystrom-attention-main
nystrom_attention/nystrom_attention.py
from nystrom_attention.nystrom_attention import NystromAttention, Nystromformer Nystromer = Nystromformer
nystrom-attention-main
nystrom_attention/__init__.py
import os from copy import deepcopy import torch import torch.multiprocessing as mp import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP from soft_moe_pytorch.soft_moe import Experts, FeedForward as Expert from soft_moe_pytorch.distributed import all_gather_variable_dim def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' dist.init_process_group("gloo", rank = rank, world_size = world_size) def cleanup(): dist.destroy_process_group() def start( rank, world_size, batch_size, batch_size_var_len, num_experts, tokens_per_expert, dim, ): setup(rank, world_size) net = Experts([Expert(dim) for _ in range(num_experts)]) if batch_size_var_len: batch_size = batch_size + rank seq = torch.randn(batch_size, num_experts, tokens_per_expert, dim) # distributed model = DDP(net) out = model(seq) out.mean().backward() ddp_all_out, _ = all_gather_variable_dim(out) # on single device all_inputs, _ = all_gather_variable_dim(seq) copied_net = deepcopy(net) single_out = copied_net( all_inputs, is_distributed = False ) single_out.mean().backward() if rank == 0: # validate output is the same # if done on 1 vs multiple machines assert torch.allclose(single_out, ddp_all_out), 'output is not the same' # validate backwards and grad get_first_expert_grad = lambda t: t.experts[0][0].weight.grad assert torch.allclose( get_first_expert_grad(net), get_first_expert_grad(copied_net), atol = 1e-2 ), 'grad is not the same' print('✅') cleanup() if __name__ == '__main__': world_size = 9 num_experts = 8 batch_size = 2 batch_size_var_len = False seq_len = 32 dim = 8 mp.spawn( start, args = ( world_size, batch_size, batch_size_var_len, num_experts, seq_len, dim ), nprocs = world_size, join = True )
soft-moe-pytorch-main
assert.py
from setuptools import setup, find_packages setup( name = 'soft-moe-pytorch', packages = find_packages(exclude=[]), version = '0.0.9', license='MIT', description = 'Soft MoE - Pytorch', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', long_description_content_type = 'text/markdown', url = 'https://github.com/lucidrains/soft-moe-pytorch', keywords = [ 'artificial intelligence', 'deep learning', 'mixture of experts' ], install_requires=[ 'einops>=0.6.1', 'torch>=2.0' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
soft-moe-pytorch-main
setup.py
from soft_moe_pytorch.soft_moe import SoftMoE from soft_moe_pytorch.soft_moe_with_dynamic_slots import DynamicSlotsSoftMoE
soft-moe-pytorch-main
soft_moe_pytorch/__init__.py
import torch from torch import nn import torch.nn.functional as F from torch.autograd import Function import torch.distributed as dist from einops import rearrange, pack, unpack def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(num, den): return (num % den) == 0 def pad_dim_to(t, length, dim = 0): pad_length = length - t.shape[dim] zero_pairs = (-dim - 1) if dim < 0 else (t.ndim - dim - 1) return F.pad(t, (*((0, 0) * zero_pairs), 0, pad_length)) def all_gather_same_dim(t): world_size = dist.get_world_size() gathered_tensors = [torch.empty_like(t, device = t.device, dtype = t.dtype) for i in range(world_size)] dist.all_gather(gathered_tensors, t) return gathered_tensors def gather_sizes(t, *, dim): size = torch.tensor(t.shape[dim], device = t.device, dtype = torch.long) sizes = all_gather_same_dim(size) return torch.stack(sizes) def has_only_one_value(t): return (t == t[0]).all() def all_gather_variable_dim(t, dim = 0, sizes = None): device, rank, world_size = t.device, dist.get_rank(), dist.get_world_size() if not exists(sizes): sizes = gather_sizes(t, dim = dim) if has_only_one_value(sizes): gathered_tensors = all_gather_same_dim(t) gathered_tensors = torch.cat(gathered_tensors, dim = dim) return gathered_tensors, sizes max_size = sizes.amax().item() padded_t = pad_dim_to(t, max_size, dim = dim) gathered_tensors = all_gather_same_dim(padded_t) gathered_tensors = torch.cat(gathered_tensors, dim = dim) seq = torch.arange(max_size, device = device) mask = rearrange(seq, 'j -> 1 j') < rearrange(sizes, 'i -> i 1') mask = rearrange(mask, 'i j -> (i j)') seq = torch.arange(mask.shape[-1], device = device) indices = seq[mask] gathered_tensors = gathered_tensors.index_select(dim, indices) return gathered_tensors, sizes class AllGatherFunction(Function): @staticmethod def forward(ctx, x, dim, sizes): x, batch_sizes = all_gather_variable_dim(x, dim = dim, sizes = sizes) ctx.batch_sizes = batch_sizes.tolist() ctx.dim = dim return x, batch_sizes @staticmethod def backward(ctx, grads, _): batch_sizes, rank = ctx.batch_sizes, dist.get_rank() grads_by_rank = grads.split(batch_sizes, dim = ctx.dim) return grads_by_rank[rank], None, None class AllGather(nn.Module): def __init__(self, *, dim = 0): super().__init__() self.dim = dim def forward(self, x, sizes = None): return AllGatherFunction.apply(x, self.dim, sizes) class SplitByRank(Function): @staticmethod def forward(ctx, x): rank = dist.get_rank() return x[rank] @staticmethod def backward(ctx, grads): grads = rearrange(grads, '... -> 1 ...') grads = all_gather_variable_dim(grads) return grads split_by_rank = SplitByRank.apply
soft-moe-pytorch-main
soft_moe_pytorch/distributed.py
import math import torch from torch.nn import Module import torch.nn.functional as F from torch import nn, einsum, Tensor from einops import rearrange, reduce, pack, unpack from einops.layers.torch import Rearrange # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def l2norm(t): return F.normalize(t, dim = - 1) def pad_to_multiple( tensor, multiple, dim = -1, value = 0 ): seqlen = tensor.shape[dim] m = seqlen / multiple if m.is_integer(): return False, tensor remainder = math.ceil(m) * multiple - seqlen pad_offset = (0,) * (-1 - dim) * 2 return True, F.pad(tensor, (*pad_offset, 0, remainder), value = value) # norm class RMSNorm(Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return l2norm(x) * self.scale * self.gamma # expert def FeedForward( dim, mult = 4, dropout = 0. ): dim_hidden = int(dim * mult) return nn.Sequential( nn.Linear(dim, dim_hidden), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim_hidden, dim) ) class GEGLU(Module): def forward(self, x): x, gate = x.chunk(2, dim = -1) return x * F.gelu(gate) def GLUFeedForward( dim, mult = 4, dropout = 0. ): dim_hidden = int(dim * mult * 2 / 3) return nn.Sequential( nn.Linear(dim, dim_hidden * 2), GEGLU(), nn.Dropout(dropout), nn.Linear(dim_hidden, dim) ) # main class class DynamicSlotsSoftMoE(Module): def __init__( self, dim, *, num_experts = 4, expert_mult = 4, dropout = 0., geglu = False ): super().__init__() self.norm = RMSNorm(dim) self.num_experts = num_experts self.to_slot_embeds = nn.Sequential( nn.Linear(dim, dim * num_experts, bias = False), Rearrange('b n (e d) -> b e n d', e = num_experts), RMSNorm(dim) ) expert_klass = GLUFeedForward if geglu else FeedForward self.experts = nn.ModuleList([ expert_klass(dim = dim, mult = expert_mult, dropout = dropout) for _ in range(num_experts) ]) def forward(self, x, mask = None): """ einstein notation b - batch n - sequence length e - number of experts s - number of slots per expert d - feature dimension """ seq_len, is_image, num_experts = x.shape[-2], x.ndim == 4, self.num_experts if is_image: x = rearrange(x, 'b d h w -> b h w d') x, ps = pack([x], 'b * d') # following Algorithm 1, with the normalization they proposed, but with scaling of both (the now popular rmsnorm + gamma) x = self.norm(x) # dynamic slot embeds # first average consecutive tokens, by number of experts # then, for each position, project out to that number of expert slot tokens # there should be # slots ~= sequence length, like in a usual MoE with 1 expert is_padded, x = pad_to_multiple(x, num_experts, dim = -2) if is_padded: if not exists(mask): mask = torch.ones(x.shape[:2], device = x.device, dtype = torch.bool) _, mask = pad_to_multiple(mask, num_experts, dim = -1, value = False) x_segmented = rearrange(x, 'b (n e) d -> b n e d', e = num_experts) if exists(mask): segmented_mask = rearrange(mask, 'b (n e) -> b n e', e = num_experts) x_segmented = x_segmented.masked_fill(~rearrange(segmented_mask, '... -> ... 1'), 0.) # perform a masked mean if exists(mask): num = reduce(x_segmented, 'b n e d -> b n d', 'sum') den = reduce(segmented_mask.float(), 'b n e -> b n 1', 'sum').clamp(min = 1e-5) x_consecutive_mean = num / den slots_mask = segmented_mask.any(dim = -1) else: x_consecutive_mean = reduce(x_segmented, 'b n e d -> b n d', 'mean') # project to get dynamic slots embeddings # could potentially inject sinusoidal positions here too before projection slot_embeds = self.to_slot_embeds(x_consecutive_mean) logits = einsum('b n d, b e s d -> b n e s', x, slot_embeds) # account for key padding mask if exists(mask): mask = rearrange(mask, 'b n -> b n 1 1') slots_mask = rearrange(slots_mask, 'b s -> b 1 1 s') logits = logits.masked_fill(~mask, -torch.finfo(logits.dtype).max) logits = logits.masked_fill(~slots_mask, -torch.finfo(logits.dtype).max) # get dispatch and combine weights (softmax across right dimensions) dispatch_weights = logits.softmax(dim = 1) combine_weights = rearrange(logits, 'b n e s -> b n (e s)') combine_weights = combine_weights.softmax(dim = -1) # derive slots by weighted average of input tokens using the dispatch weights from above slots = einsum('b n d, b n e s -> e b s d', x, dispatch_weights) # route the slots per expert to each expert out = [] for slots_per_expert, expert in zip(slots, self.experts): out.append(expert(slots_per_expert)) out = torch.stack(out) # combine back out out = rearrange(out, 'e b s d -> b (e s) d') out = einsum('b s d, b n s -> b n d', out, combine_weights) if is_image: out, = unpack(out, ps, 'b * d') out = rearrange(out, 'b h w d -> b d h w') return out[:, :seq_len]
soft-moe-pytorch-main
soft_moe_pytorch/soft_moe_with_dynamic_slots.py
import torch from torch.nn import Module import torch.nn.functional as F import torch.distributed as dist from torch import nn, einsum, Tensor from einops import rearrange, pack, unpack from soft_moe_pytorch.distributed import ( AllGather, split_by_rank, gather_sizes, has_only_one_value ) # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d def divisible_by(num, den): return (num % den) == 0 def chunk_num(num, chunks): num_per_chunk, remainder = divmod(num, chunks) out = [] for i in range(chunks): n = num_per_chunk out.append(n + int(i < remainder)) return out def pack_one(t, pattern): return pack([t], pattern) def unpack_one(t, ps, pattern): return unpack(t, ps, pattern)[0] def l2norm(t): return F.normalize(t, dim = - 1) def cumsum_exclusive(t, dim = -3): assert dim < 0 num_pad_dims = -dim - 1 pre_padding = (0, 0) * num_pad_dims return F.pad(t, (*pre_padding, 1, -1)).cumsum(dim = dim) # norm class RMSNorm(Module): def __init__(self, dim): super().__init__() self.scale = dim ** 0.5 self.gamma = nn.Parameter(torch.ones(dim)) def forward(self, x): return l2norm(x) * self.scale * self.gamma # expert def FeedForward( dim, mult = 4, dropout = 0. ): dim_hidden = int(dim * mult) return nn.Sequential( nn.Linear(dim, dim_hidden), nn.GELU(), nn.Dropout(dropout), nn.Linear(dim_hidden, dim) ) class GEGLU(Module): def forward(self, x): x, gate = x.chunk(2, dim = -1) return x * F.gelu(gate) def GLUFeedForward( dim, mult = 4, dropout = 0. ): dim_hidden = int(dim * mult * 2 / 3) return nn.Sequential( nn.Linear(dim, dim_hidden * 2), GEGLU(), nn.Dropout(dropout), nn.Linear(dim_hidden, dim) ) # experts class Experts(nn.Module): def __init__( self, experts, is_distributed = None ): super().__init__() self.num_experts = len(experts) self.experts = nn.ModuleList(experts) self.is_distributed = is_distributed if not exists(self.is_distributed): self.is_distributed = dist.is_initialized() and dist.get_world_size() > 1 self.all_gather = AllGather() self.register_buffer('dummy', torch.ones(1), persistent = False) @property def device(self): return self.dummy.device def all_experts_to_cpu_besides(self, selection): if isinstance(selection, int): experts = [self.experts[selection]] if isinstance(selection, slice): experts = self.experts[selection] else: experts = selection experts_set = set(experts) for expert in self.experts: device = self.device if expert in experts_set else 'cpu' expert.to(device) def forward( self, x, is_distributed = None ): """ einops notation: b - batch r - rank (device / machines) e - experts n - sequence (number of tokens per expert) d - feature dimension """ is_distributed = default(is_distributed, self.is_distributed) shape, num_experts = x.shape, self.num_experts # for now naively all gather across batch dimension if distributed, optimize later if is_distributed: seq_sizes = gather_sizes(x, dim = -2) assert has_only_one_value(seq_sizes), 'number of tokens per expert must be the same' x, batch_sizes = self.all_gather(x) total_batch_size = x.shape[0] world_size = dist.get_world_size() rank = dist.get_rank() else: world_size = 1 rank = 0 # the experts in use on the rank if is_distributed: if world_size <= num_experts: num_experts_across_ranks = chunk_num(num_experts, world_size) start_indices = cumsum_exclusive(torch.tensor(num_experts_across_ranks), dim = -1) num_experts_per_rank = num_experts_across_ranks[rank] num_experts_batches_across_ranks = tuple(i * total_batch_size for i in num_experts_across_ranks) expert_start_index = start_indices[rank].item() else: num_batch_chunks = world_size // num_experts total_ranks_in_use = num_batch_chunks * num_experts expert_start_index = rank // num_batch_chunks batch_splits = chunk_num(total_batch_size, num_batch_chunks) num_experts_batches_across_ranks = batch_splits * num_experts # for now, remaining machines just process nothing remain_ranks = world_size % num_experts num_experts_batches_across_ranks += (0,) * remain_ranks num_experts_per_rank = int(rank < total_ranks_in_use) assert len(num_experts_batches_across_ranks) == world_size expert_slice = slice(expert_start_index, expert_start_index + num_experts_per_rank) else: num_experts_per_rank = num_experts expert_slice = slice(0, num_experts) # if distributed, each machine only handles subset of experts and batch x = rearrange(x, 'b e n d -> e b n d') if is_distributed: x, expert_batch_packed_shape = pack_one(x, '* n d') x = x.split(num_experts_batches_across_ranks, dim = 0) x = split_by_rank(x) if num_experts_per_rank > 0: x = rearrange(x, '(e b) n d -> e b n d', e = num_experts_per_rank) else: x = x.reshape(num_experts, *x.shape) # get the experts in use self.all_experts_to_cpu_besides(expert_slice) experts = self.experts[expert_slice] # route tokens to appropriate experts outs = [] for expert, expert_input in zip(experts, x): out = expert(expert_input) outs.append(out) if len(outs) > 0: outs = torch.stack(outs) else: outs = torch.empty_like(x).requires_grad_() # all gather across merged expert batches dimensions # then split the batch dimension back if is_distributed: outs = rearrange(outs, 'e b n d -> (e b) n d') outs, _ = self.all_gather(outs) outs = unpack_one(outs, expert_batch_packed_shape, '* n d') outs = rearrange(outs, 'e b n d -> b e n d') if is_distributed: outs = outs.split(batch_sizes.tolist()) outs = split_by_rank(outs) assert outs.shape == shape return outs # main class class SoftMoE(Module): def __init__( self, dim, *, seq_len = None, num_experts = 4, num_slots = None, expert_mult = 4, dropout = 0., geglu = False, is_distributed = None ): super().__init__() assert exists(seq_len) ^ exists(num_slots), 'either seq_len, or num_slots must be passed into SoftMoE' num_slots = default(num_slots, seq_len // num_experts) self.norm = RMSNorm(dim) self.slot_norm = RMSNorm(dim) self.slot_embeds = nn.Parameter(torch.randn(num_experts, num_slots, dim)) expert_klass = GLUFeedForward if geglu else FeedForward self.experts = Experts( experts = [expert_klass(dim = dim, mult = expert_mult, dropout = dropout) for _ in range(num_experts)], is_distributed = is_distributed ) def forward(self, x, mask = None): """ einstein notation b - batch n - sequence length e - number of experts s - number of slots per expert d - feature dimension """ is_image = x.ndim == 4 if is_image: x = rearrange(x, 'b d h w -> b h w d') x, ps = pack([x], 'b * d') # following Algorithm 1, with the normalization they proposed, but with scaling of both (the now popular rmsnorm + gamma) x = self.norm(x) slot_embeds = self.slot_norm(self.slot_embeds) logits = einsum('b n d, e s d -> b n e s', x, slot_embeds) # account for key padding mask if exists(mask): mask = rearrange(mask, 'b n -> b n 1 1') logits = logits.masked_fill(~mask, -torch.finfo(logits.dtype).max) # get dispatch and combine weights (softmax across right dimensions) dispatch_weights = logits.softmax(dim = 1) combine_weights = rearrange(logits, 'b n e s -> b n (e s)') combine_weights = combine_weights.softmax(dim = -1) # derive slots by weighted average of input tokens using the dispatch weights from above slots = einsum('b n d, b n e s -> b e s d', x, dispatch_weights) # route the slots per expert to each expert out = self.experts(slots) # combine back out out = rearrange(out, ' b e s d -> b (e s) d') out = einsum('b s d, b n s -> b n d', out, combine_weights) if is_image: out, = unpack(out, ps, 'b * d') out = rearrange(out, 'b h w d -> b d h w') return out
soft-moe-pytorch-main
soft_moe_pytorch/soft_moe.py
from setuptools import setup, find_packages setup( name = 'sinkhorn_transformer', packages = find_packages(exclude=['examples']), version = '0.11.4', license='MIT', description = 'Sinkhorn Transformer - Sparse Sinkhorn Attention', author = 'Phil Wang', author_email = 'lucidrains@gmail.com', url = 'https://github.com/lucidrains/sinkhorn-transformer', keywords = ['transformers', 'attention', 'artificial intelligence'], install_requires=[ 'axial-positional-embedding>=0.1.0', 'local-attention', 'product-key-memory', 'torch' ], classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.6', ], )
sinkhorn-transformer-master
setup.py
import torch from sinkhorn_transformer.sinkhorn_transformer import SinkhornTransformerLM from sinkhorn_transformer.autoregressive_wrapper import AutoregressiveWrapper N_BATCH = 16 SRC_SEQ_LEN = 512 TGT_SEQ_LEN = 512 enc = SinkhornTransformerLM( num_tokens = 64, dim = 512, depth = 1, heads = 8, max_seq_len = SRC_SEQ_LEN, bucket_size = 64, return_embeddings = True ).cuda() dec = SinkhornTransformerLM( num_tokens = 64, dim = 512, depth = 2, heads = 8, max_seq_len = TGT_SEQ_LEN, bucket_size = 64, causal = True, receives_context = True ).cuda() dec = AutoregressiveWrapper(dec, ignore_index = 0, pad_value = 0) opt = torch.optim.Adam([*enc.parameters(), *dec.parameters()], lr=2e-4) bos = 1 * torch.ones(N_BATCH, 1).long() eos = 2 * torch.ones(N_BATCH, 1).long() pos = 3 * torch.ones(N_BATCH, 1).long() for i in range(10000): train_seq_in = torch.randint(4, 63, (N_BATCH, SRC_SEQ_LEN-2)).long() train_seq_out = train_seq_in + 1 x = torch.cat([bos, train_seq_in, eos], dim=1).cuda() y = torch.cat([bos, train_seq_out, eos], dim=1).cuda() context = enc(x) loss = dec(y, context = context, return_loss = True) loss.backward() opt.step() opt.zero_grad() print(i, loss.item())
sinkhorn-transformer-master
examples/increment_by_one/train.py
import deepspeed from sinkhorn_transformer import SinkhornTransformerLM from sinkhorn_transformer.autoregressive_wrapper import AutoregressiveWrapper import argparse import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset def add_argument(): parser=argparse.ArgumentParser(description='enwik8') parser.add_argument('--with_cuda', default=False, action='store_true', help='use CPU in case there\'s no GPU support') parser.add_argument('--use_ema', default=False, action='store_true', help='whether use exponential moving average') parser.add_argument('-b', '--batch_size', default=32, type=int, help='mini-batch size (default: 32)') parser.add_argument('-e', '--epochs', default=30, type=int, help='number of total epochs (default: 30)') parser.add_argument('--local_rank', type=int, default=-1, help='local rank passed from distributed launcher') parser = deepspeed.add_config_arguments(parser) args = parser.parse_args() return args # constants VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 1024 SEQ_LEN = 4096 # helpers def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate model model = SinkhornTransformerLM( num_tokens = 256, emb_dim = 128, dim = 512, depth = 8, max_seq_len = SEQ_LEN, heads = 8, bucket_size = 128, ff_chunks = 10, causal = True, reversible = True, attn_dropout = 0.1, n_local_attn_heads = 4 ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) # setup deepspeed cmd_args = add_argument() model_engine, optimizer, trainloader, _ = deepspeed.initialize(args=cmd_args, model=model, model_parameters=model.parameters(), training_data=train_dataset) # training for i, data in enumerate(trainloader): model_engine.train() data = data.to(model_engine.local_rank) loss = model_engine(data, return_loss = True) model_engine.backward(loss) model_engine.step() print(loss.item() * 4) if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): inp = random.choice(val_dataset) loss = model(inp[None, :].cuda(), return_loss = True) print(f'validation loss: {loss.item()}') if model_engine.local_rank == 0 and i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp.cuda(), GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
sinkhorn-transformer-master
examples/enwik8_deepspeed/train.py
from sinkhorn_transformer import SinkhornTransformerLM from sinkhorn_transformer.autoregressive_wrapper import AutoregressiveWrapper import random import tqdm import gzip import numpy as np import torch import torch.optim as optim from torch.nn import functional as F from torch.utils.data import DataLoader, Dataset # constants NUM_BATCHES = int(1e5) BATCH_SIZE = 4 GRADIENT_ACCUMULATE_EVERY = 4 LEARNING_RATE = 1e-4 VALIDATE_EVERY = 100 GENERATE_EVERY = 500 GENERATE_LENGTH = 512 SEQ_LEN = 4096 # helpers def cycle(loader): while True: for data in loader: yield data def decode_token(token): return str(chr(max(32, token))) def decode_tokens(tokens): return ''.join(list(map(decode_token, tokens))) # instantiate model model = SinkhornTransformerLM( num_tokens = 256, emb_dim = 128, dim = 512, depth = 8, max_seq_len = SEQ_LEN, heads = 8, bucket_size = 128, ff_chunks = 2, causal = True, reversible = True, attn_dropout = 0.1, n_local_attn_heads = 4 ) model = AutoregressiveWrapper(model) model.cuda() # prepare enwik8 data with gzip.open('./data/enwik8.gz') as file: X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) trX, vaX = np.split(X, [int(90e6)]) data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX) class TextSamplerDataset(Dataset): def __init__(self, data, seq_len): super().__init__() self.data = data self.seq_len = seq_len def __getitem__(self, index): rand_start = torch.randint(0, self.data.size(0) - self.seq_len - 1, (1,)) full_seq = self.data[rand_start: rand_start + self.seq_len + 1].long() return full_seq.cuda() def __len__(self): return self.data.size(0) // self.seq_len train_dataset = TextSamplerDataset(data_train, SEQ_LEN) val_dataset = TextSamplerDataset(data_val, SEQ_LEN) train_loader = cycle(DataLoader(train_dataset, batch_size = BATCH_SIZE)) val_loader = cycle(DataLoader(val_dataset, batch_size = BATCH_SIZE)) # optimizer optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE) # training for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='training'): model.train() for __ in range(GRADIENT_ACCUMULATE_EVERY): loss = model(next(train_loader), return_loss = True) loss.backward() print(f'training loss: {loss.item()}') torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optim.step() optim.zero_grad() if i % VALIDATE_EVERY == 0: model.eval() with torch.no_grad(): loss = model(next(val_loader), return_loss = True) print(f'validation loss: {loss.item()}') if i % GENERATE_EVERY == 0: model.eval() inp = random.choice(val_dataset)[:-1] prime = decode_tokens(inp) print(f'%s \n\n %s', (prime, '*' * 100)) sample = model.generate(inp, GENERATE_LENGTH) output_str = decode_tokens(sample) print(output_str)
sinkhorn-transformer-master
examples/enwik8_simple/train.py
import math import torch from torch import nn import torch.nn.functional as F from sinkhorn_transformer.sinkhorn_transformer import SinkhornTransformer, SinkhornTransformerLM def find_module(nn_module, type): for module in nn_module.modules(): if isinstance(module, type): return module return None def pad_to_multiple(tensor, multiple, dim=-1, pad_left = False): seqlen = tensor.shape[dim] m = seqlen / multiple if m.is_integer(): return tensor, 0 pre_pad_offset = (0,) * (-1 - dim) * 2 padding = math.ceil(m) * multiple - seqlen offset = (padding, 0) if pad_left else (0, padding) padded_tensor = F.pad(tensor, (*pre_pad_offset, *offset), value=0) return padded_tensor, padding class Autopadder(nn.Module): def __init__(self, net, pad_left=False): super().__init__() assert isinstance(net, (SinkhornTransformer, SinkhornTransformerLM)), 'only modules SinkhornTransformer and SinkhornTransformerLM accepted' self.net = net is_lm = isinstance(net, SinkhornTransformerLM) sinkhorn = find_module(net, SinkhornTransformer) self.bucket_size = sinkhorn.pad_to_bucket_size self.context_bucket_size = sinkhorn.context_bucket_size self.pad_dim = -1 if is_lm else -2 self.pad_left = pad_left def forward(self, x, **kwargs): b, t, device = *x.shape[:2], x.device context = kwargs.get('context') input_mask = kwargs.get('input_mask') context_mask = kwargs.get('context_mask') if input_mask is None: input_mask = torch.full(x.shape[:2], True, device=x.device, dtype=torch.bool) if context is not None and context_mask is None: context_mask = torch.full(context.shape[0:2], True, device=x.device, dtype=torch.bool) x, padding = pad_to_multiple(x, self.bucket_size, dim=self.pad_dim, pad_left=self.pad_left) if padding != 0: offset = (0, padding) if not self.pad_left else (padding, 0) new_mask = F.pad(input_mask, offset, value=False) kwargs.update(input_mask=new_mask) if context is not None: context, context_padding = pad_to_multiple(context, self.context_bucket_size, dim=-2) if context_padding != 0: new_mask = F.pad(context_mask, (0, context_padding), value=False) kwargs.update(context_mask=new_mask) kwargs.update(context=context) out = self.net(x, **kwargs) output_slice = slice(0, t) if not self.pad_left else slice(padding, None) return out[:, output_slice]
sinkhorn-transformer-master
sinkhorn_transformer/autopadder.py
from functools import partial import torch from random import randint from torch import nn import torch.nn.functional as F from torch.nn.utils.rnn import pad_sequence from sinkhorn_transformer.sinkhorn_transformer import SinkhornTransformerLM from sinkhorn_transformer.autopadder import Autopadder def default(value, default): return value if value is not None else default def top_p(logits, thres = 0.9): sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) sorted_indices_to_remove = cum_probs > (1 - thres) sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone() sorted_indices_to_remove[:, 0] = 0 sorted_logits[sorted_indices_to_remove] = float('-inf') return sorted_logits.scatter(1, sorted_indices, sorted_logits) def top_k(logits, thres = 0.9): k = int((1 - thres) * logits.shape[-1]) val, ind = torch.topk(logits, k) probs = torch.full_like(logits, float('-inf')) probs.scatter_(1, ind, val) return probs def pad_sequence_left(seqs, value): m = max([len(s) for s in seqs]) return torch.stack([F.pad(s, (m - len(s), 0)) for s in seqs]) def random_truncate_inputs(inputs, mask = None, pad_value=0): b, t, device, dtype = *inputs.shape, inputs.device, inputs.dtype mask = default(mask, torch.ones_like(inputs)) rand_lengths = torch.randint(2, t, (b, 1)) rand_mask = (torch.arange(t) < rand_lengths).to(device) target_seqs = [t.masked_select(mask) for mask, t in zip(rand_mask, inputs)] mask_seqs = [m.masked_select(mask) for mask, m in zip(rand_mask, rand_mask)] return pad_sequence_left(target_seqs, pad_value), pad_sequence_left(mask_seqs, False) class AutoregressiveWrapper(nn.Module): def __init__(self, net, ignore_index = None, pad_value = 0, pad_left = True): super().__init__() assert isinstance(net, SinkhornTransformerLM), 'generative trainer wrapper can only accept SinkhornTransformerLM class' self.pad_value = pad_value self.ignore_index = default(ignore_index, pad_value) self.net = Autopadder(net, pad_left = pad_left) self.max_seq_len = net.max_seq_len @torch.no_grad() def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, **kwargs): was_training = self.net.training num_dims = len(start_tokens.shape) if num_dims == 1: start_tokens = start_tokens[None, :] b, t = start_tokens.shape self.net.eval() out = start_tokens input_mask = kwargs.pop('input_mask', None) if input_mask is None: input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device) for _ in range(seq_len): x = out[:, -self.max_seq_len:] input_mask = input_mask[:, -self.max_seq_len:] logits = self.net(x, input_mask=input_mask, **kwargs)[:, -1, :] filtered_logits = filter_logits_fn(logits, thres = filter_thres) probs = F.softmax(filtered_logits / temperature, dim=-1) sample = torch.multinomial(probs, 1) out = torch.cat((out, sample), dim=-1) input_mask = F.pad(input_mask, (0, 1), value=True) if eos_token is not None and (sample == eos_token).all(): break out = out[:, t:] if num_dims == 1: out = out.squeeze(0) self.net.train(was_training) return out def forward(self, x, return_loss = False, randomly_truncate_sequence = False, **kwargs): pad = partial(pad_sequence, batch_first = True, padding_value = self.pad_value) if not return_loss: if not isinstance(x, torch.Tensor): x = pad(x) return self.net(x, **kwargs) m = kwargs.pop('input_mask', None) if randomly_truncate_sequence: x, m = random_truncate_inputs(x, m, pad_value = self.pad_value) if isinstance(x, torch.Tensor): xi, xo = x[:, :-1], x[:, 1:] else: xi = pad(list(map(lambda t: t[:-1], x))) xo = pad(list(map(lambda t: t[1:], x))) if m is not None: assert m.shape == x.shape[0:2], 'input mask must be the same shape as the input of the auto-regressive wrapper to automatically handle' kwargs.update(input_mask = m[:, :-1]) out = self.net(xi, **kwargs) loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index) return loss
sinkhorn-transformer-master
sinkhorn_transformer/autoregressive_wrapper.py